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Let OK be a complete discrete valuation ring of residue characteristic p> 0, and
G be a finite flat group scheme over OK of order a power of p. We prove in this
paper that the Abbes–Saito filtration of G is bounded by a linear function of the
degree of G. Assume OK has generic characteristic 0 and the residue field of OK

is perfect. Fargues constructed the higher level canonical subgroups for a “near
from being ordinary” Barsotti–Tate group G over OK . As an application of our
bound, we prove that the canonical subgroup of G of level n ≥ 2 constructed by
Fargues appears in the Abbes–Saito filtration of the pn-torsion subgroup of G.

Let OK be a complete discrete valuation ring with residue field k of characteristic
p > 0 and fraction field K . We denote by vπ the valuation on K normalized by
vπ (K×)= Z. Let G be a finite and flat group scheme over OK of order a power of
p such that G⊗K is étale. We denote by (Ga, a ∈Q≥0) the Abbes–Saito filtration
of G. This is a decreasing and separated filtration of G by finite and flat closed
subgroup schemes. We refer the readers to [Abbes and Saito 2002; 2003; Abbes
and Mokrane 2004] for a full discussion, and to Section 1 for a brief review of
this filtration. Let ωG be the module of invariant differentials of G. The generic
étaleness of G implies that ωG is a torsion OK -module of finite type. Thus, there
exist nonzero elements a1, . . . , ad ∈ OK such that

ωG '

d⊕
i=1

OK /(ai ).

We put deg(G)=
∑d

i=1 vπ (ai ), and call it the degree of G. The aim of this note is
to prove the following:

Theorem 1. Let G be a finite and flat group scheme over OK of order a power of
p such that G⊗ K is étale. Then we have Ga

= 0 for a > p/(p− 1) deg(G).
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Our bound is optimal when G is killed by p. Let Eδ =Spec(OK [X ]/(X p
−δX))

be the group scheme of Tate–Oort over OK . We have deg(Eδ)= vπ (δ), and an easy
computation by Newton polygons gives [Fargues 2009, Lemme 5]:

Ea
δ =

{
Eδ if 0≤ a ≤ p/(p− 1) deg(Eδ),
0 if a > p/(p− 1) deg(Eδ).

However, our bound may be improved when G is not killed by p or G contains
many identical copies of a closed subgroup. In [2006, Theorem 7], Hattori proves
that if K has characteristic 0 and G is killed by pn , then the Abbes–Saito filtration
of G is bounded by that of the multiplicative group µpn , i.e., we have Ga

= 0 if
a> en+e/(p−1) where e is the absolute ramification index of K . Compared with
Hattori’s result, our bound has the advantage that it works in both characteristic 0
and characteristic p, and that it is good if deg(G) is small.

The basic idea used to prove Theorem 1 is approximation of general power
series over OK by linear functions. First, we choose a “good” presentation of the
algebra of G such that the defining equations of G involve only terms of total
degree m(p− 1)+ 1 with m ∈ Z≥0; see Proposition 1.6. The existence of such a
presentation is a consequence of the classical theory on p-typical curves of formal
groups. With this good presentation, we can prove in Lemma 1.9 that the neutral
connected component of the a-tubular neighborhood of G is isomorphic to a closed
rigid ball for a > p/(p−1) deg(G), and the only zero of the defining equations of
G in the neutral component is the unit section.

