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We present a conceptual and uniform interpretation of the methods of integral
representations of L-functions (period integrals, Rankin–Selberg integrals). This
leads to (i) a way to classify such integrals, based on the classification of certain
embeddings of spherical varieties (whenever the latter is available), (ii) a conjec-
ture that would imply a vast generalization of the method, and (iii) an explanation
of the phenomenon of “weight factors” in a relative trace formula. We also prove
results of independent interest, such as the generalized Cartan decomposition for
spherical varieties of split groups over p-adic fields (following an argument of
Gaitsgory and Nadler).

1. Introduction 611
2. Elements of the theory of spherical varieties 617
3. Conjectures on Schwartz spaces and automorphic distributions 628
4. Periods and the Rankin–Selberg method 640
5. Smooth affine spherical varieties 656
6. A remark on a relative trace formula 661
Acknowledgments 664
References 665

1. Introduction

1.1. Goals. The study of automorphic L-functions (and their special values at
distinguished points, or L-values) is very central in many areas of present-day
number theory, and an incredible variety of methods has been developed in order
to understand the properties of these mysterious objects and their deep links with
seemingly unrelated arithmetic invariants. Oddly enough, notwithstanding their
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elegant and very general definition by Langlands in terms of Euler products, vir-
tually all methods for studying them depart from an integral construction of the
form:

A suitable automorphic form (considered as a function on the automor-
phic quotient [G] := G(k) \G(Ak)), integrated against a suitable distri-
bution on G(k) \G(Ak), is equal to a certain L-value.

For “geometric” automorphic forms, such an integral can often be expressed as
a pairing between elements in certain homology and cohomology groups, but the
essence remains the same. Given the importance of such methods, it appears as a
paradox that there is no general theory of integral representations of L-functions,
and in fact, they are often considered as “accidents”.

In this article, I present a uniform interpretation of a large array of such methods,
which includes Tate integrals, period integrals and Rankin–Selberg integrals. This
interpretation leads to the first systematic classification of such integrals, based on
the classification of certain spherical varieties (see Sections 4 and 5). Moreover,
it naturally gives rise to a very general conjecture (Conjecture 3.2.2), whose proof
would lead to a vast extension of the method and would allow us to study many
more L-functions than are within our reach at this moment. Finally, it explains
phenomena that have been observed in the theory of the relative trace formula,
in a way that is well suited to the geometric methods employed in the proof of
the fundamental lemma by Ngô [2010]. In the course of the article we also prove
some results that can be of independent interest, including results on the orbits of
hyperspecial and congruence subgroups on the p-adic points of a spherical variety
(Theorems 2.3.8 and 2.3.10).

The main idea is based on the well-known principle that a “multiplicity-freeness”
property usually underlies integral constructions of L-functions. For our present
purposes, a multiplicity-freeness property can be taken to mean that a suitable
space of functions S(X) on a G(Ak)-space X admits at most one, up to constants,
morphism into any irreducible admissible representation π of G(Ak). Here G
denotes a connected reductive algebraic group over a global field k, and Ak denotes
the ring of adeles of k. Such spaces arise as the adelic points of spherical varieties.
By definition, a spherical variety for G is a normal variety with a G-action such
that, over the algebraic closure, the Borel subgroup of G has a dense orbit. Let X
be an affine spherical variety, and denote by X+ the open G-orbit on X . A second
principle behind the main idea is based on ideas around the geometric Langlands
program, according to which the correct “Schwartz space” S(X) of functions to
consider (which are actually functions on X+(Ak), not X (Ak)) should be one re-
flecting the geometry and singularities of X . Then, for every cuspidal automorphic
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representation π of G with “sufficiently positive” central character, there is a nat-
ural pairing PX : S(X (Ak))⊗ π → C. The weak version of our Conjecture 3.2.4
asserts that this pairing admits meromorphic continuation to all π . (A stronger
version, 3.2.2, states that an “Eisenstein series” construction, obtained by summing
over the k-points of X and integrating against characters of a certain torus acting
on X , has meromorphic continuation.) Then, assuming the multiplicity-freeness
property, one expects the pairing to be associated to some L-value of π .

If our variety is of the form H \ G with H a reductive subgroup of G, then
from this construction we recover in Section 4.2 the period integral of automorphic
forms over H(k) \ H(Ak). More generally, if X is fibered over such a variety and
the fibers are (related to) flag varieties, then we can prove meromorphic continu-
ation using the meromorphic continuation of Eisenstein series, and we recover in
Section 4.4 integrals of “Rankin–Selberg” type. Thus, we reduce the problem of
finding Rankin–Selberg integrals to the problem of classifying affine spherical va-
rieties with a certain geometry. For smooth affine spherical varieties, this geometric
problem has been solved by Knop and Van Steirteghem [2006]. By inspection of
their tables, we recover in Section 5 some of the best-known constructions, such as
those of Rankin [1939] and Selberg [1940], Godement and Jacquet [1972], Bump
and Friedberg [1990], all spherical period integrals, as well as some new ones.

In Section 4.5 we give an example, involving the tensor product L-function of n
cuspidal representations on GL2, to support the point of view that the basic object
giving rise to an Eulerian integral related to an L-function is the spherical variety
X and not a geometry related to flag varieties. Finally, in Section 6 we apply these
ideas to the relative trace formula to show that certain “weight factors” that have
appeared in examples of this theory and are often considered an “anomaly” can, in
fact, be understood using the notion of Schwartz spaces.

1.2. Background on the methods. To an automorphic representation π '
⊗
′

v πv

of a reductive group G over a global field k, and to an algebraic representation ρ of
its Langlands dual group LG, Langlands attached a complex L-function L(π, ρ, s),
defined for s in some right-half plane of the complex plane as the product, over all
places v, of local factors Lv(πv, ρ, s).1

Despite the beauty of its generality, the definition is of little use when attempting
to prove analytic properties of L-functions, such as their meromorphic continuation
and functional equation. Such properties are usually obtained by integration tech-
niques, namely presenting the L-function as some integral transform of an element
in the space of the given automorphic representation. Such methods in fact predate
Langlands by more than a century, but the most definitive construction (since every

1At ramified places and for most ρ, the definition still depends on the local functoriality
conjectures.
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automorphic L-function should be a GLn L-function) was studied by Godement
and Jacquet [1972] (generalizing Tate’s construction [1967] for GL1), who proved
the analytic continuation and functional equation of L(π, s) := L(π, std, s), where
π is an automorphic representation of G = GLn and std is the standard represen-
tation of LG = GLn(C)×Gal(k̄/k). Their method relies on proving the equality

L(π, s− 1
2(n− 1))=

∫
GLn(Ak)

〈
π(g)φ, φ̃

〉
8(g)|det(g)|s dg, (1-1)

with φ a suitable vector in π , φ̃ a suitable vector in its contragredient and 8 a
suitable function in S(Matn(Ak)), the Schwartz space of functions on Matn(Ak).
The main analytic properties of L(π, ρ, s), then, follow from Fourier transform on
the Schwartz space and the Poisson summation formula.

Several decades before, Hecke showed that the standard L-function of a cusp-
idal automorphic representation on GL2 (with, say, trivial central character) has a
presentation as a period integral, which in adelic language reads

L(π, s+ 1
2)=

∫
k×\A×k

φ
(( a 0

0 1

))
|a|s da, (1-2)

where φ is again a suitable vector in the automorphic representation under consid-
eration.

