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We study additive higher Chow groups with several modulus conditions. Apart
from exhibiting the validity of all known results for the additive Chow groups
with these modulus conditions, we prove the moving lemma for them: for a
smooth projective variety X and a finite collection W of its locally closed alge-
braic subsets, every additive higher Chow cycle is congruent to an admissible
cycle intersecting properly all members of W times faces. This is the additive
analogue of the moving lemma for the higher Chow groups studied by S. Bloch
and M. Levine.

As an application, we prove that any morphism from a quasiprojective variety
to a smooth projective variety induces a pull-back map of additive higher Chow
groups. More important applications of this moving lemma are derived in two
separate papers by the authors.

1. Introduction

Working with algebraic cycles, formal finite sums of closed subvarieties of a vari-
ety, often requires some forms of moving results, as differential geometry often re-
quires Sard’s lemma. A classical example is Chow’s moving lemma [1956], which
moves algebraic cycles under rational equivalence. A modern version for higher
Chow groups [Bloch 1994; Levine 1998] shows that, for a smooth quasiprojective
variety X and a finite set of locally closed subvarieties of X , one can move (modulo
boundaries) admissible cycles to other admissible cycles that intersect a given finite
set of subvarieties in the right codimensions. Any such result on moving of cycles
is generally referred to as a moving lemma. Such moving results have played a
very crucial role in the development and application of the theory of higher Chow
groups. For instance, one major application was the construction of a triangulated
category of mixed motives over k [Hanamura 2004].

The primary goal of this paper is to prove this latter kind of moving lemma
for additive higher Chow groups of a smooth and projective variety, which will
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serve as an important technical tool in the study of additive higher Chow groups.
Already, this moving lemma for additive Chow groups has been crucially used in
[Krishna and Park 2011; 2012] for proving some important results about additive
higher Chow groups. We expect that this will have many more applications in the
future study of additive Chow groups and the infinitesimal K-theory of smooth
varieties.

Additive Chow groups of 0-cycles on a field were first introduced in [Bloch and
Esnault 2003b] in an attempt to describe the K-theory and motivic cohomology
of the ring of dual numbers via algebraic cycles. Bloch and Esnault [2003a] later
defined these groups by putting a modulus condition on additive Chow cycles in
the hope of describing the K-groups of any given truncated polynomial ring over
a field. The additive higher Chow groups of any given variety were defined in the
most general form in [Park 2009] and were later studied in more detail in [Krishna
and Levine 2008], where many nice properties of these groups were established.

The most crucial part of existing definitions of additive higher Chow groups,
which makes them distinct from the higher Chow groups, is the modulus condition
on the admissible additive cycles. This condition also brings an extra subtlety
which does not appear in the theory of higher Chow groups. As conjectured in
[Krishna and Levine 2008; Park 2009], additive higher Chow groups are expected
to complement higher Chow groups for nonreduced schemes so as to obtain the
right motivic cohomology groups. In particular, for a smooth projective variety X ,
one expects an Atiyah–Hirzebruch spectral sequence

TH−q(X,−p− q;m)⇒ K nil
−p−q(X;m), (1-1)

where K nil(X;m) is the homotopy fiber of the restriction map

K(X ×Spec(k[t]))→ K (X ×Spec(k[t]/tm+1)).

Since these statements are still conjectural, it is not clear if the modulus condi-
tions used to study additive higher Chow groups of varieties in the literature are
the right ones to give the correct motivic cohomology, for example, ones which
would satisfy (1-1). One goal of this paper is to exhibit that the modulus condition
(which we call Msup in this paper) used in [Krishna and Levine 2008] may not be
the best possible one.

We study the theory of additive Chow groups based on two other modulus con-
ditions in this paper: M = Msum is based on the modulus condition used in [Bloch
and Esnault 2003a; Rülling 2007], and M = Mssup is a new modulus condition
introduced in this paper. Although this new modulus condition Mssup may appear
to be mildly stronger than the one used in [Krishna and Levine 2008; Park 2009],
it turns out that the resulting additive Chow groups have all the properties known
for the additive Chow groups of [Bloch and Esnault 2003a; Krishna and Levine
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2008; Park 2009]. In addition, we prove many other crucial structural properties
of additive higher Chow groups based on the modulus conditions Msum and Mssup.
More important properties are discussed in [Krishna and Park 2011; 2012].

As in the case of higher Chow groups, any theory of additive motivic cohomol-
ogy which would compute the K-theory as in (1-1) is expected to have a form of
moving lemma to make it more amenable to deeper study. The central result of the
paper is the following moving lemma:

Theorem 4.1. For a smooth projective variety X and a finite collection W of its
locally closed algebraic subsets, every additive higher Chow cycle is congruent to
an admissible cycle intersecting properly all members of W times faces. In other
words, the inclusion of complexes

TZq
W(X, · ;m) ↪→ TZq(X, · ;m)

is a quasiisomorphism.

This is the additive analogue of the moving lemma for the higher Chow groups
studied by S. Bloch and M. Levine.

It is known that the moving lemma for all smooth quasiprojective varieties in-
directly implies other properties such as A1-homotopy invariance and localization
sequences. But these clearly fail for the additive Chow groups. This suggests
that the above moving lemma may not be valid for some smooth quasiprojective
varieties. A concrete quasiprojective example, where the standard arguments fail,
is given in Example 8.2.

Our proof of the above result is broadly speaking based on the techniques of
[Bloch 1986; Levine 1998] where the analogous result for the higher Chow groups
is proven. However, the main difficulty with the techniques of both these works
is that their arguments are mostly intersection theoretic and are not equipped to
handle the more delicate modulus condition of additive Chow cycles. So these
arguments cannot be directly transported to the additive world. This has made
people believe that the additive Chow group may not satisfy the moving lemma.

We achieve the goal by our new containment-type argument (see Proposition 2.4)
and construction of the additive version of a chain homotopy variety in Section 5.
Using these results and Proposition 5.2, we show that we can keep track of the mod-
ulus condition whenever we need to move an additive cycle. On the log-additive
higher Chow groups of [Krishna and Levine 2008], one can prove the moving
lemma for any general smooth quasiprojective varieties using our main theorem.

As the first application of the moving lemma, we establish the contravariant
functoriality property of the additive higher Chow groups in the most general form:

Theorem 7.1. For a morphism f : X→ Y of quasiprojective varieties over a field
k, where Y is smooth and projective, there is a pull-back map
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f ∗ : THq(Y, n;m)→ THq(X, n;m),

and this satisfies the expected composition law.

If X is also smooth and projective, the pull-back map on the additive Chow
groups was constructed in [Krishna and Levine 2008] using the action of the higher
Chow groups on the additive ones. However, the contravariant functoriality in
this general form as above is new, and it is based on a crucial use of the moving
lemma (Theorem 4.1) as in the case of general pull-back maps of higher Chow
groups [Bloch 1986, Theorem 4.1], and another use of our containment argument
to establish the Gysin chain map for regular embeddings. Even in the special case
of X being smooth and projective, our proof is different and more direct than the
one in [Krishna and Levine 2008].

We give applications of the results in this paper elsewhere. In [Krishna and Park
2011] we investigate the structure of differential graded algebras on the additive
higher Chow groups of smooth projective varieties. When X = Spec(k), this was
done in [Rülling 2007]. Higher-dimensional varieties X require involved calcula-
tions and arguments as well as the moving lemma and the containment lemma of
this paper. As another application of the moving lemma, we showed in [Krishna
and Park 2011] that there is an additive analogue of Bloch’s normalized cycle
complex and it is quasiisomorphic to the additive cycle complex. This fact is used
to propose and study a motivic cyclic homology theory by constructing a mixed
complex in the sense of A. Connes (see [Loday 1998]) from additive higher Chow
complexes.

In [Krishna and Park 2012] we apply the moving lemma to construct a tri-
angulated category DM(k;m) of mixed motives over k[t]/(tm+1). This category
extends the category of [Hanamura 2004], and some “augmented motives” in the
category compute the usual higher Chow groups and the additive higher Chow
groups at the same time, as desired originally in [Bloch and Esnault 2003a, §4].

We now outline the structure of this paper. In Section 2, we define our basic
objects, the additive higher Chow groups with various modulus conditions. We also
prove some preliminary results used repeatedly in the paper. In Section 3, we prove
basic properties of these additive Chow groups. In particular, we demonstrate, for
the additive higher Chow groups based on the modulus condition Mssup, all those
results which are known for the additive higher Chow groups of [Bloch and Esnault
2003a; Krishna and Levine 2008; Park 2009] with slightly different modulus con-
ditions Msum and Msup. Section 4 gives the proofs of further preliminary results
needed to prove our moving lemma for the additive higher Chow groups. The
subsequent Sections 5 and 6 are devoted to our main result, the moving lemma
for additive higher Chow groups. In Section 7, we apply the moving lemma to
prove the general contravariant functoriality theorem, Theorem 7.1. In Section 8,
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we append some calculations of the additive higher Chow groups we found in the
process of working on the problem. This suggests some kind of “pseudo”-A1-
homotopy properties of additive higher Chow groups.

Throughout this paper, a k-scheme, or a scheme over k, is always a separated
scheme of finite type over a perfect field k. A k-variety is an integral k-scheme.

2. Additive higher Chow groups

In this section, we define additive higher Chow groups from a more unified perspec-
tive than those in the literature by Bloch and Esnault, Rülling, Krishna and Levine,
and Park, treating the modulus conditions as “variables”. We also prove some
elementary results that are needed to study and compare additive Chow groups
based on various modulus conditions.

We begin by fixing some notations which will be used throughout this paper.
We write Sch /k, Sm /k, and SmProj /k for the categories of k-schemes, smooth
quasiprojective varieties, and smooth projective varieties, respectively. We shall
let Sch′ /k denote the category of k-schemes with only proper maps. D−(Ab) is
the derived category of bounded-above complexes of abelian groups. Recall from
[Krishna and Levine 2008; Park 2009] that for a normal variety X over k, and
a finite set of Weil divisors {Y1, . . . , Ys} on X , the supremum of these divisors,
denoted by sup1≤i≤s Yi , is the Weil divisor defined to be

sup1≤i≤s Yi = sumY∈Pdiv(X)(max
1≤i≤s

ordY (Yi ))[Y ], (2-1)

where Pdiv(X) is the set of all prime Weil divisors of X . One observes that the
set of all Cartier divisors on a normal scheme X is contained in the set of all Weil
divisors, and the supremum of a collection of Cartier divisors may not remain a
Cartier divisor in general, unless X is factorial. We shall need some elementary
results about Cartier and Weil divisors on normal varieties:

Lemma 2.1. Let X be a normal variety and let D1 and D2 be effective Cartier
divisors on X such that D1 ≥ D2 as Weil divisors. Let Y ⊂ X be a closed subset
which intersects D1 and D2 properly. Let f : Y N

→ X be the composite of the
inclusion and the normalization of Yred. Then f ∗(D1)≥ f ∗(D2).