The motivation of our theorem comes from the theory of canonical subgroups.
We assume that K has characteristic 0, and the residue field k is perfect of charac-
teristic p≥ 3. Let G be a Barsotti–Tate group of dimension d ≥ 1 over OK . Abbes
and Mokrane [2004] were the first to construct the canonical subgroup of level 1 of
G in the case where G comes from an abelian scheme over OK . Then, Tian [2010]
generalized their result to the Barsotti–Tate case. More specifically, it was shown
that if a Barsotti–Tate group G over OK is “near from being ordinary”, a condition
expressed explicitly as a bound on the Hodge height of G (see Section 2.1), then
a certain piece of the Abbes–Saito filtration of G[p] lifts the kernel of Frobenius
of the special fiber of G [Tian 2010, Theorem 1.4]. Later on, Fargues [2009] gave
another construction of the canonical subgroup of level 1 using Hodge–Tate maps,
and his approach also allowed us to construct by induction the canonical subgroups
of level n ≥ 2, i.e., the canonical lifts of the kernel of the n-th iteration of the
Frobenius. He proved that the canonical subgroup of higher level appears in the
Harder–Narasimhan filtration of G[pn

], which was introduced by him in [Fargues
2007]. It is conjectured that the canonical subgroup of higher level also appears
in the Abbes–Saito filtration of G[pn

]. In this paper, we prove this conjecture
as a corollary, Theorem 2.5, of Theorem 1. Fargues’s result on the degree of the
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quotient of G[pn
] by its canonical subgroup of level n (see Theorem 2.4(i)) will

play an essential role in our proof.

Notation. In this paper, OK will denote a complete discrete valuation ring with
residue field k of characteristic p> 0 and fraction field K . Let π be a uniformizer
of OK , and vπ be the valuation on K normalized by vπ (π) = 1. Let K be an
algebraic closure of K , K sep be the separable closure of K contained in K , and
GK be the Galois group Gal(K sep/K ). We also denote by vπ the unique extension
of the valuation to K .

1. Proof of Theorem 1

First, we recall the definition of the filtration of Abbes–Saito for finite flat group
schemes according to [Abbes and Mokrane 2004; Abbes and Saito 2003].

1.1. We denote the Jacobson radical of a semilocal ring R by mR . An algebra R
over OK is called formally of finite type if R is semilocal, complete with respect
to the mR-adic topology, Noetherian, and R/mR is finite over k. We say an OK -
algebra R formally of finite type is formally smooth if each of the factors of R is
formally smooth over OK .

Let FEAOK be the category of finite, flat, and generically étale OK -algebras, and
SetGK be the category of finite sets endowed with a discrete action of the Galois
group GK . We have the fiber functor

F : FEAOK → SetGK ,

which associates to an object A of FEAOK the set Spec(A)(K ) equipped with the
natural action of GK . We define a filtration on the functor F as follows. For each
object A in FEAOK , we choose a presentation

0→ I →A→ A→ 0, (1)

where A is an OK -algebra formally of finite type and formally smooth. For any
a = m/n ∈ Q>0 with m prime to n, we define Aa to be the π -adic completion
of the subring A[I n/πm

] ⊂ A ⊗OK K generated over A by all the f/πm with
f ∈ I n . The OK -algebra Aa is topologically of finite type, and the tensor product
Aa
⊗OK K is an affinoid algebra over K [Abbes and Saito 2003, Lemma 1.4]. We

put Xa
= Sp(Aa

⊗OK K ), which is a smooth affinoid variety over K [Abbes and
Saito 2003, Lemma 1.7]. We call it the a-th tubular neighborhood of Spec(A)
with respect to the presentation (1). The GK -set of the geometric connected com-
ponents of Xa , denoted by π0(Xa(A)K ), depends only on the OK -algebra A and
the rational number a, but not on the choice of the presentation [Abbes and Saito
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2003, Lemma 1.9.2]. For rational numbers b > a > 0, we have natural inclu-
sions of affinoid varieties Sp(A⊗OK K ) ↪→ Xb ↪→ Xa , which induce natural mor-
phisms Spec(A)(K )→ π0(Xb(A)K )→ π0(Xa(A)K ). For a morphism A→ B in
FEAOK , we can choose presentations of A and B so that we have a functorial map
π0(Xa(B)K )→ π0(Xa(A)K ). Hence we get, for any a ∈ Q>0, a (contravariant)
functor

Fa
: FEAOK → SetGK

given by A 7→ π0(Xa(A)K ). We have natural morphisms of functors φa :F→Fa

and φa,b : F
b
→ Fa for rational numbers b > a > 0 with φa = φb,a ◦ φb. For any

A in FEAOK , we have

F(A)
∼
−→ lim
←−

a∈Q>0

Fa(A)

[Abbes and Saito 2002, 6.4]; if A is a complete intersection over OK , the map
F(A)→ Fa(A) is surjective for any a [Abbes and Saito 2002, 6.2].