Period integrals (by which we mean integrals over the orbit of some subgroup on
the automorphic space G(k)\G(Ak), possibly against a character of that subgroup)
have since been studied extensively, although there are still many open conjectures
about their relation to L-functions; see, for instance, [Ichino and Ikeda 2010].
Still, they form perhaps the single class of examples where we have a general
principle answering the question, How do we write down an integral with good
analytic properties, which is related to some L-function (or L-value)? Piatetski-
Shapiro discussed this in [1975], and suggested that the period integral of a cusp
form on a group G over a subgroup H (against, perhaps, an analytic family δs

of characters of H as in (1-2)) should always be related to some L-value if the
subgroup H enjoys a “multiplicity-one” property: dim HomH(Ak)(π, δs) ≤ 1 for
every irreducible representation π of G(Ak) and (almost) every s.

The method of periods usually fails when the subgroup H is nonreductive, the
reason being that, typically, the group H(Ak) has no closed orbits on G(k)\G(Ak).
Therefore there is no a priori reason that the period integral should have nice ana-
lytic properties (as the character δs varies), and one can in fact check in examples
(see, for instance, Example 3.2.1) that for values of s such that the period integral
converges, it does not represent an L-function.

In a different vein, Rankin [1939] and Selberg [1940] independently discovered
an integral representing the tensor product L-function of two cuspidal automorphic
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representations of GL2. The integral uses as auxillary data an Eisenstein series on
GL2 and has the form

L(π1×π2,⊗, s)=
∫

PGL2(k)\PGL2(Ak)

φ1(g)φ2(g)E(g, s) dg

with suitable φ1 ∈ π1 and φ2 ∈ π2.
Later, this method was taken up by Jacquet, Piatetski-Shapiro, Shalika, Ral-

lis, Gelbart, Ginzburg, Bump, Friedberg and many others, in order to construct
numerous examples of automorphic L-functions expressed as integrals of cusp
forms against Eisenstein series, with important corollaries for every such expres-
sion discovered. Despite the abundance of examples, however, there has not been a
systematic understanding of how to produce an integral representing an L-function.

1.3. Schwartz spaces and X-Eisenstein series. While the method of Godement
and Jacquet can also be phrased in the language of Rankin–Selberg integrals (see
[Gelbart et al. 1987]), the fact that no systematic theory of these constructions
exists has led many authors to consider them as coincidental or to seek direct
generalizations of [Godement and Jacquet 1972], as being a “more canonical”
construction [Braverman and Kazhdan 2000]. We adopt a different point of view
that treats Godement–Jacquet, Rankin–Selberg, and period integrals as parts of the
same concept, in fact a concept that should be much more general!

The basic object here is an affine spherical variety X of the group G. The reason
that such varieties are suitable is that they are related to the “multiplicity-free” prop-
erty discussed above. For instance, in the category of algebraic representations,
the ring of regular functions k[X ] of an affine G-variety is multiplicity-free if and
only if the variety is spherical. In the p-adic setting and for unramified repre-
sentations, questions of multiplicity were systematically examined in [Sakellaridis
2008; 2009], and of course in special cases such questions have been examined in
much greater detail; see, for example, [Prasad 1990].

The main idea is to associate to every affine spherical variety a space of distri-
butions on G(k) \G(Ak) that should have “good analytic properties”. For reasons
of convenience we set up our formulations so that the analytic problem does not
have to do with varying a character of some subgroup H (the isotropy subgroup of
a “generic” point on X ), but with varying a cuspidal automorphic representation of
G. For instance, to the Hecke integral (for PGL2) we do not associate the variety
Gm \ PGL2, but the variety X = PGL2 under the G = Gm × PGL2-action. Our
distributions (in fact, smooth functions) on G(k) \G(Ak) come from a “Schwartz
space” of functions on X+(Ak) via a theta series construction (that is, summation
over k-points of X+). Here X+ denotes the open G-orbit on X . The main conjec-
ture, 3.2.2, then states that the integral of these X -theta series against central idele
class characters (I call this integral an X -Eisenstein series), originally defined in
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some domain of convergence, has meromorphic continuation everywhere. Under
added assumptions on X (related to the multiplicity-freeness property mentioned
above), the pairings of X -theta series with automorphic forms should be related,
in a suitable sense, to automorphic L-functions or special values of those.

The geometric Langlands program provides ideas that allow us to speculate on
the form of these Schwartz spaces, motivated also by the work of Braverman and
Kazhdan [1999; 2002] on the special case that X is the affine closure of [P, P]\G,
where P is a parabolic subgroup. Let us discuss this work: The prototype here is the
case X+=U\SL2=A2r{0} (where U denotes a maximal unipotent subgroup) and
X =A2 (two-dimensional affine space). The Schwartz space is the usual Schwartz
space on X (Ak) which, by definition, is the restricted tensor product S(X (Ak)) :=⊗
′

v(S(k
2
v) : 8

0
v), where for finite places kv with rings of integers ov the “basic

vectors” 80
v are the characteristic functions of X (ov) = o2

v. There is a natural
meromorphic family of morphisms S(X (Ak)) → I G(Ak)

B(Ak)
(χ) (where I G

P denotes
normalized parabolic induction from the parabolic P and B denotes the Borel
subgroup), and for idele class characters χ the composition with the Eisenstein
series morphism Eisχ : I G(Ak)

B(Ak)
(χ)→ C∞(G(k) \ G(Ak)) provides meromorphic

sections of Eisenstein series, whose functional equation can be deduced from the
Poisson summation formula on A2

k — in particular, the L-factors that appear in the
functional equation of “usual” (or “constant”) sections are absent here.

This was found to be the case more generally in [Braverman and Kazhdan 1999;
Braverman and Gaitsgory 2002; Braverman et al. 2002; Braverman and Kazhdan
2002]: One can construct normalized sections of Eisenstein series from certain
Schwartz spaces of functions on [P, P] \ G(Ak) (or UP \ G(Ak), where UP is
the unipotent radical of P). These Schwartz spaces should be defined as tensor
products over all places, restricted with respect to some basic vector; and the ba-
sic vector should be the function-theoretic analog of the intersection cohomology
sheaf of some geometric model for the space X (ov). For instance, if X is smooth
then the intersection cohomology sheaf is constant, which means that 80

v is the
characteristic function of X (ov); this explains the distributions in Tate’s thesis, the
work of Godement and Jacquet, and the case of period integrals. (In the latter, the
characteristic function of X (ov)= H \G(ov) is obtained as the “smoothening” of
the delta function at the point H1 ∈ X .)

Such geometric models were recently defined by Gaitsgory and Nadler [2010]
for every affine spherical variety. They provide us with the data necessary to spec-
ulate on a generalization of the Rankin–Selberg method. It should be noted, how-
ever, that even to define the “correct” functions on X+(Ak) out of these geometric
models one has to rely on certain natural conjectures on them — therefore the prob-
lem of finding an independent or unconditional definition should be considered as
one of the steps needed for establishing our conjecture.
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1.4. Comments. Most of the ingredients in the present work are not new. Experts
in the Rankin–Selberg method will recognize in our method, to a lesser or greater
extent, the heuristics they have been using to find new integrals. The idea that geo-
metric models and intersection cohomology should give rise to the “correct” space
of functions on the p-adic points of a variety comes straight out of the geometric
Langlands program and the work of Braverman and Kazhdan; I have nothing to
offer in this direction.

However, the mixture of these ingredients is new and I think that there is enough
evidence that it is the correct one. For the first time, a precise criterion is formulated
on how to construct a “Rankin–Selberg” integral, reducing the problem to a purely
geometric one — classifying certain embeddings of spherical varieties. And evi-
dence shows that there should be a vast generalization that does not depend on such
embeddings. I prove no “hard” theorems and, in particular, I do not know how to
establish the meromorphic continuation of the X -Eisenstein series. Hence, I do not
know whether I am putting the cart before the horse — however, as opposed to other
conjectures that have appeared in the literature in the past, the distributions defined
here are completely geometric and have nothing to do a priori with L-functions,
which leaves a lot of room for hope. Finally, this point of view proves useful in
explaining the phenomenon of “weight factors” in the relative trace formula.

