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On the smallest number of generators and
the probability of generating an algebra
Rostyslav V. Kravchenko, Marcin Mazur and Bogdan V. Petrenko

In this paper we study algebraic and asymptotic properties of generating sets of
algebras over orders in number fields. Let A be an associative algebra over an
order R in an algebraic number field. We assume that A is a free R-module of fi-
nite rank. We develop a technique to compute the smallest number of generators
of A. For example, we prove that the ring M3(Z)

k admits two generators if and
only if k ≤ 768. For a given positive integer m, we define the density of the set
of all ordered m-tuples of elements of A which generate it as an R-algebra. We
express this density as a certain infinite product over the maximal ideals of R,
and we interpret the resulting formula probabilistically. For example, we show
that the probability that 2 random 3×3 matrices generate the ring M3(Z) is equal
to (ζ(2)2ζ(3))−1, where ζ is the Riemann zeta function.
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1. Introduction

Let R be a commutative ring with 1. Recall that a set S generates an associative
unital R-algebra A if the set of all monomials in the elements of S (including the
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degree-zero monomial 1) spans A as an R-module. This paper lays a foundation
for our program to investigate properties of the sets of generators of R-algebras A
whose additive group is a finitely generated R-module. A substantial part of our
results grew out of the following question: given a ring A whose additive group is
a free abelian group of finite rank and a positive integer k, what is the probability
that k random elements of A generate it as a Z-algebra? We will show that this
question can be stated in a rigorous way and that it has a very interesting answer.
The following formulas, in which ζ denotes the Riemann zeta function, are special
cases of our results (see Theorem 8.1):

• The probability that m random 2×2 matrices generate the ring M2(Z) is equal
to 1/(ζ(m− 1)ζ(m)).

• The probability that 2 random 3×3 matrices generate the ring M3(Z) is equal
to 1/(ζ(2)2ζ(3)).

• The probability that 3 random 3×3 matrices generate the ring M3(Z) is equal
to

1
ζ(2)ζ(3)ζ(4)

∏
p

(
1+

1
p2 +

1
p3 −

1
p5

)
,

where the product is taken over all prime numbers.

Our main results are obtained for algebras A over an order R in some number
field such that A is a free R-module of finite rank. It is not hard though to extend the
results to the case when R is an order in a global field of positive characteristic (we
will address this in a follow-up paper). Roughly speaking, a choice of an integral
basis of R and of a basis of A over R allows us to introduce integral coordinates
on all Cartesian powers Ak , k ∈N. For any subset S of Ak and any N we consider
the finite set S(N ) of all points whose coordinates are in the interval [−N , N ]. We
define the density den(S) of S as the limit

lim
N→∞

|S(N )|
|Ak(N )|

(we do not claim that it always exists). Our goal is to calculate the density of the
set of generators of A.

Definition 1.1. Let A be an algebra over a commutative ring R, and let k be a
positive integer. We define the set Genk(A, R) as follows:

Genk(A, R)= {(a1, . . . , ak) ∈ Ak
: a1, . . . , ak generate A as an R-algebra}.

For the rest of the introduction, we assume that R is an order in a number field
K and A is an R-algebra which is free of finite rank m as an R-module (unless
stated otherwise).
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In Theorem 3.2 we prove that the set Genk(A, R) has density, which we denote
by denk(A), and that it can be computed locally as follows:

denk(A)=
∏

p∈m-Spec R

|Genk(A/pA, R/p)|
|R/p|mk , (1)

where m-Spec R denotes the set of all maximal ideals of R. In order to prove
Theorem 3.2 we had to extend this local-to-global formula for density to a sub-
stantially larger class of sets. This led us to Theorem 3.3, which is of independent
interest and has potential applications to various other questions. Theorem 3.3
deals with a finite set f1, . . . , fs of polynomials in R[x1, . . . , xn] and the set S of
all a ∈ Rn such that the ideal generated by f1(a), . . . , fs(a) is R. It asserts that
the set S has density den(S) given by the formula

den(S)=
∏

p∈m-Spec R

(
1−

tp
|R/p|n

)
,

where tp is the number of common zeros in (R/p)n of the polynomials f1 . . . , fs

considered as polynomials over the field R/p.
As a first application of our results we answer in Section 3A the following ques-

tion posed by Ilya Kapovich: what is the probability that m random elements of
a free abelian group of rank n ≤ m generate the group? Our results provide a
rigorous proof of the following answer: the probability in question is equal to(∏m

k=m−n+1 ζ(k)
)−1, where ζ is the Riemann zeta function (when m = n this

product should be interpreted as 0).
In Section 5 we show how (1) can be used to get information about the smallest

number of generators of an R-algebra A.

Definition 1.2. Let A be a finitely generated R-algebra. By r(A, R) we denote the
smallest number of generators of A as an R-algebra.

In Theorem 5.2 we prove that if k is an integer such that k− 1≥ r0 := r(A⊗R

K , K ) and k≥ rp := r(A/pA, R/pR) for every maximal ideal p of R then denk(A)
> 0. Let r f be the largest among the numbers rp. Clearly, if denk(A) > 0 then
A can be generated by k elements. Using this remark and Theorem 5.2 we show
in Theorem 5.5 that the smallest number of generators of A coincides with rf if
rf >r0 and is either r0 or r0+1 otherwise. A special case of this result, when R=Z,
was kindly communicated to us by H. W. Lenstra (private communication, 2007).
Note that when rf = r0, we only know that r is either r0 or r0+1. Nevertheless, it
is often possible to prove that denr0(A) > 0 and conclude that r = r0. For example,
we have been unable for a long time to find the largest integer n such that the
product M3(Z)

n of n copies of the matrix ring M3(Z) admits two generators as
a Z-algebra. We knew that n ≤ 768, but any attempts to construct explicitly two
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generators for such large values of n have been beyond our computational ability.
It turns out, though, that we can prove that den2(M3(Z)

768) > 0, hence we get a
(nonconstructive) proof that n = 768 (see Theorem 8.2).

In Theorem 5.7 we extend Lenstra’s original approach to obtain a similar for-
mula for the smallest number of generators of algebras over any commutative ring
R of dimension at most 1. This formula is reminiscent of the Forster–Swan theo-
rem on the number of generators of modules over Noetherian commutative rings
[Matsumura 1986, Theorem 5.8]. By analogy with this result, in Conjecture 5.8
we propose an extension of our formula to algebras over general Noetherian rings.

In order to use (1) in concrete cases one needs to be able to compute the num-
bers |Genk(A/pA, R/p)|. This leads us to the results of Sections 6 and 7, where
we study these numbers under the assumption that A/pA is a product of matrix
algebras. After various reductions in Section 6 we derive explicit formulas for
|Genk(Mn(F), F)|, where F is a finite field and n=2, 3. Furthermore, we get a lower
bound when n > 3 (Proposition 7.9). As a corollary, we prove that if m ≥ 2 then
the probability that m matrices in Mn(Fq), chosen under the uniform distribution,
generate the Fq -algebra Mn(Fq) tends to 1 as q+m+n→∞ (see Corollary 7.10).
This result proves and vastly generalizes the conjectural formula [Petrenko and
Sidki 2007, (17), p. 27]. The case of n = 2 and some of the results of Section 6
have been discussed earlier in [Kravchenko and Petrenko 2006], which was the
starting point for the present work. This part of our paper has been influenced by
ideas of Philip Hall [1936].

In Section 8 the results of Sections 6 and 7 are applied to finite products of
matrix algebras over the ring of integers in a number field.

To state some of our remaining results, we need the following notation.

Definition 1.3. Let m, n ≥ 1 be integers and let A be an R-algebra. We introduce
the following notation:

(i) genm(A, R) is the largest k ∈ Z∪ {∞} such that r(Ak, R)≤ m;

(ii) genm,n(q)= genm(Mn(Fq), Fq);

(iii) gm,n(q)= |Genm(Mn(Fq), Fq)|.

We show in Proposition 6.2 that

genm,n(q)=
gm,n(q)
|PGLn(Fq)|

and r(Mn(Fq)
1+genm,n(q), Fq)= m+ 1 by Corollary 2.15.

Here are some special cases of our results in Section 8:

(1) genm,2(q)=
q2m−1(qm

− 1)(qm
− q)

q2− 1
.
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(2) genm(M2(Z),Z)= genm,2(2)=
22m−1(2m

− 2)(2m
− 1)

3
.

(3) genm,3(q)=
q3m−3(qm

− 1)(qm
− q)(qm

+ q)

(q − 1)2(q + 1)(q2+ q + 1)
×(q3m

− qm+2
+ q2m

− 2qm+1
− qm

+ q3
+ q2).

(4) genm(M3(Z),Z)= genm,3(2)

=
(2m
−2)(2m

−1)(2m
+2)(23m

+22m
−2m+3

−2m
+12)23m−3

21
.

The techniques we have developed so far can be applied to any finitely generated
Z-algebra whose reduction modulo every prime is a direct sum of matrix rings over
finite fields. However, among maximal orders in semisimple algebras over Q the
only such algebras are the maximal orders in matrix rings by the Hasse–Brauer–
Noether–Albert theorem. In order to extend our results to maximal orders in other
semisimple algebras we need to obtain formulas for the number of generators of
algebras over finite fields which have nontrivial Jacobson radical. This will be
done in a subsequent paper. Let us just mention here a special case, when A is
a maximal order in the quaternion algebra Q(i, j) (i2

= −1 = j2). For any odd
prime p we have A/p A ∼= M2(Fp), so A and M2(Z) differ only at the prime 2
and at infinity. Note that A/2A is a commutative algebra over F2 whose quotient
modulo the Jacobson radical is the field F4. Since F16

4 cannot be generated by two
elements, we see that A16 requires at least three generators. It can be verified that
A15 admits two generators. So A can be distinguished from M2(Z) by counting
the smallest number of generators of powers of these two algebras. Note that for
the integral quaternions Z[i, j] already Z[i, j]4 requires at least three generators.
In a subsequent paper we will extend these observations to a much larger class of
orders.

In another work in progress we apply the techniques developed in the present
paper to study generators of various nonassociative algebras. Our technique ap-
plies to any finitely generated R-module equipped with an R-bilinear form, but we
focus mainly on Lie algebras and Jordan algebras. For example, we show that the
probability that m random elements generate the Lie ring sl2(Z) of 2× 2 integer
matrices with zero trace is equal to

1
ζ(m− 1)ζ(m)

.

2. Preliminary results

Let R be a commutative ring with 1. Unless stated otherwise, all R-algebras are
assumed to be associative, unital, and finitely generated as an R-module.
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In this section we collect several fairly straightforward observations which are
used through the paper. Let A be an R-algebra. Recall that elements a1, . . . , ak

generate A as an R-algebra if all the (noncommutative) monomials in a1, . . . , ak ,
including the degree-zero monomial 1, generate A as an R-module. We say that
a1, . . . , ak strongly generate A as an R-algebra if already all the (noncommutative)
monomials in a1, . . . , ak of positive degree generate A as an R-module.

Lemma 2.1. Suppose that there exists no R-algebra homomorphism A → R/I
for any proper ideal I of R. Then any set that generates A as an R-algebra also
strongly generates A.

Proof. Suppose that a1, . . . , ak generate A as an R algebra and let J be the R
submodule of A generated by all the (noncommutative) monomials in a1, . . . , ak

of positive degree. Then R · 1+ J = A. Since J is closed under multiplication, it
is a two-sided ideal of A and A/J ∼= R/(R∩ J ). By our assumption, R∩ J cannot
be a proper ideal of R, so R · 1⊂ J and J = A. �

Example 2.2. Let the algebra A =
∏n

i=1 Mmk (R) be a finite product of matrix
algebras over R, with each mi≥2. Then any set which generates A as an R-algebra
also strongly generates A. This is a direct consequence of Lemma 2.1 and the
remark that A has no nontrivial commutative quotients.

In this paper we decided to focus on unital algebras and we do not discuss strong
generators. However most of our results can be easily modified to sets of strong
generators and algebras which are not necessarily unital. One can also reduce
questions about strong generators to generators using the following observation.
Recall that if A is an R-algebra (unital or not) we can construct a unital algebra
A(1) which is R⊕ A as an R-module with multiplication defined by (r, a)(s, b)=
(rs, ab+ rb+ sa). We have the following lemma.

Lemma 2.3. Let a1, . . . , ak ∈ A. Then the following conditions are equivalent:

(1) a1, . . . , ak strongly generate A as an R-algebra.

(2) (r1, a1), . . . , (rk, ak) generate A(1) as an R-algebra for any elements r1, . . . ,

rk ∈ R.

(3) (r1, a1), . . . , (rk, ak) generate A(1) as an R-algebra for some elements r1, . . . ,

rk ∈ R.

Proof. We identify A with the ideal {0}⊕ A in A(1). Assume (1) and let r1, . . . , rk

be in R. Since (0, ai ) = (ri , ai )− ri (1, 0), the R-subalgebra B of A(1) generated
by (r1, a1), . . . , (rk, ak) contains all monomials in (0, a1), . . . , (0, ak), hence it
contains A. Since B also contains R⊕{0}, we see that A(1)= B. Thus condition (1)
indeed implies (2). Condition (3) is clearly a consequence of (2). Assume (3)
and let C be the subalgebra of A strongly generated by a1, . . . , ak . Note that
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any monomial of positive degree in (r1, a1), . . . , (rk, ak) is of the form (r, c) for
some r ∈ R and c ∈ C . By the assumption in (3), for any a ∈ A there is r ∈ R
such that (r, a) is an R-linear combination of monomials of positive degree in
(r1, a1), . . . , (rk, ak). It follows that a ∈ C . Thus C = A, which shows that (1)
follows from (3). �

The following observation is straightforward.

Lemma 2.4. Let A be an R-algebra. For any ideal I of R we have

A(1)/I A(1) = (A/I A)(1),

where the adjunction of unity on the right is in the category of R/I -algebras.

Definition 2.5. For an R-algebra A and positive integer k we denote by Genk(A, R)
the set of all k-tuples (a1, . . . , ak) ∈ Ak which generate A as an R-algebra. When
there is no danger of confusion, we write Genk(A) for Genk(A, R).

Lemma 2.6. The elements a1, . . . , ak generate A as an R-algebra if and only if
for every maximal ideal m of R the images of a1, . . . , ak in A⊗R R/m = A/mA
generate A/mA as an R/m-algebra.

Proof. Let J be the R submodule of A generated by all the (noncommutative)
monomials in a1, . . . , ak . By [Matsumura 1986, Theorem 4.8], A = J if and only
if A/J ⊗R R/m= 0 for every maximal ideal m of R. The result follows from the
simple remark that A/J ⊗R R/m = 0 if and only if the images of a1, . . . , ak in
A/mA generate it as an R/m-algebra. �

Lemma 2.7. Let R be a field and let A be an R-algebra of dimension m. The ele-
ments a1, . . . , ak generate A as an R-algebra if and only if the (noncommutative)
monomials in a1, . . . , ak of degree < m span A as an R-vector space.

