Algebra & Number Theory

Volume 5 2011 _{No. 8}

Involutions, weights and *p*-local structure

Geoffrey R. Robinson

mathematical sciences publishers

Involutions, weights and *p*-local structure

Geoffrey R. Robinson

We prove that for an odd prime p, a finite group G with no element of order 2p has a p-block of defect zero if it has a non-Abelian Sylow p-subgroup or more than one conjugacy class of involutions. For p = 2, we prove similar results using elements of order 3 in place of involutions. We also illustrate (for an arbitrary prime p) that certain pairs (Q, y), with a p-regular element y and Q a maximal y-invariant p-subgroup, give rise to p-blocks of defect zero of $N_G(Q)/Q$, and we give lower bounds for the number of such blocks which arise. This relates to the weight conjecture of J. L. Alperin.

Introduction

Involutions have played a crucial role in finite group theory for many decades. They also figure prominently in representation theory, both ordinary and modular. Examples of the former include their occurrence in finite reflection groups, and an example of the latter is that in characteristic 2, J. Murray proved in [2006] that the projective summands of the (characteristic 2) permutation module (under conjugation action) on the solutions of $x^2 = 1$ in *G* are (in bijection with) the real 2-blocks of defect zero.

Involutions also influence representation theory in odd characteristic. It was proved by Brauer and Fowler in [1955] that when p is an odd prime, G has a pblock of defect zero if there is an involution $t \in G$ that neither inverts nor centralizes any nontrivial p-element of G. This result was extended by T. Wada [1977], who proved that if there are r mutually nonconjugate involutions of G that neither invert nor centralize any nontrivial p-element of G, then G has at least r distinct p-blocks of defect zero. We prove here that when p = 2, elements of order 3 can play a role analogous to that played when p is odd by involutions in the results above: We prove that the number of 2-blocks of defect zero of G is at least as great as the number of conjugacy classes of elements of order 3 that normalize no nontrivial 2-subgroup of G.

We also point out here that results of this nature can be combined with local group-theoretic analysis to prove that if p is an odd prime and G is a group without

MSC2010: 20C20.

Keywords: block, involution.

elements of order 2p, then G has a p-block of defect zero if it has more than one conjugacy class of involutions (we prove a more precise result without using the classification of finite simple groups, which could be sharpened even further by using that classification).

In a different direction, the celebrated weight conjecture of J. L. Alperin (in its nonblockwise version) defines (for a fixed prime p) a weight of G (up to conjugacy) as a pair (Q, S), where Q is a p-subgroup of G and S is an absolutely simple projective $N_G(Q)/Q$ module in characteristic p. Alperin's weight conjecture then asserts that the number of nonconjugate weights of G for p should be the number of conjugacy classes of p-regular elements of G (which is also the number of isomorphism types of absolutely simple modules for G in characteristic p). At present, there seems to be no reason to expect a natural bijection between weights and p-regular conjugacy classes, or between weights and characteristic p simple modules for G (though it is impossible to preclude the possibility that one or the other might emerge in future). Relatively few purely group-theoretic criteria are known to date that place nonconjectural bounds on the number of weights. We give some group-theoretic conditions of this nature that place lower bounds on the number of weights, using sharpenings of results of Brauer and Fowler [1955], Tsushima [1977] and Wada [1977], going somewhat further than my results in [Robinson 1983], and incorporating the result about 2-blocks of defect zero and elements of order 3 that normalize no nontrivial 2-subgroup of G.

A naïve attempt at associating *p*-regular classes with weights of *G* might be to consider a *p*-regular element *y* and a maximal *y*-invariant *p*-subgroup *Q*. Then *y* normalizes no nontrivial *p*-subgroup of $N_G(Q)/Q$ and it might be hoped that a *p*-block of defect zero of $N_G(Q)/Q$ could be naturally associated to *y* (or *yQ*). More ambitiously, it might be hoped that weights could be parametrized in terms of conjugacy classes of pairs (Q, y), where *y* is a *p*-regular element of *G* and *Q* is a maximal *y*-invariant *p*-subgroup of *G*.

However, there are usually more conjugacy classes of such pairs (Q, y) than there are simple modules. The number of conjugacy classes of such pairs (Q, y) is equal to the number of simple modules precisely when $C_G(y)$ transitively permutes the maximal y-invariant p-subgroups of G for each p-regular $y \in G$. In general, this need not be the case. For example, when p = 3 and $G \cong PSL(2, 11)$ we may take y to be an involution. There is a Sylow 3-subgroup Q of G that is centralized by y, and there is another Sylow 3-subgroup R of G whose nonidentity elements are inverted by y. Clearly Q and R are not conjugate via an element of $C_G(y)$.