2. Elements of the theory of spherical varieties

2.1. Invariants associated to spherical varieties. A spherical variety for a con-
nected reductive group G over a field k is a normal variety X together with a
G-action, such that over the algebraic closure the Borel subgroup of G has a dense
orbit.

We denote throughout by k a number field and, unless otherwise stated, we make
the following assumptions on G and X :
• G is a split, connected, reductive group.

• X is affine.

The open G-orbit in X will be denoted by X+, and the open B-orbit by X̊+,
where B is a fixed Borel subgroup of G, whose unipotent radical we denote by U .2

The assumption that G is split is certainly very restrictive, but it is enough to
demonstrate our point of view, and convenient because of many geometric and
representation-theoretic results that have been established in this case. We will
discuss affine spherical varieties in more detail later, but we just mention here that
a common source of examples is when X+=H \G, a quasiaffine homogeneous va-
riety, and X = H\Gaff

= spec k[H \G], the affine closure of H \G; see Section 2.2.

2Notice that this is different from that of [Gaitsgory and Nadler 2010], but compatible with the
notation used in [Sakellaridis 2008; 2009; Sakellaridis and Venkatesh 2012].
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We will be using standard and self-explanatory notation for varieties and alge-
braic groups; for example, N(H),Z(H), H 0 will be, respectively, the normalizer,
center and connected component of a (sub)group H , and Y will be the closure of a
subvariety Y , etc. The isotropy group of a point x under a G-action will be denoted
by Gx and the fiber over y ∈ Y of a morphism X→ Y by X y . The base change of
an S-scheme Y with respect to a morphism T → S will be denoted by YT , but if v
denotes a completion of a number field k and Y is defined over k then we will be
denoting by Yv the set Y (kv).

Let us discuss certain invariants associated to a spherical variety. First of all, for
any algebraic group 0 we denote by X(0) its character group, and for any variety Y
with an action of 0 we denote by X0(Y ) the group of 0-eigencharacters appearing
in the action of 0 on k(Y ). If 0 is our fixed Borel subgroup B, then we will
denote XB(Y ) simply by X(Y ). The multiplicative group of nonzero eigenfunctions
(semiinvariants) for B on k(Y ) will be denoted by k(Y )(B). If Y has a dense B-
orbit, then we have a short exact sequence 0→ k×→ k(Y )(B)→ X(Y )→ 0.

For a finitely generated Z-module M , we denote the dual module HomZ(M,Z)

by M∗. For our spherical variety X , we let 3X = X(X)∗ and Q = 3X ⊗Z Q. A
B-invariant valuation on k(X) that is trivial on k× induces by restriction to k(X)(B)

an element of3X . We let V⊂Q be the cone3 generated by G-invariant valuations
which are trivial on k×; see [Knop 1991, Corollary 1.8]. It is known that V is a
polyhedral cone, and in fact that it is a fundamental domain for the action of a
finite reflection group WX on Q. We denote by 3+X the intersection 3X ∩V. Under
the quotient map X(A)∗ ⊗Q→ Q, V contains the image of the negative Weyl
chamber of G [Knop 1991, Corollary 5.3].

The associated parabolic of X is the standard parabolic

P(X) := {p ∈ G | X̊+ · p = X̊+}.

Make once and for all a choice of a point x0∈ X̊+(k) and let H denote its stabilizer;
hence X+ = H \G, and H B is open in G. There is the following “good” way of
choosing a Levi subgroup L(X) of P(X): Pick f ∈ k[X ], considered by restriction
as an element of k[G]H , such that the set-theoretic zero locus of f is X r X̊+. Its
differential d f at 1 ∈ G defines an element in the coadjoint representation of G,
and the centralizer L(X) of d f is a Levi subgroup of P(X). We fix throughout a
maximal torus A in B∩ L(X). We define AX to be the torus L(X)/(L(X)∩H)=
A/(A ∩ H); its cocharacter group is 3X . We consider AX as a subvariety of X̊+

via the orbit map on x0.

3A cone in a Q-vector space is a subset that is closed under addition and under multiplication by
Q≥0, its relative interior is its interior in the vector subspace that it spans, and a face of it is the zero
set, in the cone, of a linear functional that is nonnegative on the cone — hence, the whole cone is a
face as well.
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The finite reflection group WX ⊂ End(Q) for which V is a fundamental domain
is called the little Weyl group of X . The set of simple roots of G corresponding to B
and the maximal torus A⊂ B will be denoted by 1. Consider the (strictly convex)
cone negative-dual to V, that is, the set {χ ∈X(X)⊗Q | 〈χ, v〉≤0 for every v∈V}.
The generators of the intersections of its extremal rays with X(X) are called the
(simple) spherical roots4 of X and their set is denoted by 1X . They are known
to form the set of simple roots of a based root system with Weyl group WX . We
will denote by 1(X) the subset of 1 consisting of simple roots in L(X), and by
WL(X) ⊂ W the Weyl groups of L(X), respectively G. There is a canonical way
[Knop 1994b, Theorem 6.5] to identify WX with a subgroup of W , which normal-
izes and intersects trivially the Weyl group WL(X) of L(X). The data X(X),WX ,V

are usually easy to compute by finding a point on the open B-orbit and using
Knop’s action of the Borel subgroup on the set of B-orbits [Knop 1995b]; for a
more systematic treatment, see [Losev 2008].

If V is equal to the image of the negative Weyl chamber, we say that the variety is
a wavefront spherical variety. (This term is justified by the proof for asymptotics of
generalized matrix coefficients in [Sakellaridis and Venkatesh 2012].) Symmetric
varieties, for example, are all wavefront [Knop 1991, Section 5]. Motivated by the
results of [Sakellaridis 2008], we will call geometric multiplicity of X the cardinal-
ity of the generic nonempty fiber of the map X(X)/WX → X(A)/W . While none
implies the other, it is usually the case that varieties with geometric multiplicity
one are wavefront. On the other hand, let us call arithmetic multiplicity of X the
torsion subgroup of X(A)/X(X). It was shown in [Sakellaridis 2008] that if F
is a local nonarchimedean field, then for an irreducible unramified representation
π of G(F) that is in general position among X -distinguished ones (that is, with
HomG(π,C∞(X (F))) 6= 0), we have dim HomG(π,C∞(X (F))) = 1 if and only
if both the geometric and arithmetic multiplicities of X are 1.

The G-automorphism group of a homogeneous G-variety X+ = H \G is equal
to the quotient N(H)/H . It is known [Losev 2008, Lemma 7.17] that for X+

spherical the G-automorphisms of X+ extend to any affine completion X of X+.
Moreover, it is known that AutG(X) is diagonalizable; the cocharacter group of its
connected component can be canonically identified (by considering the scalars by
which an automorphism acts on rational B-eigenfunctions) with 3X ∩V∩ (−V).
We will be denoting Z(X) := (AutG(X))0. It will be convenient many times to
replace the group G by a central extension thereof and then divide by the subgroup

4The work of Gaitsgory and Nadler [2010] and Sakellaridis and Venkatesh [2012] suggests that
for representation-theoretic reasons one should slightly modify this definition of spherical roots.
However, the lines on which the modified roots lie are still the same, and for the purposes of the
present article this is enough.
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of Z(G)0 that acts trivially on X , so that the map Z(G)0 → Z(X) becomes an
isomorphism.