1.2. Let G = Spec(A) be a finite and flat group scheme over OK such that G⊗ K
is étale over K , and a ∈Q>0. The group structure of G induces a group structure
on Fa(A), and the natural map G(K ) = F(A)→ Fa(A) is a homomorphism of
groups. Hence, the kernel Ga(K ) of G(K )→Fa(A) is a GK -invariant subgroup of
G(K ), and it defines a closed subgroup scheme Ga

K of the generic fiber G⊗K . The
scheme theoretic closure of Ga

K in G, denoted by Ga , is a closed subgroup of G
finite and flat over OK . Putting G0

=G, we get a decreasing and separated filtration
(Ga, a ∈ Q≥0) of G by finite and flat closed subgroup schemes. We call it the
Abbes–Saito filtration of G. For any real number a≥ 0, we put Ga+

=
⋃

b∈Q>a
Ga .

Assume G is connected, i.e., the ring A is local. Let

0→ I → OK [[X1, . . . , Xd ]] → A→ 0 (2)

be a presentation of A by the ring of formal power series such that the unit section
of G corresponds to the point (X1, . . . , Xd)= (0, . . . , 0). Since A is a relative com-
plete intersection over OK , I is generated by d elements f1, . . . , fd . For a ∈Q>0,
the K -valued points of the a-th tubular neighborhood of G are given by

Xa(K )=
{
(x1, . . . , xd) ∈md

K
| vπ ( fi (x1, . . . , xd))≥ a for 1≤ i ≤ d

}
, (3)

where mK is the maximal ideal of OK . The subset G(K ) ⊂ Xa(K ) corresponds
to the zeros of the fi ’s. Let Xa

0 be the connected component of Xa containing 0.
Then the subgroup Ga(K ) is the intersection of Xa

0(K ) with G(K ).
The basic properties of Abbes–Saito filtration that we need are summarized as

follows.
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Proposition 1.3 [Abbes and Mokrane 2004, 2.3.2, 2.3.5]. Let G and H be finite
and flat group schemes, generically étale over OK , and f :G→ H be a homomor-
phism of group schemes.

(i) The closed subgroup G0+ is the connected component of G, and we have
(G0+)a = Ga for any a ∈Q>0.

(ii) Given a ∈ Q>0, f induces a canonical homomorphism f a
: Ga
→ Ha . If f

is flat and surjective, then f a(K ) : Ga(K )→ Ha(K ) is surjective.

Now we return to the proof of Theorem 1.

Lemma 1.4. Let R be a Zp-algebra, X be a formal group of dimension d over R
such that Lie(X) is a free R-module of rank d. Then

(i) the ring Zp acts naturally on X, and its image in EndR(X) lies in the center of
EndR(X);

(ii) there exist parameters (X1, . . . , Xd) of X such that

[ζ ](X1, . . . , Xd)= (ζ X1, . . . , ζ Xd)

for any (p−1)-st root of unity ζ ∈ Zp.