We are nevertheless interested in pairs (Q, y), where y is p-regular and Q is a maximal y-invariant p-subgroup, and we will point out some instances where they give rise to weights.

- **Lemma 1.** (i) Let Q be a p-subgroup of G and y be a p-regular element of $N_G(Q)$ such that $yQ \in O_{p'}(N_G(Q)/Q)$. Then Q is a maximal y-invariant p-subgroup of G if and only if $C_Q(y) \in Syl_p(N_G(Q) \cap C_G(y))$.
- (ii) Suppose that p is odd, and let Q be a p-subgroup of G and y be an involution of $N_G(Q)$. Then Q is a maximal y-invariant p-subgroup of G if and only if yQ neither inverts nor centralizes any element of order p in $N_G(Q)/Q$.
- (iii) Suppose that p = 2, and let Q be a 2-subgroup of G and y be an element of order 3 in $N_G(Q)$. Then Q is a maximal y-invariant 2-subgroup of G if and only if yQ is not contained in any subgroup isomorphic to A_4 of $N_G(Q)/Q$, and yQ does not centralize any involution of $N_G(Q)/Q$.

Proof. (i) Notice that Q is a maximal y-invariant p-subgroup of G if and only if Q is a maximal y-invariant p-subgroup of $N_G(Q)$, for if Q < R and R is another y-invariant p-subgroup of G, then $Q < N_R(Q)$ and $N_R(Q)$ is y-invariant. Hence we may suppose that $Q \triangleleft G$, and do so. Set $\overline{G} = G/Q$, and so on. Then $\overline{C_G(y)} = C_{\overline{G}}(\overline{y})$ since y is p-regular and Q is a p-group. Since $\overline{y} \in O_{p'}(\overline{G})$, we see that \overline{y} centralizes any p-subgroup of \overline{G} that it normalizes. Hence Q is a maximal y-invariant p-subgroup of G if and only if \overline{y} normalizes no nontrivial p-subgroup of \overline{G} , if and only if \overline{y} centralizes no nontrivial p-subgroup of \overline{G} , if and only if \overline{y} centralizes no nontrivial p-subgroup of \overline{G} , if and only if \overline{y} centralizes no nontrivial p-subgroup of \overline{G} , if and only if \overline{y} centralizes no nontrivial p-subgroup of \overline{G} , if and only if \overline{y} centralizes no nontrivial p-subgroup of \overline{G} , if and only if \overline{y} centralizes no nontrivial p-subgroup of \overline{G} , if and only if \overline{y} centralizes no nontrivial p-subgroup of \overline{G} , if and only if \overline{y} centralizes no nontrivial p-subgroup of \overline{G} , if and only if $\overline{y} \in Syl_p(C_G(y))$.

(ii) Again we may suppose that $Q \triangleleft G$ and we set $\overline{G} = G/Q$. If \overline{y} inverts or centralizes an element of order p in \overline{G} , then Q is clearly not a maximal y-invariant p-subgroup of G. On the other hand, if \overline{y} normalizes a nontrivial p-subgroup of \overline{G} , then \overline{y} normalizes a nontrivial Abelian p-subgroup \overline{A} , say. We have $\overline{A} = [\overline{A}, \overline{y}] \times C_{\overline{A}}(\overline{y})$, so that \overline{y} must either centralize or invert a nonidentity element of \overline{A} .

(iii) The proof of this part is analogous to part (ii), except that in the final step, \overline{A} may be chosen to be elementary Abelian, and $[\overline{A}, \overline{y}]$ is a direct product of \overline{y} -invariant Klein 4-groups, each acted on by \overline{y} without nontrivial fixed points. \Box

Definition. When p is a prime and G is a finite group, a pair (Q, x) is called a *pseudoweight* for G if x is a p-regular element of G, Q is a maximal x-invariant p-subgroup of G, and one or more of the following occurs:

- (i) $x Q \in O_{p'}(N_G(Q)/Q)$.
- (ii) p is odd and x is an involution.
- (iii) p = 2 and x has order 3.

