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The transfer operator for 00(N ) and trivial character χ0 possesses a finite group
of symmetries generated by permutation matrices P with P2

= id. Every such
symmetry leads to a factorization of the Selberg zeta function in terms of Fred-
holm determinants of a reduced transfer operator. These symmetries are related
to the group of automorphisms in GL(2,Z) of the Maass wave forms of 00(N ).
For the group 00(4) and Selberg’s character χα there exists just one nontrivial
symmetry operator P . The eigenfunctions of the corresponding reduced transfer
operator with eigenvalue λ = ±1 are related to Maass forms that are even or
odd, respectively, under a corresponding automorphism. It then follows from a
result of Sarnak and Phillips that the zeros of the Selberg function determined by
the eigenvalue λ=−1 of the reduced transfer operator stay on the critical line
under deformation of the character. From numerical results we expect that, on
the other hand, all the zeros corresponding to the eigenvalue λ=+1 are off this
line for a nontrivial character χα .

1. Introduction

In the transfer operator approach to Selberg’s zeta function for a Fuchsian group
0 this function gets expressed in terms of the Fredholm determinant of a transfer
operator constructed from the symbolic dynamics of the geodesic flow on the cor-
responding surface of constant negative curvature. Though this approach has been
carried out, up to now, only for certain groups, like modular subgroups of finite
index [Chang and Mayer 2000; 2001a; 2001b] and Hecke triangle groups [Mayer
and Strömberg 2008; Mayer et al. 2012; Mayer and Mühlenbruch 2010], it has led
to new points of view on the Selberg zeta function [Zagier 2002] and the theory
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of period functions [Lewis and Zagier 2001]. Another application of this method
is a precise numerical calculation of the Selberg zeta function [Strömberg 2008],
which seems to be impossible by other means at the moment.

In this paper we discuss the transfer operator approach to the Selberg zeta func-
tion for Hecke congruence subgroups with a character. Of special interest is the
behavior of its zeros for 00(4) under singular deformation by Selberg’s character
[Selberg 1990].

As found numerically in [Fraczek 2010], certain symmetries of the transfer
operator for these groups play an important role in this process. These symme-
tries lead to a factorization of the Selberg zeta function for the full modular group
SL(2,Z), as known. There it corresponds to the involution Ju(z)= u(−z∗) of the
Maass forms u for this group [Efrat 1993; Lewis and Zagier 2001]. Obviously the
corresponding element j =

( 1 0
0 −1

)
∈ GL(2,Z) generates the normalizer group of

SL(2,Z) in GL(2,Z). It tuns out also that the symmetries of the transfer operator
for 00(N ) correspond to automorphisms of the Maass forms from its normalizer
group in GL(2,Z).

For the group 00(4) with a character χα introduced in [Selberg 1990] and dis-
cussed also in [Phillips and Sarnak 1994], there is only one such nontrivial symme-
try of the transfer operator. It corresponds to the generator of 00(4)’s normalizer
group in GL(2,Z) leaving invariant the character χα. The results of Phillips and
Sarnak imply that the zeros on the critical line of one factor of Selberg’s func-
tion stay on this line under the deformation of the character, and hence the cor-
responding Maass wave forms for the trivial character remain Maass wave forms.
Numerical results [Fraczek 2010], on the other hand, imply that the zeros on the
critical line of the second factor of this function should all leave this line when
the deformation is turned on. A detailed discussion of these numerical results and
their partial proofs is in preparation [Bruggeman et al. 2012].

The paper is organized as follows: in Section 2 we recall briefly the form of the
transfer operator

Lβ,ρπ =

(
0 L+β,π

L−β,π 0

)

for a general finite index subgroup 0 of the modular group SL(2,Z) and unitary
representation π , and introduce the symmetries

P̃ =
(

0 P
P 0

)
of this operator defined by permutation matrices P . Any such symmetry leads to a
factorization of the Selberg zeta function in terms of the Fredholm determinants of
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the reduced transfer operator PL+β,π . The eigenfunctions with eigenvalues λ=±1
of this reduced transfer operator then fulfill certain functional equations.

In Section 3 we discuss the generators Jn,− of the group of automorphisms in
GL(2,Z) of the Maass forms u for 0 = 00(N ) and π = χ0 the trivial character.
We introduce their period functions ψ and derive a formula for the period function
Jn,−ψ of the Maass form Jn,−u.

In Section 4 we introduce Selberg’s character χα and the nontrivial automor-
phism J2,− of the Maass forms for 00(4). We derive again a formula for the
period function J2,−ψ of the Maass form J2,−u leading to a permutation matrix
P2,− which defines a symmetry P̃2,− of the transfer operator Lβ,ρχα . From this we
conclude that the eigenfunctions with eigenvalues λ=±1 of the operator P2,−L+β,π
correspond to Maass forms that are even or odd, respectively, under the involution
J2,−. Results of Phillips and Sarnak then imply that the zeros of the Selberg func-
tion on the critical line corresponding to the eigenfunctions with eigenvalue λ=−1
of this operator stay on this line under the deformation of the character.

2. The transfer operator and the Selberg zeta function
for Hecke congruence subgroups 00(N)

The starting point of the transfer operator approach to the Selberg zeta function for
a subgroup 0 of the modular group SL(2,Z) of index µ = [SL(2,Z) : 0] <∞

is the geodesic flow 8t : SM0 → SM0 on the unit tangent bundle SM0 of the
corresponding surface M0 = 0 \H of constant negative curvature. Here

H= {z = x + iy : y > 0}

denotes the hyperbolic plane with hyperbolic metric ds2
= (dx2

+ dy2)/y2, on
which the group 0 acts via Möbius transformations: gz = (az+b)/(cz+d) if g =(

a b
c d

)
. In the present paper we mostly work with the Hecke congruence subgroup

00(N )=
{

g ∈ SL(2,Z) : g =
(

a b
cN d

)}
,

with index µN = N
∏

p|N (1+1/p), where p is a prime number. If ρ :0→ end(Cd)

is a unitary representation of 0 then the Selberg zeta function Z0,ρ is defined as

Z0,ρ(β)=
∏
γ

∞∏
k=0

det
(
1− ρ(gγ ) exp(−(k+β)lγ )

)
, (2.0.1)

where lγ denotes the period of the prime periodic orbit γ of 8t and gγ ∈ 0 is
hyperbolic with gγ (γ ) = γ . In the dynamical approach to this function it gets
expressed in terms of the so-called transfer operator, well-known from D. Ruelle’s
thermodynamic formalism approach to dynamical systems. For general modular
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groups 0 with finite index µ and finite-dimensional representation π this operator
Lβ,π : B→ B was determined in [Chang and Mayer 2000; 2001b] as

Lβ,π =

(
0 L+β,ρπ

L−β,ρπ 0

)
, (2.0.2)

where B = B(D,Cµ)
⊕

B(D,Cµ) is the Banach space of holomorphic functions
on the disc D = {z : |z− 1| < 3

2}, and ρπ denotes the representation of SL(2,Z)

induced from the representation π of 0. The operator L±β,ρπ is given for Reβ > 1
2

by

(L±β,ρπ f )(z)=
∞∑

n=1

1
(z+ n)2β

ρπ (ST±n) f
( 1

z+n

)
, (2.0.3)

where S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
. In the following we restrict ourselves to one-

dimensional unitary representations π , hence unitary characters, which we denote
as usual by χ . In this case the following theorem was proved in [Chang and Mayer
2001b].

