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Classical theorems of Gel’fand et al. and recent results of Beukers show that
nonconfluent Cohen–Macaulay A-hypergeometric systems have reducible mon-
odromy representation if and only if the continuous parameter is A-resonant.

We remove both the confluence and Cohen–Macaulayness conditions while
simplifying the proof.
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1. Introduction

In a series of seminal papers of the 1980s, Gel’fand, Graev, Kapranov and Zelevinskiı̆
introduced A-hypergeometric systems HA(β), a class of maximally overdetermined
systems of linear PDEs. These systems, today also known as GKZ-systems, are
induced by an integer d × n-matrix A and a parameter vector β ∈ Cd .

A-hypergeometric structures are nearly ubiquitous, generalizing most classical
differential equations. Indeed, toric residues, generating functions for intersection
numbers on moduli spaces, and special functions (Gauß, Bessel, Airy, etc.) may all
be viewed as solutions to GKZ-systems, and the same is true for varying Hodge
structures on families of Calabi–Yau toric hypersurfaces as well as the space of
roots of univariate polynomials with undetermined coefficients.
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We shall identify A with its set of columns a1, . . . , an . A parameter β is nonres-
onant if it is not contained in the locally finite subspace arrangement of resonant
parameters

Res(A) :=
⋃
τ

(ZA+Cτ) , (1-1)

the union being taken over all linear subspaces τ ⊆ Qn that form a boundary
component of the rational polyhedral cone Q+A.

Assuming that the toric ring C[NA] = C[a1, . . . , an] is Cohen–Macaulay and
standard graded (the latter is equivalent to the classical notion of nonconfluence;
see [Schulze and Walther 2008]), Gel’fand et al. [1989; 1990] proved the following
fundamental theorems:

(I) HA(β) is holonomic.

(II) The rank (dimension of the solution space) of HA(β) equals the degree of
C[NA] for generic β.

(III) If β is nonresonant, the monodromy representation of the solutions of HA(β)

in a generic point is irreducible.

More recent research has shown that statements (I) and (II) hold true irrespective
of whether C[NA] is Cohen–Macaulay or standard graded, [Adolphson 1994; Saito
et al. 2000; Matusevich et al. 2005]. In Theorems 4.1 and 5.1, we prove the same
of statement (III) while providing a converse inspired by [Beukers 2011].

The crucial tool for the proof of (III) in [Gel’fand et al. 1990, Theorem 2.11] is
the Riemann–Hilbert correspondence of Kashiwara and Mebkhout, relating regular
holonomic D-modules to perverse sheaves. Confluence (i.e., irregularity) of MA(β)

rules out the use of the Riemann–Hilbert correspondence in the general case.
A powerful way of studying HA(β) is to consider the corresponding D-module

MA(β) on Cn as a 0-th homology of the Euler–Koszul complex K•(C[NA], β).
This idea can be traced back to [Gel’fand et al. 1989] and was developed into a
functor in [Matusevich et al. 2005]. Results from [Matusevich et al. 2005] show that
K•(C[NA], β) is a resolution of MA(β) if and only if β is not in the A-exceptional
arrangement EA (see Remark 2.2), a well-understood (finite) subspace arrangement
of Cn comprised of the parameters β for which the solution space of HA(β) is
unusually large.

Surprisingly, the Euler–Koszul technique combined with the D-module/represen-
tation-theoretic description of GKZ-systems from [Schulze and Walther 2009]
serves as a replacement for the Riemann–Hilbert correspondence in the proof of
(III). This provides an approach that is simultaneously conceptually simpler and
more widely applicable.



Resonance equals reducibility for A-hypergeometric systems 529

2. Hypergeometric system and Euler–Koszul homology

Hypergeometric D-module. Let A = (ai, j ) : Zn
→ Zd be an integer d× n-matrix,

which we view both as a map, and as the finite subset {a1, . . . , an} of columns. We
assume that the additive group ZA generated by the columns of A is the free Abelian
group Zd , but we do not assume that A is positive, i.e., we do allow nontrivial units
in the semigroup NA (see Remarks 2.1 and 2.4).

