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The behavior of Hecke L-functions of real
quadratic fields at s = 0

Byungheup Jun and Jungyun Lee

For a family of real quadratic fields {Kn =Q(
√

f (n))}n∈N, a Dirichlet character
χ modulo q , and prescribed ideals {bn ⊂ Kn}, we investigate the linear behavior
of the special value of the partial Hecke L-function L Kn (s, χn := χ ◦NKn , bn) at
s = 0. We show that for n = qk+ r , L Kn (0, χn, bn) can be written as

1
12q2 (Aχ (r)+ k Bχ (r)),

where Aχ (r), Bχ (r) ∈ Z[χ(1), χ(2), . . . , χ(q)] if a certain condition on bn in
terms of its continued fraction is satisfied. Furthermore, we write Aχ (r) and
Bχ (r) explicitly using values of the Bernoulli polynomials. We describe how
the linearity is used in solving the class number one problem for some families
and recover the proofs in some cases.
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1. Introduction

In this paper, we are mainly concerned with linear behavior of the special values
of the Hecke L-function at s = 0 for families of real quadratic fields.

Let {Kn = Q(
√

f (n))}n∈N be a family of real quadratic fields where f (n) is
a positive square free integer for each n. For example f (x) can be a polynomial
with integer coefficients.

Work partially supported by KRF-2007-341-C00006 (Jun) and by the Basic Research Program
through the National Foundation of Korea (NRF) funded by the ministry of Education, Science and
Technology (Jun: 2012-007726; Lee: 2011-0023688).
MSC2000: 11M06.
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1002 Byungheup Jun and Jungyun Lee

For a Dirichlet character χ modulo q , we have a ray class character χn :=χ◦NKn

for each n. Fixing an ideal bn in Kn for each n, one obtains an indexed family of
partial Hecke L-functions {L Kn (s, χn, bn)}, where the partial Hecke L-function for
(K , χ, b) is defined as

L K (s, χ, b) :=
∑

a∼b integral
(q,a)=1

χ(a)N (a)−s .

and a∼ b means that a= αb for totally positive α ∈ K .
Roughly speaking, if L Kn (0, χn, bn) can be written as linear polynomial in k

with coefficients depending only on r for n = qk + r , we say that L Kn (0, χn, bn)

is linear.

Definition 1.1 (linearity). When the special values of L Kn (s, χn, bn) at s = 0 are
expressed as

L Kn (0, χn, bn)=
1

12q2 (Aχ (r)+ k Bχ (r))

for n=qk+r , Aχ (r), Bχ (r)∈Z[χ(1), χ(2), . . . , χ(q)], we say that L Kn (0, χn, bn)

is linear.

Linearity was originally observed by Biró in his proof of Yokoi’s conjecture.

Theorem 1.2 [Biró 2003b]. If the class number of Q(
√

n2+ 4 ) is 1, then n ≤ 17.

In Yokoi’s conjecture, we take Kn =Q(
√

n2+ 4 ) and bn = OKn . Biró [2003b,
pp. 88, 89] expressed the special value of the Hecke L-function for (Kn, χn, OKn )

at s = 0 for n = qk+ r

L Kn (0, χn, bn)=
1
q
(Aχ (r)+ k Bχ (r)), (1-1)

where

Aχ (r)=
∑

0≤C,D≤q−1

χ(D2
−C2

− rC D)
⌈rC−D

q

⌉
(C − q),

Bχ (r)=
∑

0≤C,D≤q−1

χ(D2
−C2

− rC D)C(C − q).

When Kn is of class number 1, the unique ideal class can be represented by any
ideal bn . A priori the partial Hecke L-function equals the total Hecke L-function
up to multiplication by 2 (that is,

L Kn (0, χn)= cL Kn (0, χn, OKn )

where c is the number of narrow ideal classes).
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From this identification, one can find the residue of n by sufficiently many
primes p for which the class number of Q(

√
n2+ 4 ) is one. Moreover, by the

linearity, this residue depends only on r . Consequently, one can tell whether or
not p is inert in Q(

√
n2+ 4 ). As we have a bound for a smaller prime to inert

depending on n, finally we have enough conditions to list all Kn of class number 1.
Other families (Kn, χn, bn) that have linearity were discovered in [Biró 2003a;

Byeon et al. 2007; Byeon and Lee 2008; Lee 2009a; 2009b]. Similarly, developing
Biro’s method, one can solve the associated class number one problems.

In this paper, we give a criterion on (Kn, χn, bn) for L Kn (0, χn, bn) to be linear.
The criterion is in terms of the continued fraction expression of δ(n), where b−1

n =

[1, δ(n)] := Z + δ(n)Z. Let [[a0, a1, . . . , an]] be the purely periodic continued
fraction

[a0, a1, a2, . . . , an, a0, a1, . . . ],

where

[a0, a1, a2, . . . ] := a0+
1

a1+
1

a2+ · · ·

.

Our main theorem is as follows:

Theorem 1.3 (linearity criterion). Let {Kn = Q(
√

f (n) )}n∈N be a family of real
quadratic fields where f (n) is a positive square free integer for each n. Let χ
be a Dirichlet character modulo q for a positive integer q and χn be a ray class
character modulo q defined by χ ◦ NKn . Suppose bn is an integral ideal relatively
prime to q such that b−1

n = [1, δ(n)]. Assume the continued fraction expansion of
δ(n)− 1

δ(n)− 1= [[a0(n), a1(n), . . . , as−1(n)]]

is purely periodic and of a fixed length s independent of n and ai (n)= αi n+βi for
some fixed αi , βi ∈ Z.

If NKn (bn(C + Dδ(n))) modulo q is a function only depending on C , D and r
for n = qk+ r , then L Kn (0, χn, bn) is linear.

Furthermore, we give a precise description of Aχ (r) and Bχ (r) using values
of the Bernoulli polynomials (Proposition 3.8). From this description, for n with
h(Kn)=1, as in Biró’s case, one can compute the residue of n modulo p depending
on the mod-q residue r of n. There are possibly many (q, p) pairs. The more pairs
of (q, p) we have, the more we can restrict possible n. There are many known
families for which the class number one problem can be solved in this way. Many
known results can be recovered by using the continued fraction expansion to show
linearity and finding enough (q, p).
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There are still other families of real quadratic fields with linearity whose class
number one problems are not yet answered. Morally, once we obtain a reasonable
class number one criterion, finding sufficiently many (q, p)-pairs should solve it.

This paper is composed as follows. In Section 2, we describe the special value
at s= 0 of the partial Hecke L-function in terms of values of the Bernoulli polyno-
mials. Section 3 is devoted to the proof of our main theorem. In Section 4, Biró’s
method is sketched as a prototype to apply the linearity. Section 5 concludes the
paper with a possible generalization of the linearity criterion to a polynomial of
higher order.

Notation and conventions. Throughout this article, we keep the following general
notation and conventions. If necessary, we rewrite the notation at the place where
it is used.

(1) K is a real quadratic field.

(2) For a real quadratic field K , we fix an embedding ι : K → R. If there is no
danger of confusion, we denote ι(α) by an element α ∈ K . α′ denotes the
conjugate of α as well as ι(α′).

(3) For α ∈ K , NK (α) denotes the norm of α over Q. If there is no danger of
confusion, we simply write N (α) to denote NK (α). For an integral ideal a

of K , we let N (a) := [oK , a] denote the norm of a.

(4) For two linearly independent elements α, β ∈ K viewed as a vector space over
Q, [α, β] denotes the lattice (ie. free abelian group) generated by α and β.
The lattice defined by a fractional ideal a of K is denoted by [α, β] if {α, β}
is a free basis of a.

(5) For a subset A of K , we denote by A+ the set of totally positive elements
in A.

(6) χ is a fixed Dirichlet character of modulus q .

(7) For a real number x ,

〈x〉 :=
{

x − [x] for x 6∈ Z,

1 for x ∈ Z.

Equivalently, 〈−〉 is the composition R
mod Z
−−−→ R/Z→ R, where R/Z→ R is

the unique map so that the composition is the identity on (0, 1].

(8) For a real x , [x]1 := x −〈x〉.

(9) For an integer m, 〈m〉q denotes the residue of m by q taken in [1, q] (i.e.,
m = qk+〈m〉q for k ∈ Z, 〈m〉q ∈ [1, q] ∩Z).
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(10) For positive integers ai , [a0, a1, a2, . . . ] denotes the usual continued fraction:

[a0, a1, a2, . . . ] := a0+
1

a1+
1

a2+ · · ·

[a0, a1, . . . , ai−1, ai , ai+1, . . . , ai+ j ] denotes the continued fraction with pe-
riodic part (ai , ai+1, . . . , ai+ j ).
[[a0, a1, . . . , an]] is the purely periodic continued fraction

[a0, a1, . . . , an, a0, a1, . . . ].

(11) (a0, a1, a2, . . . ) denotes the minus continued fraction:

(a0, a1, a2, . . . ) := a0−
1

a1−
1

a2− · · ·

((a0, a1, . . . , an)) is the purely periodic minus continued fraction:

(a0, a1, a2, . . . , an, a0, a1, . . . )

(12) For an integer s, µ(s)= 1 if s is odd and µ(s)= 1
2 if s is even.

2. Partial Hecke L-function

Throughout this section, K denotes a real quadratic field and b is a fixed integral
ideal of K relatively prime to q such that b−1

=[1, δ] for δ∈K satisfying 0<δ′<1
and δ > 2.

A ray class character modulo q is a homomorphism

χ : IK (q)/PK (q)→ C∗

where IK (q) is a group of fractional ideals of K which is relatively prime to q and
PK (q) is a subgroup of principal ideals (α) for totally positive α ≡ 1 (mod q).

Define

F := {(C, D) ∈ Z2
| 0≤ C, D ≤ q − 1, ((C + Dδ)b, q)= 1}.

Let E+ be the set of totally positive units in K , and E+q the set of totally positive
units congruent to 1 mod q . Then ε ∈ E+ acts on the set F by the rule

ε ∗ (C + Dδ)= C ′+ D′δ,

where C ′ and D′ are given by

ε · (C + Dδ)+ qb−1
= C ′+ D′δ+ qb−1 for ε ∈ E+.
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Lemma 2.1. (C, D) in F is fixed by the action of ε if and only if ε is in E+q .

Proof. (C, D) is fixed by ε ∈ E+ if and only if (C + Dδ)(ε − 1) ∈ qb−1. Since
(b(C + Dδ), q)= 1, the condition (C + Dδ)(ε− 1) ∈ qb−1 is equivalent to

ε ≡ 1 (mod q). �

Lemma 2.2. Suppose 0≤ C, D ≤ q − 1. Then the following are equivalent:

(1) (C, D) is in F.

(2) For every α ∈ (C + Dδ)/q + b−1, the ideal qαb is relatively prime to q.

(3) For a α ∈ (C + Dδ)/q + b−1, the ideal qαb is relatively prime to q.

Proof. Suppose that (q, (C + Dδ)b)= 1.
We have

qα
C + Dδ

∈ 1+
q

C + Dδ
b−1

for α ∈ (C + Dδ)/q + b−1. Thus (q, b(C + Dδ))= 1 implies that

qα
C + Dδ

≡ 1 (mod q).

Since

qbα = b(C + Dδ)
qα

C + Dδ
,

we have

(qbα, q)= 1.

If (q, (C + Dδ)b) 6= 1, then (q, qbα) 6= 1 for α ∈ (C + Dδ)/q + b−1, since for
α ∈ (C + Dδ)/q + b−1, we have

qbα ⊂ (C + Dδ)b+ q OK . �

Let F ′ = F/E+ be the orbit space of the action of E+ on F . Let F̃ ′ be a
fundamental set of F ′. Let ε be the totally positive fundamental unit. The order of
the action of ε is λ := [E+ : E+q ] by Lemma 2.1. Then we can decompose F as
follows:

F =
λ−1⊔
i=0

εi F̃ ′. (2-1)

According to this decomposition of F , we can further decompose the partial Hecke
L-function:
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Proposition 2.3. Let q be a positive integer. Given an ideal b ⊂ K as specified at
the beginning of this section and a ray class character χ modulo q , we have

L K (s, χ, b)=
∑

a∼b integral
(q,a)=1

χ(a)N (a)−s

=

∑
(C,D)∈F̃ ′

χ((C + Dδ)b)
∑

α∈(C+Dδ
q +b−1)+/E+q

N (qbα)−s .

Proof. For α1, α2 ∈ (q−1b−1)+, qα1b= qα2b if and only if α1/α2 ∈ E+.
So we have∑

a∼b integral
(q,a)=1

χ(a)

N (a)s
=

∑
a∼qb integral
(q,a)=1

χ(a)

N (a)s
=

∑
α∈(q−1b−1)+/E+

(q,qαb)=1

χ(qαb)

N (qαb)s

For a totally positive fundamental unit ε > 1, we also have

∑
α∈(q−1b−1)+/E+q
(q,qbα)=1

χ(qbα)

N (qbα)s
=

∑
α∈(q−1b−1)+/E+
(q,qbα)=1

λ−1∑
i=0

χ(qbαεi )

N (qbαεi )s

= λ ·
∑

α∈(q−1b−1)+/E+
(q,qbα)=1

χ(qbα)

N (qbα)s
.

And from Lemma 2.2, we have∑
α∈(q−1b−1)+/E+q
(q,qbα)=1

χ(qbα)

N (qbα)s
=

∑
(C,D)∈F

∑
α∈(C+Dδ

q +b−1)+/E+q
(q,qbα)=1

χ(qbα)

N (qbα)s

=

∑
(C,D)∈F

∑
α∈(C+Dδ

q +b−1)+/E+q

χ(qbα)

N (qbα)s
.

By equation (2), the above is equal to

∑
(C,D)∈F̃ ′

λ−1∑
i=0

∑
α∈(

(C+Dδ)εi
q +b−1)+/E+q

χ(qbα)

N (qbα)s
.

Since ∑
α∈(

(C+Dδ)εi
q +b−1)+/E+q

χ(qbα)

N (qbα)s
=

∑
α∈(

(C+Dδ)
q +b−1)+/E+q

χ(qbαεi )

N (qbαεi )s
,
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the above also equal to

λ ·
∑

(C,D)∈F̃ ′

∑
α∈(C+Dδ

q +b−1)+/E+q

χ(qbα)

N (qbα)s
.

Note that for α ∈ (C+Dδ
q +b−1)+, qbα and (C+Dδ)b are in the same ray class

modulo q . Thus χ(qbα)= χ((C + Dδ)b). This completes the proof. �

Shintani–Zagier cone decomposition. We review briefly the decomposition of
(R2)+ into cones due to Shintani [1976] and Zagier [1975] (see also [van der Geer
1988]). This depends on a real quadratic field K and a fixed ideal a inside. Here
for the sake of computation, we fix a = b−1 where b is set as in the beginning of
this section.

K is embedded into R2 by ι= (τ1, τ2), where τ1, τ2 are two real embeddings of
K . In particular, the totally positive elements of K land on (R2)+. We are going
to describe the fundamental domain of (C+Dδ

q +b−1)+/E+q embedded into (R2)+.
The multiplicative action of Eq

+ on K+ induces an action on (R2)+ by coordi-
natewise multiplication:

ε ◦ (x, y)= (τ1(ε)x, τ2(ε)y).

A fundamental domain DR of (R2)+/E+q is given by

DR := {xι(1)+ yι(ε−λ) | x > 0, y ≥ 0} ⊂ (R2)+ (2-2)

where E+q =
〈
ελ
〉
for an integer λ and ε>1 is the unique totally positive fundamental

unit.
If we take the convex hull of ι(b−1)∩(R2)+ in (R2)+, the vertices on the bound-

ary are {Pi }i∈Z for Pi ∈ ι(b
−1), and determined by the conditions P0= ι(1), P−1=

ι(δ) and x(Pi ) < x(Pi−1) where x(Pk) denotes the first coordinate of Pk for k ∈ Z.
Since any two consecutive boundary points make a basis of ι(b−1), we find that(

0 1
−1 bi

)(
Pi−1

Pi

)
=

(
Pi

Pi+1

)
,

for an integer bi . It is easy to see that bi ≥ 2 from the convexity. Thus we obtain

x(Pi−1)+ x(Pi+1)= bi x(Pi ). (2-3)

Put δi :=
x(Pi−1)

x(Pi )
> 1. Note that δ0 = δ. δi satisfies a recursion relation:

δi = bi −
1
δi+1

for i ∈ Z.
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Therefore

δi = bi −
1

bi+1−
1

bi+2− · · ·

= (bi , bi+1, bi+2, . . . ).

Let ε > 1 be the totally positive fundamental unit. Then ε moves a boundary
point to another boundary point, preserving the order. Thus, there exists a positive
integer m so that for all i ∈ Z

ε ◦ Pi = Pi−m . (2-4)

Therefore we obtain the following proposition.

Proposition 2.4. (1) δi+m = δi for all i ∈ Z.

(2) δi = ((bi , bi+1, . . . , bi+m−1))= bi −
1

bi+1− · · ·
1

bi+m−1−
1

bi − · · ·

.

(3) ι(ε−1)= Pm .

(4) ε−1
◦ Pi = Pi+m .

(5) ι(ε−γ )= Pγm .

Proof. (1) δi+m =
x(Pi+m−1)

x(Pi+m)
=
εx(Pi−1)

εx(Pi )
= δi .

(2) This is an immediate consequence of (1).
(3) From (2-4),

Pm = ε
−1
◦ P0,

since P0 = ι(1) and ε−1
◦ ι(1)= ι(ε−1).

(4) This is immediate from (2-4).
(5) This follows trivially from (3) and (4). �

Using (2-2) and Proposition 2.4(4), the fundamental domain DR of (R2)+/E+q
is further decomposed into the disjoint union of λm smaller cones:

DR =

λm⊔
i=1

{x Pi−1+ y Pi | x > 0, y ≥ 0}.

Clearly, the fundamental set of the quotient
(
ι((C + Dδ)/q + b−1)∩ (R2)+

)
/E+q

inside DR, which we denote by D, is given by a disjoint union:

D :=

λm⊔
i=1

(
ι
(C+Dδ

q
+ b−1

)
∩ {x Pi−1+ y Pi | x > 0, y ≥ 0}

)
.
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Since {Pi−1, Pi } is a Z-basis of ι(b−1), there is a unique (x i
C+Dδ, yi

C+Dδ) ∈

(0, 1]× [0, 1) such that

x i
C+DδPi−1+ yi

C+DδPi ∈ ι
(C+Dδ

q
+ b−1

)
,

for each i,C, D ∈ Z. Thus

ι
(C+Dδ

q
+ b−1

)
∩ {x Pi−1+ y Pi | x > 0, y ≥ 0}

= {(x i
C+Dδ + n1)Pi−1+ (yi

C+Dδ + n2)Pi | n1, n2 ∈ Z≥0}. (2-5)

Yamamoto [2008, (2.1.3)] found that (x i
C+Dδ, yi

C+Dδ) satisfy the following re-
currence relations:

x i+1
C+Dδ = 〈bi x i

C+Dδ + yi
C+Dδ〉,

yi+1
C+Dδ = 1− x i

C+Dδ.
(2-6)

Let Ai := x(Pi ) for all i ∈ Z. Then from (2-5), we obtain the following:

∑
α∈(C+Dδ

q +b−1)+/E+q

1
N (α)s

=

λm∑
i=1

∑
n1,n2≥0

N
(
(x i

C+Dδ + n1)Ai−1+ (yi
C+Dδ + n2)Ai

)−s

=

λm∑
i=1

∑
n1,n2≥0

N
(
(x i

C+Dδ + n1)δi + (yi
C+Dδ + n2)

)−s A−s
i . (2-7)

Shintani [1976] evaluated
∑

n1,n2≥0 N
(
(x + n1)δ+ (y+ n2)

)−s for nonpositive
integers s. In particular, the value at s=0 is expressed by first and second Bernoulli
polynomials as follows:

Lemma 2.5 (Shintani).

∑
n1,n2≥0

N
(
(x + n1)δ+ (y+ n2)

)−s
∣∣∣
s=0

=
δ+δ′

4
B2(x)+ B1(x)B1(y)+

1
4

(1
δ
+

1
δ′

)
B2(y).
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Using this, we have∑
α∈(C+Dδ

q +b−1)+/E+q

1
N (α)s

∣∣∣
s=0

=

λm∑
i=1

δi+δ
′

i
4

B2(x i
C+Dδ)+B1(x i

C+Dδ)B1(yi
C+Dδ)+

1
4

( 1
δi
+

1
δ′i

)
B2(yi

C+Dδ). (2-8)

This simplifies further:

Lemma 2.6 [Yamamoto 2008, proof of Theorem 4.1.1].

λm∑
i=1

δi + δ
′

i

4
B2(x i

C+Dδ)+
1
4
(

1
δi
+

1
δ′i
)B2(yi

C+Dδ)=

λm∑
i=1

bi

2
B2(x i

C+Dδ).

Finally, we have

∑
α∈(C+Dδ

q +b−1)+/E+q

1
N (α)s

∣∣∣
s=0
=

λm∑
i=1

B1(x i
C+Dδ)B1(yi

C+Dδ)+
bi

2
B2(x i

C+Dδ).

Lemma 2.7. Let ε be the totally positive fundamental unit of K . Then

xmi+ j
C+Dδ = x j

εi∗(C+Dδ) and ymi+ j
C+Dδ = y j

εi∗(C+Dδ)

for j = 0, 1, 2, . . . ,m− 1.

Proof. From (4) of Proposition 2.4, we have Ami+ j = ε
−i A j , for any integer i .

Thus

xmi+ j
C+DδAmi+ j−1+ ymi+ j

C+DδAmi+ j = xmi+ j
C+Dδε

−i A j−1+ ymi+ j
C+Dδε

−i A j ∈
C + Dδ

q
+b−1.

Therefore,

xmi+ j
C+DδA j−1+ ymi+ j

C+DδA j ∈
εi
· (C + Dδ)

q
+ b−1. �

From Lemma 2.7 and the periodicity of bi , we have:

Lemma 2.8.
∑

α∈(C+Dδ
q +b−1)+/E+q

1
N (α)s

∣∣∣
s=0

=

m∑
i=1

λ−1∑
j=0

B1(x i
ε j∗(C+Dδ))B1(yi

ε j∗(C+Dδ))+
bi

2
B2(x i

ε j∗(C+Dδ)).

Finally, we have:
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Proposition 2.9. For a ray class character χ modulo q and an ideal b of K such
that

b−1
= [1, δ]

for δ ∈ K with δ > 2 and 0< δ′ < 1, we have

L K (0, χ, b)=
∑

1≤C,D≤q

χ((C+Dδ)b)
m∑

i=1

B1(x i
(C+Dδ))B1(yi

C+Dδ)+
bi

2
B2(x i

C+Dδ).

Proof. From Proposition 2.3, we obtain

L K (0, χ, b)=
∑

(C,D)∈F̃ ′

χ((C + Dδ)b)
∑

α∈(C+Dδ
q +b−1)+/E+q

N (qbα)−s
|s=0.

Lemma 2.8 implies that this is equal to

∑
(C,D)∈F̃ ′

χ
(
(C+Dδ)b

) λ−1∑
j=0

m∑
i=1

B1(x i
ε j∗(C+Dδ))B1(yi

ε j∗(C+Dδ))+
bi

2
B2(x i

ε j∗(C+Dδ)).

Since (C + Dδ)εb= (C + Dδ)b, this expression can be rewritten as

∑
(C,D)∈F̃ ′

λ−1∑
j=0

(
χ((C + Dδ)ε jb)

×

m∑
i=1

B1(x i
ε j∗(C+Dδ))B1(yi

ε j∗(C+Dδ))+
bi

2
B2(x i

ε j∗(C+Dδ))

)
.

In view of the decomposition of F in (2-1), the preceding expression equals∑
(C,D)∈F

χ((C + Dδ)b)
m∑

i=1

B1(x i
(C+Dδ))B1(yi

(C+Dδ))+
bi

2
B2(x i

(C+Dδ)).

If ((C + Dδ)b, q) 6= 1 then χ((C + Dδ)b)= 0. Thus we complete the proof. �

Remark 2.10. The summation running over C, D ∈ [1, q] is actually supported
on F . This is justified by the twist of the mod q Dirichlet character. Obviously, F
depends on δ in K , but the twisted sum has an invariant form of δ and K . This is
a subtle point in the proof of the main theorem where we deal with values of the
Hecke L-function with respect to a family (Kn, χn, b).

3. Proof of the main theorem

In this section, we compute special values of the Hecke L-function for a family
of real quadratic fields. The computation is made using the expression for the L-
value from the previous section. After the computation, it will be apparent that the



The behavior of Hecke L-functions of real quadratic fields at s = 0 1013

linearity property comes from the shape of the continued fractions in the family.
This will complete the proof of Theorem 1.3.

This gives a criterion that will recover several approaches of class number prob-
lems for some families of real quadratic fields.

Consider a family of real quadratic fields Kn =Q(
√

dn ), where dn is a positive
square free integer. For a fixed Dirichlet character χ of modulus q, we associate
a ray class character χn := χ ◦ NKn/Q for each n. Let us fix an ideal bn of Kn for
each n. Then we have a family of Hecke L-functions associated to (Kn, χn, bn):

L Kn (s, χn, bn)=
∑

a

χn(a)

N (a)s

where a ranges over integral ideals in the ray class represented by bn .

Plan of the proof. Assume that

b−1
n = [1, δ(n)]

with δ(n) > 2, 0 < δ(n)′ < 1. As discussed in Proposition 2.4, δ(n) has a purely
periodic minus continued fraction expansion:

δ(n)= ((b0(n), b1(n), . . . , bm(n)−1(n)))

= b0(n)−
1

b1(n)− · · ·
1

bm(n)−1(n)−
1

b0(n)− · · ·

,
(3-1)

with bk(n)≥ 2.
We extend the definition of bi (n) to all i ∈ Z by requiring that bi+m(n)(n) =

bi (n) for i ∈ Z, and take δk(n) = ((bk(n), bk+1(n), . . . , bk+m(n)−1(n))). We define
{Ak(n)}k∈Z by

A−1(n)= δ(n), A0(n)= 1, . . . , Ak+1(n)= Ak(n)/δk+1(n).

Then for fixed C, D and n, there is a unique (x i
C+Dδ(n), yi

C+Dδ(n)) such that

0< x i
C+Dδ(n) ≤ 1, 0≤ yi

C+Dδ(n) < 1, (3-2)

and

x i
C+Dδ(n)Ai−1(n)+ yi

C+Dδ(n)Ai (n) ∈
C + Dδ(n)

q
+ b−1

n , (3-3)

for each i ∈ Z, as described in the previous section. This (x i
C+Dδ(n), yi

C+Dδ(n))

satisfies Yamamoto’s recursive relation (2-6) as follows:

x i+1
C+Dδ(n) = 〈bi (n)x i

C+Dδ(n)+ yi
C+Dδ(n)〉, yi+1

C+Dδ(n) = 1− x i
C+Dδ(n). (3-4)
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Now recall a standard conversion formula from a continued fraction expansion
to a minus continued fraction expansion:

Lemma 3.1. Let δ− 1 be a purely periodic continued fraction:

[[a0, a1, . . . , as−1]].

Then the minus continued fraction expansion of δ is

((b0, b1, . . . , bm−1)),

where

bi :=

{
a2 j + 2 for i = S j ,
2 otherwise,

where

S j =

{
0 for j = 0,
S j−1+ a2 j−1 for j ≥ 1,

and the period m is given by

m =
{

a1+ a3+ a5 · · · + as−1 = Ss/2 for even s,
a0+ a1+ a2 · · · + as−1 = Ss for odd s.

Proof. (See [Zagier 1975, pp. 177, 178].) If s is an odd integer, the period m is

s∑
i=1

a2i−1 = a1+ a3+ · · ·+ a2s−1 = Ss .

Since ai has period s, we find that

a1+ a3+ · · ·+ a2s−1 = a0+ a1+ a2 · · · + as−1 =

s−1∑
i=0

ai . �

For the family of δ(n) ∈ K , we assumed that

δ(n)− 1= [[a0(n), a1(n), a2(n), . . . , as−1(n)]]

has the same period for every n.
Then δ(n) has a purely periodic minus continued fraction expansion

δ(n)= ((b0(n), b1(n), . . . , bm(n)−1(n))),

with bi (n), S j (n) and m(n) defined in the same manner as in the previous lemma.
One should be aware that m(n) varies with n, while the period s of the positive

continued fraction is fixed.
From Proposition 2.9 and the recursion (3-4) for (x i

C+Dδ(n), yi
C+Dδ(n)), we have
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L Kn (0, χn, bn)=
∑

1≤C,D≤q

(
χn((C + Dδ(n))bn)

×

m(n)∑
i=1

(
B1(x i

C+Dδ(n))B1(yi
C+Dδ(n))+

bi (n)
2

B2(x i
C+Dδ(n))

))
. (3-5)

To check the linear behavior, it suffices to show that

m(n)∑
i=1

(
B1(x i

C+Dδ(n))B1(yi
C+Dδ(n))+

bi (n)
2

B2(x i
C+Dδ(n))

)
(3-6)

is linear in k with the coefficients depending only on r .
Because bi (n) = 2 if i 6= S j (n) for every j , we can divide the sum above into

two parts:

sµ(s)∑
l=1

(
−B1(x

Sl (n)
C+Dδ(n))B1(x

Sl (n)−1
C+Dδ(n))+

a2l(n)+ 2
2

B2(x
Sl (n)
C+Dδ(n))

)
+

sµ(s)−1∑
l=0

Sl+1(n)−1∑
i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n)), (3-7)

where µ(s)= 1
2 or 1 for s even or odd, respectively, and

F(x, y) := −B1(x)B1(y)+ B2(x).

We will use the following fact to be proved later. Here and wherever there is no
danger of misunderstanding, xi (n) means x i

C+Dδ(n) for fixed C, D.

Claim. The sequence {xi (n)} is a piecewise arithmetic progression, in the sense
that it satisfies these properties:

1. {xi (n)}S j (n)≤i≤S j+1(n) is an arithmetic progression mod Z with common differ-
ence

〈
xS j (n)+1(n)− xS j (n)(n)

〉
.

2. {xi (n)}S j (n)≤i≤S j+1(n) has period q.

3. xS j (n)(n), xS j (n)−1(n) and xS j (n)+1(n) are independent of k, where n = qk+r .

Because of the constraint ai (n)= αi n+βi , the value of 〈ai (n)〉q is independent
of k for n = qk+ r and depends only on i and r . We can thus set

γi (r) := 〈ai (n)〉q , (3-8)

where n = qk+ r . In particular, γi (r)= 〈ai (r)〉q .
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Since {F(xi (n), xi−1(n))}S j (n)+1≤i≤S j+1(n)−1 has period q (item 2 of the claim),
we obtain
Sl+1(n)−1∑
i=Sl (n)+1

F(xi (n), xi−1(n))

=

Sl (n)+γ2l+1(r)−1∑
i=Sl (n)+1

F(xi (n), xi−1(n))+ κ2l+1(n)
Sl (n)+q∑

i=Sl (n)+1

F(xi (n), xi−1(n)),

where ai (n)= κi (n)q + γi (r) for an integer κi (n). Written precisely,

κi (n)=
ai (n)− γi (r)

q
. (3-9)

Since
αir +βi = qτi (r)+ γi (r)

for some integer τi (r), we can write for n = qk+ r

κi (n)= kαi + τi (r) (3-10)

Using 3, we see that xSl (n)(n) and xSl (n)+1(n) are determined by the residue r of
n by q. A priori the sums

Sl (n)+γ2l+1(r)−1∑
i=Sl (n)+1

F(xi (n), xi−1(n)) and
Sl (n)+q∑

i=Sl (n)+1

F(xi (n), xi−1(n))

are completely determined by xSl (n)(n) and xSl (n)+1(n) and remain unchanged
while k varies.

Thus we conclude:

Fact I. For n = qk+ r ,

Sl+1(n)−1∑
i=Sl (n)+1

F(xi (n), xi−1(n))

is a linear function of k.

Using (3-9) and (3-10), we have

−B1(xSl (n)(n))B1(xSl (n)−1(n))+
a2l(n)+ 2

2
B2(xSl (n)(n))

=−B1(xSl (n)(n))B1(xSl (n)−1(n))+
α2lqk+ τ2l(r)q + γ2l(r)+ 2

2
B2(xSl (n)(n)).

Again using item 3 of the Claim we conclude:
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Fact II. For n = qk+ r ,

−B1(xSl (n)(n))B1(xSl (n)−1(n))+
a2l(n)+ 2

2
B2(xSl (n)(n))

is a linear function of k.

Additionally, we have:

Fact III. s and µ(s) are independent of n.

Together, Facts I, II and III imply that

m(n)∑
i=1

−B1(xi (n))B1(xi−1(n))+
bi (n)

2
B2(xi (n)) (3-11)

is linear in k and the coefficients are functions of r for fixed C, D.
There remains to prove properties 1, 2, and 3 of {xi (n)}. We will also give a

precise description of the expression (3-11) to finish the proof of Theorem 1.3.

Periodicity and invariance. We now prove the Claim above about the sequence
{xi (n)}.

Proposition 3.2. For j ≥ 0, {xi (n)}S j (n)≤i≤S j+1(n) is an arithmetic progression mod
Z with common difference 〈xS j (n)+1(n)− xS j (n)(n)〉.

Proof. Since bi (n)= 2 for S j (n)+ 1≤ i ≤ S j+1(n)− 1, we have that

xi+1(n)= 〈2xi (n)− xi−1(n)〉.

This implies that for S j (n)+ 1≤ i ≤ S j+1(n)− 1,

〈xi+1(n)− xi (n)〉 = 〈〈2xi (n)− xi−1(n)〉− xi (n)〉 = 〈xi (n)− xi−1(n)〉. �

Lemma 3.3. For i ≥−1, we have qxi (n) ∈ Z and 0< xi (n)≤ 1.

Proof. Since A0(n) = 1 and A−1(n) = δ(n), we find from (3-2), (3-3), and (3-4)
that

x0(n)=
〈D

q

〉
, x−1(n)= 1− C

q
.

We also note that bi (n) ∈ Z for any i ≥ 0. Thus (3-4) implies this lemma. �

Proposition 3.4. For j ≥ 0 and a2 j+1(n) ≥ q, {xi (n)}S j (n)≤i≤S j+1(n) has period q.
Explicitly, we have

xS j (n)+q+i (n)= xS j (n)+i (n) for 0≤ i ≤ a2 j+1(n)− q.
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Proof. Note that {xi (n) mod 1}S j (n)≤i≤S j+1(n) is an arithmetic progression. Thus

xS j (n)+q+i (n)=
〈
xS j (n)+i (n)+ q〈xS j (n)+i (n)− xS j (n)+i−1(n)〉

〉
,

for 0≤ i ≤ a2 j+1(n)− q . From Lemma 3.3, we find that

q〈xS j (n)+i (n)− xS j (n)+i−1(n)〉 ∈ Z.

Thus
〈xS j (n)+i (n)+ q〈xS j (n)+i (n)− xS j (n)+i−1(n)〉〉 = 〈xS j (n)+i (n)〉.

Since 0< xS j (n)+i (n)≤ 1, we finally have

〈xS j (n)+i (n)〉 = xS j (n)+i (n).

�

For 0≤ r ≤ q − 1, we define

0 j (r) :=
{

0 for j = 0,
0 j (r)+ γ2 j−1(r) for j ≥ 1

,

where γi (r) is defined as in (3-8). For i ≥ 0, we put

ci (r)=
{
γ2 j (r)+ 2 for i = 0 j (r),
2 otherwise.

Consider a sequence {νi
C D(r)}i≥−1 with the initial value and the recursion rela-

tion as follows:

ν−1
C D(r)=

q−C
q

, ν0
C D(r)=

〈D
q

〉
and

νi+1
C D (r)=

〈
ci (r)νi

C D(r)− ν
i−1
C D (r)

〉
.

If C, D are fixed and clear from the context, we omit the subscript and abbreviate
νi

C D(r) to νi (r).

Proposition 3.5. Using the above notation, we have, for j ≥ 0 and n = qk+ r

xS j (n)+i (n)= ν0 j (r)+i (r) for 0≤ i ≤ γ2 j+1(r)

Proof. We use induction on j .
When j =0, S0(n)=00(r)=0. We need to show xi (n)=νi (r) for i ∈[0, γ1(r)].

As we saw in the proof of Lemma 3.3,

x0(n)=
〈D

q

〉
= ν0(r), x−1(n)= 1− C

q
= ν−1(r).
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Since a0(n)− γ0(r) ∈ qZ, using (3-4) and the recursive relation of νi (r), one can
easily check that

x1(n)=
〈
(a0(n)+ 2)

〈D
q

〉
+

C
q

〉
=
〈
(γ0(r)+ 2)ν0(r)− ν−1(r)

〉
= ν1(r).

For 1≤ i ≤ γ1(r)− 1, xi (n) and νi (r) satisfy the same recursion relation

xi+1(n)= 〈2xi (n)− xi−1(n)〉, νi+1(r)= 〈2νi (r)− νi−1(r)〉.

Thus we have xi (n)= νi (r) for 0≤ i ≤ γ1(r).
Now assume that the proposition holds true for j < j0. From Proposition 3.4,

we find that if a2 j0−1(n)≥ q then

xS j0−1(n)+q+i (n)= xS j0−1(n)+i (n) for 0≤ i ≤ a2 j0−1(n)− q. (3-12)

Since a2 j0−1(n)− γ2 j0−1(r) ∈ qZ, we obtain

xS j0 (n)−1(n)= xS j0−1(n)+a2 j0−1(n)−1(n)= xS j0−1(n)+γ2 j0−1(r)−1(n)

= ν0 j0−1(r)+γ2 j0−1(r)−1(r)= ν0 j0 (r)−1(r)

and

xS j0 (n)(n)= xS j0−1(n)+a2 j0−1(n)(n)

= xS j0−1(n)+γ2 j0−1(r)(n)= ν0 j0−1(r)+γ2 j0−1(r)(r)= ν0 j0 (r)(r).

Moreover from (3-4), we find that

xS j0 (n)+1(n)= 〈(a2 j0(n)+ 2)xS j0 (n)(n)− xS j0 (n)−1(n)〉

= 〈(γ2 j0(r)+ 2)ν0 j0(r)(r)− ν0 j0 (r)−1(r)〉 = ν0 j0 (r)+1(r).

Since

xi+1(n)= 〈2xi (n)− xi−1(n)〉 for S j0(n)+ 1≤ i ≤ S j0+1(n)− 1

and
νi+1(r)= 〈2νi (r)− νi−1(r)〉

for 0 j0(r)+ 1≤ i ≤ 0 j0(r)+ γ2 j0+1(r)− 1= 0 j0+1(r)− 1, we have

xS j0 (n)+i (n)= ν0 j0 (r)+i (r) for 0≤ i ≤ γ2 j0+1(r). �

Summations. Next we express (3-11), that is,

m(n)∑
i=1

−B1(x i
C+Dδ(n))B1(x i−1

C+Dδ(n))+
bi (n)

2
B2(x i

C+Dδ(n))

in terms of {νi
C D(r)}.
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Lemma 3.6. Let dl(r) := 〈ν0l (r)+1(r)− ν0l (r)(r)〉 and [x]1 := x − 〈x〉. Then for
1≤ γ ≤ q and n such that γ ≤ a2l+1(n) and n = qk+ r , we have

Sl (n)+γ∑
i=Sl (n)+1

(xi (n)− xi−1(n))2 = γ dl(r)2+ (1− 2dl(r))[ν0l (r)(r)+ dl(r)γ ]1

Proof. Since 0< xi (n)≤ 1, we have

−1< xi (n)− xi−1(n) < 1.

Thus

xi (n)− xi−1(n)= 〈xi (n)− xi−1(n)〉+ψi (n),

where

ψi (n)=
{
−1 if xi (n)≤ xi−1(n),

0 if xi (n) > xi−1(n).

Since

〈xi+1(n)− xi (n)〉 =
〈
〈2xi (n)− xi−1(n)〉− xi (n)

〉
= 〈xi (n)− xi−1(n)〉

for Sl(n)+ 1≤ i ≤ Sl+1(n)− 1, we have

〈xi (n)− xi−1(n)〉 = 〈xSl (n)+1(n)− xSl (n)(n)〉 = 〈ν0l (r)+1(r)− ν0l (r)(r)〉 = dl(r).

Hence we have

xi (n)− xi−1(n)= dl(r)+ψi (n).

Thus we obtain

Sl (n)+γ∑
i=Sl (n)+1

(xi (n)− xi−1(n))2 = γ dl(r)2+ (1− 2dl(r))
Sl (n)+γ∑

i=Sl (n)+1

ψi (n)2.

Note that the sum on the right equals the number of i’s satisfying xi (n)≤ xi−1(n)
for Sl(n)+ 1≤ i ≤ Sl(n)+ γ .