Theorem 2.0.1. The transfer operator Lβ,χ : B→ B with

Lβ,χ =

(
0 L+β,χ

L−β,χ 0

)
and (L±β,χ f )(z)=

∞∑
n=1

1
(z+ n)2β

ρχ (ST±n) f
( 1

z+n

)
extends to a meromorphic family of nuclear operators of order zero in the entire
complex β plane with possible poles at βk = (1 − k)/2, k = 0, 1, 2, . . . . The
Selberg zeta function Z0,χ for modular group 0 and character χ can be expressed
as Z0,χ (β)= det(1−Lβ,χ )= det(1−L+β,χL−β,χ )= det(1−L−β,χL+β,χ ).

This shows that the zeros of the Selberg function are given by those β-values
for which λ= 1 belongs to the spectrum σ(Lβ,χ ), or equivalently to the spectrum
σ(L−β,χL+β,χ )= σ(L

+

β,χL−β,χ ). From Selberg’s trace formula one knows that there
are two kinds of such zeros: the trivial zeros at β = −k, k = 1, 2, . . . , and the
so-called spectral zeros. The former correspond to eigenvalues λ= β(1−β) of the
automorphic Laplacian with Reβ = 1

2 or 1
2 ≤ β ≤ 1, and the latter to resonances

of the Laplacian, that is, poles of the scattering determinant with Reβ < 1
2 and

Imβ > 0 [Hejhal 1983; Venkov 1990]. For arithmetic groups like the congruence
subgroups with trivial or congruent character χ one knows that these resonances
lie on the line Reβ = 1

4 , corresponding to the nontrivial zeros ζR(2β) = 0 of
the Riemann zeta function ζR in the trivial case and to the zeros L(2β, χα) = 0
of other Dirichlet L-functions in the congruent case, assuming the generalized
Riemann hypothesis, as well as on the line Reβ = 0. For general Fuchsian groups
and congruence subgroups with noncongruent character, however, these resonances
can be anywhere in the half-plane Reβ < 1

2 .
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2.1. Symmetries of the transfer operator for 00(N). It turns out that there exists
for any N a finite number hN of µN ×µN permutation matrices P with P2

= idµN

such that the matrix

P̃ =
(

0 P
P 0

)
commutes with the transfer operator Lβ,χ and hence

PL+β,χ = L−β,χ P. (2.1.1)

Thereby P = (Pi j )1≤i, j≤µN acts in the Banach space B(D,CµN ) as (P f )i (z) =∑µN
j=1 Pi j f j (z) if f (z)= ( fi (z))1≤i≤µN . We call such a matrix P̃ a symmetry of the

transfer operator. As an example consider the group 00(4) and Selberg’s character
χα, 0 ≤ α ≤ 1, which will be described later. Its transfer operator Lβ,χα has the
following form:

Lβ,χα f̃+1=

∞∑
q=0

f−3
∣∣
2β S̃T 1+4q

+ f−4
∣∣
2β S̃T 2+4q

+ f−5
∣∣
2β S̃T 3+4q

+ f−2
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+2 =

∞∑
q=0

e2π i(1+4q)α f−1
∣∣
2β S̃T 1+4q

+ e2π i(2+4q)α f−1
∣∣
2β S̃T 2+4q

+e2π i(3+4q)α f−1
∣∣
2β S̃T 3+4q

+ e2π i(4+4q)α f−1
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+3 =

∞∑
q=0

e−2π iα f−2
∣∣
2β S̃T 1+4q

+ e−2π iα f−3
∣∣
2β S̃T 2+4q

+e−2π iα f−4
∣∣
2β S̃T 3+4q

+ e−2π iα f−5
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+4 =

∞∑
q=0

e−2π iα(1+4q) f−6
∣∣
2β S̃T 1+4q

+ e−2π iα(2+4q) f−6
∣∣
2β S̃T 2+4q

+e−2π iα(3+4q) f−6
∣∣
2β S̃T 3+4q

+ e−2π iα(4+4q) f−6
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+5 =

∞∑
q=0

e2π iα f−4
∣∣
2β S̃T 1+4q

+ e2π iα f−5
∣∣
2β S̃T 2+4q

+e2π iα f−2
∣∣
2β S̃T 3+4q

+ e2π iα f−3
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃+6=

∞∑
q=0

f−5
∣∣
2β S̃T 1+4q

+ f−2
∣∣
2β S̃T 2+4q

+ f−3
∣∣
2β S̃T 3+4q

+ f−4
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−1=

∞∑
q=0

f+5
∣∣
2β S̃T 1+4q

+ f+4
∣∣
2β S̃T 2+4q

+ f+3
∣∣
2β S̃T 3+4q

+ f+2
∣∣
2β S̃T 4+4q ,
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Lβ,χα f̃−2 =

∞∑
q=0

e−2π iα(1+4q) f+1
∣∣
2β S̃T 1+4q

+ e−2π iα(2+4q) f+1
∣∣
2β S̃T 2+4q

+e−2π iα(3+4q) f+1
∣∣
2β S̃T 3+4q

+ e−2π iα(4+4q) f+1
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−3 =

∞∑
q=0

e−2π iα f+4
∣∣
2β S̃T 1+4q

+ e−2π iα f+3
∣∣
2β S̃T 2+4q

+e−2π iα f+2
∣∣
2β S̃T 3+4q

+ e−2π iα f+5
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−4 =

∞∑
q=0

e2π iα(1+4q) f+6
∣∣
2β S̃T 1+4q

+ e2π iα(2+4q) f+6
∣∣
2β S̃T 2+4q

+e2π iα(3+4q) f+6
∣∣
2β S̃T 3+4q

+ e2π iα(4+4q) f+6
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−5 =

∞∑
q=0

e2π iα f+2
∣∣
2β S̃T 1+4q

+ e2π iα f+5
∣∣
2β S̃T 2+4q

+e2π iα f+4
∣∣
2β S̃T 3+4q

+ e2π iα f+3
∣∣
2β S̃T 4+4q ,

Lβ,χα f̃−6=

∞∑
q=0

f+3
∣∣
2β S̃T 1+4q

+ f+2
∣∣
2β S̃T 2+4q

+ f+5
∣∣
2β S̃T 3+4q

+ f+4
∣∣
2β S̃T 4+4q ,

where f̃ ∈ B(D,Cµ)
⊕

B(D,Cµ) is given by f̃ = ( f +, f −), f ± = ( f±i )1≤i≤6,
and S̃z = 1/z. The induced representation ρχα of the character χα on 00(4) is
defined in terms of the coset decomposition of SL(2,Z)