Proof. This is actually a classical result on formal groups. In the terminology
of [Hazewinkel 1978], the formal group X comes from the base change of Xuniv

defined by the d-dimensional universal p-typical formal group law (denoted by
FV (X, Y ) in [Hazewinkel 1978, 15.2.8]) over

Zp[V ] = Zp[Vi ( j, k); i ∈ Z≥0, j, k = 1, . . . , d],

where the Vi ( j, k) are free variables. So we are reduced to proving the lemma
for Xuniv. If X and Y stand for the column vectors (X1, . . . , Xd) and (Y1, . . . , Yd)

respectively, the formal group law on Xuniv is determined by

FV (X, Y )= f −1
V ( fV (X)+ fV (Y )), with fV (X)=

∞∑
i=0

ai (V )X pi
,

where the ai (V ) are certain d×d matrices with coefficients in Qp[V ] with a1(V )
invertible, X pi

stands for (X pi

1 , . . . , X pi

d ), and f −1
V is the unique d-tuple of power

series in (X1, . . . , Xd) with coefficients in Qp[V ] such that f −1
V ◦ fV = 1; see

[Hazewinkel 1978, 10.4]. We note that FV (X, Y ) is a d-tuple of power series
with coefficient in Zp[V ], although fV (X) has coefficients in Qp[V ] [Hazewinkel
1978, 10.2(i)]. Via approximation by integers, we see easily that the operation
of multiplication by an element ξ ∈ Zp given by [ξ ](X) = f −1

V (ξ fV (X)) is well
defined. This proves (i). Statement (ii) is an immediate consequence of the fact
that fV (X) contains only p-powers of X . �
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Remark 1.5. The referee gives the following alternative proof of this lemma via
the Cartier theory of formal groups. Let X be the formal group over R as in the
lemma. We denote by X(R[[T ]]) the group of R[[T ]]-valued points of X whose
reduction modulo T is the neutral element 0 ∈ X(R). A formal group law over
X is a datum (X; γ1, . . . , γd), where γ1, . . . , γd ∈ X(R[[T ]]) are such that their
image in X(R[T ]/T 2) forms a basis for Lie(X). In particular, (γi )1≤i≤d estab-
lish an isomorphism X' Spf(R[[X1, . . . , Xd ]]) of formal schemes over R. Recall
that X(R[[T ]]) is the Cartier module associated with X over the big Cartier ring
(denoted by Cart(R) in [Chai 2004, 2.3]). Since R is a Zp-algebra, the Cartier
theory [Chai 2004, 4.3, 4.4] implies that there exists a p-typical formal group law
(X; γ1, . . . , γd) over X, i.e., we have εp · γi = 0, where

εp =
∏
` prime
(`,p)=1

(1− 1
`
V`F`)

is Cartier’s idempotent in Cart(R); see [Chai 2004, 4.1]. Let 1 : Zp = W (Fp)→

W (Zp) be the Cartier homomorphism given by (x0, x1, . . . ) 7→ ([x0], [x1], . . . ),
where xn ∈ Fp and [xn] denotes its Teichmüller lift. Then we get a natural map
u : Zp

1
−→W (Zp)→W (R). For a (p−1)-st root of unity ζ ∈ Zp, we have u(ζ )=

[ζ ] ∈W (R). Note that for any a ∈ R and 1≤ i ≤ d, the p-typical curve [a]·γi is the
image of γi under the map X(R[[T ]])→X(R[[T ]]) induced by T 7→ aT . Applying
this fact to u(ζ ) · γi = [ζ ] · γi , one obtains the lemma immediately.

Proposition 1.6. Let G = Spec(A) be a connected finite and flat group scheme
over OK of order a power of p. Then there exists a presentation of A of type (2)
such that the defining equations fi for 1≤ i ≤ d have the form

fi (X1, . . . , Xd)=

∞∑
|n|≥1

ai,n Xn with ai,n = 0 if (p− 1) - (|n| − 1),

where n= (n1, . . . , nd)∈ (Z≥0)
d are multiindexes, |n| =

∑d
j=1 n j , and Xn is short

for
∏d

j=1 Xn j
j .