2.2. Spherical embeddings and affine spherical varieties. We will use the words
“embedding”, “completion” or “compactification” of a spherical G-variety X for a
spherical G-variety X (not necessarily complete) with an open equivariant embed-
ding X→ X . A spherical embedding is called simple if it contains a unique closed
G-orbit. Spherical embeddings have been classified by Luna and Vust [1983]; our
basic reference for this theory will be [Knop 1991]. We will now recall the main
theorem classifying simple spherical embeddings.

For now we assume that k is an algebraically closed field in characteristic zero.
However, for Theorem 2.2.1 below the assumption on the characteristic is un-
necessary, and any result that does not involve “colors” holds verbatim without
the assumption of algebraic closedness when the group G is split. Let X be a
spherical variety and let X+ be its open G-orbit. The colors of X are the closures
of the B-stable prime divisors of X+; their set will be denoted by D. For every
B-stable divisor D in any completion X of X+, we denote by ρ(D) the element of
Q induced by the valuation defined by D. A strictly convex colored cone is a pair
(C,F) with C⊂ Q, F⊂ D such that

(1) C is a strictly (that is, not containing lines) convex cone generated by ρ(F)
and finitely many elements of V,

(2) the intersection of V with the relative interior of C is nonempty, and

(3) 0 /∈ ρ(F).

If X is a simple embedding of X+ with closed orbit Y , we let F(X) denote the
set of D ∈ D such that D ⊃ Y , and we let C(X) denote the cone in Q generated
by all ρ(D), where D is a B-invariant divisor (possibly also G-invariant) in X
containing Y .

Theorem 2.2.1 [Knop 1991, Theorem 3.1]. The association X→ (C(X),F(X)) is
a bijection between isomorphism classes of simple embeddings of X+ and strictly
convex colored cones.

Now let us focus on affine and quasiaffine spherical varieties. We recall from
[Knop 1991, Theorem 6.7]:

Theorem 2.2.2. A spherical variety X is affine if and only if X is simple and there
exists a χ ∈ X(X) with χ |V ≥ 0, χ |C(X) = 0 and χ |ρ(DrF(X)) < 0. In particular,
H \G is affine if and only if V and ρ(D) are separated by a hyperplane, while it
is quasiaffine if and only if ρ(D) does not contain zero and spans a strictly convex
cone.
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Recall from [Braverman and Gaitsgory 2002, Section 1.1] that a variety Y over
a field k is called strongly quasiaffine if the algebra k[Y ] of global functions on
Y is finitely generated and the natural map Y → spec k[Y ] is an open embedding.
Then the variety Y aff

:= spec k[Y ] is called the affine closure of Y .

Proposition 2.2.3. A homogeneous quasiaffine spherical variety Y = H \ G is
strongly quasiaffine. If X := H \Gaff, then the data (C(X),F(X)) can be de-
scribed as follows: Consider the cone R ⊂ X(X) ⊗ Q generated by the set of
χ ∈ X(X) such that χ |V ≥ 0 and χ |ρ(D) ≤ 0. Choose a point χ in the relative
interior of R. Then F(X)={D∈D |ρ(D)(χ)=0} and C(X) is the cone generated
by F(X).

Remark 2.2.4. The first statement of the proposition generalizes a result of Hoch-
schild and Mostow [1973] for the variety UP \G, where UP is the unipotent radical
of a parabolic subgroup P of G. Indeed, this variety is spherical under the action
of M ×G, where M is the reductive quotient of P .

Proof. As a representation of G, k[Y ] is locally finite and decomposes as

k[Y ] =
⊕
λ

Vλ, (2-1)

where Vλ is the isotypic component corresponding to the representation with high-
est weight λ, and the sum is taken over all λwith Vλ 6= 0. Since the variety is spher-
ical, each Vλ is isomorphic to one copy of the representation with highest weight λ.
Moreover, the multiplicative monoid of nonzero highest-weight vectors k[Y ](B) is
the submonoid of k(Y )(B) (the group of nonzero rational B-eigenfunctions) con-
sisting of regular functions. Regular B-eigenfunctions are precisely those whose
eigencharacter satisfies χ |ρ(D) ≥ 0; since the set D is finite, the monoid of λ that
appears in the decomposition (2-1) is finitely generated. Since the multiplication
map Vµ⊗Vν has image in the sum of Vλ with λ≤µ+ν, and since its composition
with the projection k[Y ] → Vµ+ν is surjective, the sum of the Vλ, for λ in a set of
generators for the monoid of λ’s appearing in (2-1), generates k[Y ].

The second condition, namely that Y → X is an open embedding, follows from
the assumption that Y is quasiaffine and from the homogeneity of Y . Hence, Y is
strongly quasiaffine.

The affine closure X has the property that for every affine completion X ′ of Y ,
there is a morphism X→ X ′. The description of (C(X),F(X)) now follows from
Theorem 2.2.2 and [Knop 1991, Theorem 4.1], which describes morphisms be-
tween spherical embeddings. The cone C(X), as described, will necessarily con-
tain the intersection of V with the cone generated by ρ(D) in its relative interior;
therefore its relative interior will have nonempty intersection with V. �
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Let us now discuss the geometry of affine spherical varieties. The following is
a corollary of Luna’s slice theorem:

Theorem 2.2.5 [LuS 1973, III.1, Corollaire 2]. If G is a reductive group over an
algebraically closed field k in characteristic zero, acting on an affine variety X so
that k[X ]G = k, then X contains a closed G-homogeneous affine subvariety Y such
that the embedding Y ↪→ X admits an equivariant splitting X � Y . If G is smooth,
then the fiber over any (closed) point y ∈ Y is G y-equivariantly isomorphic to the
vector space of a linear representation of G y .

Luna’s theorem also states that Y is contained in the closure of any G-orbit,
which is easily seen to be true in the spherical case since affine spherical varieties
are simple. The G-automorphism group “retracts” X onto Y :

Proposition 2.2.6. Let X be an affine spherical G-variety and let Y be as in the
theorem above, considered both as a quotient and as a subvariety of X. Let T be
the maximal torus in AutG(X) that acts trivially on Y . Then the closure of the
T -orbit of every point on X meets Y . Equivalently, k[X ]T = k[Y ].

Proof. This is essentially [Knop 1994a, Corollary 7.9]. More precisely, let us
assume that G has a fixed point on X , that is, Y is a point. (The question is easily
reduced to this case, since every G y-automorphism of the fiber of X → Y over y
extends uniquely to a G-automorphism of X .) The proof of [loc. cit.] shows that
for a generic point x ∈ X there is a one-parameter subgroup H of AutG(X) such
that x ·H contains the fixed point in its closure. Hence k[X ]T = k and therefore X
contains a unique closed T -orbit. �

If G has a fixed point on X , we can embed X into a finite sum V =
⊕

i Vi of
finite-dimensional representations of G, such that the fixed point is the origin in V
and there is a subtorus T of

∏
i AutG(Vi ) acting on X with the origin as its only

closed orbit. (Simply take V to be the dual of a G-stable, generating subspace
of k[X ].)

2.3. Generalized Cartan decomposition. Let K= C((t)), the field of formal Lau-
rent series over C, and O = C[[t]], the ring of formal power series. Let X+ be a
homogeneous spherical variety over C.

Theorem 2.3.1 [Luna and Vust 1983]. G(O)-orbits on X+(K) are parametrized
by 3+X , where to λ̌ ∈3+X corresponds the orbit through λ̌(t) ∈ AX (K).