Proof. Let Ai be the subspace of A spanned by all the monomials in a1, . . . , ak of
degree ≤ i . Clearly A0 ⊆ A1 ⊆ A2 ⊆ . . . . We also see that

Ai+1 = Ai + a1 Ai + a2 Ai + · · ·+ ak Ai ,

for any i . It follows that if Ai = Ai+1 for some i , then A j = Ai for all j ≥ i . Since
dimR Am ≤ m, we must have Ai = Ai+1 for some i < m. Thus Ai = Am−1 for
all i ≥ m. This proves that a1, . . . , ak generate A as an R-algebra if and only if
A = Am−1. �

Lemma 2.8. Suppose that A can be generated by m elements as an R-module. The
elements a1, . . . , ak generate A as an R-algebra if and only if the (noncommuta-
tive) monomials in a1, . . . , ak of degree < m generate A as an R-module.
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Proof. Suppose that a1, . . . , ak generate A as an R-algebra and let Ai be the
R-submodule of A generated by all the monomials in a1, . . . , ak of degree ≤ i .
For any maximal ideal m of R the dimension of A/mA over R/m does not exceed
m. Thus A/Am−1 ⊗R R/m = 0 for every maximal ideal m of R by Lemma 2.7.
Hence A = Am−1 by [Matsumura 1986, Theorem 4.8]. �

Recall that Spec R is the set of all prime ideals of R equipped with the Zariski
topology and m-Spec R is the subspace of Spec R consisting of all maximal ideals.
For p ∈ Spec R we denote by Rp the localization of R at the prime ideal p and we
set Ap = Rp⊗R A. The residue field Rp/pRp is denoted by κ(p). Recall that κ(p)
coincides with the field of fractions of R/p.

Definition 2.9. We say that the elements a1, . . . , ak generate A at a prime ideal p of
R if their images in κ(p)⊗R A generate κ(p)⊗R A as a κ(p)-algebra. Equivalently,
a1, . . . , ak generate A at p if their images in Ap generate Ap as an Rp-algebra.

Lemma 2.10. Let a1, . . . , ak ∈ A. The set of all prime ideals p such that a1, . . . , ak

generate A at p is open.

Proof. Let B be the R submodule of A generated by all monomials in a1, . . . , ak

of degree < m, where m is such that A can be generated by m elements as an
R-module. By Lemma 2.8, the images of a1, . . . , ak in Ap generate Ap as an
Rp-algebra if and only if (A/B)p = 0. Since the support of a finitely generated
R-module is closed, the result follows. �

Corollary 2.11. For any positive integer k the set

Uk = {p ∈ Spec R : Ap can be generated by k elements as an Rp-algebra}

is open.

Proof. Suppose that Ap is generated by k elements as an Rp-algebra. We may
choose elements a1, . . . , ak in A which generate A at p. By Lemma 2.10, there is
an open neighborhood of p such that a1, . . . , ak generate A at q for each q in this
neighborhood. This shows that Uk is open. �

Proposition 2.12. Suppose that A=
∏s

i=1 Ai is a product of R-algebras A1, . . . , As

such that for any maximal ideal m of R and any i 6= j the R/m-algebras Ai⊗R R/m
and A j⊗R R/m do not have isomorphic quotients. Then Genk(A)=

∏s
i=1Genk(Ai)

under the natural identifications.

Proof. The proposition says that a sequence a1, . . . , ak of elements in A generates
A as an R-algebra if and only if for every i the projection of these sequence to
Ai generates Ai as an R-algebra. The implication to the right is clear. Since
A⊗R R/m =

∏s
i=1(Ai ⊗R R/m), Lemma 2.6 reduces the proof to the case when

R is a field. Suppose that a sequence a1, . . . , ak of elements in A has the property
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that for every i the projection of these sequence to Ai generates Ai as an R-algebra.
Let B be the R-subalgebra of A generated by a1, . . . , ak . By our assumption, the
projection πi : B → Ai is surjective. Let Ji = kerπi . Since Ai and A j have
no isomorphic quotients for i 6= j , we conclude that Ji + J j = B for i 6= j (for
otherwise, J = Ji+ J j would be a proper ideal of B and B/J would be isomorphic
to a quotient of Ai and a quotient of A j ). The Chinese remainder theorem implies
now that B = A. �

Example 2.13. Let Ai = Mni (R)
mi be the product of mi copies of the ni × ni

matrix ring over R, where ni 6= n j for i 6= j . Then for any maximal ideal m

of R we have Ai ⊗R R/m = Mni (R/m)
mi . Consider two distinct indices i, j . If

the R/m-algebras Ai ⊗R R/m and A j ⊗R R/m had isomorphic quotients, they
would have isomorphic quotients which are simple R/m-algebras. Clearly any
simple quotient of Mni (R/m)

mi is isomorphic to Mni (R/m). Since Mni (R/m)
and Mn j (R/m) are not isomorphic (they have different dimensions over R/m), we
see that the R/m-algebras Ai ⊗R R/m and A j ⊗R R/m do not have isomorphic
quotients. Therefore the assumptions of Proposition 2.12 are satisfied and

Genk

( s∏
i=1

Mni (R)
mi
)
=

s∏
i=1

Genk
(
Mni (R)

mi
)
.

Recall that in Definition 1.3 we defined genm(A, R) as the largest k such that
Ak admits m generators as an R-algebra. The following proposition implies that if
genm(A, R) is finite then genm+1(A, R) > genm(A, R).

Proposition 2.14. Let A be an R-algebra and let n be a positive integer. If An can
be generated by m elements as an R-algebra then An+1 can be generated by m+1
elements.

Proof. Let ai = (ai,1, . . . , ai,n), with i = 1, . . . ,m, generate An . Let bi = (ai,1, . . . ,

ai,n, ai,1), i = 1, . . . ,m, and set bm+1= (0, . . . , 0, 1). For any w= (w1, . . . , wn)∈

An there is a noncommutative polynomial p(x1, . . . , xm) with coefficients in R
such that w= p(a1, . . . , am). Then p(b1, . . . , bm)= (w1, . . . , wm, w1). It follows
that bm+1 p(b1, . . . , bm)= (0, . . . , 0, w1) and p(b1, . . . , bm)−bm+1 p(b1, . . . , bm)

= (w1, . . . , wm, 0). Thus the algebra generated by b1, . . . , bm+1 coincides with
An+1. �

Corollary 2.15. Let A be an R-algebra. If genm(A, R) is finite then

r(A1+genm(A,R), R)= m+ 1.

We end this section with a discussion of an effective method of checking if
given elements generate an R-algebra A. The key observation is contained in the
following simple lemma:
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Lemma 2.16. Let A be an R-algebra generated as an R-module by elements
u1, . . . , um and let k ≥ 1 be an integer. For every monomial M = M(x1, . . . , xk) in
k noncommuting variables x1, . . . , xk there are polynomials pM

j (x1,1, . . . , xk,m) ∈

R[x1,1, . . . , xk,m], j = 1, . . . ,m, such that the degree of each pM
j does not exceed

the degree of M and

M(a1, . . . , ak)=

m∑
i=1

pM
i (a1,1, . . . , ak,m)ui

whenever ai, j ∈ R satisfy ai =
∑m

j=1 ai, j u j .

Proof. There exist elements ci, j,s ∈ R, 1≤ i, j, s≤m, such that ui u j=
∑m

s=1 ci, j,sus .
Note that these elements are not unique, unless A is a free R-module with basis
u1, . . . , um (this is the case we are mainly interested in). We fix some choice of
elements ci, j,s and call them the structure constants for A. Furthermore, choose
and fix ri ∈ R, i = 1, . . . ,m, such that 1 =

∑
ri ui . We prove the lemma by

induction on the degree of M . If degree of M is 0 then M = 1 and we can choose
constant polynomials pM

i = ri . Suppose that the lemma holds for all monomials
of degree less than n and let M be a monomial of degree n. Then M = N xt for
some monomial N of degree n− 1 and some t ∈ {1, . . . , k}. If ai =

∑m
j=1 ai, j u j ,

with ai, j ∈ R, 1≤ i ≤ k, then

M(a1, . . . , ak)= N (a1, . . . , ak)

m∑
j=1

at, j u j

=

( m∑
i=1

pN
i (a1,1, . . . , am,k)ui

)( m∑
j=1

at, j u j

)
=

m∑
i=1

m∑
j=1

pN
i (a1,1, . . . , am,k)at, j

m∑
s=1

ci, j,sus

=

m∑
s=1

( m∑
i=1

m∑
j=1

pN
i (a1,1, . . . , am,k)at, j ci, j,s

)
us .

This proves that the polynomials

pM
s =

m∑
i=1

m∑
j=1

ci, j,s pN
i xt, j , s = 1, . . . ,m,

have the required properties. �

Lemma 2.17. Let A be an R-algebra which is a free R-module with a basis
u1, . . . , um and let k≥ 1 be an integer. There is a finite set T ⊆ R[x1,1, . . . , xk,m] of
polynomials of degree not exceeding m2 such that for any commutative R-algebra
S the following two conditions are equivalent:
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(i) The elements ai =
∑m

j=1 ai, j ⊗ u j , 1 ≤ i ≤ k, of S ⊗R A, where ai, j ∈ S,
generate S⊗R A as an S-algebra.

(ii) The ideal of S generated by all the values f (a1,1, . . . , ak,m), where f ∈ T ,
coincides with S.

Proof. Consider polynomials pM
j described in Lemma 2.16. It is clear that the same

polynomials (or rather their images in S[x1,1, . . . , xk,m]) work for the S algebra
S⊗R A and its generators 1⊗u1, . . . , 1⊗um . Let M=M(xi, j ) be the matrix whose
rows are labeled in some way by the monomials M of degree<m in noncommuting
variables x1, . . . , xk , and whose row with label M is(

pM
1 (x1,1, . . . , xk,m), . . . , pM

m (x1,1, . . . , xk,m)
)
.

The m × m minors of M are polynomials in R[x1,1, . . . , xk,m] of degree ≤ m2.
Consider the set T of all these minors. Consider elements ai =

∑m
j=1 ai, j ⊗ u j

in S ⊗R A, where ai, j ∈ S and 1 ≤ i ≤ k. Let B be the set of all elements of
the form M(a1, . . . , ak), where M is a monomial of degree < m. By Lemmas 2.8
and 2.6, the elements a1, . . . , ak generate S⊗R A as an S-algebra if and only if for
every maximal ideal m of S, the image of the set B in S⊗R A/m(S⊗R A) spans
the S/m-vector space S ⊗R A/m(S ⊗R A). This is equivalent to saying that the
reduction modulo m of the matrix M(ai, j ) has rank m, which in turn is equivalent
to the condition that at least one of the m×m minors of M(ai, j ) does not belong to
m. Thus the set T of all the m×m minors of M(xi, j ) has the required property. �

3. The density of the set of ordered k-tuples which generate an algebra

The results of this section arose from our attempt to answer the following question:
what is the probability that k random elements of a ring A, whose additive group is
free of finite rank, generate A as a ring. Before we answer this question, we need
to make it more precise. We will discuss it in a slightly more general context.

Throughout this section K will be a number field of degree d over Q, with the
ring of integers OK . We work with an order R in K , that is, R is a subring of K
which is free of rank d as a Z-module. We fix an integral basis w1, . . . , wd of R
over Z. Any element r of R can be uniquely written as r =

∑
riwi with ri ∈ Z.

For a positive integer N we denote by R(N ) the set of all r ∈ R such that |ri | ≤ N
for all i . Clearly |R(N )| = (2N + 1)d .

Let A be an R-algebra which is free of finite rank m as an R-module. Fix a
basis e1, . . . , em of A over R. This choice allows us to identify A and Rm . Using
this identification we define A(N ) as Rm(N ), so |A(N )| = (2N +1)dm . We define
the density denk(A) of the set of k generators of A as an R-algebra as follows.

Definition 3.1. denk(A)= lim
N→∞

|Genk(A)∩ A(N )k |
(2N + 1)dmk .
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At the moment it is not clear whether the limit on the right in the last formula
exists. We will show, however, that it exists and is independent of the choice of an
integral basis of R and the choice of a basis of A over R.

Consider a maximal ideal p of R. We denote by Fp the field R/p and by N(p)
its cardinality. Recall that we say that elements a1, . . . , ak of A generate A at p if
their images in A⊗R Fp generate A⊗R Fp as an Fp-algebra. Let gk(p, A) be the
cardinality of the set Genk(A⊗R Fp). In other words, gk(p, A) is the number of
k-tuples of elements of A⊗R Fp which generate A⊗R Fp as an Fp-algebra. It is
not hard to see that the density of the set Genk(p, A) of all k-tuples in Ak which
generate A at p is

lim
N→∞

|Genk(p, A)∩ A(N )k |
(2N + 1)dmk =

gk(p, A)
N (p)mk .

Note that by Lemma 2.6, a given k-tuple of elements of A generates it as an
R-algebra if and only if it generates A at p for every maximal ideal p of R. Suppose
now that the events “generate at p” are independent for different maximal ideals
(we use this notion in a very intuitive sense here, just to motivate our result). It
would mean that the probability that random k elements of A generate it as an
R-algebra is the product of the numbers gk(p, A)/N(p)mk over all maximal ideals
p of R. One of the main results of this section is a rigorous proof that this is indeed
true. In other words, we prove the following theorem.

Theorem 3.2. Let A be an R-algebra which is free of rank m as an R-module and
let k > 0 be an integer. For a maximal ideal p of R denote by gk(p, A) the number
of k-tuples of elements of A⊗R Fp which generate A⊗R Fp as an Fp-algebra. Then

denk(A)=
∏

p∈m-Spec R

gk(p, A)
N(p)mk . (2)

This result establishes in particular the existence and independence of all the
choices of the limit defining the quantity denk(A).

We will derive Theorem 3.2 as a consequence of a more general result. To
this end consider the set T = { f1, . . . , fs} of polynomials in R[x1,1, . . . , xk,m]

established in Lemma 2.17 (under our choice of a basis of A over R). We identify
Ak with the set Rmk so that a tuple (a1, . . . , ak) ∈ Ak corresponds to (ai, j ) ∈ Rmk

if and only if ai =
∑m

j=1 ai, j e j . Note that according to Lemma 2.17, the element
a = (ai, j ) ∈ Rmk corresponds to a k-tuple in Genk(A) if and only if the ideal
of R generated by the elements f1(a), . . . , fs(a) coincides with R. Moreover, a
corresponds to a k-tuple which generates A at p if and only if fi (a) 6∈ p for some i .
It follows that gk(p, A) = N(p)mk

− tp, where tp is the number of solutions to
f1 = · · · = fs = 0 over the finite field Fp. It is clear now that Theorem 3.2 is a
consequence of the following result.
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Theorem 3.3. Let R be an order in a number field K and let T = { f1, . . . , fs} ⊂

R[x1, . . . , xn] be a finite set of polynomials. Define

S= S(T )={x= (x1, . . . , xn)∈ Rn
: the ideal generated by f1(x), . . . , fs(x) is R}.

For each maximal ideal p of R let tp be the number of solutions to f1= · · ·= fs = 0
over the finite field Fp = R/p. For a positive integer N let SN = SN (T )= {x ∈ S :
xi ∈ R(N ), i = 1, 2, . . . , n}. Then

lim
N→∞

|SN |

(2N + 1)dn =
∏

p∈m-Spec R

(
1−

tp
N(p)n

)
. (3)

A proof of Theorem 3.3 is given in the next section. Note that for s = 2, R = Z,
and polynomials f1 and f2 that do not have a nonconstant common factor this
result was proved in [Poonen 2003] in a slightly more general form (there the limit
is taken over boxes whose sides all increase to infinity; here we only deal with boxes
which are cubes). Poonen’s result was inspired by [Ekedahl 1991], where a similar
result has been established. Arnold [2009] considers the set of pairs of relatively
prime integers as a subset of Z2 and proves that its density can be computed by
using sets of the form nG, where G is any polygon (so our case corresponds to G
being the square |x | ≤ 1, |y| ≤ 1). He calls subsets of Z2 (or, more generally, of
Zn) which have this property uniformly distributed. In a subsequent paper we will
discuss uniform distribution of sets of the type S(T ).

We end this section with an application of our theorems.