Therefore

Sl (n)+γ∑
i=Sl (n)+1

ψi (n)2 = [xSl (n)(n)+ dl(r)γ ]1 = [ν0l (r)(r)+ dl(r)γ ]1. �

For simplicity, we let

F(x, y) := −B1(x)B1(y)+ B2(x)=
(
x − 1

2

)( 1
2 − y

)
+ x2
− x + 1

6 .
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Lemma 3.7. If l ≥ 0 and a2l+1(n)≥ q , then

Sl (n)+q∑
i=Sl (n)+1

F(xi (n), xi−1(n))

=
1
12

[
6
(
qdl(r)2+ (1− 2dl(r))[ν0l (r)(r)+ dl(r)q]1

)
− q

]
.

And if 1≤ γ ≤ q − 1 and a2l+1(n)≥ γ ,

Sl (n)+γ∑
i=Sl (n)+1

F(xi (n), xi−1(n))= 1
12

[
6
(
γ dl(r)2+ (1− 2dl(r))[ν0l (r)(r)+ dl(r)γ ]1

+ B2(xSl (n)+γ (n))− B2(xSl (n)(n))
)
− γ

]
,

where B2(x) is the second Bernoulli polynomial.

Proof. We note that

F(x, y)= 1
2(x − y)2− 1

12 +
1
2(B2(x)− B2(y)).

Thus

Sl (n)+γ∑
i=Sl (n)+1

F(xi (n), xi−1(n))

=

Sl (n)+γ∑
i=Sl (n)+1

[ 1
2(xi (n)− xi−1(n))2− 1

12 +
1
2(B2(xi (n))− B2(xi−1(n)))

]
.

We note that for 1≤ γ ≤ q − 1,

Sl (n)+γ∑
i=Sl (n)+1

B2(xi (n))− B2(xi−1(n))= B2(xSl (n)+γ (n))− B2(xSl (n)(n)).

and, from the periodicity of xi (n), we have that for γ = q

Sl (n)+q∑
i=Sl (n)+1

B2(xi (n))− B2(xi−1(n))= 0. �

Proposition 3.8. Suppose δ(n)−1=[[a0(n), a2(n), . . . , as−1(n)]], ai (n)=αi n+βi

for αi , βi ∈ Z and ai (r) = qτi (r) + γi (r) for γi (r) = 〈ai (r)〉q . Let dl
C D(r) :=

〈ν
0l (r)+1
C D (r)− ν0l (r)

C D (r)〉. Then, for n = qk+ r , we have

m(n)∑
i=1

−B1(x i
C+Dδ(n))B1(yi

C+Dδ(n))+
bi (n)

2
B2(x i

C+Dδ(n))=
1

12(AC D(r)+k BC D(r)),
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where

AC D(r)

:=

sµ(s)∑
l=1

−12B1(ν
0l (r)
C D (r))B1(ν

0l (r)−1
C D (r))+ 6(a2l(r)+ 2)B2(ν

0l (r)
C D (r))

+

sµ(s)−1∑
l=0

[
6
(
(γ2l+1(r)− 1)dl

C D(r)
2

+ (1− 2dl
C D(r))[ν

0l (r)
C D (r)+ dl

C D(r)(γ2l+1(r)− 1)]1

+ B2(ν
0l+1(r)−1
C D (r))− B2(ν

0l (r)
C D (r))

)
− γ2l+1(r)+ 1

+ τ2l+1(r)
(
6(qdl

C D(r)
2
+ (1− 2dl

C D(r))[ν
0l (r)
C D (r)+ dl

C D(r)q]1)− q
)]

and

BC D(r) :=
sµ(s)∑
l=1

6qα2l B2(ν
0l (r)
C D (r))

+

sµ(s)−1∑
l=0

α2l+1
(
6(qdl

C D(r)
2
+ (1− 2dl

C D(r))[ν
0l (r)
C D + dl

C D(r)q]1)− q
)
.

Proof. From (3-7), we have

m(n)∑
i=1

B1(x i
C+Dδ(n))B1(yi

C+Dδ(n))+
bi (n)

2
B2(x i

C+Dδ(n))

=

sµ(s)∑
l=1

(
−B1(x

Sl (n)
C+Dδ(n))B1(x

Sl (n)−1
C+Dδ(n))+

α2lqk+τ2l(r)q+γ2l(r)+2
2

B2(x
Sl (n)
C+Dδ(n))

)

+

sµ(s)−1∑
l=0

Sl (n)+qα2l+1k
+qτ2l+1(r)+γ2l+1(r)−1∑

i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n)).

From Lemma 3.7, we have

12

Sl (n)+qα2l+1k
+qτ2l+1(r)γ2l+1(r)−1∑

i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n))

= 12
Sl (n)+γ2l+1(r)−1∑

i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n))

+ 12(α2l+1k+ τ2l+1(r))
Sl (n)+q∑

i=Sl (n)+1

F(x i
C+Dδ(n), x i−1

C+Dδ(n))
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= 6
(
(γ2l+1(r)−1)dl

C D(r)
2
+(1−2dl

C D(r))
[
ν
0l (r)
C D (r)+dl

C D(r)(γ2l+1(r)−1)
]

1

+ B2(x
Sl (n)+γ2l+1−1
C+Dδ(n) )− B2(x

Sl (n)
C+Dδ(n))

)
− (γ2l+1(r)− 1)

+(α2l+1k+τ2l+1(r))
(
6(qdl

C D(r)
2
+ (1−2dl

C D(r))[ν
0l (r)
C D (r)+dl

C D(r)q]1)−q
)
.

Since

x Sl (n)
C+Dδ(n)= ν

0l (r)
C D (r), x Sl (n)−1

C+Dδ(n)= ν
0l (r)−1
C D (r), and x Sl (n)+γ2l+1(r)−1

C+Dδ(n) = ν
0l+1(r)−1
C D ,

we complete the proof. �

End of the proof. Since ν0l (r)
C D (r), ν0l (r)−1

C D (r) and dl
C D(r) are in 1

q Z, we find that

q2 AC D(r), q2 BC D(r) ∈ Z.

Moreover, we have

L Kn (0, χn, bn)=
1

12q2

∑
C,D

χn(C + Dδ(n))(q2 AC D(r)+ kq2 BC D(r)).

Since χ is a Dirichlet character of modulus q , if n = qk+ r , we can write

χn(bn(C + Dδ(n)))= FC D(r)

for a function FC D . Note that, if Kr is defined,

χn(bn(C + Dδ(n)))= χr (br (C + Dδ(r)))= FC D(r).

(This expression does not make sense if Kr and δ(r) are undefined.)
If we set

Aχ (r) :=
∑
C,D

FC D(r)q2 AC D(r)

and
Bχ (r) :=

∑
C,D

FC D(r)q2 BC D(r),

we obtain the proof. �

4. Biró’s method

Let Kn be a family of real quadratic fields such that the special value of the Hecke
L-function at s = 0 has linearity. Biró [Biró 2003a; 2003b] developed a method
using linearity to find the residue of n such that h(Kn) = 1 by certain primes. In
this section, we sketch Biró’s method.

Let Kn =Q(
√

d ) for a square free integer d = f (n) and Dn be the discriminant
Kn . For an odd Dirichlet character χ : Z/qZ→ C∗, let χn denote the ray class
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character defined as χn = χ ◦NKn : In(q)/Pn(q)+→C∗, and let χD = (
D
·
) denote

the Kronecker character. Then the special value of the Hecke L-function at s = 0
has a factorization

L Kn (0, χn)= L(0, χ)L(0, χχDn )=

(
1
q

q∑
a=1

aχ(a)
)(

1
q Dn

q Dn∑
b=1

bχ(b)χDn (b)
)
.

Let bn = OKn . Suppose that L Kn (0, χn, bn) is linear in the form

L Kn (0, χn, bn)=
1

12q2 (Aχ (r)+ k Bχ (r))

for Aχ (r), Bχ (r) ∈ Z[χ(1), χ(2) · · ·χ(q)]. Let εn be the fundamental unit of Kn .
From Proposition 2.2 in [Byeon and Lee 2011], we find that L Kn (0, χn, bn) =

L Kn (0, χn, (εn)bn). Thus if the class number of Kn is one, then we have for n =
qk+ r

L Kn (0, χn)=
c

12q2 (Aχ (r)+ k Bχ (r))

where c is the number of narrow ideal classes.
Then we have

Bχ (r)k+ Aχ (r)=
12q

c
·

( q∑
a=1

aχ(a)
)
·

(
1

q Dn

q Dn∑
b=1

bχ(b)χDn (b)
)
.

Let Lχ be the cyclotomic field generated by the values of χ . Since

1
q Dn

q Dn∑
b=1

bχ(b)χDn (b)

is integral in Lχ , for a prime ideal I of Lχ dividing
∑q

a=1 aχ(a), we have

Bχ (r)k+ Aχ (r)≡ 0 (mod I ).

And if I does not divide Bχ (r), then

k ≡−
Aχ (r)
Bχ (r)

(mod I ).

Since n = qk+ r , we have

n ≡−q
Aχ (r)
Bχ (r)

+ r (mod I ).

Moreover, if OLχ /I =Z/pZ, the residue of n modulo p is expressed only in terms
of Aχ (r), Bχ (r), and r as above.

We now list the necessary conditions on q and p:
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Condition (∗). q is an odd integer; p is an odd prime; χ is a character with
conductor q; I is prime ideal in Lχ lying over p, with I |

(∑q
a=1 aχ(a)

)
and

OLχ /I = Z/pZ.

When linearity holds, these conditions are independent of the family {Kn}.
Let S be the set of (q, p) satisfying Condition (∗). We partition S as follows:

S =
⋃

q odd integer

Sq , where Sq := {(q, p) ∈ S}.

Finally, for (q, p) ∈ S, we obtain the residue of n = qk+r modulo p for which
the class number of Kn is 1.

The above method has been used to find an upper bound on the discriminant of
real quadratic fields with class number 1 in some families of Richaud–Degert type
where the linearity criterion is satisfied [Biró 2003a; 2003b; Byeon et al. 2007;
Lee 2009a]. This information, together with a properly developed class number
one criteria for each case, could be used to solve the class number problems.

It is easily checked that the criterion is fulfilled by general families of Richaud–
Degert type. Furthermore, there are abundant examples of families of real quadratic
fields satisfying the linearity criterion [McLaughlin 2003]. For these, we have
controlled behavior of the special values of the Hecke L-function at s = 0, and
Biro’s method is directly applicable in each case. We expect this method can be
used to study many meaningful arithmetic problems for families of real quadratic
fields, in addition to the class number problem.

5. A generalization

We conclude with a possible generalization of the linearity of the special value of
the Hecke L-function. This generalization will be dealt in [Jun and Lee 2012].

As in the criterion for linearity, we set Kn = Q(
√

f (n) ) and let bn an integral
ideal of Kn . We assume b−1

n = [1, δ(n)] for δ(n)− 1 = [a1(n), a2(n), . . . , as(n)],
with ai (x) ∈ Z[x].

For a given conductor q , write n = qk + r for r = 0, 1, 2, . . . , q − 1. Suppose
N =maxi {deg(ai (x))}. Then the special value of the partial ζ -function of the ray
class of bn mod q at s = 0 can be written as

ζKn,q(0, (C + Dδ(n))bn)=
1

12q2

(
A0(r)+ A1(r)k+ · · ·+ AN (r)k N )

for some rational integers Ai depending only on r .
We have no application of this property in arithmetic, but it will be very inter-

esting if one applies it in a similar fashion as Biró’s method.
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The Picard group of a K 3 surface and
its reduction modulo p

Andreas-Stephan Elsenhans and Jörg Jahnel

We present a method to compute the geometric Picard rank of a K 3 surface
over Q. Contrary to a widely held belief, we show that it is possible to verify
Picard rank 1 using reduction at a single prime.

1. Introduction

1.1. For complex, projective K 3 surfaces, the Picard group is a highly interesting
invariant. In general, it is isomorphic to Zn for some n = 1, . . . , 20. A generic K 3
surface has Picard rank 1. Nevertheless, the first explicit examples of K 3 surfaces
over Q having geometric Picard rank 1 were constructed by R. van Luijk [2007]
as late as 2004. Van Luijk’s method is based on reduction modulo p. It works as
follows.

Approach 1.2 (van Luijk). Let S be a K 3 surface over Q.

(i) At a place p of good reduction, the Picard group Pic(SQ) of the surface injects
into the Picard group Pic(SFp

) of its reduction modulo p.

(ii) On its part, the group Pic(SFp
) injects into the second étale cohomology group

H 2
ét(SFp

,Ql(1)).

(iii) Only roots of unity can arise as eigenvalues of the Frobenius Frob on the
image of Pic(SFp

) in H 2
ét(SFp

,Ql(1)). The number of eigenvalues of this form,
counted with multiplicities, is therefore an upper bound for the Picard rank
of SFp

. One may compute the eigenvalues of Frob by counting the points on S,
defined over Fp and some finite extensions.

Doing this for one prime, one obtains an upper bound for rk Pic(SFp
), which

is always even. The Tate conjecture asserts that this bound is actually sharp.

Elsenhans was supported in part by the Deutsche Forschungsgemeinschaft (DFG) through a funded
research project.
MSC2010: primary 14C22; secondary 14D15, 14J28, 14Q10.
Keywords: K 3 surface, Picard group, Picard scheme, deformation, Artin approximation, Van

Luijk’s method.
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Therefore, the best that could happen is to find a prime p that yields an upper
bound of 2 for the rank of Pic(SQ).

(iv) In this case, the assumption that the surface has Picard rank 2 over Q implies
that the discriminants of both Picard groups, Pic(SQ) and Pic(SFp

), belong
to the same square class. Note here that reduction modulo p respects the
intersection pairing.

(v) To obtain a contradiction, one combines information from two primes. It may
happen that one has a rank bound of 2 at both places but that different square
classes arise for the discriminants. Then, these data are incompatible with
Picard rank 2 over Q. Geometric Picard rank 1 is proven.

1.3. The improvement. The idea behind Approach 1.2 is to consider the special-
ization sp : Pic(SQ) ↪→ Pic(SFp

) as an injection of lattices. Then, the two possibili-
ties rk Pic(SQ) < rk Pic(SFp

) and rk Pic(SQ)= rk Pic(SFp
) are distinguished. In the

latter, the standard fact is used that disc Pic(SQ)/ disc Pic(SFp
) is a perfect square.

We will show in this article that the assertion for the second case may be refined
to disc Pic(SQ)= disc Pic(SFp

). More precisely, we shall prove that, at least for
p 6= 2, the cokernel of sp : Pic(SQ) ↪→ Pic(SFp

) is always torsion-free. This is true
actually in a by-far more general situation than just for K 3 surfaces.

Theorem 1.4. Let R be a discrete valuation ring with quotient field K of charac-
teristic 0 and residue field k of characteristic p > 0. Further, let π : X → Spec R
be a morphism of schemes that is proper and smooth.

Suppose that R is of ramification degree e < p− 1 and that k is perfect. Then,
the cokernel of the specialization homomorphism spK : Pic(X K ) → Pic(Xk) is
torsion-free.

Remarks 1.5. (a) In the applications, we will have R = Z(p) ⊂ Q. Then, the
assumption simply means p 6= 2.

(b) We will show this theorem in Section 3. As an application, one may prove
rk Pic(SQ)= 1 for a K 3 surface S using its reduction at a single prime. This
works as follows.

Approach 1.6. Let a K 3 surface S over Q be given.

(i) For a prime p 6= 2 of good reduction, perform steps (i), (ii) and (iii) as in
Approach 1.2. Thereby, the hope is to prove rk Pic(SFp

)= 2. Further, compute
the discriminant giving two explicit generators.

Alternatively, to determine the discriminant, one might use the Artin–Tate
formula [Milne 1975]. In this case, rk Pic(SFp

) = 2 is shown only relative to
the Tate conjecture. Observe, however, that a surface with rk Pic(SFp

) = 1,
due to a failure of the Tate conjecture, would serve our purposes as well.
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(ii) Assume rk Pic(SQ) = 2. Then, according to Theorem 1.4, every invertible
sheaf on SFp

must lift to SQ. Estimate the degree of a hypothetical effective
divisor. Finally, use Gröbner bases to verify that such a divisor does not exist.

Example 1.7. Consider the K 3 surface S over Q given by

w2
= x5 y+x4 y2

+2x3 y3
+x2 y4

+xy5
+4y6

+2x5z+2x4z2
+4x3z3

+2xz5
+4z6.

Then, rk Pic(SQ)= 1.

Proof. For the reduction of S at the prime 5, one sees that the branch locus has a
tritangent line given by z−2y= 0. It meets the branch locus at (1 : 0 : 0), (1 : 3 : 1),
and (0 : 1 : 2).

The numbers of points on S over F5d are, in this order, 41, 751, 15 626, 392 251,
9 759 376, 244 134 376, 6 103 312 501, 152 589 156 251, 3 814 704 296 876, and
95 367 474 609 376. Thus, the traces of Frob on H 2

ét(SF5
,Ql) are 15, 125, 0, 1 625,

−6 250, −6 250, −203 125, 1 265 625, 7 031 250, and 42 968 750.
Elsenhans and Jahnel [2008a, Algorithm 23] show that the sign in the functional

equation is positive. The characteristic polynomial of Frob is therefore completely
determined. For its decomposition into prime polynomials, we find (after Tate twist
to H 2

ét(SF5
,Ql(1)))

1
5(t − 1)2(5t20

− 5t19
− 5t18

+ 10t17
− 2t16

− 3t15
+ 4t14

− 2t13
− 2t12

+ t11

+ 3t10
+ t9
− 2t8

− 2t7
+ 4t6

− 3t5
− 2t4

+ 10t3
− 5t2

− 5t + 5).

This shows rk Pic(SF5
)≤ 2.

The irreducible components of the pull-back of the tritangent line are explicit
generators for Pic(SF5

). Such a component l, because it is a projective line, has
self-intersection number l2

= −2. Further, lh = 1 for h the pull-back of a line. If
we had rk Pic(SQ) = 2, then the invertible sheaf O(l) would lift to SQ. We would
have a divisor L on SQ such that H L = 1 and L2

= −2. By [Barth et al. 1984,
Proposition VIII.3.6.i], such a divisor is automatically effective.

The equation H L = 1 shows that L is obtained from a line on P2, the pull-back
of which splits into two components. This is possible only for a line tritangent to
the branch locus. Algorithm 8 of [Elsenhans and Jahnel 2008a] shows, however,
using Gröbner bases, that such a tritangent line does not exist. �

2. The cokernel of the restriction map

Notation 2.1. (i) Let R be a discrete valuation ring of unequal characteristic.
We will write K := Quot(R) for its quotient field, p for the maximal ideal,
k := R/p for the residue field of characteristic p, and ν : K � Z for the
normalized valuation. Let e := ν(p) denote the ramification degree of R.
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(ii) Let X be an R-scheme. Then, we will write Xp for the special fiber and Xη
for the generic fiber of X . For L an extension of K , we will denote by X L

the base extension of Xη to L . Analogously, for l an extension of k, we will
write Xl for the base extension of Xp to l. In the particular case that l = Fq ,
the shortcut Xq shall be used for Xl .

Proposition 2.2. Let π : X→Spec R be a morphism of schemes that is proper and
flat. Suppose that the special fiber Xp is normal.

If R is complete and satisfies the condition e < p− 1, then the cokernel of the
restriction homomorphism Pic(X)→ Pic(Xp) is torsion-free.

Proof. This result was obtained by M. Raynaud in the course of his investigations
on the Picard scheme [Raynaud 1979, Théorème 4.1.2.1]. �

Remark 2.3. Assume, also, that the restriction homomorphism H 1(X,OX ) →

H 1(Xp,OXp) is surjective. Then, the assertion of Proposition 2.2 may be estab-
lished using the following elementary argument, which is also due to M. Raynaud
[1979, section 1].

Consider the functors T i on the category of all finitely generated R-modules to
finitely generated R-modules, given by T i (M) := H i (X, π∗M̃). Here, M̃ denotes
the coherent sheaf associated with the R-module M . According to [Grothendieck
1963, Proposition (7.7.10), p. 71], the functor T 1 is right exact. Hence, by [ibid.,
Théorème (7.7.5.II), p. 68], T 2 is left exact. This, in turn, immediately implies that
H 2(X,OX ) is torsion-free.

Further, the short exact sequence

0→U1 −→ O∗X −→ O∗Xp
→ 0

shows that coker(Pic(X)→Pic(Xp)) injects into H 2(X,U1). Finally, as e< p−1,
the exponential map provides us with an isomorphism

OX
·p
−→ pOX

exp
−→U1.

Remarks 2.4. (i) The additional assumption of 2.3 is fulfilled in our applications.

(ii) For prime-to-p torsion, the assertion of Proposition 2.2 is true in a more gen-
eral situation.

Proposition 2.5. Let π : X→ Spec R be a proper morphism of schemes.
If R is Henselian, then the cokernel of the restriction homomorphism

Pic(X)→ Pic(Xp)

has no prime-to-p torsion.
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Proof. Let l 6= p be a prime number. We will show that there is no l-torsion.
For this, we observe at first that, according to a consequence of the theorem on
proper base change [Artin et al. 1973, Exp. XII, Corollaire 5.5.iii], the restriction
morphism induces bijections

H 1
ét(X, µl)

∼=
−→ H 1

ét(Xp, µl) and H 2
ét(X, µl)

∼=
−→ H 2

ét(Xp, µl).

Because [Berthelot et al. 1971, Exp. X, diagramme (7.13.10)] the restriction
homomorphisms on the Picard groups and étale cohomology commute with the
Chern maps, we see that restriction induces a surjection Pic(X)l � Pic(Xp)l and
an injection Pic(X)/ l ↪→ Pic(Xp)/ l.

Applied to the two commutative diagrams of short exact sequences

0 // Pic(X)l //

�
��

Pic(X) //

��

PX //

��

0

0 // Pic(Xp)l // Pic(Xp) // PXp
// 0,

0 // PX
· l //

��

Pic(X) //

��

Pic(X)/ l //

↪→

��

0

0 // PXp

· l // Pic(Xp) // Pic(Xp)/ l // 0,

the snake lemma now shows that the induced homomorphism

coker(Pic(X)→ Pic(Xp))→ coker(PX → PXp)

is a bijection, while

coker(PX → PXp)
· l
−→ coker(Pic(X)→ Pic(Xp))

is injective. Consequently, coker(Pic(X)→ Pic(Xp)) has no l-torsion. �

3. The cokernel of the specialization map

3.1. In this section, we continue to use the notation from 2.1. Let π : X→ Spec R
be a morphism of schemes that is proper and smooth. We have the restriction
homomorphisms

Pic(Xη)← Pic(X)→ Pic(Xp).

As π is smooth, the arrow to the left is a bijection [Berthelot et al. 1971, Exp. X,
App. 7.8]. Consequently, there is a natural homomorphism sp :Pic(Xη)→Pic(Xp),
which is called the specialization.
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Lemma 3.2. Let π : X → Spec R be a morphism of schemes that is proper and
smooth.

If R is complete and satisfies the condition e < p− 1, then the cokernel of the
specialization homomorphism sp : Pic(Xη)→ Pic(Xp) is torsion-free.

Proof. The assertion follows directly from Proposition 2.2. �

3.3. Let K ′/K be an extension field equipped with a discrete valuation extending
that on K . Denote by R′ the discrete valuation ring and by k ′ the residue field.
The morphism X ×Spec R Spec R′→ Spec R′, obtained by base change, induces a
specialization homomorphism spK ′ : Pic(X K ′)→ Pic(Xk′).

There are the following two applications.

(i) Suppose R to be complete. Then, for every finite extension K ′/K , there is a
unique [Serre 1968, Chap. II, §2, Proposition 3] discrete valuation extending
the valuation on K . The direct limit of the homomorphisms spK ′ :Pic(X K ′)→

Pic(Xk′) is a natural homomorphism spK : Pic(X K )→ Pic(Xk), again called
the specialization.

(ii) For general R, fix an embedding K ↪→ K̂ of the algebraic closure of K into
that of its completion. By functoriality, this embedding induces a homo-
morphism Pic(X K ) → Pic(X K̂ ). Composing with spK̂ , constructed in (i),
one has a specialization homomorphism spK : Pic(X K )→ Pic(Xk).

Proposition 3.4. Let π : X→Spec R be a morphism of schemes that is proper and
smooth.

Suppose R is complete and satisfies the condition e< p−1, and let k be perfect.
Then, the cokernel of the specialization homomorphism spK : Pic(X K )→ Pic(Xk)

is torsion-free.

Proof. By [Serre 1968, Chap. III, §5, Corollaire 1 du Théorème 3], K has a unique
maximal unramified extension K nr, which is actually the filtered direct limit of all
finite unramified extensions K ′/K .

An unramified extension does not change the ramification degree. Hence, by
Lemma 3.2, the homomorphisms spK ′ : Pic(X K ′) → Pic(Xk′) have torsion-free
cokernels. As the filtered direct limit is an exact functor, the same is true for
spK nr : Pic(X K nr)→ Pic(Xk).

We claim that the specialization homomorphism spK has the same image in
Pic(Xk) as spK nr . For this, let L ∈ Pic(X K ). The inertia group I := Gal(K/K nr)

sends L to a finite orbit {L1, . . . ,Lm}. The specializations of L1, . . . ,Lm in
Pic(Xk) are all the same. Therefore,

m ·spK (L)= spK (L
⊗m)= spK (L1⊗ · · ·⊗Lm)= spK nr(L1⊗ · · ·⊗Lm),
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since L1⊗ · · · ⊗Lm is I -invariant. Hence, m ·spK (L) ∈ im spK nr . As spK nr has a
torsion-free cokernel, we see that spK (L) ∈ im spK nr , too. �

Remark 3.5. The argument above uses that Pic(X L) = Pic(X K )
Gal(L/K ). This

equality is certainly not correct, in general. It is true as soon as Y (K ) 6= ∅ for
every connected component Y of X .

As π is smooth, we indeed have Y (K nr) 6= ∅. To see this, let s : Spec l → Yk

be a point defined over a finite extension. By [Grothendieck 1967, Proposition
(17.5.3), p. 68], s may be lifted to a morphism Spf S→ Y for S the corresponding
unramified extension of R. Then [Grothendieck 1961, Théorème (5.4.1), p. 156]
yields the desired point.

Theorem 3.6. Let R be a discrete valuation ring with quotient field K of charac-
teristic 0 and residue field k of characteristic p > 0. Further, let π : X → Spec R
be a morphism of schemes that is proper and smooth.

Suppose that R is of ramification degree e < p− 1 and that k is perfect. Then,
the cokernel of the specialization homomorphism spK : Pic(X K ) → Pic(Xk) is
torsion-free.

Corollary 3.7. Let p 6= 2 be a prime number and X be a scheme proper and flat
over Z. Suppose that the special fiber Xp is nonsingular.

Then, the cokernel of the specialization homomorphism

spQ : Pic(XQ)→ Pic(XFp
)

is torsion-free.

Remark 3.8. The technical condition on the ramification degree cannot be omit-
ted. In fact, D. Maulik and B. Poonen [2010, Example 3.12] constructed counter-
examples to the assertion of Theorem 3.6 in the situation that e ≥ p− 1.

Remarks 3.9 (elementary reductions). (i) Let R′ be a discrete valuation ring,
finite and flat over R. Then, the assertion for pr2 : X×Spec RSpec R′→Spec R′,
obtained by base-change, implies that for π .

(ii) In particular, we may suppose that π : X→ Spec R has a section.

(iii) We may suppose that the fibers of π are geometrically connected.
Indeed, as π : X → Spec R is proper and smooth, one has π∗OX = S̃ for

S a finite étale R-algebra [Grothendieck 1963, Remarque (7.8.10.i), p. 75].
Hence, there exists a discrete valuation ring R′, étale over R, such that S⊗RR′

is a direct product of finitely many copies of R′. This means that the connected
components of X×Spec R Spec R′ have geometrically connected fibers. Know-
ing the assertion for each component separately, the proof will be complete.
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Proposition 3.10. Let R be a discrete valuation ring of characteristic 0 and let
π : X → Spec R be a proper and smooth morphism of schemes. Suppose that π
has a section and that the fibers of π are geometrically connected.

Then, the specialization homomorphisms

spK : Pic(X K )→ Pic(Xk) and spK̂ : Pic(X K̂ )→ Pic(Xk)

have the same image.

Proof. As spK factors via spK̂ , we clearly have im spK ⊆ im spK̂ . We will show the
reverse inclusion in several steps. Let an invertible sheaf L∈Pic(X K̂ ) be given. We
have to construct an invertible sheaf L′ ∈ Pic(X K ) having the same specialization
as L.

First step (the Picard scheme). Our assumptions on π imply that it is cohomo-
logically flat in dimension zero [Grothendieck 1963, Proposition (7.8.6), p. 74].
Hence, by [Artin 1969b, Theorem 7.3], the Picard functor PicX/R is representable
by an algebraic space P := PicX/R that is locally of finite type over R. According
to [Grothendieck 1962, Exp. 236, Théorème 2.1.i], P is separated. This is enough
to ensure that P is actually a scheme [Raynaud 1970, Théorème (3.3.1)]. Further,
every closed subset Z ⊆ P , being of finite type, is proper over R.

Second step (the representing morphism). The invertible sheaf L∈ Pic(X K̂ ) is de-
fined over a finite extension L of K̂ . Hence, it defines a morphism i : Spec L→ P .
As K̂ is complete, there is a unique prolongation to L of the discrete valuation
on K̂ . That is, we have a discrete valuation ring S ⊇ R̂. There is a unique contin-
uation j : Spec S→ P of i .

Third step (Artin approximation). By Lemma 3.12, we have S = Ŝ for a discrete
valuation ring S, finite over R. Write L for the quotient field of S. This is a finite
extension of K .

We now recall that discrete valuation rings of characteristic zero are excellent
[Grothendieck 1965, Scholie (7.8.3.iii), p. 214]. In particular, Artin’s approxima-
tion results [1969a] are applicable. According to [1969a, Corollary (2.5)], there
are an étale extension S′ of S and a morphism j ′ : Spec S′→ P of schemes that
coincides, up to extensions of the base field, with j on the special fiber.

Corresponding to j ′, there is some ξ ∈ PicX/R(Spec S′).

Fourth step (an invertible sheaf). As the fibers of X are geometrically connected,
we have π∗OX = OSpec R . Further, since π has a section, one has [Grothendieck
1962, Exp. 232, Proposition 2.1]

PicX/R(T )= Pic(X ×Spec R T )/Pic(T )
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for every R-scheme T . In particular,

PicX/R(Spec S′)= Pic(X ×Spec R Spec S′)/Pic(Spec S′)

= Pic(X ×Spec R Spec S′).

Hence, ξ defines an invertible sheaf on X ×Spec R Spec S′. Let L′ ∈ Pic(X L) be its
restriction to the generic fiber. Then, by construction, L′ has the same specializa-
tion as L. The assertion follows. �

Remark 3.11. Suppose that H 1(X,OX ) = 0. Then, Proposition 3.10 is signif-
icantly more elementary. In fact, the Picard scheme PK is of dimension zero
[Grothendieck 1962, Exp. 236, Proposition 2.10.iii] in this case. Hence, every
point on PK is defined over K . No approximation argument is necessary.

Actually, the assumption H 1(X,OX )= 0 is fulfilled in the examples, discussed
in 1.7 and below in Section 4.

Lemma 3.12. Let R be a discrete valuation ring with quotient field K of charac-
teristic zero and L/K̂ a finite field extension of its completion.

Then, there exists a subfield L ⊂ L , finite over K , such that L̂ = L.

Proof. Choose a primitive element x of L over K̂ and let f ∈ K̂ [X ] be its mini-
mal polynomial. Then, the assertion is an immediate consequence of [Serre 1968,
Chapitre II, §2, Exercice 2]. �

3.13. Proof of Theorem 3.6. Consider the completion R̂ of R and denote by K̂
the corresponding quotient field. The ramification degree of R̂ is the same as
that of R. Therefore, Proposition 3.4 shows that the specialization homomorphism
spK̂ :Pic(X K̂ )→Pic(Xk) has a torsion-free cokernel. Further, by Proposition 3.10,
spK has the same image in Pic(Xk) as spK̂ . This implies the assertion. �

4. The obstruction to first order deformations

The obstructions to lifting invertible sheaves were essential for the elementary
proof of Proposition 2.2, as discussed in 2.3. In some cases, they can be made
explicit.

Proposition 4.1. Let S be a K 3 surface of degree 2 over Q, given explicitly by

w2
= f6(x, y, z)

for f6 ∈Z[x, y, z] of degree 6. Suppose, for a prime p 6= 2 of good reduction, there
is an Fp-rational line “` = 0”, tritangent to the ramification locus of Sp. Write l
for an irreducible component of the pull-back of the tritangent.

One has f6≡ f 2
3 +` f5 (mod p) for homogeneous forms f3, f5 ∈Z[x, y, z]. Put

G(x, y, z) := ( f6− f 2
3 − ` f5)/p.
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Then, O(l) lifts to Sp2 if and only if G vanishes in Fp[x, y, z]/(`, f3, f5).

Proof. Suppose that O(l) has a lift L ∈ Pic(Xp2). Then, L/pL ∼= O(l). Since
multiplication by p induces an isomorphism L/pL∼= pL, we automatically have
a short exact sequence

0→ O(l)−→ L−→ O(l)→ 0.

As H 1(Xp,O(l)) = 0, the restriction map H 0(Xp2,L)→ H 0(Xp,O(l)) is a sur-
jection. That is, the divisor l on Xp necessarily lifts to an effective Cartier divisor
on Xp2 .

This is possible only when the line defined by ` may be lifted to P2
p2 in such a

way that it is still a tritangent. On the other hand, if ` may be lifted to P2
p2 such

that it is still a tritangent, then clearly O(l) lifts to Xp2 .
Explicitly, the condition means that f6 is a square modulo p2 and some lift of `.

Writing
f6 ≡ ( f3+ p f ′3)

2
+ (`+ p`′)( f5+ p f ′5) (mod p2),

one immediately sees that this is equivalent to the assertion that G vanishes in
Fp[x, y, z]/(`, f3, f5). �

Remark 4.2. There is another proof that consists of the determination of the co-
homological obstruction to lifting O(l), that is, of the image of O(l) under the
connecting homomorphism d : Pic(Xp) → H 2(Xp,OXp) that is induced by the
short exact sequence

0→ OXp −→ O∗Xp2
−→ O∗Xp

→ 0.

The obstruction may easily be computed in Čech cohomology for a suitable affine
open covering of Xp2 . Via the corresponding isomorphism H 2(Xp,OXp)

∼= Fp,
our result is indeed ((−G) mod (p, `, f3, f5)). The necessary calculations are,
however, rather lengthy and shall not be reproduced here.

4.3. In the examples below, we will use the obstruction in its explicit form, as
given in Proposition 4.1. The methods for point counting, which we apply, are
explained in some detail in [Elsenhans and Jahnel 2008a; 2008b; 2010].

Example 4.4. Let S be a K 3 surface over Q given by w2
= f6(x, y, z). Suppose

f6(x, y, z)≡ x6
+ 2x5z+ 2x4 y2

+ 2x4z2
+ 2x3 y3

+ 2x3z3

+ 2x2 y4
+ 2x2 y3z+ x2z4

+ xy3z2
+ 2xz5

+ y6 (mod 3).

Assume further that the coefficient of y2z4 is not divisible by 9.
Then, rk Pic(SQ)= 1.
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Proof. A direct calculation shows that, modulo 3, the right hand side is f 2
3 + x f5

for f3 = 2x3
+ 2x2z+ xz2

+ 2y3 and f5 = 2x3 y2
+ x2z3

+ 2xy4
+ 2z5. Thus, the

branch locus of S3 has a tritangent line given by x = 0.
The numbers of points over F3d are, in this order, 19, 127, 676, 6 751, 58 564,

532 414, 4 791 232, 43 038 703, 387 383 311, and 3 486 675 052. For the decom-
position of the characteristic polynomial of the Frobenius on H 2

ét(SF3
,Ql(1)), we

find

1
3(t − 1)2(3t20

− 3t19
− 3t18

+ 8t17
− 3t16

− 4t15
+ 6t14

− 4t13
+ 2t12

+ 4t11

− 7t10
+ 4t9

+ 2t8
− 4t7

+ 6t6
− 4t5

− 3t4
+ 8t3

− 3t2
− 3t + 3).

This shows rk Pic(SF3
)≤ 2.

Let l be an irreducible component of the pull-back of the tritangent line. We
have to show that the obstruction to lifting O(l) is nonzero. For this, we observe
that x , f3, and f5 do not generate the monomial y2z4. However, G contains this
monomial by its very definition. �

Example 4.5. Consider the K 3 surface S over Q, given by w2
= f6(x, y, z) for

f6(x, y, z)= 4x6
+2x5 y+12x5z+2x4 y2

+4x4 yz+12x4z2
+24x3 y3

−57x3 y2z

− 9x3 yz2
+ 6x3z3

+ 8x2 y4
− 5x2 y3z− 72x2 y2z2

+ 7x2 yz3

+ 4x2z4
+ 20xy4z− 52xy3z2

− 57xy2z3
+ 7xyz4

+ 4y5z

− 7y4z2
− 18y3z3

+ 7y2z4
+ 12yz5

+ 2z6.

Then, rk Pic(SQ)= 3.

Proof. We have

f6 = (2x3
+ 2x2z+ 2y2z+ yz2

+ z3)2

+ (2x2
+ 2xz+ yz+ z2)(x3 y+ 2x3z+ x2 y2

+ x2 yz+ 2x2z2
+ 12xy3

− 34xy2z− 9xyz2
− 2xz3

+ 4y4
− 15y3z− 7y2z2

+ 9yz3
+ z4)

and

f6 = 4(x3
+ 2x2 y+ 2x2z+ xy2

+ xyz+ xz2
+ y2z+ yz2

+ z3)2

− (x2
+ xz+ yz+ z2)(14x3 y+ 4x3z+ 22x2 y2

+ 22x2 yz+ 8x2z2
− 8xy3

+ 61xy2z+ 9xyz2
+ 6xz3

− 4y4
+ 15y3z+ 11y2z2

− 6yz3
+ 2z4).

Hence, there are two conics C1 and C2, each of which is six times tangent to the
ramification locus of S. The irreducible components of their pull-backs yield the
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intersection matrix 
−2 6 1 3

6 −2 3 1
1 3 −2 6
3 1 6 −2

 ,

which is of rank 3. Hence, rk Pic(SQ)≥ 3.
On the other hand, S has good reduction at the prime p = 3. Point counting

over extensions of F3 shows that the characteristic polynomial of the Frobenius
operating on H 2

ét(SF3
,Ql(1)) is

1
3(t − 1)4(3t18

+ 3t17
+ 2t16

+ 2t15
+ 4t14

+ 5t13
+ 4t12

+ 3t11
+ 6t10

+ 8t9

+ 6t8
+ 3t7

+ 4t6
+ 5t5

+ 4t4
+ 2t3

+ 2t2
+ 3t + 3).

Consequently, we have rk Pic(SF3
)≤ 4.

In particular, the assumption rk Pic(SQ) > 3 implies rk Pic(SQ) = rk Pic(SF3
).

Theorem 3.6 guarantees that the specialization map spQ : Pic(SQ)→ Pic(SF3
)must

be bijective. Giving one invertible sheaf L ∈ Pic(SF3
) with a nontrivial obstruction

will be enough to yield a contradiction.
For this, observe that the ramification locus of S3 has a tritangent line given by

x + y+ z = 0. Indeed,

f6(x, y, z)≡ (x3
+ x2 y+ xy2

+ y3)2+ (x+ y+ z)(2x3 y2
+ x3 yz+2x2 yz2

+2xy4

+ xy3z+ xy2z2
+ 2xyz3

+ xz4
+ 2y5

+ 2y4z+ yz4
+ 2z5) (mod 3).

Modulo the ideal (3, x + y+ z), we have

f3 ≡ x3
+ x2 y+ xy2

+ y3,

f5 ≡−(x5
+ x3 y2

+ x2 y3
+ xy4

+ y5), G ≡ x6
+ 2x5 y+ x4 y2

+ 2xy5
+ y6.

Trying to generate G by 3, x + y + z, f3, and f5 now leads to a system of seven
linear equations in six unknowns that is easily seen to be unsolvable. �

Remarks 4.6. (i) It is not at all hard to generate more examples similar to 1.7
and 4.4. Choosing the coefficients in Fp at random, one usually finds Picard rank
2 over Fp after a few trials. One may work with small primes, only, say p ≤ 7.

Clearly, for our arguments, it is of importance to have explicit generators for
Pic(SFp

). In practice, it turns out that a second generator may often be found. We
have no formal reason for this. However, [Kovács 1994] might give an indication.

In Example 4.4, we applied a linear transform in order to make the obstruction
depend only on a single coefficient. In general, one would have a linear form in
the coefficients.
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(ii) Example 4.5 is a bit more particular. Both conics, which are six times tangent
to the ramification sextic, simultaneously lift to Q. This is not at all the generic
behavior.

(iii) It seems to be substantially more difficult to construct examples for which
rk Pic(X) ≤ rk Pic(Xp)− 2 may be shown. To understand the problem, recall the
obstruction homomorphism δ : Pic(Xp)→ H 2(X,OX ), introduced in Remark 2.3.
In Proposition 4.1, we calculated δ(O(l)) at a precision of one p-adic digit.