SL(2,Z)=

6⋃
i=1

00(4)Ri (2.1.2)

as
ρχ (g)i j = δ00(4)(Ri gR−1

j )χα(Ri gR−1
j ), 1≤ i, j ≤ 6. (2.1.3)

Thereby we have chosen the following representatives Ri ∈ SL(2,Z) of the cosets
00(4)Ri

R1 = id2, Ri = ST i−2, 2≤ i ≤ 5, and R6 = ST 2S. (2.1.4)

It turns out that the two permutation matrices P1 and P2 corresponding to the
permutations

σ1 =
1 2 3 4 5 6
1 2 5 4 3 6

(2.1.5)

and

σ2 =
1 2 3 4 5 6
6 4 3 2 5 1

(2.1.6)
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fulfill (2.1.1) for α= 0 and hence the corresponding matrices P̃i , i = 1, 2, commute
with the transfer operator Lβ,χ0 where χ0 is the trivial character. The matrix P̃2,
on the other hand, commutes even with the operator Lβ,χα for all α. The matrix
ρχ0(S) is given by the permutation σS where

σS =
1 2 3 4 5 6
2 1 5 6 3 4

, (2.1.7)

and an easy calculation shows that Piρχ0(S) = ρχ0(S)Pi , i = 1, 2. The matrix
ρχ0(T ), on the other hand, is given by the permutation σT with

σT =
1 2 3 4 5 6
1 3 4 5 2 6

. (2.1.8)

One then checks that Piρχ0(T )= ρχ0(T
−1)Pi , i = 1, 2. Therefore Piρχ0(ST n)=

ρχ0(ST−n)Pi for all n ∈ N and i = 1, 2. For the character χα analogous relations
hold for P2.

For the trivial character χ0 one can determine for the group 00(N ) the number
hN of matrices Pi with the above properties and hence the defining symmetries of
the transfer operator as follows:

Theorem 2.1.1. For the Hecke congruence subgroup 00(N ) and trivial character
χ0 ≡ 1 there exist hN matrices P̃ =

(
0 P
P 0

)
commuting with the transfer operator

Lβ,χ0 where P is a µN ×µN permutation matrix satisfying P2
= 1µN ,

Pρχ0(S)= ρχ0(S)P and Pρχ0(T )= ρχ0(T
−1)P,

and hence
PL+β,χ0

= L−β,χ0
P.

Thereby hN =max{k : k|24 and k2
|N }. The permutation matrices P are determined

by the hN generators j of the normalizer group NN of 00(N ) in GL(2,Z). The
Selberg zeta function Z0,χ0 can be written as

Z0,χ0 = det(1− PL+β,χ0
) det(1+ PL+β,χ0

).

Remark 2.1.2. For 00(4), obviously hN = 2. According to Theorem 2.1.1, there
exist two permutation matrices P1 and P2 given by the permutations σ1 and σ2

above. Since P1 P2 = P2 P1 and Pi L
+

β,χ0
= L−β,χ0

Pi , i = 1, 2, we find

P1 P2 P1L+β,χ0
= P1 P2L−β,χ0

P1 = P1L+β,χ0
P2 P1 = P1L+β,χ0

P1 P2,

and the operators P1 P2 and P1L+β,χ0
commute, where the operator P1 P2 corre-

sponds to the permutation

σ =
1 2 3 4 5 6
6 4 5 2 3 1

. (2.1.9)
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We find also P1 P2L+β,χ0
= L+β,χ0

P1 P2. But (P1 P2)
2
= id6, hence this operator

has only the eigenvalues λ=±1 and the Banach space B(D,C6) decomposes as
B(D,C6)= B(D,C6)+⊕ B(D,C6)− with P1 P2 f ± =± f ± for f ± ∈ B(D,C6)±.
Therefore the elements f ε ∈ B(D,C6)ε , ε =± have the form ( f ε)i = fi , 1≤ i ≤ 3
and ( f ε)σ(i) = ε fi , 1≤ i ≤ 3. Denote by

L+β,χ0,±
: B(D,C6)±→ B(D,C6)± and P1L+β,χ0,±

: B(D,C6)±→ B(D,C6)±,

the restrictions of the operators L+β,χ0
and P1L+β,χ0

, respectively, to the subspace
B(D,C6)±, which obviously is isomorphic to the space B(D,C3). Then

det(1± P1L+β,χ0
)= det(1± P1L+β,χ0,+

) det(1± P1L+β,χ0,−
),

where the operator P1L+β,χ0,ε
: B(D,C3)→ B(D,C3) can be written as

P1L+β,χ0,ε
=

 0 εLβ,2+Lβ,4 εLβ,1+Lβ,3

Lβ 0 0
0 Lβ,1+εLβ,3 εLβ,2+Lβ,4

 , (2.1.10)

with Lβ,k f =
∑
∞

q=0 f
∣∣
2β S̃T 1+kq , 1≤ k ≤ 4, and Lβ =

∑4
k=1 Lβ,k . The operator

L+β,χ0,ε
in the space B(D,C3), on the other hand, has the form

L+β,χ0,ε
=

 0 εLβ,2+Lβ,4 εLβ,1+Lβ,3

Lβ 0 0
0 εLβ,1+Lβ,3 Lβ,2+εLβ,4

 . (2.1.11)

To relate the Fredholm determinants of the operators (P1L+β,χ0,ε
)2 and (L+β,χ0,ε

)2

we use the following simple lemma:

Lemma 2.1.3. Let α, β, and γ be complex numbers and ε = ±1. Then λ is an
eigenvalue of the matrix

L1 =

0 α β

γ 0 0
0 β εα


if and only if ελ is an eigenvalue of the matrix

L2 =

0 α β

γ 0 0
0 εβ α

 .
Proof. The proof follows from comparing the characteristic polynomials of the two
matrices. �

This shows that, for all n ∈ N,

trace Ln
1 =

3∑
k=1

(Ln
1)k,k = ε

n trace Ln
2 = ε

n
3∑

k=1

(Ln
2)k,k .
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But then is not too difficult to see that also trace(L+β,χ0,ε
)n = εn trace(P1L+β,χ0,ε

)n

for all n ∈ N and hence det(1− (P1L+β,χ0,ε
)2) = det(1− (L+β,χ0,ε

)2) for ε = ±.
Therefore the Selberg zeta function Z00(4),χ0(β) for the group 00(4) with trivial
character χ0 can be written as

Z00(4),χ0(β)= det(1− (P1L+β,χ0
)2)= det(1− (L+β,χ0

)2)

= det(1−L+β,χ0
) det(1+L+β,χ0

). (2.1.12)

Furthermore, this function factorizes in this case also as

Z00(4),χ0(β)= det(1− P1L+β,χ0,+
) det(1− P1L+β,χ0,−

)

× det(1+ P1L+β,χ0,+
) det(1+ P1L+β,χ0−

). (2.1.13)

To prove Theorem 2.1.1 we relate the matrices P to the generating automor-
phisms in GL(2,Z) of the Maass wave forms for 00(N ). We can determine this
way the explicit form of these matrices P . For this we derive, in a first step, a
Lewis-type functional equation for the eigenfunctions of the operator PL+β,χ with
eigenvalues λ=±1.