3A. The probability that k random elements generate the group Zn. In his work
on generic properties of one-relator groups Ilya Kapovich was led to the following
question: what is the probability that several randomly chosen elements generate
the group Zn . Even though there is a fairly simple heuristic argument which leads
to an answer, neither Kapovich nor we have been able to find a reference containing
a proof. The techniques developed in this paper allow us, in particular, to give a
rigorous answer to Kapovich’s question. The key observation is contained in the
following lemma.

Lemma 3.4. Let V be an n-dimensional vector space over the finite field Fq . The
number αm,n = αm,n(q) of m-tuples of elements in V that span V is equal to∏n−1

i=0 (q
m
− q i ).

Proof. For m < n the formula is obviously true as it yields 0 and there are no
m-tuples which span V . The number αn,n equals the number of bases of V , which
is well known to be equal to |GLn(Fq)| =

∏n−1
i=0 (q

n
− q i ). This establishes the

result for m = n. Note now that v1, . . . , vm span V if and only if the images of
v2, . . . , vm in V/〈v1〉 span V/〈v1〉. Given v ∈ V , we count the number of m-tuples
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which span V and start with v1 = v. If v = 0 this number is clearly αm−1,n . If
v 6= 0, then there are αm−1,n−1 (m − 1)-tuples which span V/〈v〉 and each such
tuple lifts to qm−1 (m − 1)-tuples from V . Thus we get qm−1αm−1,n−1 m-tuples
which span V and start at v. Since there are qn

−1 nonzero elements in V , we get
the following recursive formula:

αm,n = αm−1,n + qm−1(qn
− 1)αm−1,n−1.

The recursive formula and a straightforward induction on m+n finish the proof. �

Theorem 3.5. Let R be an order in a number field. Define

ζR(s)=
∏

p∈m-Spec(R)

(1− |R/p|−s)−1.

For any k ≥ n the density of the set of k-tuples that generate the R-module Rn is
equal to

k∏
m=k−n+1

ζR(m)−1.

Proof. Consider Rn as an R-algebra with trivial multiplication and let A be obtained
from Rn by the construction of adjunction of unity (in the category of R-algebras).
By Lemma 2.3 we see that the density of the set of k-tuples which generate the
R-module Rn is the same as the density denk(A) of the set of k-tuples which gener-
ate the R-algebra A. By Lemmas 2.3 and 2.4, we have gk(p, A)=N(p)kαk,n(N(p)).
By Theorem 3.2 and Lemma 3.4 we obtain the formula

denk(A)=
∏

p∈m-Spec R

∏n−1
i=0 (N(p)

k
−N(p)i )

N(p)nk =

k∏
m=k−n+1

ζR(m)−1. �

The answer to Ilya Kapovich’s question is therefore given by the following
corollary.

Corollary 3.6. The probability that k randomly chosen elements generate the group
Zn is equal to

∏k
m=k−n+1 ζ(m)

−1, where ζ is the Riemann zeta function.

This corollary can also be derived directly from Theorem 3.3.

4. Proof of Theorem 3.3

Let us start by recalling some of the notation set down in the previous section.
R is an order in a number field K . The degree of K over Q is d and OK is the
ring of integers of K (that is, the integral closure of R in K ). We fix an integral
basis w1, . . . , wd of R over Z. Any element r of R can be uniquely written as
r =

∑d
i=1 riwi with ri ∈ Z. For a positive integer N we denote by R(N ) the set

of all r ∈ R such that |ri | ≤ N for all i . Clearly |R(N )| = (2N + 1)d . The norm
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map from K to Q is denoted by NK/Q. For an ideal I of R we set NK/Q(I ) for
the nonnegative integer which is the greatest common divisor of the norms of all
elements in I . We write N(I ) for the cardinality of R/I . If p is a maximal ideal
of R then we write Fp for the field R/p.

The following lemma is well known but for the readers convenience we include
a short proof.

Lemma 4.1. Let F be a finite field with q elements and let f (x1, . . . , xn) be a
nonzero polynomial in F[x1, . . . , xn]. Then the number of solutions of the equation
f (x1, . . . , xn)= 0 in Fn does not exceed (deg f )qn−1.

Proof. We proceed by induction on n. For n = 1 this is just the statement that a
polynomial f in one variable over a field has at most deg f roots. Suppose now that
the result holds for polynomials in less than n variables and let f (x1, . . . , xn) =∑d

i=0 fi (x1, . . . , xn−1)x i
n be a polynomial in n variables with fd 6= 0. By the

inductive assumption, the number of solutions to fd = 0 in Fn does not exceed
(deg fd) · qn−2

· q = (deg fd)qn−1. For each (a1, . . . , an−1) ∈ Fn−1 such that
fd(a1, . . . , an−1) 6= 0 there are at most d solutions to f (a1, . . . , an−1, xn) = 0.
Thus we have at most (deg fd)qn−1

+dqn−1
≤ (deg f )qn−1 solutions to f = 0. �

Proposition 4.2. Let f (x1, . . . , xn) ∈ Z[x1, . . . , xn] be a nonzero polynomial. Set

Z( f, N )= {(x1, . . . , xn) ∈ Zn
: |xi | ≤ N and f (x1, . . . , xn)= 0}.

Then |Z( f, N )| ≤ (deg f )(2N + 1)n−1.

Proof. We proceed by induction on n. For n = 1 the result is straightforward.
Now assume the results for polynomials in less than n variables and consider a
polynomial f (x1, . . . , xn)=

∑d
i=0 fi (x1, . . . , xn−1)x i

n in n variables with fd 6= 0.
By the inductive assumption, the number of elements in Z( f, N ) for which fd = 0
does not exceed (deg fd) · (2N + 1)n−2

· (2N + 1). For each (a1, . . . , an−1) such
that fd(a1, . . . , an−1) 6= 0 there are at most d solutions to f (a1, . . . , an−1, xn)= 0.
Thus we have at most (deg fd)(2N+1)n−1

+d(2N+1)n−1
≤ (deg f )(2N+1)n−1

elements in Z( f, N ). �

Corollary 4.3. Let f ∈ R[x1, . . . , xn] be a polynomial of positive degree deg f >0.
For a nonzero ideal J of R define

I ( f, J, N )= {(x1, . . . , xn) ∈ R(N )n : J ⊆ f (x1, . . . , xn)R}.

Then |I ( f, J, N )| ≤ δ(J )d(deg f )(2N + 1)dn−1, where δ(J ) is the number of in-
tegral divisors of the norm NK/Q(J ).
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Proof. Write xi =
∑d

j=1 yi, jw j . If J ⊆ f (x1, . . . , xn)R then NK/Q( f (x1, . . . , xn))

divides NK/Q(J ). There is a polynomial g(yi, j ) ∈ Z[y1,1, y1,2, . . . , yn,d ] of degree
(deg f )d in dn variables such that

NK/Q
(

f (x1, . . . , xn)
)
= g(yi, j ).

The result follows now from Proposition 4.2 applied to each of the polynomials
g− k, where k varies over all divisors of NK/Q(J ). �

Theorem 4.4. Let f ∈ R[x1, . . . , xn] be a polynomial of positive degree. For each
maximal ideal p of R let fp be the number of solutions to f = 0 over the finite
field Fp. Then the series

∑
p∈m-Spec R

fp/N(p)n diverges.

Proof. Replacing R by OK changes only a finite number of terms in the sum∑
p fp/N(p)n . It suffices then to prove the theorem under the additional assump-

tion that R = OK .
Let L be a number field containing K , with ring of integers S, and such that

f has an absolutely irreducible divisor g ∈ S[x1, . . . , xn] of positive degree (so
f/g ∈ L[x1, . . . , xn]). It is known that the reduction of g modulo all but a finite
number of prime ideals of S is absolutely irreducible (see [Schmidt 1976, V.2]).
For a maximal ideal P of S let gP be the number of solutions to g = 0 in (S/P)n .
By [Schmidt 1976, V, Theorem 5A], we have

gP ≥
1
2 |S/P|n−1

=
1
2 N(P)n−1

provided the reduction of g modulo P is absolutely irreducible and N(P) is suffi-
ciently large, which holds for all but a finite number of maximal ideals of S.

Let 8 be the set of maximal ideals of S which have inertia degree one over R
and let 9 be the set of all prime ideals of R which lie under the ideals of 8. Let
P ∈8 be a prime ideal of S over p ∈9. Then S/P = Fp. It follows that fp ≥ gP

except possibly for a finite number of P for which f/g is not P-integral. Since
each maximal ideal of R lies under at most [L : K ] prime ideals of S we get that∑
p∈m-Spec R

fp
N(p)n

≥

∑
p∈9

fp
N(p)n

≥
1

[L : K ]

∑
P∈8

N(P)�0

gP

N(P)n
≥

1
2[L : K ]

∑
P∈8

N(P)�0

1
N(P)

.

It is well known that the set 8 has Dirichlet density equal to 1 [Narkiewicz 1990,
7.2, Corollary 3]; in particular

∑
P∈8 1/N(P) diverges. �

Corollary 4.5. Under the assumptions of Theorem 3.3, if the polynomials in T
have a common divisor of positive degree in K [x1, . . . , xn] then both sides of (3)
are 0. In particular, Theorem 3.3 is true in this case.
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Proof. Let f ∈ R[x1, . . . , xn] be a polynomial of positive degree which divides
all fi in the ring K [x1, . . . , xn]. There is a nonzero a in R such that a fi/ f is in
R[x1, . . . , xn] for all i . It follows that SN (T )⊆ I ( f, a R, N ). By Corollary 4.3,

|SN |

(2N + 1)dn ≤
|I ( f, a R, N )|
(2N + 1)dn ≤

δ(a R)d(deg f )
2N + 1

,

so the left-hand side of (3) is 0.
For any maximal ideal p of R which does not divide a we have tp ≥ fp. It

follows from Theorem 4.4 that
∑

p∈m-Spec R tp/N(p)n diverges. This is equivalent
to the right-hand side of (3) being 0. �

Lemma 4.6. Let p be a maximal ideal of R with N(p) = ps , where p is the char-
acteristic of Fp. Then any element of Fp lifts to at most (2N + 1)d−s(1+ 2N/p)s

elements in R(N ).

Proof. We may assume (after renumbering, if necessary) that w1, . . . , ws is a basis
of Fp over Fp. Consider a residue class a∈Fp. To get an element

∑d
i=1 yiwi ∈ R(N )

in the given residue class a we may choose arbitrarily integers ys+1, . . . , yd in
[−N , N ] and then the residue classes of y1, . . . , ys modulo p are uniquely deter-
mined. Thus each yi , i ≤ s, can be chosen in at most 1+ 2N/p ways. �

Lemma 4.7. Let f ∈ R[x1, . . . , xn−1], g= g0xk
n+· · ·+gk ∈ R[x1, . . . , xn], where

g0, . . . , gk ∈ R[x1, . . . , xn−1] and g0 6= 0. Consider the set

D(N )=
{
(x1, . . . , xn) ∈ R(N )n : f (x1, . . . , xn−1) 6= 0 and there exists

a maximal ideal p with N(p) > N and such that f (x1, . . . , xn−1) ∈ p,

g(x1, . . . , xn) ∈ p, and g0(x1, . . . , xn−1) 6∈ p
}
.

Then there is a constant c such that |D(N )| ≤ c(2N + 1)dn−1 for all N .

Proof. There are positive integers w and c1 such that

|NK/Q f (x1, . . . , xn−1)| ≤ c1 Nw,

for any N ≥ 1 and any xi ∈ R(N ), i = 1, . . . , n−1. If N > c1 and f (x1, . . . , xn−1)

is nonzero, then f (x1, . . . , xn−1) belongs to at most w maximal ideals p such that
N(p) > N . In fact, if there were more than w maximal ideals in R with norm
exceeding N which contain f (x1, . . . , xn−1) then f (x1, . . . , xn−1) would belong
to at least w+1 maximal ideals of OK of norm exceeding N and this would imply
that |NK/Q f (x1, . . . , xn−1)|> Nw+1, which is not possible. Let

G(N , p)=
{
(x1, . . . , xn−1) ∈ R(N )n−1

: f (x1, . . . , xn−1) ∈ p−{0}
}
.

Thus, if N > c1 and (x1, . . . , xn−1) ∈ R(N )n−1, then there are at most w maximal
ideals p such that N(p) > N and (x1, . . . , xn−1) ∈ G(N , p). Let N > c1. Fix a
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point (x1, . . . , xn−1) ∈ R(N )n−1 and let p be a maximal ideal such that N(p) > N
and (x1, . . . , xn−1) ∈ G(N , p). We want to find an upper bound for the number
of xn ∈ R(N ) such that g(x1, . . . , xn) ∈ p and g0(x1, . . . , xn−1) 6∈ p. All such xn

split into at most k residue classes modulo p (which correspond to the roots of
g(x1, . . . , xn−1, x)= 0 in Fp). Let N(p)= ps , where p= char Fp. By Lemma 4.6,
the number of xn ∈ R(N ) which belong to a given residue class modulo p is at
most

(2N + 1)d−s max
(
2, 2(2N + 1)/p

)s
≤max

(
2s(2N + 1)d−s, 2s(2N + 1)s/ps)

≤ 3 · 2s
· (2N + 1)d−1

(we have used the inequalities 1+ 2N/p ≤ max(2, 2(2N + 1)/p) and ps > N ≥
(2N + 1)/3). It follows that there are at most w · k · 3 · 2s(2N + 1)d−1 values of
xn ∈ R(N ) such that (x1, . . . , xn) ∈ D(N ). Hence, if N > c1, then

|D(N )| ≤ (2N + 1)d(n−1)
·w · k · 3 · 2s

· (2N + 1)d−1
≤ c(2N + 1)dn−1,

where c = 3 · 2s
· w · k. We can increase c if necessary so that the inequality

|D(N )| ≤ c(2N + 1)dn−1 holds for all N . �

Lemma 4.8. Let f be a nonzero polynomial in R[x1, . . . , xn−1] and let

g = g0xk
n + · · ·+ gk ∈ R[x1, . . . , xn],

where g0, . . . , gk ∈ R[x1, . . . , xn−1], g0 6= 0. For a maximal ideal p of R consider
the set

Dp(N )= {(x1, . . . , xn) ∈ R(N )n : f (x1, . . . , xn−1) ∈ p,

g(x1, . . . , xn) ∈ p, and g0(x1, . . . , xn−1) 6∈ p}.

Then, if N(p)≤ N and the reduction of f modulo p is not zero, we have

|Dp(N )| ≤ 2nd(deg f )k(2N + 1)nd/N(p)2.

Proof. The image Zp of Dp(N ) in Fn
p consists of (some) solutions to f =0= g in Fn

p

(we use the same notation for a polynomial and its reduction modulo p). Now f =0
has at most (deg f )N(p)n−2 solutions in Fn−1

p (Lemma 4.1) and each such solution
extends to at most k solutions of g=0, g0 6=0 in Fn

p. Thus |Zp|≤ (deg f )k N(p)n−2.
Each element of Zp lifts to no more that [(2N + 1)d−s(1+ 2N/p)s]n elements of
Dp(N ) by Lemma 4.6, where N(p)= ps . Thus

|Dp(N )| ≤ (deg f )k N(p)n−2
[(2N + 1)d−s(1+ 2N/p)s]n

≤ (deg f )k N(p)n−2(2N + 1)n(d−s)
[2s(2N + 1)s/ps

]
n

≤ 2nd(deg f )k N(p)n−2(2N + 1)nd/N(p)n

= 2nd(deg f )k(2N + 1)nd/N(p)2. �
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Proposition 4.9. Let f, g ∈ R[x1, . . . , xn] be polynomials which are relatively
prime as polynomials in K [x1, . . . , xn]. Define

WM =WM( f, g)= {r= (r1, . . . , rn) ∈ Rn
: there is a maximal ideal p of R,

with N(p) > M and such that f (r) ∈ p and g(r) ∈ p}.