In order to verify rk Pic(X) ≤ rk Pic(Xp) − 2, one would have to ensure that
rkZ(im δ)≥ 2. This, however, is impossible as long as only p-adic approximations
of finitely many values δ(L) are known.

There are methods known to show

rk Pic(X)≤ rk Pic(X p1)− 2 and rk Pic(X)≤ rk Pic(X p2)− 2

when one works with two primes [Elsenhans and Jahnel 2011].
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Linear determinantal equations for all
projective schemes

Jessica Sidman and Gregory G. Smith

We prove that every projective embedding of a connected scheme determined
by the complete linear series of a sufficiently ample line bundle is defined by
the 2 × 2 minors of a 1-generic matrix of linear forms. Extending the work
of Eisenbud, Koh and Stillman for integral curves, we also provide effective
descriptions for such determinantally presented ample line bundles on products
of projective spaces, Gorenstein toric varieties, and smooth varieties.

1. Introduction

Relating the geometric properties of a variety to the structural features of its defin-
ing equations is a fundamental challenge in algebraic geometry. Describing gen-
erators for the homogeneous ideal associated to a projective scheme is a basic
form of this problem. For a rational normal curve, a Segre variety, or a quadratic
Veronese variety, the homogeneous ideal is conveniently expressed as the 2-minors
(that is, the determinants of all 2×2 submatrices) of a generic Hankel matrix, a
generic matrix, or a generic symmetric matrix respectively. These determinantal
representations lead to a description of the minimal graded free resolution of the
homogeneous ideal of the variety and equations for higher secant varieties. Mum-
ford’s “somewhat startling observation” [Mumford 1970, p. 31] is that a suitable
multiple of every projective embedding is the intersection of a quadratic Veronese
variety with a linear space and, hence, is defined by the 2-minors of a matrix
of linear forms. Exercise 6.10 in [Eisenbud 2005] rephrases this as a “(vague)
principle that embeddings of varieties by sufficiently positive bundles are often
defined by ideals of 2×2 minors”. Our primary goal is to provide a precise form
of this principle.
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To be more explicit, consider a scheme X embedded in Pr by the complete linear
series of a line bundle L . As in [Eisenbud et al. 1988, p. 514], the line bundle L
is called determinantally presented if the homogeneous ideal IX |Pr of X in Pr is
generated by the 2-minors of a 1-generic matrix (that is, no conjugate matrix has a
zero entry) of linear forms. Definition 3.1 in [Green 1984b] states that a property
holds for a sufficiently ample line bundle on X if there exists a line bundle A such
that the property holds for all L ∈ Pic(X) for which L ⊗ A−1 is ample. Our main
result is this:

Theorem 1.1. Every sufficiently ample line bundle on a connected scheme is
determinantally presented.

We also describe, in terms of Castelnuovo–Mumford regularity, a set of determi-
nantally presented line bundles on an arbitrary projective scheme; see Corollary 3.3.

This theorem is a new incarnation of a well-known phenomenon — roughly
speaking, the complexity of the first few syzygies of a projective subscheme is
inversely related to the positivity of the corresponding linear series. Neverthe-
less, Theorem 1.1 counterintuitively implies that most projective embeddings by
a complete linear series are simply the intersection of a Segre variety with a lin-
ear subspace. More precisely, if we fix the Euclidean metric on the ample cone
Amp(X) that it inherits from the finite-dimensional real vector space N 1(X)⊗R,
then the fraction of determinantally presented ample classes within distance ρ of
the trivial class approaches 1 has ρ tends to∞.

Theorem 1.1 also has consequences beyond showing that the homogeneous ideal
is generated by quadrics of rank at least 2. Proposition 6.13 in [Eisenbud 2005]
shows that an Eagon–Northcott complex is a direct summand of the minimal graded
free resolution of the ideal. Despite the classic examples, being able to give a
complete description of this resolution in the general setting seems overly opti-
mistic. However, a determinantal presentation provides many equations for higher
secant varieties; see [Eisenbud et al. 1988, Proposition 1.3]. For a scheme X ⊂Pr ,
let Seck(X) be the Zariski closure of the union of the linear spaces spanned by
collections of k + 1 points on X . A natural generalization of Theorem 1.1 would
be as follows:

Conjecture 1.2. Let k be a positive integer. If X ⊂Pr is embedded by the complete
linear series of a sufficiently ample line bundle, then the homogeneous ideal of
Seck(X) is generated by the (k+2)-minors of a 1-generic matrix of linear forms.

This conjecture holds for rational normal curves [Eisenbud 1988, Proposition 4.3],
rational normal scrolls [Catalano-Johnson 1996, Proposition 2.2], Segre varieties,
and quadratic Veronese varieties [Sturmfels and Sullivant 2006, Section 4]. It
also extends the conjecture for curves appearing in [Eisenbud et al. 1988, p. 518]
for which [Ravi 1994] proves a set-theoretic version and for which [Ginensky
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2010, Section 7] proves a scheme-theoretic version. Although Theorem 1.1.4 in
[Buczyński et al. 2010] produces counterexamples to this conjecture for some sin-
gular X , Corollary 1.2.4 therein provides supporting evidence when X is smooth.
Theorem 1.3 in [Buczyński and Buczyński 2010] suggests that the secant varieties
in Conjecture 1.2 should be replaced by cactus varieties.

The secondary goal of this article is to effectively bound the determinantally
presented line bundles on specific schemes. For an integral curve of genus g,
Theorem 1 in [Eisenbud et al. 1988] shows that a line bundle is determinantally
presented when its degree is at least 4g + 2 and this bound is sharp. We provide
the analogous result on smooth varieties and Gorenstein toric varieties:

Theorem 1.3. Let X be a smooth variety of dimension n or an n-dimensional
Gorenstein toric variety and let A be a very ample line bundle on X such that
(X, A) 6= (Pn,On

P(1)). If B is a nef line bundle, K X is the dualizing bundle on X ,
and L := K 2

X ⊗ A j
⊗ B with j > 2n+ 2, then L is determinantally presented.

As an application of our methods, we describe determinantally presented ample
line bundles on products of projective spaces; see Theorem 4.1.

To prove these theorems, we need a source of appropriate matrices. Composition
of linear series (also known as multiplication in the total coordinate ring or the
Cox ring) traditionally supply the required matrices. If X ⊂ Pr is embedded by
the complete linear series for a line bundle L , then H 0(X, L) is the space of linear
forms on Pr . Factoring L as L = E⊗ E ′ for some E, E ′ ∈ Pic(X) yields a natural
map

µ : H 0(X, E)⊗ H 0(X, E ′)→ H 0(X, E ⊗ E ′)= H 0(X, L).

By choosing ordered bases y1, . . . , ys ∈ H 0(X, E) and z1, . . . , zt ∈ H 0(X, E ′), we
obtain an associated (s× t)-matrix � := [µ(yi ⊗ z j )] of linear forms. The matrix
� is 1-generic and its ideal I2(�) of 2-minors vanishes on X ; see [Eisenbud 2005,
Proposition 6.10]. Numerous classical examples of this construction can be found
in [Room 1938].

With these preliminaries, the problem reduces to finding conditions on E and
E ′ that guarantee that IX |Pr = I2(�). Inspired by the approach in [Eisenbud et al.
1988], Theorem 3.2 achieves this by placing restrictions on certain modules arising
from the line bundles L , E , and E ′. The key hypotheses require these modules to
have a linear free presentation; the generators of the N-graded modules have degree
0 and their first syzygies must have degree 1. Methods introduced by Green and
Lazarsfeld [Green 1984a; Green and Lazarsfeld 1985] — for an expository account
see [Eisenbud 2005, Section 8; Green 1989; Lazarsfeld 1989, Section1] — yield a
cohomological criterion for our modules to have a linear free presentation. Hence,
we can prove Theorem 1.1 by combining this with uniform vanishing results de-
rived from Castelnuovo–Mumford regularity. Building on known conditions (that
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is, sufficient conditions for a line bundle to satisfy N1), we obtain effective criteria
for the appropriate modules to have a linear free presentation on Gorenstein toric
varieties, and smooth varieties.

Rather than focusing exclusively on a single factorization of the line bundle L ,
we set up the apparatus to handle multiple factorizations; see Lemma 3.1. Multiple
factorizations of a line bundle were used in [Graf v. Bothmer and Hulek 2004] to
study the equations and syzygies of elliptic normal curves and their secant varieties.
They also provide a geometric interpretation for the flattenings appearing in [Garcia
et al. 2005, Section 7] and [Catalisano et al. 2008, p. 1915]. Using this more
general setup, we are able to describe the homogeneous ideal for every embedding
of a product of projective spaces by a very ample line bundle as the 2-minors of
appropriate 1-generic matrices of linear forms; see Proposition 4.4.

Conventions. In this paper, N is the set of nonnegative integers, 1W ∈Hom(W,W )

is the identity map, and 1 := (1, . . . , 1) is the vector in which every entry is 1. We
work over an algebraically closed field k of characteristic zero. A variety is always
irreducible and all of our toric varieties are normal. For a vector bundle U , we
write U j for the j-fold tensor product U⊗ j

=U ⊗ · · ·⊗U .

2. Linear free presentations

This section collects the criteria needed to show that certain modules arising from
line bundles have a linear free presentation. While accomplishing this, we also
establish some notation and nomenclature used throughout the document.

Let X be a projective scheme over k, let F be a coherent OX -module, and let
L be a line bundle on X . We write 0(L) := H 0(X, L) for the k-vector space
of global sections and S := Sym(0(L)) for the homogeneous coordinate ring of
Pr
:= P(0(L)). Consider the N-graded S-module F :=

⊕
j>0 H 0(X,F⊗ L j ).

When F = OX , F is the section ring of L . However, when F = L , the module F
is the truncation of the section ring omitting the zeroth graded piece and shifting
degrees by −1. Let P• be a minimal graded free resolution of F :

· · · //
⊕

S(−ai, j ) // · · · //
⊕

S(−a1, j ) //
⊕

S(−a0, j ) // F→ 0.

Pi P1 P0

Following [Eisenbud et al. 1988, p. 515], we say that, for p∈N, F has a linear free
resolution to stage p with respect to L or F has a linear free resolution to stage p if
Pi =

⊕
S(−i) for all 06 i6 p. Thus, F has a linear free resolution to stage 0 if and

only if it is generated in degree 0. Since having a linear free resolution to stage 1
implies that the relations among the generators (also known as first syzygies) are
linear, the module F has a linear free resolution to stage 1 if and only if it has a
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linear free presentation. In this case, we say that F has a linear free presentation
with respect to L . More generally, having a linear free resolution to stage p is the
module-theoretic analogue of the Np-property introduced in [Green and Lazarsfeld
1985, Section 3]. If X is connected, then the line bundle L satisfies N1 precisely
when L has a linear free presentation with respect to itself and satisfies Np when
L has a linear free resolution to stage p. Following [Ein and Lazarsfeld 1993,
Convention 0.4], we do not assume that X is normal.

Henceforth, we assume that L is globally generated. In other words, the natural
evaluation map evL : 0(L)⊗k OX → L is surjective. If ML := Ker(evL), then ML

is a vector bundle of rank r := dimk 0(L)−1 that sits in the short exact sequence

0→ ML −→ 0(L)⊗k OX −→ L→ 0. (∗)

For convenience, we record the following cohomological criteria, which is a minor
variant of [Eisenbud 2005, Theorem 5.6], [Green 1989, Proposition 2.4], or [Ein
and Lazarsfeld 1993, Lemma 1.6].

Lemma 2.1. If H 1(X,
∧i ML ⊗F⊗ L j ) = 0 for all 1 6 i 6 p+ 1 and all j > 0,

then the coherent OX -module F has a linear free resolution to stage p with respect
to L. In characteristic zero,

∧i ML is a direct summand of M i
L , so it suffices to

show H 1(X,M i
L ⊗F⊗ L j )= 0 for all 16 i 6 p+ 1 and all j > 0. �

Sketch of proof. The key observation is that the graded Betti numbers for the
minimal free resolution of F can be computed via Koszul cohomology. If L is
globally generated and Pr

=P(H 0(X, L)), then there is a morphism ϕL : X→Pr

with ϕ∗L(OPr (1)) = L . Since the pullback by ϕ∗L of 0→ MOPr (1)→ 0(OPr (1))⊗k
OPr → OPr (1)→ 0 is just (∗), the proof of [Eisenbud 2005, Theorem 5.6] goes
through working on X instead of Pr . �

Multigraded Castelnuovo–Mumford regularity, as developed in [Maclagan and
Smith 2004, Section 6] or [Hering et al. 2006, Section 2], allows us to exploit this
criteria. To be more precise, fix a list B1, . . . , B` of globally generated line bundles
on X . For a vector u := (u1, . . . , u`) ∈ Z`, we set Bu

:= Bu1
1 ⊗ · · · ⊗ Bu`

` and we
write B := {Bu

: u ∈ N`
} ⊂ Pic(X) for the submonoid generated by these line

bundles. If e1, . . . , e` is the standard basis for Z` then Be j = B j . A coherent OX -
module F is said to be regular with respect to B1, . . . , B` if H i (X,F⊗ B−u)= 0
for all i > 0 and all u ∈ N` satisfying |u| := u1 + · · · + u` = i . When ` = 1,
we recover the version of Castelnuovo–Mumford regularity found in [Lazarsfeld
2004, Section 1.8].

Although the definition may not be intuitive, the next result shows that regular
line bundles are at least ubiquitous.
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Lemma 2.2. Let X be a scheme and let B1, . . . , B` be globally generated line
bundles on X. If there is a positive vector w ∈ Z` such that Bw is ample, then a
sufficiently ample line bundle on X is regular with respect to B1, . . . , B`.

The hypothesis on w means that the cone pos(B1, . . . , B`) generated by B1, . . . , B`
contains an ample line bundle. In other words, the subcone pos(B1, . . . , B`) of
Nef(X) has a nonempty intersection with the interior of Nef(X).

Proof. It suffices to find a line bundle A on X such that, for any nef line bundle C ,
A⊗C is regular with respect to B1, . . . , B`. Because Bw is ample, Fujita’s van-
ishing theorem (for example, [Fujita 1983, Theorem 1]) implies that there is k ∈N

such that, for any nef line bundle C , we have H i (X, B jw
⊗C) = 0 for all i > 0

and all j > k. Let n := dim X and consider A := B(k+n)w. Since w is positive,
the line bundle Bnw−u is nef for all u ∈ N` with 0 6 |u| 6 n. Therefore, we have
H i (X, (A⊗C)⊗ B−u) = H i (X, Bkw

⊗ (Bnw−u
⊗C)) = 0 for all i > 0 and all

u ∈ N` satisfying |u| = i . �

Before describing the pivotal results in this section, we record a technical lemma
bounding the regularity of certain tensor products. Our approach is a hybrid of
[Lazarsfeld 2004, Proposition 1.8.9 and Remark 1.8.16].

Lemma 2.3. Let X be a scheme of dimension n and F be a coherent OX -module.
Fix a vector bundle V and a globally generated ample line bundle B on X. If m
is positive integer such that F, V , and Bm are all regular with respect to B, then
F⊗ V ⊗ Bw is also regular with respect to B for all w > (m− 1)(n− 1).

Proof. Since F and Bm are regular with respect to B, either [Arapura 2004,
Corollary 3.2] or [Maclagan and Smith 2004, Theorem 7.8] (also compare with
[Lazarsfeld 2004, Proposition 1.8.8]) produces a locally free resolution of F of the
form

· · · −→
⊕

B− jm
−→ · · · −→

⊕
B−m
−→

⊕
OX −→ F→ 0.

Tensoring by a locally free sheaf preserves exactness, so we get the exact complex

· · · −→
⊕

V ⊗ Bw− jm
−→ · · · −→

⊕
V ⊗ Bw −→ F⊗ V ⊗ Bw→ 0.

Since V is also regular with respect to B, Mumford’s lemma (see for example
[Lazarsfeld 2004, Theorem 1.8.5]) implies that H i+ j (X, V ⊗ Bw− jm−i ) = 0 for
i > 1 provided we have w− jm− i >−i − j . Chasing through the complex (see
[Lazarsfeld 2004, Proposition B.1.2]), we conclude that F⊗V⊗Bw is also regular
with respect to B when w > (m− 1)(n− 1). �

The next three propositions each provide sufficient conditions for an appropriate
line bundle to have a linear free presentation with respect to another line bundle.
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Proposition 2.4. Fix a positive integer m and a scheme X of dimension n. Let L
be a line bundle on X and let B be a globally generated ample line bundle on X.
If L j and Bm are regular with respect to B for all j > 1, then Bw has a linear free
presentation with respect to L for all w > 2(m− 1)n+ 1.

Proof. We first prove that ML ⊗ Bm is regular with respect to B. Tensoring (∗)
with Bm−i and taking the associated long exact sequence gives

0(L)⊗ H 0(X, Bm−i )−→ H 0(X, L ⊗ Bm−i )−→ H 1(X,ML ⊗ Bm−i )−→ · · ·

−→ H i−1(X, L ⊗ Bm−i )−→ H i (X,ML ⊗ Bm−i )−→ 0(L)⊗ H i (X, Bm−i ).

Since L is regular with respect to B, Mumford’s lemma shows that, for all k ∈ N,
the map 0(L) ⊗ H 0(X, Bk) → H 0(X, L ⊗ Bk) is surjective and, for all i > 0
and all k ∈ N, we have H i (X, L ⊗ Bk−i )= 0. As m is a positive integer, the map
0(L)⊗H 0(X, Bm−1)→ H 0(X, L⊗Bm−1) is surjective and H i−1(X, L⊗Bm−i )=

0 for all i>1. Since Bm is also regular with respect to B, we have H i (X, Bm−i )=0
for all i > 0. It follows that H i (X,ML ⊗ Bm−i )= 0 for all i > 0.

By Lemma 2.1, it suffices to show that

H 1(X,ML ⊗ Bw⊗ L j )= 0 and H 1(X,M2
L ⊗ Bw⊗ L j )= 0

for all j ∈ N. Thus, it suffices to show that the vector bundles ML ⊗ Bw+1
⊗ L j

and M2
L ⊗ Bw+1

⊗ L j are both regular with respect to B. If w > (m − 1)n, then
Lemma 2.3 implies that (ML⊗Bm)⊗L j

⊗Bw+1−m
=ML⊗Bw+1

⊗L j is regular
with respect to B. Similarly, if w > 2(m − 1)n+ 1, then using Lemma 2.3 twice
establishes that the vector bundle

((ML⊗ Bm)⊗(ML⊗ Bm)⊗ B(m−1)(n−1))⊗L j
⊗ Bw−mn−m+n

=M2
L⊗ Bw+1

⊗L j

is also regular with respect to B. �

By adapting the proof of [Hering et al. 2006, Theorem 1.1], we obtain the second
proposition.

Proposition 2.5. Let m∈N` be a vector satisfying Bm−e j ∈B for all 16 j 6` and
let the coherent OX -module F be regular with respect to B1, . . . , B`. If L := Bm

and the map

0(L)⊗ H 0(X,F⊗ B−e j )→ H 0(X,F⊗ Bm−e j )

is surjective for all 16 j 6 `, then F has a linear presentation with respect to L.

The condition that Bm−e j ∈ B for all 1 6 j 6 ` implies that L = Bm lies in the
interior of the cone pos(B1, . . . , B`).
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Proof. We first prove that ML⊗F is regular with respect to B1, . . . , B`. Tensoring
(∗) with F⊗ B−u and taking the associated long exact sequence gives

0(L)⊗ H 0(X,F⊗ B−u)−→ H 0(X,F⊗ Bm−u)

−→ H 1(X,ML ⊗F⊗ B−u)−→ · · · −→ H i−1(X,F⊗ Bm−u)

−→ H i (X,ML ⊗F⊗ B−u)−→ 0(L)⊗ H i (X,F⊗ B−u).

Since F is regular with respect to B1, . . . , B`, Theorem 2.1 in [Hering et al. 2006]
shows that, for all i > 0 and all u, v ∈N` with |u| = i , H i (X,F⊗ Bv−u)= 0. As
Bm−e j ∈B for 1 6 j 6 `, we see that H i−1(X,F⊗ Bm−u) = 0 for all i > 1 and
all u ∈ N` satisfying |u| = i . By hypothesis, the map

0(L)⊗ H 0(X,F⊗ B−e j )→ H 0(X,F⊗ Bm−e j )

is surjective for all 1 6 j 6 `. It follows that H i (X,ML ⊗F⊗ B−u) = 0 for all
i > 0 and all u ∈ N` such that |u| = i .

By Lemma 2.1, it suffices to show that

H 1(X,ML ⊗F⊗ L j ) and H 1(X,M2
L ⊗F⊗ L j )

are zero for j ∈ N. Since ML ⊗ F is regular with respect to B1, . . . , B`, the
vanishing of the first group follows from Theorem 2.1 [ibid.]. For the second,
tensoring (∗) with ML ⊗F⊗ L j gives the exact sequence

0(L)⊗ H 0(X,ML ⊗F⊗ L j )−→ H 0(X,ML ⊗F⊗ L j+1)

−→ H 1(X,M2
L ⊗F⊗ L j )→ 0.

Because ML ⊗F is regular with respect to B1, . . . , B`, Theorem 2.1 [ibid.] also
shows that the left map is surjective for all j > 0. �

Our third proposition is a variant of [Ein and Lazarsfeld 1993, Proposition 3.1].

Proposition 2.6. Let X be a smooth variety of dimension n, let K X be its canon-
ical bundle, and let A be a very ample line bundle on X such that (X, A) 6=
(Pn,OPn (1)). Suppose that B and C are nef line bundles on X. If the integers
w and m are both greater than n, then the line bundle K X ⊗ Aw ⊗ B has a linear
free presentation with respect to K X ⊗ Am

⊗C.

Proof. Let F := K X ⊗ Aw⊗ B and L := K X ⊗ Am
⊗C . Since [Ein and Lazarsfeld

1993, Proposition 3.1] shows that L satisfies N0 and [Ein and Lazarsfeld 1993,
Equation 3.2] shows that H 1(X,M i

L⊗F⊗ L j )= 0 for all 16 i 6 2 and all j > 0,
Lemma 2.1 completes the proof. �
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3. Determinantally presented line bundles

The goal of this section is to prove Theorem 1.1. We realize this goal by developing
general methods for showing that a line bundle is determinantally presented; see
Theorem 3.2.

Suppose X ⊂Pr is embedded by the complete linear series for a line bundle L .
Factor L as L = E ⊗ E ′ for some E, E ′ ∈ Pic(X) and denote by

µE,E ′ : H 0(X, E)⊗ H 0(X, E ′)→ H 0(X, L)

the natural multiplication map. Choose ordered bases y1, . . . , ys and z1, . . . , zt for
the k-vector spaces H 0(X, E) and H 0(X, E ′), respectively. Define �=�(E, E ′)
to be the associated (s × t)-matrix [µE,E ′(yi ⊗ z j )] of linear forms. Its ideal
I2(�) of 2-minors is independent of the choice of bases. Then [Eisenbud 2005,
Proposition 6.10] shows that � is 1-generic and that I2(�) vanishes on X .

Our key technical result is inspired by [Eisenbud et al. 1988, Section 2].

Lemma 3.1. If L is a very ample line bundle on X satisfying N1 and {(Ei , E ′i )}
is a family of factorizations for L , then the commutative diagram (z) has exact
rows and columns. Moreover, if ϕ 2 is surjective, then the homogeneous ideal IX |Pr

is generated by the 2-minors of the matrices �(Ei , E ′i ) if and only if Q2 surjects
onto Q1.

0

��

0

��⊕
i
∧2
0(Ei )⊗

∧2
0(E ′i )

ϕ //

��

(IX |Pr )2

��
0 // Q2

ψ

��

//
⊕

i Sym2(0(Ei )⊗0(E
′

i ))

��

ϕ2 // Sym2(0(L))

��
0 // Q1 //

⊕
i Sym2(0(Ei ))⊗Sym2(0(E

′

i ))

��

ϕ1 // 0(L2)

��
0 0

(z)

Proof. To begin, we prove the columns are exact. Since L satisfies N0 (that is, the
natural maps Sym j (0(L))→ H 0(X, L j ) are surjective for all j ∈ N), the ideal
IX |Pr is the kernel of the map from the homogeneous coordinate ring of Pr to the
section ring of L . By taking the quadratic components, we obtain the right column.
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The middle column is the direct sum of the complexes:

0→
∧2
0(Ei )⊗

∧2
0(E ′i )−→ Sym2(0(Ei )⊗0(E

′

i ))

−→ Sym2(0(Ei ))⊗Sym2(0(E
′

i ))→ 0.

The map
∧2
0(Ei )⊗

∧2
0(E ′i )→ Sym2(0(Ei )⊗0(E

′

i )), defined by

e∧ f ⊗ e′ ∧ f ′ 7→ (e⊗ e′) · ( f ⊗ f ′)− (e⊗ f ′) · ( f ⊗ e′), (†)

is simply the inclusion map determined by the 2-minors of the generic matrix. The
map Sym2(0(Ei )⊗0(E

′

i ))→Sym2(0(Ei ))⊗Sym2(0(E
′

i )) is (e⊗e′)·( f ⊗ f ′) 7→
e f ⊗ e′ f ′. Hence, each of these complexes is exact, so the middle column also is.
By definition, Q1 and Q2 are the kernels of the ϕ1 and ϕ 2 respectively, and ψ is
the induced map between them.

We next identify the horizontal maps. By applying the functor Sym2 to µEi ,E
′

i
,

we obtain a map from Sym2(0(Ei )⊗0(E
′

i )) to Sym2(0(L)) for each i , and ϕ 2 is
their direct sum. The composite map

µL ,L ◦ (µEi ,E
′

i
⊗µEi ,E

′

i
) : 0(Ei )⊗0(E

′

i )⊗0(Ei )⊗0(E
′

i )→ 0(L2)

factors through Sym2(0(Ei ))⊗Sym2(0(E
′

i )), and ϕ1 is the direct sum of the asso-
ciated maps from Sym2(0(Ei ))⊗ Sym2(0(E

′

i )) to 0(L2). The map ϕ is induced
by ϕ 2. From (†), we see that the image of ϕ is generated by the 2-minors of the
matrices �(Ei , E ′i ).

Finally, the line bundle L satisfies N1, so the quadratic component (IX |Pr )2

generates the entire ideal IX |Pr . Hence, the image of ϕ generates the ideal IX |Pr if
and only if ϕ is surjective. Since ϕ2 is surjective, the snake lemma (for example,
[Weibel 1994, Lemma 1.3.2]) shows that the surjectivity of ϕ is equivalent to the
surjectivity of ψ . �

Our main application for Lemma 3.1 focuses on a single factorization of the line
bundle L . The proof follows the strategy in [Eisenbud et al. 1988, Section 2].

Theorem 3.2. Let L be a very ample line bundle on a scheme X satisfying N1. If
L = E ⊗ E ′ for some nontrivial E, E ′ ∈ Pic(X) and the conditions

(a) E has a linear presentation with respect to E ′,

(b) E ′ has a linear presentation with respect to E ,

(c) E2 has a linear presentation with respect to E ′, and

(d) both E and E ′ satisfy N0

hold, then the 2-minors of the matrix �(E, E ′) generate the homogeneous ideal
of X in P(0(L)). In particular, the line bundle L is determinantally presented.
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Proof. Given Lemma 3.1, it suffices to show that the mapψ :Q2→Q1 is surjective.
To accomplish this, we reinterpret both modules. Since condition (a) or (b) implies
that the map µE,E ′ :0(E)⊗0(E ′)→0(L) is surjective, we get an exact sequence

Ker(µE,E ′)⊗0(E)⊗0(E ′)→ Sym2(0(E)⊗0(E
′))→ Sym2(0(L))→ 0,

so the image of Ker(µE,E ′)⊗0(E)⊗0(E ′) generates Q2 in Sym2(0(E)⊗0(E
′)).

The maps µE,E and µE ′,E ′ factor through Sym2(0(E)) and Sym2(0(E
′)) and thus

induce maps η : Sym2(0(E))→ 0(E2) and η′ : Sym2(0(E
′))→ 0(E ′2), respec-

tively. It follows that ϕ1 is the composition

µE2,E ′2 ◦ (η⊗ η
′) : Sym2(0(E))⊗Sym2(0(E

′))→ 0(E2
⊗ E ′2)= 0(L2).

Hence, Q1 is the sum of the images of

Ker(η)⊗0(E ′)⊗0(E ′) and 0(E)⊗0(E)⊗Ker(η′),

and the pullback to Sym2(0(E))⊗Sym2(0(E
′)) of Ker(µE2,E ′2).

We now break the proof that Q2 surjects onto Q1 into four steps:

(i) The image of Ker(µE2,E ′)⊗0(E ′) in 0(E2)⊗0(E ′2) contains Ker(µE2,E ′2).

(ii) The image of Ker(µE,E ′)⊗0(E) in 0(E2)⊗0(E ′) contains Ker(µE2,E ′).

(iii) The image of Ker(µE,E ′)⊗0(E) in Sym2(0(E))⊗0(E
′) contains Ker(η)⊗

0(E ′).

(iv) The image of Ker(µE,E ′)⊗0(E ′) in 0(E)⊗ Sym2(0(E
′)) contains 0(E)⊗

Ker(η′).

By tensoring with the k-vector space 0(E ′), step (ii) yields a surjective map

Ker(µE,E ′)⊗0(E)⊗0(E ′)→ Ker(µE2,E ′)⊗0(E
′).

Combining this with step (i) shows that Ker(µE,E ′)⊗0(E)⊗0(E ′)→Ker(µE2,E ′2)

is surjective. Again by tensoring with k-vector space 0(E ′), step (iii) gives a
surjective map Ker(µE,E ′)⊗0(E)⊗0(E ′)→Ker(η)⊗0(E ′)⊗0(E ′). Similarly,
step (iv) implies that the map Ker(µE,E ′)⊗0(E)⊗0(E ′)→0(E)⊗0(E)⊗Ker(η′)
is surjective. Therefore, it is enough to establish the four steps.

For step (i), condition (c) implies that Ker(µE2,E ′), the span of the linear rela-
tions on

⊕
j>0 H 0(X, E2

⊗E ′ j ) regarded as a Sym(0(E ′))-module, generates the
relations in higher degrees as well. Hence, Ker(µE2,E ′)⊗ 0(E ′) maps onto the
quadratic relations that are the kernel of the composite map µE2,E ′2 ◦(10(E2)⊗η

′).
Since this kernel is generated by 0(E2)⊗Ker(η′) and the pullback of Ker(µE2,E ′2),
Condition (d) implies that η′ is surjective, and we have established step (i).

To complete the proof, we simultaneously establish steps (ii) and (iii); the sym-
metric argument yields step (iv). Condition (b) implies that Ker(µE,E ′) generates
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all the relations on
⊕

j>0 H 0(X, E ′⊗ E j ) regarded as a Sym(0(E))-module. In
particular, the vector space Ker(µE,E ′)⊗0(E) maps onto the quadratic relations
that are the kernel of the composite map µE2,E ′ ◦ (η⊗10(E ′)). This kernel is gen-
erated by Ker(η)⊗0(E ′) and the pullback of Ker(µE2,E ′). Condition (d) implies
that η is surjective, so step (ii) and step (iii) follow. �

As the proof indicates, Theorem 3.2 holds under a weaker version of condi-
tion (d), in that it is only necessary that η and η′ are surjective. Nevertheless, in all
of our applications, a stronger condition is satisfied: Both E and E satisfy N1.

This theorem leads to a description, given in terms of Castelnuovo–Mumford
regularity, for certain determinantally presented line bundles on any projective
scheme.

Corollary 3.3. Let X be a connected scheme and let B1, . . . , B` be globally gen-
erated line bundles on X for which there exists w ∈ N` such that Bw is ample. If
Bm is regular with respect to B1, . . . , B` for m ∈ N` and B2m is very ample, then
the line bundle B2m+u is determinantally presented for any u ∈ N`.

Proof. Factor L := B2m+u as L = E ⊗ E ′ where E := Bm and E ′ := Bm+u.
Theorem 2.1 in [Hering et al. 2006] shows that L , E , E2, and E ′ are all regular with
respect to B1, . . . , B`. Hence, Proposition 2.5 together with [ibid., Theorem 2.1]
imply that L , E , and E ′ satisfy N1, that E ′ has a linear free presentation with
respect to E , and that both E and E2 have a linear free presentation with respect
to E ′. Therefore, Theorem 3.2 proves that L is determinantally presented. �

Theorem 3.2, combined with results from Section 2, also yields a proof for our
main theorem.

Proof of Theorem 1.1. Let X be a connected scheme of dimension n and let B be
a globally generated ample line bundle on X . Choose a positive integer m ∈ N

such that Bm is regular with respect to B. Lemma 2.2 implies that there exists a
line bundle E , which we may assume is very ample, such that, for any nef line
bundle C , E ⊗ C is regular with respect to B. By replacing E with E ⊗ B if
necessary, we may assume that the map 0(B)⊗ H 0(X, E ⊗ B−1)→ H 0(X, E)
is surjective. Since a sufficiently ample line bundle on X satisfies N1 (combine
[Inamdar 1997, Lemmas 1.1–1.3] with Fujita’s vanishing theorem), we may also
assume that E ⊗C satisfies N1 for any nef line bundle C .

Consider the line bundle A := E ⊗ B2(m−1)n+1. If L is a line bundle on X
such that L ⊗ A−1 is nef, then L = A⊗C = (E ⊗C)⊗ B2(m−1)n+1 for some nef
line bundle C . Our choice of E guarantees that, (E ⊗C) j is regular with respect
to B for all j > 1, and that L satisfies N1. Hence, Proposition 2.4 implies that
B2(m−1)n+1 has a linear free presentation with respect to E ⊗C . Proposition 2.5
together with Mumford’s lemma (for example, [Lazarsfeld 2004, Theorem 1.8.5])
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imply that both E⊗C and (E⊗C)2 have a linear free presentation with respect to
B2(m−1)n+1. Via Lemma 2.3 and Proposition 2.5, we see B2(m−1)n+1 satisfies N1.
Therefore, Theorem 3.2 proves that L is determinantally presented. �

4. Effective bounds

In this section, we give effective bounds for determinantally presented line bundles.
As a basic philosophy, one can convert explicit conditions for line bundles to sat-
isfy N2 into effective descriptions for determinantally presented line bundles. The
three subsections demonstrate this philosophy for products of projective spaces,
projective Gorenstein toric varieties, and smooth varieties. Despite not develop-
ing them here, we expect similar results for general surfaces and abelian varieties
following [Gallego and Purnaprajna 1999] and [Rubei 2000; Pareschi and Popa
2004], respectively.

4.1. Products of projective space. The tools from Section 3 lead to a description
of the determinantally presented ample line bundles on a product of projective
spaces. In contrast with [Bernardi 2008, Theorem 3.11], which proves that Segre–
Veronese varieties are defined by 2-minors of an appropriate hypermatrix, our
classification shows that a Segre–Veronese variety is typically generated by the
2-minors of a single matrix. In particular, we recover the Segre–Veronese ideals
considered in [Sullivant 2008, Section 6.2].

To study the product of projective spaces X =Pn1×· · ·×Pn` , we first introduce
some notation. Let R := k[xi, j : 16 i 6 `, 06 j 6 ni ] be the total coordinate ring
(also known as Cox ring) of X ; this polynomial ring has the Z`-grading induced
by deg(xi, j ) := ei ∈ Z`. Hence, we have Rd = 0(OX (d)) for all d ∈ Z`, and a
torus-invariant global section of OX (d) is identified with a monomial xw

∈ Rd ,
where w ∈ Nr and r :=

∑`
i=1(ni + 1). We write ei, j for the standard basis of Zr ;

in particular xei, j = xi, j .

Theorem 4.1. Let X = Pn1 × · · · ×Pn` . An ample line bundle OX (m) is determi-
nantally presented if at least `−2 of the entries in the vector m are at least 2.

When `= 2, this theorem shows that all of the Segre–Veronese embeddings are
determinantally presented. We note that Corollary 3.3 establishes that OX (m) is
determinantally presented when m j > 2 for all 16 j 6 `.

Proof. Since a line bundle OX (v) is ample (and very ample) if and only if v j > 1 for
all 16 j 6 `, Corollary 1.5 in [Hering et al. 2006] shows that OX (m) satisfies N1.
Without loss of generality, we may assume that m j > 2 for 16 j 6 `− 2. Factor
OX (m) as OX (m) = E ⊗ E ′, where u := e1 + e2 + · · · + e`−1 = (1, 1, . . . , 1, 0),
E := OX (u), and E ′ := OX (m− u). The canonical surjection 0(E)⊗ 0(E ′)→
0(OX (m)) implies that the map ϕ 2 in (z) is surjective. By Lemma 3.1, it suffices
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prove that the map ψ : Q2→ Q1 is surjective. A slight modification to the proof of
[Sturmfels 1996, Lemma 4.1] shows that Q1=Ker(ϕ1) is generated by “binomial”
elements in Sym2(0(E))⊗Sym2(0(E

′)) of the form

xa xb
⊗ xcxd

− xa′xb′
⊗ xc′xd ′,

where xa, xb, xa′, xb′
∈ 0(E), xc, xd, xc′, xd ′

∈ 0(E ′), and a + b + c + d =
a′+ b′+ c′+ d ′. Thus, the two terms in each such binomial differ by exchanging
variables among the various factors. Since every such binomial element is the sum
of binomials that each exchange a single pair of variables, it suffices to consider
the following two cases.

In the first case, the pair of variables are exchanged between a section of E and
a section E ′. In particular, there exists some 16 k 6 `− 1 such that the binomial
element has the form

xa xb
⊗ xcxd

− xa−ek,α+ek,γ xb
⊗ xc+ek,α−ek,γ xd,

where a− ek,α and c− ek,γ are nonnegative. This element is the image of

(xa
⊗ xc)(xb

⊗ xd)− (xa−ek,α+ek,γ ⊗ xc+ek,α−ek,γ )(xb
⊗ xd),

which lies in Q2 = Ker(ϕ 2)⊂ Sym2(0(E)⊗0(E
′)).

In the second case, we may assume that the pair of variables are exchanged
between two sections of E ′, as exchanging variables between two sections of E
is analogous. More precisely, let xk,γ and xk,δ for some 1 6 k 6 ` denote the
exchanged variables and consider the binomial element

xa xb
⊗ xcxd

− xa xb
⊗ xc−ek,γ+ek,δ xd+ek,γ−ek,δ

where c− ek,γ and d − ek,δ are nonnegative. Since xa xb
⊗ xcxd

= xa xb
⊗ xd xc

in Sym2(0(E))⊗Sym2(0(E
′)), we may also assume that k < `. Hence, there is a

variable xk,α such that a− ek,α is nonnegative and

xa xb
⊗ xcxd

− xa xb
⊗ xc−ek,γ+ek,δ xd+ek,γ−ek,δ

= xa xb
⊗xcxd

−xa−ek,α+ek,δ xb
⊗xcxd+ek,α−ek,δ

+xa−ek,α+ek,δ xb
⊗xcxd+ek,α−ek,δ−xa−ek,α+ek,γ xb

⊗xc−ek,γ+ek,δ xd+ek,α−ek,δ

+xa−ek,α+ek,γ xb
⊗xc−ek,γ+ek,δ xd+ek,α−ek,δ−xa xb

⊗xc−ek,γ+ek,δ xd+ek,γ−ek,δ .

In other words, the binomial element under consideration is a sum of binomials in
which variables are exchanged between sections of E and E ′. Hence, the first case
shows that this binomial element lies in the image of Q2.

We conclude that ψ is surjective and OX (m) is determinantally presented. �
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The next proposition shows that Theorem 4.1 is optimal when `= 3. In fact, our
experiments in Macaulay2 [Grayson and Stillman 2010] suggest that Theorem 4.1
is always sharp.

Proposition 4.2. If X = Pn1 × · · · × Pn` with ` > 3, then the ample line bundle
OX (1) is not determinantally presented.

