Vol. 5, No. 8, 2011

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11, 1 issue

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
The Picard group of a $K3$ surface and its reduction modulo $p$

Andreas-Stephan Elsenhans and Jörg Jahnel

Vol. 5 (2011), No. 8, 1027–1040
Abstract

We present a method to compute the geometric Picard rank of a K3 surface over . Contrary to a widely held belief, we show that it is possible to verify Picard rank 1 using reduction at a single prime.

Keywords
$K3$ surface, Picard group, Picard scheme, deformation, Artin approximation, Van Luijk's method
Mathematical Subject Classification 2010
Primary: 14C22
Secondary: 14D15, 14J28, 14Q10
Milestones
Received: 31 March 2010
Revised: 1 March 2011
Accepted: 1 April 2011
Published: 5 June 2012
Authors
Andreas-Stephan Elsenhans
Mathematisches Institut
Universität Bayreuth
Universitätsstraße 30
D-95440 Bayreuth
Germany
http://www.staff.uni-bayreuth.de/~btm216
Jörg Jahnel
Fachbereich 6 Mathematik
Universität Siegen
Walter-Flex-Straße 3
D-57068 Siegen
Germany
http://www.uni-math.gwdg.de/jahnel