Proof. For any effective Cartier divisor D on X , let ID denote the sheaf of ideals
defining D as a locally principal closed subscheme of X . We first claim that D1 ≥

D2 if and only if ID1 ⊂ ID2 . We only need to show the “only if” part, as the
other implication is obvious. Now, D1 ≥ D2 implies that D= D1−D2 is effective
as a Cartier divisor since the group of Cartier divisors forms a subgroup of Weil
divisors on a normal scheme. Since ID1 ⊂ ID2 is a local question, we can assume
that X = Spec(A) is a local normal integral scheme and IDi = (ai ). Put a = a1/a2
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as an element of the function field of X . We need to show that a ∈ A. Since A
is normal, it suffices to show that a ∈ Ap for every height-one prime ideal p of A.
But this is precisely the meaning of D1 ≥ D2. This proves the claim.

Since Di intersect Y properly, we see that f ∗(Di ) is a locally principal closed
subscheme of Y N for i = 1, 2. The lemma now follows directly from the above
claim. �

The following is a refinement of [Krishna and Levine 2008, Lemma 3.2].

Lemma 2.2. Let f : Y→ X be a surjective map of normal integral k-schemes. Let
D be a Cartier divisor on X such that f ∗(D)≥ 0 on Y . Then D ≥ 0 on X.

Proof. As is implicit in the proof of Lemma 2.1, we can localize at the generic
points of Supp(D) and assume that X = Spec(A), where A is a discrete valuation
ring which is essentially of finite type over k. The divisor D is then given by
a rational function a ∈ K , where K is the field of fractions of A. Choosing a
uniformization parameter π of A, we can write a uniquely as a = uπn , where
u ∈ A× and n ∈ Z.

Since f is surjective, there is a closed point y ∈ Y such that f (y) is the closed
point of X . Since Y is integral, the surjectivity of f also implies that the generic
point of Y (which is also the generic point of Spec(OY,y)) must go to the generic
point of X under f . Hence the map Spec(OY,y)→ X is surjective. This implies in
particular that the image of π in OY,y is a nonzero element of the maximal ideal
m of the local ring OY,y . On the other hand, f ∗(D) ≥ 0 implies that as a rational
function on Y , a actually lies in OY,y . Since u ∈ O×Y,y and π ∈ m, this can happen
only when n ≥ 0. That is, D is effective. �

We will assume that a k-scheme X is equidimensional to define the additive
Chow groups, although one can easily remove this condition by writing the ad-
ditive Chow cycles in terms of their dimensions rather than their codimensions.
Throughout this paper, for any such scheme X , we shall denote the normalization
of Xred by X N. Thus X N is the disjoint union of the normalizations of all the
irreducible components of Xred.

Set A1
:= Spec k[t], Gm := Spec k[t, t−1

], P1
:= Proj k[Y0, Y1], and let y :=

Y1/Y0 be the standard coordinate function on P1. We set �n
:= (P1

\ {1})n . For
n ≥ 1, let Bn = Gm ×�n−1, B̃n = A1

×�n−1, Bn = A1
× (P1)n−1

⊃ B̃n , and
B̂n = P1

× (P1)n−1
⊃ Bn . We use the coordinate system (t, y1, . . . , yn−1) on B̂n ,

with yi := y ◦ qi , where qi : B̂n→ P1 is the projection onto the i-th P1.
Let F1

n,i , for i = 1, . . . , n− 1, be the Cartier divisor on B̂n defined by {yi = 1}
and Fn,0⊂ B̂n the Cartier divisor defined by {t = 0}. Notice that the divisor Fn,0 is
in fact contained in Bn ⊂ B̂n . Let F1

n denote the Cartier divisor sumn−1
i=1 F1

n,i on B̂n .
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A face of Bn is a subscheme F defined by equations of the form

yi1 = ε1, . . . , yis = εs (ε j ∈ {0,∞}).

For ε = 0,∞, and i = 1, . . . , n− 1, let ιn,i,ε : Bn−1→ Bn be the inclusion

ιn,i,ε(t, y1, . . . , yn−2)= (t, y1, . . . , yi−1, ε, yi , . . . , yn−2). (2-2)

We now define the modulus conditions that we shall consider for defining our
additive higher Chow groups.

2A. Modulus conditions.

Definition 2.3. Let X be a k-scheme as above and let V be an integral closed
subscheme of X × Bn . Let V denote the closure of V in X × B̂n and let

ν : V
N
→ X × B̂n

denote the induced map from the normalization of V . We fix an integer m ≥ 1.

(1) We say that V satisfies the modulus m condition Msum (or the sum-modulus
condition) on X × Bn if as Weil divisors on V

N
,

(m+ 1)[ν∗(Fn,0)] ≤ [ν
∗(F1

n )].

This condition was used in [Bloch and Esnault 2003a; Rülling 2007] to study
additive Chow groups of 0-cycles on fields.

(2) We say that V satisfies the modulus m condition Msup (or the sup-modulus
condition) on X × Bn if as Weil divisors on V

N
,

(m+ 1)[ν∗(Fn,0)] ≤ sup1≤i≤n−1[ν
∗(F1

n,i )].

This condition was used by in [Krishna and Levine 2008; Park 2009] to define
their additive higher Chow groups.

(3) We say that V satisfies the modulus m condition Mssup (or the strong sup-
modulus condition) on X × Bn if there exists an integer 1 ≤ i ≤ n − 1 such
that

(m+ 1)[ν∗(Fn,0)] ≤ [ν
∗(F1

n,i )]

as Weil divisors on V
N

.

Since the modulus conditions are defined for a given fixed integer m, we shall
often simply say that V satisfies a modulus condition M without mentioning the
integer m. Notice that since V is contained in X × Bn , its closure V intersects all
the Cartier divisors Fn,0 and F1

n,i (1≤ i ≤ n−1) properly in X× B̂n . In particular,
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their pull-backs of Fn,0 and F1
n,i are all effective Cartier divisors on V

N
. Notice

also that
Mssup⇒ Msup⇒ Msum. (2-3)

The following restriction property of the modulus conditions Msum and Mssup

will be used repeatedly in this paper.

Proposition 2.4 (containment lemma). Let X be a k-scheme, and let W ⊂ V be
irreducible closed subvarieties of X × Bn . If V satisfies Msum, then so does W ; if
V satisfies Mssup, then so does W .

Proof. Let V and W be the Zariski closures of V and W in X× B̂n and let W
j
↪→ V

be the closed embedding. Let ν1 : V N
→ V ↪→ X× B̂n be the normalization of V :

W N
1

f N

��

ḡ
// W1

f
��

j̄
// V

N

��
ν1

��

W N
g

//

ν2 ))

W � �
j

// V
� _

��

X × B̂n.

(2-4)

Let W1 be W ×V V N, and let f and j̄ be the natural projections. Let g and ḡ
be the normalizations. The map ν2 is defined so that the lower triangle commutes.
By the universal property of normalization, we have a finite surjective morphism
f N
: W N

1 → W N of normal integral k-schemes that makes the above diagram
commutative.

Since V ∩ Fn,0 =∅ and W 6=∅, we see that Fn,0 and F1
n,i intersect W properly.

Now, if V satisfies the modulus condition Mssup, then Lemma 2.1 implies that there
is an integer 1 ≤ i ≤ n− 1 such that ḡ∗ ◦ j̄∗[ν∗1 (F

1
n,i − (m + 1)Fn,0)] ≥ 0 on W N

1 .
In particular, by commutativity, we get ( f N )∗[ν∗2 (F

1
n,i− (m+1)Fn,0)] ≥ 0 on W N

1 .
Since f N is a finite and surjective map of normal varieties, from Lemma 2.2 we
have [ν∗2 (F

1
n,i − (m+ 1)Fn,0)] ≥ 0 on W N, that is, W satisfies Mssup too.

The case of Msum follows exactly the same way using F1
n instead of F1

n,i , noting
that F1

n is also an effective Cartier divisor. �

As one can see from the above proposition, although the modulus condition
Msup lies between the other two modulus conditions Msum and Mssup, the additive
higher Chow groups based on the latter modulus conditions have better structural
properties.

In this paper, we study the additive higher Chow groups based on the modulus
conditions Msum and Mssup. We shall show in the next section that the additive
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Chow groups based on our new modulus condition Mssup satisfy all the properties
known to be satisfied by the additive higher Chow groups of Krishna and Levine,
Park, Bloch and Esnault, and Rülling.

2B. Additive cycle complex. We define the additive cycle complex based on the
above modulus conditions.

Definition 2.5. Let M be a modulus condition — either Msum or Mssup. Let X be
a k-scheme, and let r and m be integers with m ≥ 1.

(0) TZ r (X, 1;m)M is the free abelian group on integral closed subschemes Z of
X ×Gm of dimension r .

For n> 1, TZ r (X, n;m)M is the free abelian group on integral closed subschemes
Z of X × Bn of dimension r + n− 1 such that:

(1) (Good position) For each face F of Bn , Z intersects X × F properly:

dim(Z ∩ (X × F))≤ r + dim(F)− 1, and

(2) (Modulus condition) Z satisfies the modulus m condition M on X × Bn .

As our scheme X is equidimensional of dimension d over k, we write for q ≥ 0

TZq(X, n;m)M = TZ d+1−q(X, n;m)M .

We now observe that the good-position condition on Z implies that the cycle
(idX ×ιn,i,ε)

∗(Z), that we denote by ∂εi (Z), is well-defined and each component
satisfies the good-position condition. Moreover, letting Y = X × F for F =
ιn,i,ε(Bn−1) in Proposition 2.4, we first of all see that Y intersects X × Fn,0 and
X × F1

n properly in X × B̂n , and each component of (idX ×ιn,i,ε)
∗(Z) satisfies the

modulus condition M on X× Bn−1. We thus conclude that if Z ⊂ X× Bn satisfies
the above conditions (1) and (2), then every component of ιn,i,ε∗(Z) also satisfies
these conditions on X × Bn−1. In particular, we have the cubical abelian group
n 7→ TZq(X, n;m)M .