Proof. Any nontrivial factorization of OX (1) has the form E⊗E ′, where E :=OX (u)
for some u ∈ {0, 1}` and E ′ := OX (1 − u). For a suitable choice of bases for
0(OX (u)) and 0(OX (1− u)), the associated matrix �(OX (u),OX (1− u)) is the
generic (s×t)-matrix with s :=

∑
ui 6=0(ni + 1) and t :=

∑`
i=0(ni + 1)− s. Since

the 2-minors of a generic (s×t)-matrix define Ps−1
×Pt−1 in its Segre embedding,

we see that OX (1) is not determinantally presented when `> 3. �

Example 4.3. Consider the variety X = P1
×P1

×P1 embedded in

P11
= Proj(k[y0, . . . , y11])

by the complete linear series of OX (2, 1, 1). If R=k[x1,0, x1,1, x2,0, x2,1, x3,0, x3,1]

is the total coordinate ring of X , then the twelve monomials
x2

1,0x2,0x3,0, x2
1,0x2,0x3,1, x2

1,0x2,1x3,0, x2
1,0x2,1x3,1,

x1,0x1,1x2,0x3,0, x1,0x1,1x2,0x3,1, x1,0x1,1x2,1x3,0, x1,0x1,1x2,1x3,1,

x2
1,1x2,0x3,0, x2

1,1x2,0x3,1, x2
1,1x2,1x3,0, x2

1,1x2,1x3,1


give an ordered basis for 0(OX (2, 1, 1)). The homogeneous ideal IX |P11 is the
toric ideal associated to these monomials and is minimally generated by thirty
three quadrics. Choosing {x1,0x2,0, x1,0x2,1, x1,1x2,0, x1,1x2,1} as ordered basis for
0(OX (1, 1, 0)) and {x1,0x3,0, x1,0x3,1, x1,1x3,0, x1,1x3,1} for0(OX (1, 0, 1)), we find
�(OX (1, 1, 0),OX (1, 0, 1)) is 

y0 y1 y4 y5

y2 y3 y6 y7

y4 y5 y8 y9

y6 y7 y10 y11


and one may verify that the 2-minors of this matrix generates the ideal of X , so
OX (2, 1, 1) is determinantally presented. �

However, if we consider multiple factorizations of a very ample line bundle on
a product of projective spaces, then we do obtain a convenient expression of the
homogeneous ideal as the 2-minors of matrices. This perspective give a conceptual
explanation for both [Hà 2002, Theorem 2.6] and [Bernardi 2008, Theorem 3.11].

Proposition 4.4. If X = Pn1 × · · · × Pn` , then the homogeneous ideal of X in
P(OX (d)) is generated by the 2-minors of the matrices �(OX (ei ),OX (d − ei )),
where 16 i 6 `.
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Proof. Given Theorem 4.1, we may assume that `>3. For brevity, set Ei :=OX (ei )

and E ′i :=OX (d−ei ), where 16 i6`. Since0(Ei )⊗0(E ′i ) surjects onto0(OX (d)),
the map ϕ 2 in (z) is surjective, and it suffices to prove that the map ψ : Q2→ Q1

is surjective. By an abuse of notation, we use εi to denote the canonical inclusion
map onto the i-th summand for all three of the direct sums appearing in the middle
column of (z). As in the proof of Theorem 4.1, Q1 is generated by binomial
elements in

⊕`
k=1 Sym2(0(Ek))⊗Sym2(0(E

′

k)). Generators have the form

εi (xi,αxi,β ⊗ xcxd)− ε j (x j,γ x j,δ ⊗ xa xb),

where xi,α, xi,β ∈0(Ei ), xc, xd
∈0(E ′i ), x j,γ , x j,δ ∈0(E j ), xa, xb

∈0(E ′j ) and
ei,α + ei,β + c+ d = a+ b+ e j,γ + e j,δ. We consider the following two cases.

In the first case, we have i = j . Since every binomial element is the sum of
binomials that each exchange a single pair of variables, it suffices to consider an
element of the form

εi (xi,αxi,β ⊗ xcxd
− xi,αxi,β ⊗ xc−ek,γ+ek,δ xd+ek,γ−ek,δ ),

where 1 6 k 6 ` and both c− ek,γ and d − ek,δ are nonnegative. This element is
the image of

εi
(
(xi,α ⊗ xc)(xi,β ⊗ xd)

− (xi,α ⊗ xc−ek,γ+ek,δ )(xi,β ⊗ xd+ek,γ−ek,δ )
)

− εk
(
(xk,γ ⊗ xc+ei,α−ek,γ )(xk,δ ⊗ xd+ei,β−ek,δ )

− (xk,δ ⊗ xc+ei,α−ek,γ )(xk,γ ⊗ xd+ei,β−ek,δ )
)
,

which lies in Q2 = Ker(ϕ 2).
For the second case, we have i 6= j . We may assume that the binomial element

has the form εi (xi,αxi,β ⊗ xcxd) − ε j (x j,γ x j,δ ⊗ xc+ei,α−e j,γ xd+ei,β−e j,δ ), where
c−e j,γ and d−e j,δ are nonnegative, because any additional exchanges of variables
can be obtained by adding elements from the first case. This element is the image
of

εi ((xi,α ⊗ xc)(xi,β ⊗ xd))− ε j ((x j,γ ⊗ xc+ei,α−e j,γ )(x j,δ ⊗ xd+ei,β−e j,δ )) ,

which lies in Q2 = Ker(ϕ 2). �

Example 4.5. We consider the variety X = P1
× P1

× P1 embedded in P7
=

Proj(k[y0, . . . , y7]) by the complete linear series of the line bundle OX (1, 1, 1).
The homogeneous ideal IX |P7 is the toric ideal associated to the monomial list{

x1,0x2,0x3,0, x1,0x2,0x3,1, x1,0x2,1x3,0, x1,0x2,1x3,1,

x1,1x2,0x3,0, x1,1x2,0x3,1, x1,1x2,1x3,0, x1,1x2,1x3,1

}



Linear determinantal equations for all projective schemes 1057

and is minimally generated by nine quadrics. Choosing appropriate monomials for
the ordered bases of the global sections, we obtain

�(OX (1, 0, 0),OX (0, 1, 1))=
[

y0 y1 y2 y3

y4 y5 y6 y7

]
,

�(OX (0, 1, 0),OX (1, 0, 1))=
[

y0 y1 y4 y5

y2 y3 y6 y7

]
,

�(OX (0, 0, 1),OX (1, 1, 0))=
[

y0 y2 y4 y6

y1 y3 y5 y7

]
.

It follows that OX (1, 1, 1) is not determinantally presented, but one easily verifies
that the ideal IX |P7 is generated by the 2-minors of all three matrices. �

Multiple factorizations of a very ample line bundle allow one to describe a larger
number of homogeneous ideals via 2-minors. With this in mind, it would be in-
teresting to write down the analogue of Theorem 3.2 for multiple factorizations of
the line bundle.

4.2. Toric varieties. In addition to the bound given in Corollary 3.3, there is an
effective bound for toric varieties involving adjoint bundles for toric varieties; see
[Hering et al. 2006, Corollary 1.6]. Recall that a line bundle on a toric variety X
is nef if and only if it is globally generated, and the dualizing sheaf K X is a line
bundle if and only if X is Gorenstein.

Proposition 4.6. Let X be a projective n-dimensional Gorenstein toric variety with
dualizing sheaf K X , and let B1, . . . , B` be the minimal generators of its nef cone
Nef(X). Suppose that m,m′ ∈ N` satisfy Bm−u, Bm′−u

∈ B for all u ∈ N` with
|u| 6 n+ 1. If X 6= Pn and w ∈ N`, then L = K 2

X ⊗ Bm+m′+w is determinantally
presented.

Proof. Factor L as L = E ⊗ E ′, where E := K X ⊗ Bm+w and E ′ := K X ⊗ Bm′ .
Since Bm−(n+1)e j , Bm′−(n+1)e j ∈ B, Corollary 0.2 in [Fujino 2003] implies that
E ⊗ B−e j and E ′⊗ B−e j belong to B for all 1 6 j 6 `. For any torus-invariant
curve Y , there is a Be j such that Be j ·Y >0. Theorem 3.4 in [Mustaţă 2002] implies
that E , E2 and E ′ are regular with respect to B1, . . . , B`. Hence, Proposition 2.5
shows that L , E , and E ′ satisfy N1, and that E has a linear free presentation with
respect to E ′, that E ′ has a linear free presentation with respect to E , and that E2

has a linear free presentation with respect to E ′. Therefore, Theorem 3.2 shows
that L is determinantally presented. �

Proof of Theorem 1.3 for toric varieties. This is a special case of Proposition 4.6.
�

We give an example showing that Theorem 1.3 is not sharp for all toric varieties.
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Example 4.7. Consider the toric del Pezzo surface X obtained by blowing up P2

at the three torus-fixed points. Let R := k[x0, . . . , x5] be the total coordinate ring
of X . The anticanonical bundle K−1

X is very ample and corresponds to polygon

P := conv{(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)}.

It is easy to see that the polygon P is the smallest lattice polygon with its inner
normal fan. The polygon 2P contains 19 lattice points. The corresponding mono-
mials

x4
0 x4

1 x2
2 x2

5 , x4
0 x3

1 x2x4x3
5 , x4

0 x2
1 x2

4 x4
5 , x3

0 x4
1 x3

2 x3x5, x3
0 x3

1 x2
2 x3x4x2

5 ,

x3
0 x2

1 x2x3x2
4 x3

5 , x3
0 x1x3x3

4 x4
5 , x2

0 x4
1 x4

2 x2
3 , x2

0 x3
1 x3

2 x2
3 x4x5, x2

0 x2
1 x2

2 x2
3 x2

4 x2
5 ,

x2
0 x1x2x2

3 x3
4 x3

5 , x2
0 x2

3 x4
4 x4

5 , x0x3
1 x4

2 x3
3 x4, x0x2

1 x3
2 x3

3 x2
4 x5, x0x1x2

2 x3
3 x3

4 x2
5 ,

x0x2x3
3 x4

4 x3
5 , x2

1 x4
2 x4

3 x2
4 , x1x3

2 x4
3 x3

4 x5, x2
2 x4

3 x4
4 x2

5


embed X into P18

= Proj(k[y0, . . . , y18]). The homogeneous ideal IX |P18 is the
toric ideal associated to these monomials and it is minimally generated by 129
quadrics. Choosing

{x2
0 x2

1 x2x5, x2
0 x1x4x2

5 , x0x2
1 x2

2 x3, x0x1x2x3x4x5, x0x3x2
4 x2

5 , x1x2
2 x2

3 x4, x2x2
3 x2

4 x5}

as an ordered basis for 0(K−1
X ), the matrix �(K−1

X , K−1
X ) is

y0 y1 y3 y4 y5 y8 y9

y1 y2 y4 y5 y6 y9 y10

y3 y4 y7 y8 y9 y12 y13

y4 y5 y8 y9 y10 y13 y14

y5 y6 y9 y10 y11 y14 y15

y8 y9 y12 y13 y14 y16 y17

y9 y10 y13 y14 y15 y17 y18


,

and its 2-minors generate IX |P18 . However, Theorem 1.3 only establishes that the
line bundle K−4

X = K 2
X ⊗ (K

−1
X )2·2+2 is determinantally presented. �

4.3. Smooth varieties. For smooth varieties, we also have an effective bound for
adjoint bundles; see Theorem 1.3.

Proof of Theorem 1.3 for smooth varieties. Factor the line bundle L as L = E⊗ E ′

where E := K X⊗An+1 and E ′ := K X⊗A j−n−1
⊗B. Since j > 2n+2 and E is nef

(see [Lazarsfeld 2004, Example 1.5.35]), Proposition 2.6 implies that L , E , and E ′

satisfy N1, E has a linear free presentation with respect to E ′, that E ′ has a linear
free presentation with respect to E , and that E2 has a linear free presentation with
respect to E ′. Thus, Theorem 3.2 shows that L is determinantally presented. �
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We end with an example showing that the hypotheses in Theorem 1.3 are optimal
without further restrictions on the varieties under consideration.

Example 4.8. Let X=Gr(2, 4) be the Grassmannian parametrizing all two-dimen-
sional subspaces of the vector space k

4. Let OX (1) denote the determinant of the
universal rank 2 subbundle on X . The associated complete linear series determines
the Plücker embedding of X into P5

= Proj(k[x1,2, x1,3, x1,4, x2,3, x2,4, x3,4]). As
IX |P5 = 〈x1,2x3,4− x1,3x2,4+ x2,3x1,4〉, it follows that OX (1) is not determinantally
presented. On the other hand, the monomials

x2
1,2, x1,2x1,3, x1,2x1,4, x1,2x2,3, x1,2x2,4, x1,2x3,4, x2

1,3,

x1,3x1,4, x1,3x2,3, x1,3x3,4, x2
1,4, x1,4x2,3, x1,4x2,4,

x1,4x3,4, x2
2,3, x2,3x2,4, x2,3x3,4, x2

2,4, x2,4x3,4, x2
3,4


form an ordered basis for 0(OX (2)), so the complete linear series of OX (2) em-
beds X into P19

= Proj(k[y0, . . . , y19]). The matrix �(OX (1),OX (1)) is

y0 y1 y2 y3 y4 y5

y1 y6 y7 y8 y5+ y11 y9

y2 y7 y10 y11 y12 y13

y3 y8 y11 y14 y15 y16

y4 y5+ y11 y12 y15 y17 y18

y5 y9 y13 y16 y18 y19


and the 2-minors of this matrix generated IX |P19 (indeed, this is the second Veronese
of the Plücker embedding). Since K X = OX (−4) and OX (2) = K 2

X ⊗ OX (1)2·4+2,
we see that the bound in Theorem 1.3 is sharp in this case. �
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Involutions, weights and p-local structure
Geoffrey R. Robinson

We prove that for an odd prime p, a finite group G with no element of order 2p
has a p-block of defect zero if it has a non-Abelian Sylow p-subgroup or more
than one conjugacy class of involutions. For p=2, we prove similar results using
elements of order 3 in place of involutions. We also illustrate (for an arbitrary
prime p) that certain pairs (Q, y), with a p-regular element y and Q a maximal
y-invariant p-subgroup, give rise to p-blocks of defect zero of NG(Q)/Q, and
we give lower bounds for the number of such blocks which arise. This relates to
the weight conjecture of J. L. Alperin.

Introduction

Involutions have played a crucial role in finite group theory for many decades.
They also figure prominently in representation theory, both ordinary and modular.
Examples of the former include their occurrence in finite reflection groups, and
an example of the latter is that in characteristic 2, J. Murray proved in [2006]
that the projective summands of the (characteristic 2) permutation module (under
conjugation action) on the solutions of x2

= 1 in G are (in bijection with) the real
2-blocks of defect zero.

Involutions also influence representation theory in odd characteristic. It was
proved by Brauer and Fowler in [1955] that when p is an odd prime, G has a p-
block of defect zero if there is an involution t ∈G that neither inverts nor centralizes
any nontrivial p-element of G. This result was extended by T. Wada [1977], who
proved that if there are r mutually nonconjugate involutions of G that neither invert
nor centralize any nontrivial p-element of G, then G has at least r distinct p-blocks
of defect zero. We prove here that when p = 2, elements of order 3 can play a
role analogous to that played when p is odd by involutions in the results above:
We prove that the number of 2-blocks of defect zero of G is at least as great as the
number of conjugacy classes of elements of order 3 that normalize no nontrivial
2-subgroup of G.

We also point out here that results of this nature can be combined with local
group-theoretic analysis to prove that if p is an odd prime and G is a group without

MSC2010: 20C20.
Keywords: block, involution.
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elements of order 2p, then G has a p-block of defect zero if it has more than one
conjugacy class of involutions (we prove a more precise result without using the
classification of finite simple groups, which could be sharpened even further by
using that classification).

In a different direction, the celebrated weight conjecture of J. L. Alperin (in its
nonblockwise version) defines (for a fixed prime p) a weight of G (up to conjugacy)
as a pair (Q, S), where Q is a p-subgroup of G and S is an absolutely simple
projective NG(Q)/Q module in characteristic p. Alperin’s weight conjecture then
asserts that the number of nonconjugate weights of G for p should be the number
of conjugacy classes of p-regular elements of G (which is also the number of
isomorphism types of absolutely simple modules for G in characteristic p). At
present, there seems to be no reason to expect a natural bijection between weights
and p-regular conjugacy classes, or between weights and characteristic p simple
modules for G (though it is impossible to preclude the possibility that one or the
other might emerge in future). Relatively few purely group-theoretic criteria are
known to date that place nonconjectural bounds on the number of weights. We
give some group-theoretic conditions of this nature that place lower bounds on
the number of weights, using sharpenings of results of Brauer and Fowler [1955],
Tsushima [1977] and Wada [1977], going somewhat further than my results in
[Robinson 1983], and incorporating the result about 2-blocks of defect zero and
elements of order 3 that normalize no nontrivial 2-subgroup of G.

A naïve attempt at associating p-regular classes with weights of G might be to
consider a p-regular element y and a maximal y-invariant p-subgroup Q. Then
y normalizes no nontrivial p-subgroup of NG(Q)/Q and it might be hoped that a
p-block of defect zero of NG(Q)/Q could be naturally associated to y (or yQ).
More ambitiously, it might be hoped that weights could be parametrized in terms
of conjugacy classes of pairs (Q, y), where y is a p-regular element of G and Q
is a maximal y-invariant p-subgroup of G.

However, there are usually more conjugacy classes of such pairs (Q, y) than
there are simple modules. The number of conjugacy classes of such pairs (Q, y) is
equal to the number of simple modules precisely when CG(y) transitively permutes
the maximal y-invariant p-subgroups of G for each p-regular y ∈ G. In general,
this need not be the case. For example, when p = 3 and G ∼= PSL(2, 11) we may
take y to be an involution. There is a Sylow 3-subgroup Q of G that is centralized
by y, and there is another Sylow 3-subgroup R of G whose nonidentity elements
are inverted by y. Clearly Q and R are not conjugate via an element of CG(y).

We are nevertheless interested in pairs (Q, y), where y is p-regular and Q is a
maximal y-invariant p-subgroup, and we will point out some instances where they
give rise to weights.



Involutions, weights and p-local structure 1065

Lemma 1. (i) Let Q be a p-subgroup of G and y be a p-regular element of
NG(Q) such that yQ ∈ Op′(NG(Q)/Q). Then Q is a maximal y-invariant
p-subgroup of G if and only if CQ(y) ∈ Sylp(NG(Q)∩CG(y)).

(ii) Suppose that p is odd, and let Q be a p-subgroup of G and y be an involution
of NG(Q). Then Q is a maximal y-invariant p-subgroup of G if and only if
yQ neither inverts nor centralizes any element of order p in NG(Q)/Q.

(iii) Suppose that p = 2, and let Q be a 2-subgroup of G and y be an element of
order 3 in NG(Q). Then Q is a maximal y-invariant 2-subgroup of G if and
only if yQ is not contained in any subgroup isomorphic to A4 of NG(Q)/Q,
and yQ does not centralize any involution of NG(Q)/Q.

Proof. (i) Notice that Q is a maximal y-invariant p-subgroup of G if and only if
Q is a maximal y-invariant p-subgroup of NG(Q), for if Q < R and R is another
y-invariant p-subgroup of G, then Q < NR(Q) and NR(Q) is y-invariant. Hence
we may suppose that QCG, and do so. Set G = G/Q, and so on. Then CG(y)=
CG(y) since y is p-regular and Q is a p-group. Since y ∈ Op′(G), we see that
y centralizes any p-subgroup of G that it normalizes. Hence Q is a maximal
y-invariant p-subgroup of G if and only if y normalizes no nontrivial p-subgroup
of G, if and only if y centralizes no nontrivial p-subgroup of G, if and only if
CQ(y) ∈ Sylp(CG(y)).

(ii) Again we may suppose that Q C G and we set G = G/Q. If y inverts or
centralizes an element of order p in G, then Q is clearly not a maximal y-invariant
p-subgroup of G. On the other hand, if y normalizes a nontrivial p-subgroup
of G, then y normalizes a nontrivial Abelian p-subgroup A, say. We have A =
[A, y] × CA(y), so that ȳ must either centralize or invert a nonidentity element
of A.

(iii) The proof of this part is analogous to part (ii), except that in the final step,
A may be chosen to be elementary Abelian, and [A, y] is a direct product of
ȳ-invariant Klein 4-groups, each acted on by y without nontrivial fixed points. �

Definition. When p is a prime and G is a finite group, a pair (Q, x) is called a
pseudoweight for G if x is a p-regular element of G, Q is a maximal x-invariant
p-subgroup of G, and one or more of the following occurs:

(i) x Q ∈ Op′(NG(Q)/Q).

(ii) p is odd and x is an involution.

(iii) p = 2 and x has order 3.

Remark. It is easy to check that (Q, 1) is a pseudoweight for G if and only if
Q ∈ Sylp(G), so there is a unique conjugacy class of pseudoweights with second
component 1G . When Q is a Sylow p-subgroup of G, notice that the number of
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nonconjugate pseudoweights with first component Q is the number of conjugacy
classes of p-regular elements of NG(Q), since NG(Q)/Q is a p′-group. If p is
odd, every involution occurs as the second component of at least one pseudoweight,
since whenever t is an involution, there is at least one maximal t-invariant p-
subgroup of G (which may be trivial). Similarly, if p = 2, then every element of
order 3 occurs as the second component of at least one pseudoweight.

Before our first result, we recall some results of [Murray 1999; Robinson 1983].
Let P be a Sylow p-subgroup of G. In [Robinson 1983], it is proved that the
number of p-blocks of defect zero is the rank of a matrix S with entries in GF(p)
defined as follows: The rows and columns of S are indexed by the conjugacy
classes of p-regular elements y of G such that CG(y) is a p′-group. The (i, j)-
entry of S is si j , which is the residue (mod p) of |�i j |/|P|, where �i j is the set
of (u, v) ∈ Ci × C j such that u−1v ∈ P , where Ci is the i-th conjugacy class of
p-regular elements of p-defect zero. This is refined by [Murray 1999, 6.3], which
shows that�i j may be replaced by �̃i j , which is obtained by only counting ordered
pairs (u, v) such that u−1v is an element of P of order at most p, and we may use
S̃ in place of S, where s̃i j is the residue (mod p) of |�̃i j |/|P|. We will see that,
when p = 2, this refinement is advantageous.

Theorem 2. For each p-subgroup Q of G, the number of conjugacy classes of
weights of G with first component conjugate to Q is greater than or equal to the
number of conjugacy classes of pseudoweights of G with first component conjugate
to Q.

Proof. First note that G permutes its pseudoweights by conjugation. For each p-
subgroup of G, the G-conjugate pseudoweights with first component Q correspond
bijectively to the NG(Q)/Q-conjugacy classes of pseudoweights with trivial first
component, since there is a bijection between p-regular conjugacy classes of N =
NG(Q) and p-regular conjugacy classes of N/Q. Hence it suffices to prove that
the number of p-blocks of defect zero is at least the number of conjugacy classes
of pseudoweights with trivial first component.

Let (1, x1), . . . , (1, xd) be representatives for the conjugacy classes of pseudo-
weights of G with trivial first component. Then no xi normalizes any nontrivial
p-subgroup of G.

Let us label so that xi ∈ Ci for 1≤ i ≤ d. We show that the first d×d minor of
S̃ is an invertible diagonal matrix, so that S̃ has rank at least d . For if 1≤ i, j ≤ d ,
and u is conjugate to xi and v is conjugate to x j with u−1v ∈ P of order at most p,
then u−1v is p-regular (if u or v is in Op′(G) this is clear). If p is odd and u
and v are both involutions that invert no element of order p, then u−1v must be
p-regular. If p = 2 and u and v are both elements of order 3 that normalize no
nontrivial 2-subgroup of G and u−1v is an involution, then 〈u, v〉 ∼= A4 and u is
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conjugate to v within 〈u, v〉, a contradiction. Hence u−1v is p-regular in all cases,
(so is the identity, as P is a p-group). Thus s̃i j = 0 for i 6= j and 1≤ i, j ≤ d . Also,
s̃i i is the residue (mod p) of |Ci |/|P| for 1≤ i ≤ d. Thus s̃i i 6= 0 for 1≤ i ≤ d, as
required to complete the proof. �

Because of its analogy with the result of Brauer and Fowler [1955] mentioned
previously, we single out for special mention this:

Corollary 3. Let G be a finite group of order divisible by 6. If G contains an
element of order 3 that normalizes no nontrivial 2-subgroup of G, then G has a
2-block of defect zero. More precisely, the number of 2-blocks of defect zero is
greater than or equal to the number of conjugacy class of elements of order 3 of G
that normalize no nontrivial 2-subgroup of G.

We now combine some local-group theoretic analysis with the block-theoretic
results we have used.

Theorem 4. Let G be a finite group of even order that contains no element of
order 2p for some odd prime p. Then either G has a p-block of defect zero or else
G has Abelian Sylow p-subgroups and a unique conjugacy class of involutions.
Furthermore, if G has no p-block of defect zero, and has Sylow p-subgroups of
rank at least 3, then either G/O{2,p}′(G) has a normal Sylow p-subgroup or else
G has a strongly p-embedded subgroup.

Proof. Suppose that G has no p-block of defect zero. Set π = {2, p}. To prove the
theorem, it suffices to consider the case that Oπ ′(G) = 1. By the result of Brauer
and Fowler mentioned earlier, every involution of G inverts an element of order p,
as G has no element of order 2p. Also, since G contains no element of order 2p,
no section of G is isomorphic to SL(2, p), so that, by a theorem of Glauberman
[1968], N = NG(ZJ(P)) controls strong fusion in G for P ∈ Sylp(G). Thus N
must have even order, as some element of order p is conjugate to its inverse in G.

Since G contains no element of order 2p, the Sylow 2-subgroups of N must be
cyclic or generalized quaternion, since if there were a Klein 4-subgroup, V say,
of N , then each involution of V would invert every element of ZJ(P), which is
a contradiction since the product of any two involutions that invert all of ZJ(P)
centralizes ZJ(P). Hence N has a unique conjugacy class of involutions and, by the
Brauer–Suzuki theorem, N =O2′(N )CN (t) for t any involution of N . Thus O2′(N )
contains P as CN (t) is a p′-group. We may suppose that P is t-invariant, so that
P is Abelian as t acts without nontrivial fixed-points on P . We wish to prove that
G has a unique conjugacy class of involutions. Let u be an involution of G. Then,
replacing u by a conjugate if necessary, we may suppose that u inverts an element
h of order p in P . Then NG(〈h〉) = CG(h)NN (〈h〉) so that u is conjugate within
NG(〈h〉) to an involution of NN (〈h〉) since CG(h) has odd order. In particular, u is
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conjugate in G to an involution of N . This completes the proof of the first claim,
as N has one conjugacy class of involutions.

For the second claim, set A = �1(P), and suppose that |A| ≥ p3. For each
a ∈ A#, we know that CG(a) has odd order by hypothesis, and so is solvable. Thus
CG(a) = CN (a)Op′(CG(a)) for each such a. If Op′(CG(a)) = 1 for each such a,
then either N is strongly p-embedded in G or else P C G (for if Op(G) 6= 1,
then G = O2′(G)CG(t) for t an involution, and O2′(G) has a normal Sylow p-
subgroup since Oπ ′(G)=1). Otherwise, by the solvable signalizer functor theorem
[Glauberman 1976],

θ(A)= 〈Op′(CG(a)) : a ∈ A#
〉

is a solvable π ′-group. Then M = NG(θ(A)) < G. Now

N = NG(P)≤ NG(A)≤ M.

Also, for each a ∈ A#, we have CG(a) = CN (a)Op′(CG(a)) ≤ M . For each non-
trivial subgroup B of P , we have

NG(B)≤ NG(�1(B))= CG(�1(B))NN (�1(B))≤ M.

Thus M is strongly p-embedded in this case. �

References

[Brauer and Fowler 1955] R. Brauer and K. A. Fowler, “On groups of even order”, Ann. of Math.
(2) 62 (1955), 565–583. MR 17,580e Zbl 0067.01004

[Glauberman 1968] G. Glauberman, “A characteristic subgroup of a p-stable group”, Canad. J.
Math. 20 (1968), 1101–1135. MR 37 #6365 Zbl 0164.02202

[Glauberman 1976] G. Glauberman, “On solvable signalizer functors in finite groups”, Proc. London
Math. Soc. (3) 33:1 (1976), 1–27. MR 54 #5341 Zbl 0342.20008

[Murray 1999] J. C. Murray, “Blocks of defect zero and products of elements of order p”, J. Algebra
214:2 (1999), 385–399. MR 2000e:20010 Zbl 0929.20007

[Murray 2006] J. Murray, “Projective modules and involutions”, J. Algebra 299:2 (2006), 616–622.
MR 2007b:16057 Zbl 1101.20005

[Robinson 1983] G. R. Robinson, “The number of blocks with a given defect group”, J. Algebra
84:2 (1983), 493–502. MR 85c:20009 Zbl 0519.20011

[Tsushima 1977] Y. Tsushima, “On the weakly regular p-blocks with respect to Op′(G)”, Osaka J.
Math. 14:3 (1977), 465–470. MR 57 #438 Zbl 0373.20022

[Wada 1977] T. Wada, “On the existence of p-blocks with given defect groups”, Hokkaido Math. J.
6:2 (1977), 243–248. MR 56 #3111 Zbl 0372.20014

Communicated by Ronald Mark Solomon
Received 2010-06-09 Revised 2010-12-22 Accepted 2011-06-07

g.r.robinson@abdn.ac.uk Institute of Mathematics, University of Aberdeen,
Fraser Noble Building, Aberdeen AB24 3UE, Scotland

mathematical sciences publishers msp



msp
ALGEBRA AND NUMBER THEORY 5:8(2011)

Parametrizing quartic algebras over an
arbitrary base
Melanie Matchett Wood

We parametrize quartic commutative algebras over any base ring or scheme
(equivalently finite, flat degree-4 S-schemes), with their cubic resolvents, by
pairs of ternary quadratic forms over the base. This generalizes Bhargava’s
parametrization of quartic rings with their cubic resolvent rings over Z by pairs
of integral ternary quadratic forms, as well as Casnati and Ekedahl’s construc-
tion of Gorenstein quartic covers by certain rank-2 families of ternary quadratic
forms. We give a geometric construction of a quartic algebra from any pair of
ternary quadratic forms, and prove this construction commutes with base change
and also agrees with Bhargava’s explicit construction over Z.

1. Introduction

Definitions and main result. A n-ic algebra Q over a scheme S is an OS-algebra
Q that is a locally free rank-n OS-module, or equivalently Spec Q is a finite, flat
degree-n S-scheme. For n = 3, 4, we call such algebras cubic and quartic respec-
tively. Given a quartic algebra, we can define a cubic resolvent which is a model
over S of the classical cubic resolvent field of a quartic field (but which is not
always determined uniquely by the quartic algebra). For a quartic algebra Q over
S, a cubic resolvent C of Q is a cubic algebra C over S, with a quadratic map
φ : Q/OS→C/OS and an isomorphism δ :

∧4 Q
∼
→

∧3C , such that for any sections
x, y of Q we have δ(1∧ x ∧ y ∧ xy) = 1∧ φ(x)∧ φ(y) and also C is the cubic
algebra corresponding to Det(φ) (see Section 3 for more details). An isomorphism
from a pair (Q,C) of a quartic algebra and cubic resolvent to a pair (Q′,C ′) is
given by isomorphisms of the respective algebras that respect φ and δ.

A double ternary quadratic form over S is a locally free rank-3 OS-module W ,
a locally free rank-2 OS-module U , and a global section p ∈ Sym2 W ⊗U , and an
isomorphism

∧3W ⊗
∧2U

∼
→ OS which is called an orientation. An isomorphism

MSC2000: primary 11R16; secondary 11E20.
Keywords: quartic algebras, cubic resolvents, pairs of ternary quadratic forms, degree-4 covers,

quartic covers.
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of double ternary quadratic forms (W,U, p) and (W ′,U ′, p′) is given by isomor-
phisms W

∼
→W ′ and U

∼
→U ′ that send p to p′ and respect the orientations.

The main theorem of this paper is the following.

Theorem 1.1. There is an isomorphism between the moduli stack for quartic al-
gebras with cubic resolvents and the moduli stack for double ternary quadratic
forms. In other words, for a scheme S there is an equivalence between the cate-
gory of quartic algebras with cubic resolvents and the category of double ternary
quadratic forms (with morphisms given by isomorphisms in both categories), and
this natural equivalence commutes with base change in S.

The moduli stack of double ternary quadratic forms is simply [A12/0], where 0
is the sub-group scheme of GL2×GL3 of elements (g, h) such that det g det h= 1.
The action of 0 on A12 is given by viewing A12 as the space Sym2 Z3

⊗Z2, where
GL3 has the standard action on the Z3 (and the thereby induced action on Sym2 Z3)
and acts trivially on the Z2 and GL2 acts trivially on the Sym2 Z3 and with the
standard action on Z2. In particular, we have a parametrization of quartic algebras
with cubic resolvents.

Corollary 1.2. Over a scheme S, there is a bijection between isomorphism classes
of double ternary quadratic forms over S and isomorphism classes of pairs (Q,C)
where Q is a quartic algebra over S and C is a cubic resolvent of Q.

Remark 1.3. The geometric language of this paper makes it more natural to work
over a scheme S, but all of our work includes the case S = Spec R, in which case
we are simply working over a ring R. The reader mainly interested in a base ring
can replace OS with R and “global section” with “element” throughout the paper.

Background and previous work. It has been known since [Delone and Faddeev
1940] (see also Section 2 of this paper and [Davenport and Heilbronn 1971; Gan
et al. 2002; Bhargava 2004b]) that cubic rings are parametrized by binary cubic
forms. A cubic ring is a ring whose additive structure is a free rank-3 Z-module,
and a binary cubic form is a polynomial

f = ax3
+ bx2 y+ cxy2

+ dy3

with a, b, c, d ∈ Z. Cubic rings, up to isomorphism, are in natural discriminant-
preserving bijection with GL2(Z)-classes of binary cubic forms. If we prefer to
think geometrically, a cubic ring is a finite, flat degree-3 cover of Spec Z. A
parametrization analogous to that of [Delone and Faddeev 1940] was proven in
[Miranda 1985] for finite, flat degree-3 covers of an irreducible scheme over an al-
gebraically closed field of characteristic not 2 or 3. Though these correspondences
were originally given by writing down a multiplication table for the cubic ring
(or sheaf of functions on the cubic cover), when f is a non-zero integral binary
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cubic form, the associated cubic ring is simply the ring of global functions of the
subscheme of P1

Z cut out by f ; see [Deligne 2000; Wood 2011b, Theorem 2.4;
Casnati and Ekedahl 1996].

In this paper, we study quartic (commutative) algebras, or equivalently, finite,
flat degree-4 covers of a base scheme. Casnati and Ekedahl [1996] found that finite,
flat degree-4 Gorenstein covers of an integral base scheme are given by global
sections of certain double ternary quadratic forms, with a codimension condition
on the section at every point of the base. (See also [Hahn and Miranda 1999]
on quartic covers of algebraic varieties in characteristic not 2.) Recently, quartic
algebras over Z have been parametrized in [Bhargava 2004b]. More precisely,
Bhargava proved that isomorphism classes of pairs (Q,C), where Q is a quar-
tic ring (i.e., isomorphic to Z4 as a Z-module) and C is a cubic resolvent of Q,
are in natural bijection with GL2(Z)×GL3(Z)-classes of pairs of integral ternary
quadratic forms. (We could view a pair of ternary quadratic forms over Z as a
double ternary quadratic form

∑
1≤i≤ j≤3 ai j xi x j y+

∑
1≤i≤ j≤3 bi j xi x j z.) Bhargava

[2004b] introduced cubic resolvents as models of the classical cubic resolvent field
of a quartic field. All quartic rings over Z have at least one cubic resolvent, and
many quartic rings (for example, maximal quartic rings over Z) have a unique
cubic resolvent [Bhargava 2004b, Corollary 4]. This has allowed Bhargava [2005]
to count asymptotically the number of S4 number fields of discriminant less than
X (as well as the number of orders in S4 number fields). Casnati [1998] has also
given a construction of a finite, flat degree-3 “discriminant cover” corresponding to
a finite, flat degree-4 Gorenstein cover of an integral scheme over an algebraically
closed field of characteristic not equal to 2, but since he was only considering
quartic covers that turn out to have unique cubic resolvents, the importance of the
cubic resolvent to the moduli problem was not apparent. Bhargava [2004b] realized
that to obtain a nice parametrization of quartic rings over Z, one must parametrize
them along with their cubic resolvents.

In this paper, we generalize the results of [Bhargava 2004b] from Z to an arbi-
trary scheme, and those of [Casnati and Ekedahl 1996] from the case of Gorenstein
covers and special forms to all quartic covers and forms, as well as to an arbitrary
base scheme. Moreover, we prove our correspondence between quartic algebras
with resolvents and double ternary quadratic forms commutes with base change.

Bhargava [2004b] describes the relationship between quartic rings with cubic re-
solvents and pairs of ternary quadratic forms by giving the multiplication tables for
the quartic and cubic rings explicitly in terms of the coefficients of the forms. In this
paper, we give a geometric, coordinate-free description of a quartic ring Q given by
a pair of integral ternary quadratic forms. For the nicest forms, the pair of ternary
quadratic forms gives a pencil of conics in P2

Z and the quartic ring is given by the
global functions of the degree-4 subscheme cut out by the pencil. In Section 4, we
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give a global, geometric, coordinate-free construction over a quartic algebra from
a double ternary quadratic form over any scheme S. The construction that works
for all forms is taking the degree-0 hypercohomology of the Koszul complex of the
double ternary quadratic form. This agrees with the intuitive geometric description
given above for nice cases, but unlike the above description, always gives a quartic
algebra. Casnati and Ekedahl [1996] have given an analogous geometric construc-
tion over an arbitrary scheme in the case when the quartic algebra is Gorenstein.
Deligne, in a letter to Bhargava [2004], gives an analogous geometric construction
when the generic conic in the pencil is non-singular over each geometric point,
and proves that it extends (without giving a geometric construction in the extended
case) to all pairs of ternary quadratic forms. The geometric construction in this
paper works for all double ternary quadratic forms, for example when the form is
identically 0 in some fiber, when the conics given by the ternary quadratic forms
share a component, or even when both forms are identically 0!

In Section 5, we explain how the quartic algebra associated to a double ternary
quadratic form over S can be defined locally in terms of the multiplication tables
given in [Bhargava 2004b], and prove that these constructions agree. The calcula-
tions showing this agreement are not straightforward and are given in Theorem 5.1.

In Section 2, we review the parametrization of cubic algebras. This is not only
motivation for our study of quartic algebras, but also is important background
for the results in this paper because the cubic resolvent C is a cubic algebra. In
Section 3 we give the definition of a cubic resolvent in more detail. In Section 6,
we give the construction of a cubic resolvent from a double ternary quadratic form.
In Section 7, we prove Theorem 1.1.

Notation. If F is a sheaf, we use s ∈F to denote that s is a global section of F. If
V is a locally free OS-module, we use V ∗ to denote the OS-module HomOS

(V,OS).
We use Symn V to denote the usual quotient of V⊗n , and Symn V to denote the
submodule of symmetric elements of V⊗n . Note that when V is locally free we
have Symn V = (Symn V ∗)∗ (see Lemma A.4). We define P(V )= Proj Sym∗ V .

Normally, in the language of algebra, one says that an R-module M is locally
free of rank n if for all prime ideals ℘ of R, the localization M℘ is free of rank n.
However, if we have a scheme S and an OS-module M , we normally say that M is
locally free of rank n if on some open cover of S it is free of rank n; in the algebraic
language this is equivalent to saying that for every prime ideal ℘ of R, there is an
f ∈ R \℘ such that the) localization M f is free of rank n. In this paper we shall
use the geometric sense of the term locally free of rank n. The geometric condition
of locally free of rank n is equivalent to being finitely generated and having the
algebraic condition of locally free of rank n.
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2. The parametrization of cubic algebras

In this section, we review the parametrization of cubic algebras. A binary cubic
form over a scheme S is a locally free rank-2 OS-module V and an f ∈ Sym3 V ⊗∧2V ∗. An isomorphism of binary cubic forms (V, f ) ∼= (V, f ′) is given by an
isomorphism V ∼= V ′ that takes f to f ′. (Normally, we would call these twisted
binary cubic forms but since they are the only binary cubic forms in this paper,
we will use the shorter name for simplicity.) Of course, if V is the free rank-2
OS-module OSx ⊕ OS y, then the binary cubic forms f ∈ Sym3 V ⊗

∧2V ∗ are just
polynomials (ax3

+ bx2 y+ cxy2
+ dy3)⊗ (x ∧ y)∗, where a, b, c, d ∈ OS .

Over an arbitrary base, we have the following theorem of Deligne, also proved
by Poonen.

Theorem 2.1 [Deligne 2000; Poonen 2008, Proposition 5.1]. There is an isomor-
phism between the moduli stack for cubic algebras and the moduli stack for binary
cubic forms. That is, there is an equivalence of categories between the category of
cubic algebras over S where morphisms are given by isomorphisms and the cate-
gory of binary cubic forms over S where morphisms are given by isomorphisms,
and this equivalence commutes with base change in S. Thus, over a scheme S, there
is a bijection between isomorphism classes of cubic algebras and isomorphism
classes of binary cubic forms. If a cubic algebra C corresponds to a binary cubic
form (V, f ), then as OS-modules, we have C/OS ∼= V ∗.

Miranda [1985] gives the bijection between isomorphism classes over a base
which is an irreducible scheme over an algebraically closed field of characteristic
not equal to 2 or 3. Also, this isomorphism of stacks is studied and proven as part
of a series of such isomorphisms involving binary forms of any degree in [Wood
2011b].

