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In earlier work, the second named author described how to extract Darmon-style
L-invariants from modular forms on Shimura curves that are special at p. In this
paper, we show that these L-invariants are preserved by the Jacquet–Langlands
correspondence. As a consequence, we prove the second named author’s period
conjecture in the case where the base field is Q. As a further application of our
methods, we use integrals of Hida families to describe Stark–Heegner points in
terms of a certain Abel–Jacobi map.
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1. Introduction

Let N and p be relatively prime positive integers with p prime and let

f =
∞∑

n=1

an( f )qn
∈ S2(00(N p))p-new

be a Hecke eigenform with a1( f ) = 1. In their study of p-adic L-functions
associated to modular forms, Mazur, Tate and Teitelbaum [Mazur et al. 1986]
introduce a p-adic invariant of f which they call its L-invariant. Let X( f, p)
be the set of primitive Dirichlet characters with conductor prime to p such that
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χ(p) = ap( f ) =±1. If χ ∈ X( f, p) then the interpolation property forces the p-
adic L-function L p( f, χ, s) of f twisted by χ to vanish at s = 0. This is called an
exceptional zero phenomenon. In this case, it is conjectured in [Mazur et al. 1986]
that there is a p-adic number LMTT( f ) such that for all χ ∈X( f, p) of conductor c,

L ′p( f, χ, 0)= LMTT( f ) c
τ(χ)

L( f, χ, 1)
�
χ(−1)
f

. (1-1)

Here, τ(χ) is the Gauss sum associated to χ and �χ(−1)
f is the real or imaginary

period of f , depending on the parity of χ . Note that (1-1) makes sense after
fixing embeddings Q ⊂ C, Q ⊂ Cp, since L( f, χ, 1)/�χ(−1)

f is algebraic by a
theorem of Shimura. It follows from nonvanishing results on critical L-values that
L( f, χ, 1) 6= 0 for some χ ∈ X( f, p), making (1-1) a nontrivial statement; see
[Darmon 2001, Lemma 2.17] and the following remark.

The existence of LMTT( f ) was proved in the influential paper [Greenberg and
Stevens 1993]. Since f is p-ordinary, that is, ap( f ) is a p-adic unit, f lives in a p-
adic analytic family f of eigenforms by the work of Hida [1986]. More precisely,
there is a p-adic disk U ⊂ Zp × Z/(p − 1)Z containing 2 and a p-adic analytic
function an( f ) :U → Cp for each n ≥ 1, with a1( f )= 1, such that

(1) for all integers k ≥ 2 with k ∈U , an( f , k) ∈Q and the image of

f (k) :=
∞∑

n=1

an( f , k)qn

in C[[q]] is the q-expansion of an eigenform in Sk(00(N p)),

(2) f (2)= f .

Moreover, up to shrinking U around 2, f is completely determined by f . Note that
1− ap( f , k)2 vanishes at k = 2 since ap( f )=±1. Thus, it is natural to consider
the derivative of this quantity. Greenberg and Stevens show that (1-1) holds with

LMTT( f )=
d

dk

(
1− ap( f , k)2

)∣∣∣
k=2
=: LGS( f ). (1-2)

Also, (1-2) extends the definition of the L-invariant from the case ap( f )= 1 orig-
inally considered in [Mazur et al. 1986] to the case ap( f )=±1.

Mazur, Tate, and Teitelbaum further conjecture in the same work that LMTT( f )
is of local type, that is, depends only on the two-dimensional p-adic representation
σp( f ) of Gal(Qp/Qp) associated to f . Greenberg and Stevens [1993] proved this
by showing that LGS( f ) may be described in terms of the deformation theory of
σp( f ).
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Since the L-invariant is a local-at-p invariant of f , it is natural to attempt to
extract the L-invariant of f from its Jacquet–Langlands lift g to another indefi-
nite quaternion algebra B split at p, that is, with Bp ∼= M2(Qp), since the corre-
sponding automorphic representations have the same local components at p. (The
case of definite quaternion algebras was resolved by Bertolini, Darmon and Iovita
[Bertolini et al. 2010].) Following Darmon [2001], a conjectural method for doing
this was proposed in [Greenberg 2009], as follows.

We first consider a certain p-arithmetic subgroup 2⊂ B× of level

N+ := N/ disc B, (1-3)

defined precisely in (6-1). We view 2 as a subgroup of GL2(Qp) using the chosen
isomorphism Bp ∼= M2(Qp). Let M0(X) be the space of Cp-valued measures
on X := P1(Qp) with total measure zero (see Section 4). The group 2 acts on
X by linear fractional transformations. This induces an action of 2 on M0(X).
A Mayer–Vietoris argument, together with multiplicity one, shows that for each
choice of sign ± at infinity, dimCp H 1(2,M0(X))g,± = 1. Here, the superscript
g indicates the eigensubspace on which the Hecke operators act according to the
Hecke eigenvalues of g. The superscript ± indicates the ±1-eigenspace for the
natural conjugation action of a matrix of determinant −1 that normalizes 2. Let
ϕ±g be a nonzero element of H 1(2,M0(X))g,±. Our definition of the L-invariant
of g will arise by considering the image of ϕ±g under a certain integration pairing
that we now define.

For each L ∈ Cp, there is a unique branch logL of the p-adic logarithm such
that logL(p) = L. Let Hp = P1(Cp)− P1(Qp) be the p-adic upper half-plane.
Associated to each branch of the p-adic logarithm, there is a PGL2(Qp)-invariant
integration pairing

〈 · , · 〉L : M0(X)×Div0 Hp→ Cp

defined by

〈µ, {τ ′}− {τ }〉L =

∫
X

logL

( x−τ ′

x−τ

)
µ(x),

which, in turn, induces a pairing H 1(2,M0(X))× H1(2,Div0 Hp)→ Cp. Let
∂ : H2(2,Z)→ H1(2,Div0 Hp) be the boundary map in the long exact sequence
in 2-cohomology associated to the short exact sequence defining Div0 Hp:

0→ Div0 Hp→ Div Hp
deg
→ Z→ 0.

Proposition 1 [Greenberg 2009, Prop. 30]. There are unique constants LD(ϕ±g ) in
Cp such that

〈
ϕ±g , ∂H2(2,Z)

〉
−LD(ϕ±g )

= {0}.
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We have chosen the notation LD(ϕ±g ) for these L-invariants since they are de-
fined following methods of Darmon [2001]. The goal of this paper is to relate these
L-invariants LD(ϕ±g ) arising from the cohomology of Shimura curves to those
whose origins lie in the arithmetic of classical modular curves. The following is
our main result:

Theorem 2. LD(ϕ±g )= LGS( f ).

Using Theorem 2, we deduce Conjecture 2 of [Greenberg 2009] in the case
where the base field is Q; see Section 8 for details. The proof of Theorem 2
falls into two steps. Applying a result of Hida’s theory, we deform the Jacquet–
Langlands lift g of f into a cohomological Hida family8±g . Let ap = ap(k) be the
eigenvalue of Up acting on 8±g . Group cohomological calculations building upon
those in [Dasgupta 2005] show that

LD(ϕ±g )=
d

dk
(
1− ap(g, k)2

)∣∣∣
k=2
=: LGS(g).

It remains to show that LGS(g) = LGS( f ). We prove this in Theorem 8, which
asserts a compatibility between the Jacquet–Langlands correspondence with the
formation of Hida families. This result is a weak analogue of results of Chenevier
[2005] for definite quaternion algebras and may be of independent interest.

In the last section of this paper, we apply our computations to the theory of
Stark–Heegner points. Let E/Q be an elliptic curve of conductor N p and suppose
that O is a real quadratic order with fraction field K such that (disc O, N p) = 1.
Assume further that the sign in the functional equation of L(E/K , s) is −1. Then
for each character χ : Cl+O → C× of the narrow ideal class group of O, the sign in
the functional equation of L(E/K , χ, s) is also −1. Thus, the conjecture of Birch
and Swinnerton-Dyer leads one to expect that

rank E(HO)= ords=1 L(E/HO, s)= ords=1
∏

χ :Cl+O→C×

L(E/K , χ, s)≥ |Cl+O |, (1-4)

where HO is the narrow ring class field associated to the order O. In [Greenberg
2009], a p-adic analytic construction of local Stark–Heegner points on E was
presented, generalizing a construction of Darmon [2001] applicable when p is inert
in K and the primes dividing N split in K . The local definition of Stark–Heegner
points given in [Greenberg 2009] is contingent upon Conjecture 2 [ibid.] over the
base field Q; this now follows from Theorem 2. The analytically defined Stark–
Heegner points are conjectured to be defined over the field HO, and are expected
to generate a finite index subgroup of E(HO) when the inequality in (1-4) is an
equality.
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The strongest theoretical evidence presented to date for the conjectures of [Dar-
mon 2001] on the rationality of Stark–Heegner points is the main result of [Bertolini
and Darmon 2009], which proves the rationality of certain linear combinations of
Stark–Heegner points. A key tool in the proof of this result is a description of
the formal group logarithms of Stark–Heegner points in terms of periods of Hida
families. In Section 9, we prove such a formula for the Stark–Heegner points of
[Greenberg 2009]. We intend to pursue the analogue of the rationality result of
[Bertolini and Darmon 2009] in future work.