Definition 2.6. The additive cycle complex TZq(X, · ;m)M of X in codimension q
and with modulus m condition M is the nondegenerate complex associated to the
cubical abelian group n 7→ TZq(X, n;m)M , that is,

TZq(X, n;m)M :=
TZq(X, n;m)M

TZq(X, n;m)M,degn
,

where the group of degenerate cycles TZq(X, n;m)M,degn is generated by the pull-
backs of the cycles under the projections X × Bn→ X × Bn−1 given by

(x, t, y1, . . . , yn−1) 7→ (x, t, y1, . . . , yi−1, yi+1, . . . , yn−1).
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The boundary map of this complex at level n is given by

∂ = sumn−1
i=1 (−1)i (∂∞i − ∂

0
i ),

which satisfies ∂2
= 0. The homology

THq(X, n;m)M := Hn(TZq(X, · ;m)M), n ≥ 1,

is the additive higher Chow group of X with modulus m condition M .

From now on, we shall drop the subscript M from the notations and it will be
understood that the additive cycle complex or the additive higher Chow group in
question is based on the modulus condition M , where M could be either Msum or
Mssup. The reader should however always bear in mind that these two are different
objects.

A few comments are in order. We could also have defined our additive cycle
complex by taking TZ r (X, n;m) to be the free abelian group generated by inte-
gral closed subschemes of X× B̃n which have the good-intersection property with
respect to the faces of B̃n , and which satisfy the modulus condition on X×Bn (see
[Krishna and Levine 2008; Park 2009]). However, the following easy consequence
of the modulus condition shows that this does not change the cycle complex.

Lemma 2.7. Let M be a modulus condition in Definition 2.3.
Then, there is a canonical bijection between the set of irreducible closed sub-

varieties V ⊂ X × Bn satisfying M and the set of irreducible closed subvarieties
W ⊂ X × B̃n satisfying M.

Here, the correspondence is actually given by the identity map. In other words,
any closed subvariety satisfying M on X × B̃n is in fact a closed subvariety of the
smaller space X × Bn .

Proof. First of all, since for any integral closed subscheme V of X × B̂n , the pull-
back ν∗(Fn,0) on V N is contained in the open subset ν−1(X× Bn), we can replace
B̂n by Bn in the definition of the modulus conditions.

Now, if 6 and 6̃ are the two sets in the statement, then the modulus condition
forces that if V ∈ 6, then V is the same as its closure in X × B̃n . Conversely, if
V ∈ 6̃, then the modulus condition again forces V to be contained in X × Bn . �

Let TZq(X, · ;m)sup be the additive cycle complex as defined in [Krishna and
Levine 2008; Park 2009]. This complex is based on the modulus condition Msup

above. It follows from (2-3) that there are natural inclusions of cycle complexes

TZq(X, · ;m)ssup ↪→ TZq(X, · ;m)sup ↪→ TZq(X, · ;m)sum (2-5)

and hence there are natural maps

THq(X, · ;m)ssup→ THq(X, · ;m)sup→ THq(X, · ;m)sum. (2-6)
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One drawback of the cycle complex based on Msup is that the underlying mod-
ulus condition for a cycle is not necessarily preserved when it is restricted to a
face of Bn . This forces one to put an extra induction condition in the definition of
TZq(X, · ;m)sup that requires for cycles to be admissible, not only must the cycles
themselves satisfy Msup on X×Bn , but also all their intersections with various faces
must satisfy Msup. In particular, as n gets large, this condition gets more serious,
and it might be a very tedious job to find admissible cycles. On the other hand,
the definition of our cycle complexes shows that this extra induction induction
condition is superfluous for complexes based on Msum or Mssup. Based on this
discussion and all the results of this paper, one is led to guess that even though the
modulus condition Mssup may appear mildly stronger (and Msum weaker) than the
modulus condition Msup, the following conjecture could be true.

Conjecture 2.8. For a smooth projective variety X over k, the natural inclusions
of cycle complexes TZq(X, · ;m)ssup ↪→ TZq(X, · ;m)sup ↪→ TZq(X, · ;m)sum are
quasiisomorphisms.

In Section 3, combined with previously known results, we check that when
S = Spec(k), for groups of 0-cycles, part of the conjecture holds, but we do not
yet know how much of this conjecture holds true in general.

3. Basic properties of THq(X, · ;m)

In this section, our aim is to demonstrate that the additive higher Chow groups
defined above for Msum and Mssup have all the properties (except Theorem 3.6
which we do not know for Msum) which are known to be true for the additive
Chow groups for Msup of [Krishna and Levine 2008; Park 2009]. Since most of the
arguments in the proofs can be given either by quoting these references verbatim
or by straightforward modifications of the same, we only give the sketches of the
proofs with minimal explanations whenever deemed necessary. We begin with the
following structural properties of our additive Chow groups.

Theorem 3.1. Let f : Y → X be a morphism of k-schemes.

(1) If f is projective, there is a natural map of cycle complexes

f∗ : TZr(Y, · ;m)→ TZr (X, · ;m)

that induces the analogous push-forward map on the homology.

(2) If f is flat, there is a natural map of cycle complexes

f ∗ : TZr (X, · ;m)→ TZr (Y, · ;m)

that induces the analogous pull-back map on the homology. These pull-back
and push-forward maps satisfy the obvious functorial properties.



304 Amalendu Krishna and Jinhyun Park

(3) If X is smooth and projective, there is a product

∩X : CHr (X, p)⊗THs(X, q;m)→ THs−r (X, p+ q;m),

natural with respect to flat pull-back, that satisfies the projection formula

f∗( f ∗(a)∩X b)= a ∩Y f∗(b)

for f : X → Y a morphism of smooth projective varieties. If f is flat in
addition, we have an additional projection formula:

f∗(a ∩X f ∗(b))= f∗(a)∩Y b.

(4) If X is smooth and quasiprojective, there is a product

∩X : CHr (X)⊗THs(X, q;m)→ THs−r (X, q;m),

natural with respect to flat pull-back, that satisfies the projection formula

f∗( f ∗(a)∩X b)= a ∩Y f∗(b)

for f : X → Y a projective morphism of smooth quasiprojective varieties. If
f is flat in addition, we have an additional projection formula

f∗(a ∩X f ∗(b))= f∗(a)∩Y b.

Furthermore, all products are associative.

Proof. This follows from the arguments in [Krishna and Levine 2008]. Granting the
flat pull-back and the projective push-forward, the theorem is a direct consequence
of Lemmas 4.7 and 4.9 of that article, whose proofs are independent of the choice
of the modulus conditions of Definition 2.3, as the interested reader may verify.
The proofs of the flat pull-back and projective push-forward maps on the level of
cycle complexes also follow in the same way as in [Krishna and Levine 2008] using
our Lemma 2.2. �

Theorem 3.2 (projective bundle and blow-up formulae). Let X be a smooth quasi-
projective variety and let V be a vector bundle on X of rank r+1. Let p :P(V )→ X
be the associated projective bundle over X. Let η ∈ CH1(P(V )) be the class of the
tautological line bundle O(1). Then for any q, n ≥ 1 and m ≥ 2, the map

θ :

r⊕
i=0

THq−i (X, n;m)→ THq(P(V ), n;m)

given by
(a0, . . . , ar ) 7→

r
sum
i=0

ηi
∩P(V ) p∗(ai )

is an isomorphism.
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Suppose that i : Z→ X is a closed immersion of smooth projective varieties and
µ : X Z→ X is the blow-up of X along Z with iE : E→ X Z the exceptional divisor
with morphism q : E→ Z. Then the sequence

0→THs(X,n;m)
(i∗,µ∗)
−−−−→THs(Z ,n;m)⊕THs(X Z ,n;m)

q∗−i∗E
−−−→THs(E,n;m)→0

is split exact.

Proof. In view of Theorem 3.1, the proof of the theorem is exactly the same as
the proofs of [Krishna and Levine 2008, Theorems 5.6 and 5.8]. The basic point
is that there is a similar decomposition of the motives of the projective bundle and
the blow-up in the triangulated category Motk of motives over k [ibid., Section 2].
On the other hand, Theorem 3.1 implies that for each integer p≥ 1, the assignment
(X, n) 7→ THn(X, p;m) is a functor from Motk to the category of graded abelian
groups for any modulus M . We refer the reader to [ibid., Section 5] for details. �

Recall from [ibid., Section 2.4] that K b(Z SmProj /k) is the homotopy cate-
gory of the bounded complexes in the additive category Z SmProj /k generated
by SmProj /k. We denote the complex concentrated in degree 0 associated to an
X ∈ SmProj /k by [X ]. Sending X to [X ] defines the functor

[−] : SmProj /k→ K b(Z SmProj /k).

Let i : Z → X be a closed immersion in SmProj /k, µ : X Z → X the blow-up
of X along Z , and iE : E → X Z the exceptional divisor with structure morphism
q : E→ Z . Let C(µ) be the complex

[E]
(iE ,−q)
−−−−→ [X Z ]⊕ [Z ]

µ+i
−−→ [X ]

with [X ] in degree 0. The category Dhom(k) is the localization of the triangulated
category K b(Z SmProj /k) with respect to the thick subcategory generated by the
complexes C(µ).

Theorem 3.3. Assume that k admits resolution of singularities. Then the functor
TZr (−;m) : SmProj /k→ D−(Ab) extends to a functor

TZlog
r (−;m) : Sch /k→ D−(Ab)

together with a natural transformation of functors TZlog
r (−;m)→ TZr (−;m) sat-

isfying:

(1) Let µ : Y→ X be a proper morphism in Sch /k, i : Z→ X a closed immersion.
Suppose that µ : µ−1(X \ Z)→ X \ Z is an isomorphism. Set E := µ−1(Z) with
maps iE : E → Y , q : E → Z. There is a canonical extension of the sequence in
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D−(Ab):

TZlog
r (E;m)

(iE∗,−q∗)
−−−−−→ TZlog

r (Y ;m)⊕TZlog
r (Z;m)

µ∗+i∗
−−−→ TZlog

r (X;m)

to a distinguished triangle in D−(Ab).