In [Bhargava 2004a, Footnote 3], the following algebraic, global, coordinate
free description of the construction of a binary cubic form from a cubic algebra is
mentioned. Given a cubic algebra C , we can define an OS-module V = (C/OS)

∗.
(Note that V is a locally free rank-2 OS-module; see [Voight 2010, Lemma 1.3],
for example.) We can then define an OS-module homomorphism Sym3 C/OS →∧2C/OS given by xyz 7→ x∧ yz. One can check that this map is well-defined, and
so it gives a binary cubic form f ∈ (Sym3 C/OS)

∗
⊗
∧2C/OS ∼= Sym3 V ⊗

∧2V ∗.
Deligne [2000] gives a different, geometric construction in the case when C is
Gorenstein and then argues that the construction extends across the non-Gorenstein
locus.

It is often useful to also have the following local, explicit version of the con-
struction. Where C is a free OS-module, we can choose a basis 1, ω, θ for C and
then shift ω and θ by elements of OS so that ωθ ∈ OS . Then, the associative law
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implies that we have a multiplication table

ωθ =−ad,

ω2
=−ac+ bω− aθ, (1)

θ2
=−bd + dω− cθ,

where a, b, c, d ∈ OS . Let x, y be the basis of V dual to ω, θ . Then we can define
a form (ax3

+bx2 y+cxy2
+dy3)⊗(x∧ y)∗ ∈ Sym3 V⊗

∧2V ∗. We can check that
if we pick another basis 1, ω′, θ ′ (also normalized so that ω′θ ′ ∈ OS) and another
corresponding x ′ and y′ we would define the same form in Sym3 V ⊗

∧2V ∗. Thus
the form is defined everywhere locally in a way that agrees on overlapping open
sets, and we have constructed a global binary cubic form (V, f ).

One construction of a cubic algebra from a form (i.e., the inverse to the above
construction) simply gives the cubic algebra locally by the above multiplication
table. This gives the bijection locally in terms of bases with explicit formulas.
However, it is hard to see where the formula for the multiplication table came
from or why the local constructions are invariant under change of basis. The fol-
lowing global description is given by Deligne in his letter [Deligne 2000]. Given
a binary form f ∈ Sym3 V ⊗

∧2V ∗ over a base scheme S, the form f determines
a subscheme S f of P(V ). Let π : P(V )→ S. Let O(k) denote the usual sheaf
on P(V ) and OS f (k) denote the pullback of O(k) to S f . Then we can define the
OS-algebra by the hypercohomology

C := H 0 Rπ∗
(
O(−3)⊗π∗

∧2V f
→ O

)
, (2)

where O(−3)⊗π∗
∧2V f
→ O is a complex in degrees −1 and 0. The product on C

is given by the product on the Koszul complex O(−3)⊗ π∗
∧2V f

→ O with itself
and the OS-algebra structure is induced from the map of O as a complex in degree
0 to the complex O(−3) f

→ O (see Section B for more details on the inheritance of
the algebra structure). (Note that H 0 Rπ∗(O)= OS .)

Given a map of schemes X
π
→ S, the construction of global functions of X rela-

tive to S is just the pushforward π∗(OX ). So the natural notion of global functions
of S f relative to S would be π∗ of OS f . We have that OS f =OS/ f (O(−3)⊗π∗

∧2V ).
When f is injective, then OS f = OS/ f (O(−3)⊗π∗

∧2V ) as a complex in degree 0
has the same hypercohomology as O(−3)⊗π∗

∧2V f
→ O as a complex in degrees

−1 and 0. Thus we see when f is injective that C is just π∗(OS f ). When f gives
an injective map and S = Spec R then C is just the ring of global functions of S f .
Unfortunately, this simpler construction does not give a cubic algebra when f ≡ 0.
When f ≡ 0, then S f = P1 and the global functions are a rank-1 OS-algebra, i.e.,
OS itself. Hypercohomology is exactly the machinery we need to naturally extend
the construction to all f .
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3. Cubic resolvents

We now give the definition of a cubic resolvent, given first in [Bhargava 2004b,
Definition 20] over Z. The definition might seem complicated at first, but we will
explain each aspect of it.

Definition. Given a quartic algebra Q over a base scheme S, a cubic resolvent C
of Q is

• a cubic algebra C over S,

• a quadratic map φ : Q/OS→ C/OS , and

• an isomorphism δ :
∧4 Q

∼
→

∧3C (or equivalently δ̄ :
∧3 Q/OS

∼
→

∧2C/OS),
which we call the orientation,

such that

(1) for any open set U ⊂ S and for all x, y ∈ Q(U ), we have δ(1∧ x ∧ y∧ xy)=
1∧φ(x)∧φ(y), and

(2) C is the cubic algebra corresponding to Det(φ).

Note that Q/OS and C/OS are locally free OS-modules of ranks 3 and 2, respec-
tively (see [Voight 2010, Lemma 1.3], for example). A quadratic map from A to B
is given by an OS-module homomorphism Sym2 A→ B evaluated on the diagonal
(see Section A.i in Appendix A). (In [Wood 2011a, Proposition 6.1] it is shown this
is equivalent to the more classical notion of a quadratic map.) The map φ models
the map from quartic fields to their resolvent fields given by x 7→ xx ′+x ′′x ′′′, where
x, x ′, x ′′, x ′′′ are the conjugates of an element x . In [Bhargava 2004b, Lemma 9]
it is shown that condition 1 above holds for such classical resolvent maps, and it
turns out that condition 1 is the key property of resolvent maps that allows them to
be useful in the parametrization of quartic algebras. So the definition of resolvent
allows all quadratic maps that have this key property.

Another important property of the cubic resolvent over Z is that the discrim-
inant of the cubic resolvent is equal to the discriminant of the quartic ring. In
[Bhargava 2004b], this is a crucial part of the definition of a cubic resolvent over
the integers. With the above formulation of the definition of a cubic resolvent, the
equality of discriminants follows as a corollary of properties 1 and 2. However,
since the discriminant of an algebra R of rank n lies in (

∧n R)⊗−2, we need the
orientation isomorphism to even state the question of the equality of discriminants.
The orientation is a phenomenon that it is hard to recognize the importance of over
Z because GL1(Z) is so small, however it appears in Bhargava’s choice of bases
for a quartic ring and its cubic resolvent.

The quadratic map φ is equivalent to a double ternary quadratic form in the
module Sym2(Q/OS)

∗
⊗ C/OS . The determinant of a double ternary quadratic
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form is given by a natural cubic map from Sym2 W ⊗ V to (
∧3W )⊗2

⊗ Sym3 V .
We have a natural cubic determinant map from Sym2 W to (

∧3W )⊗2. For free W
and an element of Sym2 W represented by the matrix

A =

 a11
1
2a12

1
2a13

1
2a12 a22

1
2a23

1
2a13

1
2a23 a33

 ,
the map is given by the polynomial 4 Det(A), and since this is invariant under GL3

change of basis, it defines a determinant map for all locally free W . We use 2’s in
the denominator of our expression for A because it allows us a convenient way to
express the polynomial 4 Det(A), but note that the polynomial given by 4 Det(A)
does not have any denominators, and thus we do not need to require that 2 is invert-
ible to construct the determinant of a double ternary quadratic form. We can extend
to a cubic determinant map from Sym2 W⊗V to (

∧3W )⊗2
⊗Sym3 V by using the

elements of V as coefficients (see Section A.ii). Thus the determinant of φ lies in
(
∧3 Q/OS)

⊗−2
⊗Sym3(C/OS), which is isomorphic to (

∧2C/OS)⊗Sym3(C/OS)
∗

by the orientation isomorphism (see also Corollary A.3). From Theorem 2.1, we
have that C corresponds to a global section of (

∧2C/OS) ⊗ Sym3(C/OS)
∗, and

condition (2) above is that C corresponds to the section Det(φ).
When we speak of a pair (Q,C) of a quartic algebra Q and a cubic resolvent

C of Q, the maps φ and δ are implicit. An isomorphism of pairs is given by
isomorphisms of the respective algebras that respect φ and δ.

4. The geometric construction

In this section, we will construct a quartic algebra from a double ternary quadratic
form p ∈ Sym2 W⊗U over a base S. We consider the map π :P(W )→ S, and the
usual line bundles O(k) on P(W ). We can view p as a two-dimensional family of
quadratic forms on P(W ) (the two dimensions being given by U ). More precisely,
since p is equivalent to a map U∗→ Sym2 W , we have a naturally induced map
π∗U∗→ O(2), which is equivalent to a map p1 : π

∗U∗⊗O(−2)→ O. The image
of p1 is functions that are zero on the space cut out by the forms of p. The regular
functions on the scheme cut out by p are just given by O/ im(p1). From p we can
construct one more map to make the Koszul complex of p, given as follows

Kp :
∧2
π∗U∗⊗O(−4)

p2
−→ π∗U∗⊗O(−2)

p1
−→ O.

The complex Kp has O in degree 0, and the other two terms in degrees −1
and −2. We can construct p2 similarly to p1 since p is also equivalent to a map∧2U∗⊗U → Sym2 W . (Recall that

∧2U∗⊗U ∼=U∗; see Lemma A.2.) One can
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read about the construction of all the maps in the Koszul complex in [Eisenbud
2005, Appendices A2F and A2H].

Example 4.1. Suppose U is free with basis x, y, and dual basis ẋ and ẏ. Then we
can write p= f1⊗x+ f2⊗y. The map p1 just sends ẋ⊗g 7→ f1g and ẏ⊗g 7→ f2g.
We can write how p1 acts on a general element as a⊗ g 7→ gp(a), where p acts
on an element of U∗ by evaluating the U components of p at the given element of
U∗. The map p2 sends ẋ ∧ ẏ⊗ g 7→ g f1⊗ ẏ− g f2⊗ ẋ . We can write how p2 acts
on a general element as a∧b⊗g 7→ b⊗gp(a)−a⊗gp(b). From this we see that
Kp is a complex.

For sufficiently nice p the Koszul complex will be exact in all places except
the last and thus give a resolution of O/ im(p1). For example, this it true when p
is the universal double ternary quadratic form over the polynomial ring in twelve
variables. In this well-behaved case, p will cut out four (relative) points in P(W )

(i.e., a finite, flat degree four S-scheme) and the pushforward of the global functions
of those points will give us a quadratic algebra over the base S.

When the Koszul complex of p is not a resolution, instead of taking the push-
forward of the global functions of the scheme cut out by p, we will take the 0th
hypercohomology of the complex Kp. We define Q p to be H 0 Rπ∗(Kp), where
Rπ∗ denotes the pushforward of the complex in the derived category. Alterna-
tively, we can view the construction as the hypercohomological derived functor of
π∗, where the hypercohomology is necessary since we are operating on a complex
and not just a single sheaf. If p is nice enough that its Koszul complex Kp is a
resolution of O/ im(p1), then Q p will just be π∗(O/ im(p1)). However, what is
convenient about the hypercohomology construction is that Q p will be a quartic
algebra even when Kp is not a resolution (as we’ll see in Section 4.ii). So far we
have constructed Q p as an OS-module, however, the Koszul complex has a natural
differential graded algebra structure, and that gives the cohomology an inherited
algebra structure (see Section B for more details on the inheritance of the algebra
structure). The map from O as a complex in degree 0 to the complex Kp induces a
map from H 0 Rπ∗(O)= OS→ Q p. This gives Q p the structure of an OS-algebra.

4.i. Examples when K p is not a resolution. When constructing the cubic algebra
from a binary cubic form, we took

H 0 Rπ∗(O(−3)
f
−→ O)

on P(V ), which, as long as the cubic form f gives an injective map above is the
same as π∗(O/ im f ). For example, when the base S is integral, whenever f 6≡ 0

then O(−3)
f
−→ O is injective. However, when f ≡ 0, of course O(−3)

f
−→ O is not
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injective, and H 0 Rπ∗(O(−3)
f
−→ O) is not the same as π∗(O/ im f ). When f ≡ 0,

the latter is an OS-module of rank 1.
Again, when constructing our quartic algebra as H 0 Rπ∗(Kp), if p≡ 0 the com-

plex will not be a resolution and H 0 Rπ∗(Kp) won’t agree with π∗(O/ im p1). This
is the case when both “conics” are given by the 0 form. However, even over an
integral base, there are now more situations on which the complex Kp is not a res-
olution. The geometric constructions of [Casnati and Ekedahl 1996] and [Deligne
2004] for certain nice quartic algebras are in cases when π∗(O/ im p1) simply gives
the quartic algebra.

We now give several examples in which Kp is not a resolution.

Example 4.2. Let p ≡ 0. Then Q p = OS ⊕W ∗, with the multiplication given by
W ∗⊗OS W ∗→ 0.

Let U be free with the notation of Example 4.1.

Example 4.3. If f2 ≡ 0, then Q p = OS ⊕W ∗, with the multiplication given by
W ∗⊗OS W ∗→ 0.

Now, let W be free on w1, w2, w3.

Example 4.4. If f1 =w1w2 and f2 =w1w3, then Q p ∼= OS⊕OS[z1, z2]/(z1, z2)
2.

This is the case where the two conics share a linear component, and the pencil of
second lines all go through a point not on the shared line.

Example 4.5. If f1 = w1w2 and f2 = w
2
1 , then Q p ∼= OS[z1, z2]/(z3

1, z1z2, z2
2).

This is the case where the two conics share a linear component, and the pencil of
second lines all go through a point on the shared line.

Example 4.6. If f1=w
2
1+w1w3 and f2=w

2
2+w2w3, then Kp is a resolution and

Q p ∼= R := OS⊕OS⊕OS⊕OS . However, unlike in the case of binary cubic forms,
we can change p in just one closed fiber and Kp will no longer be a resolution.
For simplicity, let S = Spec Z, and let q be a prime. Then if f1 = q(w2

1 +w1w3)

and f2 = q(w2
2 +w2w3), the global functions of the subscheme cut out by p are

isomorphic to Z⊕ pR ⊂ R (a quartic Z-algebra) but Q p ∼= Z⊕ p2 R ⊂ R.

4.ii. Module structure of Q p. In this section, we determine the OS-module struc-
ture of Q p. We consider the short exact sequence of complexes O→A→Kp→

D→ 0, where

A : 0 // π∗U∗⊗O(−2)
p1

// O

Kp :
∧2
π∗U∗⊗O(−4)

p2
// π∗U∗⊗O(−2)

p1
// O

B :
∧2
π∗U∗⊗O(−4) // 0 // 0.
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From this short exact sequence we obtain a long exact sequence of hypercohomol-
ogy sheaves on S, of which we consider the following part:

H−1 Rπ∗(B) // H 0 Rπ∗(A) // H 0 Rπ∗(Kp) // H 0 Rπ∗(B) // H 1 Rπ∗(A).

Q p

This sequence will allow us the determine the modules structure of Q p once we
compute the other terms. It is natural to shift the term in B to degree 0 and obtain

R1π∗(
∧2
π∗U∗⊗O(−4))

// H 0 Rπ∗(A) // Q p // R2π∗(
∧2
π∗U∗⊗O(−4)) // H 1 Rπ∗(A).

0 W ∗⊗
∧3W ∗⊗

∧2U∗
∼=��

W ∗

We can analyze the A terms by putting the complex A in its own short exact
sequence of complexes 0→ D→A→ E→ 0, given by the following

D : 0 // O

A : π∗U∗⊗O(−2)
p1

// O

E : π∗U∗⊗O(−2) // 0.

Taking the long exact sequence for this short exact sequence of complexes gives

H−1 Rπ∗(E)→ H 0 Rπ∗(D)→ H 0 Rπ∗(A)→ H 0 Rπ∗(E)

→ H 1 Rπ∗(D)→ H 1 Rπ∗(A)→ H 1 Rπ∗(E),

or

R0π∗(π
∗U∗⊗O(−2)) // R0π∗(O) // H 0 Rπ∗(A) // R1π∗(π

∗U∗⊗O(−2))

0 OS 0

and
R1π∗(O) // H 1 Rπ∗(A) // R2π∗(π

∗U∗⊗O(−2)).

0 0

Thus, we conclude that H 0 Rπ∗(A)∼= OS and H 1 Rπ∗(A)= 0.
Going back to our original long exact sequence, we have

0→ OS→ Q p→W ∗→ 0.
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This proves that Q p is a locally free rank-4 OS-module. Also, it gives us the
necessary map OS → Q p for our algebra to have a unit. (We can check this map
respects the algebra structures because it is induced from the map of complexes
D→ Kp that respects the differential graded algebra structures on D and Kp.)

Theorem 4.7. The construction of Q p commutes with base change in S.

Proof. To prove this theorem, we will compute all of the cohomology of Kp. The
complex Kp has no cohomology in degrees other than 0. We have Rkπ(O(−4))=0
for k 6= 2, and Rkπ∗(O(−2)) = 0 for all k, and Rkπ∗(O) = 0 for k 6= 0. Thus
H k Rπ∗(Kp) = 0 for k 6= 0. We have just seen that H 0 Rπ∗(Kp) is locally free.
Thus since all H i Rπ∗(Kp) are flat, by [EGA III.2 1963, corollaire 6.9.9], we have
that cohomology and base change commute. �

5. Local construction by multiplication table

Given a double ternary quadratic form p ∈ Sym2 W ⊗U (with a given
∧3W ∼=∧2U∗), now that we know that there is a natural quartic algebra Q p we could define

the structure locally where W and U are free by giving multiplication tables, as in
the case of cubic algebras from binary cubic forms.

For a double ternary quadratic form over Z (and therefore with W and U nec-
essarily free), Bhargava [2004b, Equations (15) and (21)] gives a ring structure
on Z4 whose multiplication table is given in terms of the coefficients of p. Each
entry in the multiplication table is a polynomial in the coefficients of p. This, of
course, is the multiplication table we would impose for free W and U in the above
local construction. We will now see that this local construction agrees with the
geometric construction we have given in Section 4. We will show this by working
over the universal algebra R = Z[{ai j , bi j }1≤i≤ j≤3] for double ternary quadratic
forms, and with the universal free form u =

∑
1≤i≤ j≤3 ai j xi x j y1+ bi j xi x j y2.

Theorem 5.1. For the universal form u, the quartic algebra Qu is isomorphic to
the quartic algebra over R that is constructed above using Bhargava’s multiplica-
tion tables.

In particular, since our geometric construction of Qu is invariant under change of
basis of W and U (respecting

∧3W ∼=
∧2U∗), this gives a proof of the invariance

of Bhargava’s multiplication table under change of basis, as long as the correct
GL3×GL2 action is used. Since all double ternary quadratic forms are locally pull-
backs from the universal form, and both the local construction by multiplication
tables and the global geometric construction of Section 4 respect base change,
Theorem 5.1 implies that the two constructions of quartic algebras from double
ternary quadratic forms agree. We now prove Theorem 5.1.



Parametrizing quartic algebras over an arbitrary base 1081

Proof. For the universal form u, the complex Ku used to define Qu is exact, and
therefore Qu is just the global functions on the scheme Su in P2

R cut out by

A =
∑

1≤i≤ j≤3

ai j xi x j and B =
∑

1≤i≤ j≤3

bi j xi x j .

(We can just work in terms of global functions instead of the pushforward to the
base since the base Spec R is affine. Moreover, the multiplicative structure of the
global functions of Su is the same as the induced multiplicative structure on the
hypercohomological construction of Qu .) We cover Su with open sets Uxi coming
from the usual open sets in P2

R . As a first step, we will find ( f, g)∈0(Uxi )×0(Ux j )

such that f = g in 0(Uxi ∩Ux j ). This will find all regular functions on Uxi ∪Ux j ,
and it will turn out that they all extend uniquely to global functions on Su . Thus,
we will have found all the regular functions on Su . We will identify these regular
functions with the basis in Bhargava’s quartic ring construction, and then it can be
checked that the multiplication tables agree.

Let i, j, k be some permutation of 1, 2, 3. We have that

0(Uxi )= R[x j/xi , xk/xi ]/(A/x2
i , B/x2

i ).

Let Ii be the ideal (A/x2
i , B/x2

i ) of R[x j/xi , xk/xi ], and similarly for I j . Also,

0(Uxi ∩Ux j )= R[x j/xi , xk/xi , xi/x j ]/(A/x2
i , B/x2

i ).

If we have ( f, g) ∈ 0(Uxi )×0(Ux j ) such that f = g in 0(Uxi ∩Ux j ), then f and
g are represented by polynomials f̃ ∈ R[x j/xi , xk/xi ] and g̃ ∈ R[xi/x j , xk/x j ]

such the element f̃ − g̃ ∈ R[x j/xi , xk/xi , xi/x j ] is in the ideal I = (A/x2
i , B/x2

i ).
However, f̃ − g̃ will not have any terms with an xi and an x j in the denominator.
We define T1 to be the sub R-module of I of elements that do not have any terms
with both an xi and an x j in the denominator. The set T1 gives all the relations
between polynomials representing elements in 0(Uxi ) and polynomials represent-
ing elements in 0(Ux j ). We define T2 to be the sub R-module of T1 generated by
the images of Ii and I j under their natural inclusion into R[x j/xi , xk/xi , xi/x j ].
The set T2 gives all the relations of T1 that come from relations already in Uxi

and already in Ux j . We now seek to determine T1/T2, which gives rise to all pairs
( f, g) ∈ 0(Uxi )×0(Ux j ) such that f = g in 0(Uxi ∩Ux j ) that are not functions
on the base Spec R.

We first define some notation to help us write down elements of T1/T2. Let

Aim jn = A
xm+n−2

k

xm
i xn

j
,

where the subscript im jn is a product of formal symbols, where a missing exponent
denotes an exponent of 1. We define Bim jn analogously.
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Lemma 5.2. Let t ∈ T1/T2. We can write

t =
∑

m,n≥1
m+n≤3

cm,n Aim jn + dm,n Bim jn with cm,n, dm,n ∈ R.

Proof. Clearly we can write any t in I as such as sum over m, n ∈Z with m+n≥ 2.
Any term with m ≤ 0 is in the image of I j and thus in T2, and any term with n ≤ 0
is in the image of Ii and thus in T2. It remains to show that we do not need terms
with m+ n ≥ 4 in order to represent t .

We suppose for the sake of contradiction that a term with m+n≥4 was required,
and we take a t with m + n maximal for this condition, and m maximal given
that. Then cm,n Aim jn contributes a xm+n

k /xm
i xn

j term with coefficient cm,nakk and
dm,n Bim jn contributes xm+n

k /xm
i xn

j term with coefficient dm,nbkk . No other terms
of the summand for t can contribute a term with xm

i xn
j in the denominator, and so

we must have cm,n = rbkk and dm,n =−rakk for some element r ∈ R.
Now we claim we did not need to use the terms rbkk Aim jn − rakk Bim jn in the

sum that represents t . To prove this claim, we use the following identity

bkk Aim jn − akk Bim jn

=−bik Aim−1 jn + aik Bim−1 jn − b jk Aim jn−1 + a jk Bim jn−1 + ai j Bim−1 jn−1

−bi j Aim−1 jn−1 − b j j Aim jn−2 + a j j Bim jn−2 − bi,i Aim−2 jn + ai i Bim−2 jn .

This proves the lemma. �

The above lemma tells us that every element of T1/T2 can be written as an
R-linear combination of Ai j , Bi j , Ai2 j , Bi2 j , Ai j2 , and Bi j2 . Since only Ai2 j and
Bi2 j have terms with x2

i x j in the denominator, we must have that Ai2 j and Bi2 j
appear with coefficients c2,1 and d2,1 so as to cancel those terms out. We can argue
similarly for Ai j2 and Bi j2 . Thus, every element of T1/T2 can be written as a R
linear combination of Ai j , Bi j , bkk Ai2 j − akk Bi2 j , and bkk Ai j2 − akk Bi j2 . We note
that all four of Ai j , Bi j , bkk Ai2 j − akk Bi2 j , and bkk Ai j2 − akk Bi j2 have terms with
a xi x j denominator.

We define some notation so we can write combinations of these elements down
more easily. For i < j , let a j i = ai j . Let λ`1`2

`3`4
= a`1`2b`3`4 − b`1`2a`3`4 . We note

that

Hi, j = bkk Ai2 j − akk Bi2 j + bik Ai j − aik Bi j

= λ
j j
kk

x j xk

x2
i
+ λ

i j
kk

xk

xi
+ λi i

kk
xk

x j
+ λ

jk
kk

x2
k

x2
i
+ λ

j j
ik

x j

xi
+ λ

i j
ik + λ

i i
ik

xi

x j
+ λ

jk
ik

xk

xi

and
H j,i = bkk Ai j2 − akk Bi j2 + b jk Ai j − a jk Bi j



Parametrizing quartic algebras over an arbitrary base 1083

do not have any terms with both xi and x j in the denominator. Every element of
T1/T2 can be written as a R linear combination of Ai j , Bi j , Hi, j and H j,i , because
this is just a unipotent triangular transformation of the last list of four generators.
We have seen that Hi, j and H j,i have no x2

k /xi x j terms, and Ai j and Bi j have
x2

k /xi x j terms with coefficients akk and bkk respectively. Since an element of t
does not have a term with xi x j in the denominator, it can be written as a linear
combination of Hi, j , H j,i and Fi j = F j i = bkk Ai j − akk Bi j . Moreover, Hi, j , H j,i

and Fi j are all in T1. We now define hi, j to be the sum of terms in Hi, j that do not
have an x j in the denominator, and hi, j = Hi, j − hi, j . We define fi j = f j i to be

the sum of terms in Fi j with xi in the denominator, so that fi j + f j i + λ
i j
kk = Fi j .

We have now found that the pairs ( f, g) ∈ 0(Uxi )×0(Ux j ) such that f = g in
0(Uxi ∩Ux j ) can be written in terms of four R-module generators:

(1, 1), (hi, j ,−hi, j ), (h j,i ,−h j,i ), ( fi j ,− f j i + λ
kk
i j ).

Letting i and j vary, this information is enough to determine the global functions
on Su . In this case, it turns out that the regular functions on Uxi that can be extended
to Ux j are exactly the same as the regular functions on Uxi that can be extended to
Uxk . In particular, in the polynomial ring R[x j/xi , xk/xi ], we can compute that

hi, j + hi,k = λ
i i
jk + a jk B/x2

i − b jk A/x2
i

and
h j,i =− fik .

Moreover, it will turn out that the extensions to Ux j and Uxk agree on their inter-
section. We see that the global functions of Su are generated as a R-module by four
generators g1, g2, g3, g4 ∈ 0(Ux1)×0(Ux2)×0(Ux3), whose components are:

0(Ux1) 0(Ux2) 0(Ux3)

g1 1 1 1

g2 h1,2 =−h1,3+ λ
11
23 −h1,2 = f23 − f32+ λ

11
23 = h1,3+ λ

11
23

g3 h2,1 =− f13 −h2,1 = h2,3+ λ
13
22 −h2,3+ λ

13
22 = f31+ λ

13
22

g4 f12 =−h3,1 − f21+ λ
33
12 = h3,2+ λ

33
12 −h3,2+ λ

33
12 = h3,1

We now show that the gi are generators for a free R-module of rank 4. Suppose
for the sake of contradiction that there was a relation among these generators.
Then over the generic point of R the global functions of Su would be a vector
space of at most dimension 3. But we have seen (top of page 1080) that the global
functions of Su form a locally free four-dimensional R module, and thus will be a
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four-dimensional vector space over the generic point of Spec R.
To construct the multiplication table on our four generators gi of the global

functions on Su , we can reduce to finding a multiplication table in the 0(Ux1)

component, since the gi are R-linearly independent even in this component. We
can further reduce to finding the multiplication table over the generic point of
Spec R. We first construct a multiplication table on 1, x2/x1, x3/x1, x2x3/x2

1 over
the generic point of Spec R. To do this, we replace A and B by linear combinations
of A and B, one of which has no (x2/x1)

2 term, and one of which has no (x3/x1)
2

term. Then on Ux1 over the generic point of Spec R, we can write all functions
in terms of 1, x2/x1, x3/x1, x2x3/x2

1 . We can then also write the gi in terms of
1, x2/x1, x3/x1, x2x3/x2

1 , and just apply this change of basis to the multiplication
table to obtain a multiplication table for the gi . If we take α1 = −g2, α2 = −g3,
and α3=−g4, we obtain exactly the multiplication tables in [Bhargava 2004b, (15)
and (21)]. �

In Section 4.ii, we found that Q p/OS is canonically isomorphic to W ∗. However,
we also have explicit basis for Q p/OS when we have a basis for W . We see how
these bases are related.

Theorem 5.3. For the universal form u, in the map Q p → W ∗ from Section 4.ii,
we have

g2 7→ x∗1 , g3 7→ x∗3 , g4 7→ x∗2 .

Proof. We compute the map in two steps. We first find the map

R0π∗(O/u(O(−2)⊕2))→ R1π∗(O(−2)⊕2/u(O(−4)))

and then the map

R1π∗(O(−2)⊕2/u(O(−4)))→ R2π∗(O(−4)).

We compute each of the individual maps by using the snake lemma on the Čech
complex with the usual affine cover of P2. The charts on pages 1085–1087, which
should be read from upper right to lower left, summarize the computation. �

6. Construction of the cubic resolvent

In Section 2, we have already given a geometric construction of a cubic algebra
from a binary cubic form. In Section 3, we defined the determinant of a double
ternary quadratic form p to be a binary cubic form det(p) ∈ Sym3 U∗ ⊗ (

∧2U ).
The cubic algebra C of this binary cubic form can be constructed as described in
Section 2, and is the desired cubic resolvent.

We have C/OS ∼= U (see [Wood 2011b, Section 3.1] for a similar, but simpler
argument to the one in Section 4.ii). Thus, p gives the required quadratic map
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from Q/OS to C/OS . The orientation isomorphism δ :
∧3 Q/OS

∼
→
∧2C/OS comes

from the orientation on the double ternary quadratic form. On any open set, we
can check that δ(x ∧ y ∧ xy) = p(x) ∧ p(y) by looking on a open subcover on
which W and U are trivial and pulling back from the universal form on each open
set in that subcover. It remains to check that δ(x ∧ y ∧ xy) = p(x)∧ p(y) when
p is the universal ternary quadratic form, which can be checked explicitly given
the multiplication table of Q p. In particular, at the end of the proof of the main
theorem in Section 7, we lay out a plan to determine the multiplication table of
Q p in terms of p. The result agrees with the multiplication table given explicitly
in [Bhargava 2004b, Equations (15) and (21)]. The expressions δ(x ∧ y ∧ xy) and
p(x) ∧ p(y) both represent linear maps from Sym2(Q p/OS)⊗ Sym2(Q p/OS) to∧4 Q p. Thus it suffices to check that these maps agree on a basis of global sections
of Sym2(Q p/OS)⊗Sym2(Q p/OS), since in this case Q p/OS is a free OS module.
This is easily checked, especially exploiting the symmetry of the situation.

7. Main theorem

In this section, we prove the main theorem of this paper.

Theorem 7.1. There is an isomorphism between the moduli stack for quartic al-
gebras with cubic resolvents and the moduli stack for double ternary quadratic
forms. In other words, for a scheme S there is an equivalence between the cate-
gory of quartic algebras with cubic resolvents and the category of double ternary
quadratic forms (with morphisms given by isomorphisms in both categories), and
this natural equivalence commutes with base change in S.

Proof. Given a double ternary quadratic form p over a base S, we have shown how
to construct a pair (Q p,C p), and all aspects of the construction commute with base
change in S. Given a pair (Q,C) over S, we can just take the quadratic map φ
from Q/OS to C/OS to be our double ternary quadratic form with W = (Q/OS)

∗

and U = C/OS (using the orientation
∧3 Q/OS

∼
→

∧2C/OS). This construction
clearly commutes with base change.

It remains to prove that the compositions of these two constructions (in either
order) are the identity. To prove this, we rigidify the moduli problems. A based
double ternary quadratic form is a ternary quadratic form p ∈ Sym2 W ⊗U and
a choice of bases w1, w2, w3 and u1, u2 for W and U respectively as free OS-
modules, such that (w1∧w2∧w3)⊗(u1∧u2) corresponds to the identity under the
orientation isomorphism. A based pair (Q,C) of a quadratic algebra and cubic
resolvent is a pair (Q,C) of quadratic algebra and cubic resolvent and choices
of basis q1, q2, q3 and c1, c2 for Q/OS and C/OS as free OS-modules, such that
(q1∧q2∧q3) corresponds to (c1∧ c2) under the orientation isomorphism. We see
that our constructions above extend to the moduli stacks for these rigidified moduli
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problems. In particular, we obtain a basis for Q/OS as a dual basis for the basis of
W and vice versa.

It now suffices to show that these constructions compose to the identity on the
rigidified moduli stacks. If we start with a double ternary quadratic form p ∈
Sym2 W ⊗U , we obtain a pair (Q,C) whose quadratic map is given exactly by
the form, and then the construction of a form from (Q,C) gives back exactly our
original form. The choices of bases for W and U and the orientation are clearly
preserved under this composition.

We can start with a based pair (Q,C), then build another based pair (Qφ,Cφ)
from the quadratic map φ of (Q,C), and we wish to show that (Q,C) and (Qφ,Cφ)
are equal. (We can use the notion of equal instead of isomorphic since all of the
objects are based.) We have that C and Cφ are both given as the cubic algebra
corresponding to Det(φ) and thus are equal. The quadratic resolvent maps are the
same, since φ carries through the two constructions. The orientation isomorphism
are clearly the same since they also carry through the constructions. It remains to
show that the multiplication on Q agrees with the multiplication on Qφ . To do
this, we will show that the condition δ(1∧ x ∧ y ∧ xy)= φ(x)∧φ(y) determines
the multiplication table on Q from the resolvent map φ. Since Q and Qφ have the
same resolvent map, this will show that they are isomorphic as OS-algebras.

Let the quadratic map φ be written as Ac2+ Bc1, where A=
∑

1≤i≤ j≤3 ai j xi x j

and B =
∑

1≤i≤ j≤3 bi j xi x j , and the xi are a dual basis for qi in Q/OS . We recall
the notation

λ
`1`2
`3`4
= a`1`2b`3`4 − b`1`2a`3`4 .

We lift the basis qi of Q/OS to a basis of Q uniquely so that q1q2 has no q1

or q2 term and so that q1q3 has no q1 term. Let mk
i j be the coefficient of qk in

the qi q j . From Equation (23) in [Bhargava 2004b], we know that the constant
coefficient of qi q j in given as a polynomial in the various m coefficients. Thus, it
remains to show that the mk

i j are determined by φ. We plug various x and y into
δ(1∧x∧y∧xy)=φ(x)∧φ(y). In the below, we always let i, j, k be a permutation
of 1, 2, 3 and let ± be the sign of this permutation. First, letting x = qi and y = q j

gives mk
i j = ±λ

j j
i i . Then, letting x = qi + q j and y = qi gives mk

ii = ±λ
i j
i i . Next,

letting x = qi + qk and y = q j gives mk
jk − mi

i j = ±λ
j j
ik . Using the choice of

lift, which gives m1
12 = m2

21 = m1
13 = 0, this determines all mi

i j . Finally, letting
x = qi +qk and y = qi +q j determines mi

i i in terms of the λ’s and the m’s that we
have already determined. �

Appendix A. Maps between locally free OS-modules

Let S be a scheme. In this appendix we will give several basic facts about maps
between locally free OS-modules.
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Lemma A.1. If L is a locally free OS-module and V is a locally free rank-n OS-
module, then Symk(V ⊗ L)∼= Symk V ⊗ L⊗k .

Proof. We have the canonical map

Symk(V ⊗ L) → Symk V ⊗Symk L ,
(v1⊗ `1) · · · (vk ⊗ `k) 7→ v1 · · · vk ⊗ `1 · · · `k,

which we can check is an isomorphism on free modules and thus is an isomorphism
on locally free modules. Moreover, we have that L⊗k ∼= Symk L . We have the
canonical quotient map L⊗k

→ Symk L , which is clearly an isomorphism for L
free of rank 1 and thus locally free of rank 1. �

Lemma A.2. If V is a locally free OS-module of rank 2 then V ⊗
∧2V ∗ ∼= V ∗.

Proof. We have

V ⊗
∧2V ∗ → V ∗,

v⊗ (V1 ∧V2) 7→ V1(v)V2−V2(v)V1.

We can define the canonical map which is an isomorphism for free and thus locally
free modules of rank 2. �

We combine these two lemmas to obtain a corollary that is used throughout this
paper.

Corollary A.3. If V is a locally free OS-module of rank 2 then

Sym3 V ⊗ (
∧2V )⊗−2 ∼= Sym3 V ∗⊗ (

∧2V ∗)⊗−1.

Lemma A.4. If V is a locally free OS-module, we have (Symn V )∗ ∼= Symn V ∗.

Proof. We give a map from Symn V ∗ to (Symn V )∗ as follows:

V1V2 · · ·Vn 7→
(
v1⊗ · · ·⊗ vn 7→ V1(v1)V2(v2) · · ·Vn(vn)

)
.

If we permute the Vi factors, we see the result does not change because the elements
of Symn V that we evaluate on are invariant with respect to this permutation. When
V is free, we can explicitly see that this map is an isomorphism. �

A.i. Degree-k maps. Let M and N be locally free OS-modules. A linear map from
M to R is equivalent to a global section of M∗. In other words, sections of M∗ are
the degree-1 functions on M . We define the degree-n functions on M as the global
sections of Symn M∗, symmetric polynomials in linear functions on M .

Definition. A degree-n map from M to N is a global section of

Symn M∗⊗ N ∼=Hom(Symn M, N ).
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Note that the identity map on Symn M gives a canonical degree-n map from M
to Symn M .

The language “degree-n map from M to N” suggests that we should be able to
evaluate such a thing on elements of M .

Definition. Let a degree-n map from M to N be given, and regarded as an element
f ∈Hom(Symn M, N ), the evaluation of f on an element of M is f (m⊗· · ·⊗m).

When M is free, say with generators m1, . . . ,mk and dual basis m1, . . .mk of
M∗, then we defined a degree-n map f from M to R to be a homogeneous poly-
nomial of degree-n in the m1, . . .mk . If we evaluate f on (c1m1+· · ·+ ckmk) for
arbitrary sections ci of OS , we will have a degree-n polynomial in the ci . Replacing
the ci in this polynomial by mi we obtain the homogeneous polynomial of degree
n in the m1, . . .mk which is the realization of f as an element of Symn M∗.

When M is free, we may have a non-linear map ρ : M → OS (or ρ : M → N ,
but we take N = OS for simplicity) and wish to realize it as the evaluation of a
degree-n map. We can consider ρ(c1m1+ · · · + ckmk) for arbitrary ci ∈ R and if
ρ(c1m1+· · ·+ckmk) is a degree-n polynomial in the ci , we have an f ∈ Symn M∗

(given by replacing the ci by mi ) of which ρ is the evaluation).
Since M is locally free, we locally have f ∈ Symn M∗ and see that the above

recipe is invariant under change of basis and so we have a global f ∈ Symn M∗ (as
long as everywhere locally where M is free ρ(c1m1 + · · · + ckmk) is a degree-n
polynomial in the ci ).

As an example, we explicitly realize the determinant as a distinguished element
of

Hom
(
Symn Hom(M, N ),Hom(

∧n M,
∧n N )

)
.

Let φ1⊗· · ·⊗φn ∈Hom(M, N )⊗n . Then we can map φ1⊗· · ·⊗φn to the element
of Hom(

∧n M,
∧n N )which sends m1∧· · ·∧mn to φ1(m1)∧· · ·∧φn(mn). This will

not be well-defined for φ1⊗· · ·⊗φn ∈Hom(M, N )⊗n , but it will be well-defined
when restricted to Symn Hom(M, N ).

Symn Hom(M, N ) → Hom
(∧n M,

∧n N
)
,

φ1⊗ · · ·⊗φn 7→
(
m1 ∧ · · · ∧mn 7→ φ1(m1)∧ · · · ∧φn(mn)

)
.

(3)

This is our realization of the determinant function (as opposed to the determinant
of a specific homomorphism) as an element of

Hom
(
Symn Hom(M, N ),Hom(

∧n M,
∧n N )

)
.

When we evaluate the determinant on a map φ ∈ Hom(M, N ), we have φ(m1)∧

· · ·∧φ(mn). For example, let N and M be free of rank 2. Evaluating our degree-2
determinant map on a generic element of Hom(M, N ) that sends m1 to an1+ cn2
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and m2 to bn1+dn2, we see that we obtain the element of Hom(
∧2 M,

∧2 N ) that
sends m1 ∧m2 to (an1+ cn2)∧ (bn1+ dn2)= (ad − bc)n1 ∧ n2.

A.ii. Degree-k maps with coefficients. Recall that we have defined a degree-k
map from a locally free OS-module M to a locally free OS-module V to be a linear
map from Symk M to V . This is equivalent to a global section of Symk M∗⊗V . We
use the following proposition to show that we can “add coefficients” to a degree-k
map.

Proposition A.5. In the natural map

Symk(M ⊗ N )→ M⊗k
⊗Symk N ,

the image of Symk(M ⊗ N ) is inside Symk M ⊗Symk N .

Proof. We prove this proposition by checking the statement locally where the
modules are free. If we symmetrize a pure tensor of basis elements in (M⊗N )⊗k ,
we see that when we forget the terms from N we still obtain an element of Symk M .
Since all of the terms in the symmetrization will have the same factor in Symk N ,
this completes the proof. �

Thus, given a degree-k map from M to V , we naturally obtain a degree-k map
from M⊗N to V⊗Symk N (by composing Symk(M⊗N )→Symk M⊗Symk N→
V ⊗ Symk N ). We call this construction using V as coefficients, because it is as if
we treat the elements of V as formal ring elements.