Let xA = x1, . . . , xn be coordinates on X := Cn , and let ∂A = ∂1, . . . , ∂n be the
corresponding partial derivative operators on C[xA]. Then the Weyl algebra

DA = C〈xA, ∂A | [xi , ∂ j ] = δi, j , [xi , x j ] = 0= [∂i , ∂ j ]〉

is the ring of algebraic differential operators on Cn . With u+ = (max(0, u j )) j and
u− = u+ − u, write �u for ∂u+ − ∂u− , where here and elsewhere we freely use
multiindex notation. The toric relations of A are then

�A := {�u | Au = 0} ⊆ RA := C[∂A],

and generate the toric ideal IA = RA ·�A, whose residue ring is the toric ring

SA := RA/IA ∼= C[NA] = C[a1, . . . , an].

The Euler vector fields E = E1, . . . , Ed induced by A are defined as

Ei :=

n∑
j=1

ai, j xi∂ j .

Then, for β ∈Cd , the A-hypergeometric ideal and D-module are, by [Gel’fand et al.
1987; 1989], the left DA-ideal and DA-module

HA(β)= DA · {E −β}+ DA ·�A and MA(β)= DA/HA(β).

The structure of the solutions to HA(β) is tightly interwoven with the combinatorics
of the pair (A, β) ∈ (ZA)n × CA [Sturmfels and Takayama 1998; Cattani et al.
1999; Matusevich and Miller 2006; Okuyama 2006; Berkesch 2011].

Remark 2.1. Suppose we were to weaken the condition ZA = Zd to “the rank of
ZA is d ”. Pick a basis B for ZA, interpreted as elements of Zd . In terms of B, A
takes the form of the d× n matrix A′ (say) which satisfies A = B A′ and ZA′ = Zd .
Choose β ∈ CA = CA′. The hypergeometric systems HA(β) and HA′(B−1β) are
equivalent since kerZn (A)= kerZn (A′).

Torus action. Consider the algebraic d-torus T := Spec(C[ZA]) ∼= (C∗)d with
coordinate functions t = t1, . . . , td . The columns a1, . . . , an of A can be viewed
as characters ai (t)= t ai on T , and the parameter vector β ∈ Cd as a character on
its Lie algebra via β(ti∂ti )=−βi + 1. These characters define an action of T on
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X∗ := Spec(C[Nn
]), interpreted as the cotangent space T ∗0 X of X at 0, by

t · ∂A = (t a1∂1, . . . , t an∂n).

The toric ideal IA is the ideal of the closure of the orbit T · 1A of 1A = (1, . . . , 1)
in X∗, whose coordinate ring is SA.

The contragredient action of T on the coordinate ring RA of X∗ is given by

(t · P)(∂A)= P(t−a1∂1, . . . , t−an∂n)

for P ∈ RA. It yields a ZA-grading on RA on the coordinate ring C[xA, ∂A] of
T ∗X :

−deg ∂ j = a j = deg x j . (2-1)

In particular, deg ∂u
= Au, and E −β and �A are homogeneous.

The following description of MA(β) was given in [Schulze and Walther 2009].
Consider the algebraic DT -module

M(β) := DT /DT · 〈∂t t +β〉,

where ∂t t := ∂1t1, . . . , ∂d td . It is OT -isomorphic to OT but equipped with a twisted
DT -module structure expressed symbolically as

M(β)= OT · t−β−1

on which DT acts via the product rule. The orbit inclusion

φ : T → T · 1 ↪→ X

gives rise to a (derived) direct image functor φ+ : DT -mods→ DX -mods. On X
one has access to the Fourier transform: F(xi ) = ∂i , F(∂i ) = −xi . By [Schulze
and Walther 2009, Proposition 2.1], F ◦ φ+M(β) is represented by the Euler–
Koszul complex K•(SA[∂