2. Modular forms on quaternion algebras
and the cohomology of Shimura curves

Let f be as in the introduction with level N p, p - N . In order to ensure that f
admits a Jacquet–Langlands lift to an indefinite quaternion Q-algebra, we suppose
that the tame part N of the level of f admits a factorization

N = N−N+, (N−, N+)= 1,

such that f is N−-new. We work under the additional simplifying assumption that
N− is squarefree.

Let B be the indefinite quaternion Q-algebra with discriminant N−. Let Rmax

be a maximal order in B. Let ` be a prime with ` - N−. Since B is split at `, we
may choose an embedding

ι` : B→ M2(Q`)

such that ι`(Rmax)⊂ M2(Z`). Define

R =
{
α ∈ Rmax : ι`(α)≡

(
∗ ∗

0 ∗

)
(mod N+Z`) for all ` - N−

}
, (2-1)

R0 =

{
α ∈ Rmax : ι`(α)≡

(
∗ ∗

0 ∗

)
(mod pN+Z`) for all ` - N−

}
. (2-2)

The rings R and R0 are Eichler orders in B of level N+ and pN+, respectively.
Set

0 = R×
+
/{±1}, 00 = R×0,+/{±1},

where the subscript + indicates elements with positive reduced norm.
Since B is split at the infinite place of Q, we may choose an embedding

ι∞ : B→ M2(R). (2-3)

The groups 0 and 00 may be viewed as discrete groups of transformations of the
complex upper half-plane H by identifying them with subgroups of PGL2(R) via
ι∞. The quotients

Y (C) := 0\H, Y0(C) := 00\H
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are Riemann surfaces, compact exactly when N− 6= 1. Let H∗=H∪P1(Q) be the
extended complex upper half-plane and define

X (C)=
{

Y (C) if N− 6= 1,
0\H∗ if N− = 1.

Define X0(C) analogously. The Riemann surfaces X (C) and X0(C) are compact
and may be identified with the loci of complex points of Shimura curves X and
X0 that admit canonical models over Q. Of course, these are just the classical
modular curves in the case N− = 1. For the remainder of this section, we assume
that N− 6= 1.

Let Sk(0) and Sk(0) be the spaces of holomorphic and, respectively, antiholo-
morphic weight k cusp forms on X (0). The spaces Sk(00) and Sk(00) are defined
analogously. These spaces admit the action of a commutative algebra of Hecke
operators, all commuting with complex conjugation (see Section 3).

Theorem 3 (Jacquet–Langlands correspondence). Let k ≥ 2 be an integer. There
are isomorphisms

Sk(00(N ))N−-new ∼= Sk(0) and Sk(00(N p))N−-new ∼= Sk(00).

Both isomorphisms are equivariant with respect to the Hecke operators T` for ` -
N p, U` for ` | N+ and W` for ` | N−. In addition, the first isomorphism equivariant
with respect to Tp, and the second is equivariant with respect to Up.

Therefore, there is a one-dimensional subspace of S2(00), independent of the
choice of isomorphism in the Jacquet–Langlands correspondence, on which the
Hecke operators act via the eigenvalues of f . Let g be a nonzero element of
this space. We call g a Jacquet–Langlands lift of f . Let a`(g) = a`( f ) be the
eigenvalue of T`, U`, or −W` acting on g in the cases ` - N p, ` | pN+, and
` | pN−, respectively.

We are also interested in cohomological avatars of g. We have canonical iso-
morphisms of Betti and group cohomology

H∗(0, E)∼= H∗(X (C), E), H∗(00, E)∼= H∗(X0(C), E)

for any characteristic zero field E endowed with the trivial action of 0. By the de
Rham theorem and the Hodge decomposition,

H 1(00,C)= H 1(X0(C),C)

= H 1,0(X0(C),C)⊕ H 0,1(X0(C),C) ∼= S2(00)⊕ S2(00).

Therefore, if E is any field containing the Hecke eigenvalues of g, we have

dimE H 1(00, E)g = 2,
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where the superscript g indicates Hecke eigenspace corresponding to the system
of Hecke eigenvalues of g:

H 1(00, E)g = {c ∈ H 1(00, E) : T`(c)= a`(g)c for ` - N ,

U`(c)= a`(g)c for ` | pN+}.

(See Section 3 for a detailed description of Hecke operators acting on group
cohomology.) Note that this space is stable for the Atkin–Lehner involutions
−W` for ` | pN− with eigenvalues a`(g). Conjugation by an element of R×0
of reduced norm −1 induces an automorphism of H 1(00, E) under which the
subspace H 1(00, E)g is stable. This action corresponds to complex conjugation
of cusp forms and is denoted W∞. Therefore, H 1(00, E)g decomposes into one-
dimensional ±-eigenspaces for this action:

H 1(00, E)g = H 1(00, E)g,+⊕ H 1(00, E)g,−.

We denote by g± a nonzero element of H 1(00, E)g,±. In Section 4 we construct a
cohomological Hida family8±g that specializes to g± in weight 2, and in Section 6
we use 8±g to define the Darmon L-invariant LD(g±).

3. Hecke operators and group cohomology

In anticipation of the delicate group cohomological calculations to follow, we
carefully set up notation for describing the action of Hecke operators on various
cohomology groups. Let G ⊂ K be an inclusion of groups, x an element of K ,
M a G-module, and M ′ an xGx−1-module. Suppose that ξ : M→ M ′ is a group
homomorphism such that

ξ(gm)= xgx−1ξ(m). (3-1)

for all g ∈G and m ∈ M . In our applications, M ⊂ M ′′ for a K -module M ′′, and ξ
is the map m 7→ xm with M ′ = x M ⊂ M ′′. The map ξ induces a homomorphism

ξ∗ : H∗(G,M)→ H∗(xGx−1,M ′) (3-2)

as follows: Let F•→ Z be a resolution of Z by free K -modules. Note that Fr is
also a free G-module and a free xGx−1-module. In what follows, we will often
take Fr = Z[K r+1

]. Formally, ξ induces a map of cochain complexes relative to
this resolution,

ξ∗ : HomG(Fr ,M)→ HomxGx−1(Fr ,M ′), ξ∗(ϕ)( fr )= ξ(ϕ(x−1 fr )),

which induces (3-2). We now use this formalism to define the Hecke operators that
play a role in this paper.
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• Suppose that `>0 is a prime divisor of N−. Then there exists an element λ∈ R0

whose reduced norm is ` and such that λ generates the unique two-sided ideal of
R0 with norm `. The element λ normalizes R0 by [Vignéras 1980, chapitre II,
corollaire 1.7]. Take G = 00 or 0, K = B×/Q×, x = λ. Let M be a G-module
such that M = λM (that is, this equality holds in a K -module M ′′ containing M).
The formalism above then yields the Atkin–Lehner involutions

W` : H r (00,M)→ H r (00,M), W` : H r (0,M)→ H r (0,M). (3-3)

• Let wp ∈ R0 be an element of reduced norm p that generates the normalizer
of 00 in R[1/p]×+ and define

2̃= R[1/p]×
+

/
Z[1/p]×. (3-4)

The groups 00, 0, and 0′ := wp0w
−1
p are all subgroups of 2̃. Using the above

formalism with G = 00 or 0, K = 2̃, and x = wp yields Atkin–Lehner maps

Wp : H r (00,M)→ H r (00,M ′), Wp : H r (0,M)→ H r (0′,M ′), (3-5)

with M ′=wp M . We note that these maps are isomorphisms, as applying the same
formalism with w−1

p instead of wp yields inverse homomorphisms W−1
p .