(2) Let i : Z→ X be a closed immersion in Sch /k, j :U→ X the open complement.
Then there is a canonical distinguished triangle in D−(Ab):

TZlog
r (Z;m)

i∗
−→ TZlog

r (X;m)
j∗
−→ TZlog

r (U ;m)→ TZlog
r (Z;m)[1],

which is natural with respect to proper morphisms of pairs (X,U )→ (X ′,U ′).

(3) For any X ∈ Sch /k, the natural map THlog
r (X, n;m)→ THlog

r+p(X×Ap, n;m)
is an isomorphism.

Proof. The proof of this theorem is exactly the same as the proof of [Krishna and
Levine 2008, Corollary 6.2]. By [ibid., Lemma 2.8], the motive functor

mhom : SmProj /k→ Dhom(k)

is a category of homological descent in the sense of [Guillén and Navarro Aznar
2002]. Theorem 3.2 immediately implies that TZr (−;m) : SmProj /k→ D−(Ab)
extends to a functor TZr (−;m) : Dhom(k) → D−(Ab). On the other hand, the
functor mhom extends to a functor Mhom : Sch′ /k → Dhom(k) by [Krishna and
Levine 2008, Theorem 2.9]. The functor TZlog

r (−;m) is the composite TZr (−;m)◦
Mhom. All the desired properties of TZlog

r (−;m) follow from the similar properties
of Mhom as shown in the same reference. �

Next we study the question of the existence of the regulator maps from our addi-
tive higher Chow groups to the modules of absolute Kähler differentials. First we
prove the following result of [Bloch and Esnault 2003a; Rülling 2007] on 0-cycles
for the modulus condition Mssup.

Theorem 3.4. Assume that char(k) 6= 2 and let Wm�
•

k denote the generalized
de Rham–Witt complex of Hesselholt and Madsen (see [Rülling 2007]). Then there
is a natural isomorphism

Rn
0,m : THn(k, n;m)→Wm�

n−1
k .

Proof. This is already known for Msum. For the modulus condition Mssup, we first
note that the map Rn

0,m is the composite map

THn(k, n;m)ssup→ THn(k, n;m)sum
θ
−→Wm�

n−1
k ,

where θ is constructed in [Rülling 2007] and this coincides with the regulator map
of Bloch and Esnault for m = 1. Furthermore for m = 1, Bloch and Esnault define
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the inverse map�n−1
k →THn(k, n; 1)sum using a presentation of�n−1

k . The reader
can easily check from the proof of [Bloch and Esnault 2003a, Proposition 6.3] that
the inverse map is actually defined from �n−1

k to THn(k, n; 1)ssup. This completes
the proof when m = 1.

For m ≥ 2, Rülling’s proof for THn(k, n; 1)sum has these main steps:

(1) The existence of map Rn
0,m

(2) The isomorphism of R1
0,m .

(3) The existence of transfer maps on the additive higher Chow groups for finite
extensions of fields.

(4) Showing that pro-group {THn(k, n;m)}n,m≥1 is an example of a restricted Witt
complex; see [Rülling 2007, Remark 4.22].

We have already shown (1) for our THn(k, n;m)ssup. The proof of (3) is a simple
consequence of Theorem 3.1. The surjectivity part of (2) follows from the result
of Rülling and the isomorphism TZn(k, n;m)ssup = TZn(k, n;m)sum. To prove
injectivity, we follow the proof of [Rülling 2007, Corollary 4.6.1] and observe that
if there is a cycle ζ ∈ TZ1(k, 1;m) such that R1

0,m(ζ ) = 0, then ζ is the boundary
of a curve C which is an admissible cycle with the modulus condition Msum. But
then C is an admissible cycle also with the modulus condition Mssup since one has
Mssup = Msup = Msum when n = 2 by definition. This proves (2). Note that this
does not need any assumptions on the characteristic of the ground field.

For the proof of (4), one checks that Lemma 4.17 of [ibid.] works without
change.

Rülling showed that these four ingredients and the universality of the de Rham–
Witt complex imply that there is a map

Wm�
n−1
k

Sn
0,m
−−→ THn(k, n;m)

which is surjective. On the other hand, one checks from the construction of the
map Rn

0.m in [ibid.] that Rn
0.m ◦ Sn

0.m is the identity. �

The following result is an immediate consequence of the results of Rülling and
Theorem 3.4. This gives evidence for Conjecture 2.8.

Corollary 3.5. For every n,m ≥ 1, the natural maps

THn(k, n;m)ssup→ THn(k, n;m)sup→ THn(k, n;m)sum

are isomorphisms.

We finally turn to the regulator maps for 1-cycles as considered in [Park 2009].
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Theorem 3.6. Suppose that k is of characteristic zero and assume the modulus
condition to be Mssup. Then there is a natural nontrivial regulator map

Rn
1,m : THn−1(k, n;m)ssup→�n−3

k . (3-1)

This map is surjective if k is, moreover, algebraically closed.

Proof. Let Rn
1,m be the composite map

THn(k, n;m)ssup→ THn(k, n;m)sup
θ
−→�n−3

k ,

where θ is constructed in [Park 2009]. For the nontriviality of Rn
1,m , Park constructs

a 1-cycle 0 (see [Park 2007, Proposition 1.9] and [Krishna and Levine 2008, 7.11])
and shows (see [Park 2007, Lemmas 1.7 and 1.9]) that each component of 0 in
fact satisfies the modulus condition Mssup. Hence Rn

1,m is nontrivial. If k = k̄, then
the proof of the surjectivity in [Krishna and Levine 2008, §7] follows from the
following:

(1) An action of k× on THn(k, n;m),

(2) Suitable k×-equivariance of R3
1,m up to a scalar,

(3) The surjectivity of R3
1,m , and

(4) The cap product CHn(k, n)⊗Z TH2(k, 3;m)→ THn+2(k, n+ 3;m).

The action of k× on our additive higher Chow groups is given as in [Park 2007;
Krishna and Levine 2008] by

a ∗ (x, t1, . . . , tn−1)= (x/a, t1, . . . , tn−1). (3-2)

This action extends to an action of k× on B̂n . The proof of (2) now follows from
the k×-equivariance of the natural map TZr (k, n;m)ssup → TZr (k, n;m)sup and
the results of [Krishna and Levine 2008]. The proof of (3) is a direct consequence
of (1), (2), and the fact that k is algebraically closed field of characteristic zero.
Finally, (4) is already shown in Theorem 3.1. �

We do not yet know if this theorem holds for Msum because the regulator map
Rn

1,m in [Park 2007] is not immediately defined on the set of all Msum-admissible
1-cycles. In fact, this was one main obstruction that led to the introduction of the
Msup modulus condition in that work. See Section 8A for a related discussion on
how one may potentially get around this issue.

4. Preliminaries for moving lemma

The underlying additive cycle complexes and additive higher Chow groups in all
the results in the rest of this paper will be based on the modulus condition Msum or
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Mssup, unless one of these is specifically mentioned. Our next three sections will
be devoted to proving our first main result of this paper:

Theorem 4.1. Let X be a smooth projective variety over a perfect field k. Let W

be a finite collection of locally closed subsets of X. Then, the inclusion of additive
higher Chow cycle complexes (see below for definitions)

TZq
W(X, · ;m) ↪→ TZq(X, · ;m)

is a quasiisomorphism. In other words, every admissible additive higher Chow cy-
cle is congruent to another admissible cycle intersecting properly all given finitely
many locally closed subsets of X times faces.

In this section, we set up our notations and machinery that are needed to prove
this theorem, and prove some preliminary steps. Let X be a smooth projective
variety over k and we fix an integer m ≥ 1. Let W be a finite collection of locally
closed algebraic subsets of X . If a member of W is not irreducible, we always
replace it by all of its irreducible components so that we assume all members of
W are irreducible. For a locally closed subset Y ⊂ X , recall that the codimension
codimX Y is defined to be the minimum of codimX Z for all irreducible components
Z of Y .

Definition 4.2. We define TZq
W(X, n;m) to be the subgroup of TZq(X, n;m) gen-

erated by integral closed subschemes Z ⊂ X × Bn such that

(1) Z is in TZq(X, n;m) and

(2) codimW×F (Z ∩ (W × F))≥ q for all W ∈W and all faces F of Bn .

It is easy to see that TZq
W(X, · ;m) forms a cubical subgroup of TZq(X, · ;m),

giving us the subcomplex

TZq
W(X, · ;m)=

TZq
W(X, · ;m)

TZq
W(X, · ;m)degn

⊂ TZq(X, · ;m).

Let THq
W(X, · ;m) denote the homology of the complex TZq

W(X, · ;m). Then the
above inclusion induces a natural map of homology,

THq
W(X, · ;m)→ THq(X, · ;m). (4-1)

More generally, if e : W→ Z≥0 is a set-theoretic function, then one can define
subcomplexes TZq

W,e(X, · ;m) replacing condition (2) above by

(2e) codimW×F (Z ∩ (W × F))≥ q − e(W ).

In this generality, the subcomplex TZq
W(X, · ;m) is the same as TZq

W,0(X, · ;m).
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Remark 4.3. Let 8 be the set of all set-theoretic functions e :W→ Z≥0. Give a
partial ordering on 8 by declaring e′ ≥ e if e′(W ) ≥ e(W ) for all W ∈W. If two
functions e, e′ ∈ 8 satisfy e′ ≥ e, then for any irreducible admissible subvariety
Z ∈ TZq

W,e(X, n;m), we have

codimW×F (Z ∩ (W × F))≥ q − e(W )≥ q − e′(W ) (4-2)

for all W ∈W and all faces F ⊂ Bn . Thus, we have

TZq
W,e(X, n;m)⊂ TZq

W,e′(X, n;m) for e ≤ e′. (4-3)

Note that if e ∈ 8 satisfies e ≥ q where q is considered as a constant function in
8, then automatically

TZq
W,q(X, n;m)= TZq

W,e(X, n;m)= TZq(X, n;m). (4-4)

Since 0≤ e for all e ∈8, for each triple e, e′, e′′ such that e≤ e′ ≤ q ≤ e′′, we have

TZq
W(X, n;m)⊂ TZq

W,e(X, n;m)⊂ TZq
W,e′(X, n;m)

⊂ TZq
W,q(X, n;m)= TZq

W,e′′(X, n;m)= TZq(X, n;m).

All these (in)equalities are equivariant with respect to the boundary maps.