Proof. By a theorem of Raynaud [Berthelot et al. 1982, 3.1.1], there is a projective
abelian variety V over OK , and an embedding of group schemes j : G ↪→ V . Let
V ′ be the quotient of V by G. Let X, Y be, respectively, the formal completions
of V and V ′ along their unit sections. They are formal groups over OK . Since
G is connected, it is identified with the kernel of the natural isogeny φ : X→ Y.
Let (X1, . . . , Xd) (respectively (Y1, . . . , Yd )) be parameters of X (respectively Y)
satisfying the preceding lemma. The isogeny φ is thus given by

(X1, . . . , Xd) 7→ ( f1(X1, . . . , Xd), . . . , fd(X1, . . . , Xd)),
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where fi =
∑
|n|≥1 ai,n Xn

∈ OK [[X1, . . . , Xd ]]. Since for any (p − 1)-th root of
unity ζ ∈ Zp we have fi (ζ X1, . . . , ζ Xd) = ζ fi (X1, . . . , Xd), it’s easy to see that
ai,n = 0 if (p− 1) - (|n| − 1). �

Remark 1.7. As pointed out by the referee, we can avoid using Raynaud’s deep
theorem to realize G as the kernel of an isogeny of formal groups over OK . In fact,
by the biduality formula G ' (G D)D , where G D denotes the Cartier dual of G, we
have a canonical closed embedding u :G ↪→U =ResG D/S(Gm) of group schemes
over S = Spec(OK ). Here, “ResG D/S” means Weil’s restriction of scalars, so U is
an affine smooth group scheme over S. Since the quotient of an affine scheme by a
finite flat group scheme is always representable by a scheme [Raynaud 1967], we
can consider the quotient U ′ = U/G and the formal groups X,Y associated with
U and U ′, so that G is the kernel of the natural isogeny φ : X→ Y.

1.8. Proof of Theorem 1. Let H = G0+ be the connected component of G. By
1.3(i), we have Ga

= Ha for a ∈ Q>0. The exact sequence of finite flat group
schemes 0→ H → G→ G/H → 0 induces a long exact sequence of finite OK -
modules

0→ H−1(`G/H )→ H−1(`G)→ H−1(`H )→ ωG/H → ωG→ ωH → 0,

where `G means the co-Lie complex of G [Berthelot et al. 1982, 3.2.9]. Since
the generic fiber of G/H is étale, it’s easy to see that Thus, it follows that 0→
ωG/H→ωG→ωH→0 is exact. Since G/H is étale, we have ωG/H =0 and hence
deg(G)= deg(H). Up to replacing G by H , we may assume that G = Spec(A) is
connected.

We choose a presentation of A as in Proposition 1.6 so that we have an isomor-
phism of OK -algebras

A ' OK [[X1, . . . , Xd ]]/( f1, . . . , fd)

where

fi (X1, . . . , Xd)=

d∑
j=1

ai, j X j +
∑
|n|≥p

ai,n Xn.

As A is finite as an OK -module, we have

�1
A/OK
= �̂1

A/OK
'

( d⊕
i=1

A d X i

)
/(d f1, . . . , d fd).

Since ωG ' e∗(�1
A/OK

), where e is the unit section of G, we get

ωG '

( d⊕
i=1

OK d X i

) / ( ∑
1≤ j≤d

ai, j d X j

)
1≤i≤d

.
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In particular, if U denotes the matrix (ai, j )1≤i, j≤d , then deg(G)= vπ (det(U )).
For any rational number λ, we denote by Dd(0, |π |λ) (respectively D̊d(0, |π |λ))

the rigid analytic closed (respectively open) disk of dimension d over K consisting
of points (x1, . . . , xd) with vπ (xi )≥ λ (respectively vπ (xi ) > λ) for 1≤ i ≤ d; we
put Dd(0, 1)=Dd(0, |π |0) and D̊d(0, 1)= D̊d(0, |π |0). Let a> p/(p−1) deg(G)
be a rational number, Xa be the a-th tubular neighborhood of G with respect to the
chosen presentation. By (3), we have a cartesian diagram of rigid analytic spaces

Xa � � //

f
��

D̊d(0, 1)

f=( f1,..., fd )

��
Dd(0, |π |a) � � // D̊d(0, 1),

(4)

where f (y1, . . . , yd) = ( f1(y1, . . . , yd), . . . , fd(y1, . . . , yd)) and horizontal ar-
rows are inclusions. Let Xa

0 be the connected component of Xa containing 0.
By the discussion below (3), we just need to prove that 0 is the only zero of the fi

contained in Xa
0 .