Appendix B. Inherited algebra structure

Let X be a scheme. A multiplication on a chain complex C of OX -modules is
given by a map C ⊗ C → C . (See [Weibel 1994, 2.7.1] for the definition of the
tensor product of two chain complexes.) Associativity and commutativity of the
multiplication are given by the commutativity of the expected diagrams built out
of the multiplication map. A unit is given by a map OX → C that satisfies the
expected properties with respect to the multiplication.

If π : X→ Y is a morphism of schemes, such a multiplication on C is inherited
by Rπ∗C in the derived category of Y . To be more precise, we let Q be the
localization functor that maps complexes of OX -modules to the associated objects
in the derived category of X . From the universal property of the derived tensor
(see, [Weibel 1994, 10.5.1], for instance), we have a morphism

Q(C)⊗ Q(C)→ Q(C ⊗C), (4)

where the ⊗ of the left side denotes the total tensor in the derived category (see
[Weibel 1994, 10.6] or [Hartshorne 1966, II.4]). From Equation (4) composed with
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Q(C⊗C)→ Q(C) from the multiplication map, we see that the multiplication on
C is inherited by Q(C) in the derived category of X .

Next we see there is a map

Rπ∗Q(C)⊗ Rπ∗Q(C)→ Rπ∗(Q(C)⊗ Q(C)) (5)

which can be obtained from the morphism Rπ∗Q(C)⊗Rπ∗Q(C)→ Rπ∗(Q(C)⊗
Lπ∗Rπ∗Q(C)) of the projection formula (see [Weibel 1994, 10.8.1] [Hartshorne
1966, II.5.6]) and the morphism Lπ∗Rπ∗Q(C) → Q(C) that comes from the
adjointness of Lπ∗ and Rπ∗ and the identity map Rπ∗→ Rπ∗; see [Weibel 1994,
10.7.1; Hartshorne 1966, II.5.10, II.5.11]. Thus the multiplication is inherited by
Rπ∗Q(C). Finally, the natural map

H 0(Rπ∗Q(C))⊗ H 0(Rπ∗Q(C))→ H 0(Rπ∗Q(C)⊗ Rπ∗Q(C)) (6)

shows how the multiplication is inherited by H 0(Rπ∗Q(C)). If the original mul-
tiplication on C is associative and commutative, one can follow the diagrams to
see that the inherited multiplication on H 0(Rπ∗Q(C)) will also be associative and
commutative. Moreover, if we have a unit OX →C , and π∗OX = OY , then one can
similarly follow diagrams to see that the inherited map OY = H 0(Rπ∗Q(OX ))→

H 0(Rπ∗Q(C)) is a unit. Thus if C has a commutative, associative multiplication
and a unit and π∗OX = OY , then H 0(Rπ∗Q(C)) in an OY -algebra.
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Coleman maps and the p-adic regulator
Antonio Lei, David Loeffler and Sarah Livia Zerbes

We study the Coleman maps for a crystalline representation V with non-negative
Hodge–Tate weights via Perrin-Riou’s p-adic “regulator” or “expanded loga-
rithm” map LV . Denote by H(0) the algebra of Qp-valued distributions on
0 = Gal(Qp(µp∞)/Qp). Our first result determines the H(0)-elementary divi-
sors of the quotient of Dcris(V )⊗(B+rig,Qp

)ψ=0 by the H(0)-submodule generated
by (ϕ∗N(V ))ψ=0, where N(V ) is the Wach module of V . By comparing the
determinant of this map with that of LV (which can be computed via Perrin-
Riou’s explicit reciprocity law), we obtain a precise description of the images
of the Coleman maps. In the case when V arises from a modular form, we
get some stronger results about the integral Coleman maps, and we can remove
many technical assumptions that were required in our previous work in order
to reformulate Kato’s main conjecture in terms of cotorsion Selmer groups and
bounded p-adic L-functions.
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3. The construction of Coleman maps 1116
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5. The Coleman maps for modular forms 1125
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1. Introduction

1A. Background. Let p be an odd prime, and write Q∞ = Q(µp∞). Define the
Galois groups 0=Gal(Q∞/Q) and 01=Gal(Q∞/Q(µp)). Note that 0∼=1×01,
where 1 is cyclic of order p− 1 and 01 ∼= Zp. For H ∈ {0,01}, denote by 3(H)
the Iwasawa algebra of H , and 3Qp(H)=3(H)⊗Zp Qp.

The authors’ research is supported by the following grants: ARC grant DP1092496 (Lei); EPSRC
postdoctoral fellowship EP/F04304X/1 (Loeffler); EPSRC postdoctoral fellowship EP/F043007/1
(Zerbes).
MSC2010: primary 11R23; secondary 11F80, 11S25.
Keywords: p-adic regulator, Wach module, Selmer groups of modular forms.
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Let V be a crystalline representation of GQp of dimension d with non-negative
Hodge–Tate weights. (We adopt the convention that the cyclotomic character has
Hodge–Tate weight 1, so this condition is equivalent to Fil1 Dcris(V ) = 0.) We
define

H 1
Iw(Qp, V ) :=Qp⊗Zp lim

←−
n

H 1(Q(µpn ), T ),

where T is a GQp -stable Zp-lattice in V . This is a 3Qp(0)-module independent of
the choice of T . In [Lei et al. 2010], we construct 3(0)-homomorphisms (called
the Coleman maps)

Coli : H
1
Iw(Qp, V )−→3Qp(0)

for i = 1, . . . , d , depending on a choice of basis of the Wach module N(V ). In the
case when V = V f (k − 1), where f =

∑
anqn is a modular eigenform of weight

k ≥ 2 and level coprime to p (we assume that an ∈Q for the time being in order to
simplify notation) and V f is the 2-dimensional p-adic representation associated to
f by Deligne, these maps have two important applications. Firstly, we can define
two p-adic L-functions L p,1, L p,2 ∈ 3Qp(0) on applying the Coleman maps to
the localisation of the Kato zeta element as constructed in [Kato 2004]. In the
supersingular case, i.e., when p | ap, this enables us to obtain a decomposition of
the p-adic L-functions defined in [Amice and Vélu 1975], which are not elements
of 3Qp(0) but of the distribution algebra H(0). More precisely, we show that
there exists a 2×2 matrix M∈ M(2,H(01)) depending only on k and ap such that(

L p,α

L p,β

)
=M

(
L p,1

L p,2

)
.

This generalises the results of [Pollack 2003] (when ap = 0) and [Sprung 2009]
(when f corresponds to an elliptic curve over Q and p = 3). Secondly, by mod-
ifying the local conditions at p in the definition of the p-Selmer group using the
kernels of the maps Coli , we define two new Selmer groups Selip( f/Q∞). These
are both 3(0)-cotorsion, which is not true of the usual Selmer group in the super-
singular case.

Fixing a character η of 1 and restricting to the η-isotypical component, we get
maps

Colηi : H
1
Iw(Qp, V )η→3Qp(01).

Via the Poitou-Tate exact sequence, we can reformulate Kato’s main conjecture
(after tensoring with Qp) as follows:

Conjecture 1.1. For i = 1, 2, and each character η of 1,

Char3Qp (01)

(
Qp⊗Zp Selip( f/Q∞)η,∨

)
= Char3Qp (01)

(
Im(Colηi )/(L

η

p,i )
)
,
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where M∨ denotes the Pontryagin dual of a 3(01)-module M and Char3Qp (01) M
denotes the 3Qp(01)-characteristic ideal of M.

When vp(ap) is sufficiently large, we make use of the basis of N(V ) constructed
in [Berger et al. 2004] to show that the first Coleman map is surjective under
some additional technical conditions. Therefore, we can rewrite Conjecture 1.1
as follows (see [Lei et al. 2010, Corollary 6.6]):

Theorem 1.2. Under certain technical conditions, the case i = 1 in Conjecture 1.1
is equivalent to the assertion that Char3Qp (01)

(
Qp ⊗Zp Sel1p( f/Q∞)η,∨

)
is gener-

ated by Lηp,1.

(In fact we can show that this equivalence holds integrally, i.e., without tensoring
with Qp.)

1B. Main results. In this paper, we extend the above results in several ways. Let
V be a crystalline representation of GQp of dimension d with non-negative Hodge–
Tate weights. We make the following assumption:

Assumption 1.3. The representation V admits at least one non-critical refinement,
after a suitable extension of coefficients.

See Section 1C5 below for the definition of a non-critical refinement. For now,
let it suffice to say that this assumption holds for all 2-dimensional representations,
and conjecturally for all representations “arising from geometry”.

We identify 3(01) with the power series ring Zp[[X ]], where X = γ − 1 for a
topological generator γ of 01. Denote by χ : GQp→ Z×p the cyclotomic character.

Firstly, we study the structure of Nrig(V ) :=N(V )⊗B+
Qp

B+rig,Qp
as a 0-module.

If ϕ∗Nrig(V ) denotes the B+rig,Qp
-span of ϕ(Nrig(V )), then (ϕ∗Nrig(V ))ψ=0 is con-

tained in (B+rig,Qp
)ψ=0
⊗Qp Dcris(V ), and both are free H(0)-modules of rank equal

to d = dimQp V . We determine the elementary divisors of the quotient of these
modules:

Theorem A (Theorem 2.10). The H(0)-elementary divisors of the quotient

Dcris(V )⊗Qp H(0)/(ϕ∗Nrig(V ))ψ=0

are nr1, . . . , nrd , where r1, . . . , rd are the Hodge–Tate weights of V and

nk =
log(1+ X)

X
· · ·

log(χ(γ )1−k(1+ X))
X −χ(γ )k−1+ 1

.

This can be seen as a H(0)-module analogue of [Berger 2004, Proposition
III.2.1], which states that the B+rig,Qp

-elementary divisors of the quotient

(B+rig,Qp
⊗Qp Dcris(V ))/Nrig(V )
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are
( t
π

)r1
, . . . ,

( t
π

)rd . It is striking to note that for any k ≥ 0, the Mellin transform
of nk agrees with (1+π)ϕ

( t
π

)k up to a unit in B+rig,Qp
(see Proposition 1.6).

The second aim of this paper is to use Theorem A to determine the image of the
map

1−ϕ : Nrig(V )ψ=1
→ (ϕ∗Nrig(V ))ψ=0.

To do this, we make use of the following commutative diagram of H(0)-modules:

N(V )ψ=1
∼=

h1
Iw,V

//

1−ϕ
��

H 1
Iw(V )

LV

��

(ϕ∗Nrig(V ))ψ=0
� _

��
Dcris(V )⊗Qp (B

+

rig,Qp
)ψ=01⊗M−1

// Dcris(V )⊗Qp H(0).

Here the map LV is Perrin-Riou’s “regulator” or “expanded logarithm” map (see
[Perrin-Riou 1995]), which is a dual version of the more familiar exponential maps
�V,h appearing in [Perrin-Riou 1994]; and

M :H(0)
∼=
−→ (B+rig,Qp

)ψ=0

denotes the Mellin transform. The commutativity of the diagram is a theorem of
Berger [2003, Theorem II.13]. Colmez’s proof of the “δV -conjecture” (see [Colmez
1998, Theorem IX.4.4]), which is part of Perrin-Riou’s explicit reciprocity law,
gives a formula for the determinant of the matrix of LV (up to units). We can
compare this with the determinant of the bottom left-hand map, which follows from
Theorem A, to deduce that 1−ϕ :Nrig(V )ψ=1

→ (ϕ∗Nrig(V ))ψ=0 is surjective up
to a small error term:

Theorem B (Corollary 4.13). Suppose that no eigenvalue of ϕ on Dcris(V ) lies in
pZ. Then for each character η of 1, there is a short exact sequence of H(01)-
modules

0−→ N(V )ψ=1,η 1−ϕ
−→ (ϕ∗N(V ))ψ=0,η Aη

−→

rd−1⊕
i=0

(Dcris(V )/Vi,η)(χ
iχ−i

0 η)−→ 0.

Here Vi,η is a subspace of Dcris(V ) of the same dimension as Fil−i Dcris(V ), and
the map Aη is the composition of the inclusion of (ϕ∗Nrig(V ))ψ=0 in Dcris(V )⊗Qp

H(0)with the map
⊕

i (id⊗Aη,i ), where Aη,i is the natural reduction map H(0)→

Qp(χ
iχ−i

0 η) obtained by quotienting out by the ideal (X + 1−χ(γ )i ) · eη.
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Using this we can describe the images of the Coleman maps (for any choice of
basis of N(V )):

Theorem C (Corollary 4.15). Let η be any character of 1. Then for all 1≤ i ≤ d ,

Im(Colηi )=
∏
j∈I ηi

(X −χ(γ ) j
+ 1)3Qp(01)

for some I ηi ⊂ {0, . . . , rd − 1}.

As a corollary of the proof, we also obtain a formula for the elementary divisors
of the matrix of the map LV , which can be seen as a refinement of the statement
of the δ(V )-conjecture. For i ∈ Z, define

`i =
log(1+ X)
logp(χ(γ ))

− i.

Theorem D (Theorem 4.16). The elementary divisors of the H(0)-module quo-
tient

H(0)⊗Qp Dcris(V )
H(0)⊗3Qp (0)

Im(LV )

are [λr1; λr2; . . . ; λrd ], where λk = `0`1 . . . `k−1.

Suppose now that V = V f (k− 1), where f =
∑

ane2π inz is a modular form of
weight k ≥ 2 and level prime to p, and V f is the 2-dimensional p-adic represen-
tation associated to f by Deligne. (Thus the Hodge–Tate weights of V f are 0 and
1−k, and those of V are 0 and k−1.) As we show in Section 1C5, Assumption 1.3
is automatically satisfied in this case, since V is 2-dimensional. In this case, we
can refine the results above to study the integral structure of the Coleman maps.
Let T f be a GQp -stable lattice in V f , and let us assume that the B+

Qp
-basis of N(V f )

used to define the Coleman maps is in fact an A+
Qp

-basis of N(T f ).

Theorem E (Theorem 5.10). For i = 1, 2 and for each character η of1, the image
of H 1

Iw(Qp, T f )
η under Colηi is a submodule of finite index of the module( ∏

j∈I ηi

(X −χ(γ ) j
+ 1)

)
3(01)

for some subset I ηi ⊂ {0, . . . , k − 2}. Moreover, for each η the sets I η1 and I η2 are
disjoint.

This theorem generalises [Kurihara and Pollack 2007, Proposition 1.2], which
determines the images of

(
Col11 ,Col12

)
for elliptic curves with ap = 0. As a con-

sequence of Theorem E, we can rewrite Conjecture 1.1 as below, without making
any technical assumptions.
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Theorem F. For i = 1, 2, Conjecture 1.1 is equivalent to the assertion that for
each η the characteristic ideal Char3Qp (01)

(
Qp⊗Zp Selip( f/Q∞)η,∨

)
is generated

by Lηp,i/
∏

j∈I ηi
(X −χ(γ ) j

+ 1) where I ηi is as given by Theorem E.

Finally, we explain in Section 5C how it is possible to choose a basis in such a
way that I η1 = I η2 =∅, i.e., the modules 3(01)/ Im(Colηi ) are pseudo-null for both
i = 1 and 2.

Remark 1.4. The local results in this paper (Theorems A, B, C and D) hold with
representations of GQp replaced by representations of GF for an arbitrary finite
unramified extension F/Qp, with essentially the same proofs. We have chosen
to work over Qp for the sake of simplicity, since this is all that is needed for
applications to modular forms.

In [Loeffler and Zerbes 2012], these methods are applied to the study of the
“critical-slope” L-function attached to an ordinary modular form (corresponding
to the non-unit Frobenius eigenvalue).

1C. Setup and notation.

1C1. Fontaine rings. We review the definitions of the Fontaine rings we use in
this paper. Details can be found in [Berger 2004] or [Lei et al. 2010].

Throughout this paper, p is an odd prime. If K is a number field or a local
field of characteristic 0, then G K denotes its absolute Galois group and OK the
ring of integers of K . We write 0 for the Galois group Gal(Q(µp∞)/Q), which
we identify with Z×p via the cyclotomic character χ . Then 0 ∼= 1×01, where 1
is of order p− 1 and 01 ∼= Zp. We fix a topological generator γ of 01.

We write B+rig,Qp
for the ring of power series f (π) ∈ Qp[[π ]] such that f (X)

converges everywhere on the open unit p-adic disc. Equip B+rig,Qp
with actions of

0 and a Frobenius operator ϕ by g.π = (π + 1)χ(g)− 1 and ϕ(π)= (π + 1)p
− 1.

We can then define a left inverse ψ of ϕ satisfying

ϕ ◦ψ( f (π))=
1
p

∑
ζ p=1

f (ζ(1+π)− 1).

Inside B+rig,Qp
, we have subrings A+

Qp
= Zp[[π ]] and B+

Qp
=Qp⊗Zp A+

Qp
. More-

over, the actions of ϕ, ψ and 0 preserve these subrings. Finally, we write t =
log(1+ π) ∈ B+rig,Qp

and q = ϕ(π)/π ∈ A+
Qp

. A formal power series calculation
shows that g(t)= χ(g)t for g ∈ 0 and ϕ(t)= pt .

1C2. Iwasawa algebras and power series. Given a finite extension K of Qp, de-
note by 3OK (0) (respectively 3OK (01)) the Iwasawa algebra Zp[[0]] ⊗Zp OK (re-
spectively Zp[[01]]⊗Zp OK ) over OK . We further write 3K (0)=Q⊗3OK (0) and
3K (01)=Q⊗3OK (01). If M is a finitely generated torsion 3OK (01)-module, we
write Char3OK (01)(M) for its characteristic ideal.
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Let H(0) be the space of distributions on 0 (the continuous dual of the space
of locally analytic functions on 0), with the ring structure defined by convolution.
We may identify this with the space of formal power series

{ f ∈Qp[1][[X ]] : f converges everywhere on the open unit p-adic disc},

where X corresponds to γ −1. We may identify 3Qp(0) with the subring of H(0)

consisting of power series with bounded coefficients.
The action of 0 on B+rig,Qp

gives an isomorphism of H(0) with (B+rig,Qp
)ψ=0,

the Mellin transform

M :H(0)→ (B+rig,Qp
)ψ=0

f (γ − 1) 7→ f (γ − 1) · (π + 1).

In particular, 3Zp(0) corresponds to (A+
Qp
)ψ=0 under M. Similarly, we define

H(01) as the subring of H(0) defined by power series over Qp, rather than Qp[1].
Then, H(01) corresponds to (1 + π)ϕ(B+rig,Qp

) under M, and 3Zp(01) to (1 +
π)ϕ(A+

Qp
). (See [Perrin-Riou 2001, B.2.8] for more details.)

If d is an integer and S is a 3K (01)-submodule of K ⊗Qp H(01)
⊕d which is

free of rank d, we write det(S) for the determinant of any basis of S, which is
well-defined up to multiplication by a unit of 3K (01). If F is a homomorphism
of 3K (01)-modules whose image is a free rank d 3K (01)-submodule of K ⊗Qp

H(01)
⊕d , we write det(F) for det(Im(F)).

For an integer i , define

`i =
log(1+ X)
logp(χ(γ ))

− i

δi =
`i

X + 1−χ(γ )i

 ∈H(01).

Note that `i is independent of the choice of generator γ (hence the choice of nor-
malising factor), but δi is not.

Remark 1.5. Note that for any positive integer k, we have

nk = akδk−1 . . . δ0,

where ak = log(χ(γ ))k ∈ Zp is nonzero.

The following result slightly refines [Berger 2003, Lemma II.2].
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Proposition 1.6. For any k ≥ 0, we have

M(`k−1 . . . `0H(0))= (tkB+rig,Qp
)ψ=0

M(δk−1 . . . δ0H(0))=

((
t

ϕ(π)

)k
B+rig,Qp

)ψ=0

.

Proof. One checks easily that `i acts on B+rig,Qp
as the differential operator

(1+π)t
d

dπ
− i,

and hence

` j (t j f )= t j+1(1+π)
d f
dπ
.

Since (1 + π) d
dπ is an isomorphism on (B+rig,Qp

)ψ=0 (it is the map on distribu-
tions dual to the map f (x) 7→ x f (x) on functions), it follows that each ` j maps
(t j B+rig,Qp

)ψ=0 bijectively onto (t j+1B+rig,Qp
)ψ=0.

To prove a similar statement for the δi , we note that

(B+rig,Qp
/ϕ(π)B+rig,Qp

)ψ=0

is isomorphic to Qp[1] as a 0-module. Since t is a uniformiser of the ideal ϕ(π),
we have

(ϕ(π) j B+rig,Qp
/ϕ(π) j+1B+rig,Qp

)ψ=0
= (t j B+rig,Qp

/t jϕ(π)B+rig,Qp
)ψ=0 ∼=Qp[1]( j)

as a 0-module. Hence its annihilator is X+1−χ(γ ) j . These factors are mutually
coprime and coprime to δ0 . . . δk−1, and the product is `0 . . . `k−1, so the result
follows. �

1C3. Isotypical components. Let η : 1 → Z×p be a character. We write eη =
(p− 1)−1∑

σ∈1 η
−1(σ )σ . If M is a 3E(0)-module, its η-isotypical component

is given by Mη
= eηM . When η = 1, we write M1 in place of Mη.

We identify3E(01)with the power series in X=γ−1 with bounded coefficients
in E . Given

F =
∑

σ∈1,n≥0

aσ,nσ(γ − 1)n ∈3(0),

we write Fη = eηF for its image in 3E(0)
η. In particular,

Fη = eη
∑
n≥0

(∑
σ∈1

aσ,nη(σ )
)
(γ − 1)n ∈ eη3E(01).

Therefore, we can identify Fη with a power series in X = γ − 1. Under this
identification, the value Fη|X=χ(γ ) j−1 is given by χ jχ

− j
0 η(F) where χ0= χ |1 for

all j ∈ Z.
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1C4. Crystalline representations. Let E and F be finite extensions of Qp. Let V
be a crystalline E-linear representation of GQp . We denote the Dieudonné module
of V by Dcris(V ). If j ∈ Z, Fil j Dcris(V ) denotes the j th step in the de Rham
filtration of Dcris(V ). We say V is positive if Dcris(V ) = Fil0 Dcris(V ) (following
the standard, but unfortunate, convention that positive representations are precisely
those with non-positive Hodge–Tate weights).

The (ϕ, 0)-module of V is denoted by D(V ). As shown by Fontaine (unpub-
lished; for a reference see [Cherbonnier and Colmez 1999, Section II]), we have a
canonical isomorphism of 3E(0)-modules

h1
Iw,V : D(V )

ψ=1
→ H 1

Iw(Qp, V ).

We write expF,V : F ⊗ Dcris(V ) → H 1(F, V ) for the Bloch–Kato exponential
over F .

For an integer j , V ( j) denotes the j th Tate twist of V , i.e., V ( j) = V ⊗ Ee j

where GQp acts on e j via χ j . We have

Dcris(V ( j))= t− j Dcris(V )⊗ e j .

For any v ∈ Dcris(V ), v j = t− jv⊗ e j denotes its image in Dcris(V ( j)).
If h ≥ 1 is an integer such that Fil−h Dcris(V )=Dcris(V ), we write �V,h for the

Perrin-Riou exponential as defined in [Perrin-Riou 1994].
Let T be an OE -lattice in V which is stable under GQp . We denote the Wach

module of V (respectively T ) by N(V ) (respectively N(T )), a free module of rank
d over B+

Qp
(respectively A+

Qp
). Recall that 0 acts on both of these objects, and

there is a map ϕ : N(T )[π−1
] → N(T )[ϕ(π)−1

], preserving N(T ) if T is positive
(and similarly for V ).

For any j ∈Z we can identify N(T ( j))with π− j N(T )⊗e j , where e j is as above.
Given an R-module M with an action of ϕ and a submodule N , ϕ∗N denotes the
R-submodule of M generated by ϕ(N ), e.g., ϕ∗N(T ) denotes the A+

Qp
-submodule

of N(T )[π−1
] generated by ϕ(N(T )). Finally, we write

Nrig(V )= N(V )⊗B+
Qp

B+rig,Qp
.

The following lemma is implicit in the calculations of [Lei et al. 2010, §3], but
for the convenience of the reader we give a separate proof:

Lemma 1.7. If the Hodge–Tate weights of V are ≥ 0, then we have

N(T )⊆ ϕ∗N(T )

and similarly for N(V ).

Proof. It suffices to prove the result for T . Suppose that the Hodge–Tate weights
of V are in [0,m]. Then N(T ) = π−mN(T (−m)). Since T (−m) is positive, ϕ
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preserves N(T (−m)) and N(T (−m))/ϕ∗N(T (−m)) is killed by qm [Berger 2004,
proof of Theorem III.3.1]. Equivalently, we have

qm
·πmN(T )⊆ ϕ∗(πmN(T ))= ϕ(π)mϕ∗N(T ).

Since q = ϕ(π)/π , the result follows. �

1C5. Refinements of crystalline representations. Let V be an E-linear crystalline
representation of GQp of dimension d , and let s1 ≤ · · · ≤ sd be the jumps in the
filtration of Dcris(V ), so the Hodge–Tate weights are −si . If Y is an E-linear
subspace of Dcris(V ) of dimension e ≤ d, we say Y is in general position (with
respect to the Hodge filtration) if the intersections Fil j Y = Y ∩Fil j Dcris(V ) have
the smallest possible dimension; that is,

dim Fil j Y =
{

dim Fil j Dcris(V )− d + e if dim Fil j V ≥ d − e,
0 otherwise.

This is equivalent to the requirement that the jumps of the filtration Fil j Y are
s1, . . . , se.

As in [Bellaïche and Chenevier 2009, §2.4.1], we define a refinement of V to
be a family Y = (Yi )

d
i=1 of E-linear subspaces of Dcris(V ) stable under ϕ, with

0 ( Y1 ( · · · ( Yd = Dcris(V ), so dimE Yi = i . It is clear that refinements exist if
and only if the eigenvalues of ϕ on Dcris(V ) lie in E .

We say that the refinement is non-critical if each of the subspaces Yi is in general
position, or equivalently if Yi ∩Filsi+1 Dcris(V )= 0 for all i .

(If the Hodge–Tate weights of V are distinct, as Bellaïche and Chenevier assume,
then this is equivalent to the assertion that Dcris(V )= Yi⊕Filsi+1 Dcris(V ) for each
i , which coincides with Definition 2.4.5 of [op. cit.]).

Proposition 1.8. If the eigenvalues of Frobenius on Dcris(V ) lie in E , and either
d = 2 or ϕ acts semisimply on Dcris(V ), then there exists a non-critical refinement
of V .

Proof. As noted in [Bellaïche and Chenevier 2009, Remark 2.4.6(iii)], the case
where ϕ acts semisimply is obvious: any basis of eigenvectors of Dcris(V ) defines
d! refinements, one for each ordering of the basis vectors, and it is easy to see that
we can choose an ordering such that the resulting refinement is non-critical. Hence
let us assume that V is 2-dimensional and ϕ acts non-semisimply on Dcris(V ). Thus
Dcris(V ) has a basis (e1, e2) such that ϕ(e1)=αe1 and ϕ(e2)= e1+α(e2), for some
α ∈ E×. By twisting, we may assume that the jumps in the Hodge filtration are 0
and s with s ≥ 0. Let N be the valuation of α; the Newton and Hodge numbers of
Dcris(V ) are tH = s and tN = 2N , so we have s = 2N by weak admissibility.

The unique possible refinement is given by Y1 = Ee1, and this is non-critical
unless s > 0 and Fil1 Dcris(V )= Y1. If this is the case, then the Newton and Hodge
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numbers of Y1 are respectively tH (Y1)= s and tN (Y1)= N , and since s = 2N > N
this contradicts the weak admissibility of Dcris(V ). �

Remark 1.9. (1) It is shown in [Milne 1994] that the Tate conjecture implies
the semisimplicity of ϕ on the crystalline cohomology groups of any smooth
projective variety over Fp (or, more generally, on the crystalline realisation of
any motive over Fp); so the hypotheses of the proposition conjecturally hold
for all crystalline representations “arising from geometry”.

(2) For representations of dimension ≥ 3 with non-semisimple Frobenius there
may be no non-critical refinements, as the following counterexample shows.
Let D =Q3

p with its standard basis e1, e2, e3, and let ϕ : D→ D be given by
the matrix α 1 0

0 α 1
0 0 α

 ,
where α ∈Zp has valuation 1. We define a filtration on D with jumps {0, 1, 2}
by Fil0(D) = D, Fil1 D = Qpe1 +Qpe3, Fil2 D = Qpe3, Fil3 D = 0. Then
the only ϕ-stable submodules are Y0 = 0, Y1 =Qpe1, and Y2 =Qpe1+Qpe2

and Y3 = D. The Hodge and Newton numbers are given by

i tH (Yi ) tN (Yi )

1 1 1
2 1 2
3 3 3

so D is a weakly admissible filtered ϕ-module; and the unique refinement of
D is (Yi )i=0,...,3, but Y1 is not in general position.

1C6. Modular forms. Let f (z) =
∑

ane2π inz be a normalised new eigenform of
weight k≥2, level N and nebentypus ε. Write F f =Q(an :n≥1) for its coefficient
field. Let

f̄ (z)=
∑

āne2π inz

be the dual form to f , which also has coefficients in F f . We assume that p - N
and ap is not a p-adic unit, so f is supersingular at p.

Remark 1.10. We make this assumption in order to save ourselves from doing the
same calculations twice in Section 5; they easily generalise to the ordinary case.

We fix a prime of F f above p. We denote the completion of F f at this prime
by E and fix a uniformiser $E . We write V f for the 2-dimensional E-linear rep-
resentation of GQ associated to f from [Deligne 1971]. We fix an OE -lattice T f
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stable under GQ, which determines a lattice T f̄ of V f̄ . When restricted to GQp , V f

is crystalline and its de Rham filtration is given by

dimE Fili Dcris(V f )=


2 if i ≤ 0,
1 if 1≤ i ≤ k− 1,
0 if i ≥ k.

The action of ϕ on Dcris(V f ) satisfies ϕ2
− apϕ + ε(p)pk−1

= 0. Let us choose
a “good basis” ν1, ν2 of Dcris(V f ) as in [Lei et al. 2010, §3.3]; that is, ν1 spans
Fil1 Dcris(V f ) and ν2 = p1−kϕ(ν1). We also choose a basis ν̄1, ν̄2 of Dcris(V f̄ )

in the same way. The isomorphism V f̄ = V ∗f (1− k) gives a pairing Dcris(V f )×

Dcris(V f̄ )→ Dcris(E(1− k)) = E · tk−1e1−k ∼= E . As noted in [Lei et al. 2010,
§3.4], we have [ν1, ν̄1] = [ν2, ν̄2] = 0 and [ν2, ν̄1] =−[ν1, ν̄2], and (by scaling) we
may assume without loss of generality that [ν1, ν̄2] = 1.

Unless otherwise stated, we always assume that the eigenvalues of ϕ on Dcris(V f )

are not integral powers of p and the nebentypus of f is trivial. Our assumption on
the eigenvalues of ϕ allows us to define the Perrin-Riou pairing

Li = L1,(1+π)⊗νi,1 : H
1
Iw(Qp, V f̄ (k− 1))→H(0)

for i = 1, 2 where we have identified V f (1)∗(1) with V f̄ (k − 1) (see [Lei 2011,
Section 3.2] or [Lei et al. 2010, Section 3.3] for details).

1C7. Adequate rings and elementary divisors. Let R be a commutative integral
domain with identity, such that the following conditions hold:

• All finitely generated ideals in R are principal (i.e., R is a Bézout domain).

• R is adequate; i.e., for any a, b∈ R with a 6= 0, we may write a= a1a2, where
(a1, b)= (1) and (d, b) 6= (1) for every non-unit divisor d of a2.

Then R is an elementary divisor ring. That is, let M ⊆ N be finitely generated
R-modules such that N ∼= Rd . Then there exists a R-basis n1, . . . , nd of N and
r1, . . . , rd ∈ R (unique up to units of R) such that r1 | · · · | rd and r1n1, . . . , rene,
where e is the largest integer such that re 6=0, form a R-basis of M . In particular, we
have det(M)= r1 . . . rd . In this case, we write [N :M] = [N :M]R = [r1; · · · ; rd ].
When d = 1, we simply write [N : M] = r1.

If Q is an arbitrary finitely presented R-module, then we may write Q as a
quotient N/M where N is a free module of finite rank and M is a finitely generated
submodule of N , so the elementary divisors [N : M]R are defined. It is easy to
check that these are independent of the choice of presentation of Q, and we define
these to be the elementary divisors of Q.

As explained in [Berger 2002, §4.2], B+rig,Qp
is an adequate Bézout domain and

hence an elementary divisor ring. The same is true of E ⊗Qp B+rig,Qp
for any finite



Coleman maps and the p-adic regulator 1107

extension E of Qp, and of H(01) (which is isomorphic to B+rig,Qp
as an abstract

ring).
We will need the following lemma; see [Lang 2002, Lemma III.7.6].

Lemma 1.11. Let R be an adequate Bézout domain, M a finitely presented R-
module, and N a submodule of M. Suppose that there is some a ∈ R such that
N ∼= R/a and aM = 0. Then M ∼= N ⊕M/N.

Proof. Let q1, . . . , qr be a set of generators for M/N , with annihilators ai , giving
an isomorphism M/N ∼= ⊕r

i=1 R/ai . Since aM = 0, each ai divides a. Let pi be
an arbitrary lift of qi ; then ai pi ∈ N , so ai pi = bi p0 where p0 is a generator of N
and bi ∈ R/a R. Since aM = 0, we have 0= (a/ai )ai pi = (a/ai )bi p0.

Then we must have (a/ai )bi ∈a R, so abi ∈aai R. Since R is an integral domain,
we must have ai | bi , and we may write bi = ai ci . Thus p′i = pi − ci p0 is a lift of
pi such that ai p′i = ai pi − ai ci p0 = ai pi − bi p0 = 0. It follows that the subgroup
generated by the p′i maps bijectively to M/N , giving the required splitting. �

A straightforward induction gives the following generalisation:

Corollary 1.12. If M is an R-module with a filtration by submodules 0 = M0 ⊆

M1 ⊆ · · · ⊆ Md = M , and there are elements a1, . . . , ad ∈ R such that for each
i = 1, . . . , d we have Mi/Mi−1 ∼= R/ai and ai M ⊆ Mi−1, then M ∼=

⊕d
i=1 R/ai .

The ring H(0) is not a domain; but it is equal to the direct sum of its subrings
eηH(0), where eη is the idempotent in Qp[1] corresponding to the character η :
1 → Q×p as above. Each of these subrings is isomorphic to H(01), and hence
admits a theory of elementary divisors. If M is a submodule of H(0)⊕d , we define
the i th elementary divisor of M to be

∑
η eηa

η

i , where aηi is the i th elementary
divisor of the submodule Mη

= eηM ⊆ eηH(0) considered as a H(01)-module. In
practice we shall only apply this in situations where M has the form Qp[0]⊗Qp M ′

for an H(01)-module M , in which case the isotypical components Mη all have the
same elementary divisors.

2. Refinements of crystalline representations and H(0)-structure

In this section, we will prove Theorem A. We will do this by working with a certain
filtration of the module Nrig(V ), which is a (ϕ, 0)-module over B+rig,Qp

; the steps
in this filtration are (ϕ, 0)-modules over B+rig,Qp

, but they are not necessarily of the
form Nrig(W ) for any representation W , so we begin by systematically developing
a theory of such modules. Our approach is very much influenced by the description
of the theory of (ϕ, 0)-modules over the Robba ring B

†
rig,Qp

given in [Bellaïche and
Chenevier 2009, §2.2].
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2A. Some properties of (ϕ, 0)-modules over B+

rig,Q p
. We define a (ϕ, 0)-module

over B+rig,Qp
to be a free B+rig,Qp

-module N of finite rank, endowed with semilinear
commuting actions of ϕ and 0, such that the quotient N/ϕ∗(N) is annihilated by
some power of q (where q = ϕ(π)/π as above). We define

Dcris(N)= N0.

We equip Dcris(N) with the filtration defined by

Fili Dcris(N)= {v ∈ Dcris(N) : ϕ(v) ∈ q i N}.

Let Kn =Qp(µpn ) and K∞ =
⋃

n Kn . We define

D
(n)
dR (N)=

(
K∞⊗Kn Kn[[t]]⊗B+rig,Qp

N
)0
,

where the tensor product is via the embedding B+rig,Qp
↪→ Kn[[t]] arising from the

fact that

Kn ∼= B+rig,Qp
/ϕn−1(q)

and t is a uniformiser of the prime ideal ϕn−1(q). We endow Kn[[t]] with the
obvious semilinear action of0, for which this homomorphism is0-equivariant, and
the t-adic filtration. Then D

(n)
dR (N) is a filtered Qp-vector space, of dimension ≤ d

where d is the B+rig,Qp
-rank of N (since K∞((t))0 =Qp [Bellaïche and Chenevier

2009, §2.2.7]); the operator ϕ gives an isomorphism of filtered Qp-vector spaces

D
(n)
dR (N)

∼=
−→ D

(n+1)
dR (N)

for each n, and an embedding of filtered Qp-vector spaces

Dcris(N) ↪→ D
(1)
dR(N).

We say that N is crystalline if dimQp Dcris(N) = d , and we say it is de Rham
if dimQp D

(n)
dR (N) = d (for some, and hence all, n ≥ 1). If N is de Rham, we

define the Hodge–Tate weights of N to be the integers r such that Fil−r D
(n)
dR (N) 6=

Fil1−r D
(n)
dR (N) (with multiplicities given by the size of the jump in dimension).

Note that these are necessarily ≤ 0, which is unfortunate but necessary for com-
patibility with the usual definition in the case of Galois representations.

Finally, we define D
(n)
Sen(N)= K∞⊗Kn N/ϕn−1(q)N. This is a K∞-vector space

of dimension d, with a semilinear action of 0. As above, the ϕ operator gives
isomorphisms D

(n)
Sen(N) → D

(n+1)
Sen (N), of K∞-vector spaces with semilinear 0-

action. (So both DSen(N) and DdR(N) are independent of n as abstract objects; we
retain the n in the notation when we are interested in the relation between these
spaces and the original module N.)
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Proposition 2.1. Let j ≥ 0, and suppose N is de Rham. Then there is an isomor-
phism of Qp-vector spaces

Fil j DdR(N)/Fil j+1 DdR(N)
∼=
−→ DSen(N)

0=χ− j
.

Proof. Let us fix an n ≥ 1 and let θ be the reduction map Kn[[t]] → Kn . Then θ
induces a map

D
(n)
dR (N)→ D

(n)
Sen(N)

0

with kernel Fil1 DdR(N) and whose image is a Qp-linear subspace S0⊆DSen(N)
0.

Similarly, we find that θ ◦ t− j gives an injection

Fil j DdR(N)/Fil j+1 DdR(N)→ DSen(N)
0=χ− j

,

whose image is a Qp-linear subspace S j .
Since

⊕
∞

j=0 S j has dimension d , it suffices to show that

dimQp

∞⊕
j=0

DSen(N)
0=χ− j

≤ d.

This follows from the fact that it is a subspace of
(
K∞((t))⊗K∞ DSen(N)

)0, and
(as remarked above) K∞((t))) is a field, with K∞((t))0 =Qp . �

Corollary 2.2. If N is crystalline, then the map

Dcris(N)= N0 ϕn

−→ (N/ϕn−1(q)r N)0

is surjective for all r ≥ 1 and n ≥ 1, with kernel Filr Dcris(N).

Proof. Let us define N(n)
= K∞⊗Kn Kn[[t]] ⊗B+rig,Qp

N, so (N(n))0 = DdR(N). By
hypothesis the map ϕn

: Dcris(N)→ D
(n)
dR (N) is an isomorphism of filtered vector

spaces, and the filtration on DdR(N) is defined by the t-adic filtration of N(n), so it
suffices to show that reduction modulo tr gives a surjection

(N(n))0→ (N(n)/tr N(n))0.

We show that for each j , the map (t j N(n))0→ (t j N(n)/t j+1N(n))0 is surjective.
Multiplication by t− j gives an isomorphism

(t j N(n)/t j+1N(n))0→ (N(n)/tN(n))0=χ
− j
;

but N(n)/tN(n)
=D

(n)
Sen(N), and by the preceding proposition we know that θ ◦ t− j

gives an isomorphism from Fil j DdR(N)/Fil j+1 DdR(N) to D
(n)
Sen(N)

0=χ− j
. So the

map (N(n))0→ (N(n)/tr N(n))0 is a morphism of filtered vector spaces for which the
associated map of graded modules is surjective. Since the domain and codomain
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are finite-dimensional and their filtrations are separated, the original map is itself
surjective. �

Let us write M= B+rig,Qp
⊗Qp Dcris(N)⊆ N.

Proposition 2.3. If N is crystalline and 0 acts trivially on N/πN, then the elemen-
tary divisors of N/M are ( t

π

)s1
, . . . ,

( t
π

)sd
,

where −s1 ≥ · · · ≥ −sd are the Hodge–Tate weights of N.