There is a constant c > 0 such that

|WM ∩ R(N )n| ≤ c
(2N + 1)nd

M
for any integers N > M ≥ 1.

Proof. We use induction on the number n of variables. Note that if f and g are
polynomials in n variables for which the result holds, then it also holds for f and
g considered as polynomials in n + 1 variables. When n = 0 the result is clear.
Suppose the result is true for less than n ≥ 1 variables. Consider two relatively
prime (in K [x1, . . . , xn]) polynomials f, g ∈ R[x1, . . . , xn].

The first step is to establish the proposition under the additional assumption
that f is irreducible in K [x1, . . . , xn] and does not depend on xn (that is, f is in
R[x1, . . . , xn−1]). Let g = g0xk

n + · · · + gk , where g0, . . . , gk ∈ R[x1, . . . , xn−1],
g0 6= 0. We fix f and proceed by induction on the degree k of g in xn . If k = 0
then g ∈ R[x1, . . . , xn−1] and the result follows by our inductive assumption that
the proposition holds for polynomials in n− 1 variables. Suppose that k > 0 and
the result holds for all polynomials g whose degree in xn is less than k (and which
are relatively prime to f ). We may write ag =

∏
hi for some nonzero a in R and

polynomials hi ∈ R[x1, . . . , xn] which are irreducible in K [x1, . . . , xn]. Note that
WM( f, g) ⊆

⋃
WM( f, hi ). Thus, if we show the proposition for each pair f, hi ,

then it will also hold for the pair f, g. In other words, we may assume that g is
irreducible in K [x1, . . . , xn]. If f |g0 in K [x1, . . . , xn−1], then there is a nonzero
u ∈ R such that f |ug0 in R[x1, . . . , xn−1]. It follows that

WM( f, g)⊆WM( f, u(g− g0xk
n))

for all M . Since u(g− g0xk
n) has degree in xn smaller than k, the result holds for

f, u(g− g0xk
n) by our inductive assumption and therefore it also holds for the pair

f, g. Thus we may assume that f does not divide g0 in K [x1, . . . , xn−1]. Since f
is irreducible, f and g0 are relatively prime in K [x1, . . . , xn−1]. For N > M we
have

WM( f,g)∩ R(N )n⊆(WM( f,g0)∩ R(N )n)∪ Z( f,N )∪D(N )∪
⋃

p:M<N(p)≤N

Dp(N ),

where
Z( f, N )= {r= (r1, . . . , rn) ∈ R(N )n : f (r)= 0},
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D(N )=
{
r ∈ R(N )n : there is a maximal ideal p such that N(p) > N ,

f (r) ∈ p−{0}, g(r) ∈ p, and g0(r) 6∈ p
}
,

Dp(N )= {r ∈ R(N )n : f (r) ∈ p, g(r) ∈ p, g0(r) 6∈ p}.

By our inductive assumption that the proposition holds for polynomials in n − 1
variables, there is c1 > 0 such that |WM( f, g0)∩ R(N )n| ≤ c1(2N + 1)dn/M for
any integers N > M ≥ 1. Note that if f (r)= 0 then ( f − 1)(r)R = R. It follows
by Corollary 4.3 applied to the polynomial f − 1 and the ideal J = R that

|Z( f, N )| ≤ δ(R)d(deg f )(2N + 1)dn−1
≤ c2

(2N + 1)dn

M

for some c2 > 0 and all N > M ≥ 1. Lemma 4.7 assures the existence of c3 > 0
such that |D(N )| ≤ c3(2N + 1)dn−1

≤ c3(2N + 1)dn/M . Finally, by Lemma 4.8,
there are constants c4 > 0, c5 > 0 such that∣∣∣∣ ⋃
p:M<N(p)≤N

Dp(N )
∣∣∣∣≤ ∑

p:M<N(p)≤N

|Dp(N )| ≤
∑

p:M<N(p)≤N

2nd(deg f )d
(2N + 1)nd

N(p)2

≤ c4(2N + 1)nd
∑

p:M<N(p)

N(p)−2
≤ c4(2N + 1)ndd

∑
m>M

1
m2 ≤ c5

(2N + 1)nd

M
.

It follows that |WM( f, g)∩R(N )n| ≤ c(2N+1)nd/M , where c= c1+c2+c3+c5.
This completes our first step, that is, establishes the proposition under the additional
assumption that f is irreducible in K [x1, . . . , xn] and does not depend on xn .

Our second step is to prove the proposition when both f and g are irreducible
in K [x1, . . . , xn]. Consider f and g as polynomials in xn with coefficients in
R[x1, . . . , xn−1]. If one of these polynomials does not depend on xn , the proposi-
tion holds by our first step. Suppose that the degrees with respect to xn of both f
and g are positive. Let r =Res( f, g) be the resultant of f and g, so r is a nonzero
polynomial in R[x1, . . . , xn−1]. Recall that r = a f + bg for some polynomials
a, b ∈ R[x1, . . . , xn] (see [Cox et al. 2005, §3.1] for a nice account of properties
of resultants). It follows that WM( f, g) ⊆ WM( f, r) ∩ WM(g, r). Since f and
g are irreducible, g and r have no common factor in K [x1, . . . , xn] (otherwise g
would not depend on xn). We may write ar =

∏
ri , where ri ∈ R[x1, . . . , xn−1]

are irreducible in K [x1, . . . , xn−1] and a ∈ R is nonzero. Clearly WM( f, g) ⊆
WM(r, g) ⊆

⋃
WM(ri , g). Since the proposition holds for each pair ri , g by the

first step, it also holds for the pair f, g.
Finally, without any additional assumptions, we may write a f =

∏
fi , bg =∏

gi , where fi , g j ∈ R[x1, . . . , xn] are irreducible in K [x1, . . . , xn] and a, b ∈
R− {0}. Clearly WM( f, g) ⊆

⋃
WM( fi , g j ). Since the result holds for each pair

fi , g j , it also holds for f, g. �
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Corollary 4.10. Let T={ f1, . . . , fs} be a finite set of polynomials in R[x1, . . . , xn]

which do not have any common nonconstant divisor in K [x1, . . . , xn]. Define

WM =WM(T )= {r= (r1, . . . , rn) ∈ Rn
: there is a maximal ideal p of R

with N(p) > M and such that f (r) ∈ p for every f ∈ T }.

There is a constant c > 0 such that |WM ∩ R(N )n| ≤ c(2N + 1)nd/M for any
integers N > M ≥ 1.

Proof. We may write di fi =
∏

fi, j , where fi, j ∈ R[x1, . . . , xn] are irreducible in
K [x1, . . . , xn] and di ∈ R are nonzero. Then

WM ⊆
⋃

WM( f, g),

where the union is over all pairs f, g such that f and g are among the polynomials
fi, j and are relatively prime. Thus the result follows by Proposition 4.9. �

Corollary 4.10 is the main ingredient in our proof of Theorem 3.3. In fact, the
proof now reduces to a fairly straightforward application of the inclusion-exclusion
formula and the Chinese remainder theorem. For the benefit of the reader we
provide a detailed argument.

Lemma 4.11. Let I be a nonzero ideal of R. If m is a positive integer such that
m R ⊆ I then

(2N −m)d

N(I )
≤ |(a+ I )∩ R(N )| ≤

(2N +m)d

N(I )

for any a ∈ R and any N such that 2N ≥ m.

Proof. The ideal I is a union of md/N(I ) cosets of m R. Thus any coset of I is
also a union of md/N(I ) cosets of m R. Any coset H of m R is of the form

d∑
i=1

aiwi +m R,

where 0 ≤ ai < m. The elements of H ∩ R(N ) are exactly those of the form∑d
i=1(ai +mbi )wi with |ai +mbi | ≤ N . Thus (−N − ai )/m ≤ bi ≤ (N − ai )/m.

Recall now that an interval of length l has at least l − 1 and at most l + 1 integers
in it. It follows that (2N/m−1)d ≤ |H ∩ R(N )| ≤ (2N/m+1)d . Since a+ I is a
disjoint union of md/N(I ) cosets of m R, the result follows. �

Lemma 4.12. Let I be a nonzero ideal of R. If V is a subset of (R/I )n and V (N )
is the set of elements of R(N )n whose image in (R/I )n belongs to V then

lim
N→∞

|V (N )|
(2N + 1)nd =

|V |
N(I )n

.
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Proof. Since both sides of the equality are additive for disjoint unions, it suffices
to prove the lemma for sets V which contain only one element. In this case, there
are cosets a1+ I, . . . , an + I of I such that

V (N )=
(
(a1+ I )∩ R(N )

)
× · · ·×

(
(an + I )∩ R(N )

)
.

There is a positive integer m such that m R ⊆ I . By Lemma 4.11, we have

(2N −m)dn

N(I )n
≤ |V (N )| ≤

(2N +m)dn

N(I )n

provided 2N ≥m. Dividing by (2N+1)dn and passing to the limit when N→∞,
we get the result. �

Proof of Theorem 3.3. If the polynomials in T have a common divisor in K [x1, . . . ,

xn] the theorem holds by Corollary 4.5. Thus we may assume that elements of T
do not have any common nonconstant divisor in K [x1, . . . , xn]. For a prime ideal
p of R define

Dp = {r= (r1, . . . , rn) ∈ Rn
: f (r) ∈ p for every f ∈ T }.

Let 8 be a finite set of maximal ideals of R. For any subset 9 of 8 we denote by
I (9) the intersection of all the ideals in 9. Note that

D9 :=

⋂
p∈9

Dp = {r= (r1, . . . , rn) ∈ Rn
: f (r) ∈ I (9) for every f ∈ T }.

Let V9 be the image of D9 in (R/I (9))n . Thus V9 is simply the set of all com-
mon zeros in (R/I (9))n of the polynomials in T . By the Chinese remainder
theorem, we have R/I (9) ∼=

∏
p∈9 R/p and under this identification we have

V9 =
∏

p∈9 Vp. It follows that |V9 | =
∏

p∈9 tp. Applying Lemma 4.12 to the set
V9 and observing that V9(N )= D9 ∩ R(N )n we get

lim
N→∞

|D9 ∩ R(N )n|
(2N + 1)nd =

∏
p∈9 tp

N(I (9))n
=

∏
p∈9

tp
N(p)n

.

Let W8 be the complement of the union
⋃

p∈8 Dp in Rn . The inclusion-exclusion
principle yields the following formula:

|W8 ∩ R(N )n| =
∑
9⊆8

(−1)|9||D9 ∩ R(N )n|

(where D∅ = Rn), from which we immediately conclude that

lim
N→∞

|W8 ∩ R(N )n|
(2N + 1)nd =

∑
9⊆8

(−1)|9|
∏
p∈9

tp
N(p)n

=

∏
p∈8

(
1−

tp
N(p)n

)
.
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Suppose now that 8 is the set of all prime ideals of norm ≤ M . Note that

S(T )⊆W8 ⊆ S(T )∪WM(T ),

where WM(T ) is defined in Corollary 4.10 and S(T ) in Theorem 3.3. Thus

|W8 ∩ R(N )n| − |WM(T )∩ R(N )n| ≤ |S(T )∩ R(N )n| ≤ |W8 ∩ R(N )n|.

Note that Corollary 4.10 implies that

0≤ lim inf
N→∞

|WM(T )∩ R(N )n|
(2N + 1)dn ≤ lim sup

N→∞

|WM(T )∩ R(N )n|
(2N + 1)dn ≤

c
M
.

This yields∏
p:N(p)≤M

(
1−

tp
N(p)n

)
−

c
M
≤ lim inf

N→∞

|S(T )∩ R(N )n|
(2N + 1)dn

≤ lim sup
N→∞

|S(T )∩ R(N )n|
(2N + 1)dn ≤

∏
p:N(p)≤M

(
1−

tp
N(p)n

)
.

Letting M go to infinity we see that

lim
N→∞

|S(T )∩ R(N )n|
(2N + 1)dn =

∏
p∈m-Spec R

(
1−

tp
N(p)n

)
. �

5. The smallest number of generators

Let us return to our discussion of generators of algebras. We first show an appli-
cation of Theorem 3.2. Let A be an algebra over a commutative ring R, which is
finitely generated as an R-module.

Definition 5.1. We denote by r = r(A)= r(A, R) the smallest number of elements
which are needed to generate A as an R-algebra.

For a prime ideal p of R define

rp = rp(A)= r
(

A⊗R κ(p), κ(p)
)
,

where κ(p)= Rp/pRp is the field of fractions of R/p.

Note that rp is the smallest number of generators of Ap as an Rp-algebra by
Lemma 2.6. Clearly rp ≤ r for every p ∈ Spec R and rp ≤ rq whenever p ⊆ q by
Corollary 2.11. The first main result of this section is the following theorem.

Theorem 5.2. Let R be an order in a number field K and let A be an R-algebra
which is free as an R-module. Suppose that k ≥ rp for all prime ideals p of R and
k ≥ 1+ r0. Then denk(A) > 0. In particular, k ≥ r .
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Our proof of Theorem 5.2 will use the following nice result, often called the
Loomis–Whitney inequality [Loomis and Whitney 1949].

Lemma 5.3. Let T be a finite set, D a subset of T s , and let Di be the projection of
D to T s−1 along the i-th coordinate. Then |D|s−1

≤
∏s

i=1|Di |.

As a corollary we get the following lemma.

Lemma 5.4. Let F be a finite field with q elements. Suppose that an m-dimensional
F-algebra A can be generated by r elements as an F-algebra. For k ≥ r let ngk
be the number of k-tuples in Ak which do not generate A as an F-algebra. Then
ngk ≤ m2k/r qmk−k/r for any k > r .

Proof. Let D(k) ⊆ Ak be the set of all k-tuples which do not generate A as an
F-algebra. For each i the projection D(k)i ⊆ Ak−1 of D(k) along the i-th coordinate
is contained in D(k−1). By the Loomis–Whitney inequality (Lemma 5.3) we have

ngk−1
k ≤ ngk

k−1.

A straightforward induction yields now the inequality

ngk ≤ ngk/r
r .

The set D(r) is contained in the set of all zeros of some nonzero polynomial of
degree ≤ m2 in rm variables by Lemma 2.17. It follows that |D(r)| = ngr ≤

m2qmr−1 by Lemma 4.1. Consequently,

ngk ≤ ngk/r
r ≤ m2k/r qkm−k/r . �

Proof of Theorem 5.2. Recall that by Theorem 3.2 we have

denk(A)=
∏

p∈m-Spec R

gk(p, A)
N(p)mk ,

where m is the rank of the free R-module A. Since k≥ rp, we see that gk(p, A)> 0
for all maximal ideals p. It suffices therefore to show that∏ gk(p, A)

N(p)mk > 0,

where the product is over all maximal ideals with sufficiently large norm. Since
the set of all prime ideals p of R such that rp = r0 is open and contains the zero
ideal, we have rp = r0 for all but a finite number of maximal ideals p. Since
k ≥ r0 + 1, Lemma 5.4 implies that gk(p, A) ≥ N(p)km

−m2k/r0 N(p)km−k/r0 for
every p ∈m-Spec R such that r0 = rp. It follows that

gk(p, A)
N(p)mk ≥ 1−

m2k/r0

N(p)k/r0
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for all but a finite number of maximal ideals p. It suffices therefore to show that∏(
1−

m2k/r0

N(p)k/r0

)
> 0,

where the product is over all maximal ideals with sufficiently large norm. This in
turn is equivalent to showing that the series∑

p∈m-Spec R

m2k/r0

N(p)k/r0

converges, which is indeed true since k/r0 > 1. �

As an immediate corollary of Theorem 5.2 we get the following.