• Let ` > 0 be a prime with ` - N−. Choose an element λ ∈ R0 of reduced
norm `. When ` | pN+, we insist that

ι`(λ)I` ∈

(
1 0
0 `

)
I`, (3-6)

where I` is the Iwahori subgroup of GL2(Z`) defined by

I` =
{
α ∈ GL2(Z`) : α ≡

(
∗ ∗

0 ∗

)
(mod `)

}
.

Consider a double coset decomposition

00 · λ ·00 =
⋃

i

γa00. (3-7)

Let 6 be the subsemigroup of 2̃ generated by 00 together with λ, and let M be
a 6-module. Let F•→ Z be a resolution of Z by free 2̃-modules, and define an
endomorphism T` of the cochain complex Hom00(F•,M) by

(T`ϕ)( fr )=
∑

i

γiϕ(γ
−1
i fr ), fr ∈ Fr . (3-8)

It is routine to check that T` does not depend on the choice of coset representatives
and descends to a well defined endomorphism T` of H∗(00,M). When ` | pN+,
we write U` instead of T` for this operator.
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• Finally, let 5 denote the matrix λ ∈ R0 of reduced norm p chosen above to
satisfy (3-6) when `= p. Let 5′ = wp5w

−1
p . Then

ιp(5
′)Ip =

(
p 0
0 1

)
Ip.

Let U ′p be the Hecke operator associated to the double coset 005
′00. It is easy to

check that
U ′p =Wp ◦Up ◦W−1

p . (3-9)

Note that this holds on the level of cochains if we choose compatible double coset
decompositions:

00500 =
⋃

i

γa00, 005
′00 =

⋃
i

(wpγaw
−1
p )00.

4. p-adic measures, Hida families, and Greenberg–Stevens L-invariants

Let Y be a compact topological space with a basis of compact-open subsets and let
A be a subring of Cp. Write C∞(Y )=C∞(Y, A) for the group of locally constant,
A-valued functions on Y , equipped with the sup-norm. An A-valued measure on
Y is a bounded A-linear functional on C∞(Y, A). We write M(Y ) = M(Y, A)
for the space of such measures, which can be identified with the space of finitely
additive, A-valued functions on the set of compact-open subsets of Y whose values
are bounded. For details, see [Mazur and Swinnerton-Dyer 1974, §7.1].

Let
X = (Z2

p)
′
:= Z2

p − p(Z2
p), X∞ = Z×p × pZp ⊂ X. (4-1)

The spaces M(X) and M(X∞) are naturally modules for the Iwasawa algebra3 :=
Zp[[1 + pZp]], where group-like elements act via the natural diagonal action of
1+ pZp on X; given ` ∈ 1+ pZp, we define ([`]µ)(h(x, y)) := µ(h(`x, `y)).

Let
ε :3→ Zp (4-2)

be the augmentation map defined by [`] 7→ 1 and let Iε be the kernel of ε. Letting
γ be a topological generator of 1+ pZp, it follows that Iε is generated by

$ := [γ ] − 1.

The group GL2(Zp) acts on X from the left by viewing elements of X as col-
umn vectors. The group 0 acts on X via the embedding ιp : R× ↪→ GL2(Zp),
and X∞ is stable under 00. Therefore, we may consider the cohomology groups
H∗(0,M(X)) and H∗(00,M(X∞)). These cohomology groups are canonically
isomorphic:
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Lemma 4. The map

H∗(0,M(X))→ H∗(00,M(X∞))

induced by the 00-equivariant inclusion X∞ ↪→ X is an isomorphism.

Proof. The p+ 1 translates of X∞ by 0 cover X. It follows that

M(X)= Co-Ind000
M(X∞).

The lemma now follows from Shapiro’s lemma. �

Let us assume that our measures take values in Zp (so M(X) denotes M(X,Zp),
etc.). We set W̃ := H 1(00,M(X∞)) ∼= H 1(0,M(X)). View 3 as a Zp[[Z×p ]]-
algebra via the canonical projection

Z×p → 1+ pZp, ` 7→ 〈`〉 := `/ω(`),

where ω is the Teichmuller character. Define the 3-algebra W := W̃⊗Zp[[Z
×
p ]]
3.

As 5X∞ ⊂ X∞, the semigroup 6 of Section 3 acts on M(X∞). Therefore, the
formalism of Section 3 endows W with an action of the Up-operator. In addition
to the Up-action, the group W enjoys an action of

• Hecke operators T` for primes ` - pN and U` for ` | N+, and

• Atkin–Lehner involutions W` for ` | N−.

See Section 3 for the definitions of these operators. Let T be the commutative
3-subalgebra of End3 W generated by these operators. Let ρ : M(X∞)→ Zp be
the total measure map. It induces a corresponding map

ρ :W→ H 1(00,Zp). (4-3)

The map ρ respects the decomposition into ±-eigenspaces:

ρ :W±→ H 1(00,Zp)
±.

Let e= limn→∞U n!
p denote Hida’s ordinary idempotent and, for any T-module

M , let Mo
= eM . In particular, To

= eT is Hida’s ordinary Hecke algebra.

Theorem 5 (Hida’s control theorem). There is an exact sequence

0→$W±,o→W±,o
ρ
→ H 1(00,Zp)

±,o
→ 0. (4-4)

The kernel of the3-algebra homomorphism To
→Qp given by sending a Hecke

operator to its eigenvalue on g is a prime ideal p⊂To lying above the augmentation
ideal Iε ⊂3. The following fundamental result is due to Hida in the case N− = 1
(see [Greenberg and Stevens 1993]), and was extended in [Balasubramanyam and
Longo 2011] to the case N− 6= 1.
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Theorem 6. There is a unique minimal prime P⊂ p, and the quotient R := To/P

is a finite flat extension of 3 unramified above Iε .

Let R be as in the theorem, and let Rp be the localization of R at p. Let E be the
field of fractions of the integral closure of Zp in R. It is a finite extension of Qp.
We write ε : Rp→ Rp/$ Rp

∼= E for the reduction map. This notation is justified
as this map extends the augmentation ε :3→ Zp.

Write (W⊗3 Rp)
±,g for the subspace of (W⊗3 Rp)

± on which T acts via the
canonical map T→ Rp. Note that

(W⊗3 Rp)
±,g
⊂ (W⊗3 Rp)

±,o
=W±,o⊗3 Rp

and that

H 1(00,Zp)⊗3 Rp = H 1(00,Zp)⊗Zp E = H 1(00, E). (4-5)

On the left of (4-5), we view H 1(00,Zp) as a 3-module via the augmentation ε.

Corollary 7 [Balasubramanyam and Longo 2011, §3.6]. The sequence

0→$(W⊗3 Rp)
±,g
→ (W⊗3 Rp)

±,g
→ H 1(00, E)±,g→ 0

obtained by tensoring (4-4) with Rp over 3 and taking g-isotypic components is
exact, and rankRp(W⊗3 Rp)

±,g
= 1.

We now view g± as an element of H 1(00, E)±,g. By Corollary 7, we may
choose a lift

8±g ∈ (W⊗3 Rp)
±,g (4-6)

of g±. The element 8±g is well defined up to multiplication by an element of
1+$ Rp. We call 8±g a Hida family through g±. We denote its Up-eigenvalue by
ap(8

±
g ) ∈ Rp. Since ε(ap(8

±
g )) = ap(g±) = ap(g) = ap( f ) = ±1, we see that

1− ap(8
±
g )

2 lies in $ Rp. There is a “derivative map" dε : $ Rp/($ Rp)
2
→ E

that extends the map Iε/I 2
ε → Zp given by the p-adic logarithm:

[`] − 1 7→ log(`). (4-7)

Since `∈Z×p , we need not specify a branch of the p-adic logarithm. We define the
Greenberg–Stevens L-invariant of g by

LGS(8±g )= dε
(
1− ap(8

±

g )
2)
∈ E .

The derivative map dε is related to the usual notion of derivative in the following
way. For 0< r ≤ 1, let Ar be the subring of Q[[x]] consisting of those powers series
that converge on the closed disk centered at 0 with radius r . Evidently, if r < s,
then there is a canonical inclusion As ⊂ Ar . Therefore, we may set A =

⋃
r Ar .

Define i : 3→ A1 by sending a group-like element [`], for ` ∈ 1+ pZp, to the
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function k 7→ `k−2. Since R is unramified over Iε and A is Henselian, there is
a unique extension of i to a 3-algebra homomorphism i : Rp→ A. An element
λ ∈ Rp lies in $ Rp if and only if the associated analytic function i(λ) has a zero
at k = 2. In this case, dε(λ)= i(λ)′(2).