A new proof given by Gaitsgory and Nadler [2010] can be used to prove the
analogous statement over p-adic fields. We revisit their argument, adapt it to the
p-adic case, and extend it to determine the set of G(oF )-orbits on X (oF ), when
G and X are affine and defined over a number field and F is a nonarchimedean
completion (outside of a finite set of places).
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Remark 2.3.2. In the case of symmetric spaces, similar statements on the set of
G(oF )-orbits on X (F) and in a more general setting — without assuming that G
is split — have been proven by Benoist and Oh [2007] and Delorme and Sécherre
[2011].

The argument uses compactification results of Brion, Luna and Vust. We first
need to recall a few more elements of the theory of spherical varieties. The results
below have appeared in the literature for k an algebraically closed field in char-
acteristic zero, but the proofs hold verbatim when k is any field in characteristic
zero and the groups in question are split over k. (The basic observation being,
here, that in all proofs one gets to choose B-eigenfunctions in k(X), and since the
variety is spherical and the group is split, the eigenspaces of B are one-dimensional
and defined over k, and therefore the chosen eigenfunctions are k-rational up to k̄-
multiple.)

A toroidal embedding of X+ is an embedding X c of X+ in which no color (B-
stable divisor which is not G-stable) contains a G-orbit. Theorem 2.2.1 implies
that simple toroidal embeddings are classified by strictly convex, finitely generated
subcones of V. Moreover, the simple toroidal embedding X c obtained from a
simple embedding X by taking the cone C(X c) = C(X)∩V comes with a proper
equivariant morphism X c

→ X [Knop 1991, Theorem 4.1] that is surjective [ibid.,
Lemma 3.2].

The local structure of a simple toroidal embedding is given by the following
theorem of Brion, Luna and Vust:

Theorem 2.3.3 [Brion et al. 1986, Théorème 3.5]. Let X c be a simple toroidal
embedding of X+ and let X c

B denote the complement of all colors. Then X c
B is an

open, P(X)-stable, affine variety with the following properties:

(1) X c
B meets every G-orbit.

(2) If we let Y c be the closure of AX in X c
B , then the action map Y c

×UP(X)→ X c
B

is an isomorphism.

We emphasize the structure of the affine toric variety Y c: Its cone of regular
characters is precisely C(X c)∨ := {χ ∈ X(X)⊗Q | 〈χ, v〉 ≥ 0 for all v ∈ C(X c)};
in other words,

Y c
= spec k[C(X c)∨ ∩X(X)].

By the theory of toric varieties, the theorem also implies that X c is smooth if and
only if the monoid C(X c)∩3X is generated by primitive elements in its “extremal
rays” (that is, is a free abelian monoid).

When V is strictly convex (equivalently AutG(X+) is finite), then X+ admits a
canonical toroidal embedding X , with C(X)=V, which is complete. This is some-
times called the wonderful completion of X+, although often the term “wonderful”
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is reserved for the case that this completion is smooth. If V is not strictly convex,
then X+ still admits a (nonunique) complete toroidal embedding X , which is not
simple, but as remarked in [Gaitsgory and Nadler 2010, 8.2.7], Theorem 2.3.3 still
holds, with Y c a suitable (nonaffine) toric variety containing AX . The fan of Y c

depends on the chosen embedding X , but its support is precisely the dual cone of V

(that is, the set of cocharacters λ of AX such that limt→0 λ(t)∈ Y c is equal to3+X ).
We will use Theorem 2.3.3 for two toroidal varieties: First, for a complete

toroidal embedding X of X+. Secondly, for the variety X̂ obtained from our affine
spherical variety X by taking C(X̂) = C(X)∩V. Before we proceed, we discuss
models of these varieties over rings of integers.

2.3.4. Models over rings of integers. We start with toric varieties. Let o be an
integral domain with fraction field k, and let Y be a simple (equivalently, affine)
toric variety for a split torus T over k. We endow T with its smooth model T =

o[X(T )] over o. Since Y = spec k[M] for some saturated monoid M ⊂ X(T ), the
o-scheme Y= spec o[M] is a model for Y over o with an action of T, and we will
call it the standard model. The notion easily extends to the case where Y is not
necessarily affine, but defined by a fan. If T and Y are defined over a number field
k and endowed with compatible models over the S-integers oS for a finite set S of
places of k, then these models will coincide with the standard models over oS′ , for
some finite S′ ⊃ S.

Now we return to the setting where k is a number field, G, X , X+, X , X̂ are
as before (over k), and let us also fix a point x0 ∈ X̊+(k). Then we can choose
compatible integral models outside of a finite set of places, such that the structure
theory of Brion, Luna and Vust continues to hold for these models:

Proposition 2.3.5. There are a finite set of places S0 of k and compatible flat mod-
els G, X, X and X̂ for G, X , X and X̂ , respectively, over the S0-integers oS0 of k,
such that

• S0 contains all archimedean places;

• the chosen point x0 is in inX̊+(oS0);

• G is reductive over oS0 , and X+→ spec oS0 is smooth and surjective;

• the statement of Theorem 2.3.3 holds for X and X̂ over oS0 , namely, if we
denote any either of them by Xc, then there is an open, P(X)-stable subscheme
Xc

B and a toric A-subscheme Yc of standard type such that the subscheme
Xc

B meets every G-orbit on Xc and the action map Yc
×UP(X) → Xc

B is an
isomorphism of oS0-schemes.

• X is proper over oS0 , and the morphism X̂→ X is proper.
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Remarks 2.3.6. (1) By X+ and X̊+ we denote the complement of the closure, in
any of the above schemes, of the complement of X+ and X̊+, respectively, in
the generic fiber.

(2) It is implicitly part of the “compatibility” of the models that the scheme struc-
tures on X+ and X̊+ do not depend on which of the ambient schemes we
choose to define them.

(3) We understand the statement “meets every orbit” as follows: Let |Z| denote
the set of scheme-theoretic points of a scheme Z. Consider the two maps
p : G×X→ X (projection to the second factor) and a : G×X→ X (action
map). Then for every x ∈ |Xc

| the set a(p−1
{x}) intersects |Xc

B | nontrivially.

Proof. For a finite set S of places and a flat model Xc of X c over oS (assumed
proper if X c

= X ), let D denote the union of all colors over the generic point of
spec oS , let D denote the closure of D in Xc, and let Xc

B be the complement of
D in Xc. Let G denote a compatible reductive model for G over oS . (All these
choices are possible by sufficiently enlarging S.) The image of G×Xc

B → Xc is
open and contains the generic fiber; hence by enlarging the set S, if necessary, we
can make it surjective.

Now define Yc as the closure of Y c in Xc
B . By enlarging the set S, if necessary,

we may assume that Yc is of standard type. The action map Yc
×UP(X)→Xc

B being
an isomorphism over the generic fiber, it is an isomorphism over oS by enlarging S,
if necessary. �

From now on we fix such a finite set of places S0 and such models. The combi-
natorial invariants of the schemes above are the same at all places of S0:

Proposition 2.3.7. Each of the data5 X(X),V,C(X),C(X),C(X̂) is the same for
the reductions of X,X, X̂ at all closed points of oS0 . The set of G-orbits on each
of these varieties is in natural bijection with the set of G-orbits on each of their
reductions.

Proof. The toric scheme Yc being of the standard type, it means that X(X) =
XA(Y c) is the same at all reductions. For every place v of oS the reductions XFv

and X̂Fv are toroidal: Indeed, denoting by Xc either of them, the complement of
(Xc

B)Fv is a BFv -stable union of divisors that does not contain any GFv -orbit, since
(Xc

B)Fv meets every GFv -orbit. Moreover, Xc
B meets no colors, for if it did, then

a nonopen AFv -orbit on Yc
Fv

would belong to the open GFv -orbit, and hence the
open GFv -orbit would belong to the closure of a nonopen G-orbit over the generic
point, a contradiction since by assumption X+ is smooth and surjective. Therefore,

5Since X is not necessarily simple, it is not described by a cone but by a fan. However, we slightly
abuse the common notation here and write C(X) for the set of invariant valuations whose center is in
X — that is, for the support of the fan associated to X .
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the complement of (Xc
B)Fv is the union of all colors of Xc

Fv
, and Xc

Fv
is toroidal.