Let V = (bi, j )1≤i, j≤d be the unique d × d matrix with coefficients in OK such
that U V = V U = det(U )Id , where Id is the d × d identity matrix. If Ad

K denotes
the d-dimensional rigid affine space over K , then V defines an isomorphism of
rigid spaces

g : Ad
K → Ad

K , (x1, . . . , xd) 7→
( d∑

j=1

b1, j x j , . . . ,

d∑
j=1

bd, j x j

)
.

It’s clear that g(D̊d(0, 1)) ⊂ D̊d(0, 1), so that f is defined on g(D̊d(0, 1)). The
composite morphism f ◦ g : D̊d(0, 1)→ D̊d(0, 1) is given by

(x1, . . . , xd) 7→ (det(U )x1+ R1, . . . , det(U )xd + Rd), (5)

where Ri =
∑
|n|≥p ai,n

∏d
j=1(

∑d
k=1 b j,k xk)

n j involves only terms of order ≥ p for
1≤ i ≤ d . For 1≤ i ≤ d , we have basic estimations

vπ (det(U )xi )= deg(G)+ vπ (xi ) and vπ (Ri )≥ p min
1≤ j≤d

{vπ (x j )}. (6)

Lemma 1.9. For any rational number a > p/(p− 1) deg(G), the map g induces
an isomorphism of affinoid rigid spaces

g : Dd(0, |π |a−deg(G))
∼
−→ Xa

0 .

Assuming this lemma for a moment, we can complete the proof of Theorem 1
as follows. Consider the composite

h = f ◦ g|Dd (0,|π |a−deg(G)) : Dd(0, |π |a−deg(G))
∼
−→ Xa

0 ↪→ Xa f
−→ Dd(0, |π |a).



An upper bound on the Abbes–Saito filtration for finite flat group schemes 239

To complete the proof of Theorem 1, we just need to prove that h−1(0)= {0}. Let
(x1, . . . , xd) be a point of Dd(0, |π |a−deg(G)), and (z1, . . . , zd) = h(x1, . . . , xd).
We may assume vπ (x1) = min1≤i≤d{vπ (xi )}. We have vπ (x1) ≥ a − deg(G) >
1/(p− 1) deg(G) by the assumption on a. It follows thus from (6) that

vπ (R1)≥ pvπ (x1) > deg(G)+ vπ (x1)= vπ (det(U )x1).

Hence, we deduce from (5) that vπ (z1)= deg(G)+vπ (x1). In particular, z1 = 0 if
and only if x1 = 0. Therefore, we have h−1(0) = {0}. This achieves the proof of
Theorem 1.

Proof of Lemma 1.9. Let ε be any rational number with

0< ε < (p− 1)/pa− deg(G).

We will prove that

Dd(0, |π |a−deg(G))= Dd(0, |π |a−deg(G)−ε)∩ g−1(Xa).

This will imply that Dd(0, |π |a−deg(G)) is a connected component of g−1(Xa).
Since g : Ad

K → Ad
K is an isomorphism, the lemma will follow immediately.