Theorem 8. We have the following equality of Greenberg–Stevens L-invariants:

LGS(8±g )= LGS( f ).

Proof. Suppose R′ is a finitely generated R-subalgebra of Rp such that 8±g lies in
(W⊗3R′)g,±. With notation as above, there is some r0 such that i(R′) is contained
in Ar0 .

Let Pk−2(Q) be the space of homogeneous polynomials of degree k−2 in inde-
terminates x and y, and let Vk−2(Q) be its Q-linear dual. Define a “specialization
to weight k” map

ρk : M(X∞)→ Vk−2(Q)

by the rule

ρk(8)(P)=
∫

X∞

P(x, y)8(x, y).

This map being 00-equivariant, it induces a homomorphism

ρk : H 1(00,M(X∞))→ H 1(00, Vk−2(Q)).

The map ρ defined in (4-3) coincides with ρ2 in this more general notation.
If |k− 2|p ≤ r , we may extend ρk to a map

ρk : H 1(00,M(X∞))⊗3 Ar → H 1(00, Vk−2(Q))

by setting

ρk

(∑
i
ϕi ⊗αi

)
=
∑

i
αi (k)ρk(ϕi ).

One may verify formally that ρk is Hecke-equivariant.
Let a` be the image in Ar0 of the eigenvalue of T`, −〈`〉(k−2)/2W`, or U` acting

on 8±g in the cases ` - N p, ` | N−, and ` | N+ p, respectively. Here 〈`〉 denotes the
projection of ` onto 1+ pZp. Set a1 = 1 and define an in terms of the a` with ` | n
by the usual formulas for Hecke operators.

We may shrink r0 if necessary to ensure that ρk(8
±
g ) is a nonzero element of

H 1(00, Vk−2(Qp)) for all k ≥ 2 with |k − 2|p ≤ r0 and k ≡ 2 (mod p− 1). The
class ρk(8

±
g ) is an eigenvector for the `-th Hecke operator with eigenvalue a`(k).

Thus, {a`(k)} is a system of Hecke eigenvalues occurring in H 1(00, Vk−2(Qp)). In
particular, {a`(k)} ⊂Q⊂Qp. By the Eichler–Shimura isomorphism [Matsushima
and Shimura 1963, §4], this system of Hecke eigenvalues also occurs in Sk(00).
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By the Jacquet–Langlands correspondence, it occurs in Sk(00(pN )) as well. Thus,
if we set

h :=
∞∑

n=1

anqn
∈Ar0[[q]],

then h(k)=
∑

an(k)qn is in fact the q-expansion of a classical cusp form of weight
k on 00(N p) for k ≥ 2, |k− 2|p ≤ r0, k ≡ 2 (mod p− 1). Furthermore, it is clear
that h(2) = f . Therefore, by the uniqueness of the Hida family through f [Hida
1986, Corollary 1.3, pg. 554], it follows that an(k) = an( f , k) for |k − 2|p ≤ r0.
In particular, this is true for n = p; Theorem 8 follows. �

Finally, we record a result that will be important later. Set

W0
= H 1(0,M0(X))⊗Zp[[Z

×
p ]]
3.

Lemma 9. The canonical map

(W0
⊗3Rp)

±,g
→ (W⊗3Rp)

±,g (4-8)

is an isomorphism.

Proof. The map ρ : M(X)→ Zp gives rise to the short exact sequence

0→ M0(X)→ M(X)
ρ
→ Zp→ 0.

Since R is 3-flat, we may tensor Rp with the associated long exact sequence in
0-cohomology to obtain

· · · → H 0(0, E)→W0
⊗3Rp→W⊗3Rp→ H 1(0, E)→ · · · .

The space H 0(0, E) is Eisenstein (that is, T` acts as 1+ `), so its g-isotypic com-
ponent is trivial. Since the maps in the sequence above are Hecke-equivariant, it
follows that the map (4-8) is injective. Similarly, if 8 ∈ (W⊗3Rp)

±,g, then its
image in H 1(0, E)must be zero. This holds because g is p-new of level 00, so the
system of Hecke eigenvalues of g does not occur in H 1(0, E). Therefore 8 is the
image of an element 8̃ ∈W0

⊗3Rp. Let ` be any prime such that the eigenvalue
a`(g) of the Hecke operator T` is not equal to ` + 1. Let a`(8) denote the T`
eigenvalue of 8, that is, the image of T` in Rp. We claim that

8̃′ :=
T`−(`+1)

a`(8)−(`+1)
8̃ (4-9)

is a lift of 8 to (W0
⊗3 Rp)

±,g. First note that the division in (4-9) is allowed
in the localization, since the image of a`(8)− (`+ 1) under reduction modulo p

is a`(g)− (`+ 1) 6= 0. Next, it is clear that 8̃′ maps to 8 under (4-8) since 8
has T` eigenvalue a`(8). Finally, let λ ∈ To, and let aλ(8) be the corresponding
eigenvalue of 8. Then (λ− aλ(8))8̃ maps to 0 in W⊗3Rp and hence arises from
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H 0(0, E). Since this module is Eisenstein, it is killed by T`−(`+1), and it follows
that (λ− aλ(8))8̃′ = 0. This shows that 8̃′ lies in (W0

⊗3Rp)
±,g, and concludes

the proof of the lemma. �

Using Lemma 9, we may view 8±g an element of (W0
⊗3Rp)

±,g.

5. Some commutative diagrams

In this section, we establish some commutative diagrams involving the operators
Up, U ′p, and Wp acting on the group cohomology of various spaces of p-adic
measures. In fact, these diagrams are so natural that they commute on the level
of cochains; this fact will be used heavily in the calculations of Section 7. Re-
call the group 2̃ defined in (3-4). We describe cohomology classes in terms of
homogeneous cochains relative to the complex of projective 2̃-modules

Fr := Z[2̃r+1
]. (5-1)

Thus, if G is a subgroup of 2̃, our group of M-valued r -cochains is

Cr (G,M) := HomG(Fr ,M). (5-2)

Coboundary maps d : Cr (G,M)→ Cr+1(G,M) are defined by the usual formula

dϕ(g0, . . . , gr+1)=

r+1∑
i=0

(−1)iϕ(g0, . . . , ĝi , . . . , gr+1).

We write

Z r (G,M)= Ker(d : Cr (G,M)→ Cr+1(G,M)),

Br (G,M)= Image(d : Cr−1(G,M)→ Cr (G,M)),

and have
H r (G,M)= Z r (G,M)/Br (G,M).

Defining
Xp = Zp×Z×p = w

−1
p X∞, (5-3)

we obtain Atkin–Lehner maps as in (3-5) with M = M(X∞) and M ′ = M(Xp).

Proposition 10. The following diagrams commute:

Cr (0,M(X))
ρX∞

uu

ρXp

))
Cr (00,M(X∞)) Up

// Cr (00,M(X∞))
W−1

p

// Cr (00,M(Xp))

(5-4)
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Cr (0′,M(wpX))
ρ′pXp

uu

ρ′X∞

))
Cr (00,M(pXp))

U ′p
// Cr (00,M(pXp))

W−1
p

// Cr (00,M(X∞))

(5-5)

Here the maps ρ are the natural restriction maps.

Proof. Let ϕ ∈ Z r (0,M(X)). Let g ∈ 2̃r+1, and let h be a locally analytic function
on Xp. In the following, we will write j! for the extension-by-zero of a function j
on X∞ to a function on X. We compute:

(W−1
p UpρX∞ϕ)(g)(h)= (UpρX∞ϕ)(wpg)(h|w−1

p )

=

∑
0≤i≤p−1

(ρX∞ϕ)(δ
−1
i wpg)(h|w−1

p δi )

=

∑
0≤i≤p−1

ϕ(δ−1
i wpg)((h|w−1

p δi )!)

=

∑
0≤i≤p−1

ϕ(g)((h|w−1
p δi )!|δ

−1
i wp)

=

∑
0≤i≤p−1

ϕ(g)(h!1π−1(i+pZp))

= (ρXpϕ)(g)(h).

Essential in this calculation is that w−1
p δi belongs to 0 and that

w−1
p δi (X∞)= γiw

−1
p (X∞)= γi (Xp)= π

−1(i + pZp).