−1
A ], β). Thus, the latter is quasiisomorphic to K•(SA, β)

if β 6∈Res(A) by [Schulze and Walther 2009, Theorem 3.6], and hence Corollary 3.8
of [Schulze and Walther 2009] yields

MA(β)= F ◦φ+M(β) if β 6∈ Res(A). (2-2)

Euler–Koszul functor. We say that β ∈ ZA is a true degree of the graded RA-
module M if β is the degree of a nonzero homogeneous element of M . The
quasidegrees of M are the points qdeg M in the Zariski closure of tdeg M ⊆ ZA ⊆
CA.

A graded RA-module M is called a toric module if it has a finite filtration by
graded RA-modules such that each filtration quotient is a finitely generated SA-
module. The toric modules with ZA-homogeneous maps of degree zero form a
category that is closed under subquotients and extensions. For every toric module the
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quasidegrees form a finite subspace arrangement where each participating subspace
is a shift of a complexified face of Q≥0 A by a lattice element.

For all β ∈ Cd and for any toric RA-module M one can define a collection
of d commuting DA-linear endomorphisms denoted Ei − βi , 1 ≤ i ≤ d, on the
DA-module DA⊗RA M which operate on a homogeneous element m ∈ DA⊗RA M
by m 7→ (Ei −βi ) ◦m, where

(Ei −βi ) ◦m = (Ei −βi − degi m) ·m.

There is an exact functor K•(−, β)= K•(−, E − β) from the category of graded
RA-modules to the category of complexes of graded DA-modules; it sends M to the
Koszul complex defined by all morphisms Ei −βi . On toric modules, the functor
returns complexes with holonomic homology. A short exact sequence

0→ M ′→ M→ M ′′→ 0

of graded RA-modules with homogeneous maps of degree zero induces a long exact
sequence of Euler–Koszul homology

· · · → Hi (M ′′, β)→ Hi−1(M ′, β)→ Hi−1(M, β)→ Hi−1(M ′′, β)→ · · ·

where Hi (−, β)= Hi (K•(−, β)). If M = SA then H0(M, β)= MA(β).
We refer to [Matusevich et al. 2005; Schulze and Walther 2009] for more details.

Rank (jumps) and monodromy reducibility. We shall write DA(xA) for the ring
of C-linear differential operators on C(xA); note that DA(xA)= C(xA)⊗C[xA] DA

as left DA-module. We further set M(xA) := C(xA)⊗C[xA] M for any DA-module
M .

The rank rk(M) of a DA-module M is the C(xA)-dimension of M(xA). By
Kashiwara’s Cauchy–Kovalevskaya theorem [Saito et al. 2000, Theorem 1.4.19], it
equals the C-dimension of the solution space Sol(M)= HomDA(M,C{xA− ε}) of
M with coefficients in the convergent power series near the generic point xA = ε in
(the analytic space associated to) X .

Remark 2.2. By [Adolphson 1994, Theorem 5.15] and [Matusevich et al. 2005,
Theorems 2.9, 7.5],

rk MA(β)≥ volA(A)

with equality for generic β ∈ Cn . Here volA(G) denotes, for any G ⊆ ZA, the
simplicial volume of the convex hull of G taken in the lattice ZA. More precisely,
equality is equivalent to β 6∈ EA, where

EA :=

n∑
j=1

a j −

d−1⋃
i=0

qdeg Extn−i
RA
(SA, RA)
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is the exceptional arrangement.

Definition 2.3. We say that a DA-module M has irreducible monodromy if M(xA)

is an irreducible DA(xA)-module (i.e., it has no nontrivial DA(xA)-quotients).

By [Walther 2007, Theorem 3.15], monodromy irreducibility of M(β) is a
property of the equivalence class β ∈ CA/ZA.

The nomenclature is based on the Riemann–Hilbert correspondence: DA(xA)-
quotients of M(xA) correspond to monodromy-invariant subspaces of Sol(M) in
nonsingular points of M . (Analytic continuations of an analytic germ satisfy the
same differential equations as the germ itself).