Remark 4.4. The main theorem is equivalent to saying that the inclusion

TZq
W(X, n;m)⊂ TZq(X, n;m)

induces an isomorphism THq
W(X, n;m) ' THq(X, n;m) for the given modulus

condition M .

Our remaining objective in this section is to prove an additive analogue of the
spreading argument, which originates from Bloch’s arguments. We begin with the
following results.

Lemma 4.5. Let f : X→ Y be a dominant morphism of integral normal varieties
and let η denote the generic point of Y . Consider the fiber diagram

Xη
jη //

��

X
f

��
{η} // Y.

(4-5)

Let D be a Weil divisor on X such that j∗η (D) is effective. Then there is a nonempty
open subset U ⊂ Y such that if j : f −1(U )→ X denotes the open inclusion, then
j∗(D) is also effective.
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Proof. Let D = sum ni Di . Then j∗η (D) is effective if and only if for every i with
ni < 0, one has Di ∩ Xη = ∅. Since D is a finite sum, it suffices to show that if
D is a prime divisor on X such that D ∩ Xη = ∅, then there is a nonempty open
subset U ⊂ Y such that D ∩ f −1(U )=∅.

Our hypothesis implies that f (D) is a proper closed subset of Y . Thus U =
Y\ f (D) is the desired open subset of Y . �

Lemma 4.6. Let X be a quasiprojective k-variety and let W be a finite collection
of locally closed subsets of X. Let K be a finite field extension of k. Let X K be
the base extension X K = X ×Spec(k) Spec(K ), and let WK be the set of the base
extensions of the varieties in W. Then there are natural maps

p∗ :
TZq(X, · ;m)
TZq

W(X, · ;m)
→

TZq(X K , · ;m)
TZq

WK
(X K , · ;m)

,

p∗ :
TZq(X K , · ;m)

TZq
WK
(X K , · ;m)

→
TZq(X, · ;m)
TZq

W(X, · ;m)

such that p∗ ◦ p∗ = [K : k] · id.

Proof. By Theorem 3.1, one also has the flat pull-back and finite push-forward maps
TZq

W′(X, · ;m)→ TZq
W′K
(X K , · ;m) and TZq

W′K
(X K , · ;m)→ TZq

W′(X, · ;m) for
any W′. Taking for W′ the collection {X} and then W, and then taking the quotient
of the two, we get the desired maps. The last property of the composite map is
obvious from the construction of the pull-back and the push-forward maps on the
additive cycle complexes; see [Krishna and Levine 2008]. �

Proposition 4.7 (spreading lemma). Let k ⊂ K be a purely transcendental exten-
sion. For a smooth projective variety X over k and any finite collection W of
locally closed algebraic subsets of X , let X K and WK be the base extensions as
before. Let pK : X K → Xk be the natural map. Then, the pull-back map

p∗K :
TZq(X, · ;m)
TZq

W(X, · ;m)
→

TZq(X K , · ;m)
TZq

WK
(X K , · ;m)

is injective on homology.

Proof. First, suppose the proposition holds for all infinite fields, and let k be a
finite field. Let Z be a cycle on the left quotient group whose pull-back via k→ K
dies. Then, for two different primes `1 and `2 and for pro-`i extensions k→ ki , the
images of Z under the respective pull-backs are zero. Hence, by the norm argument
in Lemma 4.6, there exist integers Ni such that `Ni

i Z = 0 in the left group. This
implies that Z = 0, thus the proposition holds for the finite field k. Hence, we can
assume that k is infinite.

Since the additive Chow group of X K is an inductive limit of the additive Chow
groups of X L , where L ⊂ K range over purely transcendental extension of k of
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finite transcendence degree over k, we can assume that the transcendence degree
of K over k is finite.

Now let Z ∈ TZq(X, n;m) be a cycle such that ∂Z ∈ TZq
W(X, n− 1;m) where

there are admissible cycles BK ∈ TZq(X K , n+ 1;m) and VK ∈ TZq
WK
(X K , n;m)

satisfying Z K = ∂(BK )+ VK .
We first consider the natural inclusion of complexes

TZq(X, · ;m) ↪→ zq(X ×A1
k , · − 1).

Since K is the function field of some affine space Ar
k , we can use the specialization

argument for Bloch’s cycle complexes [1986, Lemma 2.3] to find an open subset
U ′ ⊂ Ar

k and cycles

BU ′ ∈ zq(X ×U ′×A1
k , n), VU ′ ∈ zq

W×U ′×A1
k
(X ×U ′×A1

k , n− 1)

such that BK and VK are the restrictions of BU ′ and VU ′ to the generic point of U ′

and Z ×U ′ = ∂(BU ′)+VU ′ , respectively. In particular, all components of BU ′ and
VU ′ intersect all faces of X ×U ′× Bn+1 and X ×U ′× Bn properly. To make BU ′

and VU ′ admissible additive cycles, we modify them using our Lemma 4.5.
To check the modulus condition for our cycles, let η denote the generic point

Spec(K ) of U ′. Let B̂ N
U ′ and V̂ N

U ′ denote the normalizations of the closures of BU ′

and VU ′ in X ×U ′× B̂n+1 and X ×U ′× B̂n , respectively.
We first prove the admissibility under the modulus condition Mssup which is

a priori more difficult than Msum. The admissibility of BK and VK implies that
there are integers 1≤ i ≤ n and 1≤ i ′ ≤ n−1 such that in (4-5), the Weil divisors
j∗η(F

1
n+1,i − (m+ 1)Fn+1,0) and j∗η (F

1
n,i ′− (m+ 1)Fn,0) are effective on B̂ N

U ′,η and
V̂ N

U ′,η, respectively. Since X and B̂n are projective, the maps B̂ N
U ′, V̂ N

U ′ → U ′ are
projective. These maps are dominant since BK and VK are nonzero-cycles. Thus
we can apply Lemma 4.5 to find an open subset U ⊂U ′ such that

j∗U (F
1
n+1,i − (m+ 1)Fn+1,0)

and j∗U (F
1
n,i ′ − (m+ 1)Fn,0) are also effective. The same argument applies for the

modulus condition Msum as well. We just have to replace the Cartier divisors F1
n+1,i

and F1
n,i ′ by F1

n+1 and F1
n , respectively. Lemma 4.5 applies in this case, too.

Replacing U ′ by U , we see that

BU ∈ TZq(X ×U, n+ 1;m), VU ∈ TZq
W×U (X ×U, n;m),

Z ×U = ∂(BU )+ VU .
(4-6)

Next, (4-6) implies that for a k-rational point u ∈U (k) (which exists because k is
infinite) such that the restrictions of BU and VU to X×{u} give well-defined cycles
in zq(X × A1, n) and zq

W×A1
k
(X × A1

k , n − 1), one has Z = ∂(i∗u (BU ))+ i∗u (VU ),
where iu : X ×{u} → X ×U is the closed immersion.
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We now only need to show that i∗u (BU ) and i∗u (VU ) satisfy the modulus condition
on X × {u}. But this follows directly from (4-6) and the containment lemma,
Proposition 2.4. �

5. Moving lemma for projective spaces

We follow the strategy of Bloch and Levine to prove the moving lemma for the
additive higher Chow groups. This involves proving the moving lemma first for
the projective spaces and then deducing the same for general smooth projective
varieties using the techniques of linear projections. This section is devoted to the
proof of the moving lemma for the projective spaces. We use the following tech-
nique from [Bloch 1986, Lemma 1.1] a few times to prove the proper-intersection
properties of moved cycles with the prescribed algebraic sets.

Lemma 5.1. Let X be an algebraic k-scheme and G a connected algebraic k-group
acting on X. Let A, B⊂ X be closed subsets, and assume that the fibers of the map

G× A→ X (g, a) 7→ g · a

all have the same dimension and that this map is dominant. Then, there exists a
nonempty open subset U ⊂ G such that for all extension fields L of k and for all
g ∈U (L), the intersection g(AL)∩ BL is proper in X L .

Proposition 5.2 (admissibility of projective image). Let f : X→ Y be a projective
morphism of quasiprojective varieties over a field k. Let Z ∈ TZr (X, n;m) be an
irreducible admissible cycle and let V = f (Z). Then V ∈ TZs(Y, n;m), where s is
the codimension of V in Y × Bn .

Proof. We prove this in several steps.

Claim 1. V intersects all codimension-one faces F of Bn properly in Bn .

Consider F = Fεn,i = ιn,i,ε(Bn−1) for some i ∈ {1, 2, . . . , n−1}, ε ∈ {0,∞}, and
consider the diagram

X × Bn−1
ιn,i,ε //

fn−1
��

X × Bn

fn
��

Y × Bn−1
ιn,i,ε // Y × Bn.

Since F is a divisor in Bn , that V intersects Y × F properly is equivalent to that
Y × F 6⊃ V . Towards contradiction, suppose that V ⊂ Y × F . Then,

Z ⊂ f −1
n ( fn(Z))= f −1

n (V )⊂ f −1
n (Y × F)= ιn,i,ε( f −1

n−1(Y × Bn−1)= X × F.

By assumption, Z intersects X × F properly so that we must have Z 6⊂ X × F .
This contradiction proves the claim.
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Claim 2. V intersects all lower-dimensional faces of Bn properly.

By the admissibility assumption, all cycles ∂εi (Z) = Z ∩ (X × Fεn,i ) are admis-
sible. Moreover, it is easy to see that ∂εi (V )= fn−1(∂

ε
i (Z)). Thus we can replace

Z by ∂εi (Z) and apply the same argument as above; inductively we see that V has
the good-intersection property.

Claim 3. For each face F of Bn , including the case F = Bn , the cycle V ∩(Y ×F)
has the modulus condition.

For any face F = ι(Bi ) ⊂ Bn , where ι : Bi ↪→ Bn is a face map, and for the
projections fi : X × Bi → Y × Bi , note that V ∩ (Y × F) = fn(Z ∩ (X × F)) =
fi (Z |X×F ). But the admissibility of Z implies that Z |X×F is also admissible (see
Proposition 2.4). Hence, replacing Z |X×F by Z , we only need to prove it for
F = Bn , that is, we just need to show that V satisfies the modulus condition.
Consider the diagram

X × Bn //

fn= f

��

X × B̂n

f̄n= f̄
��

Y × Bn // Y × B̂n .

Subclaim. Let V be the closure of V in Y × B̂n and let Z be the closure of Z in
X × B̂n . Then V = f̄ (Z).