Proof. This follows exactly as in [Berger 2004, Proposition III.2.1]. �

2B. Quotients of (ϕ, 0)-modules. We now let N be a (ϕ, 0)-module over B+rig,Qp
,

as above. We assume that N is crystalline and 0 acts trivially on N/πN, and
investigate the properties of a certain class of (ϕ, 0)-modules obtained as quotients
of N. We continue to write M= B+rig,Qp

⊗Qp Dcris(N)⊆ N.
Let Y be a ϕ-stable E-linear subspace of Dcris(N). We set

Y= B+rig,Qp
⊗Qp Y ⊆M.

and
X= N∩Y

[( t
π

)−1]
=
{

x ∈ N :
( t
π

)m x ∈ Y for some m
}
⊆ N.

Proposition 2.4. The spaces Y,Y,X have the following properties:

(a) X is a B+rig,Qp
-submodule of N stable under ϕ and 0;

(b) X= {x ∈ N : ax ∈ Y for some nonzero a ∈ B+rig,Qp
} (the saturation of Y);

(c) X is free of rank dimQp Y as an B+rig,Qp
-module;

(d) Y = X∩Dcris(N) and Y= X∩M;

(e) X and W= N/X are (ϕ, 0)-modules over B+rig,Qp
.

Proof. Part (a) is immediate from the definition.
For (b), suppose x ∈N and there is some nonzero a ∈ B+rig,Qp

such that ax ∈Y.
By Proposition 2.3, we can find m such that

( t
π

)m x ∈M, and a
( t
π

)m x ∈Y. Since Y

is clearly saturated in M, we deduce that
( t
π

)m x ∈Y, and hence x ∈X as required.
For part (c), we note that X is a closed submodule of N, since it is the intersection

of the closed submodules
( t
π

)−N
Y and N of

( t
π

)−N
N, for any sufficiently large

N . (It suffices to take N larger than sd , where−sd is the lowest Hodge–Tate weight
of N.) Hence X is also a free module, of finite rank. As X

[( t
π

)−1] is clearly free
of rank dimQp Y as a B+rig,Qp

[( t
π

)−1]-module, the rank of X over B+rig,Qp
must also

be equal to dimQp Y .
For part (d), it is clear that Y ⊆ X∩M; and this inclusion is an equality, since

M/Y is torsion-free and X/Y is torsion. Since Y ∩ Dcris(N) = Y , the statement
follows.
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For the final statement (e), since X and W=N/X are both free B+rig,Qp
-modules

with semilinear actions of ϕ and 0, it suffices to check that the modules X/ϕ∗X

and W/ϕ∗W are annihilated by a power of q . Since X is saturated in N, and B+rig,Qp

is an elementary divisor ring, we can find a B+rig,Qp
-basis n1, . . . , nd of N such that

n1, . . . , nr is a basis of X and the images of nr+1, . . . , nd are a basis of W, where
r = dimQp Y . Since X is ϕ-stable, the matrix of ϕ in this basis is of the form

( A
0

B
C

)
.

Hence we have det(ϕ∗N) = det(A) det(C). As N/ϕ∗N is annihilated by a power
of q, det(ϕ∗N) is a power of q , and thus the same is true of det(A) and det(C).
Since A and C are the matrices of ϕ on X and W in the bases described above, the
modules X/ϕ∗X and W/ϕ∗W are also annihilated by a power of q, as required. �

Let W = Dcris(N)/Y , and (as above) let W = N/X. The natural map W ↪→

Dcris(W) is injective, by part (d) of the preceding proposition; hence it is also
surjective, for reasons of dimension. Thus W is a crystalline (ϕ, 0)-module and
Dcris(W)=W .

Proposition 2.5. The quotient filtration Fil•W induced on W by the filtration of
Dcris(N ) agrees with the filtation Fil given by

Filr W = {w ∈W : ϕ(w) ∈ qr W}.

Proof. It is clear from the definition that Filr W ⊆ Filr W .
Conversely, let y ∈ Dcris(N ) such that [y] ∈ Filr W , so we can write ϕ(y) =

qr y′+ z for some y′ ∈ N and z ∈ X. Then

z mod qr X ∈ (X/qr X)0.

Applying Corollary 2.2 to X, we find that z is congruent modulo qr to an element
of X0 = Y . �

The final result we will need about these quotients is the following slightly fiddly
lemma. Let us suppose that the jumps in the filtration of Dcris(N), with multiplicity,
are s1 ≤ s2 · · · ≤ sd (i.e., the Hodge–Tate weights of N are −si ). We say that the
ϕ-stable subspace Y is in general position (with respect to the Hodge filtration of
Dcris(N)) if the jumps in the filtration Fil• Y are s1, . . . , s j , where j = dimQp Y .

Lemma 2.6. If Y is in general position, then for any m ≥ sd , we have( t
π

)m−s( j+1) M⊆
( t
π

)m
N+Y.

Proof. As remarked above, the quotient module W = N/X is a crystalline (ϕ, 0)-
module over B+rig,Qp

of rank d− j , with 0 acting trivially modulo π . By Proposition
2.5, the Hodge–Tate weights of W are exactly {−s( j+1), . . . ,−sd}; hence its 0-
invariants lie in

( t
π

)s( j+1) W. This is equivalent to M⊆
( t
π

)s( j+1) N+X. Multiplying
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by ( t
π
)m−s( j+1) , we see that( t

π

)m−s( j+1) M⊆
( t
π

)m
N+

( t
π

)m−s( j+1) X.

Since both
( t
π

)m−s( j+1) M and
( t
π

)m
N are manifestly contained in M, we may

replace the last term with its intersection with M, which is clearly contained in
X∩M= Y. �

2C. Application to crystalline representations. Let V be a d-dimensional crys-
talline representation of GQp with Hodge–Tate weights {−s1, . . . ,−sd}, where
0 ≤ s1 ≤ · · · ≤ sd (so V is positive in the sense of Section 1C4 above). As above,
we define Nrig(V ) = B+rig,Qp

⊗B+
Qp

N(V ), where N(V ) is the Wach module of V
as constructed in [Berger 2004]. Then Nrig(V ) is a crystalline (ϕ, 0)-module over
B+rig,Qp

with 0 acting trivially modulo π , and Dcris(V ) is isomorphic (as a filtered
ϕ-module over Qp) to Dcris(Nrig(V )) as defined in the previous section [Berger
2004, Theorems II.2.2 and III.4.4].

If V is in fact an E-linear representation, for E some finite extension of Qp,
then Nrig(V ) is naturally an E ⊗Qp B+rig,Qp

-module, and Dcris(V ) is a filtered E-
vector space. If we choose an E-linear ϕ-stable subspace, then all of the above
constructions commute with the additional E-linear structure.

We shall suppose that V admits a non-critical refinement, and fix a choice of
such a refinement Y . Applying the above theory to each of the subspaces Yi , we
obtain E⊗Qp B+rig,Qp

-submodules Yi =B+rig,Qp
⊗Qp Yi ⊆M and Xi =Ysat

i of Nrig(V ).
Let us consider the representation V (m), for some m≥ sd . This has non-negative

Hodge–Tate weights {m−si }i=1,...,d . If em denotes a basis of Qp(m), then we have

Dcris(V (m))= {t−m x ⊗ em : x ∈ Dcris(V )},

Nrig(V (m))= {π−m y⊗ em : y ∈ Nrig(V )}.

We define Ai = {π
−m y⊗ em : y ∈ Xi } and Bi = {t−m x ⊗ em : x ∈ Yi }.

Proposition 2.7. For each i = 1, . . . , d,

(a)
( t
π

)m−si Bi ⊇Ai ⊇
( t
π

)m−s1Bi ;

(b) Bi is the saturation of Ai in Bd = B+rig,Qp
⊗Dcris(V (m));

(c) The inclusion Ad ↪→ Bd identifies Ad/Ai−1 with a submodule of Bd/Bi−1

and the quotient is annihilated by
( t
π

)m−si .

Proof. The chain of inclusions in (a) is equivalent to
( t
π

)s1Xi ⊇ Yi ⊇
( t
π

)si Xi ,
and this is a consequence of Proposition 2.3 since the Hodge–Tate weights of Xi

are {−s1, . . . ,−si }. Moreover, Bi is manifestly saturated in Bd (being the base
extension of a subspace of Dcris(V (m))), and together with (a), this proves (b). For
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part (c), we note that Ad ∩Bi−1 = Ai−1, so the given map is well-defined and
injective; to show that the annihilator is as claimed, we must check that( t

π

)m−si Bd ⊆Bi−1+Ad ,

which is equivalent to Lemma 2.6. �

We now pass from the “additive” to the “multiplicative” situation. Let us define
Ãi =

⊕p−1
s=1 (1+π)

sϕ(Ai ), and similarly for B̃i . Note that these are 0-stable, since
0 and ϕ commute. Moreover, the action of 0 on B̃d clearly extends to an action of
the ring H(0), which is continuous with respect to the Fréchet topologies of H(0)

and B̃d . As the submodules B̃i and Ãi are all clearly closed and 0-invariant, they
also inherit a Fréchet topology and a continuous action of H(0).

Remark 2.8. Note that we can define an operator ψ :Bd →Bd which is ϕ−1 on
Dcris(V ) and is B+rig,Qp

-semilinear (for the usual definition of ψ acting on B+rig,Qp
).

Then Ãi = (ϕ
∗Ai )

ψ=0, where ϕ∗Ai is the B+rig,Qp
-submodule of Bi generated by

ϕ(Ai ). Clearly we have ϕ∗(Bi )=Bi for all i , and B̃i = (ϕ
∗Bi )

ψ=0
=B

ψ=0
i .

Lemma 2.9. For each i = 1, . . . , d , these spaces have the following properties:

(a) Ãi ⊆ B̃i .

(b) Ãd ∩ B̃i = Ãi .

(c) The quotient B̃d/(B̃i−1+ Ãd) is annihilated by nm−si .

(d) The quotient B̃i/(B̃i−1 + Ãi ) is cyclic as a H(0)-module; it is generated by
(1+π)ϕ(vi ), and its annihilator is nm−si .

Proof. Parts (a) and (b) are clear from the corresponding statements for the spaces
Ai and Bi . For part (c), we note that Bd/Bi−1 is isomorphic as a (ϕ, 0)-module
over B+rig,Qp

to the tensor product

B+rig,Qp
⊗Qp (Yd/Yi−1)

with 0 acting trivially on the latter factor and the ϕ-action multiplied by p−m . By
Proposition 1.6, we have

nk · (Bd/Bi−1)
ψ=0
=

(( t
ϕ(π)

)k
Bd/Bi−1

)ψ=0

. (*)

Since Bd/(Bi−1+Ad) is annihilated by
( t
π

)m−si, we deduce that Bd/(Bi−1+ϕ
∗Ad)

is annihilated by ( t
ϕ(π)

)m−si
.

Hence, by (*), B̃d/(B̃i−1+ Ãd) is annihilated by the ideal nm−si of H(01).
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Similarly, Bi/(Bi−1+Ai ) has the single elementary divisor( t
π

)m−si

(by applying Proposition 2.3 to Xi/Xi−1, which is a (ϕ, 0)-module over B+rig,Qp

by Proposition 2.4(e)). Hence we deduce that nm−si is the exact annihilator of the
corresponding H(0)-module B̃i/(B̃i−1+ Ãi ). �

We are now in a position to complete the proof of Theorem A.

Theorem 2.10 (Theorem A). Let W be any E-linear crystalline representation of
GQp with non-negative Hodge–Tate weights r1≤· · ·≤ rd . Suppose that there exists
a finite extension F of E such that V ⊗E F admits a non-critical refinement. Then
the E ⊗H(0)-elementary divisors of the quotient

(B+rig,Qp
)ψ=0
⊗Dcris(W )/(ϕ∗Nrig(W ))ψ=0

are [nr1; . . . ; nrd ].

Proof. Let us choose an m such that V =W (−m) is positive. Then the Hodge–Tate
weights of V are −s1 ≥ · · · ≥ −sd , where si = m− rd+1−i ≥ 0. Suppose first that
V admits a non-critical refinement. Choosing such a refinement, we may argue as
above to deduce that the E ⊗H(0)-module

M = (B+rig,Qp
)ψ=0
⊗Dcris(W )/(ϕ∗Nrig(W ))ψ=0

=Bd/Ad

has a filtration by E ⊗Qp H(0)-modules Mi = Bi/Ai where Mi/Mi−1 is cyclic
with annihilator nm−si , and nm−si annihilates M/Mi−1. So for each character η
of 1, the module Mη is an H(01)-module of the type covered by Corollary 1.12.
This gives the result in this special case.

If V only admits a non-critical refinement after extending scalars to an exten-
sion F/E , then we may consider the representation V ⊗E F and apply the above
argument to this representation. It is clear that if M is any E⊗H(0)-module, then
the elementary divisors of F⊗E M as a F⊗H(0)-module are the base extensions
of the elementary divisors of M ; by uniqueness, this gives the proposition. �

We now briefly explain how ϕ∗Nrig(V ) is related to the Wach module N(V )
considered in our earlier work. Note that H(0) and ϕ(B+rig,Qp

) are both Fréchet–
Stein algebras in the sense of [Schneider and Teitelbaum 2003] (by Theorem 5.1 of
that reference); hence any finite-rank free module over either one of these algebras
has a canonical topology, and a submodule of such a module is finitely generated
if and only if it is closed in this topology (Corollary 3.4(ii) of [op. cit.]). Moreover,
(B+rig,Qp

)ψ=0
=
⊕p−1

i=1 (1+π)
iϕ(B+rig,Qp

) is a free module over ϕ(B+rig,Qp
) of rank

p− 1.
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Proposition 2.11. There is an isomorphism

(ϕ∗Nrig(V ))ψ=0 ∼=H(0)⊗3Qp (0)
(ϕ∗N(V ))ψ=0.

Proof. We first note that (ϕ∗Nrig(V ))ψ=0
=
⊕p−1

i=1 (1+π)
iϕ(Nrig(V )) is a finitely

generated ϕ(B+rig,Qp
)-submodule of Dcris(V )⊗Qp (B

+

rig,Qp
)ψ=0. Hence it is closed

in the canonical Fréchet topology of the latter space. It is also 0-stable. Since the
Mellin transform is a topological isomorphism between (B+rig,Qp

)ψ=0 and H(0), we
see that (ϕ∗Nrig(V ))ψ=0 is a closed 0-stable subspace of a finite-rank free H(0)-
module; hence the action of 0 extends to a (continuous) action of H(0). So there
is a natural embedding of H(0)⊗3Qp (0)

(ϕ∗N(V ))ψ=0 into (ϕ∗Nrig(V ))ψ=0.
The image of this embedding is a H(0)-submodule, which is finitely generated,

since (ϕ∗N(V ))ψ=0 is finitely generated as a 3E -module [Lei et al. 2010, Theo-
rem 3.5]. So it is closed. On the other hand, the image contains (ϕ∗N(V ))ψ=0.
Since we evidently have

(ϕ∗Nrig(V ))ψ=0
=

p−1⊕
i=1

(1+π)iϕ(Nrig(V ))

and ϕ(Nrig(V ))= ϕ(B+rig,Qp
)⊗ϕ(B+

Qp
) ϕ(N(V )), it follows that

(ϕ∗Nrig(V ))ψ=0
= ϕ(B+rig,Qp

)⊗ϕ(B+
Qp
)

( p−1⊕
i=1

(1+π)iϕ(N(V ))
)

= ϕ(B+rig,Qp
)⊗ϕ(B+

Qp
) (ϕ
∗N(V ))ψ=0.

Since ϕ(B+
Qp
) is dense in ϕ(B+rig,Qp

), it follows now that (ϕ∗N(V ))ψ=0 is dense in
(ϕ∗Nrig(V))ψ=0. Thus the image of H(0)⊗3Qp (0)

(ϕ∗N(V))ψ=0 in (ϕ∗Nrig(V))ψ=0

is both dense and closed; hence it is everything. �

We recall the following result from our previous work:

Theorem 2.12 ([Lei et al. 2010, Lemma 3.15]). (ϕ∗N(V ))ψ=0 is a free 3E(0)-
module of rank d. More specifically, for any basis ν1, . . . , νd of Dcris(V ), there
exists a E ⊗ B+

Qp
-basis n1, . . . , nd of N(V ) such that ni = νi mod π and (1 +

π)ϕ(n1), . . . , (1+π)ϕ(nd) form a 3E(0)-basis of (ϕ∗N(V ))ψ=0.

Combining this with Proposition 2.11, the following corollary is immediate:

Corollary 2.13. (ϕ∗Nrig(V ))ψ=0 is a free E ⊗ H(0)-module of rank d. More
specifically, for any basis ν1, . . . , νd of Dcris(V ), there exists a E ⊗ B+rig,Qp

-basis
n1, . . . , nd of Nrig(V ) such that ni =νi mod π and (1+π)ϕ(n1), . . . , (1+π)ϕ(nd)

form a E ⊗H(0)-basis of (ϕ∗Nrig(V ))ψ=0.



1116 Antonio Lei, David Loeffler and Sarah Livia Zerbes

Remark 2.14. We conjecture that for any E⊗B+rig,Qp
-basis m1, . . . ,md of Nrig(V ),

the vectors (1+π)ϕ(mi ) are a E ⊗H(0)-basis of (ϕ∗Nrig(V ))ψ=0, and similarly
for N(V ); but we do not know a proof of this statement.

3. The construction of Coleman maps

3A. Coleman maps and the Perrin-Riou p-adic regulator. Let E be a finite ex-
tension of Qp. Let V be a d-dimensional E-linear representation of GQp with
non-negative Hodge–Tate weights r1 ≤ r2 ≤ · · · ≤ rd . We assume that V has no
quotient isomorphic to the trivial representation. Let T be a GQp -stable OE -lattice
in V . Under these assumptions, there is a canonical isomorphism of 3OE (0)-
modules

h1
Iw : N(T )

ψ=1 ∼=
−→ H 1

Iw(Qp, T ).

by [Berger 2003, Theorem A.3]. Moreover, since the Hodge–Tate weights of V
are non-negative, we have N(T )⊆ ϕ∗N(T ) by Lemma 1.7. Hence there is a well-
defined map 1−ϕ : N(T )→ ϕ∗N(T ), which maps N(T )ψ=1 to (ϕ∗N(T ))ψ=0.

As we recalled above, [Lei et al. 2010, Theorem 3.5] (due to Laurent Berger)
shows that for some basis n1, . . . , nd of N(T ) as an OE⊗A+

Qp
-module, the vectors

(1+π)ϕ(n1), . . . , (1+π)ϕ(nd) form a basis of (ϕ∗N(T ))ψ=0 as a3OE (0)-module.
This basis gives an isomorphism

J : (ϕ∗N(T ))ψ=0 ∼=
−→3OE (0)

⊕d

(the Iwasawa transform), and we define the Coleman map

Col= (Coli )
d
i=1 : N(T )

ψ=1
→3OE (0)

⊕d

as the composition J ◦ (1−ϕ).

Remark 3.1. This direct definition of the Coleman map is equivalent to that given
in our earlier work, but applies to any representation with non-negative Hodge–
Tate weights, rather than starting with a positive representation and twisting by the
sum of its Hodge–Tate weights as in [Lei et al. 2010].

Let ν1, . . . , νd be a basis of Dcris(V ), so (1+ π)⊗ ν1, . . . , (1+ π)⊗ νd are a
basis of (B+rig,Qp

)ψ=0
⊗Dcris(V ) as an H(0)-module; and let n1, . . . , nd be a basis

of N(V ) lifting ν1, . . . , νd as in Theorem 2.12. Then there exists a unique d × d
matrix M with entries in H(0) such that(1+π)ϕ(n1)

...

(1+π)ϕ(nd)

= M ·

(1+π)⊗ ν1
...

(1+π)⊗ νd

 . (1)
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In fact M is defined over H(01), since the ni lie in (1 + π)ϕ(N(V )) ⊆ (1 +
π)ϕ(B+rig,Qp

)⊗Dcris(V ). By Theorem 2.10, we know that the elementary divisors
of M are nr1, . . . , nrd .

Corollary 3.2. Up to a unit, det(M) is equal to
∏d

i=1 nri .

We can write the Coleman map Col in terms of M as follows:

Lemma 3.3. For x ∈ N(T )ψ=1, we have

(1−ϕ)(x)= Col(x) ·M ·

(1+π)⊗ ν1
...

(1+π)⊗ νd

 .
Proof. We have by definition

(1−ϕ)x = Col(x) ·

(1+π)ϕ(n1)
...

(1+π)ϕ(nd)

 .
Therefore, we are done on combining this with (1). �

Definition 3.4. The Perrin-Riou p-adic regulator LV for V is defined to be the
3E(0)-homomorphism(

M−1
⊗ 1

)
◦ (1−ϕ) ◦

(
h1

Iw,V
)−1
: H 1

Iw(Qp, V )−→H(0)⊗Dcris(V ).

Using the isomorphism h1
Iw,V : N(V )

ψ=1
→ H 1

Iw(Qp, V ), we can thus rewrite
Lemma 3.3 as

LV (z)=
(
Col ◦(h1

Iw,V )
−1) (z) ·M ·

ν1
...

νd

 . (2)

4. Images of the Coleman maps

Let η be a character on 1. In this section, we study the image of Colη(N(V )ψ=1)

as a subset of 3E(01)
⊕d for a crystalline representation V of dimension d with

non-negative Hodge–Tate weights. We then consider the projection of this image,
giving a description of Im(Colηi ) for i = 1, . . . , d .

4A. Preliminary results on 3E(01)-modules. Recall that we identify 3E(01)

with the power series ring E ⊗OE [[X ]] by identifying γ − 1 with X . Therefore, if
F ∈3E(01) and x is an element of the maximal ideal of E , F |X=x ∈ E .
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Lemma 4.1. Let V be an E-subspace of Ed with codimension n. For a fixed
element x of the maximal ideal of E , we define the 3E(01)-module

S =
{
(F1, . . . , Fd) ∈3E(01)

⊕d
: (F1(x), . . . , Fd(x)) ∈ V

}
.

Then, S is free of rank d over 3E(01) and det(S)= (X − x)n .

Proof. Let v1, . . . , vd be a basis of E such that
∑d

i=1 eivi ∈ V if and only if ei = 0
for all i > d− n. On multiplying elementary matrices in GLd(E) if necessary, we
may assume that S is of the form

S =
{
(F1, . . . , Fd) ∈3E(01)

⊕d
: Fd−n+1(x)= · · · = Fd(x)= 0

}
=3E(01)

⊕(d−n)
⊕
(
(X − x)3E(01)

)⊕n
,

so we are done. �

Proposition 4.2. Let I = {x0, . . . , xm} be a subset of the maximal ideal of E. For
each i = 0, . . . ,m, let Vi be an E-subspace of E⊕d with codimension ni . Define

S =
{
(F1, . . . , Fd) ∈3E(01)

⊕d
:
(
F1(xi ), . . . , Fd(xi )

)
∈ Vi , i = 0, . . . ,m

}
,

then S is free of rank d over 3E(01), and det(S)=
∏m

i=0(X − xi )
ni .

Proof. We prove the result by induction on m. The case m = 0 is just Lemma 4.1.
Assume that m > 0 and let

S′ =
{
(F1, . . . , Fd) ∈3E(01)

⊕d
: (F1(xi ), . . . , Fd(xi )) ∈ Vi , i = 0, . . . ,m− 1

}
.

By induction, S′ is free of rank d over 3E(01) and det(S′)=
∏m−1

i=0 (X− xi )
ni . Let

F (i) =
(
F (i)1 , . . . , F (i)d

)
, i = 1, . . . , d , be a 3E(01)-basis of S′. Write Fm for the

d× d matrix with entries F (i)j (xm). As X − xm does not divide det(F (i)j ), we have
Fm ∈ GLd(E). Define

S′′ =
{
(G1, . . . ,Gd) ∈3E(01)

⊕d
: (G1(xm), . . . ,Gd(xm)) ∈ VmF−1

m
}
.

By Lemma 4.1, S′′ is free of rank d over 3E(01) and det(S′′)= (X − xm)
nm . Say,

(G(k)
1 , . . . ,G(k)

d ), k = 1, . . . , d , is a basis.
For (G1, . . . ,Gd) ∈3E(01)

⊕d , we have
∑d

i=1 Gi F (i) ∈ S′ ⊂ S by definition. It
is easy to check that

∑d
i=1 Gi F (i)∈ S if and only if (G1, . . . ,Gd)∈ S′′. Therefore, a

basis for S is given by the row vectors of (G(k)
i )(F (i)j ) and det(S)= det(S′) det(S′′).

Hence, we are done. �

Lemma 4.3. If S is a 3E(01)-module as in the statement of Proposition 4.2, then
the image of a projection from S into 3E(01) is of the form

∏
i∈J (X − xi )3E(01)

where J is some subset of {0, . . . ,m}.
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Proof. We consider the first projection pr1 : (F1, . . . , Fd) 7→ F1. Let

J = {i ∈ [0,m] : (e1, . . . , ed) ∈ Vi ⇒ e1 = 0}.

It is clear that Im(pr1)⊂
∏

i∈J (X − xi )3E(01). It remains to show that∏
i∈J

(X − xi ) ∈ Im(pr1).

By definition, for each i /∈ J , there exist e(i)k ∈ E , k = 2, . . . , d , such that(∏
j∈J

(xi − x j ), e(i)2 , . . . , e(i)d

)
∈ Vi .

Similarly, take any (0, e(i)2 , . . . , e(i)d ) ∈ Vi for i ∈ J . There exist polynomials Fk

over E such that Fk(xi ) = e(i)j for k = 2, . . . , d and i = 0, . . . ,m. It is then clear
that (∏

i∈J

(X − xi ), F2, . . . , Fd

)
∈ S.

Hence we are done. �

4B. On the image of the Perrin-Riou p-adic regulator. with Hodge–Tate weights
−rd≤−rd−1≤· · ·≤−r1≤0. As in Section 3A, fix bases n1, . . . , nd and ν1, . . . , νd

of N(T) and Dcris(V), respectively, such that νi = ni mod π . For the rest of this
paper, we make the following assumption.

GQp with non-negative Hodge–Tate weights m−r1≥· · ·≥m−rd ≥0. Moreover,
our assumption on the eigenvalues of ϕ implies that V has no quotient isomorphic
to E .

Let V be a d-dimensional E-linear crystalline representation of GQp with non-
negative Hodge–Tate weights r1 ≤ · · · ≤ rd .

Definition 4.4. For an integer i ≥ 0, we write

ni = dimE Fil−i Dcris(V )= #{ j : r j ≤ i}.

We make the following assumption:

Assumption 4.5. The eigenvalues of ϕ on Dcris(V ) are not integer powers of p.

Recall from [Perrin-Riou 1994] that we have the exponential map

�V,rd : (B
+

rig,Qp
)ψ=0
⊗Dcris(V )→H(0)⊗ H 1

Iw(Qp, V ).

The Perrin-Riou p-adic regulator is related to �V,rd via the following equation.
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Theorem 4.6. As maps on H 1
Iw(Qp, V ), we have

LV =
(
M−1
⊗ 1

) (rd−1∏
i=0

`i

) (
�V,rd

)−1
.

Proof. By definition, this is the same as saying

(1−ϕ) ◦
(
h1

Iw,V
)−1
=

(rd−1∏
i=0

`i

) (
�V,rd

)−1
,

which is just a rewrite of [Berger 2003, Theorem II.13]. �

Corollary 4.7. We have

det(LV )=

rd−1∏
i=0

(`i )
d−ni .

Proof. The δ(V )-conjecture (see [Perrin-Riou 1994, Conjecture 3.4.7]) predicts
that

det(�V,rd )=
∏

i≤rd−1

(`i )
ni .

As pointed out in Proposition 3.6.7 of the same work, this conjecture is a con-
sequence of Perrin-Riou’s explicit reciprocity law, labeled “Conjecture (Réc)” in
[op. cit.], and proved in [Colmez 1998, théorème IX.4.5]. Therefore, Theorem 4.6
implies that

det(LV )=

( rd−1∏
i=0

(`i )
d
)( ∏

i≤rd−1

(`i )
−ni

)
,

which finishes the proof, since ni = 0 for i < 0. �

Let z∈H 1
Iw(Qp, V ). Then LV (z)∈H(0)⊗Qp Dcris(V ), so we can apply to LV (z)

any character on 0 to obtain an element in Dcris(V ). The following proposition
studies elements obtained in this way when we choose characters of a specific kind.
Recall that we denote by χ the cyclotomic character, and by χ0 the restriction of
χ to 1.

Proposition 4.8. Let z ∈ H 1
Iw(Qp, V ). Then for any integer 0≤ i ≤ rd−1 and any

Dirichlet character δ of conductor pn > 1, we have

(1−ϕ)−1 (1− p−1ϕ−1)χ i (LV (z)⊗ t i e−i ) ∈ Fil0 Dcris(V (−i)); (3)

and
ϕ−n (χ iδ(LV (z)⊗ t i e−i )

)
∈Qp,n ⊗Fil0 Dcris(V (−i)). (4)
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Proof. We write [ , ] for the pairing

Dcris(V (−i))×Dcris(V ∗(1+ i))−→ Dcris(E(1))= E · t−1e1.

The orthogonal complement of Fil0 Dcris(V (−i)) under [ , ] is Fil0(V ∗(1+ i)).
Let x ∈ Fil0 Dcris(V ∗(1+ i)) and x ′ = (1−ϕ)(1− p−1ϕ−1)−1x , and write x ′

−i for
x ′⊗ t i e−i . Then[

(1−ϕ)−1 (1− p−1ϕ−1)χ i (LV (z)⊗ t i e−i ), x
]
=
[
χ i (LV (z)⊗ t i e−i ), x ′

]
= χ i
[LV (z), x ′

−i ],

where the first equality follows from the observation that 1− ϕ and 1− p−1ϕ−1

are adjoint to each other under the pairing [ , ].
We extend [ , ] to a pairing on

H(0)⊗Qp Dcris(V )×H(0)⊗Qp Dcris(V ∗(1))−→ E ⊗Qp H(0)

in the natural way. By Perrin-Riou’s explicit reciprocity law (see previous proof)
and Theorem 4.6, we have

[
LV (z), x ′

−i
]
= (−1)rd−1

〈( rd−1∏
j=0

` j

)
z, �V ∗(1),1−rd ((1+π)⊗ x ′

−i )

〉
(5)

where 〈 , 〉 denotes the pairing(
H(0)⊗ H 1

Iw(Qp, V )
)
×
(
H(0)⊗ H 1

Iw(Qp, V ∗(1))
)
−→ E ⊗H(0)

as defined in [Perrin-Riou 1994, § 3.6]. By [Perrin-Riou 1994, Lemme 3.6.1(i)],
the right-hand side of (5) in fact equals〈

z,
( rd−1∏

j=0

`− j

)
�V ∗(1),1−rd ((1+π)⊗ x ′

−i )

〉
=
〈
z, �V ∗(1),1((1+π)⊗ x ′

−i )
〉
. (6)

By an abuse of notation, we let Tw denote the twist map on the H 1
Iw’s as well as

the map on H(0) that sends any g ∈ 0 to χ(g)g. We have

〈Tw−i (x),Twi (y)〉 = Twi
〈x, y〉

for any x and y by [Perrin-Riou 1994, Lemme 3.6.1(ii)]. Therefore, by combining
(5) and (6), χ i

[LV (z), x ′
−i ] is equal to the projection of〈

Tw−i (z),Twi (�V ∗(1),1((1+π)⊗ x ′
−i )
)〉

into E . The projection of Twi (�V ∗(1),1((1+π)⊗ x ′
−i )
)

into H 1(Qp, V ∗(1+ i))
at the origin is equal to a scalar multiple of

expQp,V ∗(1+i)
(
(1− p−1ϕ−1)(1−ϕ)−1(x ′)

)
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(see for example [Lei et al. 2010, Proposition 3.19]). But

(1− p−1ϕ−1)(1−ϕ)−1(x ′)= x ∈ Fil0 Dcris(V ∗(1+ i))

by definition. Therefore, as expQp,V ∗(1+i) vanishes on Fil0 Dcris(V ∗(1 + i)) by
construction, it follows that

expQp,V ∗(1+i)
(
(1−ϕ)−1(1− p−1ϕ−1)(x ′)

)
= 0

and hence that[
(1−ϕ)−1 (1− p−1ϕ−1)χ i (LV (z)⊗ t i e−i ), x

]
= χ i[LV (z), x ′

−i
]
= 0.

This implies (3), and (4) can be proved similarly. �

For any character η of 1 and an integer 0≤ i ≤ rd − 1, define

Vi,η =

{
(1− piϕ)(1− p−1−iϕ−1)−1 Fil−i Dcris(V ) if χ i

0 = η,

ϕ
(
Fil−i Dcris(V )

)
otherwise.

Note that Vi,η is a subspace of Dcris(V ) of the same dimension as Fil−i Dcris(V ).

Corollary 4.9. If η is a character on 1, then{
χ iχ−i

0 η(eηLV (z)) : z ∈ H 1
Iw(Qp, V )

}
⊂ Vi,η.

Proof. Note that Fil−i Dcris(V ) = Fil0 Dcris(V (−i))⊗ t−i ei . Therefore, if χ i
0 = η,

the result follows from (3) and the fact that ϕ(t i e−i )= pi t i e−i . Assume otherwise.
Since χ iχ−i

0 η|1 = η, we have χ iχ−i
0 η(eηLV (z)) = χ iχ−i

0 η(LV (z)). Hence, (4)
implies that

ϕ−1
(
χ iχ−i

0 η(eηLV (z)⊗ t i e−i )
)
∈Qp(µp)⊗Fil0 Dcris(V (−i)).

But
χ iχ−i

0 η(eηLV (z)⊗ t i e−i )= LV (z)η|X=χ(γ )i−1⊗ t i e−i

in fact lies inside Dcris(V (−i)). Hence,

ϕ−1
(
χ iχ−i

0 η(eηLV (z)⊗ t i e−i )
)
∈ Fil0 Dcris(V (−i))= Fil−i Dcris(V )⊗ t i e−i

and we are done on applying ϕ to both sides. �

Corollary 4.10. If η is a character on 1, then{
LV (z)η|X=χ(γ )i−1 : z ∈ H 1

Iw(Qp, V )
}
⊂ Vi,η.

Proof. This is immediate from Corollary 4.9, since

LV (z)η|X=χ(γ )i−1 = χ
iχ−i

0 η(eηLV (z)). �
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4C. Images of the Coleman maps. We now fix a character η : 1 → Z×p . Let
ν1, . . . , νd be a basis of Dcris(V ) and n1, . . . , nd a basis of N(V ) lifting ν1, . . . , νd

as in Theorem 2.12. We consider the image of the Coleman map defined with
respect to this basis as in Section 3.

Proposition 4.11. The image of the map

Colη : N(V )ψ=1
−→3E(01)

⊕d

lies inside a3E(01)-submodule S as described in the statement of Proposition 4.2
with

I = {xi = χ(γ )
i
− 1 : 0≤ i ≤ rd − 1} and Vi = Vi,η,

which is an E-vector space of the same (co-)dimension as Fil−i Dcris(V ).

Proof. Recall from (2) that

LV =
(
Col ◦h1

Iw,V
)

M

ν1
...

νd


where M is as defined in (1). Note that Mη

= M for any character η of 1, since
M is defined over H(01). Moreover, Corollary 3.2 implies that X − χ(γ )i + 1
does not divide det(M), so M |X=χ(γ )i−1 ∈ GLd(E). Therefore, we are done by
Corollary 4.10. �

Theorem 4.12. Equality holds in Proposition 4.11.

Proof. Write S for the basis matrix of the 3E(01)-submodule of 3E(01)
⊕d de-

scribed in the statement of Proposition 4.11. Then, Proposition 4.2 says that

det(S)=
rd−1∏
i=0

(X −χ(γ )i + 1)d−ni .

But

det(M)=
d∏

j=1

( r j−1∏
i=0

`i

X −χ(γ )i + 1

)
=

rd−1∏
i=0

(
`i

X −χ(γ )i + 1

)d−ni

,

since ni = #{ j : r j ≤ i}, as noted above. Hence, Corollary 4.7 implies that

det(LV )= det(M) det(S)

and we are done. �

We can summarize the above results via the following short exact sequence:
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Corollary 4.13. Suppose that no eigenvalue of ϕ on Dcris(V ) lies in pZ. Then for
each character η of 1, there is a short exact sequence of H(01)-modules

0−→ N(V )ψ=1,η 1−ϕ
−→ (ϕ∗N(V ))ψ=0,η Aη

−→

rd−1⊕
i=0

(Dcris(V )/Vi,η)(χ
iχ−i

0 η)−→ 0.

Here the map Aη equals
⊕

i (1⊗ Aη,i ), where Aη,i is the natural reduction map
H(0)→Qp(χ

iχ−i
0 η) obtained by quotienting out by the ideal (X+1−χ(γ )i )·eη.

Remark 4.14. The short exact sequence in Corollary 4.13 can be seen as an ana-
logue of Perrin-Riou’s exact sequence (see [Perrin-Riou 1994, §2.2])

0−→
rd⊕

i=0

t i Dcris(V )ϕ=p−i
−→

(
B+rig,Qp

⊗Dcris(V )
)ψ=1

ϕ−1
−→ (B+rig,Qp

)ψ=0
⊗Dcris(V )−→

rd⊕
i=0

(
Dcris(V )
1− piϕ

)
(i)−→ 0.

In particular, the injectivity of the first map in our sequence follows from Perrin-
Riou’s sequence, whose first term vanishes in view of our assumption on V .

We can now prove Theorem C.

Corollary 4.15. For i = 1, . . . , d, we have

Im(Colηi )=
∏
j∈I ηi

(X −χ(γ ) j
+ 1)3E(01)

for some I ηi ⊂ {0, . . . , rd − 1}.

Proof. This follows immediately from Lemma 4.3. �

We can also use this argument to determine the elementary divisors of the cok-
ernel of the map LV , refining the result of Corollary 4.7.

Theorem 4.16. The elementary divisors of the H(0)-module quotient

H(0)⊗Qp Dcris(V )
H(0)⊗3Qp (0)

Im(LV )

are [λr1; . . . ; λrd ], where λk = `0`1 . . . `k−1.

Proof. We know that the matrix of LV is equal to M · S, where M and S have
elementary divisors that are coprime. Hence the elementary divisors of the product
matrix are the products of the elementary divisors, which gives the above formula.

�
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5. The Coleman maps for modular forms

In this section, we fix a modular form f as in Section 1C6. We pick bases n1, n2 of
N(T f̄ ) and ν̄1, ν̄2 of Dcris(V f̄ ) as in [Lei et al. 2010, Section 3.3]. Let V =V f̄ (k−1),
which has Hodge–Tate weights 0 and k− 1. We consider the Coleman maps Colη1
and Colη2 defined on N(V )ψ=1 where η is a fixed character on 1. As a special case
for Theorem 4.12 and Corollary 4.15, we have the following result.

Proposition 5.1. There exist 1-dimensional E-subspaces Vi of E2 for 0≤ i < k−1
such that

Im(Colη)= {(F,G) ∈3E(01) :
(
F(χ i (γ )− 1),G(χ i (γ )− 1)

)
∈ Vi }.

Moreover, for l = 1, 2, we have

Im(Colηl )=
∏
j∈I ηl

(X −χ j (γ )+ 1)3E(01)

for some I ηl ⊂ {0, . . . , k− 2} with I η1 and I η2 disjoint.

Proof. For 0 ≤ j ≤ k − 2, Fil− j Dcris(V ) is of dimension 1 over E . Hence the
first part of the proposition by Theorem 4.12. The second part of the proposition
follows by putting

I η1 = {i : Vi = 0⊕ E} and I η2 = {i : Vi = E ⊕ 0}. �

Remark 5.2. Note that the second part of the proposition is a slightly stronger
version of Corollary 4.15.

Corollary 5.3. In particular, there exist nonzero elements ri ∈ E for i ∈ I η3 :=
{0, . . . , k− 2} \ (I η1 ∪ I η2 ) such that

Im(Colη)=

(F,G) ∈3E(01)

∣∣∣∣∣∣∣
F(ui
− 1)= 0 if i ∈ I η1

G(ui
− 1)= 0 if i ∈ I η2

F(ui
− 1)= ri G(ui

− 1) if i ∈ I η3


where u = χ(γ ).

The aim of this section is to study the set above in more detail.

5A. Some explicit linear relations. Recall from [Lei et al. 2010, proof of Propo-
sition 3.22] that the maps L1 and L2 as defined in Section 1C6 satisfy

LV (z)=−L2(z)ν̄1,k−1+L1(z)ν̄2,k−1

for any z ∈ H 1
Iw(Qp, V ). Therefore, Corollary 4.9 says that L1(z) and L2(z) satisfy

some linear relations when evaluated at χ jδ for 0≤ j ≤ k−2 and δ some character
on 1. We now make these relations explicit. First we recall that we have:
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Lemma 5.4. Let j, n ≥ 0 be integers and i ∈ {1, 2}. For z ∈ H 1
Iw(Qp, V ), we write

z− j,n for the image of z under

H 1
Iw(Qp, V )→ H 1

Iw(Qp, V (− j))→ H 1(Qp,n, V (− j)) (7)

where the first map is the twist map (−1) j Tw j and the second map is the projec-
tion. Then, we have

χ j (Li (z))= j !
[
(1−ϕ)−1(1− p−1ϕ−1)νi, j+1, exp∗Qp,V ( j)(z− j,0)

]
. (8)

If δ is a character of Gn which does not factor through Gn−1 with n ≥ 1, then

χ jδ(Li (z))=
j !