Remark 2.4. Careful reading of [Matusevich et al. 2005] reveals that all fundamen-
tal results obtained through Euler–Koszul technology do not require NA to be a
positive semigroup. As a matter of fact, EA was defined in [Matusevich et al. 2005]
in terms of local cohomology with supports at the origin of X∗; the translation
between this definition and ours here can only be done if A is pointed. On the other
hand, it is the Ext-based definition that is (implicitly) used in all proofs in loc. cit.

In consequence, the main theorems in [Walther 2007] and [Schulze and Walther
2009] remain true in the absence of positivity since the only ingredients in their
proofs that are specific to the hypergeometric situation are those of [Matusevich
et al. 2005].

3. Pyramids and resonance centers

Definition 3.1. For any subset F of the columns of A we write F for the comple-
ment A r F .

A face of A is any subset F ⊆ A subject to the condition that there be a linear
functional φF : ZA→ Z that vanishes on F but is positive on F . This includes
F = A as possibility. Every face contains all units of NA, and A is positive if and
only if the empty set is a face of A.

For a given face F , we set

I F
A := IA+ RA · ∂F

and note that RA/I F
A = SF as RA-module.

Definition 3.2. Let F be a face of A. The parameter β ∈ Cd is F-resonant if
β ∈ ZA+CG for a proper subface G of F .

If β is G-resonant for all faces G properly containing F , but not for F itself, we
call F a resonance center for β.

A resonance center is a minimal face F for which β ∈ZA+CF . Every parameter
β has a resonance center; A is a (and then the only) center of resonance for β if
and only if β is nonresonant in the usual sense (i.e., β 6∈ Res(A), defined in (1-1)).
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On the other hand, for positive A, the empty face is a resonance center for β if and
only if β ∈ ZA.

Example 3.3. It is easy to have several resonance centers for β. For example,
consider β = (1

2 , 1) on the quadric cone A =
(1

0
1
1

1
2

)
; β has both extremal rays as

resonance centers.

Definition 3.4. We say that A is a(n iterated) pyramid over the face F if d =
dimZ(ZA) equals |F | + dimZ(ZF).

The following equivalences are trivial or follow from [Walther 2007, Lemma 3.13].

Lemma 3.5. The following statements are equivalent.

(1) F is a face and A is a pyramid over F.

(2) a j 6∈Q(A r {a j }) for any j 6∈ F.

(3) ZA = Za j ⊕Z(A r {a j }) for any j 6∈ F.

(4) volF (F)= volA(A).

(5) For every β ∈ CA, the coefficients c j in the sum β =
∑

A c j a j are uniquely
determined by β for j 6∈ F.

(6) The generators �A of IA do not involve ∂ j for any j 6∈ F.

(7) SF ⊗C C[∂F ] = SA as RA-modules.

Notation 3.6. Suppose F is any nonempty face of A, and let X F , X∗F , TF , H F
•

, etc.
be defined as in Section 2 with A replaced by F (cf. Remark 2.1 for the case where
ZA/ZF has torsion). Write E F

= E F
1 , . . . , E F

d where E F
i :=

∑
j∈F ai, j x j∂ j is the

part of Ei supported in F . Then, in particular,

MF (β)= DF/(DF · 〈E F
−β〉+ DF · IF ) for β ∈ CF.

Suppose now that A is a pyramid over the face F , and let β ∈ CA. The splitting
in Lemma 3.5(3) corresponds to a splitting of tori TA = TF ×

∏
a j∈F Ta j which in

turn gives a splitting of the spaces of Lie algebra characters CA=CF⊕
⊕

a j∈F Ca j .
Then β decomposes correspondingly as

β = βF
+

∑
j∈F

βF
j .