We prove first the inclusion ⊂. It suffices to show g(Dd(0, |π |a−deg(G)))⊂ Xa .
Let (x1, . . . , xd) be a point of Dd(0, |π |a−deg(G)). By (4), we have to check that
(z1, . . . , zd) = f (g(x1, . . . , xd)) lies in Dd(0, |π |a). We obtain from (6) that
vπ (det(U )xi ) = deg(G) + vπ (xi ) ≥ a and vπ (Ri ) ≥ p(a − deg(G)). As a >
p/(p− 1) deg(G), we have vπ (Ri ) > a. It follows from (5) that

vπ (zi )≥min{vπ (det(U )xi ), vπ (Ri )} ≥ a.

This proves (z1, . . . , zd)⊂ Dd(0, |π |a); hence g(Dd(0, |π |a−deg(G)))⊂ Xa .
To prove the inclusion ⊃, we just need to verify that every point which is in

Dd(0, |π |a−deg(G)−ε) but outside Dd(0, |π |a−deg(G)) does not lie in g−1(Xa). Let
(x1, . . . , xd) be such a point. We may assume that

a−deg(G)−ε≤vπ (x1)<a−deg(G) and vπ (xi )≥a−deg(G)−ε for 2≤ i≤d.
(7)

Let
(z1, . . . , zd)= (det(U )x1+ Rd , . . . , det(U )xd + Rd)

be the image of (x1, . . . , xd) under the composite f ◦ g. According to (4), the
proof will be completed if we can prove that (z1, . . . , zd) is not in Dd(0, |π |a).
From (6) and (7), we get vπ (det(U )x1) = deg(G) + vπ (x1) < a and vπ (R1) ≥

p(a−deg(G)−ε). Thanks to the assumption on ε, we have p(a−deg(G)−ε)>a,
so vπ (z1) = vπ (det(U )x1) < a. This shows that (z1, . . . , zd) is not in g−1(Xa);
hence the proof of the lemma is complete. �
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2. Applications to canonical subgroups

In this section, we suppose the fraction field K has characteristic 0 and the residue
field k is perfect of characteristic p ≥ 3. Let e be the absolute ramification index
of OK . For any rational number ε > 0, we denote by OK ,ε the quotient of OK by
the ideal consisting of elements with p-adic valuation greater or equal to ε.

2.1. First we recall some results on the from [Abbes and Mokrane 2004; Tian
2010; Fargues 2009]. Let vp : OK /p→ [0, 1] be the truncated p-adic valuation
(with vp(0)= 1). Let G be a truncated Barsotti–Tate group of level n ≥ 1 nonétale
over OK , and G1 = G⊗OK (OK /p). The Lie algebra of G1 denoted by Lie(G1) is
a finite free OK /p-module. The Verschiebung homomorphism VG1 : G

(p)
1 → G1

induces a semilinear endomorphism ϕG1 of Lie(G1). We choose a basis of Lie(G1)

over OK /p, and let U be the matrix of ϕ under this basis. We define the Hodge
height of G, denoted by h(G), to be the truncated p-adic valuation of det(U ). We
note that the definition of h(G) does not depend on the choice of U . The Hodge
height of G is an analog of the Hasse invariant in mixed characteristic, and we
have h(G)= 0 if and only if G is ordinary.

Theorem 2.2 [Fargues 2009, théorème 4]. Let G be a truncated Barsotti–Tate
group of level 1 over OK of dimension d ≥ 1 and height h. Assume h(G) < 1/2 if
p ≥ 5 and h(G) < 1/3 if p = 3.

(i) For any rational number ep/(p− 1)h(G) < a ≤ ep/(p− 1)(1− h(G)), the
finite flat subgroup Ga of G given by the Abbes–Saito filtration has rank pd .

(ii) Let C be the subgroup Gep/(p−1)(1−h(G)) of G. We have deg(G/C)= e h(G).

(iii) The subgroup C ⊗ OK ,1−h(G) coincides with the kernel of the Frobenius ho-
momorphism of G ⊗ OK ,1−h(G). Moreover, for any rational number ε with
h(G)/(p− 1) < ε ≤ 1− h(G), if H is a finite and flat closed subgroup of G
such that H ⊗ OK ,ε coincides with the kernel of Frobenius of G ⊗ OK ,ε , then
we have H = C.