Since Z ⊂ f −1(V ) ⊂ f̄ −1(V ) and V is closed, we have Z ⊂ f̄ −1(V ). Hence,
f̄ (Z)⊂ V . For the other inclusion, note that V = f (Z)⊂ f̄ (Z) and f̄ (Z) is closed
because f̄ is projective. Hence V ⊂ f̄ (Z). This proves this subclaim.

To prove the modulus condition for V , we take the normalizations νZ : Z
N
→ Z

and νV : V
N
→ V of Z and V , and consider the following diagram:

Z N

f N
Z

��

νZ // Z
ι1 //

fZ= f̄ |Z
��

X × B̂n
f̄

��

V
N

νV // V
ι2 // Y × B̂n ,

where ι1 and ι2 are the inclusions, and f N
Z is given by the universal property of

the normalization νV for dominant morphisms. Note that f N
Z

is automatically
projective and surjective because fZ is so. Let qZ := ι1 ◦ νZ and qV = ι2 ◦ νV .

Suppose Z satisfies the modulus condition Mssup and consider on B̂n the Cartier
divisors Di := F1

n,i−(m+1)Fn,0 for 1≤ i ≤n−1. That the cycle Z has the modulus
condition means that [q∗Z ◦ f̄ ∗(Di )] ≥ 0 for an index i . By the commutativity
of the above diagram, this means that the Cartier divisor f N

Z
∗
[q∗

V
(Di )] ≥ 0. By

Lemma 2.2, this implies that [q∗
Z
(Di )] ≥ 0, which is the modulus condition for V .
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If Z satisfies the modulus condition Msum, we use the same argument by replacing
F1

n,i with F1
n . This finishes the proof of the proposition. �

Remark 5.3. In Proposition 5.2, if X is projective, Y = Spec(k), and n = 1, then
V is always a single point. To see this, let Z ⊂ X× B1= X×Gm be an admissible
irreducible closed subvariety. Let V = p(Z), where p : X × Gm → Gm is the
projection.

Since X is complete, p is a closed map. Hence, V = p(Z) is an irreducible
closed subvariety of Gm . But the only closed subvarieties of Gm are finite subsets
or all of Gm . On the other hand, if Z is the closure of Z in X × A1, then the
modulus condition implies that Z ∩ |X × {t = 0}| = ∅. This implies that V must
be a proper subset and hence a finite subset. Since V is irreducible, consequently
V must be a nonzero single point.

Hence Z =W×{∗} for a closed subvariety W ⊂ X , and a closed point {∗} ∈Gm .
Conversely, any such variety is admissible. This classifies all admissible cycles Z
when X is projective and n = 1.

For n> 1, all we can say is that Z is contained in X×V , where V is admissible
in TZs(k, n;m) for a suitable s.

5A. Homotopy variety. Now we want to construct the “homotopy variety”. First,
we need the following simple result:

Lemma 5.4. Let SLr+1,k be the (r + 1)× (r + 1) special linear group over k, and
let η be the generic point of the k-variety SLr+1,k . Let K be its function field (this
is a purely transcendental extension of k). Let SLr+1,K := SLr+1,k ⊗k K be base
change. Then, there is a morphism of K-varieties φ :�1

K→SLr+1,K such that φ(0)
is the identity element, and φ(∞) is the generic point η considered as a K-rational
point.

Proof. By a general result on the special linear groups, every element of SLr+1,K

is generated by the transvections Ei j (a), i 6= j , a ∈ K , that are (r + 1)× (r + 1)
matrices where the diagonal entries are 1, the (i, j)-entry is a and all other entries
are zero.

For each pair (i, j), the collection {Ei j (a) | a ∈ K } forms a one-parameter
subgroup of SLr+1,K isomorphic to Ga,K . Thus, for each fixed b ∈ K , define
φb

i j : A
1
K → SLr+1,K by φb

i j (y) := Ei j (by).
Express the K-rational point η of SLr+1,K as the (ordered) product

η =

p∏
l=1

Eil jl (al), for some il, jl ∈ {1, 2, . . . , r + 1} and al ∈ K ,
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and define φ′ :A1
K→SLr+1,K by φ′=

∏p
l=1 φ

al
il jl . By definition, we have φ′(0)= Id

and φ′(1)= η. Composing with the automorphism σ : P1
K → P1

K given by

y 7→ y
y−1

,

which isomorphically maps �1
K to A1

K , we obtain φ = φ′ ◦ σ : �1
K → SLr+1,K .

This φ satisfies the desired properties. �

Recall that one consequence of Lemma 2.7 is that the additive cycle complex
with modulus m can also be defined as a complex whose level-n term is the free
abelian group of the integral closed subschemes Z ⊂ X× B̃n which have the good-
intersection property with all faces, and which satisfy the appropriate modulus
condition on X × B̂n . The following lemma uses this particular definition of the
additive cycle complex.

Lemma 5.5. Let K be the function field of SLr+1,k , and φ :�1
K → SLr+1,K be as

in the previous lemma. Let SLr+1,K act on Pr
K naturally. Consider the composition

Hn = pK/k ◦ pr′K ◦µφ of morphisms

Pr
×A1
×�n

K

µφ // Pr
×A1
×�n

K

pr′K // Pr
×A1
×�n−1

K

pK/k // Pr
×A1
×�n−1

k ,

where 
µφ(x, t, y1, . . . , yn) := (φ(y1)x, t, y1, . . . , yn),

pr′K (x, t, y1, . . . , yn−1) := (x, t, y2, . . . , yn−1),

pK/k : base change.

Then for any Z ∈ TZq(Pr
k , n;m), the cycle H∗n (Z) = µ

∗

φ ◦ pr′K
∗
(Z K ) is admis-

sible, hence it is in TZq(Pr
K , n + 1;m). Similarly, H∗n carries TZq

W(P
r
k, n;m) to

TZq
WK
(Pr

K , n+ 1;m).

Proof. It is enough to prove the second assertion, that for any irreducible admis-
sible Z in TZq

W(P
r , n;m), the variety Z ′ := H∗n (Z), that we informally call the

“homotopy variety” of Z , satisfies the admissibility conditions of Definition 2.5.

Claim 1. The variety Z ′ intersects W × FK properly for all W ∈W and for each
face F of Bn+1.

Proof. This follows from the arguments of [Bloch 1986, Lemma (2.2)] and [Levine
1998, Lemma 3.5.11] without any modification. We provide its proof for the sake
of completeness. We may assume that W contains only one nonempty algebraic
set W . There are two cases to consider.

Case 1. Suppose FK comes from F = A1
×{0}× F ′ for some face F ′ ⊂�n−1. In

this case, Z ′∩ (W × FK ) is nothing but Z K ∩ (W ×A1
× F ′K ) because φ(0)= Id ∈

SLr+1,K . So, proper intersection is obvious in this case.
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Case 2. Suppose FK does not come from faces of the form in Case 1. We apply
Lemma 5.1 with G=SLr+1,k , X=Pr

×F , A=W×F , and B=pr′k
∗
(Z)∩(Pr

×F),
where G acts on X by acting trivially on F and acting naturally on Pr . By
Lemma 5.1, there is a nonempty open subset U ⊂ SLr+1 such that for all g ∈ U ,
the intersection g(A)∩ B is proper. By shrinking U if necessary, we may assume
that U is invariant under taking the multiplicative inverses. Take g = η−1

∈ U ,
the inverse of the generic point. Thus, after base extension to K , the intersec-
tion of η−1(WK × FK ) with pr′K

∗
(Z K ) ∩ (P

r
× FK ) is proper, which means that

η(pr′K
∗
(Z K )∩ (P

r
× FK )) intersects properly with WK × FK . But the intersection

pr′K
∗
(Z K )∩ (P

r
× FK ) is proper, as Z was admissible. Hence, η(pr′K

∗
(Z K )) inter-

sects with WK×FK properly. Since F is not of the form A1
×{0}×F ′, FK intersects

the first component �1
K at {∞} nontrivially. In particular, η(pr′K

∗
(Z K )) is the

same as µ∗φ(pr′K
∗
(Z K )) = Z ′ by Lemma 5.4. We conclude that Z ′ intersects with

WK × FK properly. This proves the claim and hence Z ′ has the good-intersection
property. Thus we only need to show the modulus condition for Z ′ to complete the
proof of the lemma.

Claim 2. Z ′ satisfies the modulus condition on Pr
× B̃n+1,K .

Proof. We prove this using our containment lemma. In the following, we ca-
sually drop the automorphism τ : Pr

× A1
× �n

→ Pr
× A1

× �n that maps
(x, t, y1, . . . , yn) to (x, t, y2, . . . , yn, y1) from our notations for simplicity.

Take V = p(Z), where p : Pr
× B̃n → B̃n is the projection. Because Z ⊂

p−1(p(Z))= Pr
× V , we have

Z ′ = µ∗φ(Z ×�1
K )⊂ µ

∗

φ(P
r
× V ×�1

K )= Pr
× V ×�1

K =: Z1, say. (5-1)

Now, Proposition 5.2 implies that V is an irreducible admissible closed subva-
riety of B̃n . The flat pull-back property in turn implies that p∗([V ]) = Pr

× V is
an irreducible admissible closed subvariety of Pr

× B̃n . In particular, the modulus
condition holds for Pr

× V . If V is the closure of V in B̂n , then commutativity of
the diagram

Z
N
1 = Pr

× V
N
×P1

K
//

��

Pr
× B̂n+1,K

//

��

B̂n+1,K

��

Pr
× V

N // Pr
× B̂n

// B̂n

now implies that Z1 satisfies the modulus condition on Pr
× B̃n+1,K even though

it is a degenerate additive cycle. Furthermore, the admissibility of Z and the fact
that µφ is an automorphism imply that Z ′ intersects the Cartier divisors F1

n+1 and
Fn+1,0 properly. Thus we can use (5-1) and apply Proposition 2.4 to conclude that
Z ′ satisfies the modulus condition. This completes the proof of the lemma. �
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Lemma 5.6. The collection H∗
•
: TZq(Pr

k , · ;m)→ TZq(Pr
K , · + 1;m) is a chain

homotopy satisfying ∂H∗+ H∗∂ = Z K − η(Z K ). The same is true for TZq
W.