Theorem 5.5. Let R be an order in a number field K and let A be an R-algebra
which is free as an R-module. If r0 < rp for some maximal ideal p of R then
r =max{rp : p ∈ m-Spec R}. If r0= rp for all maximal ideals p then r0≤ r ≤ 1+r0.

A special case of Theorem 5.5 when R = Z was shown to us by H. W. Lenstra
(private communication, 2007). His proof of this result is purely algebraic and does
not provide any way to handle the ambiguity for r when r0 = rp for all maximal
ideals p. It is known that in this case both r = r0 and r = r0+ 1 are possible. For
example, there are infinitely many number fields in which the ring of integers A
considered as a Z-algebra has rp= 1 for all prime ideals p but r = 2. As an explicit
example one can take the ring of integers in the cubic field Q(

3
√

198) [Pleasants
1974, p. 167]. Later, we will see examples where denr0(A) > 0, hence r = r0, even
though we are unable to find generators.

Question 5.6. Let R be an order in a number field. Suppose that A is an R-algebra
which is finitely generated and projective as an R-module. The right-hand side of
the formula in Theorem 3.2 makes perfect sense for A and we will continue to
denote it by denk A. Is it true that if denk A > 0 then A can be generated by k
elements as an R-algebra? We believe that the answer is positive. Perhaps there is
a notion of density in this case which makes Theorem 3.2 valid?

We have the following generalization of the original result of Lenstra.

Theorem 5.7. Let R be a commutative ring of dimension ≤ 1 such that m-Spec R
is Noetherian and let A be an R-algebra finitely generated as an R-module. Let h
be the smallest nonnegative integer such that h ≥ rp for all but a finite number of
maximal ideals p of R. Suppose that k ≥ rp for all maximal ideals p and k ≥ 1+h.
Then A can be generated by k elements as an R-algebra.

Proof. Since m-Spec R is Noetherian, it has a finite number of irreducible compo-
nents. Note that if an irreducible component of m-Spec R is finite then it consists
of a single maximal ideal. Otherwise it contains infinitely many maximal ideals
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and the intersection of all these ideals is a prime ideal which we call the generic
ideal of the component. Let T be the set of all prime ideals which are generic
ideals of some infinite irreducible component of m-Spec R. Thus T is a finite set
of minimal prime ideals of R (it can be empty). Note that if p ∈ T then rp ≤ rq for
any maximal ideal q containing p and the equality holds for all but a finite number
of such maximal ideals by Corollary 2.11. It follows that h =max{rp : p ∈ T }. For
each prime p ∈ T choose a maximal ideal q ⊇ p such that rp = rq and denote this
set of chosen maximal ideals by M .

We call a sequence a1, . . . , am of elements of A M-generic if it generates A at
p for every p ∈ M . Note that an M-generic sequence generates A at p for all but a
finite number of maximal ideals p. We claim that there is an M-generic sequence of
length h. Indeed, for each q ∈ M there are h elements in A which generate A at q.
By the Chinese remainder theorem for modules, we may find elements a1, . . . , ah

in A which generate A at q for all q ∈ M . Thus a1, . . . , ah is M-generic.
We will now show that for every i ≤h there is an M-generic sequence b1, . . . , bh

such that for every maximal ideal q the elements b1, . . . , bi can be completed to
a set of k elements which generate A at q. Our argument is by induction on i . It
is clearly true for i = 0 (any M-generic sequence of length h works). Suppose
that b1, . . . , bh is a generic sequence which works for some i . We seek a generic
sequence working for i + 1 which is of the form b1, . . . , bi , b, bi+2, . . . , bh for
some b ∈ A. Note that if b is such that b − bi+1 ∈ qA for all q ∈ M then
b1, . . . , bi , b, bi+2, . . . , bh is M-generic. Also, there is a finite set W of maximal
ideals, disjoint from M , such that for any maximal ideal q 6∈W and any b ∈ A, the
sequence b1, . . . , bi , b, bi+1, . . . , bh generates A at q. Since k > h, for any q 6∈W
and any b ∈ A, the elements b1, . . . , bi , b can be completed to a set of k elements
which generate A at q. So in our choice of b we only need to worry about maximal
ideals in W . For every q ∈ W there is bq ∈ A such that b1, . . . , bi , bq extends to
a set of k elements which generate A at q. By the Chinese remainder theorem
for modules, we may choose b ∈ A such that b − bi+1 ∈ qA for all q ∈ M and
b−bq ∈ qA for all q ∈W . For any such b the sequence b1, . . . , bi , b, bi+2, . . . , bh

has the required properties for i + 1.
Let a1, . . . , ah be an M-generic sequence good for i = h. Thus, for any maximal

ideal q outside some finite set U the elements a1, . . . , ah generate A at q. For each
q ∈ U , there are elements ah+1(q), . . . , ak(q) in A such that a1, . . . , ah, ah+1(q),

. . . , ak(q) generate A at q. By the Chinese remainder theorem for modules, there
are elements ah+1, . . . , ak in A such that ai − ai (q) ∈ qA for all q ∈ U and all
i = h+ 1, . . . , k. Thus the elements a1, . . . , ak generate A at q for every maximal
ideal q, hence they generate A as an R-algebra by Lemma 2.6. �

The reader familiar with the results of Forster and Swan on the number of
generators of modules over Noetherian commutative rings should recognize the
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similarities between Theorem 5.7 and Swan’s theorem [Matsumura 1986, Theo-
rem 5.8]. Unlike the result of Swan, Theorem 5.7 only treats the case of rings
of dimension ≤ 1. So far we have not been able to get similar results for rings
of higher dimension but we believe that the following conjectural generalization
should be true. In order to state it we need to recall briefly some notions (see
[Matsumura 1986, p. 35–37] for more details). We denote by j-Spec R the subspace
of Spec R which consists of those prime ideals which are intersections of some set
of maximal ideals of R. We assume that m-Spec R is a Noetherian space. It turns
out that this is equivalent to j-Spec R being Noetherian, and then both spaces have
the same combinatorial dimension. When p ∈ j-Spec R, we write j-dim p for the
combinatorial dimension of the closure of {p} in j-Spec R. For p ∈ j-Spec R define

b(p, A)=

{
0 if Ap = 0,

j-dim p+ rp(A) if Ap 6= 0.

Conjecture 5.8. Suppose that R is a commutative ring such that m-Spec R is a
Noetherian space. Let A be an R-algebra finitely generated as an R-module. If
sup{b(p, A) : p ∈ m-Spec R} = n <∞ then A can be generated as an R-algebra
by n elements.

6. Generators of matrix algebras over finite fields

It is clear from the results of Section 3 that the key step towards understanding
the smallest number of generators of an algebra over a commutative ring is to
handle the case of algebras over fields. Among the finite-dimensional algebras over
fields the best understood class is the class of separable algebras. It was proved in
[Mazur and Petrenko 2009] that any separable algebra over an infinite field is two-
generated. This is no longer true over finite fields. In this case, separable algebras
coincide with finite products of matrix algebras.

By Proposition 2.12, understanding the structure of generators of a semisimple
F-algebra reduces to algebras of the form Am , where A is a simple F-algebra. We
have the following result:

Theorem 6.1. Let F be a field, A a finite-dimensional simple F-algebra, and
k, m, n positive integers. Then k elements of Am , say a1 = (a11, . . . , a1m), . . . ,
ak = (ak1, . . . , akm), generate Am as an F-algebra if and only if the following two
conditions are satisfied:

(1) For any i = 1, . . . ,m, the elements a1i , . . . , aki generate A as an F-algebra.

(2) There does not exist a pair of different indices i, j for which there is an auto-
morphism 9 of the F-algebra A such that

a1i =9(a1 j ), . . . , aki =9(ak j ).
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Proof. Let B denote the subalgebra of Am generated by a1, . . . , ak . Recall that
there is a unique (up to isomorphism) simple A-module M and it is faithful. Let
Mi be the pull-back of M via the projection πi : B→ A on the i-th coordinate. Thus
Mi is a B-module which coincides with M as an F-vector space, and for b ∈ B
and m ∈ Mi = M we have bm = πi (b)m. Since πi is surjective by (1), each Mi is
a simple B module. We claim that these B-modules are pairwise nonisomorphic.
Indeed, suppose that for some i 6= j the B-modules Mi and M j are isomorphic and
let 8 : Mi → M j be an isomorphism of these B-modules. For any a ∈ A there is
b ∈ B such that πi (b)= a. Set 9(a)= π j (b). We claim that 9 is well-defined and
an automorphism of the F-algebra A. Indeed, if b1∈ B is another element such that
πi (b1)= a then for any m ∈ Mi we have bm = b1m. Applying 8 to this equality,
we see that b8(m) = b18(m) for any m ∈ Mi . Since 8 is an isomorphism, we
conclude that bn=b1n for any n∈M j , that is, π j (b)m=π j (b1)m for every m ∈M .
Since M is a faithful A-module, we conclude that π j (b) = π j (b1). This shows
that 9 is well-defined. It is now straightforward to see that 9 respects addition
and multiplication and that it is F-linear. It follows that 9 is an isomorphism of
F-algebras. This however is in contradiction with our assumption (2). It follows
that Mi and M j are not isomorphic as B-modules for i 6= j . Note that

⊕m
i=1 Mi is

a semisimple, faithful B-module. It follows that B is semisimple and every simple
B-module is isomorphic to one of the Mi ’s. By Wedderburn–Artin theory, B is
isomorphic to the product

∏m
i=1 Bi , where Bi = Mni (Di ), Di = EndB(Mi ), and

ni dimF (Di )= dimF (Mi )= dimF M . Note that Di = EndB(Mi )= EndA(M) and
therefore A is isomorphic to Bi for each i , again by Wedderburn–Artin theory. This
proves that dimF Am

= dimF B, and consequently Am
= B. �

As a simple corollary we get the following.

Proposition 6.2. Let A be a simple finite-dimensional algebra over a field F. For
any k > 0 the group AutF (A) of F-algebra automorphisms of A acts freely on the
set Genk(A, F). The algebra Am can be generated by k elements as an F-algebra
if and only if there are at least m different orbits of the action of AutF (A) on
Genk(A, F).

Proof. The action of AutF (A) on Genk(A, F) is the restriction of the coordinate-
wise action of AutF (A) on Ak . If 9 ∈ AutF (A) fixes an element of Genk(A, F),
then it fixes each member of a set of generators of A as an F-algebra, so 9 is
the identity. This explains why the action is free. Theorem 6.1 says that elements
a1 = (a11, . . . , a1m), . . . , ak = (ak1, . . . , akm) generate Am as an F-algebra if and
only if the elements (a11, . . . , ak1), . . . , (a1m, . . . , akm) belong to different orbits
of the action of AutF (A) on Genk(A, F). �

Suppose now that F = Fq is a finite field with q elements. Then simple finite-
dimensional Fq -algebras are exactly algebras of the form Mn(Fqs ) for some positive
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integers n, s. Now, by the Skolem–Noether theorem, the group of automorphisms
of the Fq -algebra Mn(Fqs ) is the semidirect product of the group PGLn(Fqs ) and
the Galois group Gal(Fqs/Fq ). Thus we get the following.

Theorem 6.3. Let A =Mn(Fqs ). Then Am can be generated by k elements as an
Fq -algebra if and only if

m ≤
|Genk(A, Fq)|

s|PGLn(Fqs )|
.

Furthermore, |Genk(Am, Fq)| =
m−1∏
i=0

(
|Genk(A, Fq)| − i · s · |PGLn(Fqs )|

)
.

Proof. As we noted above, AutFq (A) has s|PGLn(Fqs )| elements. Since AutFq (A)
acts freely on Genk(A, Fq), the number of orbits of this action is equal to

|Genk(A, Fq)|

s|PGLn(Fqs )|
.

The first part of the theorem is now an immediate consequence of Proposition 6.2.
To prove the second part note that according to Proposition 6.2 the elements

of Genk(Am, Fq) are in bijective correspondence with sequences of length m of
elements from Genk(A, Fq), with no two elements in the same orbit of AutFq (A).
In order to count these sequences, let o be the number of orbits of the action of
AutFq (A) on Genk(A, Fq) and let t be the size of each orbit. We can choose
a sequence of m different orbits O1, . . . , Om in m!

(o
m

)
ways and the number of

sequences g1, . . . , gm such that gi ∈ Oi for i = 1, . . . ,m is tm . Thus

|Genk(Am, Fq)| = m!
(

o
m

)
tm
=

m−1∏
i=0

(ot − i t).

The second part of the theorem follows now immediately from the equalities ot =
|Genk(A, Fq)| and t = s|PGLn(Fqs )|. �

For a simple separable algebra A over any field F the sets Genk(A, F) are
nonempty for any k ≥ 2. In other words, we have the following.

Theorem 6.4. Let A be a simple separable algebra over a field F. Then A can be
generated by two elements as an F-algebra.

Proof. For infinite fields F the result has been proved in [Mazur and Petrenko
2009]. When F = Fq is a finite field with q elements then A is isomorphic to
Mn(Fqs ) for some positive integers n and s. Let u be a generator of the multiplica-
tive group of Fqs , so in particular Fqs = Fq [u]. For 1 ≤ i, j ≤ n let Ei j denote
the matrix whose (i, j) entry is 1 and all other entries are 0. Let A = uE11 and
B = E1n+

∑n−1
i=1 Ei+1,i . Then uk Ei j = Bi−1 Ak Bn+1− j for all 1≤ i, j ≤ n and all

k ≥ 0. It follows that A and B generate the Fq -algebra Mn(Fqs ). �
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7. The numbers |Genk(Mn(Fq), Fq)|

In this section we will study the numbers |Genk(Mn(Fq), Fq)|. In particular, we
will compute them when n ≤ 3. To simplify the notation, we make the following
definition.

Definition 7.1. Let m and n be positive integers and let q be a prime power. We
introduce the following notation:

(i) Gm,n(Fq)= Genm(Mn(Fq), Fq).

(ii) gm,n(q)= |Gm,n(Fq)|.

(iii) genm,n(q)=
gm,n(q)
|PGLn(Fq)|

.

Note that by Theorem 6.3, the number genm,n(q) is equal to the largest k ∈ Z

such that r(Mn(Fq)
k, Fq) ≤ m. Thus our notation agrees with that introduced in

Definition 1.3.
When n=1, an m-tuple generates Fq if and only if it contains a nonzero element.

It follows that gm,1(q)=qm
−1. From now on in this section we assume that n≥ 2,

unless stated otherwise.
Our attempt at computing the numbers gm,n(q) is based on the following simple

observation: a set of matrices does not generate the whole algebra Mn(Fq) if and
only if there is a maximal subalgebra of Mn(Fq) that contains this set. Thus the
following is true:

Gm,n(Fq)=Mn(Fq)
m
−
⋃
{Am
:A is a maximal subalgebra of Mn(Fq)}. (4)

Let D be the subalgebra of scalar matrices of Mn(Fq). Since any subalgebra of
Mn(Fq) contains D, we can subtract Dm in the above formula and get that Gm,n(Fq)

is equal to

Mn(Fq)
m
−Dm

−
⋃
{Am
−Dm

:A is a maximal subalgebra of Mn(Fq)}.