2.2. A Lewis-type functional equation. Consider any finite index modular sub-
group 0 and any unitary character χ : 0→ C?, together with the induced repre-
sentation ρχ of SL(2,Z). Assume there exists a symmetry P̃ =

(
0 P
P 0

)
, with P a

permutation matrix with properties analogous to Theorem 2.1.1, and commuting
with the transfer operator

Lβ,χ =

(
0 L+β,ρχ

L−β,ρχ 0

)
of 0. If f is an eigenfunction of the operator PL+β,χ with eigenvalues λ=±1 then
one can show:

Proposition 2.2.1. If PL+β,χ f (ζ )= λ f (ζ ) with λ=±1 then the function 9(ζ) :=
Pρχ (T−1S)P f (ζ − 1) fulfills the functional equations

9(ζ)= λζ−2β Pρχ (S)9
(1
ζ

)
(2.2.1)

and

9(ζ)− ρχ (T−1)9(ζ + 1)− (ζ + 1)−2βρχ (T ′−1)9
(
ζ

ζ+1

)
= 0, (2.2.2)

where T ′ = ST−1S. On the other hand, every solution 9 of (2.2.1) and (2.2.2)
holomorphic in the cut β-plane (−∞, 0] satisfying 9i (z) = o(z−min{1,2 Re s}) as
z ↓ 0 and 9i (z) = o(z−min{0,2 Re s−1}) as z→∞ determines an eigenfunction f
with eigenvalues λ=±1 of the operator PL+β,χ .
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Proof. Let Reβ > 1
2 . If PL+β f (ζ )= λ f (ζ ), λ=±1, then obviously

Pρχ (STS)PPL+β f (ζ + 1)= λPρχ (STS)P f (ζ + 1).

Subtracting the two equations leads to

λ f (ζ )− λPρχ (STS)P f (ζ + 1)− (ζ + 1)−2β Pρχ (ST ) f
( 1
ζ+1

)
= 0,

and hence the function ψ(ζ ) := P f (ζ − 1) fulfills the equation

ψ(ζ )− ρχ (STS)ψ(ζ + 1)− λζ−2βρχ (ST )Pψ
(
ζ+1
ζ

)
= 0. (2.2.3)

Replacing ζ by 1
ζ

and multiplying the resulting equation by ζ−2βρχ(STS)Pρχ(T−1S)
gives

ζ−2βρχ (STS)Pρχ (T−1S)ψ
(1
ζ

)
− ζ−2βρχ (STS)Pρχ (S)ψ

(
ζ+1
ζ

)
− λρχ (STS)ψ(ζ + 1)= 0.

Since ρχ (S)P = Pρχ (S), one finds, comparing with (2.2.3),

ψ(ζ )= λζ−2βρχ (STS)Pρχ (T−1S)ψ
(1
ζ

)
.

Hence the function ψ̃ := ρχ (T−1S)ψ fulfills (2.2.1). The same equation is then
fulfilled also by the function

9(ζ) := Pψ̃(ζ )= Pρχ (T−1S)P f (ζ − 1), (2.2.4)

that is,

9(ζ)= λζ−2β Pρχ (S)9
(1
ζ

)
. (2.2.5)

Inserting finally ψ(ζ )= ρχ (ST )P9(ζ) into (2.2.3) and using (2.2.1) leads to

9(ζ)− Pρχ (T )P9(ζ + 1)− (ζ + 1)−2β Pρχ (T ′)P9
(
ζ

ζ+1

)
= 0.

But by assumption Pρχ (T )P = ρχ (T−1); hence Pρχ (T ′)P = ρχ (T ′−1) and thus

9(ζ)− ρχ (T−1)9(ζ + 1)− (ζ + 1)−2βρχ (T ′−1)9
(
ζ

ζ+1

)
= 0. (2.2.6)

Hence for Reβ > 1
2 the first part of the proposition holds. By analytic continuation

in β one proves the general case.
To prove the second part we follow the arguments of [Deitmar and Hilgert 2007,

Lemma 4.1]: if 9(ζ) is a solution of the Lewis equation (2.2.2) with β /∈ Z then
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9 has the asymptotic expansions

9(ζ)∼ζ→0 ζ
2βQ0

(1
ζ

)
+

∞∑
l=−1

C∗lζ
l, 9(ζ )∼ζ→∞ Q∞(ζ )+

∞∑
l=−1

C∗′l ζ
−l−2β,

where Q0, Q∞ :C→Cµ are smooth functions such that Q0(ζ+1)= ρχ (T ′)Q0(ζ )

and Q∞(ζ+1)=ρχ (T )Q∞(ζ ), and the constants C∗l and C∗′l are determined by the
Taylor coefficients C m = (1/m!)9(m)(1). The functions Q0 and Q∞ are defined
as follows for general β with −2 Reβ < M ∈ N:

Q0(ζ ) := ζ
−2β9

(1
ζ

)
−

M∑
m=0

ζρχ (m+ 2β, z)C m

−

∞∑
n=0

(n+ ζ )−2βρχ (T ′−nT−1)

(
9
(

1+ 1
n+ζ

)
−

M∑
m=0

C m

(n+ ζ )m

)
,

Q∞(ζ ) :=9(ζ)−
M∑

m=0

ζ ′ρχ (m+ 2β, ζ + 1)C m

−

∞∑
n=0

(n+ ζ )−2βρχ (T−(n−1)T ′−1)

(
9
(

1− 1
n+ζ

)
−

M∑
m=0

C m

(n+ ζ )m

)
,

where

ζρχ (a, ζ )=
1

N a

N−1∑
k=0

ρχ (T ′−k T−1)ζ
(

a, k+ζ
N

)
and

ζ ′ρχ (a, ζ )=
1

N a

N−1∑
k=0

ρχ (T−k T ′−1)ζH

(
a, k+ζ

N

)
,

with ζH (a, ζ ) the Hurwitz zeta function. According to [Deitmar and Hilgert 2007,
Remark 4.2] any solution 9 of (2.2.2) with 9(ζ)= o(ζ−min{1,2β}) for ζ→ 0 fulfills
the equation

9(ζ)= ζ−2β
∞∑

n=0

(n+ ζ−1)−2βρχ (T ′−nT−1)9

(
1+

1
n+ ζ−1

)
and moreover C∗

−1 = 0. But if 9(ζ) fulfills also (2.2.1) then one finds

λζ−2β Pρχ (S)9
(1
ζ

)
= ζ−2β

∞∑
n=0

(n+ ζ−1)−2βρχ (T ′−nT−1)9

(
1+

1
n+ ζ−1

)
,
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and hence

λPρχ (S)9(ζ + 1)=
∞∑

n=1

(n+ ζ )−2βρχ (T ′−(n−1)T−1)9
(

1+ 1
n+ζ

)
. (2.2.7)

According to (2.2.4) 9(ζ + 1)= Pρχ (T−1S)P f (ζ ), and hence we get

λρχ (ST−1S)P f (ζ )=
∞∑

n=1

(n+ ζ )−2βρχ (T ′−(n−1)T−1)Pρχ (T−1S)P f
( 1
ζ+n

)
.