Let ιF : X∗F ↪→ X∗A be the inclusion. By [Matusevich et al. 2005, Lemma 4.8], for
β ∈ CF ,

(F ◦ ιF,+ ◦F−1)MF (β)= C[xF ]⊗C MF (β)

∼= H0(SF , β)= DA/(DA · 〈E F
−β〉+ DA · I F

A ) (3-1)

as DA-modules. In the following lemma, (9) follows from (8) and (3-1) above.
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Lemma 3.7. If A is a pyramid over F then the following conditions hold:

(8) The ideal HA(β) contains x j∂ j −β
F
j for j 6∈ F.

(9) MA(β)(xA)= C(xA)⊗C[xF ] MF (β) for β ∈ CF.

(10) The solutions of MA(β) are the solutions of MF (β
F ), multiplied with the

unique solution to the system

{x j∂ j • f = βF
j · f } j∈F .

In particular, β ∈ EA if and only if βF
∈ EF .

Proposition 3.8. If β ∈ CA has a resonance center F over which A is a pyramid,
then F is the only resonance center for β.

Proof. Let G be a second resonance center for β and suppose G meets the com-
plement of F ; pick ak ∈ G ∩ F . Since Zak is a direct summand of ZA, it is also a
direct summand of ZG. It follows that G r {ak} is a face G ′ of A.

As F and G are resonance centers,

β = zk ak +
∑

j∈Fr{k}

z j a j +
∑
j∈F

c j a j , β = c′k ak +
∑

j∈G ′r{k}

z′j a j +
∑
j∈G ′

c′j a j

where zk, z j , z′j ∈ Z and c′k, c j , c′j ∈C. By Lemma 3.5(5), the coefficients for ak in
these sums are identical, c′k = zk ∈ Z. It follows that

β =

zk ak +
∑

j∈G ′r{k}

z′j a j

+∑
G ′

c′j a j ∈ ZA+CG ′.

This contradicts G being a resonance center. Thus G ∩ F =∅ and so G ⊆ F . But
then F can only be a resonance center if F = G. �

4. Resonance implies reducibility

The following result generalizes Theorem 3.4 in [Walther 2007] and Theorem 1.3
in [Beukers 2011].

Theorem 4.1. Let F be a resonance center for β ∈ CA. If A is not a pyramid over
F then MA(β) has reducible monodromy.

Proof. By hypothesis, we have β − γ ∈ ZA for some γ ∈ CF . We first dispose
of the case F = ∅. In that case, A is positive, γ = 0, β ∈ ZA and, by [Walther
2007, Theorem 3.15], we may assume β = 0. Then C(xA) is a rank-1 quotient of
MA(β)(xA). But A is not a pyramid over F , so

rk(MA(β))≥ volA(A) > volF (F)= 1= rk(C(xA))
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by Remark 2.2 and Lemma 3.5. So C(xA) is a proper quotient of MA(β)(xA), and
hence MA(β) has reducible monodromy. We can hence assume that F is not empty,
and by [Walther 2007, Theorem 3.15], we need to show the reducibility of MA(γ ).

Consider the surjection

MA(γ )= H0(SA, γ )� H0(SF , γ )

induced by the surjection SA � SF . Therefore, it suffices to show that 0 <
rk(H0(SF , γ )) < volA(A) by Remark 2.2. Since F is a resonance center for β, and
hence for γ as well, γ is a nonresonant parameter for the GKZ-system

MF (γ )= DF/(DF · 〈E F
− γ 〉+ DA · IF ).

Then, by Remark 2.2, rk(MF (γ ))= volF (F) > 0 and rk(MA(γ ))≥ volA(A). As A
is not a pyramid over F , volF (F) < volA(A) by Lemma 3.5. Finally, rk(MF (γ ))=

rk(H0(SF , γ )) by (3-1). Combining the above (in)equalities yields the claim. �

5. Resonance follows from reducibility

We now generalize Theorem 2.11 in [Gel’fand et al. 1990].

Theorem 5.1. Let F be a resonance center for β. If A is a pyramid over F then
MA(β) has irreducible monodromy.