Since |Mn(Fq)| = qn2
and |D| = q, the inclusion-exclusion formula yields

gm,n(q)= qmn2
− qm

+

∑
(−1)k |(Am

i1
−Dm)∩ · · · ∩ (Am

ik
−Dm)|,

where the sum is taken over all nonempty subsets {Ai1, . . . ,Aik } of the set of
all maximal subalgebras of Mn(Fq). Since D is contained in every subalgebra of
Mn(Fq), we have

(Am
i1
−Dm)∩ · · ·∩ (Am

ik
−Dm)=Am

i1
∩ · · ·∩Am

ik
−Dm

= (Ai1 ∩ · · ·∩Aik )
m
−Dm,

and therefore

gm,n(q)= qmn2
− qm

+

∑
(−1)k

(
|Ai1 ∩ · · · ∩Aik |

m
− qm), (5)
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where the sum is taken over all nonempty subsets {Ai1, . . . ,Aik } of the set of all
maximal subalgebras of Mn(Fq).

In order to evaluate the right-hand side of (5), it is necessary to have a description
of all maximal subalgebras of Mn(Fq). It is quite easy to produce one type of
maximal subalgebras of Mn(Fq). In fact, we have the following result.

Lemma 7.2. For a proper nontrivial vector subspace U of Fn
q let AU be the set

of all matrices from Mn(Fq) that leave U invariant. Then AU is a maximal sub-
algebra of Mn(Fq). Moreover, each AU is uniquely determined by U , that is, if
AU =AU ′ then U =U ′.

Proof. First note that the center of AU consists of scalar matrices. In fact, if
a matrix A is in the center of AU then it acts as a scalar λ on U . The matrix
B = A− λI annihilates U and is in the center of AU . Suppose that Bv 6= 0 for
some v. Then there is a projection5 onto U such that5(Bv) 6= 0. Since5∈AU ,
we have 0 6= 5Bv = B5v = 0, a contradiction. Thus B = 0 and A is a scalar
matrix.

Now note that if U 6= U ′ then there is A ∈ AU −AU ′ . In fact, if U ′ ( U then
such an A clearly exists since AU is transitive on U . If there exists v ∈ U ′ −U
then for any w there is an A ∈ AU such that Av = w. Taking w 6∈ U ′ yields the
required A. This, in particular, proves the second assertion.

Take any matrix A not in AU and let A′ be the algebra generated by A and
AU . Note that A′ cannot fix any nontrivial subspace V of Fn

q . In fact, if V 6= U
then, as we have seen above, AU is not contained in AV and A does not take U
into U . Thus Fn

q is a simple and faithful A′-module. It follows that A′ is a simple
central Fq -algebra with a simple module of dimension n over Fq , hence it must be
isomorphic to Mn(Fq). It follows that AU is maximal. �

The following lemma describes a second type of maximal subalgebras of Mn(Fq).

Lemma 7.3. Let s be a prime divisor of n and let m = n/s. Any Fq -subalgebra of
Mn(Fq) isomorphic to Mm(Fqs ) is maximal. Any two such subalgebras are conju-
gate in Mn(Fq) and their number is equal to

s−1
∏

s -i,1≤i<n

(qn
− q i ).

Proof. Let A be a Fq -subalgebra of Mn(Fq) isomorphic to Mm(Fqs ). Thus Fn
q is

an A-module of dimension m over the center of A (which is isomorphic to Fqs ).
It follows that Fn

q is a simple A-module. Suppose that A′ is a Fq -subalgebra of
Mn(Fq) containing A. Then Fn

q is a simple and faithful A′-module. It follows
that A′ is simple, hence it is isomorphic to Mk(Fqr ), where kr = n and r is the
dimension of the center of A′ over Fq . Clearly, the center of A′ is contained in
the center of A. It follows that r |s, and therefore r = 1 or r = s (recall that s is
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a prime). In the former case we get A′ = Mn(Fq) and in the latter case we have
A′ =A. This shows that A is maximal.

For the existence of an Fq -subalgebra of Mn(Fq) isomorphic to Mm(Fqs ) con-
sider the (unique up to isomorphism) simple Mm(Fqs )-module V . It has dimension
m as a vector space over Fqs , so as a Fq -vector space it is isomorphic to Fn

q . Thus the
action of Mm(Fqs ) on V induces an Fq -algebra embedding of Mm(Fqs ) into Mn(Fq).

Fix now a Fq -subalgebra A of Mn(Fq) isomorphic to Mm(Fqs ). By the Noether–
Skolem theorem, any Fq -algebra homomorphism of A into Mn(Fq) is given by
conjugation with some invertible element of Mn(Fq). This means that the group
GLn(Fq) acts transitively on the set of subalgebras of Mn(Fq)which are isomorphic
to Mm(Fqs ). Since A is maximal, the subgroup C of elements which act trivially
on A coincides with the multiplicative group of the center of A. The quotient of
the stabilizer of A by C is, again by the Noether–Skolem theorem, isomorphic to
the group of all automorphisms of the Fq -subalgebra A. We have seen earlier that
the group of Fq -algebra automorphisms of Mm(Fqs ) has s|PGLm(Fqs )| elements
(see the discussion directly before Theorem 6.3). Therefore the stabilizer of A

has |C | · s · |PGLm(Fqs )| = s|GLm(Fqs )| elements. Consequently, the number of
Fq -subalgebras A of Mn(Fq) isomorphic to Mm(Fqs ) is equal to

|GLn(Fq)|

s|GLm(Fqs )|
= s−1

∏
s -i,1≤i<n

(qn
− q i ). �

It turns out that the maximal subalgebras described in Lemmas 7.2 and 7.3 ex-
haust all possible maximal subalgebras. In other words, we have the following
result.

Proposition 7.4. Let A be a maximal Fq -subalgebra of Mn(Fq). Then either A=

AU for some subspace U of Fn
q or A is isomorphic to Mm(Fqs ) for some prime

divisor s of n = ms.

Proof. Suppose that A fixes some proper nontrivial subspace U of Fn
q . Then A is

contained in AU , hence A = AU . If no proper nontrivial subspace of Fn
q is fixed

by A then Fn
q is a simple and faithful A-module. It follows that A is simple and

therefore it is isomorphic to Mk(Fqr ), where kr = n. Let s be a prime divisor of r .
The center of A contains a subfield F isomorphic to Fqs . The centralizer of F in
Mn(Fq) consists exactly of those linear transformations of Fn

q which are F-linear.
Thus it is a subalgebra of Mn(Fq) isomorphic to Mm(Fqs ), where ms = n. On the
other hand, this subalgebra contains A, hence it must be equal to A. �

In order to carry out our strategy to compute the numbers gm,n(q) we need to
understand the intersections of maximal subalgebras of Mn(Fq). This appears to
be a very challenging combinatorial problem and so far we have only succeeded
in completing the computations for n ≤ 3. One of the complications in the general



Smallest number of generators and the probability of generating an algebra 275

case is that the maximal subalgebras are of two different types. This difficulty
disappears when n is a prime by the following observation.

Lemma 7.5. Let n be a prime number. If A is a maximal subalgebra of Mn(Fq)

isomorphic to Fqn , then its intersection with any other maximal subalgebra is equal
to D, the algebra of scalar matrices.

Proof. Since n is prime, Fqn has only two subfields, itself and Fq . In other words,
A has only two subalgebras, A and D. Since the intersection cannot be equal to
A, it is equal to D. �

For the rest of this section we assume that n is a prime number. Thus Lemma 7.5
tells us that if the set {Ai1, . . . ,Aik } of maximal subalgebras of Mn(Fq) includes a
subalgebra isomorphic to Fqn , and k≥ 2, then the intersection of the subalgebras in
this set is equal to D, and so the corresponding term in (5), |Ai1∩· · ·∩Aik |

m
−qm ,

is equal to 0. It follows that we can rewrite (5) in the following way:

gm,n(q)= qmn2
− qm

−

∑
A∼=Fqn

(|A|m − qm)+
∑

(−1)k(|AU1 ∩ · · · ∩AUk |
m
− qm),

where the second sum is over all nonempty sets {U1, . . . ,Uk} of nontrivial proper
subspaces of Fn

q . By Lemma 7.3, the first sum consists of n−1∏n−1
i=1 (q

n
−q i ) terms,

each term being qmn
− qm . Thus we get the following formula:

gm,n(q)= qmn2
− qm

− n−1(qmn
− qm)

n−1∏
i=1

(qn
− q i )

+

∑
(−1)k(|AU1 ∩ · · · ∩AUk |

m
− qm), (6)

where the sum is over all nonempty sets {U1, . . . ,Uk} of nontrivial proper sub-
spaces of Fn

q .
Let F be the set of all subalgebras of Mn(Fq) which are intersections of some

of the maximal algebras of the form AU . For each A ∈ F, define the degree d(A)
of A by

d(A)=
∑

(−1)k, (7)

where the sum is over all sets {U1, . . . ,Uk} of nontrivial proper subspaces of Fn
q

such that AU1 ∩ · · · ∩AUk =A. Thus (6) can be stated as

gm,n(q)= qmn2
−qm

−n−1(qmn
−qm)

n−1∏
i=1

(qn
−q i )+

∑
A∈F

d(A)(|A|m−qm). (8)

The following simple lemma will be useful for our analysis of elements of F.

Lemma 7.6. Let F be a field, V be a vector space over F , and let v1, . . . , vk ∈ V
be a minimal linearly dependent collection of vectors (so any k − 1 of them are
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linearly independent). Then any linear endomorphism of V that scales v1, . . . , vk

is a scalar operator when restricted to the linear span of v1, . . . , vk .

Proof. Let f be a linear endomorphism of V such that f (vi ) = αivi for some
αi ∈ F and i = 1, . . . , k. The assumptions of the lemma imply that

vk = β1v1+ · · ·+βk−1vk−1

for some nonzero β1, . . . , βk−1∈ F . By expressing f (vk) in two ways, as β1α1v1+

· · · + βk−1αk−1vk−1 and as αkvk , we obtain βiαi = βiαk for all i . Since none of
the βi ’s is 0, we have αi = αk for i = 1, . . . , k. �

7A. The case n = 2. In this subsection we evaluate (8) in the case n = 2. Any
element A ∈ F is of the form AU1 ∩ · · · ∩AUk , where k ≥ 1 and U1, . . . ,Uk are
distinct lines in F2

q . Note that by Lemma 7.6, A = D if k ≥ 3 and in this case A

does not contribute anything to (8). It follows that if A is an element of F different
from D, then it can be expressed as the intersection of maximal subalgebras in a
unique way and it is either of the form AU or of the form AU1∩AU2 . In the former
case, we have |A| = q3 and d(A)=−1. In the latter case, |A| = q2 and d(A)= 1.
Since the number of lines in F2

q is q + 1, (8) takes the following form:

gm,2(q)= q4m
− qm

− 2−1(q2m
− qm)(q2

− q)

−(q + 1)(q3m
− qm)+ 2−1(q + 1)q(q2m

− qm),

which simplifies to

gm,2(q)= q2m+1(qm−1
− 1)(qm

− 1). (9)

7B. The case n = 3. In this subsection we evaluate (8) for n = 3. This is substan-
tially more difficult than the case n= 2, but we are still able to analyze all elements
of F. The following combinatorial lemma will help us evaluate the degree of some
of the algebras in F.

Lemma 7.7. Let X be a finite set. Consider a family S of subsets of X such that if
Y ∈ S and Y ⊆ Y ′ ⊆ X , then Y ′ also belongs to S. Suppose furthermore that one
of the following two conditions is true.

(1) There is x ∈ X such that X ′−{x} ∈ S for any X ′ ∈ S.

(2) There are x, y ∈ X such that if X ′ ∈ S and X ′−{x} 6∈ S then

(a) X ′−{y} ∈ S and
(b) (X ′ ∪ {y})−{x} 6∈ S.

Then
∑
Y∈S

(−1)|Y | = 0.
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Proof. Let S0 be the family of those subsets from S that do not contain x and let
S1 be the family of those subsets that contain x . The map t : Y 7→ Y ∪ {x} is an
injection from S0 to S1. Let S2 = S1− t (S0). We have∑

Y∈S

(−1)|Y | =
∑

Y∈S0

(−1)|Y |+
∑

Y∈ t (S0)

(−1)|Y |+
∑

Y∈S2

(−1)|Y |.

Since |t (Y )| = 1+|Y |, the first two sums on the right annihilate each other, and so∑
Y∈S

(−1)|Y | =
∑

Y∈S2

(−1)|Y |.

Condition (1) exactly means that S2 is empty, hence
∑

Y∈S(−1)|Y | = 0. If
condition (2) holds, we write S2 as a disjoint union S2 = S20 ∪ S21, where S20

consists of those elements of S2 which do not contain y. By (b), the map s : Y 7→
Y ∪ {y} maps S20 into S21 and (a) implies that s is onto. Thus s : S20→ S21 is a
bijection and∑
Y∈S2

(−1)|Y | =
∑

Y∈S20

(−1)|Y |+
∑

Y∈S21

(−1)|Y | =
∑

Y∈S20

(
(−1)|Y |+ (−1)|s(Y )|

)
= 0. �

We apply Lemma 7.7 as follows. Given A ∈F, the set X = XA will consists of
all proper nontrivial subspaces of F3

q fixed by A and the family S= SA will consist
of all subsets {U1, . . . ,Uk} of X such that AU1 ∩ · · · ∩AUk =A. If conditions (1)
or (2) hold for SA, then Lemma 7.7 tells us that d(A)= 0.

Before we start the analysis of elements in F let us recall that the dot product
v ·w= v1w1+v2w2+v2w3 is a nondegenerate symmetric bilinear form on F3

q . The
adjoint operator with respect to this bilinear form is the transposition. It follows
that if AU1 ∩ · · · ∩AUk =A ∈ F then

AU⊥1
∩ · · · ∩AU⊥k

=At
:= {At

: A ∈A} ∈ F,

where At is the transpose of A and U⊥ is the subspace orthogonal to U with respect
to the dot product. We will often call At the dual of A. It is clear that A and At

have the same number of elements and the same degree.

Definition 7.8. Let A ∈ F. Then

LA = {U : dim U = 1 and A⊆AU }

is the set of all lines fixed by A and

PA = {U : dim U = 2 and A⊆AU }

is the set of all planes fixed by A.
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Note that LAt = {π⊥ : π ∈ PA} and PAt = {l⊥ : l ∈ LA}. Also, XA = LA ∪PA.

Consider an algebra A ∈ F, A 6= D. Then A falls into exactly one of the
following cases.

Case I: LA contains three lines in general position. Recall that we say that three
lines in F3

q are in general position if they are not contained in any plane. Dually,
three planes are in general position if they do not share any common line. Let
l1, l2, l3 ∈ LA be three lines in general position. Let πi be the plane spanned by l j

and lk , where {i, j, k} = {1, 2, 3}.

Subcase Ia: LA = {l1, l2, l3}. In this case PA = {π1, π2, π3}. The algebra A is
conjugate to the algebra of all diagonal matrices. In particular, |A| = q3. Further-
more, XA = LA ∪ PA and a subset of XA belongs to SA if and only if it contains
one of the following sets: {l1, l2, l3}, {π1, π2, π3}, {l1, l2, π1, π2}, {l1, l3, π1, π3}, or
{l2, l3, π2, π3}. Thus SA has two members of cardinality 3, nine members of cardi-
nality 4, six members of cardinality 5 and one element of cardinality 6. Therefore,
d(A)=−2+ 9− 6+ 1= 2.