Moreover, the GFv -invariant valuations on Fv(X
+

Fv ) whose centers are in Xc
Fv

are
precisely those of 3X ∩C(X c) (which proves the equality of C(Xc

Fv
) with C(X c)

at all v /∈ S0), and from the fact that XFv is complete and C(XFv )=3
+

X , it follows
that V is precisely the cone of invariant valuations on Fv(X

+). �

Now we are ready to apply the argument of [Gaitsgory and Nadler 2010, The-
orem 8.2.9] to describe representatives for the set of G(oF )-orbits on X+(oF ), for
every completion F of k outside of S0, and also extend it to a description of the
set of orbits that are contained in X(oF ). Notice that since G is reductive, G(oF )

is a hyperspecial maximal compact subgroup of G(F). From now on we denote
our fixed models over oS0 by regular script, since there will be no possibility of
confusion. There is a canonical AX (oF )-invariant homomorphism AX (F)→ 3X

(under which an element of the form λ($), where $ is a uniformizer for F , maps
to λ) and we denote by AX (F)+ the preimage of 3+X .

Theorem 2.3.8. For F a completion of k outside of S0, each G(oF )-orbit on
X+(F) contains an element of AX (F)+, and elements of AX (F)+ with different
image in3+X belong to distinct G(oF )-orbits. If the quotient X(A)/X(X) is torsion-
free, then the map from G(oF )-orbits on X+(F) to 3+X is a bijection. The orbits
contained in X (oF ) are precisely those mapping to 3+X ∩C(X).

Remark 2.3.9. The torsion of the quotient X(A)/X(X) is the “arithmetic multi-
plicity” defined in Section 2.1. It is trivial if and only if the map AX (F)/A(o)→
3X is bijective; hence the statement about bijectivity in that case is straightforward.
In general, elements in different A(oF )-orbits may belong to the same G(oF )-orbit;
for instance, if X+ = H \G with H connected then the map G(oF ) 3 g 7→ x0 · g ∈
X+(oF ) will be surjective by an application of Lang’s theorem (the vanishing of
Galois cohomology of H over a finite field). But it is also not always the case that
elements corresponding to the same λ will always be in the same G(oF )-orbit —
for instance, when H is not connected.

We will prove this theorem together with a theorem about orbits of the first
congruence subgroup, which will not be used here but will be useful elsewhere.
Let F denote the residue field of F .

Theorem 2.3.10. Let K1, AX,1,U1 be the preimages of 1 ∈ G(F), 1 ∈ AX (F),
1 ∈U (F) in G(oF ), AX (oF ), U (oF ), respectively. Then for every x ∈ AX (F)+, we
have x · K1 ⊂ x · AX,1 ·U1.

Proof of Theorems 2.3.8 and 2.3.10. Denote oF by o. We use the notation X c,
X c

B , Y c, etc. as above for the scheme X . The o-scheme X c is proper and hence
X c(o) = X c(F). We will first show that Y c(o) contains representatives for all
G(o)-orbits on X c(o). Let x ∈ X c(o) and denote by x̄ ∈ X c(F) its reduction. The



Spherical varieties and integral representations of L-functions 627

open, P(X)-stable subvariety X c
B meets every G-orbit; for a spherical variety for

a split reductive group over an arbitrary field (denoted F, since we will apply it to
this field) the F-points of the open B-orbit meet every G(F)-orbit. (This is proven
following the argument of [Sakellaridis 2008, Lemma 3.7.3], that is, reducing to
the case of rank one groups, and by inspection of the spherical varieties for SL2,
classified in [Knop 1995a, Theorem 5.1].) This means that there is a ḡ ∈ G(F)
(which we can lift to a g ∈ G(o)) such that x · g ∈ X c

B(F). Since X c
B is open, this

means that x · g ∈ X c
B(o) = Y c(o)×UP(X)(o). Acting by a suitable element of

UP(X)(o), we get a representative for the G(o)-orbit of x in Y c(o). Hence, G(o)-
orbits on X+(F) are represented by elements of AX (F)+ = Y c(o)∩ AX (F).

To prove that elements mapping to distinct λ, λ′ ∈3+X belong to different G(o)-
orbits, the argument of Gaitsgory and Nadler carries over verbatim: If λ and λ′

are not Q-multiples of each other, we can construct as in [Knop 1991] a toroidal
embedding X t of X+ over o such that λ($)∈ X t(o) but λ′($) /∈ X t(o). Finally, if
λ and λ′ are Q-multiples of each other (without loss of generality, λ 6= 0), then we
can find a toroidal compactification X t such that limt→0 λ(t) belongs to some G-
orbit D of codimension one, and then the intersection numbers of λ($) and λ′($)
(considered as 1-dimensional subschemes of X t ) with D are different. (Notice that
the constructions of [Knop 1991] are over a field of arbitrary characteristic, and
based on Proposition 2.3.7 one can carry them over the ring oF .)

To finish the proof of Theorem 2.3.8, if we now consider X̂ then we have a proper
morphism X̂ → X that is an isomorphism on X+. By the valuative criterion for
properness, every point in X (o)∩ X+(F) lifts to a point on X̂(o); therefore for the
last statement it suffices to determine the set of G(o)-orbits on X̂(o)∩ X+(F). By
the same argument as before, every G(o)-orbit meets Ŷ (o), and the latter intersects
AX (F) precisely in the union of AX (o)-orbits represented by 3X ∩C(X).

For Theorem 2.3.10, we first notice that X c
B(o) (where X c still denotes X ) is

K1-stable; indeed, for any x ∈ X c
B(o) and g ∈ K1 the reduction of x · g belongs to

X c
B(F), and since X c

B is open this implies that x · g ∈ X c
B(o). Now we claim that

Y c(o) ·U1 is also K1-stable; indeed, this is the preimage in X c
B(F) of Y c(F), and

for every x ∈ Y c(o) ·U1 and g ∈ K1, the reduction of x · g belongs to Y c(F). We
have already argued that elements of AX (F)+ with different images in 3+X belong
to distinct G(o)-orbits, hence to distinct K1-orbits; hence, x ·K1 belongs to the set
of elements of AX (F)+ ·U1 with the same image λx ∈3

+

X as x .
To distinguish between those elements, we assign to them some invariants that

will be preserved by the K1-action. First of all, if λx = 0, then the reduction of
x modulo p is an element of X+(F) that is preserved by K1, and the elements of
AX (F)+ · U1 having the same reduction are precisely the elements in the same
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AX,1 ·U1-orbit as x . Assume now that λx 6= 0 and fix as above a spherical em-
bedding X t of X+ over o such that limt→0 λ(t) belongs to a G-orbit of codimen-
sion one, whose closure we denote by D. Let n be the intersection number of
x ∈ X t(o)∩ X+(F) with D; then x : spec o→ X t has reductions x̄ : spec F→ D,
x̄n
: spec(o/pn) → D and x̄n+1

: spec(o/pn+1) → X t , which give rise to an F-
linear map from the fiber at x̄ of the conormal bundle of D in X t to pn/pn+1. The
group K1 preserves the reduction of x and acts trivially on the fiber of the conormal
bundle of D over it; therefore preserves this map. It is straightforward to see that
for elements of AX (F)+ ·U1 with the same image in3+X this invariant characterizes
the AX,1 ·U1-orbit of x . �

3. Conjectures on Schwartz spaces and automorphic distributions

This section is highly conjectural and only aims at fixing ideas. We speculate on
the existence of some “Schwartz space” of functions on the points of an affine
spherical variety over a local field, and explain how to construct from it distri-
butions on the automorphic quotient [G] := G(k) \G(Ak) that should have good
analytic properties. At almost every place this space of functions should come
equipped with a distinguished, unramified element that should be related (in a
rather ad hoc way, using the generalized Cartan decomposition) to intersection
cohomology sheaves on spaces defined by Gaitsgory and Nadler. In subsequent
sections we will specialize to the case where X has a certain geometry (which
we call a “preflag bundle”), and these distinguished functions will be described
explicitly, in order to understand the Rankin–Selberg method.