Proof.
First consider the case F = A. Then β 6∈Res(A) and hence MA(β)=F◦φ+(Mβ)

by (2-2). As in the proof of [Schulze and Walther 2009, Proposition 2.1], factor
φ =$ ◦ ι into the closed embedding of tori

ι : T ↪→ Spec(C[Zn
])= Y ∗ ∼= (C∗)n (5-1)

induced by ZA ⊆ Zn , followed by the open embedding

$ : Y ∗ = X∗r Var(∂1 · · · ∂n) ↪→ X∗. (5-2)

By Kashiwara equivalence, ι preserves irreducibility. The same holds for$ , because
D-affinity of both the target and the source of the inclusion map allows to detect
submodules on global sections. But global sections on Y ∗ and X∗ agree because we
are looking at an open embedding. Since M(β) is clearly irreducible, φ+M(β) is as
well. As Fourier transforms preserve composition chains, MA(β) is irreducible. It
follows that MA(β) has irreducible monodromy.

Suppose now that F is a proper face. Choose γ ∈ CF with β − γ ∈ ZA. Then
MF (γ ) is irreducible by the first part of the proof, and the claim follows from
Lemma 3.7(9) and [Walther 2007, Theorem 3.15]. Finally, if F = ∅ then A is
positive and Lemma 3.7(8) shows that MA(β)(xA) = C(xA) which has clearly
irreducible monodromy. �



536 Mathias Schulze and Uli Walther

Acknowledgments

We are grateful to the referees for their comments, and for informing us that
Mutsumi Saito has an article in press with Compositio Mathematica that also
discusses reducibility of GKZ-systems (in much greater detail). We would also like
to thank Alan Adolphson for raising a relevant question.

References

[Adolphson 1994] A. Adolphson, “Hypergeometric functions and rings generated by monomials”,
Duke Math. J. 73:2 (1994), 269–290. MR 96c:33020 Zbl 0804.33013

[Berkesch 2011] C. Berkesch, “The rank of a hypergeometric system”, Compos. Math. 147:1 (2011),
284–318. MR 2012f:16022 Zbl 1214.33009

[Beukers 2011] F. Beukers, “Irreducibility of A-hypergeometric systems”, Indag. Math. (N.S.) 21:1-2
(2011), 30–39. MR 2832480 Zbl 1229.33023

[Cattani et al. 1999] E. Cattani, C. D’Andrea, and A. Dickenstein, “The A-hypergeometric sys-
tem associated with a monomial curve”, Duke Math. J. 99:2 (1999), 179–207. MR 2001f:33018
Zbl 0952.33009

[Gel’fand et al. 1987] I. M. Gel’fand, M. I. Graev, and A. V. Zelevinskiı̆, “Holonomic systems of
equations and series of hypergeometric type”, Dokl. Akad. Nauk SSSR 295:1 (1987), 14–19. In
Russian; translated in Soviet Math. Dokl.36:1(1988), 5-10. MR 88j:58118

[Gel’fand et al. 1989] I. M. Gel’fand, A. V. Zelevinskiı̆, and M. M. Kapranov, “Hypergeometric
functions and toric varieties”, Funktsional. Anal. i Prilozhen. 23:2 (1989), 12–26. In Russian;
translated in Funct. Anal. Appl. 23:2 (1989), 94–106. MR 90m:22025 Zbl 0721.33006

[Gel’fand et al. 1990] I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, “Generalized Euler
integrals and A-hypergeometric functions”, Adv. Math. 84:2 (1990), 255–271. MR 92e:33015

[Matusevich and Miller 2006] L. F. Matusevich and E. Miller, “Combinatorics of rank jumps in sim-
plicial hypergeometric systems”, Proc. Amer. Math. Soc. 134:5 (2006), 1375–1381. MR 2006j:33016
Zbl 1090.33005

[Matusevich et al. 2005] L. F. Matusevich, E. Miller, and U. Walther, “Homological methods for hyper-
geometric families”, J. Amer. Math. Soc. 18:4 (2005), 919–941. MR 2007d:13027 Zbl 1095.13033