Remark. It is easy to check that (Q, 1) is a pseudoweight for G if and only if $Q \in Syl_p(G)$, so there is a unique conjugacy class of pseudoweights with second component 1_G . When Q is a Sylow p-subgroup of G, notice that the number of

nonconjugate pseudoweights with first component Q is the number of conjugacy classes of p-regular elements of $N_G(Q)$, since $N_G(Q)/Q$ is a p'-group. If p is odd, every involution occurs as the second component of at least one pseudoweight, since whenever t is an involution, there is at least one maximal t-invariant p-subgroup of G (which may be trivial). Similarly, if p = 2, then every element of order 3 occurs as the second component of at least one pseudoweight.

Before our first result, we recall some results of [Murray 1999; Robinson 1983]. Let *P* be a Sylow *p*-subgroup of *G*. In [Robinson 1983], it is proved that the number of *p*-blocks of defect zero is the rank of a matrix *S* with entries in GF(*p*) defined as follows: The rows and columns of *S* are indexed by the conjugacy classes of *p*-regular elements *y* of *G* such that $C_G(y)$ is a *p'*-group. The (i, j)-entry of *S* is s_{ij} , which is the residue (mod p) of $|\Omega_{ij}|/|P|$, where Ω_{ij} is the set of $(u, v) \in C_i \times C_j$ such that $u^{-1}v \in P$, where C_i is the *i*-th conjugacy class of *p*-regular elements of *p*-defect zero. This is refined by [Murray 1999, 6.3], which shows that Ω_{ij} may be replaced by $\tilde{\Omega}_{ij}$, which is obtained by only counting ordered pairs (u, v) such that $u^{-1}v$ is an element of *P* of order at most *p*, and we may use \tilde{S} in place of *S*, where \tilde{s}_{ij} is the residue (mod *p*) of $|\tilde{\Omega}_{ij}|/|P|$. We will see that, when p = 2, this refinement is advantageous.

Theorem 2. For each p-subgroup Q of G, the number of conjugacy classes of weights of G with first component conjugate to Q is greater than or equal to the number of conjugacy classes of pseudoweights of G with first component conjugate to Q.

Proof. First note that *G* permutes its pseudoweights by conjugation. For each *p*-subgroup of *G*, the *G*-conjugate pseudoweights with first component *Q* correspond bijectively to the $N_G(Q)/Q$ -conjugacy classes of pseudoweights with trivial first component, since there is a bijection between *p*-regular conjugacy classes of $N = N_G(Q)$ and *p*-regular conjugacy classes of N/Q. Hence it suffices to prove that the number of *p*-blocks of defect zero is at least the number of conjugacy classes of pseudoweights with trivial first component.

Let $(1, x_1), \ldots, (1, x_d)$ be representatives for the conjugacy classes of pseudoweights of *G* with trivial first component. Then no x_i normalizes any nontrivial *p*-subgroup of *G*.

Let us label so that $x_i \in C_i$ for $1 \le i \le d$. We show that the first $d \times d$ minor of \tilde{S} is an invertible diagonal matrix, so that \tilde{S} has rank at least d. For if $1 \le i, j \le d$, and u is conjugate to x_i and v is conjugate to x_j with $u^{-1}v \in P$ of order at most p, then $u^{-1}v$ is p-regular (if u or v is in $O_{p'}(G)$ this is clear). If p is odd and u and v are both involutions that invert no element of order p, then $u^{-1}v$ must be p-regular. If p = 2 and u and v are both elements of order 3 that normalize no nontrivial 2-subgroup of G and $u^{-1}v$ is an involution, then $\langle u, v \rangle \cong A_4$ and u is

conjugate to v within $\langle u, v \rangle$, a contradiction. Hence $u^{-1}v$ is p-regular in all cases, (so is the identity, as P is a p-group). Thus $\tilde{s}_{ij} = 0$ for $i \neq j$ and $1 \leq i, j \leq d$. Also, \tilde{s}_{ii} is the residue (mod p) of $|C_i|/|P|$ for $1 \leq i \leq d$. Thus $\tilde{s}_{ii} \neq 0$ for $1 \leq i \leq d$, as required to complete the proof.

Because of its analogy with the result of Brauer and Fowler [1955] mentioned previously, we single out for special mention this:

Corollary 3. Let G be a finite group of order divisible by 6. If G contains an element of order 3 that normalizes no nontrivial 2-subgroup of G, then G has a 2-block of defect zero. More precisely, the number of 2-blocks of defect zero is greater than or equal to the number of conjugacy class of elements of order 3 of G that normalize no nontrivial 2-subgroup of G.

We now combine some local-group theoretic analysis with the block-theoretic results we have used.