Inserting T ′−(n−1)
= ST (n−1)S one arrives at

λ f (ζ )=
∞∑

n=1

(n+ ζ )−2β Pρχ (ST n)ρχ (ST−1)Pρχ (T−1S)P f
( 1
ζ+n

)
.

Since ρχ (ST−1)P = Pρχ (ST ) we get finally

λ f (ζ )=
∞∑

n=1

1
(n+ ζ )2β

Pρχ (ST n) f
( 1

n+ζ

)
.

Hence any solution 9 of the Lewis equations (2.2.1) and (2.2.2) with the asymp-
totics at the cut ζ = 0 determines an eigenfunction f of the transfer operator PL+β,χ
with eigenvalues λ=±1. �

3. Automorphism of the Maass forms and their period functions for 00(N)

The Maass forms u = u(z) of a cofinite Fuchsian group 0 and unitary character χ
are real analytic functions u : H→ C with

• 1u(z)= λu(z),

• u(gz)= χ(g)u(z) for all g ∈ 0, and

• u(g j z)=O(yC) as y→∞ for some constant C ∈R and all cusps z j = g j (i∞)
of 0.

The cusp forms are those forms which decay exponentially fast at the cusps. If
u ∈ L2(M0) we call u a Maass wave form.

Definition 3.0.1. An element j ∈ GL(2,Z) defines an automorphism J of the
Maass wave form u for the group 0 and character χ if Ju with Ju(z) := u( j z) is
a Maass form for 0 and character χ .

Obviously j defines an automorphism J if and only if j is a normalizer of the
group 0 and the character χ is invariant under j , that is, χ( jg j−1) = χ(g) for
all g ∈ 0. Thereby j z = (az∗ + b)/(cz∗ + d) if det g = ad − bd = −1. We
have to show that the function Ju(z) = u( j z) has at most polynomial growth
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at the cusps zi = τi (i∞) of 0, where τi ∈ SL(2,Z). If det j = −1, one has
u( jτi (z))= u( jτi j0,− j0,−(z)) where j0,− =

(
1 0
0 −1

)
. Then jτi j0,− ∈ SL(2,Z) and

hence jτi j0,− = γi Ri for some γi ∈ 0 and some representative Ri of the cosets
0 \ SL(2,Z). But Ri = ητσ(i) for some η ∈ 0 and some index σ(i). Hence
u( jτi (z))= u(τσ(i)(−z∗)) which has at most polynomial growth at the cusps. The
same argument applies if det j = 1, and it shows also that Ju is a Maass wave form
or a cusp form if u is one.

3.1. The group of automorphisms of Maass forms for 00(N) and trivial charac-
ter χ0. We restrict ourselves now to the case 0 = 00(N ) and assume χ = χ0. De-
note by NN the normalizer group {00(N ) j : j normalizer of 00(N ) in GL(2,Z)}.
Using results of [Lehner and Newman 1964; Conway and Norton 1979], we find:

Proposition 3.1.1. For hN =max{r : r |24 and r2
|N } and kN := N/hN the normal-

izer group NN is given by

NN =

{
00(N ) jn,±, jn,± =

(
1 0

nkN ±1

)
, 0≤ n ≤ hN − 1

}
.

Proof. Using the fact that the divisors k of 24 are exactly the numbers for which
a ·d = 1 mod k implies a= d mod k one shows that the normalizer group of 00(N )
in SL(2,Z) is 00(N )\00(N/ν) [Lehner and Newman 1964] with ν = 2min{3,[ε2/2]} ·

3min{1,[ε3/2]}, ε2 = max{l : 2l
|N }, and ε3 = max{l : 3l

|N }. But obviously ν = hN

and [00(kN ) : 00(N )] = hN and hence NN = 00(N ) \
(
00(kN )

⋃
00(kN ) j0,−

)
.

Since jn,± 6= jm,± mod 00(N ) for n 6= m, this group has just the 2hN elements
00(N ) jn,±, 0≤ n ≤ hN − 1. The normalizer group NN is therefore generated by
the hN generators {00(N ) jn,−, 0≤ n ≤ hN − 1}. �

3.2. The period functions of 00(N) and character χ . For u a Maass form with
1u = β(1−β)u and 00(N )\SL(2,Z)= {00(N )Ri , 1≤ i ≤µN } its vector-valued
period function u is defined by

u = (ui (z))1≤i≤µN where ui (z)= u(Ri z). (3.2.1)

Then one has, as shown for instance in [Mühlenbruch 2006]:

• u(gz)= ρχ (g)u(z) for all g ∈ SL(2,Z) and ρχ the representation of SL(2,Z)

induced from the character χ on 00(N ) and

• 1ui (z)= β(1−β)ui (z), 1≤ i ≤ µN .

Given two eigenfunctions u = u(z) and v = v(z) of the hyperbolic Laplacian with
identical eigenvalue λ = β(1− β), one knows [Lewis and Zagier 2001] that the
1-form η = η(u, v), with

η(u, v)(z) :=
[
v(z)∂yu(z)− u(z)∂yv(z)

]
dx +

[
u(z)∂xv(z)− v(z)∂x u(z)

]
dy
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is closed. If u= u(z) is a Maass wave form for 00(N ) with eigenvalue λ=β(1−β)
and Rζ (z)= y/((ζ − x)2+ y2) denotes the Poisson kernel, the vector-valued period
function ψ = (ψ j (ζ ))1≤ j≤µN is defined as

ψ j (ζ ) :=

∫
∞

0
η(u j , Rβζ )(z). (3.2.2)

The following result has been shown for trivial character χ0 in [Mühlenbruch 2006].
That proof can be extended, however, immediately to the case of a nontrivial char-
acter χ .

Proposition 3.2.1. The period function ψ = ψ(ζ ) of a Maass wave form u = u(z)
for 00(N ) and unitary character χ is holomorphic in the cut ζ -plane C \ (−∞, 0]
and fulfills there the Lewis functional equation (2.2.2):

ψ(ζ )− ρχ (T−1)ψ(ζ + 1)− (ζ + 1)−2βρχ (T ′−1)ψ
(
ζ

ζ+1

)
= 0,

where ρχ denotes the representation of SL(2,Z) induced from the character χ of
00(N ).

On the other hand, it follows from [Deitmar and Hilgert 2007] that the solutions
of the above equation holomorphic in the cut ζ -plane with certain asymptotic be-
havior at the cut 0 and at∞ are in one-to-one correspondence with the Maass wave
forms. That paper treats only the trivial character but it can be extended also to the
case of the nontrivial character χ . Since the function9(ζ)= Pρχ (T−1S)P f (ζ−1)
with f an eigenfunction of the operator PL+β,χ with eigenvalues λ=±1 is such
a solution of (2.2.2), these eigenfunctions are in one-to-one correspondence with
the Maass wave forms. As in the case of the full modular group SL(2,Z) treated
in [Chang and Mayer 1998; Lewis and Zagier 2001] one can extend this result to
arbitrary Maass forms, that is, also to the real analytic Eisenstein series for 00(N )
and unitary character χ .