The commutativity of (5-5) follows from applying the operator Wp to (5-4). �

Next, we will be interested in understanding the map

WpUp : H r (0,M(X))→ H r (0′,M(wpX))

with respect to the decomposition wpX = X∞ t pXp.

Proposition 11. The following diagram commutes:

Cr (0,M(X))
ρX∞ //

WpUp
��

Cr (00,M(X∞))

U 2
p

��
Cr (0′,M(wpX))

ρ′X∞

// Cr (00,M(X∞))
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Proof. The result follows from the following commutative diagram and (3-9). Note
that the commutativity of the triangle on the right is given by that of (5-5).

Cr (0,M(X))
Up //

ρX∞

��

Cr (0,M(X))
Wp //

ρX∞

��

Cr (0′,M(wpX))
ρ′X∞

((
ρ′pXp

��

Cr (00,M(X∞))

Cr (00,M(X∞)) Up

// Cr (00,M(X∞)) Wp

// Cr (00,M(pXp))

W−1
p U ′p

66

�

Proposition 12. The following diagram commutes:

H r (0,M(X))
ρXp //

WpUp

��

H r (00,M(Xp))

p∗
��

H r (0′,M(wpX))
ρ′pXp

// H r (00,M(pXp))

Here the map p∗ : H r (00,M(Xp))→ H r (00,M(pXp)) is induced by p∗h(x, y)=
h(px, py) for a locally analytic function h on pXp.

Proof. The result follows from the following commutative diagram.

Cr (0,M(X))
Up //

ρX∞

��

ρXp

,,

Cr (0,M(X))
Wp //

ρX∞

��

Cr (0′,M(wpX))

ρ′pXp

��

Cr (00,M(Xp))

Cr (00,M(X∞)) Up

// Cr (00,M(X∞)) Wp

// Cr (00,M(pXp))

W−2
p =p−1

∗

88

The commutativity of the diagonal map ρXp with the arrows that lie below it follows
from that of (5-4). The fact that W 2

p = p∗ follows from the fact that w2
p ∈ p00 and

hence induces the same map on 00-cohomology as multiplication by p. �

6. p-arithmetic cohomology classes and Darmon L-invariants

Let

2= ker
(
ordp ◦ nrd : 2̃→ Z/2Z

)
, (6-1)
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where nrd : B×→ Q× is the reduced norm map. Thus, 2 is a normal subgroup
of 2̃ of index two and 2̃/2 is generated by the image of wp. By analyzing its
action on the Bruhat–Tits tree of PGL2(Qp), the group 2 can be expressed as an
amalgamation (free product) 2 ∼= 0 ∗00 0

′ [Greenberg 2009]. Associated to such
an amalgamation and a 2-module M , there is a Mayer–Vietoris sequence

· · · → H r−1(00,M)
δ
−→ H r (2,M)

(res20 ,res2
0′
)

−−−−−−→ H r (0,M)⊕ H r (0′,M)
(res000

− res0
′

00
)

−−−−−−−−→ H r (00,M)→ · · · . (6-2)

Recall that we defined X = P1(Qp). View Qp as a subspace of P1(Qp) via the
inclusion z 7→ (z : 1). Thus, (x : y) can be identified with the fraction x/y. Set
∞= (1 : 0). We view Zp ⊂Qp as a subspace of X and set

X∞ = X −Zp = wpZp.

Our first goal in this section is to use (6-2) in order to construct a cohomol-
ogy class in H 1(2,M0(X))± associated to g±. (Such a class is constructed in
[Greenberg 2009] using different methods.) The map

π : X→ X, π(x, y)= (x : y)

and the induced pushforward of measures π∗ : M(X)→ M(X) can be described
via the following isomorphism, a consequence of the fact that π is a Z×p -fibration:

M(X)∼= M(X)⊗Zp[[Z
×
p ]]

Zp. (6-3)

Here, Zp is given the structure of a Zp[[Z
×
p ]]-algebra via the augmentation map

defined in (4-2). Recall that by Lemma 9, we may assume that the cohomo-
logical Hida family 8±g associated to g± belongs to H 1(0,M0(X))⊗Zp[[Z

×
p ]]

Rp.
For notational simplicity, we suppress the ⊗Zp[[Z

×
p ]]

Rp in the sequel and write
g±∈H 1(0,M0(X)); this does not affect any subsequent arguments in a substantive
way, though our measures now take values in E .

Proposition 13. There is a unique cohomology class ϕ±g ∈ H 1(2,M0(X)) such
that

res20 ϕ
±

g = π∗8
±

g , res20′ ϕ
±

g = π∗WpUp8
±

g .

Proof. The uniqueness follows from (6-2) as H 0(00,M0(X))= 0. We must show
the existence of ϕ±g . To this end, let

ϕ±g = π∗8
±

g ∈ H 1(0,M0(X)), ϕ′±g = π∗WpUp8
±

g ∈ H 1(0′,M0(X)).

From (6-2), we must show that res000
ϕ±g = res000

ϕ′±g in H 1(00,M0(X)). Since the
kernel of H 1(00,M0(X))→ H 1(00,M(X)) is Eisenstein, it suffices to prove this
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equality after viewing ϕ±g and ϕ′±g as taking values in M(X). Let

ρZp : H
1(0,M(X))→ H 1(00,M(Zp))

ρ ′X∞ : H
1(0′,M(X))→ H 1(00,M(Zp))

ρX∞ : H
1(0,M(X))→ H 1(00,M(X∞))

ρ ′X∞ : H
1(0′,M(X))→ H 1(00,M(X∞))

be the maps induced by the inclusions Zp ↪→ X and X∞ ↪→ X and restriction of
groups to 00. From the decomposition

H 1(00,M(X))= H 1(00,M(Zp))⊕ H 1(00,M(X∞)),

we must show that ρZpϕ
±
g = ρZpϕ

′±
g and ρX∞ϕ

±
g = ρ

′

X∞ϕ
′±
g . By Propositions 11

and 12, the following diagrams commute:

H 1(0,M(X))
ρZp

((
WpUp

��
H 1(0′,M(X)

ρ′Zp

// H 1(00,M(Zp))

H 1(0,M(X))
ρX∞ //

WpUp

��

H 1(00,M(X∞))

U 2
p

��
H 1(0′,M(X))

ρ′X∞

// H 1(00,M(X∞))

The diagram on the left proves ρZpϕ
±
g = ρZpϕ

′±
g , one of the desired identities. The

one on the right says ρ ′X∞ϕ
′±
g =U 2

pρX∞ϕ
±
g . By (6-3),

U 2
pρX∞ϕ

±

g = ε(ap(8
±

g ))
2ρX∞ϕ

±

g = ρX∞ϕ
±

g ,

completing the proof. �

For each choice of L ∈ P1(E), we define an integration map

κL : H r (2,M0(X))→ H r+1(2, E)

as follows: Let C(X) denote the space of continuous E-valued functions on X .
Choose a base-point τ ∈Hp(E)= P1(E)−P1(Qp) and define

ξL,τ ∈ C1(2̃,C(X)/E)

by

ξL,τ (g0, g1)=


logL

( z−g1τ

z−g0τ

)
if L ∈ E,

ordp

( z−g1τ

z−g0τ

)
if L=∞.

It is easy to see that dξL,τ = 0 and that the cohomology class represented by ξL,τ

does not depend on τ .
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Let G be any subgroup of 2̃, let ϕ ∈ Cr (G,M0(X)), and consider the cup
product

ξL,τ ∪ϕ ∈ Cr+1(G, (C(X)/E)⊗E M0(X)).

The 2̃-invariant integration pairing (C(X)/E)⊗E M0(X)→ E induces a map

I : Cr+1(G, (C(X)/E)⊗E M0(X))→ Cr+1(G, E).

Set κL,τ (ϕ)= I (ξL,τ ∪ϕ) ∈ Cr+1(G, E), i.e.,

κL,τ (ϕ)(g0, . . . , gr+1)=

∫
X

logL

( z−g1τ

z−g0τ

)
ϕ(g1, . . . , gr+1). (6-4)

One may compute directly that

dκL,τ (ϕ)= κL,τ (dϕ). (6-5)

Therefore, the correspondence ϕ 7→ κL,τ (ϕ) induces a map

κL : H r (G,M0(X))→ H r+1(G, E),

which, as our notation suggests, does not depend on the choice of τ . Define

H 1(00, E)p-new := H 1(00, E)
/

Image
(
H 1(0, E)⊕ H 1(0′, E)→ H 1(00, E)

)
,

and let
δ : H 1(00, E)p-new ↪→ H 2(2, E) (6-6)

be the injective map induced by the connecting homomorphism in the Mayer–
Vietoris sequence (6-2).