Theorem 4. Let G be a finite group of even order that contains no element of order 2p for some odd prime p. Then either G has a p-block of defect zero or else G has Abelian Sylow p-subgroups and a unique conjugacy class of involutions. Furthermore, if G has no p-block of defect zero, and has Sylow p-subgroups of rank at least 3, then either $G/O_{\{2,p\}'}(G)$ has a normal Sylow p-subgroup or else G has a strongly p-embedded subgroup.

Proof. Suppose that *G* has no *p*-block of defect zero. Set $\pi = \{2, p\}$. To prove the theorem, it suffices to consider the case that $O_{\pi'}(G) = 1$. By the result of Brauer and Fowler mentioned earlier, every involution of *G* inverts an element of order *p*, as *G* has no element of order 2*p*. Also, since *G* contains no element of order 2*p*, no section of *G* is isomorphic to SL(2, *p*), so that, by a theorem of Glauberman [1968], $N = N_G(ZJ(P))$ controls strong fusion in *G* for $P \in Syl_p(G)$. Thus *N* must have even order, as some element of order *p* is conjugate to its inverse in *G*.

Since G contains no element of order 2p, the Sylow 2-subgroups of N must be cyclic or generalized quaternion, since if there were a Klein 4-subgroup, V say, of N, then each involution of V would invert every element of ZJ(P), which is a contradiction since the product of any two involutions that invert all of ZJ(P)centralizes ZJ(P). Hence N has a unique conjugacy class of involutions and, by the Brauer–Suzuki theorem, $N = O_{2'}(N)C_N(t)$ for t any involution of N. Thus $O_{2'}(N)$ contains P as $C_N(t)$ is a p'-group. We may suppose that P is t-invariant, so that P is Abelian as t acts without nontrivial fixed-points on P. We wish to prove that G has a unique conjugacy class of involutions. Let u be an involution of G. Then, replacing u by a conjugate if necessary, we may suppose that u inverts an element h of order p in P. Then $N_G(\langle h \rangle) = C_G(h)N_N(\langle h \rangle)$ so that u is conjugate within $N_G(\langle h \rangle)$ to an involution of $N_N(\langle h \rangle)$ since $C_G(h)$ has odd order. In particular, u is conjugate in G to an involution of N. This completes the proof of the first claim, as N has one conjugacy class of involutions.

For the second claim, set $A = \Omega_1(P)$, and suppose that $|A| \ge p^3$. For each $a \in A^{\#}$, we know that $C_G(a)$ has odd order by hypothesis, and so is solvable. Thus $C_G(a) = C_N(a)O_{p'}(C_G(a))$ for each such a. If $O_{p'}(C_G(a)) = 1$ for each such a, then either N is strongly p-embedded in G or else $P \triangleleft G$ (for if $O_p(G) \ne 1$, then $G = O_{2'}(G)C_G(t)$ for t an involution, and $O_{2'}(G)$ has a normal Sylow p-subgroup since $O_{\pi'}(G) = 1$). Otherwise, by the solvable signalizer functor theorem [Glauberman 1976],

$$\theta(A) = \langle O_{p'}(C_G(a)) : a \in A^{\#} \rangle$$

is a solvable π' -group. Then $M = N_G(\theta(A)) < G$. Now

$$N = N_G(P) \le N_G(A) \le M.$$

Also, for each $a \in A^{\#}$, we have $C_G(a) = C_N(a)O_{p'}(C_G(a)) \le M$. For each non-trivial subgroup *B* of *P*, we have

$$N_G(B) \le N_G(\Omega_1(B)) = C_G(\Omega_1(B))N_N(\Omega_1(B)) \le M.$$

Thus *M* is strongly *p*-embedded in this case.

References

- [Brauer and Fowler 1955] R. Brauer and K. A. Fowler, "On groups of even order", *Ann. of Math.* (2) **62** (1955), 565–583. MR 17,580e Zbl 0067.01004
- [Glauberman 1968] G. Glauberman, "A characteristic subgroup of a *p*-stable group", *Canad. J. Math.* **20** (1968), 1101–1135. MR 37 #6365 Zbl 0164.02202
- [Glauberman 1976] G. Glauberman, "On solvable signalizer functors in finite groups", *Proc. London Math. Soc.* (3) **33**:1 (1976), 1–27. MR 54 #5341 Zbl 0342.20008
- [Murray 1999] J. C. Murray, "Blocks of defect zero and products of elements of order *p*", *J. Algebra* **214**:2 (1999), 385–399. MR 2000e:20010 Zbl 0929.20007
- [Murray 2006] J. Murray, "Projective modules and involutions", *J. Algebra* **299**:2 (2006), 616–622. MR 2007b:16057 Zbl 1101.20005
- [Robinson 1983] G. R. Robinson, "The number of blocks with a given defect group", *J. Algebra* **84**:2 (1983), 493–502. MR 85c:20009 Zbl 0519.20011
- [Tsushima 1977] Y. Tsushima, "On the weakly regular *p*-blocks with respect to $O_{p'}(G)$ ", Osaka J. Math. 14:3 (1977), 465–470. MR 57 #438 Zbl 0373.20022