3.3. Automorphisms of the period functions. We have seen that the group of au-
tomorphisms in GL(2,Z) of the Maass forms u of 00(N ) and trivial character χ0

is generated by the matrices

jn,− =
(

1 0
nkN −1

)
, 0≤ n ≤ µN − 1.

Denote by Jn,−u the Maass form Jn,−u(z) := u( jn,−z) and by Jn,−ψ its period
function. Then one shows

Theorem 3.3.1. The period function Jn,−ψ = (Jn,−ψ j (ζ ))1≤ j≤µN is given by

Jn,−ψ j (ζ )= ζ
−2βψλn−◦σ◦δ( j)

(1
ζ

)
, (3.3.1)
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where the permutations λn−, σ and δ are determined through the coset representa-
tives R j of 00(N ) \SL(2,Z) as follows:

jn,+R j = θ j Rλn,−( j), j0,−R j j0,− = γ j Rσ( j), and R j S = η j Rδ( j),

with θ j , γ j , η j ∈ 00(N ) for 1≤ j ≤ µN .

Proof. For u = u(z) a Maass form for 00(N ) and trivial character χ0 and u = u(z)
its vector-valued Maass form consider the Maass forms Jn,±u(z)= u( jn,±z) and
Jn,±u(z) = (Jn,±u j (z))1≤ j≤µN , with Jn,±u j (z) = u( jn,±R j z). Since jn,+R j =

θ j Rλn.−( j) for some unique θ j ∈ 00(N ) and permutation λn,− of {1, 2, . . . , µN }

one gets for Jn,+u j

Jn,+u j (z)= u(Rλn,−( j)z)= uλn,−( j)(z). (3.3.2)

For Jn,+u j (−z∗) = u( jn,+R j (−z∗)) = u( jn,+R j j0,−z), on the other hand, one
finds

Jn,+u j (−z∗)= u( jn,− j0,−R j j0,−z)= u( jn,−Rσ( j)z),

since j0,−R j j0,− = γ j Rσ( j) for some unique γ j ∈ 00(N ) and permutation σ of
{1, 2, . . . , µN }. Hence

Jn,+u j (−z∗)= Jn,−uσ( j)(z). (3.3.3)

Consider next Jn,+u j (Sz) = Jn,+u(R j Sz). Since R j S = η j Rδ( j) for unique η j ∈

00(N ) and permutation δ of {1, 2, . . . , µN }, one has

Jn,+u j (Sz)= Jn,+u(Rδ( j)z)= Jn,+uδ( j)(z).

Hence by (3.3.2)
Jn,+u j (Sz)= uλn,−◦δ( j)(z). (3.3.4)

On the other hand, one gets for Jn,+u j (S(−z∗))= Jn,+u j (−Sz∗) by using (3.3.3):

Jn,+u j (S(−z∗))= Jn,−uσ( j)(Sz)= u( jn,−Rσ( j)Sz),

and therefore

Jn,+u j (−Sz∗)= u( jn,−ησ( j)Rδ◦σ( j)(z))= Jn,−uδ◦σ( j)(z).

But σ ◦ δ = δ ◦ σ and therefore

Jn,+u j (S(−z∗))= Jn,−uσ◦δ( j)(z). (3.3.5)

Define next
v±, j (z) := Jn,+u j (z)± Jn,+u j (−z∗).
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Then by (3.3.2) and (3.3.3) one has

v±, j (z)= uλ( j)(z)± Jn,−uσ( j)(z)

and hence, if 1u(z)= β(1−β)u(z),

1v±, j (z)= β(1−β)v±, j (z) (3.3.6)

and
v±, j (−z∗)=±v±, j (z). (3.3.7)

Equations (3.3.4) and (3.3.5), on the other hand, show

v±, j (Sz)= v±,δ( j)(z). (3.3.8)

Set ψ ′
±
(ζ ) :=

∫ i∞
0 η(v±, Rβζ )(z). Then, since v±, j (−z∗) = ±v±, j (z), one finds

(see [Lewis and Zagier 2001])

ψ ′
+, j (ζ )= 2β

∫
∞

0

tβv+, j (i t)
(ζ 2+ t2)β+1 dt, (3.3.9)

ψ ′
−, j (ζ )=−

∫
∞

0

tβ∂xv−, j (i t)
(ζ 2+ t2)β

dt. (3.3.10)

Using next the identity (3.3.8) one easily shows

ψ ′
±, j (ζ )=±ζ

−2βψ ′
±,δ( j)

(1
ζ

)
. (3.3.11)

But v±, j (z)= uλ( j)(z)± Jn,−uσ( j)(z) and hence

ψ ′
±, j (ζ )= ψλn,−( j)(ζ )± Jn,−ψσ( j)(ζ ).

Therefore

ψλn,−( j)(ζ )± Jn,−ψσ( j)(ζ )=±ζ
−2β

(
ψλn,−◦δ( j)

(1
ζ

)
± Jn,−ψσ◦δ( j)

(1
ζ

))
. (3.3.12)

Adding these two equations leads finally to

ψλn,−( j)(ζ )= ζ
−2β Jn,−ψσ◦δ( j)

(1
ζ

)
, (3.3.13)

and therefore to the equation

Jn,−ψ j (ζ )= ζ
−2βψλn,−◦σ◦δ( j)

(1
ζ

)
, (3.3.14)

which was to be proven. �
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Remark 3.3.2. As can be seen from their action on the coset representatives R j

the permutation δ commutes with the permutations λn,− and σ . Furthermore one
has σ 2

= δ2
= (λn,− ◦ σ)

2
= id, where id denotes the identity permutation. This

shows also that the automorphisms Jn,− are involutions both of the Maass forms
and the period functions, a special case of these involutions for all groups 00(N )
being J0,−u(z)= u(−z∗).

Denote by Qn,−, 0≤ n≤ hN−1, the µN×µN permutation matrix corresponding
to the permutation λn,− ◦ σ ◦ δ.

Theorem 3.3.3. The permutation matrices Pn,− := ρχ0(S)Qn,−, 0 ≤ n ≤ hN − 1,
define symmetries

P̃n,− =

(
0 Pn,−

Pn,− 0

)
for the transfer operator

Lβ,χ0 =

(
0 L+β,χ0

L+β,χ0
0

)

for 00(N ) and trivial character χ0≡1, with P2
n,−= idµN , Pn,−ρχ0(S)=ρχ0(S)Pn,−,

and Pn,−ρχ0(T )= ρχ0(T
−1)Pn,−, and therefore Pn,−L+β,χ0

= L+β,χ0
Pn,−. The per-

mutation matrix Pn,− is determined by the permutation λn,− ◦ σ and hence by the
coset representatives jn,−R j j0,−.