[Okuyama 2006] G. Okuyama, “A-hypergeometric ranks for toric threefolds”, Int. Math. Res. Not.
2006 (2006), Art. ID 70814, 38. MR 2007h:14076

[Saito et al. 2000] M. Saito, B. Sturmfels, and N. Takayama, Gröbner deformations of hypergeometric
differential equations, Algorithms and Computation in Mathematics 6, Springer, Berlin, 2000.
MR 2001i:13036 Zbl 0946.13021

[Schulze and Walther 2008] M. Schulze and U. Walther, “Irregularity of hypergeometric systems
via slopes along coordinate subspaces”, Duke Math. J. 142:3 (2008), 465–509. MR 2009b:13067
Zbl 1144.13012

[Schulze and Walther 2009] M. Schulze and U. Walther, “Hypergeometric D-modules and twisted
Gauß-Manin systems”, J. Algebra 322:9 (2009), 3392–3409. MR 2010m:14028 Zbl 1181.13023

[Sturmfels and Takayama 1998] B. Sturmfels and N. Takayama, “Gröbner bases and hypergeo-
metric functions”, pp. 246–258 in Gröbner bases and applications (Linz, 1998), edited by B.
Buchberger and F. Winkler, London Math. Soc. Lecture Note Ser. 251, Cambridge Univ. Press, 1998.
MR 2001c:33026 Zbl 0918.33004



Resonance equals reducibility for A-hypergeometric systems 537

[Walther 2007] U. Walther, “Duality and monodromy reducibility of A-hypergeometric systems”,
Math. Ann. 338:1 (2007), 55–74. MR 2008e:32043 Zbl 1126.33006

Communicated by Bernd Sturmfels
Received 2010-10-01 Revised 2011-01-04 Accepted 2011-02-22

mschulze@math.okstate.edu Department of Mathematics, Oklahoma State University,
Stillwater, OK 74078, United States

walther@math.purdue.edu Department of Mathematics, Purdue University, 150 North Uni-
versity Street, West Lafayette, IN 47907-2067, United States

mathematical sciences publishers msp



Algebra & Number Theory
msp.berkeley.edu/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Universität Duisburg-Essen, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Ehud Hrushovski Hebrew University, Israel

Craig Huneke University of Kansas, USA

Mikhail Kapranov Yale University, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Victor Reiner University of Minnesota, USA

Karl Rubin University of California, Irvine, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Ronald Solomon Ohio State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Andrei Zelevinsky Northeastern University, USA

Efim Zelmanov University of California, San Diego, USA

PRODUCTION
contact@msp.org

Silvio Levy, Scientific Editor

See inside back cover or www.jant.org for submission instructions.

The subscription price for 2012 is US $175/year for the electronic version, and $275/year (+$40 shipping outside the US) for
print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should
be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840,
USA.

Algebra & Number Theory (ISSN 1937-0652) at Mathematical Sciences Publishers, Department of Mathematics, University
of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright ©2012 by Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:contact@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org
http://msp.org/


Algebra & Number Theory
Volume 6 No. 3 2012

405The image of complex conjugation in l-adic representations associated to automorphic
forms

RICHARD TAYLOR

437Betti numbers of graded modules and the multiplicity conjecture in the
non-Cohen–Macaulay case

MATS BOIJ and JONAS SÖDERBERG

455L-invariants and Shimura curves
SAMIT DASGUPTA and MATTHEW GREENBERG

487On the weak Lefschetz property for powers of linear forms
JUAN C. MIGLIORE, ROSA M. MIRÓ-ROIG and UWE NAGEL

527Resonance equals reducibility for A-hypergeometric systems
MATHIAS SCHULZE and ULI WALTHER

539The Chow ring of double EPW sextics
ANDREA FERRETTI

561A finiteness property of graded sequences of ideals
MATTIAS JONSSON and MIRCEA MUSTAT, Ă
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