Proposition 14. The cohomology class ϕ±g defined in Proposition 13 satisfies the
following:

(1) The identity κ∞(ϕ±g )= δ(g
±) holds in H 2(2, E).

(2) There is a unique L ∈ E , denoted −LD(g±), such that κL(ϕ
±
g )= 0.

Proof. The first statement is argued in the proof of [Greenberg 2009, Lemma 32].
By [ibid., Lemmas 32 and 33], the eigenspace of H 2(2, E)± on which the Hecke
operators away from p act via the eigenvalues of g is 1-dimensional and is spanned
by κ∞(ϕ±g )= δ(g

±), where δ is as in (6-6). The class δ(g±) is nonzero as g± is a
nonzero p-new form and δ is injective on such classes. Since the map κ0 (the one
corresponding to L= 0) is Hecke-equivariant, there is a unique constant LD(g±)∈
E such that κ0(ϕ

±
g ) = LD(g±)κ∞(ϕ±g ). But the identity logL = log0+L ordp

implies that κL = κ0+Lκ∞, and the second statement of the proposition follows
with L=−LD(g±). �

Definition 15. The quantity LD(g±) is called the Darmon L-invariant of g±.
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7. Equality of the Greenberg–Stevens and Darmon L-invariants

Let L ∈ E . The goal of this section is to prove the following:

Theorem 16. We have

κL(ϕ
±

g )= (L
GS(g)+L)δ(g±)

in H 2(2, E). Therefore, LD(g±)= LGS(g).

Since the Riemann surfaces 0\H and 0′\H are compact if and only if N− 6= 1,
we have

H 2(0, E)∼=
{

E if N− 6= 1,
{0} if N− = 1.

In either case, this space is Eisenstein for the Hecke operators. Since the restriction
maps are Hecke-equivariant, res20 κL(ϕ

±
g )= 0 and res20′ κL(ϕ

±
g )= 0.

Fix a base point τ ∈ Hp(E) and a representative ϕ ∈ C1(2,M0(X)) for the
cohomology class ϕ±g ∈ H 1(2,M0(X)). Let ψ ∈ C1(0, E) and ψ ′ ∈ C1(0′, E)
be 1-cochains such that dψ = κL,τ (ϕ)|0 and dψ ′ = κL,τ (ϕ)|0′ . Then ψ −ψ ′ is a
1-cocycle on 00 = 0 ∩0

′ and, tracing through the construction of the connecting
homomorphism in the long exact sequence in cohomology associated to (6-6), one
finds that

δ([ψ −ψ ′])= κL(ϕ
±

g ) (7-1)

in H 2(2, E). Through a general cohomological calculation, we will find explicit
formulas for ψ and ψ ′ and show that

[ψ −ψ ′] = (LGS(g)+L)g±. (7-2)

Equations (7-1) and (7-2) prove Theorem 16.
Let ϕ ∈ C1(2,M0(X)) be a cocycle representing the class ϕ±g . Let

8=8±g ∈ H 1(0,M0(X))

denote the Hida family defined in (4-6) that lifts res20 [ϕ] with respect to the push-
forward map π∗ : M0(X)→ M0(X). Let ϕ̃0 ∈ C1(0,M0(X)) be a cocycle repre-
senting8. Then there exists a cochain m∈ Z0(0,M0(X)) such that π∗ϕ̃0=ϕ+dm.
Since F0=Z[2̃] is2-projective and thus 0-projective, we may lift m to a cochain
m̃ ∈ C0(0,M0(X)). Setting ϕ̃ = ϕ̃0 − dm̃ ∈ C1(0,M0(X)), we obtain a cocycle
representing 8 that satisfies

π∗ϕ̃ = ϕ. (7-3)
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For any σ ∈Cr (0,M0(X)) and σ ′∈Cr (0′,M0(wpX)), define λL(σ )∈Cr (0, E)
and λ′L(σ

′) ∈ Cr (0′, E) by the formulas

λL(σ )(g0, g1, . . . , gr )=

∫
X

logL(x − (g0τ)y) σ (g0, g1, . . . , gr )(x, y), (7-4)

λ′L(σ
′)(g0, g1, . . . , gr )=

∫
wpX

logL(x − (g0τ)y) σ ′(g0, g1, . . . , gr )(x, y).

These maps are 0 and 0′-invariant, respectively, because the values of σ and σ ′

have total measure zero.

Lemma 17. For any σ ∈ Cr (0,M0(X)) and σ ′ ∈ Cr (0′,M0(wpX)), we have

dλL(σ )= κL(π∗σ)+ λL(dσ), dλ′L(σ
′)= κL(π∗σ

′)+ λ′L(dσ
′).

Proof. Letting h = (g0, . . . , gr+1) and hi = (g0, . . . , ĝi , . . . , gr ), we have

dλ(σ)(h)=
∫

X

logL(x − (g1τ)y)σ (h0)(x, y)

+

r+1∑
i=1

(−1)i
∫

X

logL(x − (g0τ)y)σ (hi )(x, y)

=

∫
X

logL

( x−(g1τ)y
x−(g0τ)y

)
σ(h0)(x, y)+

∫
X

logL(x−(g0τ)y) dσ(h)(x, y)

=

∫
X

logL

( z−g1τ

z−g0τ

)
π∗σ(h0)(z)+ λL(dσ)(h)

= κL(π∗σ)(h)+ λL(dσ)(h),

as desired. The second equality is proved in a similar manner. �

Lemma 17 implies that if we define

ψ = λL(ϕ̃) ∈ C1(0, E), (7-5)

then dψ = κL(ϕ). Similarly, define

ψ ′ = λ′L(WpUpϕ̃) ∈ C1(0′, E). (7-6)

Then

dψ ′ = κL(π∗WpUpϕ̃)+ dλ′L(dWpUpϕ̃)

= κL(WpUpϕ)+ 0

= κL(ϕ),

where the last equality is justified by the following lemma:

Lemma 18. We have the identity of 2-cochains WpUpϕ = ϕ.
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Proof. Consider the diagram

Cr (0,M(X))
ρX∞

uu

ρZp

))
Cr (00,M(X∞)) Up

//

ρ−1
X∞

��

Cr (00,M(X∞)) Wp

//

ρ−1
X∞

��

Cr (00,M(Zp))

ρ−1
Zp

��
Cr (0,M(X))

Up

// Cr (0,M(X))
Wp

// Cr (0′,M(X))

The maps ρX∞ and ρZp are isomorphisms by Shapiro’s lemma. The bottom squares
of the diagram commute by definition and the upper triangle commutes as it is the
pushforward via π∗ in (5-4). The lemma follows. �

Having found explicit formulas for ψ and ψ ′ in (7-5) and (7-6), respectively,
we now turn towards proving (7-2). Recall that 8 = [ϕ̃] is a Up-eigenvector with
eigenvalue ap(8) satisfying ε(ap(8))=±1. We defined

LGS(8)= dε(1− ap(8)
2).

Proposition 19. The class of the cocycle ψ −ψ ′ in H 1(00, E) is equal to

(LGS(8)+L)ρ∗[ϕ],

where ρ∗ : H 1(2,M0(X))→ H 1(00,M(X∞))→ H 1(00, E) is the composition
of the canonical restriction map ρX∞ with the total measure on X∞ map (as in
(4-3)).

Proof. We use the decompositions X = X∞ tXp and wpX = X∞ t pXp to study
the integrals defining ψ and ψ ′ (see (4-1) and (5-3)). Writing h = (g0, g1), we
find:

(ψ −ψ ′)(h)=
∫

X∞

logL(x − (g0τ)y)ϕ̃(h)+
∫

Xp

logL(x − (g0τ)y)ϕ̃(h)

−

∫
X∞

logL(x − (g0τ)y)WpUpϕ̃(h)

−

∫
pXp

logL(x − (g0τ)y)WpUpϕ̃(h). (7-7)

Propositions 11 and 12 allow us to rewrite these last two integrals as∫
X∞

logL(x − (g0τ)y)WpUpϕ̃(h)=
∫

X∞

logL(x − (g0τ)y)U 2
pϕ̃(h) (7-8)
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and∫
pXp

logL(x − (g0τ)y)WpUpϕ̃(h)

=

∫
pXp

logL(x − (g0τ)y)p∗ϕ̃(h)=
∫

Xp

logL(px − (g0τ)py)ϕ̃(h)

=

∫
Xp

logL(x − (g0τ)y)ϕ̃(h)+Lϕ̃(h)(Xp). (7-9)

Combining (7-7), (7-8), and (7-9), we obtain

(ψ −ψ ′)(h)=
∫

X∞

logL(x − (g0τ)y)(1−U 2
p)ϕ̃(h)−Lϕ̃(h)(Xp). (7-10)

We now view ϕ̃ as an element of Z r (00,M0(X∞)) and calculate the class in
H r (00, E) represented by the right side of (7-10). We have that

ϕ̃(h)(Xp)= ϕ(h)(Zp)=−ϕ(h)(X∞),

and hence represents the class −ρ∗[ϕ] in H r (00, E). Therefore the last term in
(7-10) represents the class Lρ∗[ϕ].

