Vol. 5, No. 8, 2011

Download this article
Download this article For screen
For printing
Recent Issues

Volume 10
Issue 9, 1845–2052
Issue 8, 1601–1843
Issue 7, 1373–1600
Issue 6, 1147–1371
Issue 5, 939–1146
Issue 4, 695–938
Issue 3, 451–694
Issue 2, 215–450
Issue 1, 1–214

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Conjecture de Shafarevitch effective pour les revêtements cycliques

Robin de Jong and Gaël Rémond

Vol. 5 (2011), No. 8, 1133–1143
Abstract

On donne une borne supérieure explicite en fonction de K, S, g pour la hauteur de Faltings de la jacobienne d’une courbe C de genre g, définie sur un corps de nombres K et ayant bonne réduction en dehors d’un ensemble fini S de places de K, pourvu que C puisse s’écrire comme un revêtement cyclique de degré premier de la droite projective. La preuve repose sur le fait que les birapports des points de branchement du revêtement sont des S-unités, donc de hauteur bornée, et donnent un modèle plan de C.

We give an explicit upper bound in terms of K, S, g for the Faltings height of the jacobian of a curve C of genus g, defined over a number field K and with good reduction outside a finite set S of places of K under the condition that C can be written as a cyclic cover of prime order of the projective line. The proof rests on the fact that the cross ratios of the branch points of the cover are S-units, thus of bounded height, and give a plane model of C.

Keywords
conjecture de Shafarevitch, courbe, revêtement, hauteur, réduction, birapport, Shafarevich conjecture, curve, cover, height, reduction, cross ratio
Mathematical Subject Classification 2010
Primary: 11G30
Milestones
Received: 6 January 2011
Revised: 7 March 2011
Accepted: 7 March 2011
Published: 5 June 2012
Authors
Robin de Jong
Mathematisch Instituut
Universiteit Leiden
PO Box 9512
2300 RA Leiden
Netherlands
Gaël Rémond
Institut Fourier, UMR 5582
Université Grenoble I
BP 74
38402 Saint-Martin-d’Hères Cedex
France