3.1. Formalism of Schwartz spaces and theta series.

3.1.1. Schwartz space. We fix an affine spherical variety X for a (split) reduc-
tive group G over a global field k, and for every place v of k, we denote by X+v
the space of kv-points of X+. We assume as given, for every v, a Gv-invariant
“Schwartz space” of functions S(Xv)⊂C∞(X+v ), and for almost every (finite) v a
distinguished unramified element80

v ∈S(Xv)G(ov) (called “basic vector” or “basic
function”) such that

80
v|X+(ov) = 1. (3-1)

(Clearly, the integral model that is implicit in the definitions will not play any
role.) We also assume the following regarding the support of Schwartz functions
and their growth close to the complement of X+:

• The closure in Xv of the support of any element of S(Xv) is compact.

• There exist a finite set { f1, . . . , fn} of elements of k[X ], whose common ze-
roes lie in X r X+, and a natural number n, such that for any place v and any
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8v ∈ S(Xv), there is a constant cv, equal to 1 for 8v = 80
v, such that for all

x ∈ X+(kv) we have |8v(x)| ≤ cv · (maxi | fi (x)|)−1.

At archimedean places the requirement of compact support is far from ideal, but
for our present purposes it is enough. One should normally impose similar growth
conditions on the derivatives (at archimedean places) of elements of the Schwartz
space, but we will not need them here.

The corresponding global Schwartz space is, by definition, the restricted tensor
product

S(X (Ak)) :=

′⊗
v

S(Xv) (3-2)

with respect to the basic vectors 80
v.

Despite the notation, the elements of S(X (Ak)) cannot be interpreted as func-
tions on X (Ak). They can be considered, though, as functions on X+(Ak), because
of the requirement (3-1).

We may require, without serious loss of generality, that X+(Ak) carries a pos-
itive G(Ak)-eigenmeasure dx whose eigencharacter ψ is the absolute value of an
algebraic character. We normalize the regular representation of G(Ak) on functions
on X+(Ak) so that it is unitary when restricted to L2(X)= L2(X, dx):

g ·8(x) :=
√
ψ(g)8(x · g).

The X-theta series is the following functional on S(X (Ak)):

θ(8) :=
∑

γ∈X+(k)

8(γ ). (3-3)

Translating by G(Ak), we can also consider it as a morphism

S(X (Ak))→ C∞([G]), (3-4)

which will be denoted by the same letter, that is,

θ(8, g)=
∑

γ∈X+(k)

(g ·8)(γ ). (3-5)

This sum is absolutely convergent, by the first growth assumption. (Notice that
X is affine and hence X (k) is discrete in X (Ak).)

3.1.2. Mellin transform. Now recall (Proposition 2.2.6) that, unless X is affine
homogeneous, it has a positive-dimensional group of G-automorphisms, that is,
Z(X) 6= 0. By enlarging G and dividing by the subgroup of Z(G)0 that acts triv-
ially, we will from now on assume that Z(G)0 ' Z(X) under its action on X . An
algebraic character of Z(X)will be called X-positive if it extends to the closure of a
generic orbit of Z(X), that is, χ :Z(X)→Gm is positive if for Y =Z(X) · x , where
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x is a generic point (say, a point on the open G-orbit), the function z · x 7→ χ(z) ∈
Gm ⊂Ga extends to a morphism Y→Ga . Obviously, X -positive characters span a
polyhedral cone in X(Z(X))⊗Q, and we will use the expression “sufficiently X -
positive characters” to refer to characters in the translate of this cone by an element
belonging to its relative interior. This notion will also be used for complex-valued
characters: A sufficiently X -positive character is one whose absolute value can
be written as the product of the absolute values sufficiently X -positive algebraic
characters, raised to powers ≥ 1. Similar notions will be used for the dual cone, in
the space of cocharacters into Z(X); for example, a cocharacter λ̌ is X -positive if
and only if for a generic point x ∈ X we have limt→0 x · λ̌(t)∈ X . Finally, since by
our assumption, X(G)⊗Q = X(Z(X))⊗Q, we can use the notion of X -positive
characters for characters of G, as well.

Proposition 3.1.3. The function θ(8, g) on G(k) \G(Ak) is of moderate growth.
Moreover, it is compactly supported in the direction of X-positive cocharacters
into Z(G); that is, for every g ∈ G(Ak) we have

θ(8, g · λ̌(a))= 0

if λ̌ is a nontrivial X-positive cocharacter into Z(X) = Z(G)0 and the norm of
a ∈ A×k is sufficiently large.

The statement about the support is an obvious corollary of the compact support
of8, and the statement on moderate growth will be proven in the next subsections.
Assuming it for now, we may consider the Mellin transform of θ(8, g)with respect
to the action of Z(G):

E(8, ω, g)=
∫

Z(X)(Ak)

θ(z ·8, g)ω(z) dz, (3-6)

originally defined for sufficiently X -positive idele class characters ω. We will call
this an X-Eisenstein series.

Proposition 3.1.4. For sufficiently X-positive ω, the integral (3-6) converges and
the function E(8, ω, g) is of moderate growth in g.

Proof. The convergence statement follows immediately from Proposition 3.1.3; the
statement on moderate growth is proven in the same way as Proposition 3.1.3, and
we will not comment on it separately. �

3.1.5. Adelic distance functions. Let Z ⊂ X be a closed subvariety of an affine
variety, and let X+ denote the complement of Z . We would like to define some
“natural” notion of distance from Z (denoted dZ ) for the adelic points of X+. The
distance function will be an Euler product

dZ (x)=
∏
v

dZ ,v(xv),
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where, for x ∈ X+(Ak), almost all factors will be equal to one.
We do it in the following way: First, we fix a finite set S of places, including

the archimedean ones, and an affine flat model for X over the S-integers oS . The
closure of Z in this model defines an ideal J ⊂ oS[X ]. We can choose a finitely
generated oS-submodule M of J such that M generates J as an oS[X ]-module. In
the case when X carries the action of a group G and Z is G-stable, we also choose
a compatible flat model for G over oS and require that M be G-stable (that is, the
action map maps M to M ⊗oS oS[G]).

Finally, let { fi }i be a finite set of generators of M over oS . Then for a point
x ∈ X+(Ak), we define

dZ ,v(xv)=max
i
{| fi (xv)|v} (3-7)

and

dZ (x)=
∏
v

dZ ,v(xv). (3-8)

We will call this an adelic distance function from Z . Notice that almost all
factors of this product are 1 since x ∈ X+(Ak). Moreover, the function extends by
zero to a continuous function on X (Ak).