It remains to prove that the first term in (7-10) represents the class LGS(ϕ̃)ρ∗[ϕ]

in H 1(00, E). Since (1−U 2
p)8= α8 with α = 1− ap(8)

2, we may write

(1−U 2
p)ϕ̃ = αϕ̃+ dν (7-11)

for some ν ∈ C0(00,M(X∞)). Pushing forward via π∗, we obtain

(1−U 2
p)ϕ = 0+π∗(dν).

Since the term on the left is zero, we obtain dπ∗(ν) = 0. Thus π∗ν represents a
class in H 0(00,M(X∞)).

Lemma 20. The cohomology group H 0(00,M(X∞)) is zero.

Proof. It is easy to see that

Ip = {g ∈ GL2(Zp) : g is upper-triangular modulo p}

acts transitively on the set of balls in X∞ of radius p−n for any n ≥ 1. Since 00 is
p-adically dense in Ip, 00 acts transitively on this set as well. It follows that if µ
is a 00-invariant measure on X∞, then µ(B)= p−n+1µ(X∞) for all compact-open
balls B ⊂ X∞ of radius p−n . Since the values of µ are assumed to be p-adically
bounded, it follows that µ= 0. �

By the lemma, we conclude that π∗ν is a coboundary. Arguing above as in the
definition of the cocycle ϕ̃ satisfying (7-3), we may alter ν by a coboundary to
assume that π∗ν = 0.
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We may now calculate the cohomology class represented by (7-10). Substituting
(7-11) into (7-10), the term from αϕ̃ yields∫

X∞

logL(x − (g0τ)y)αϕ̃(h). (7-12)

By Proposition 21 below, the expression in (7-12) represents the class LGS(ϕ̃)ρ∗[ϕ]

in H 1(00, E). It remains to prove that the term arising from dν is trivial in coho-
mology, i.e., that

h 7→
∫

X∞

logL(x − (g0τ)y)dν(h) (7-13)

is a coboundary. Note that the right side of (7-13) is equal to∫
X∞

logL(x)dν(h)+
∫

X∞
logL(1− (g0τ)/z)π∗dν(h). (7-14)

The last term of (7-14) is zero since π∗dν = 0. The first term of (7-14) is equal to
the coboundary of the 0-cochain given by

g0 7→

∫
X∞

logL(x)ν(g0). (7-15)

We leave to the reader the exercise of using the equation π∗ν = 0 to show that the
0-cochain in (7-15) is 00-invariant. This proves that (7-13) is a coboundary and
completes the proof of the proposition. �

The following proposition, applied with α = 1 − ap(8)
2, was used above to

extract the invariant LGS(8) from the cohomology class [8].

Proposition 21. Let σ ∈ Z r (00,M(X∞)), let α ∈ Iε ⊂3 and define

η(g0, . . . , gr )=

∫
X∞

logL(x − (g0τ)y)ασ(g0, . . . , gr ).

Then η ∈ Z r (00, E) and represents the class

[η] = dε(α)ρ∗[σ ] ∈ H r (00, E).

Proof. Since α ∈ Iε , we have π∗(ασ) = 0; in particular, ασ has total measure 0.
It follows from this fact and a routine calculation that η is a cochain. That η is a
cocycle follows from the equations d(ασ)= α dσ = 0.
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To evaluate the class [η] ∈ H r (00, E), we consider α of the form [`] − 1 for
` ∈ 1+ pZp. Writing h = (g0, . . . , gr ), we have

η(h)=
∫

X∞

logL(x − (g0τ)y)([`]σ − σ)(h)

=

∫
X∞

(
logL(`x − (g0τ)`y)− logL(x − (g0τ)y)

)
σ(h)

=

∫
X∞

logL(`)σ (h)= log(`) · σ(h)(X∞)= dε([`] − 1)ρ∗σ(h).

This proves the result for α = [`]−1, and hence gives the result for general α ∈ Iε
as the ideal Iε is generated over 3 by such elements. �

This concludes the proof of Proposition 19, and since ρ∗ϕ±g = g±, we deduce
(7-2) and hence Theorem 16. Combining with Theorem 8, we also complete the
proof of Theorem 2.

8. Multiplicative integrals and period lattices

In this section, we suppose that the Hecke eigenvalues of g belong to Z. In this
case, it is shown in [Greenberg 2009, §8] that we may take

ϕ±g ∈ H 1(2,M0(X,Z))g,±.

That is, we may find an element ϕ±g ∈ H 1(2,M0(X,Z))g,± whose image in
H 1(2,M0(X, E)) is a basis for H 1(2,M0(X, E))g,±. Using this integral co-
homology class, we may define multiplicative versions of many of the objects
considered in previous sections.

Following Darmon [2001], we consider the multiplicative integration pairing

C(X)×/E××M0(X,Z)→ E×, ( f, µ) 7→ ×
∫

X
f µ (8-1)

defined by

×

∫
X

f µ= lim
||U||→0

∏
U∈U

f (zU )
µ(U ).

Here, U is a finite cover of X by compact open sets and zU is an arbitrary point of
U . The limit is taken over uniformly finer covers U. It is clear that

logL ×

∫
f µ=

∫
logL( f )µ for any L.

The pairing (8-1) is easily seen to be GL2(Qp)-equivariant and thus induces a
corresponding pairing

〈 · , · 〉× : H1(2,C(X)×/E×)× H 1(2,M0(X,Z))→ E×. (8-2)
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Let1=Div Hp and let10
=Div0 Hp. From the long exact sequence associated

to the short exact sequence of GL2(Qp)-modules 0→10
→1→Z→0, we extract

a connecting homomorphism ∂ :H2(2,Z)→H1(2,1
0). Let j :10

→C(X)×/E×

be the map sending a divisor D to a rational function on X with divisor D. (Note
that such a function is only well-defined up to multiplication by a nonzero scalar.)
The map j being GL2(Qp)-equivariant, it induces a corresponding map

j∗ : H1(2,1
0)→ H1(2,C(X)×/E×).

We may also define multiplicative refinements of the cocycles κL,τ (ϕ) as fol-
lows. Let τ ∈Hp, let ϕ ∈ Cr (2,M0(X,Z)), and define κτ (ϕ) ∈ Cr+1(2, E×) by
the rule

κτ (ϕ)(g0, . . . , gr+1)= ×

∫
X

( z−g1τ

z−g0τ

)
ϕ(g1, . . . , gr+1) ∈ E×.

As with κL,τ , the homomorphism κτ induces a map

κ : H r (2,M0(X,Z))→ H r+1(2, E×)

that does not depend on τ .
By the universal coefficients theorem, there is a natural surjective map

H r+1(2, E×)→ Hom(Hr+1(2,Z), E×).

Lemma 22. The image of κ(ϕ±g ) in Hom(H2(2,Z), E×) is given by

ξ 7→ 〈− j∗∂ξ, ϕ±g 〉
×.

Proof. Suppose

ξ =
∑

i

1⊗ (γi , δi , εi ) ∈ Z2(2,Z)= Z⊗2 Z[23
]

is a 2-cycle on 2 with values in Z. Tracing through the construction of the con-
necting homomorphism, one computes that ∂[ξ ] is represented by the cycle∑

i

(γiτ − δiτ)⊗ (δi , εi ).

Therefore,

〈 j∗∂ξ, ϕ±g 〉
×
=

∏
i

×

∫
X

(
z− γiτ

z− δiτ

)
ϕ±g (δi , εi ).