Note that the algebras in this subcase are in bijective correspondence with sets
of three lines in general position. Recall that F3

q has q2
+q+1 lines, and each plane

has q + 1 lines. It follows that the number of ordered triples of lines in general
position is (q2

+ q + 1)(q2
+ q)q2. Thus, the number of algebras in this subcase

is q3(q + 1)(q2
+ q + 1)/6. Consequently, the algebras in this subcase contribute

the quantity
3−1qm+3(q + 1)(q2

+ q + 1)(q2m
− 1)

to the sum
∑

A∈F d(A)(|A|m − qm).

Subcase Ib: LA⊇{l1, l2, l3, l4}, where l4 is a line not contained in any of the planes
π1, π2, π3. In this case, by Lemma 7.6, we have A=D, and A does not contribute
anything to the sum

∑
A∈F d(A)(|A|m − qm).

It remains to consider the case when LA contains a line l4 which is contained
in one of the planes π1, π2, π3. Changing the numbering if necessary, we may
assume that l4 belongs to π1. If there is a line l5 (different from l1, . . . , l4) which is
contained in π2, the planes through l4, l1 and through l5, l2 intersect along a line l6

which does not belong to any of the planes π1, π2, π3. Thus we are in Subcase Ib.
The same argument shows that there is no line in LA different from l1, . . . , l4 and
contained in π3. Since A fixes three different lines in π1, it acts as a scalar on π1

by Lemma 7.6. In particular, LA contains all the lines in π1. We will write π for
π1 and l for l1. We see that all the remaining algebras in Case I fall in the following
subcase.

Subcase Ic: LA = {l} ∪ {all lines in π}. It is easy to see that in this case PA =

{π} ∪ {all planes through l}. We will show that d(A)= 0 by applying Lemma 7.7
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to X = XA, S = SA. We need to verify that x = l, y = π satisfy condition (2).
Suppose that X ′ ∈ SA and X ′ − {l} 6∈ SA. We claim that X ′ contains at most
one plane through l. For suppose otherwise, that there are two planes containing
l in X ′. Their intersection is l. Thus a matrix fixes all elements of X ′− {l} if and
only if it fixes all elements of X ′, that is, X ′ − {l} ∈ SA, a contradiction. This
proves that indeed X ′ contains at most one plane different from π . We claim that
X ′ contains at least two lines contained in π . Otherwise, there would be at most
one such line in X ′, so X ′ would be a subset of a set of the form {l, l ′, π, π ′} for
some line l ′ contained in π and some plane π ′ containing l. Thus A would contain
the algebra A′ =Al ∩Al ′ ∩Aπ ∩Aπ ′ . This is, however, not possible, since A′ has
an element which is not a scalar on π and all elements of A act as scalars on π .
Indeed, if the line l ′′= π ∩π ′ is different from l ′ then A′ equals Al ∩Al ′∩Al ′′ and
contains the matrix which is the identity on l and l ′ and is 0 on l ′′. If l ′′ = l ′ then
A′ =Al ∩Al ′ ∩Aπ contains the algebra Al ∩Al ′ ∩Al ′1 for any line l ′1 in π which
is different from l ′.

Thus there are two lines in X ′ which are contained in π . These two lines span
π , so X ′−{π} ∈ SA. Also, (X ′∪{π})−{l} and X ′−{l} are fixed by the same set
of matrices, so (X ′ ∪ {π})− {l} 6∈ SA. This verifies condition (2) of Lemma 7.7,
so d(A)= 0. Consequently, the algebras of Subcase Ic do not contribute anything
to the sum

∑
A∈F d(A)(|A|m − qm).

Note that if PA contains three planes in general position, then the three lines
obtained by intersecting pairs of these planes are in general position and belong
to LA. Thus from now on we assume that LA does not contain three lines in
general position and that PA does not contain three planes in general position. If
LA contains more than two elements, then all of the lines in LA must be contained
in some plane π and then, by Lemma 7.6, LA = {all lines in π}. Similarly, by
duality, if PA contains more than two elements, then all the planes in PA share a
common line l and PA = {all planes which contain l}. This leads to the following
two cases.

Case II: There is a plane π such that LA = {all lines in π}. By Lemma 7.6, every
element of A acts as a scalar on π . In particular, π ∈ PA. Note that all the planes
in PA must share a common line l (if PA = {π}, pick any line in π for l). In fact,
suppose that there are π1, π2∈PA such that the lines π∩π1 and π∩π2 are different.
Then the line π1∩π2 belongs to LA and is not contained in π , which is not possible.
Thus, PA ⊆ {all planes which contain l}. We claim that any X ∈ SA contains at
least two lines in π different from l. In fact, if the lines in X are contained in {l, l1}

then consider a plane π1 which does not contain l but contains l1. There is a matrix
A which is 0 on l and is the identity on π1 and this matrix fixes every plane passing
through l. Thus A fixes all elements of X , yet A is not a scalar on π . This means
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that A 6∈ A, and consequently X 6∈ SA, a contradiction. Now any two lines in X
span π . It follows that any matrix which fixes all elements of X−{π} also fixes π ,
that is, X−{π} ∈ SA. This means that the family SA of subsets of XA satisfies the
assumptions of Lemma 7.7, condition (1), with x =π . It follows that d(A)= 0 and
the algebras in this case do not contribute anything to

∑
A∈F d(A)(|A|m − qm).

Case III: There is a lane l such that PA = {all planes through l}. Any algebra in
this case is dual to an algebra in Case II, hence it has degree 0. Thus algebras in
this case do not contribute anything to

∑
A∈F d(A)(|A|m − qm).

It remains to analyze algebras A such that both LA and PA have at most two
elements.

Case IV: |LA| = 2 = |PA|. We may assume that LA = {l, l ′} and PA = {π, π
′
},

where π ′ is spanned by l, l ′ and π ∩π ′ = l. It is easy to see that the family SA has
three elements: {l, l ′, π}, {l ′, π, π ′}, and {l, l ′, π, π ′}. Thus d(A)=−2+ 1=−1.
Choosing nonzero vectors v1 ∈ l ′, v2 ∈ l, and v3 ∈ π − l we get a basis of F3

q and
A ∈A if and only if the matrix of the linear transformation given by A, expressed
in the basis v1, v2, v3, has the form∗ 0 0

0 ∗ ∗
0 0 ∗

 .
In other words, A is conjugate to the algebra of all the matrices of the form∗ 0 0

0 ∗ ∗
0 0 ∗

 .
In particular, |A| = q4. To count the number of algebras in Case IV, note that these
algebras are in bijective correspondence with triples l, l ′, π , where π is a plane and
l and l ′ are lines such that l ⊂ π and l ′ 6⊂ π . There are q2

+ q + 1 choices for π
and for each π we have q + 1 choices of l and q2 choices of l ′. Thus the number
of algebras in Case IV is q2(q+1)(q2

+q+1). Consequently, the algebras in this
case contribute

−qm+2(q + 1)(q2
+ q + 1)(q3m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

Case V: |LA|=2 and |PA|=1. Thus LA={l, l ′} and PA={π}, where π is spanned
by l, l ′. It is straightforward to see that SA has two elements: {l, l ′} and {l, l ′, π}.
It follows that d(A) = 0 and therefore algebras in this case contribute nothing to∑

A∈F d(A)(|A|m − qm).
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Case V⊥: |LA| = 1 and |PA| = 2. Algebras in this case are dual to algebras in
Case V, so they have degree 0 and contribute nothing to

∑
A∈F d(A)(|A|m −qm).

Case VI: LA = {l} and PA = {π}, where l 6⊂ π . It is clear that SA has exactly one
element: {l, π}. Thus d(A)= 1. Choosing a basis v1 of l and v2, v3 of π we easily
see that A is conjugate to the algebra of all the matrices of the form∗ 0 0

0 ∗ ∗
0 ∗ ∗

 .
In particular, |A| = q5. To count the number of algebras in Case VI, note that these
algebras are in bijective correspondence with pairs l, π , where π is a plane and l
is a line not contained in π . There are q2

+q+1 choices for π and for each π we
have q2 choices of l. Thus the number of algebras in Case VI is q2(q2

+ q + 1).
Consequently, the algebras in this case contribute

qm+2(q2
+ q + 1)(q4m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

Case VII: LA = {l} and PA = {π}, where l ⊂ π . It is clear that SA has exactly one
element: {l, π}. Thus d(A)= 1. Choosing a basis v1 of l, v1, v2 of π , and a vector
v3 6∈ π , we easily see that A is conjugate to the algebra of all the matrices of the
form ∗ ∗ ∗0 ∗ ∗

0 0 ∗

 .
In particular, |A|=q6. To count the number of algebras in Case VII, note that these
algebras are in bijective correspondence with pairs l, π , where π is a plane and l
is a line contained in π . There are q2

+q+1 choices for π and for each π we have
q+1 choices of l. Thus the number of algebras in Case VII is (q+1)(q2

+q+1).
Consequently, the algebras in this case contribute

qm(q + 1)(q2
+ q + 1)(q5m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

Case VIII: A=Al for some line l. The family SA has exactly one element: {l}, so
d(A) = −1. It is easy to see that A is conjugate to the algebra of all the matrices
of the form ∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

 .
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In particular, |A| = q7. Algebras in this case are in bijection with lines, so we have
q2
+ q + 1 such algebras. Thus the algebras in this case contribute

−qm(q2
+ q + 1)(q6m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

The following case is the last to consider.

Case VIII⊥: A = Aπ for some plane π . This case consists of algebras dual to
algebras of Case VIII, so they also contribute

−qm(q2
+ q + 1)(q6m

− 1)

to
∑

A∈F d(A)(|A|m − qm).

Putting together all the contributions to
∑

A∈F d(A) (|A|m − qm) we arrive at
the formula∑
A∈F

d(A)(|A|m−qm)= 3−1qm+3(q+1)(q2
+q+1)(q2m

−1)

−qm+2(q+1)(q2
+q+1)(q3m

−1)+ qm+2(q2
+q+1)(q4m

−1)

+ qm(q+1)(q2
+q+1)(q5m

−1)− 2qm(q2
+q+1)(q6m

−1).

After inserting this into (8) and simplifying we arrive at the following formula
for gm,3(q):

gm,3(q)= q3m+4(qm−1
− 1)(qm−1

+ 1)(qm
− 1)

× (q3m−2
+ q2m−2

− qm
− 2qm−1

− qm−2
+ q + 1). (10)

7C. Lower bound for gm,n(q). So far we have been unable to obtain exact for-
mulas for gm,n(q) for any n ≥ 4. We have however the following lower bound.

Proposition 7.9. Let m and n be positive integers and let q be a power of a prime
number. Then

gm,n(q)≥ qmn2
− 2(n+6)/2qn2m−(m−1)(n−1). (11)

Proof. By (4), we have the following inequality:

gm,n(q)≥ qmn2
−
∑
|A|m,

where the sum is taken over all maximal subalgebras A of Mn(Fq). We use the
description of maximal subalgebras given by Proposition 7.4. Let 1 ≤ k < n. The
number of k-dimensional subspaces of Fn

q is

k−1∏
i=0
(qn
− q i )

k−1∏
i=0
(qk
− q i )−1.
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For any such subspace V the algebra AV has qn2
−nk+k2

elements. Let

Sk =
∑
|AV |

m,

where the sum is taken over all k-dimensional subspaces V of Fn
q . It follows that

Sk = q(n
2
−nk+k2)m

k−1∏
i=0
(qn
− q i )

k−1∏
i=0
(qk
− q i )−1.

Using the inequality
qn
− q i

qk − q i ≤ qn−k q
q−1

we get

Sk ≤ qn2m−(m−1)k(n−k)
( q

q−1

)k
.

Note that Sk = Sn−k (by duality). Since q
q−1

≤ 2 and k(n− k)≥ n− 1, we have

6a :=

n−1∑
k=1

Sk ≤ 2
bn/2c∑
k=1

Sk ≤ 2(n+4)/2qn2m−(m−1)(n−1).

For a prime divisor s of n define Ts as the sum
∑
|A|m , where the sum is over all

subalgebras of Mn(Fq) isomorphic to Mn/s(Fqs ). By Lemma 7.3, we have

Ts = q(n
2/s)m
· s−1
·

∏
s -i

1≤i<n

(qn
− q i )≤ s−1

· q(n
2/s)m
· qn(n−n/s)

≤ s−1
· qn2(m+1)/2.

Let6b=
∑

Ts , where the sum is over all prime divisors s of n. It is easy to see that
the sum

∑
s−1 of all reciprocals of prime divisors of n does not exceed 2(n+4)/2.

Furthermore, qn2(m+1)/2
≤ qn2m−(m−1)(n−1). It follows that

6b ≤ 2(n+4)/2qn2m−(m−1)(n−1).

By Proposition 7.4 we have 6a +6b =
∑
|A|m , where the sum is taken over all

maximal subalgebras A of Mn(Fq). Thus,

gm,n(q)≥ qmn2
− 2(n+6)/2qn2m−(m−1)(n−1). �

As an immediate consequence of Proposition 7.9 we get the following corollary.

Corollary 7.10. Let m, n ≥ 2. The probability that m matrices in Mn(Fq), cho-
sen under the uniform distribution, generate the Fq -algebra Mn(Fq) tends to 1 as
q +m+ n→∞.

Corollary 7.10 proves and vastly generalizes the conjectural formula [Petrenko
and Sidki 2007, (17), p. 27].
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8. Finite products of matrix algebras over rings of algebraic integers

Let R be the ring of integers in a number field K . In this final section we apply the
techniques developed in our paper to investigate generators of R-algebras A which
are products of a finite number of matrix algebras over R. Thus we have

A ∼=
s∏

i=1

Mni (R)
mi ,

where 1 ≤ n1 < n2 < · · · < ns and mi are positive integers. As we have seen in
Example 2.13, the algebra A is k-generated if and only if all the algebras Mni (R)

mi

are k-generated. Thus, we may and will focus on the case when A ∼=Mn(R)m for
some positive integers n,m. We have the following theorem.

Theorem 8.1. Let R be the ring of integers in a number field K . Suppose that
either n ≥ 3 or k ≥ 3 and let A =Mn(R)m for some positive integer m. Then the
following conditions are equivalent.

(i) The R-algebra A admits k generators.

(ii) For every maximal ideal p of R the R/p-algebra Mn(R/p)m admits k genera-
tors.

(iii) The density denk(A) is positive.

Furthermore, the following formulas, in which ζK denotes the Dedekind zeta func-
tion of K , hold for every k ≥ 2:

(a) den2(M2(R)m)= 0 for every m;

(b) denk(M2(R))=
1

ζK (k− 1)ζK (k)
;

(c) denk(M3(R))=
1

ζK (2k− 2)ζK (k)

∏
p∈m-Spec R

(
1+

φk(N(p))
N(p)3k−2

)
, where φk(x)=

x2k−2
− xk
− 2xk−1

− xk−2
+ x + 1.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (i) are clear. When k ≥ 3, the
implication (ii)⇒ (iii) is an immediate consequence of Theorem 5.2 and the fact
that the K-algebra Mn(K )m is 2-generated [Mazur and Petrenko 2009]. Suppose
now that k = 2, n ≥ 3, and (ii) holds. Consider a maximal ideal p of R and
let q = N(p). By Theorem 6.3, the number g2(p, A) of pairs of elements which
generate Mn(R/p)m is given by

g2(p, A)=
m−1∏
i=0

(
g2,n(q)− i · |PGLn(Fq)|

)
.
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By (ii), we have g2(p, A) > 0. Note that |PGLn(Fq)| ≤ qn2
−1
≤ q2n2

−n+1. Further-
more, we have g2,n(q)≥ q2n2

− 2nq2n2
−n+1 by Proposition 7.9. Hence

g2(p, A)≥
(
N(p)2n2

− (2n
+m)N(p)2n2

−n+1)m
,

provided N(p) > 2n
+m. By Theorem 3.2, we have

den2(A)=
∏

p∈m-Spec R

g2(p, A)
N(p)2mn2 .