Proof. The matrix Pn,−ρχ0(S) is determined by the coset representatives jn,−R j Sj0,−
whereas ρχ0(S)Pn,− is determined by the coset representatives jn,−R j j0,−S and
j0,−S = Sj0,− . Hence Pn,−ρχ0(S) = ρχ0(S)Pn,−. On the other hand T j0,− =
j0,−T−1 and therefore Pn,−ρχ0(T )= ρχ0(T

−1)Pn,−. �

Obviously Theorem 2.1.1 follows from Theorem 3.3.3. For the automorphisms
jn,+ = jn,− j0,− one gets the symmetry

P̃n,+ =

(
Pn,+ 0

0 Pn,+

)
,

with Pn,+ the permutation matrix corresponding to the permutation λn,−◦σ ◦λ0,−◦σ

determined by the coset representatives jn,+R j .

Remark 3.3.4. The symmetry P0,− is given by ρχ0(SM) where M =
(

0 1
1 0

)
and

ρχ0 denotes the representation of GL(2,Z) induced from the trivial character χ0 of
00(N ). The transfer operator LM M

β of Manin and Marcolli [2002] for 00(N ) turns
out to coincide with the operator ρχ0(S)P0,−L+β,χ0

ρχ0(S) and appears as a special
case of our operators Pn,−L+β,χ0

.
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Corollary 3.3.5. The permutation matrices Pn,−, 0 ≤ n ≤ hN − 1, generate a
finite group consisting of the permutation matrices {Pn,±, 0 ≤ n ≤ hN − 1} and
isomorphic to the normalizer group NN of 00(N ) in GL(2,Z). The symmetries
{P̃n,±, 0 ≤ n ≤ hN − 1} of the transfer operator Lβ,χ0 for 00(N ) and trivial char-
acter χ0 define a finite group isomorphic to the group NN .

4. Selberg’s character χα for 00(4)

The group 00(4) is freely generated by the two elements T =
(

1 1
0 1

)
and B =

(
1 0
−4 1

)
.

Hence any g ∈ 00(4) can be written as g =
∏Ng

i=1 T mi Bni . If �(g)=
∑Ng

i=1 mi then
Selberg’s character χα [Selberg 1990] is defined as

χα(g)= exp(2π iα�(g)), 0≤ α ≤ 1. (4.1)

Denote by zi , 1≤ i ≤ 3, the inequivalent cusps of 00(4) and by Ti the generators of
their stabilizer groups 0zi with Ti zi = zi . They can be taken as z1= i∞, z2=0, z3=

−
1
2 and T1 = T, T2 = B, T3 = T−1 B−1. The character χα is singular in the cusp zi

if and only if χα(Ti )= 1. Otherwise the character is nonsingular in zi . It is well
known that the multiplicity κ(χα) of the continuous spectrum of the automorphic
Laplacian 1 with character χα is given by κ(χα) = #{i : χα(Ti ) = 1}. Therefore
κ(χα) = 3 for α = 0 whereas κ(χα) = 1 for α 6= 0 and hence the multiplicity
of the continuous spectrum of the Laplacian changes from 3 to 1 when the trivial
character is deformed to χα with α 6= 0. It is known [Phillips and Sarnak 1994] that
the character χα is congruent (or arithmetic) if and only if α ∈ {k 1

8 , 0≤ k≤ 4}. Since
the Selberg zeta function given in (2.0.1) has the property Z00(4),χα = Z00(4),χ−α
and obviously χα = χα+1 we can restrict the deformation parameter α to the range
0≤ α ≤ 1

2 .

Lemma 4.1. The Selberg character χα is invariant under the map defined by
j2,−z = z∗/(2z∗ − 1), and J2,−u(z) := u( j2,−z) is a Maass form for 00(4) and
character χα if u = u(z) is such a Maass form.

Proof. We only have to show that χα is invariant under the map j2,−z= z∗/(2z∗−1).
For g = T we find j2,−T j2,− = T B and hence

χα( j2,−T j2,−)= χα(T B)= χα(T ),

whereas for g = B one finds j2,−B j2,− = B−1 and hence

χα( j2,−B j2,−)= χα(B−1)= χα(B).

Therefore χα( j2,−g j2,−)= χα(g) for all g ∈ 00(4). �

If u = u(z) is a Maass form for 00(4) with character χα and ψ = (ψ j (ζ ))1≤ j≤6

is its period function, denote by J−u the Maass form given by J−u(z) := u( j2,−z),
and by J−ψ = (J−ψ j (ζ ))1≤ j≤6 its period function. Then one shows:
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Theorem 4.2. The period function J−ψ of the Maass form J−u is given by

J−ψ j (ζ )= ζ
−2βχα(ησ◦δ( j))ψλ2,−◦σ◦δ( j)

(1
ζ

)
, (4.2)

where the permutations λ2,−, σ , and δ, as well as the η j ∈ 00(4), are determined
through the coset representatives R j by

j2,+R j = θ j Rλ2,−( j), j0,−R j j0,− = γ j Rσ( j), R j S = η j Rδ( j),

with θ j , γ j , and η j ∈ 00(4) for 1≤ j ≤ 6.

Proof. Set j± := j2,± and J±u(z) := u( j±z). Then J−u is a Maass form for 00(4)
and character χα whereas J+u is a Maass form for 00(4) and character χ−α. The
vector-valued Maass form J+u = (J+u j )1≤ j≤6 is given by J+u j (z) = u( j+R j z).
We have chosen the representatives R j of the cosets in SL(2,Z)=

⋃
1≤ j≤6 00(4)R j

as follows:

R1 = id2, R j = ST j−2, 2≤ j ≤ 5, R6 = ST 2S.

But j+R j = θ j Rλ2,−( j) for some θ j ∈ 00(4) and some permutation λ2,− of the set
{1, 2, . . . , 6} and hence J+u j (z)= χα(θ j )u(Rλ2,−( j)z). It turns out that θ j = B−1

for 1≤ j ≤ 3 and θ j = id2 for 4≤ j ≤ 6. Hence χα(θ j )= 1 and

J+u j (z)= uλ2,−( j)(z), 1≤ j ≤ 6, (4.3)

with λ2,− the permutation

λ2,− =
1 2 3 4 5 6
6 4 5 2 3 1

. (4.4)

Consider next J+u j (−z∗)= J+u j ( j0,−z). Then

J+u j ( j0,−z)= u( j+R j j0,−z)= u( j+ j0,− j0,−R j j0,−z).

If j0,−R j j0,− = γ j Rσ( j) then J+u j ( j0,−z) = u( j−γ j j− j−Rσ( j)z). But it turns
out that j−γ j j− = id2 for j = 1, 2, 6 and j−γ j j− = B for j = 3, 4, 5, hence
χα( j−γ j j−)= 1 and therefore

J+u j (−z∗)= J+u j ( j0,−z)= J−uσ( j)(z). (4.5)

Since, furthermore, J+u j (Sz)= u( j+R j Sz)= u( j+η j Rδ( j)z), one finds

J+u j (Sz)= χ−α(η j )uλ2,−◦δ( j)(z), (4.6)

where δ is the permutation

δ =
1 2 3 4 5 6
2 1 5 6 3 4

, (4.7)
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η j = id2 for j = 1, 2, 4, 6, and η3 = η
−1
5 = T−1 B−1. For J+u j (−Sz∗) one gets

with (4.5) J+u j (−Sz∗)= J−uσ( j)(Sz)= u( j2,−Rσ( j)Sz) and

J+u j (−Sz∗)= u( j2,−ησ( j)Rδ◦σ( j)z)= χα(ησ( j))J−uδ◦σ( j)(z).