The subgroup C in this theorem, when it exists, is called the canonical subgroup
(of level 1) of G.

Remark 2.3. The conventions here are slightly different from those in [Fargues
2009]. The Hodge height is called Hasse invariant there, while we choose to follow
the terminologies in [Abbes and Mokrane 2004] and [Tian 2010]. Our index of
Abbes–Saito filtration and the degree of G are e times those in [Fargues 2009].

Part (iii) of Theorem 2.2 is not explicitly stated in [Fargues 2009, théorème 4],
but it’s an easy consequence of Proposition 11 in that paper.

For the canonical subgroups of higher level, we have this:
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Theorem 2.4 [Fargues 2009, théorème 6]. Let G be a truncated Barsotti–Tate
group of level n over OK of dimension d ≥ 1 and height h. Assume h(G) < 1/3n if
p = 3 and h(G) < 1/(2pn−1) if p ≥ 5.

(i) There exists a unique closed subgroup of G that is finite and flat over OK and
satisfies the following:

• Cn(K ) is free of rank d over Z/pnZ.
• For each integer i with 1 ≤ i ≤ n, let Ci be the scheme theoretic closure

of Cn(K )[pi
] in G. Then the subgroup Ci ⊗OK ,1−pi−1h(G) coincides with

the kernel of the i-th iterated Frobenius of G⊗OK ,1−pi−1h(G).

(ii) We have deg(G/Cn)= e(pn
− 1)/(p− 1) h(G).

The subgroup Cn in the theorem above is called the canonical subgroup of level n
of G. Fargues actually proves that Cn is a certain piece of the Harder–Narasimhan
filtration of G. The aim of this section is to show that Cn appears also in the
Abbes–Saito filtration.

Theorem 2.5. Let G be a truncated Barsotti–Tate group of level n over OK satis-
fying the assumptions in Theorem 2.4, and Cn be its canonical subgroup of level n.
Then for any rational number a satisfying

ep(pn
− 1)/(p− 1)2h(G) < a ≤ ep/(p− 1)(1− h(G)),

we have Ga
= Cn .

Proof. We proceed by induction on n. If n= 1, this is Theorem 2.2(i). We suppose
n ≥ 2 and the theorem is valid for truncated Barsotti–Tate groups of level n − 1.
For each integer i with 1 ≤ i ≤ n, let Gi denote the scheme theoretic closure
of G(K )[pi

] in G, and Ci the scheme theoretic closure of Cn(K )[pi
] in Cn . By

Theorem 2.4(i), it’s clear that Ci is the canonical subgroup of level i of Gi . Let a be
a rational number with (ep(pn

−1)/(p−1)2)h(G) < a ≤ (ep/(p−1))(1−h(G)).
By the induction hypothesis and the functoriality of Abbes–Saito filtration 1.3(ii),
we have Cn−1(K ) = Ga

n−1(K ) ⊂ Ga(K ), and the image of Ga(K ) in G1(K ) is
exactly C1(K )= Ga

1(K ). Note that we have a commutative diagram

0 // Cn−1(K ) //
� _

��

Cn(K ) //
� _

��

C1(K ) //
� _

��

0

0 // Gn−1(K ) // G(K )
×pn−1

// G1(K ) // 0,

where the rows are exact sequences of groups and the vertical arrows are natural
inclusions. So we have Cn(K )⊂Ga(K ). On the other hand, Theorems 1 and 2.4(ii)



242 Yichao Tian

imply that (G/Cn)
a(K )= 0 since

a >
ep(pn

− 1)
(p− 1)2

h(G)=
p

p− 1
deg(G/Cn).

Therefore, we get Ga(K ) ⊂ Cn(K ) by Proposition 1.3(ii). This completes the
proof. �
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