Since all the factors in the product on the right are positive and all but a finite
number of them satisfy the inequality

g2(p, A)
N(p)2mn2 ≥

(
1−

m+ 2n

N(p)n−1

)m

,

the product converges to a positive number. In other words, den2(A) > 0. This
completes the proof of the implication (ii)⇒ (iii).

In order to establish formulas (b) and (c) note that

denk
(
Mn(R)

)
=

∏
p∈m-Spec R

gk,n(N(p))

N(p)kn2

by Theorem 3.2. Formulas (b) and (c) follow now from (9) and (10), respectively.
To justify (a) note that g2(p,M2(R)m) ≤ g2,2(N(p))

m for every maximal ideal p.
It follows that den2(M2(R)m) ≤ den2(M2(R))m . Since by (b) with k = 2 we have
den2(M2(R))= 0, the equality in (a) follows. �

Recall now that by Theorem 6.3, the R/p-algebra Mn(R/p)m is k-generated if
and only if m ≤ genk,n(N(q)), where genk,n(q)= gk,n(q)/|PGLn(Fq)|. Using (10)
we get the following theorem.

Theorem 8.2. Let R be the ring of integers in a number field and let p be a maximal
ideal of R with smallest norm. Define polynomials fk(x) by f1(x)= 0 and

fk(x)=
x3k+1(xk−1

− 1)(xk−1
+ 1)(xk

− 1)
(x2+ x + 1)(x − 1)2(x + 1)

× (x3k−2
+ x2k−2

− xk
− 2xk−1

− xk−2
+ x + 1) (12)

for any k ≥ 2. Let k ≥ 2 and m be positive integers. Then the following conditions
are equivalent:

(i) r(M3(R)m, R)= k;

(ii) fk−1(N(p)) < m ≤ fk(N(p)).

In particular, the Z-algebra M3(Z)
m is 2-generated if and only if m ≤ 768.
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Proof. By (10), we have genk,3(q) = fk(q) for any k ≥ 2. By Theorem 8.1, the
R-algebra M3(R)m is k-generated if and only if m ≤ fk(N(q)) for every maximal
ideal q of R. It is easy to see that fk(x) is increasing on [2,∞). It follows that
M3(R)m is k-generated if and only if m ≤ fk(N(p)). This establishes the equiva-
lence of (i) and (ii). The last claim follows now from the fact that f2(2)= 768. �

Even though in (9) we established a formula for genk,2(q), getting an analog of
Theorem 8.2 for products of copies of M2(R) is more complicated. The difficulty
is that the density den2(M2(R)m) is 0 and we have to find a way to deal with the
ambiguity in Theorem 5.5 when k = 2. So far we can overcome this difficulty only
when R has a maximal ideal of norm 2. We have the following theorem.

Theorem 8.3. Let R be the ring of integers in a number field and let p be a maximal
ideal of R with smallest norm. Define polynomials hk(x) by h1(x)= 0 and

hk(x)=
x2k(xk−1

− 1)(xk
− 1)

(x − 1)(x + 1)
(13)

for any k ≥ 2. Let k > 3 and m be positive integers. Then the following conditions
are equivalent:

(i) r(M2(R)m, R)= k;

(ii) hk−1(N(p)) < m ≤ hk(N(p)).

Furthermore, there exists an integer t such that 16 ≤ t ≤ h2(N(p)), M2(R)m is
2-generated if and only if m ≤ t , and r(M2(R)m, R) = 3 if and only if t < m ≤
h3(N(p)). In particular, if N(p) = 2, then t = 16, so in this case (i) and (ii) are
equivalent for all k ≥ 2.

Proof. By (9), we have genk,2(q) = hk(q) for any k ≥ 2. Suppose that k ≥ 3. By
Theorem 8.1, the R-algebra M2(R)m is k-generated if and only if m≤ hk(N(q)) for
every maximal ideal q of R. It is easy to see that hk(x) is increasing on [2,∞). It
follows that when k ≥ 3 then M2(R)m is k-generated if and only if m ≤ hk(N(p)).
This, in particular, justifies the equivalence of (i) and (ii) when k>3. It also implies
the existence of t having all the required properties except possibly the estimate t ≥
16. In order to show that t ≥ 16, we need to establish that M2(R)16 is 2-generated
as an R-algebra. It suffices to prove that M2(Z)

16 admits two generators as a
Z-algebra. This will be done in Proposition 8.9. Finally, the equality t = 16 when
N(p)= 2 follows from the fact that h2(2)= 16. �

In order to improve on Theorem 8.3 and extend it to matrix algebras of size
n ≥ 3 the following two questions need to be answered.

Question 8.4. Is it true that t = h2(N(p))?

Question 8.5. Given positive integers k and n, is genk,n(q) an increasing function
of q?
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It order to complete our proof of Theorem 8.3 we have to show that M2(Z)
16

admits two generators. For that we need several observations, which seem of in-
dependent interest.

Proposition 8.6. Let S be a commutative ring. Two matrices A, B ∈M2(S) gen-
erate M2(S) as an S-algebra if and only if det(AB− B A) is invertible in S.

Proof. First we prove the result under the additional assumption that S is a field. Let
N = AB− B A and let T be the subalgebra generated by A and B. If T is a proper
subalgebra then its dimension is at most 3. It follows that T/J (T ) is a semisimple
algebra of dimension ≤ 3 (recall that J (T ) denotes the Jacobson radical of T ).
Thus T/J (T ) is abelian and therefore N ∈ J (T ). Since the Jacobson radical is
nilpotent, N is nilpotent, hence det N = 0.

Conversely, suppose that det N = 0. Recall that any 2× 2 matrix X satisfies
the identity X2

= tX X − dX I , where tX is the trace and dX is the determinant of
X . Since the trace of N is 0, we have N 2

= 0. If N = 0 then T is commutative,
and hence a proper subalgebra of M2(S). If N 6= 0, the null-space of N is one-
dimensional. Using the identity A2

= tA A−dA I we easily see that AN+N A= tA N .
It follows that the null-space of N is A-invariant. Similarly, the null-space of N is
B-invariant. It follows that the null-space of N is T-invariant, hence T is a proper
subalgebra of M2(S). This completes our proof in the case when S is a field.

If S is any commutative ring then, by Lemma 2.6, the matrices A and B generate
M2(S) if and only if for any maximal ideal M of S the S/M-algebra M2(S/M)
is generated by the images of A and B. By the just established field case of the
result, this is equivalent to the condition that det(AB − B A) 6∈ M for all maximal
ideals M , which in turn is equivalent to claiming that det(AB − B A) is invertible
in S. �

The following observation is due to H. W. Lenstra.

Lemma 8.7. Let A, B ∈ M2(Z) be two matrices with all entries in {0, 1}. Then
A, B generate M2(Z) if and only if their reductions modulo 2 generate M2(F2).

Proof. By Proposition 8.6, we need to prove that det(AB− B A) is odd if and only
if it is ±1. The “if” part is clear. Suppose then that

A =
(

a1 a2

a3 a4

)
and B =

(
b1 b2

b3 b4

)
are such that ai , b j ∈ {0, 1} and det(AB− B A) is odd. Note that

AB− B A =
(

a2b3− a3b2 a2(b4− b1)+ b2(a1− a4)

a3(b1− b4)+ b3(a4− a1) a3b2− a2b3

)
.

The diagonal entries of this matrix are in {0,±1} and the off-diagonal entries are
in the set {0,±1,±2}. If a2b3 − a3b2 = 0 then the off-diagonal entries must be
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odd and hence are ±1. It follows that det(AB− B A)=±1. The same conclusion
holds if one of the off-diagonal entries is 0. Suppose now that a2b3− a3b2 = ±1
and the off-diagonal entries are not 0. Then one of the off-diagonal entries, say
a3(b1−b4)+b3(a4−a1), must be even and nonzero (the other possibility is handled
in the same way). This can only happen if a3= b3= 1 and b1−b4= a4−a1=±1.
It follows that one of a2, b2 is 0 and the other is 1. Thus det(AB − B A) = −1−
(∓1)(±2)= 1. �

Lemma 8.8. Let A, B, A′, B ′ ∈M2(Z) be matrices with all entries in {0, 1} such
that each pair A, B and A′, B ′ generates M2(Z). If there is an odd prime p such
that the reductions modulo p of (A, B) and (A′, B ′) are conjugate in M2(Fp) then
the pairs (A, B) and (A′, B ′) are conjugate in M2(Z).

Proof. For a pair of 2× 2 matrices X and Y define

conj(X, Y )=
(
tr(X), det(X), tr(Y ), det(Y ), tr(XY )

)
.

It follows from [Mazur and Petrenko 2009, Theorem 2] that for any principal ideal
domain R and any two pairs (X, Y ) and (X ′, Y ′) of elements in M2(R) which
generate M2(R) as an R-algebra we have conj(X, Y )= conj(X ′, Y ′) if and only if
X ′ = C XC−1 and Y ′ = CY C−1 for some invertible matrix C ∈M2(R) (in [Mazur
and Petrenko 2009] the fifth component of conj is det(X + Y ) but it is equivalent
to the version above by the following identity for 2× 2 matrices:

tr(X) tr(Y )− tr(XY )+ det(X)+ det(Y )− det(X + Y )= 0.)

Under the assumptions of the lemma, the traces of A, B, A′, B ′ are in {0, 1, 2}
and the determinants of these matrices are in {−1, 0, 1}. Our assumption that
conj(A, B) ≡ conj(A′, B ′) (mod p) implies then that tr A = tr A′, det A = det A′,
tr B = tr B ′, and det B = det B ′. It remains to prove that tr(AB)= tr(A′B ′). Let

A =
(

a1 a2

a3 a4

)
, B =

(
b1 b2

b3 b4

)
, A′ =

(
a′1 a′2
a′3 a′4

)
, B ′ =

(
b′1 b′2
b′3 b′4

)
.

Then tr(AB) = a1b1 + a2b3 + a3b2 + a4b4 and tr(A′B ′) = a′1b′1 + a′2b′3 + a′3b′2 +
a′4b′4. Both these numbers belong to {0, 1, 2, 3, 4}. Suppose that these numbers
are different. Since they are congruent modulo p, we see that p = 3 and one of
these numbers is in {0, 4}. If tr(AB) = 4 then all the entries ai and b j must be
1 so A = B, which is not possible. Thus we may assume that tr(AB) = 0 and
then tr(A′B ′) = 3. If tr(A) = 0 then tr(A′) = 0, so a′1 = a′4 = 0 and therefore
tr(A′B ′) ≤ 2, a contradiction. Thus tr(A) 6= 0 and in the same way we show that
tr(B) 6= 0. If tr(A) = 2 then a1 = a4 = 1 so b1 = b4 = 0 and tr(B) = 0, which
we have just proved impossible. This shows that tr(A)= 1 and a similar argument
yields tr(B) = 1. Thus tr(A′) = 1 = tr(B ′). It follows that one of a′1 and a′4 is
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0. We may assume that a′1 = 0 (the same argument works when a′4 = 0). Then
a′2 = a′3 = a′4 = b′2 = b′3 = b′4 = 1 and consequently b′1 = 0 and A′ = B ′, a
contradiction. �

We have now the following curious proposition.

Proposition 8.9. Let x and y be two elements of M2(Z)
k such that every com-

ponent of x and y is a matrix whose all entries are in {0, 1}. Suppose that x, y,
considered as elements of M2(F2)

k , generate the algebra M2(F2)
k . Then x, y gen-

erate M2(Z)
k as a ring. In particular, the ring M2(Z)

16 admits two generators.

Proof. Let x = (X1, . . . , Xk), y = (Y1, . . . , Yk). By Lemma 8.7, each pair (X i , Yi )

generates M2(Z). According to Lemma 2.6 and Theorem 6.1, it suffices to prove
that for any prime p and any 1≤ i < j ≤ k, the pairs (X i , Yi ) and (X j , Y j ) are not
conjugate modulo p. For p=2 this follows from our assumptions and Theorem 6.1.
Consequently, the pairs (X i , Yi ) and (X j , Y j ) are not conjugate in M2(Z)whenever
i 6= j . By Lemma 8.8, the pairs (X i , Yi ) and (X j , Y j ) are not conjugate modulo p
for any odd prime p. This proves the first part of the proposition.

Since gen2,2(2) = 16 by (9), the algebra M2(F2)
16 is two-generated. It follows

from the first part of the proposition that M2(Z)
16 admits two generators. �

Remark 8.10. We would like to point out that one should not expect any analogs
of Proposition 8.9 for matrix rings of size larger than 2. For example, consider the
matrices

A =

0 0 0
0 0 0
0 1 1

 and B =

0 0 1
1 0 1
0 0 1

 .
Considered as matrices over the field F3 with three elements they have a common
eigenvector (1,−1, 1)t . Thus these matrices do not generate M3(F3), hence they
do not generate M3(Z). Consider now these matrices as matrices over F2. If they do
not generate M3(F2), then they are contained in a maximal subalgebra of M3(F2).
By Proposition 7.4, the maximal subalgebra is either a field or it fixes a nontrivial
proper subspace. Since A2

= A, the former case is not possible. In the latter case,
A and B have a common eigenvector either in their action on column vectors or in
their action on row vectors. It is however a straightforward verification to see that
no such common eigenvector exists. Thus A and B generate the algebra M3(F2).
In fact, in the same way one can see that they generate M3(Fp) for any prime p
different from 3. With a bit more work, one can see that the subalgebra of M3(Z)

generated by A and B has index 9. Note that by (10), there are 129024 ordered
pairs of 3 × 3 matrices with entries in {0, 1}, which considered as elements of
M3(F2) generate the algebra M3(F2). Tsvetomira Radeva, at our request, performed
computations using Java and GAP and found that among them exactly 9132 pairs
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do not generate M3(Z). The computations are based on a result of [Paz 1984] and
use the LLL algorithm [Lenstra et al. 1982; Pohst 1987].

We end with the following curious observation. In Theorem 8.1 we defined a
family of polynomials φk(x), k ≥ 2. The polynomial x3k−2

+ φk(x) is a factor of
the polynomial fk defined in Theorem 8.2. Define polynomials ψk(x) as follows:

ψk(x)=



x3k−2
+φk(x)

x − 1
if k ≡ 0, 4 (mod 6),

x3k−2
+φk(x)

x2− 1
if k ≡ 1, 3 (mod 6),

x3k−2
+φk(x)

x3− 1
if k ≡ 2 (mod 6),

x3k−2
+φk(x)

(x + 1)(x3− 1)
if k ≡ 5 (mod 6).

(14)

Computations with Maxima show that the polynomials φk and ψk are irreducible
for k ≤ 250. While the polynomials φk have only six nonzero coefficients, the
polynomials ψk have complicated structure. For example,

ψ12(x)= x33
+ x32

+ x31
+ x30

+ x29
+ x28

+ x27
+ x26

+ x25
+ x24

+ x23
+ x22

+ 2x21
+ 2x20

+ 2x19
+ 2x18

+ 2x17
+ 2x16

+ 2x15
+ 2x14

+ 2x13
+ 2x12

+ x11
− x10

− 2x9
− 2x8

− 2x7
− 2x6

− 2x5
− 2x4

− 2x3
− 2x2

− 2x − 1.

Nevertheless, it seems that all the coefficients of ψk are in the set {−2,−1, 0, 1, 2}.
Even though we do not have at present any conceptual reason for it, we propose
the following intriguing conjecture.

Conjecture 8.11. The polynomials φk and ψk are irreducible.
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