Proof. It is enough to prove the second assertion. This is straightforward: let
Z ∈ TZq

W(P
r
k , n;m). Then

H∗∂Z =H∗sumn−1
i=1 (−1)i (∂∞i −∂

0
i )Z = sumn−1

i=1 (−1)i (µ∗φ(pr′K)
∗ p∗K/k)(∂

∞

i −∂
0
i )Z

= sumn−1
i=1 (−1)i (∂∞i+1−∂

0
i+1)µ

∗

φ(pr′K)
∗Z K =−sumn

i=2(−1)i (∂∞i −∂
0
i )H

∗Z ,

∂H∗Z = sumn
i=1(−1)i (∂∞i − ∂

0
i )H

∗Z = sumn
i=1(−1)i (∂∞i − ∂

0
i )H

∗Z

= (−1)(∂∞1 − ∂
0
1 )H

∗Z + sumn
i=2(−1)i (∂∞i − ∂

0
i )H

∗Z .

Hence, (∂H∗+ H∗∂)Z = (∂0
1 − ∂

∞

1 )H
∗Z = Z K − η(Z K ). �

5B. Proof of the moving lemma for projective spaces. We are now ready to finish
the proof of Theorem 4.1 for Pr .

By Lemma 5.6, the base extension

p∗K/k :
TZq(Pr

k , · ;m)
TZq

W(P
r
k , · ;m)

→
TZq(Pr

K , · ;m)
TZq

WK
(Pr

K , · ;m)

is homotopic to the map ηp∗K/k . Note for each admissible cycle Z ∈TZq(Pr
k , n;m),

the cycle η(Z K ) lies in TZq
W(P

r
K , n;m). Part of the proof of Claim 1 of Lemma 5.5

is similar to the proof of this assertion:
We may assume that W has only one nonempty algebraic set, say W . Let F be

a face of Bn . In Lemma 5.1, take G = SLr+1 and X =Pr
× F where G acts on Pr

naturally and Bn trivially. Let A=W×F and B= Z∩(Pr
×F). Since SLr+1 acts

transitively on Pr , the map G×A→ X is surjective. Hence, by Lemma 5.1, there is
a nonempty open subset U ⊂G such that for all g ∈U , the intersection g(A)∩B is
proper in X . By shrinking U further, we may assume that U is closed under taking
multiplicative inverses. Taking g = η−1, the inverse of the generic point, we see
that after base extension to K , the intersection of η−1(W×F)with Z K ∩(P

r
×FK )

is proper, which means η(Z K ∩ (P
r
× FK )) intersects WK × FK properly. Since

Z K intersects with Pr
× FK properly by the assumption, we conclude that η(Z K )

intersects WK ×FK properly. Thus, η(Z K )∈ TZq
W(P

r
K , n;m). Hence, the induced

map on the quotient

ηp∗K/k :
TZq(Pr

k , · ;m)
TZq

W(P
r
k , · ;m)

→
TZq(Pr

K , · ;m)
TZq

WK
(Pr

K , · ;m)

is zero. Hence the base extension p∗K/k induces a zero map on homology since it
is homotopic to the zero map.

On the other hand, by the spreading lemma, Proposition 4.7, the chain map p∗K/k
is injective on homology, so the quotient complex TZq(Pr

k , · ;m)/TZq
W(P

r
k , · ;m)

must be acyclic. This proves Theorem 4.1 for the projective spaces. �
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6. Generic projections and moving lemma for projective varieties

6A. Generic projections. This section begins with a review of some facts about
linear projections. In combination with the moving lemma for Pr , that we saw in
the previous section, we prove the moving lemma for general smooth projective
varieties.

Lemma 6.1. Consider two integers N > r > 0. Then for each linear subvariety
L ⊂ PN of dimension N − r − 1, there exists a linear projection morphism πL :

PN
\L→ Pr .

Proof. Fix the coordinates x = (x0; . . . ; xN ) of PN . A linear subvariety L is given
by (r+1) homogeneous linear equations in x whose corresponding (N+1)×(r+1)
matrix A has the full rank r + 1. Take the reduced row echelon form of A whose
rows are the linear homogeneous functions P0(x), . . . , Pr (x) in x .

For x ∈PN
\L , define πL(x) := (P0(x); . . . ; Pr (x)). Since x 6∈ L , we have some

Pi (x) 6= 0 so that the map πL is well-defined. By elementary facts about reduced
row echelon forms and row equivalences, the subvariety L uniquely decides this
map πL in this process. �

Let X be a smooth projective k-variety. Let r = dim X . Suppose that we have
an embedding X ↪→ PN for some N > r . Consider πL : P

N
\L→ Pr . Whenever

L ∩ X = ∅, we have a finite morphism πL ,X := πL |X : X → Pr . Such L’s form
a nonempty open subset Gr(N−r−1, N )X of the Grassmannian Gr(N−r−1, N ).
Such a map πL is automatically flat since X is smooth [Hartshorne 1977, Exer-
cise III-10.9, p. 276]. In particular, the pull-back π∗L ,X and push-forward πL ,X∗ are
defined by Theorem 3.1.

For any closed integral admissible cycle Z on X × Bn , define L̃(Z) to be

L̃(Z) := π∗L ,X (πL ,X ∗([Z ]))− [Z ].

Extending this map linearly, this defines a morphism of complexes

L̃ : TZq(X, · ;m)→ TZq(X, · ;m).

6B. Chow’s moving lemma. Recall that for two locally closed subsets A and B
of pure codimension a and b, the excess of the intersection of A and B on X is
defined to be

e(A, B) :=max{a+ b− codimX (A∩ B), 0}.

That the intersection A ∩ B is proper on X means e(A, B) = 0. If A and B are
cycles, then we define e(A, B) := e(Supp(A),Supp(B)). The excess measures
how far an intersection is from being proper.

Lemma 6.2 [Krishna and Levine 2008, Lemma 1.12]. Let X ⊂ PN be a smooth
closed projective k-subvariety of dimension r. Let Z and W be cycles on X. Then
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there is a nonempty open subscheme UZ ,W ⊂Gr(N−r−1, N )X such that for each
field extension K ⊃ k and each K-point L of UZ ,W , we have

e(L̃(Z),W )≤max{e(Z ,W )− 1, 0}.

For its proof, see [Roberts 1972, Main Lemma, p. 93], or [Levine 1998, Lemma
3.5.4, p. 96] for a slightly different but equivalent version. The point of the pro-
jection business is the following lemma:

Lemma 6.3. Let X be a smooth projective k-variety, and let W be a finite set of
locally closed algebraic subsets of X. Let m, N ≥ 1, and q ≥ 0 be integers. Let
e :W→ Z≥0 be a set-theoretic function. Define e− 1 :W→ Z≥0 by

(e− 1)(W ) :=max{e(W )− 1, 0}.

Let K be the function field of Gr(N−r−1, N ), and let Lgen∈Gr(N−r−1, N )X (K )
be the generic point. Then, the map

L̃gen : TZq(X, · ;m)→ TZq(X K , · ;m)

maps TZq
W,e(X, · ;m) to TZq

WK ,e−1(X K , · ;m).

Proof. The arguments of [Krishna and Levine 2008, Lemma 1.13, p. 84] or [Levine
1998, §3.5.6, p. 97] work in this additive context without change. The central idea
is to use a variation of Chow’s moving lemma as in Lemma 6.2. �

6C. Proof of the moving lemma.

Proof of Theorem 4.1. Let Lgen be the generic point of the Grassmannian Gr(N −
r − 1, N ) as in Lemma 6.3. Then, for each function e :W→ Z≥0, the morphism

L̃gen = π
∗

Lgen
◦πLgen∗

− p∗K/k :
TZq

W,e(X, · ;m)

TZq
W,e−1(X, · ;m)

→
TZq

WK ,e(X K , · ;m)

TZq
WK ,e−1(X K , · ;m)

is zero. Hence π∗Lgen
◦πLgen∗ is equal to the base extension morphism p∗K/k on the

quotient complex.
On the other hand, π∗Lgen

◦πLgen∗ is written in detail as

TZq
W,e(X, · ;m)

TZq
W,e−1(X, · ;m)

πLgen ∗
−→

TZq
W′K ,e

′(P
r
K , · ;m)

TZq
W′K ,e

′−1(P
r
K , · ;m)

π∗Lgen
−→

TZq
WK ,e(X K , · ;m)

TZq
WK ,e−1(X K , · ;m)

,

where W′ and e′ are defined as follows: for each W ∈W, the constructible subset
πLgen(W ) can be written as

πLgen(W )=W ′1 ∪ · · · ∪W ′iW

for some iW∈N and locally closed irreducible sets W ′j in Pr
K . Let d j=codimPn

K
(W ′j )

− codimX (W ). Let W′ = {W ′j | W ∈ W}. Define e′ : W′ → Z≥0 by the rule
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e′(W ′j ) := e(W )+d j . We have already shown in Section 5B that the moving lemma
is true for all projective spaces. In particular, for all functions e′ :W′→ Z≥0, the
complex in the middle

TZq
W′K ,e

′(P
r
K , · ;m)

TZq
W′K ,e

′−1(P
r
K , · ;m)

is acyclic (see Remark 4.4). Hence, the base extension map

p∗K/k :
TZq

W,e(X, · ;m)

TZq
W,e−1(X, · ;m)

→
TZq

WK ,e(X K , · ;m)

TZq
WK ,e−1(X K , · ;m)

is zero on homology. Consequently, by induction, the base extension map

p∗K/k :
TZq(X, · ;m)
TZq

W(X, · ;m)
→

TZq(X K , · ;m)
TZq

WK
(X K , · ;m)

is zero on homology. On the other hand, this map is also injective on homology
by Proposition 4.7. This happens only when

TZq(X, · ;m)
TZq

W(X, · ;m)

is acyclic, i.e., the inclusion TZq
W(X, · ;m)→TZq(X, · ;m) is a quasiisomorphism.

�

7. Application to contravariant functoriality

In this section, we prove the following general contravariance property of the ad-
ditive higher Chow groups as an application of the moving lemma.

Theorem 7.1. Let f : X → Y be a morphism of quasiprojective varieties over k,
where Y is smooth and projective. Then there is a pull-back map

f ∗ : THq(Y, n;m)→ THq(X, n;m)

such that for a composition X
f
−→ Y

g
−→ Z with Y and Z smooth and projective, we

have
(g ◦ f )∗ = f ∗ ◦ g∗ : THq(Z , n;m)→ THq(X, n;m).