[Wada 1977] T. Wada, "On the existence of *p*-blocks with given defect groups", *Hokkaido Math. J.* **6**:2 (1977), 243–248. MR 56 #3111 Zbl 0372.20014

Communicated by Ronald Mark Solomon Received 2010-06-09 Revised 2010-12-22 Accepted 2011-06-07

g.r.robinson@abdn.ac.uk Institute of Mathematics, University of Aberdeen, Fraser Noble Building, Aberdeen AB243UE, Scotland

Algebra & Number Theory

msp.berkeley.edu/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen Massachusetts Institute of Technology Cambridge, USA EDITORIAL BOARD CHAIR David Eisenbud University of California Berkeley, USA

BOARD OF EDITORS

Georgia Benkart	University of Wisconsin, Madison, USA	Shigefumi Mori	RIMS, Kyoto University, Japan
Dave Benson	University of Aberdeen, Scotland	Raman Parimala	Emory University, USA
Richard E. Borcherds	University of California, Berkeley, USA	Jonathan Pila	University of Oxford, UK
John H. Coates	University of Cambridge, UK	Victor Reiner	University of Minnesota, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Karl Rubin	University of California, Irvine, USA
Brian D. Conrad	University of Michigan, USA	Peter Sarnak	Princeton University, USA
Hélène Esnault	Universität Duisburg-Essen, Germany	Joseph H. Silverman	Brown University, USA
Hubert Flenner	Ruhr-Universität, Germany	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Ronald Solomon	Ohio State University, USA
Andrew Granville	Université de Montréal, Canada	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Joseph Gubeladze	San Francisco State University, USA	J. Toby Stafford	University of Michigan, USA
Ehud Hrushovski	Hebrew University, Israel	Bernd Sturmfels	University of California, Berkeley, USA
Craig Huneke	University of Kansas, USA	Richard Taylor	Harvard University, USA
Mikhail Kapranov	Yale University, USA	Ravi Vakil	Stanford University, USA
Yujiro Kawamata	University of Tokyo, Japan	Michel van den Bergh	Hasselt University, Belgium
János Kollár	Princeton University, USA	Marie-France Vignéras	Université Paris VII, France
Yuri Manin	Northwestern University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Barry Mazur	Harvard University, USA	Andrei Zelevinsky	Northeastern University, USA
Philippe Michel	École Polytechnique Fédérale de Lausan	ne Efim Zelmanov	University of California, San Diego, USA
Susan Montgomery	University of Southern California, USA		

PRODUCTION

contact@msp.org

Silvio Levy, Scientific Editor

See inside back cover or www.jant.org for submission instructions.

The subscription price for 2011 is US \$150/year for the electronic version, and \$210/year (+\$35 shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA.

Algebra & Number Theory (ISSN 1937-0652) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

A NON-PROFIT CORPORATION

Typeset in LAT_FX

Copyright ©2011 by Mathematical Sciences Publishers

Algebra & Number Theory

Volume 5 No. 8 2011

The behavior of Hecke <i>L</i> -functions of real quadratic fields at $s = 0$ BYUNGHEUP JUN and JUNGYUN LEE	1001
The Picard group of a K3 surface and its reduction modulo p ANDREAS-STEPHAN ELSENHANS and JÖRG JAHNEL	1027
Linear determinantal equations for all projective schemes JESSICA SIDMAN and GREGORY G. SMITH	1041
Involutions, weights and <i>p</i> -local structure GEOFFREY R. ROBINSON	1063
Parametrizing quartic algebras over an arbitrary base MELANIE MATCHETT WOOD	1069
Coleman maps and the <i>p</i> -adic regulator ANTONIO LEI, DAVID LOEFFLER and SARAH LIVIA ZERBES	1095
Conjecture de Shafarevitch effective pour les revêtements cycliques ROBIN DE JONG and GAËL RÉMOND	1133