By the definition of the map in the universal coefficients theorem, the image of
κ(ϕ±g ) in Hom(H2(2,Z), E×) sends ξ to∏

i

κ(ϕ±g )(γi , δi , εi )=
∏

i

×

∫
X

( z−δiτ

z−γiτ

)
ϕ±g (δi , εi ).
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The result follows. �

In view of Lemma 22, we set

L±g = 〈 j∗∂H2(2,Z), ϕ±g 〉
×
= 〈H2(2,Z), κ(ϕ±g )〉 ⊂ E×.

Proposition 23 [Greenberg 2009, Proposition 30]. L±g is a lattice in E×.

Therefore, there is a unique L ∈ E such that logL(L
±
g ) = 0. We define the L-

invariant of the lattice L±g , denoted L(L±g ), to be the negative of this constant L.

Proposition 24. The L-invariant of the lattice L±g is equal to LD(ϕ±g ).

Proof. By the universal coefficients theorem,

logL(L
±

g )= logL〈H2(2,Z), κ(ϕ±g )〉

= 〈H2(2,Z), κL(ϕ
±

g )〉

is equal to 0 if and only if κL(ϕ
±
g ) = 0. By definition, this occurs if and only if

L=−LD(ϕ±g ). �

Corollary 25 [Greenberg 2009, Conjecture 2]. Let q be the Tate period of the
elliptic curve E/Q associated to f . Then

L(L±g )= logp(q)/ ordp(q).

Proof. By Proposition 23 and Theorem 2, L(L±g ) = LD(ϕ±g ) = LGS( f ). By the
Galois-theoretic portion of the proof of the Greenberg–Stevens theorem [Greenberg
and Stevens 1993, Theorem 3.18], we have LGS( f )= logp(q)/ ordp(q). �

In [Greenberg 2009], a construction was given for local Stark–Heegner points
on E×/L±g . We conjectured that the elliptic curve E×/L±g is isogenous to E/E ,
yielding a construction of local points on E. Corollary 25 proves this conjecture
and makes the construction unconditional. In the following section, we apply the
above techniques further to obtain a formula for the formal group logarithms of
these Stark–Heegner points in terms of Hida families.

9. Abel–Jacobi maps and Stark–Heegner points

In this section we recall the definition of Stark–Heegner points and give a for-
mula for the formal group logarithms of these points in terms of Hida families.
This formula will be used in [Greenberg and Shahabi ≥ 2012] to prove partial
results towards the rationality of the Stark–Heegner points following the methods
of [Bertolini and Darmon 2009].

Let Hp,ur denote the unramified p-adic upper half-plane:

Hp,ur = P1(Cp)− r−1(P1(Fp))⊂Hp,
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where r : P1(Cp)→ P1(Fp) is the reduction map. The action of GL2(Zp) on Hp

preserves Hp,ur. We set 1ur = Div Hp,ur and 10
ur = Div0 Hp,ur. If τ1, τ2 ∈ Hp,ur,

z ∈ X and (x, y) ∈ X, then the quantities

logL

( z−τ
z−τ ′

)
, logL(x − yτ)

do not depend on L because the arguments are p-adic units. For this reason, we
do not specify a branch of the p-adic logarithm and simply write log. The natural
GL2(Qp)-equivariant pairing

〈 · , · 〉 : M0(X)×C(X)/E→ Cp

induces a pairing

〈 · , · 〉 : H 1(0,M0(X))× H1(0,C(X)/E)→ Cp. (9-1)

Define j :10
ur→ C(X)/E by

j ({τ2}− {τ1})(z)= log
( z−τ2

z−τ1

)
.

Since it is 0-equivariant, j induces a homomorphism

j∗ : H1(0,1
0
ur)→ H1(0,C(X)/E).

We define one more pairing

〈 ·, · 〉 : H 1(0,M0(X))× H1(0,1
0
ur)→ Cp

by 〈ϕ, ξ〉 = 〈ϕ, j∗ξ〉.
Let T(p) be the Hecke generated by the operators away from p, that is, the

operators T` for ` - pN , U` for ` | N+, and the involutions W` for ` | N− (see §3).
There is a natural action of T(p) on H1(0,1

0
ur) described by double cosets such

that, endowing Hom(H1(0,1
0
ur), E) with the corresponding dual action, the map

A : H 1(0,M0(X))→ Hom(H1(0,1
0
ur), E),

ϕ 7→
(
ξ 7→ 〈ϕ, ξ〉

)
induced by the pairing (9-1) is T(p)-equivariant. For g as in the previous sections,
define

A±g = A(Res20 ϕ
±

g ).

We have A±g ∈ Hom(H1(0,1
0
ur), E)g,±, where Hom(H1(0,1

0
ur), E)g,± is the

eigenspace on which T(p) acts via the Hecke eigenvalues of g and W∞ acts as
±1.
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Proposition 26. There is a unique homomorphism AJ±g ∈Hom(H1(0,1ur), E)g,±

such that the diagram

H1(0,1
0
ur)

//

A±g $$

H1(0,1ur)

AJ±gzz
E

commutes, where the horizontal map is induced by the inclusion 10
ur ↪→1ur.

The proof of Proposition 26 is given in [Greenberg 2009, §10] and is very similar
to the first half of the proof of Lemma 9.

Remark 27. We have chosen the notation AJ±g for this map because it formally
resembles an Abel–Jacobi map.

Define J : 1ur → C(X)/E by J ({τ })(x, y) = log(x − yτ). Since it is 0-
equivariant, J induces a homomorphism J∗ : H1(0,1)→ H1(0,C(X)/E). The
natural 0-equivariant pairing M0(X) × C(X)/E → E induces a corresponding
pairing H 1(0,M0(X))× H1(0,C(X)/E)→ E .

Corollary 28. The map AJ±g : H1(0,1ur)→ E is given by AJ±g (ξ)= 〈8
±
g , J∗ξ〉.

Proof. It is easy to see that the element ÃJ±g of Hom(H1(0,1ur), E) defined by
ξ 7→ 〈8±g , J∗ξ〉 belongs to the (g,±)-eigenspace. Since π∗8±g = Res20 ϕ

±
g , the

diagram

H1(0,1
0
ur)

j∗ //

��

H1(0,C(X)/E)
〈Res20 ϕ

±
g ,· 〉

))
π∗

��

E

H1(0,1ur) J∗
// H1(0,C(X)/E)

〈8±g ,· 〉

55

commutes, implying that

H1(0,1
0
ur)

//

A±g $$

H1(0,1ur)

ÃJ±gzz
E

commutes as well. Therefore, by Proposition 26, AJ±g = ÃJ±g . �
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Let K be a real quadratic field and let O ⊂ K be an order such that disc O is
relatively prime to N and p. There is an embedding

ψ : K → B

such that ψ(O)= ψ(K )∩ R. For details regarding this point, see [Vignéras 1980,
chapitre III, 5C]. Suppose further that p is inert in K . Then ψ(K×) acts on P1(E)
via ιp with two fixed points τψ and τψ in Hp,ur, conjugate under the action of
Gal(K p/Qp). Let ε be a generator of the unit group of O. Then since ψ(ε)τψ = τψ ,
we have

{τψ }⊗ (1, ψ(ε)) ∈ Z1(0,1ur).

Let C[ψ] be the corresponding class in H1(0,1ur). The brackets around ψ indicate
that C[ψ] depends only on the 0-conjugacy class of the embedding ψ . Assuming
that the Hecke eigenvalues of g lie in Z, we may associate an elliptic curve E/Q

to g by the Eichler–Shimura construction. Let logω be the logarithm of the formal
group law on E associated to the differential dq/q on E×/qZ. Note that logω
factorizes as

E(E)→ E×/qZ
→ E,

where the left arrow is the inverse of the Tate uniformization of E and the right
arrow is logL with

−L= LGS(g)= LD(ϕ±g )= LMTT(g)=
logp(q)
ordp(q)

.

The points
AJ±g (C[ψ]) ∈ E = logω E(E)

are called Stark–Heegner points on E. We conjecture in [Greenberg 2009, §10]
that the locally defined points AJ±g (C[ψ]) in fact belong to logE(E(HO)), where HO

is the ring class field of K associated to the order O. By the results of this section,
we have the following formula for AJ±g (C[ψ]) in terms of the Hida family 8±g :

Corollary 29. AJ±g (C[ψ])= 〈8
±
g , J∗C[ψ]〉.

In [Greenberg and Shahabi ≥ 2012], we apply this formula with the methods of
[Bertolini and Darmon 2009] to prove partial results towards the rationality of the
Stark–Heegner points AJ±g (C[ψ]) over HO.
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