Before proving this functoriality, we mention one more consequence of our con-
tainment lemma (Proposition 2.4).

Corollary 7.2. Let X
i
−→ Y be a regular closed embedding of quasiprojective but

not necessarily smooth varieties over k. Then there is a Gysin chain map of additive
cycle complexes

i∗ : TZq
{X}(Y, · ;m)→ TZq(X, · ;m).
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Proof. Let ι : Z ⊂Y×Bn be a closed irreducible admissible subvariety in the group
TZq
{X}(Y, n;m). By assumption, Z intersects all faces X × F properly. Hence the

abstract intersection product of cycles (X×Bn) · Z = [ι∗(X×Bn)] ∈ zq(X×Bn) is
well-defined. Moreover, the intersection formula for the regular embedding implies
that this intersection product commutes with the boundary maps [Fulton 1998, §2.3
and §6.3]. We want this cycle to be i∗(Z). Thus we only need to show that each
component of Z ∩ (X × Bn) satisfies the modulus condition in order for i∗ to be
a map of additive cycle complexes. Since X × B̂n clearly intersects F1

n and Fn,0

properly on Y × B̂n , this modulus condition follows directly from Proposition 2.4,
for Z has the modulus condition. �

Proof of Theorem 7.1. We do this by imitating the proof of Theorem 4.1 in [Bloch
1986]. So, let f : X → Y be a map as in Theorem 7.1. Such a morphism can be
factored as the composition

X
gr f
→ X × Y

pr2
→ Y,

where gr f is the graph of f and pr2 is the projection. Notice that pr2 is a flat map
and moreover, the smoothness of Y implies that gr f is a regular closed embedding.
Let 0 f ⊂ X × Y denote the image of gr f which is necessarily closed.

For 0 ≤ i ≤ dim X , let Yi be the Zariski closure of the collection of all points
y ∈ Y such that dim f −1(y) ≥ i . We use the convention that dim ∅ = −1. Let
W be the collection of the irreducible components of all Yi . Then W is a finite
collection.

Claim. Let Z ∈ TZq
W(Y, n;m) be an irreducible admissible closed subvariety of

Y × Bn . Then (pr2× IdBn )
−1(Z) = X × Z in X × Y × Bn is an admissible closed

subset that intersects 0 f × F properly in X × Y × Bn for all faces F ⊂ Bn . This
gives a chain map

pr2
∗
: TZq

W(Y, · ;m)→ TZq
{0 f }

(X × Y, · ,m).

That (pr2× IdBn )
−1(Z)= X×Z is admissible is obvious by [Krishna and Levine

2008, §3.4]. Since Z intersects W × F properly for all W ∈W and faces F ⊂ Bn ,
we have dim Z̃i ≤ dim Yi + dim F − q, where Z̃i := Z ∩ (Yi × F).

Now, (X× Z)∩ (0 f × F)=
⋃

i X× Z̃i , and for each i we have dim(X× Z̃i )=

dim X + dim Z̃i ≤ dim X + dim F − q = dim(0 f × F) − q . We conclude that
codim0 f×F (X × Z)∩ (0 f × F)≥ q , thus obtaining the desired map

pr2
∗
: TZq

W(Y, n;m)→ TZq
{0 f }

(X × Y, n;m)

for each n ≥ 1. That this gives a chain map is obvious since f ∗ clearly commutes
with the boundary maps. This proves the claim.
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The pull-back map f ∗ is now given by composing pr∗2 with the Gysin map gr∗

of Corollary 7.2 and then using the moving lemma, Theorem 4.1. The composition
law can be checked directly from the construction of f ∗. This completes the proof
of Theorem 7.1. �

8. Remarks and computations

8A. Moving modulus conditions. We saw that Msum and Mssup seem to have
much better structural behavior than the modulus condition Msup of [Krishna and
Levine 2008; Park 2009], and this makes the former better suited for being a mo-
tivic cohomology. On the other hand, in the main theorem of [Park 2009], the
regulators on 1-cycles were defined with the modulus condition Msup. Although
we have seen that this regulator map does exist and has good properties with the
modulus condition Mssup, its construction doesn’t automatically generalize to the
groups with Msum. So, one may ask the following.

Question 8.1. Given an Msum-admissible cycle ξ with ∂ξ = 0, can one find an
Msup-admissible cycle η and an Msum-admissible cycle 0 such that ξ = η+ ∂0?

A positive answer to this question will immediately solve one part of Conjecture
2.8. This is a kind of deeper moving lemma than we have proved in this paper. This
moving lemma allows one to move the modulus as well as the proper intersection
property when we move a cycle. On the other hand, the moving lemma of this
paper does not allow changing the modulus conditions. We expect the answer to
the above question to be much harder.

8B. Examples.

Example 8.2. We give a simple example where the homotopy used in [Bloch 1986;
Levine 1998] doesn’t preserve the modulus conditions for additive higher Chow
groups of quasiprojective varieties.

Take X = A1
k and n = 1, so we are interested in admissible cycles in X × B̃1 =

X × A1
k . Admissible closed subvarieties Z ⊂ X × A1

k are given by the condition
Z ∩ (X × {0}) = ∅. Let Ga,k = A1

k act on X by translation, and take its function
field K = k(s), s transcendental over k. Take the line φ : �1

K → Ga,K defined by
y 7→ sy/(y−1) that sends 0 to 0 and∞ to the k-generic point s of Ga,k , which is
K-rational in Ga,K .

Take Z given by the ideal (xt+1)⊂k[x, t], which is in TZ1(A1, 1;m). Then, Z K

is given by (xt+1)⊂ K [x, t] and pr′∗Z K is given by (xt+1)⊂ K [x, t, y/(y− 1)].
Pulling back through µφ , we get (x + sy/(y− 1))t + 1 = 0. This is the equation
for our homotopy variety Z ′. Rewriting it as 1− y = t ((y − 1)x + sy), we see
that it doesn’t satisfy any of the given modulus conditions Msum, Msup, Mssup. For
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instance, for a given m ≥ 1, we need 1− y to be divisible by at least t1+m where
m ≥ 1, which is obviously false in this case. Hence Z ′ 6∈ TZ1(A1

K , 2;m).

Example 8.3. Recall from Remark 5.3 that if X is projective, then admissible
cycles in X× B̃1= X×A1 have a very simple description: an admissible irreducible
closed subvariety Z should be of the form Y × {∗} ⊂ X × A1 for some closed
subvariety Y ⊂ X , and a closed point {∗} 6= {0} of A1. This variety obviously
satisfies all of the modulus conditions.

Note that the admissible variety Z in Example 8.2 is not of the form Y × {∗}:
this happens because X = A1

k is not complete.
These two examples seem to suggest that one should possibly modify the def-

inition of the additive higher Chow groups of a quasiprojective variety in such a
way that it takes into account the behavior at infinity in any compactification of the
underlying variety.

8C. A computation. We finish the paper with a calculation of some additive higher
Chow groups, which the authors completed while working on this paper. The fol-
lowing extends [Bloch and Esnault 2003a, Theorem 6.4, p. 153] to affine spaces.

Theorem 8.4. Assume that 1
6 ∈ k. Let M be a modulus condition Msum, Msup, or

Mssup. Let X = Ar
k , and let m = 1. Then, the additive higher Chow groups of

zero-dimensional cycles of X are the absolute Kähler differentials of k:

THr+n(X, n; 1)'�n−1
k/Z .

Remark 8.5. Note that, although it looks similar, this theorem does not imply
that additive higher Chow groups have A1-homotopy invariance. For the structure
morphism Ar

k → Spec(k), the pull-backs of 0-cycles on Spec(k)× B̃n to X × B̃n

are r -cycles, not 0-cycles.

Proof. The proof is very similar to that of [Bloch and Esnault 2003a, Theorem 6.4,
p. 153]. For a closed point p ∈ X × B̃n that does not intersect the faces and the
divisor {t = 0}, we define a homomorphism by setting

ψ(p) := Trk(p)/k

(
1
t

dy1

y1
∧ · · · ∧

dyn−1

yn−1

)
(p) ∈�n−1

k/Z .

In other words, we ignore the coordinate of X . This defines a homomorphism
ψ : TZr+n(X, n; 1)→�n−1

k/Z .

Claim 1. The composition

ψ ◦ ∂ : TZr+n(X, n+ 1; 1)
∂
→ TZr+n(X, n; 1)

ψ
→�n−1

k/Z

is zero.

Proof. This follows from [Bloch and Esnault 2003a, Proposition 6.2, p. 150]. �
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Claim 2. Any two closed admissible points p, p′ ∈ X × B̃n for which only the
coordinates of X differ are equivalent as additive higher Chow cycles.

Proof. Note that the points p, p′ are not assumed to be k-rational. Under the
natural projections π? : X × B̃n →?, where ? = X,A1 and the i-th projection
πi : X× B̃n→�, if one has πX (p)= a ∈ X , πA1(p)= b ∈A1, and πi (p)= si ∈�,
for not necessarily k-rational closed points a ∈ X, 0 6= b ∈A1, 0,∞ 6= si ∈�, then
one writes p = (a, b, s1, . . . , sn−1). Similarly, under the assumptions of Claim 2,
one can write p′ as p′ = (a′, b, s1, . . . , sn−1), where a′ is another closed point of
X . Consider a parametrized line given in terms of the above notation,

C =
{(

a y
y−1
+ a′

(
1− y

y−1

)
, b, y, s1, . . . , sn−1

)
∈ X × B̃n+1

∣∣∣ y ∈�1
}
,

which is a closed 1-dimensional subvariety of X × B̃n+1. This 1-cycle satisfies all
the modulus conditions Msum, Msup, and Mssup having b 6= 0, and it intersects all
faces properly having constant yi -coordinate values si . Thus C is admissible.

By direct calculations, ∂0
1 (C) = p′, ∂∞1 (C) = p, and ∂εi (C) = 0 for i ≥ 2 and

ε ∈ {0,∞}. Hence, ∂(C)= p′− p proving Claim 2.
Given Claim 2, by [Bloch and Esnault 2003a, Proposition 6.3] and the rest of

the arguments of [Bloch and Esnault 2003a, Theorem 6.4] for which 1
6 ∈ k is used,

the theorem follows. �

We remark that the same arguments work for any variety X as long as we can
prove Claim 2. In particular, for any connected union of affine spaces, irreducible
or not, we can conclude the same results.
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