Using the explicit form of the η j one shows χα(ησ( j))= χ−α(η j ) and therefore

J+u j (−Sz∗)= χ−α(η j )J−uδ◦σ( j)(z). (4.8)

Define next v±, j = v±, j (z) as

v±, j (z) := J+u j (z)± J+u j (−z∗). (4.9)

Then v±, j (−z∗)=±v±, j (z), and by (4.6) and (4.8) we have

v±, j (Sz)= χ−α(η j )v±,δ( j)(z). (4.10)

If therefore ψ ′
±, j (ζ ) :=

∫ i∞
0 η(v±, j , Rβζ )(z) one gets from relation (4.10)

ψ ′
±, j (ζ )=±ζ

−2βχ−α(η j )ψ
′

±,δ( j)

(1
ζ

)
(4.11)

and using the identity (4.9)

ψλ2,−( j)(ζ )± J−ψσ( j)(ζ )

=±ζ−2βχ−α(η j )
(
ψλ2,−◦δ( j)

(1
ζ

)
± J−ψσ◦δ( j)

(1
ζ

))
. (4.12)

Adding these two equations leads finally to

J−ψ j (ζ )= ζ
−2βχα(ησ◦δ( j))ψλ2,−◦σ◦δ( j)

(1
ζ

)
, �

Inserting the explicit form of the permutations

σ ◦ δ =
1 2 3 4 5 6
2 1 3 6 5 4

(4.13)

and

λ2,− ◦ σ ◦ δ =
1 2 3 4 5 6
4 6 5 1 3 2

(4.14)

and the character values

χα(η1)= χα(η2)= χα(η4)= χα(η6)= 1 and χα(η3)= χα(η5)
−1
= e−2π iα,
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one finds

J−ψ1(ζ )= ζ
−2βψ4

(1
ζ

)
, J−ψ2(ζ )= ζ

−2βψ6

(1
ζ

)
,

J−ψ3(ζ )= ζ
−2βe−2π iαψ4

(1
ζ

)
, J−ψ4(ζ )= ζ

−2βψ1

(1
ζ

)
,

J−ψ5(ζ )= ζ
−2βe2π iαψ3

(1
ζ

)
, J−ψ6(ζ )= ζ

−2βψ2

(1
ζ

)
.

(4.15)

Define the matrix Q2,− through the equation J2,−ψ(ζ )= ζ
−2βQ2,−ψ(1/ζ ).

Proposition 4.3. The permutation matrix P2,− := ρχα (S)Q2,− defines a symmetry

P̃2,− =

(
0 P2,−

P2,− 0

)
of the transfer operator

Lβ,χα =

(
0 L+β,χα

L+β,χα 0

)

for 00(4) and character χα with P2
2,− = id6,

P2,−ρχα (S)= ρχα (S)P2,− and P2,−ρχα (T )= ρχα (T
−1)P2,−,

and therefore P2,−L+β,χα = L−β,χα P2,−. The permutation matrix P2,− corresponds
to the permutation λ2,− ◦ σ and hence is determined by the coset representatives
J2,−R j j0,−.

Proof. For our choice of coset representatives R j as given in (2.1.4) one finds for
ρχα (S)

ρχα (S)=



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 e−2π iα 0
0 0 0 0 0 1
0 0 e2π iα 0 0 0
0 0 0 1 0 0


, (4.16)

and hence the matrix Q2,− is given by

Q2,− =



0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 e−2π iα 0
1 0 0 0 0 0
0 0 e2π iα 0 0 0
0 1 0 0 0 0


. (4.17)
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For ρχα (T ) one finds

ρχα (T )=



e2π iα 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 e−2π iα


. (4.18)

A simple calculation then confirms that P2,−ρχα (S)=ρχα (S)P2,− and P2,−ρχα (T )=
ρχα (T

−1)P2,−, with

P2,− =



0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0


, (4.19)

and hence defines a symmetry of the transfer operator Lβ,χα . The matrix P2,−

coincides with the permutation matrix P2 corresponding to the permutation σ2 in
(2.1.6). �

Remark 4.4. For the trivial character χ0, the map j0,−z =−z∗ defines an automor-
phism of the Maass forms for the group 00(4). Indeed, this is an automorphism
for all Hecke congruence subgroups 00(N ). In this case the permutation λ0,−

is the trivial permutation and the matrix Q0,− is determined by the permutation
σ ◦ δ. For 00(4) this is given by (4.13). Using (4.16) with α = 0 one obtains for
P0,− = ρχ0(S)Q0,− the permutation σ1 as given in (2.1.5). The symmetry P̃1 for
00(4) and trivial character χ0 hence corresponds to the automorphism z→−z∗ of
the Maass forms for this group.

We have seen that for every eigenfunction f = f (ζ ) of the operator P2L+β,χα
with eigenvalues λ=±1 the function 9 =9(ζ)= P2ρχα (T

−1S)P2 f (ζ−1) fulfills
the functional equation

9(ζ)= λζ−2βρχα (S)P29
(1
ζ

)
= λJ−9(ζ) (4.20)

and hence is an eigenfunction of the involution J− corresponding to the automor-
phism j− = j2,− of the Maass forms for 00(4) and character χα . Hence this shows:

Proposition 4.5. The eigenfunctions f = f (ζ ) of the operator P2L+β,χα with eigen-
values λ = ±1 correspond to Maass forms which are even or odd, respectively,
under the involution J− = J2,−.
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For a conjugate character χ̂α, Phillips and Sarnak [1994] have shown that the
Maass cusp forms that are odd under the corresponding conjugate involution Ĵ are
still cusp forms under the deformation of this character. Hence:

Corollary 4.6. The zeros of the Selberg zeta function for the group 00(4) and char-
acter χα corresponding to eigenfunctions of the operator P2L+β,χα with eigenvalue
λ = −1 which for α = 0 are on the critical line Reβ = 1

2 stay, for all α, on this
line.

Remark 4.7. The operator P2L+β,χα can be used to calculate numerically the Sel-
berg zeta function for small values of Imβ and arbitrary 0≤α≤ 1

2 . These numerical
calculations confirm the above corollary and let us expect that all the zeros of the
Selberg function corresponding to the eigenvalue λ = 1 of the operator P2L+β,χα
for α = 0 leave the critical line when α becomes positive. A detailed discussion of
the numerical treatment of the behavior of the zeros of the Selberg function under
character deformation will appear elsewhere [Bruggeman et al. 2012].
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573On unit root formulas for toric exponential sums
ALAN ADOLPHSON and STEVEN SPERBER

587Symmetries of the transfer operator for 00(N ) and a character deformation of the
Selberg zeta function for 00(4)

MARKUS FRACZEK and DIETER MAYER

1937-0652(2012)6:3;1-C

A
lgebra

&
N

um
ber

Theory
2012

Vol.6,
N

o.3


	
	
	