τ(δ−1)

∑
σ∈Gn

δ−1(σ )
[
ϕ−n(νi, j+1), exp∗Qp,1,V ( j)(z

σ
− j,n)

]
(9)

where τ denotes the Gauss sum.

Proof. See, for example, [Lei 2011, Lemma 3.5 and (4)]. �

Lemma 5.5. If 0≤ j ≤ k− 2 and δ is a nontrivial character on 1, then

χ jδ(L2(z))= 0.

Proof. On putting n = 1 in (9), we have

χ jδ(L2(z))=
j !

τ(δ−1)

∑
σ∈1

δ−1(σ )
[
ϕ−1(ν2, j+1), exp∗Qp,1,V ( j)(z

σ
− j,1)

]
.

But ν2 = p1−kϕ(ν1), so

ϕ−1(ν2, j+1) ∈ E · ν1, j+1 = Fil0 Dcris(V f ( j + 1)).

Therefore, we have

[ϕ−1(ν2, j+1), exp∗Qp,1,V ( j)(z
σ )] = 0

for all σ ∈1 and we are done. �

Lemma 5.6. If ϕ2
+ aϕ+ b = 0, then

(1−ϕ)−1(1− p−1ϕ−1)=
(1+ a+ pb)ϕ+ a(1+ a+ pb)+ b(p− 1)

pb(1+ a+ b)
.

Proof. We can write ϕ2
+ aϕ + b = 0, ϕ2

− 1 + a(ϕ − 1) = −1 − a − b, and
(1−ϕ)(ϕ+ 1+ a)= 1+ a+ b. Therefore,

(1−ϕ)−1
=
ϕ+ 1+ a
1+ a+ b

.

Similarly, we have

ϕ−1
=−

ϕ+ a
b

.

The result then follows from explicit calculation. �
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Corollary 5.7. For 0≤ j ≤ k− 2, we have

(−ap + p j+1
+ pk−1− j )χ j (L2(z))= (p− 1)χ j (L1(z)).

Proof. On Dcris(V f̄ (k− 1− j)), ϕ satisfies

ϕ2
− ap p−k+1+ jϕ+ p−k+1+2 j

= 0,

as we assume ε(p)= 1. Let

u = 1− ap p−k+1+ j
+ p−k+2+2 j ,

u′ =−ap p−k+1+ j u+ p−k+1+2 j (p− 1).

Then, Proposition 4.8 and Lemma 5.6 imply that

(uϕ+ u′)χ j (−L2(z)ν̄1,k−1− j +L1(z)ν̄2,k−1− j )

lies in Fil0 Dcris(V f̄ (k−1− j))= Eν1,k−1− j . On writing this expression as a linear
combination of ν1,k−1− j and ν2,k−1− j , the coefficient of the latter turns out to be

−p j uχ j (L2(z))+ (u′+ ap p−k+1+ j u)χr (L1(z)),

which must be zero, hence the result. �

Remark 5.8. The coefficient −ap+ p j+1
+ pk−1− j is nonzero by the Weil bound.

Recall from [Lei et al. 2010, (32)] that we have(
−L2 L1

)
=
(
Col ◦h1

Iw,V
)

M .

By [Lei et al. 2010, proof of Proposition 3.28 and Theorem 5.4], we have

M |X=0 = AT
ϕ =

(
0 pk−1

−1 ap

)
.

Therefore, the relations for j = 0 are given by

(−ap + 1+ pk−2)Col2(x)
1
|X=0 = pk−2(p− 1)Col1(x)

1
|X=0 if η = 1,

Col2(x)
η
|X=0 = 0 if η 6= 1.

In particular, for the case k = 2, we have the following analogue of [Kurihara
and Pollack 2007, Proposition 1.2].

Proposition 5.9. If k = 2, the trivial isotypical component of the Coleman maps
give a short exact sequence

0−→ H 1
Iw(Qp, V )

Col1
−→3E(01)⊕3E(01)

ρ
−→Qp −→ 0,

where ρ is defined by

ρ
(
g(X), h(X)

)
= (2− ap)g(0)− (p− 1)h(0).
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5B. Integral structure of the images. We now describe the integral structure of
Im(Coli )

η. Under the notation of Corollary 5.3, we define

Xη

i =
∏
j∈I ηi

(X −χ(γ ) j
+ 1).

Then, we have:

Theorem 5.10. For i = 1, 2, let Xη

i be as defined above. Then

Coli
(
D(T f̄ (k− 1))ψ=1)η

⊂ Xη

i 3OE (01).

Moreover, Xη

i 3OE (01)/Coli
(
D(T f̄ (k− 1))ψ=1

)η is pseudo-null.

Proof. Let

Xk =

k−2∏
j=0

(X −χ(γ ) j
+ 1).

Note that the proof of Proposition 4.11 in [Lei et al. 2010] is true integrally. We
therefore have(

ϕk−1(π)ϕ∗N(T f̄ (k− 1))
)ψ=0
⊂ (1−ϕ)N(T f̄ (k− 1))ψ=1.

This implies that Xk ∈ Im(Coli ) for i = 1, 2. Hence, we have the following inclu-
sions:

Xk3OE (01)⊂ Coli
(

D(T f̄ (k− 1))ψ=1
)η
⊂ Xη

i 3OE (01)

for i = 1, 2. Since Xk is not divisible by $E , the quotient

Xη

i 3OE (01)/Xk3OE (01)

is a free OE -module of finite rank. Moreover, for a coset representative, x say, it
follows from Corollary 4.15 that there exists an integer n such that

$ n
E x ∈ Coli

(
D(T f̄ (k− 1))ψ=1)η.

Therefore, Coli
(
D(T f̄ (k− 1))ψ=1

)η is of finite index in Xη

i 3OE (01). �

5C. Surjectivity via a change of basis. Unfortunately, we do not have an explicit
description of the sets I ηi given by Corollary 5.3. However, this can be resolved by
choosing a different basis:

Proposition 5.11. Let S be a subset of 3E(01)
⊕2 as defined in Corollary 5.3.

Then, there exists A ∈ GL(2,OE) such that S A = S′ for some S′ which is of the
form {

(F,G) ∈3E(01)
⊕2
: F(ui

− 1)= r ′i G(u
i
− 1), 0≤ i ≤ k− 2

}
for some nonzero elements r ′i ∈ E.
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Proof. Let e1, e2 ∈ OE be nonzero elements such that e1e2 6= 1, then(
1 e2

e1 1

)
∈ GL(2,OE).

Let (F,G) ∈ 3E(01)
⊕2, we write

(
F ′ G ′

)
=
(
F G

)
A =

(
F + e1G G+ e2 F

)
.

We have

F(ui
− 1)= 0⇐⇒ F ′(ui

− 1)= e1G ′(ui
− 1);

G(ui
− 1)= 0⇐⇒ G ′(ui

− 1)= e2 F ′(ui
− 1);

F(ui
− 1)= ri G(ui

− 1)⇐⇒ (e2ri + 1)F ′(ui
− 1)= (e1+ ri )G ′(ui

− 1).

Therefore, we are done on choosing e2 6= −r−1
i and e1 6= −ri for all i ∈ I η3 . �

Remark 5.12. In the construction of the Coleman maps, replacing
(n1

n2

)
by A

(n1
n2

)
,

where A ∈ GL(2,OE), is equivalent to replacing M by AM .

Therefore, on multiplying M by an appropriate matrix in GL(2,OE) on the left,
we can make both Coleman maps surjective (though we cannot assume M |X=0 =

AT
ϕ any more). By Proposition 5.11, we deduce

Theorem 5.13. There exists a basis of N(T f̄ ) such that the corresponding Coleman
maps have the following properties:

3OE (01)/Coli (D(T f̄ (k− 1))ψ=1)η

is pseudo-null for i = 1, 2.

Acknowledgements

We are very grateful to Bernadette Perrin-Riou for giving us some unpublished
notes about her p-adic regulator; and to the anonymous referee, for numerous
helpful comments and corrections.

References

[Amice and Vélu 1975] Y. Amice and J. Vélu, “Distributions p-adiques associées aux séries de
Hecke”, pp. 119–131 in Journées Arithmétiques de Bordeaux (Bordeaux, 1974), Astérisque 24-25,
Soc. Math. France, Paris, 1975. MR 51 #12709 Zbl 0332.14010

[Bellaïche and Chenevier 2009] J. Bellaïche and G. Chenevier, Families of Galois representations
and Selmer groups, Astérisque 324, 2009. MR 2011m:11105 Zbl 1192.11035

[Berger 2002] L. Berger, “Représentations p-adiques et équations différentielles”, Invent. Math.
148:2 (2002), 219–284. MR 2004a:14022 Zbl 1113.14016

[Berger 2003] L. Berger, “Bloch and Kato’s exponential map: three explicit formulas”, pp. 99–129
in Kazuya Kato’s fiftieth birthday, edited by S. Bloch et al., Documenta Mathematica, Bielefeld,
2003. Collection appeared as an unnumbered extra volume of Doc. Math. (2003). MR 2005f:11268
Zbl 1064.11077



1130 Antonio Lei, David Loeffler and Sarah Livia Zerbes

[Berger 2004] L. Berger, “Limites de représentations cristallines”, Compos. Math. 140:6 (2004),
1473–1498. MR 2098398 (2006c:11138) Zbl 1071.11067

[Berger et al. 2004] L. Berger, H. Li, and H. J. Zhu, “Construction of some families of 2-dimensional
crystalline representations”, Math. Ann. 329:2 (2004), 365–377. MR 2005k:11104 Zbl 1085.11028

[Cherbonnier and Colmez 1999] F. Cherbonnier and P. Colmez, “Théorie d’Iwasawa des représen-
tations p-adiques d’un corps local”, J. Amer. Math. Soc. 12:1 (1999), 241–268. MR 99g:11141
Zbl 0933.11056

[Colmez 1998] P. Colmez, “Théorie d’Iwasawa des représentations de de Rham d’un corps local”,
Ann. of Math. (2) 148:2 (1998), 485–571. MR 2000f:11077 Zbl 0928.11045

[Deligne 1971] P. Deligne, “Formes modulaires et représentations `-adiques”, pp. 139–172 (exposé
355) in Séminaire Bourbaki, 1968/69, Lecture Notes in Mathematics 179, Springer, Berlin, 1971.
Zbl 0206.49901

[Kato 2004] K. Kato, “p-adic Hodge theory and values of zeta functions of modular forms”, pp.
117–290 in Cohomologies p-adiques et applications arithmétiques, III, edited by P. Berthelot et al.,
Astérisque 295, Société Mathématique de France, Paris, 2004. MR 2006b:11051 Zbl 1142.11336

[Kurihara and Pollack 2007] M. Kurihara and R. Pollack, “Two p-adic L-functions and rational
points on elliptic curves with supersingular reduction”, pp. 300–332 in L-functions and Galois
representations (Durham, 2004), edited by D. Burns et al., London Math. Soc. Lecture Note Ser.
320, Cambridge Univ. Press, 2007. MR 2009g:11069 Zbl 1148.11029

[Lang 2002] S. Lang, Algebra, 3rd ed., Graduate Texts in Mathematics 211, Springer, New York,
2002. MR 2003e:00003 Zbl 0984.00001

[Lei 2011] A. Lei, “Iwasawa theory for modular forms at supersingular primes”, Compos. Math.
147:3 (2011), 803–838. MR 2012e:11186 Zbl 1234.11148

[Lei et al. 2010] A. Lei, D. Loeffler, and S. L. Zerbes, “Wach modules and Iwasawa theory for
modular forms”, Asian J. Math. 14:4 (2010), 475–528. MR 2774276 Zbl 05878707

[Loeffler and Zerbes 2012] D. Loeffler and S. L. Zerbes, “Wach modules and critical slope p-adic
L-functions”, J. Reine Angew. Math. (2012).

[Milne 1994] J. S. Milne, “Motives over finite fields”, pp. 401–459 in Motives (Seattle, 1991),
edited by U. Jannsen et al., Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, RI, 1994.
MR 95g:11053 Zbl 0811.14018

[Perrin-Riou 1994] B. Perrin-Riou, “Théorie d’Iwasawa des représentations p-adiques sur un corps
local”, Invent. Math. 115:1 (1994), 81–161. MR 95c:11082 Zbl 0838.11071

[Perrin-Riou 1995] B. Perrin-Riou, Fonctions L p-adiques des représentations p-adiques, Asté-
risque 229, Soc. Mat. de France, Paris, 1995. MR 96e:11062 Zbl 0845.11040

[Perrin-Riou 2001] B. Perrin-Riou, Théorie d’Iwasawa des représentations p-adiques semi-stables,
Mém. Soc. Math. Fr. (N.S.) 84, Soc. Mat. de France, Paris, 2001. MR 2003c:11144 Zbl 1031.11064

[Pollack 2003] R. Pollack, “On the p-adic L-function of a modular form at a supersingular prime”,
Duke Math. J. 118:3 (2003), 523–558. MR 2004e:11050 Zbl 1074.11061

[Schneider and Teitelbaum 2003] P. Schneider and J. Teitelbaum, “Algebras of p-adic distribu-
tions and admissible representations”, Invent. Math. 153:1 (2003), 145–196. MR 2004g:22015
Zbl 1028.11070

[Sprung 2009] F. I. Sprung, “Iwasawa theory for elliptic curves at supersingular primes: beyond the
case ap = 0”, preprint, 2009. arXiv 0903.3419v1

Communicated by Karl Rubin
Received 2010-11-26 Revised 2011-02-23 Accepted 2011-03-25



Coleman maps and the p-adic regulator 1131

antonio.lei@mcgill.ca School of Mathematical Sciences, Monash University,
VIC 3800, Australia

Current address: Department of Mathematics and Statistics, Burnside Hall,
McGill University, 805 Rue Sherbrooke Ouest, Montréal, QC,
H3A 0B9, Canada

d.a.loeffler@warwick.ac.uk Mathematics Institute, Zeeman Building,
University of Warwick, Coventry, CV4 7AL, United Kingdom

s.zerbes@exeter.ac.uk Mathematics Research Institute, Harrison Building,
University of Exeter, Exeter, EX4 4QF, United Kingdom

mathematical sciences publishers msp





msp
ALGEBRA AND NUMBER THEORY 5:8(2011)

Conjecture de Shafarevitch effective pour
les revêtements cycliques

Robin de Jong et Gaël Rémond

On donne une borne supérieure explicite en fonction de K , S, g pour la hauteur
de Faltings de la jacobienne d’une courbe C de genre g, définie sur un corps de
nombres K et ayant bonne réduction en dehors d’un ensemble fini S de places
de K , pourvu que C puisse s’écrire comme un revêtement cyclique de degré
premier de la droite projective. La preuve repose sur le fait que les birapports
des points de branchement du revêtement sont des S-unités, donc de hauteur
bornée, et donnent un modèle plan de C .

We give an explicit upper bound in terms of K , S, g for the Faltings height of the
jacobian of a curve C of genus g, defined over a number field K and with good
reduction outside a finite set S of places of K under the condition that C can be
written as a cyclic cover of prime order of the projective line. The proof rests on
the fact that the cross ratios of the branch points of the cover are S-units, thus of
bounded height, and give a plane model of C .

1. Introduction

Dans cet article, nous démontrons une version effective de la conjecture de Sha-
farevitch pour les courbes qui sont revêtements cycliques de degré premier de P1.
Rappelons que Faltings [1983] a établi en toute généralité la version qualitative
de cette conjecture (formulée comme une question dans son allocution au congrès
international de Stockholm en 1962, voir [Shafarevitch 1963]).

Théorème 1.1. Soient K un corps de nombres, S un ensemble fini de places finies
de K et g ≥ 2 un entier. Alors l’ensemble des classes d’isomorphie de courbes
projectives lisses C de genre g sur K ayant bonne réduction en dehors de S est
fini.

Le premier auteur est financé par une subvention VENI de l’Organisation Néerlandaise pour la Re-
cherche Scientifique (NWO).
MSC2010 : 11G30.
Mots-clefs : conjecture de Shafarevitch, courbe, revêtement, hauteur, réduction, birapport,

Shafarevich conjecture, curve, cover, height, reduction, cross ratio.
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La conclusion vaut également dans le cas g = 1 lorsque l’on suppose que C
admet un point rationnel sur K , autrement dit pour les courbes elliptiques. L’énoncé
est aussi vrai pour g = 0 comme l’avait déjà observé Shafarevitch.

Une manière naturelle de quantifier cet énoncé consiste à borner la hauteur d’une
telle courbe. Pour cela, plusieurs notions de hauteur peuvent être employées ; ici,
pour faire un choix intrinsèque, nous utilisons la hauteur de Faltings stable de la
jacobienne de notre courbe, notée hFalt(C).

En guise de motivation, nous mentionnons encore qu’une majoration de hFalt(C)
dans le théorème 1.1 sans restriction sur C entraînerait une version effective de la
conjecture de Mordell (voir [Rémond 1999]). Toutefois la majoration explicite que
nous donnons ci-dessous dans le cas très particulier des revêtements cycliques de
degré premier n’a pas de conséquences directes dans cette direction (il faudrait
connaître une courbe pour laquelle la construction de Kodaira–Parshin fournit une
famille de courbes qui soient toutes de tels revêtements ; mais ceci signifierait que
l’on peut tracer une courbe complète dans l’espace des modules des courbes d’un
genre donné qui soit entièrement contenue dans le lieu des courbes de ce type ; or
le dit lieu se trouve être affine, voir théorème 6.1 de [González Díez 1991], donc
c’est impossible).

Pour énoncer notre résultat principal, nous devons quantifier la donnée de K et
S. Si nous mesurons classiquement K par son degré D=[K :Q] et son discriminant
absolu 1= |1K/Q|, nous introduisons pour S les quantités

�=
∑
p∈S

log NK/Q(p)+ D log 4 et 1S =1e�
2
.

Le terme D log 4 interviendra pour tenir compte des places infinies ; en revanche la
définition de1S est purement ad hoc (par exemple la quantité1e� serait peut-être
plus naturelle). Nous fixons une clôture algébrique K de K .

Théorème 1.2. Soient K un corps de nombres, S un ensemble fini de places finies
de K et g un entier. Soit C une courbe projective lisse de genre g sur K ayant bonne
réduction en dehors de S. On suppose qu’il existe un K -morphisme π : C → P1

dont l’extension à K est un revêtement cyclique de degré premier. Alors

hFalt(C)≤ 22229g
1

215g5

S .

Pour g ≥ 2, avec les propriétés de hauteur de hFalt, nous obtenons la finitude
de l’ensemble des courbes en question, indépendamment des résultats de Faltings.
Notre énoncé contient aussi le cas des courbes elliptiques et des courbes hyper-
elliptiques ayant un point rationnel (revêtements de degré 2 de P1) ; dans ce cas,
l’énoncé de finitude était connu de Shafarevitch lui-même et de Parshin (voir [Oort
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1974] et les références). Notre démarche s’inspire de cette approche telle que for-
mulée par Oort.

La démonstration repose sur le principe suivant. On considère les points de
branchement P1, . . . , Pr de π sur K . Ils forment une famille de points de P1(K )
stable sous l’action de Gal(K/K ). On leur associe ensuite leurs birapports, soit 6

(r
4

)
éléments de K× \ {1} sur lesquels agissent les involutions x 7→ 1− x et x 7→ x−1

ainsi que le groupe Gal(K/K ). Pour un tel birapport b, on note L = K (b) et S′

l’ensemble fini des places de L formé des places divisant une place de S et de celles
divisant p = degπ . On montre alors que b est un S′-entier et que L/K n’est pas
ramifiée en dehors de S′. Cet argument s’inspire directement du cas des courbes
hyperelliptiques traité par Oort [1974]. Il se base principalement sur le fait que les
points de ramification de π (dans C) correspondent à des points de p-torsion (dans
Jac C) et que cette p-torsion s’étend en un schéma étale au-dessus de Spec OS′ (voir
partie 2).

Comme K (b)= K (1−b)= K (b−1), ce qui précède fait en réalité de (1−b, b)
un couple de S′-unités satisfaisant l’équation x + y = 1. Cette équation aux S-
unités a été largement étudiée et l’on sait grâce à la théorie des formes linéaires de
logarithmes borner la hauteur des solutions. De manière précise, nous employons
ici une majoration explicite due à Győry et Yu [2006]. Elle fait apparaître le régu-
lateur de L que nous majorons à l’aide du discriminant 1L/Q (résultat de Lenstra
[1992]) puis nous contrôlons celui-ci en fonction de 1 et � en utilisant le fait que
L/K n’est ramifiée qu’aux places de S′. Tout ceci conduit à h(b)≤1(8g)5

S (voir
partie 3).

Pour la dernière étape, nous travaillons uniquement sur K . Nous pouvons alors
opérer un automorphisme de P1 de sorte que 0, 1 et∞ soient des points de bran-
chement de π . Les r−3 autres se retrouvent alors être parmi les birapports que nous
avons étudiés et dont nous avons borné la hauteur. Maintenant, comme le corps de
fonctions de CK est une extension de Kummer de K (X), nous voyons que notre
courbe admet un modèle plan (singulier) d’équation affine Y p

=
∏r−1

i=1 (X − bi )
ai

où 1≤ai ≤ p−1 et les bi sont les abscisses des points de branchement différents de
∞. Comme h(bi )≤1

(8g)5
S , on majore immédiatement la hauteur (naïve) de cette

équation. Les résultats de [Rémond 2010] permettent alors de contrôler un plonge-
ment de C dans P3

K
puis la hauteur thêta de Jac C . Finalement, une comparaison

due à Bost et David (voir [Pazuki 2012]) fait le lien avec la hauteur de Faltings
(voir partie 4).

2. Bonne réduction

Nous nous plaçons sous les hypothèses du théorème 1.2. Notons p = degπ et
σ : CK → CK un générateur du groupe de Galois de πK . Si Q1, . . . , Qr sont les
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points de ramification de π (dans C(K )), nous écrivons Pi = π(Qi ) les points de
branchement correspondants. Ils sont deux à deux distincts puisque π−1(Pi ) est
un ensemble de cardinal < p sur lequel σ (d’ordre p) agit transitivement donc un
singleton. Ceci revient à dire que l’indice de ramification de chaque Qi vaut p et
la formule d’Hurwitz donne donc

2g− 2=−2p+ r(p− 1) ⇐⇒ 2g = (r − 2)(p− 1).

Nous excluons le cas où g= 0 (puisque Jac C = 0 on a hFalt(C)= 0 et le théorème
est trivial) donc la relation précédente fournit 3≤ r ≤ 2g+ 2 et 2≤ p ≤ 2g+ 1.

Nous utilisons quelques faits élémentaires (et classiques) sur le birapport. Le
birapport de quatre éléments distincts a, b, c, d d’un corps k s’écrit

Bir(a, b, c, d)= c−a
c−b
·

d−b
d−a

.

On l’étend immédiatement aux points distincts de P1(k) = k ∪ {∞} (par exemple
Bir(∞, b, c, d)= (d−b)/(c−b)). On obtient toujours un élément de k \{0, 1}. En
particulier Bir(∞, 0, 1, x)= x pour tout x ∈ k \ {0, 1}. On vérifie aussi facilement
que le birapport est invariant par un automorphisme de P1. On a encore

Bir(a, b, d, c)= Bir(a, b, c, d)−1 et Bir(a, c, b, d)= 1−Bir(a, b, c, d).

Enfin

Bir(a, b, c, d)= Bir(b, a, d, c)= Bir(c, d, a, b)= Bir(d, c, b, a),

ce qui entraîne que les 24 birapports formés en permutant a, b, c, d prennent au
plus 6 valeurs.

Nous formons l’ensemble des birapports des points Pi de P1(K ) :

B= {Bir(Pi , Pj , Pk, P`) | 1≤ i, j, k, `≤ r deux à deux distincts}.

Par ce qui précède, Card B≤ 6
(r

4

)
et B est stable par les involutions x 7→ x−1 et

x 7→ 1− x . De plus, comme π est défini sur K , l’ensemble {P1, . . . , Pr } est stable
sous l’action de Gal(K/K ) et il en va donc de même de B. En particulier tout
élément de B est de degré au plus 6

(r
4

)
. Bien entendu, si r = 3, l’ensemble B est

vide et l’on peut passer directement à la partie 4.
Pour toute extension finie L de K on note SL l’ensemble des places de L qui

divisent une place de S ou p. L’objectif de cette partie consiste à montrer l’énoncé
suivant.

Proposition 2.1. Pour tout b ∈B, l’extension K (b)/K est non ramifiée en dehors
de SK (b) et b est un SK (b)-entier.

Bien entendu, pour établir ceci, nous pouvons nous contenter d’exhiber une
extension K ′ de K non ramifiée en dehors de SK ′ , contenant b comme SK ′-entier.
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C’est ce que nous faisons en choisissant pour K ′ la plus petite extension de K
sur laquelle tous les points Qi sont rationnels. Vu la définition, nous avons bien
B ⊂ K ′. Fixons ensuite une place finie v′ 6∈ SK ′ de K ′ ; notons Ov′ son anneau
de valuation, v = v′|K et Ov = Ov′ ∩ K . Pour conclure, il nous suffit de montrer
sous ces hypothèses que Ov′/Ov n’est pas ramifiée et B⊂ Ov′ . Ces deux propriétés
vont résulter de l’étude de différents modèles sur Ov et Ov′ que nous introduisons
maintenant.

Tout d’abord, puisque v 6∈ S, la courbe C→ Spec K s’étend en un morphisme
projectif lisse C→ Spec Ov. De plus le lieu de ramification de π est un sous-K -
schéma Y de C et nous considérons son adhérence Y ⊂ C (sous-schémas fermés
réduits). Nous notons ensuite C ′, Y ′,C′,Y′ l’extension de ces objets à K ′ ou Ov′ .
Par définition de K ′, le schéma Y ′ ' Spec (K ′)r est l’union des points rationnels
Q1, . . . , Qr . Écrivons encore J ′ la jacobienne de C ′ et J′ son modèle de Néron
sur Ov′ . Nous plongeons C ′ dans J ′ à l’aide du point rationnel Q1 (application
Q 7→ (Q)−(Q1)) et ce morphisme C ′→ J ′ s’étend de manière unique en C′→J′

par la propriété de Néron.
Nous pouvons alors énoncer le lemme-clef de cette partie (comparer avec les

arguments de Oort [1974], lemmes 2.1 et 2.2, dans le cas hyperelliptique).

Lemme 2.1. Le morphisme Y′→ Spec Ov′ est étale.

Démonstration. Nous avons π∗(Pi ) = p(Qi ) en termes de diviseurs sur C ′ donc
p(Qi ) ≡ p(Q j ) pour 1 ≤ i, j ≤ r . Par suite p((Qi )− (Q1)) = 0 dans J ′ pour
1≤ i ≤r et ceci signifie exactement que Y ′→C ′→ J ′ se factorise à travers le sous-
schéma J ′p, noyau de la multiplication par p dans J ′. Comme Y ′ et J ′p sont discrets
et réduits, l’immersion a : Y ′ → J ′p est à la fois ouverte et fermée. Maintenant
l’hypothèse v′ 6∈ SK ′ assure que le corps résiduel de Ov′ n’est pas de caractéristique
p donc J′p est étale sur Ov′ . En particulier, chaque composante connexe de J′p
est intègre et coïncide donc avec l’adhérence (dans J′) d’un point de J ′p. Ainsi a
s’étend en une immersion ouverte et fermée Y′→ J′p (si Z′ est une composante
connexe de J′p, les seuls sous-schémas fermés de Z′ qui induisent un sous-schéma
ouvert sur la fibre générique sont ∅ et Z′). Une immersion ouverte étant étale, il
en va de même de Y′. �

Nous pouvons d’ores et déjà déduire de ce lemme la propriété de non-rami-
fication. En effet, il entraîne que Y est étale sur Spec Ov et ceci signifie exactement
que, dans chacun des corps résiduels des points de Y , la place v ne se ramifie pas.
Or, par définition, K ′ est le compositum de ces corps donc Ov′/Ov est effectivement
non ramifiée.

Soit maintenant K ′′ une extension finie de K ′ sur laquelle l’automorphisme σ
fixé plus haut est défini. Soit v′′ une place de K ′′ au-dessus de v′. Nous notons C ′′,
J ′′, C′′, Y′′ et J′′ les extensions de C ′, J ′, C′, Y′ et J′ à K ′′ ou Ov′′ . Nous notons
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par la même lettre l’automorphisme σ : C ′′ → C ′′ et son extension en un auto-
morphisme J ′′ puis de J′′ (par propriété de Néron) et enfin de C′′ (par restriction
à l’adhérence de C ′′ dans J′′). Bien entendu, à chaque étape, σ vérifie σ p

= id.
Notons G le groupe d’automorphismes de C′′ engendré par σ .

Lemme 2.2. Le quotient C′′/G existe et est isomorphe à P1
Ov′′

.

Démonstration. Pour l’existence, d’après le théorème 4.12 de [Lønsted et Kleiman
1979], il suffit de vérifier que G agit fidèlement sur la fibre spéciale de C′′. Si ce
n’était pas le cas, σ induirait l’identité sur cette fibre spéciale C′′s donc également
sur celle de J′′ notée J′′s . Ceci est absurde car pour un schéma abélien l’application
de restriction End J′′→ End J′′s est toujours injective (voir [Lang 1983] page 45).
Notons donc P=C′′/G ce quotient et Ps sa fibre spéciale qui est une courbe lisse
de genre g′. Le revêtement C′′s → Ps de groupe G a au moins r points de ramifi-
cation : ceux de la fibre spéciale du schéma Y′′. Par suite la formule d’Hurwitz (il
n’y a pas de ramification sauvage) donne

2g− 2= p(2g′− 2)+ r ′(p− 1) ⇐⇒ 2pg′+ (r ′− r)(p− 1)= 0

où r ′ ≥ r est le nombre de points de ramification. On conclut r ′ = r et g′ = 0.
Ainsi P est une famille de courbes de genre 0 et elle admet une section : il suffit de
considérer un point de branchement (en d’autres termes la composée d’une section
de Y′′ avec Y′′→C′′→P). La proposition 3.3 de [Lønsted et Kleiman 1979] assure
alors que P ' P(E) pour un faisceau localement libre E de rang 2 sur Spec Ov′′ .
Par principalité de Ov′′ , ce faisceau E est libre donc P' P1

Ov′′
. �

Nous déduisons facilement B ⊂ Ov′′ de cet énoncé. Il fournit en effet un mor-
phisme C′′→ P1

Ov′′
dont la fibre générique coïncide avec l’extension de π à K ′′

modulo un automorphisme de P1
K ′′ . Comme un tel automorphisme ne modifie pas

l’ensemble B, nous pouvons considérer que P1, . . . , Pr sont les points de branche-
ment de ce morphisme. Quitte à faire un automorphisme de P1

Ov′′
nous supposons

même P1 = ∞. Comme les points de branchement sont toujours distincts dans
la fibre spéciale (cela vient encore de ce que Y′′ est étale et fixé par σ ), nous en
déduisons que Pi = (ei :1) où ei ∈Ov′′ , i ≥2 (car P1=∞= (1 :0)) puis ei−e j ∈O×v′′
si 2≤ i < j . Alors chaque élément de B s’écrit

ei−ek
ei−e j

ou ei−ek
ei−e j

·
e`−e j

e`−ek

(selon que P1 apparaît ou non) avec i 6= j et k 6=`. Ceci entraîne clairement B⊂Ov′′

puis B⊂ Ov′′ ∩ K ′ = Ov′ et termine donc la démonstration de la proposition 2.1.
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3. S-unités, régulateurs et discriminants

L’objectif de cette partie est d’établir la majoration suivante de la hauteur des
éléments de B.

Proposition 3.1. Pour tout b ∈B, on a h(b)≤1(8g)5
S .

Nous fixons donc un élément b de B et notons L= K (b) ainsi que S′= SL . Nous
désignons par d , R et h le degré de L (sur Q), son régulateur et son nombre de
classes. En vue d’appliquer le résultat de Győry et Yu [2006] nous écrivons encore s
pour le cardinal de S′∪{ places infinies }, RS′ pour le S′-régulateur de L et P pour
le maximum des NL/Q(p), p ∈ S′. Nous abrégeons aussi log? x = max(1, log x)
pour x > 0.

Lemme 3.1. La hauteur de b est au plus

215(16sd)2s+4 P RS′(1+ log? RS′/ log? P).

Démonstration. Nous appliquons la proposition 2.1 aux quatre éléments b, b−1,
1 − b et (1 − b)−1 de B. Ce sont donc des S′-entiers et donc des S′-unités. Le
couple (b, 1 − b) appartient à {(x, y) ∈ (O×S′)

2
| x + y = 1} donc nous pouvons

lui appliquer le théorème principal de [Győry et Yu 2006] avec α = β = 1 et
H = 4. Nous obtenons alors la borne de l’énoncé en majorant log(2s) ≤

√
2s et

log?(2d)≤
√

2d puis 7s+ 29≤ 8s+ 27 dans l’exposant de 2. �

Nous estimons maintenant les quantités apparaissant dans cette formule. Notons
E un majorant de [L : K ]. Nous choisissons E ≥ 2 pour simplifier les calculs (in
fine nous majorerons E par 6

(r
4

)
). On pose u = E�/ log 2.

Nous avons facilement d ≤ E D ≤ u et

s ≤ 2E D+
∑
p∈S

E ≤ 2E D+
∑
p∈S

E
log NK/Q(p)

log 2
= u

car il y a au plus E D places au-dessus de p, E D au-dessus de∞ et E au-dessus de
chaque place de S. De manière analogue, P≤max(pE D, 2u). Pour le S′-régulateur,
nous avons

RS′ ≤ h R
∏
p′∈S′

log NL/Q(p
′)≤ h R(log P)s

où la première inégalité vient du lemme 3 de [Bugeaud et Győry 1996]. Pour ma-
jorer h R, nous employons une estimation de Lenstra [1992, théorème 6.5]. Elle
entraîne

h R ≤ |1L/Q|
1/2(log? |1L/Q|)

E D−1.
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La forme faible h R ≤ |1L/Q|
E D/2 permet de majorer

1+
log? RS′

log? P
≤ 1+ log?

(
|1L/Q|

E D/2)
+ s

log? log? P
log? P

≤ 2u log? |1L/Q|.

En rassemblant les différents termes, il vient

h(b)≤ 216u(4u)4u+8 P(log P)u|1L/Q|
1/2(log? |1L/Q|)

E D.

Nous faisons alors intervenir P ≤ pu , log P ≤ pu et si x ≥ 1

(log? x)E D
≤ (E D)E Dx1/2

(écrire log y ≤
√

y pour y = x1/E D). Nous aboutissons à

h(b)≤ 216u(4u)4u+8 p2uu2u
|1L/Q|

puis, en tirant parti de u ≥ 4, à

h(b)≤ (4u)9u p2u
|1L/Q|.

Pour majorer le discriminant de L , nous devons faire intervenir le fait que L/K
est non ramifiée en dehors de S′ (proposition 2.1). Notons pour cela Q l’ensemble
des caractéristiques résiduelles des places de S′. Un résultat de Serre [1981, pro-
position 4′, page 129] s’écrit avec les présentes notations :

log |1L/Q| ≤ E log1+ D(E − 1)
∑
`∈Q

log ` + (Card Q)E D log E .

Ici Card Q≤
∑

`∈Q log ` + 1≤�+ log p et donc

log |1L/Q| ≤ E log1+ 2E D(�+ log p) log E .

Nous majorons ensuite (quelque peu brutalement) D par � dans cette formule,
u par 3E�/2 et � log� par �2 pour obtenir

log h(b)≤ 14E� log 6E + 14E�2
+ 3E� log p

+ E log1+ 2E�2 log E + 2E�(log p)(log E)

≤ 63E�2(log? p)(log? E)+ E log1

≤ 26 E(log1S)(log? p)(log? E).

Pour terminer la preuve de la proposition 3.1, nous vérifions (élémentairement)

26 E(log? p)(log? E)≤ (8g)5

à l’aide de E ≤ 6
(r

4

)
, r ≤ 2g+ 2 et p ≤ 2g+ 1.
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4. Hauteur de la courbe

Dans cette dernière partie, nous oublions entièrement le corps K pour ne tra-
vailler que sur K . Aussi utilisons-nous les notations π : C → P1 pour désigner
l’extension des objets précédents. Quitte à composer π avec un automorphisme
de P1, nous supposons que 0, 1 et ∞ font partie des r ≥ 3 points de branche-
ment. Par suite, les r − 3 autres appartiennent à l’ensemble B. Nous notons aussi
H ≥ 1 la borne que nous avons obtenue pour la hauteur des éléments de B (voir
proposition 3.1).

Le corps des fonctions de C est une extension galoisienne de K (X) (corps des
fonctions de P1) de groupe Z/pZ. Comme K (X) contient les racines p-ièmes de
l’unité, il s’agit d’une extension de Kummer et donc il existe une fraction ration-
nelle non nulle F ∈ K (X) telle que le corps des fonctions de C soit isomorphe
à

K (X)[Y ]/(Y p
− F(X)).

Bien entendu, nous pouvons modifier dans cette assertion F par une puissance
p-ième ce qui permet de supposer que F est un polynôme unitaire dont toutes les
racines sont de multiplicité au plus p− 1. Écrivons

F(X)=
t∏

i=1

(X − bi )
ai

où bi ∈ K et 1 ≤ ai ≤ p − 1. Notre courbe C est l’unique courbe projective
lisse birationnelle à la courbe affine C0 d’équation Y p

= F(X) et π se factorise
à travers C0→ A1, (X, Y ) 7→ X . Ceci entraîne immédiatement que les points de
branchement de π sont contenus dans {b1, . . . , bt ,∞}. Réciproquement chaque bi

correspond à un point de branchement car il est l’image d’un unique point de la
normalisée de C0 (localement pour la topologie étale C0 est isomorphe à la courbe
Y p
= Xai dont la normalisée est A1). Par conséquent bi ∈ B ∪ {0, 1} et donc

h(bi )≤ H . Ceci montre aussi t = r − 1.
Notons à présent G le polynôme Y p

− F(X) de K [X, Y ]. Nous estimons son
degré

deg G ≤max(p, (r − 1)(p− 1))≤ 2(r − 2)(p− 1)= 4g

et sa hauteur naïve (celle du point projectif formé par ses coefficients, voir [Rémond
2010])

h∞(G)= h∞(F)≤ (deg F) log 2+
r−1∑
i=1

ai h(bi )≤ 7gH.

Par conséquent, le théorème 1.5 de [ibid.] affirme qu’il existe un plongement
de C dans P3

K
de degré au plus 8g(2g − 1) et de hauteur (au sens de la hauteur
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projective d’un fermé de P3)

h(C)≤ (4g)(4g)3−5(42gH + 9(4g)2
)
≤ (4g)(4g)3 H − 1.

Nous pouvons ensuite passer à la hauteur thêta de la jacobienne de C grâce au
théorème 1.3 de [Rémond 2010]. L’entier m y apparaissant est majoré par

4g− 2+ 16g(2g− 1)≤ 32g2

de sorte que, en écrivant hθ = h(4)θ (Jac C,2sym) la hauteur thêta associée au plon-
gement thêta donné par le diviseur 162sym (voir encore [ibid.]), nous avons

hθ ≤ (32g2)640g28g
+32g3

H ≤ 23360·g38g
H

(en utilisant 32g2
≤ 25g). Le résultat de [Pazuki 2012] compare hθ (correspondant

à r = 4 dans cet article) et la hauteur de Faltings stable :

hFalt(C)≤ 2hθ + 2C1 log(2+max(1, hθ ))

pour une constante C1 dont on vérifie facilement qu’elle satisfait 24g
≤ C1 ≤ 210g.

En particulier, si hθ ≤ H et H ≥ C2
1 alors hFalt(C) ≤ 4H. Ceci est très largement

vérifié pour H=23360·g38g
H . On en déduit hFalt(C)≤23362·g38g

H . Une élémentaire
étude de fonction donne g38g

≤ 823 · 9g et, comme 3362 · 823≤ 222, cela termine
la démonstration du théorème 1.2.

Remarque. Nous avons établi une majoration de la forme hFalt(C)≤ c(g)H pour
une valeur explicite de c(g). Cette dernière ne prétend aucunement être optimale
et peut très certainement être améliorée. Une méthode pourrait être de raffiner la
preuve de [Rémond 2010] dans le cas d’un polynôme particulier comme G. Une
autre approche consisterait à travailler plus directement avec la hauteur de Faltings,
par exemple en essayant d’expliciter une base des formes différentielles globales
sur notre courbe.
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