Remark 3.1.6. For v /∈ S, the local factor dZ ,v depends only on M and not the
choices of the fi : It is the absolute value of the fractional ideal generated by the
image of M under xv : oS[X ] → ov. Moreover, the restriction of dZ ,v to X (ov)
does not depend on M , either, since the image of J generates the same fractional
ideal. (The restriction of dZ ,v to X (ov) is a height function, that is, qv raised to the
intersection number of x ∈ X (ov) with Z .)

Finally, the restriction of dZ to any compact subset of X (Ak) is up to a constant
multiple independent of choices. Indeed, such a compact subset is the product of
X (ov), for v outside of a finite number of places S′ ⊃ S, with a compact subset of∏
v∈S′ X (kv); therefore it suffices to prove independence for the dZ ,v when v ∈ S′.

For any two sets of functions { f j } j , { f ′i }i as above, we can write f ′i =
∑

j hi j f j

with hi j ∈ oS[X ] and for each v ∈ S′ there is a constant Cv such that |hi j (xv)|v ≤Cv
when x is in the given compact set. Then maxi | f ′i (xv)|v ≤ Cv max j | f ′j (xv)|v, and
therefore d ′Z (x)≤ CdZ (x) in the given compact set, where C =

∏
v∈S′ Cv.

For two complex valued functions f1 and f2 we will write f1 �
p f2 (where

the exponent p stands for “polynomially”) if there exists a polynomial P such that
| f1| ≤ P(| f2|). We will say that f1 and f2 are polynomially equivalent if f1�

p f2

and f2�
p f1.

In this language, it is easy to see that the assumption of Section 3.1.1 on growth
of Schwartz functions close to the complement of X+ is equivalent to the following:
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If Z denotes the complement of X+ in X , then for any adelic distance function dZ

from Z and any 8 ∈ S(X (Ak)), we have

|8(x)| �p dZ (x)−1 (3-9)

for every 8 ∈ S(X (Ak)).
Indeed, let the functions fi be as in the assumption of Section 3.1.1 and let the

functions f ′j define an adelic distance function as above. By enlarging S we may
assume that fi ∈ oS[X ] for all i , and by enlarging it further we may assume that the
support of 8 is the product of

∏
v /∈S X (ov) with a compact subset of

∏
v∈S X (kv).

By the assumption, the functions fi generate an ideal whose radical contains J .
Therefore, ( fi )i ⊃ J n for some J and hence for each j there are hi j ∈ oS[X ] such
that

( f ′j )
n
=

∑
i

hi j fi .

Therefore for v /∈ S and xv ∈ X (ov) we have

dZ ,v(xv)n ≤max
i
| fi (x)|,

and for v ∈ S we can find Cv such that |hi j (xv)|v ≤ Cv if x is in the support of 8.
Therefore, for x in the support of 8, we have∏

v

(max
i
| fi (xv)|v)−1

≤

∏
v∈S

C−1
v · dZ (x)−n.

Vice versa, if 8 is known to be polynomially bounded by dZ (x)−1, then it is
bounded by a constant times dZ (x)−n for some n (since dZ (x) is bounded in the
support of 8), which implies the bound of the assumption.

3.1.7. Proof of Proposition 3.1.3. Recall that an automorphic function φ is “of
moderate growth” if φ �p

‖g‖ for some natural norm ‖ · ‖ on G∞. Recall that
a “natural norm” is a positive function on G∞ that is polynomially equivalent
to ‖ρ(g)‖, where ρ denotes an algebraic embedding G ↪→ GLn , and ‖g‖ :=
max{|g|l∞, |g−1

|l∞} on GLn(k∞) (where | · |l∞ denotes the operator norm for the
standard representation of GLn on l∞({1, . . . , n})).

Assume without loss of generality that 8 =
⊗

v 8v, with 8v ∈ S(Xv), and let
S8 =

∏
S8v , where S8v is the support of 8v in X (kv) (a compact subset).

The claim of the proposition will follow from (3-9) if, in addition, we establish
that (for g ∈ G∞ and x ∈ X+(Ak))

• #(X+(k)∩ S8g)�p
‖g‖, and

• (inf dZ (X+(k)g))−1
�

p
‖g‖.
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Indeed, assuming these properties we have

θ(8, g)=
∑

γ∈X+(k)

(g ·8)(γ )≤ #(X+(k)∩ S8g−1) · sup
x∈X+(k)

|8(xg)| �p

�
p
‖g‖ ·

(
inf

x∈X+(k)
dZ (xg)

)−1
�

p
‖g‖ · ‖g‖.

The first property is standard, and follows from the analogous claim for GLn

(after fixing an equivariant embedding of X in the vector space of a representation
of G), since S8 is a compact subset of X (Ak).

To prove the second property, we may assume that the elements fi ∈ k[X ]
defining dZ span over k a G-invariant space M ⊂ k[X ] and that the norm on G∞
is induced by the l∞({ fi }i )-operator norm on GL(M∞). (If the homomorphism
G→GL(M) is not injective, then this l∞ norm is bounded by some natural norm
on G∞, which is enough for the proof of this property.) Then for every x ∈ X∞
and g ∈ G∞, we have

‖g‖−1
· dZ ,∞(x)≤ dZ ,∞(x · g)≤ ‖g‖ · dZ ,∞(x)

(where we keep assuming that dZ is defined by a basis for M).
We apply this to points x ∈ X+(F). For every x ∈ X+(k), fi (x) is in k and is

nonzero for at least one i ; hence dZ (x)=
∏
v maxi | fi (x)|v ≥maxi

∏
v| fi (x)|v = 1.

Therefore, we have dZ ,∞(x · g)≥ ‖g‖−1
· dZ ,∞(x)≥ ‖g‖−1. �

3.2. Conjectural properties of the Schwartz space. We saw in Proposition 3.1.4
that, under very mild assumptions on the basic functions 80

v, the Mellin transform
of the corresponding X -theta series converges for sufficiently X -positive charac-
ters ω. However, there is no reason to expect in general that it admits meromorphic
continuation to the set of all ω. Indeed, this often fails for the most naive choice
of basic functions, namely the characteristic functions of X+(ov). We discuss an
example, which will be encountered again in Section 4.5:

Example 3.2.1. Let G = (PGL2)
3
×Gm , and let H denote the subgroup{(

a x1

1

)
×

(
a x2

1

)
×

(
a x3

1

)
× a

∣∣∣∣ x1+ x2+ x3 = 0
}
.

If we defined the local Schwartz space to be equal to C∞c (Hv \Gv), with basic
function 8v equal to the characteristic function of (H \G)(ov) (which is equal to
the characteristic function of a single G(ov)-orbit), then, as we will explain in more
detail in Section 4.2, the integral of a cusp form against an X -Eisenstein series is
equal to the period integral of a cusp form on G over H(k)\H(Ak), and the usual
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“unfolding” method shows that this can be written as∫
A×k

W1

(
a

1

)
W2

(
a

1

)
W3

(
a

1

)
|a|s da,

where the Wi are Whittaker functions of cusp forms on PGL2 and the parameter s
depends on the restriction of the given representation to Gm(Ak) (assumed to factor
through the absolute value map, for simplicity). For <(s) large this integral can be
written as a convergent Euler product of the analogous local integrals.

An explicit but lengthy computation shows that, if the Wi (1) are normalized
to be equal to 1, if a, b, c denote the Satake parameters of the three PGL2-cusp
forms (considered as elements in C×, well-defined up to inverse), and if we set
Q = q−3/2−s , then the local unramified factors of this Euler product are equal, for
a certain choice of measure on A×k , equal to

(−1+ 3Q2
+ 3Q4

− Q6)+ (Q2
+ Q4)(a2

+ a−2
+ b2
+ b−2

+ c2
+ c−2)∏

σ=(σ1,σ2,σ3)∈{±1}3(1− Qaσ1bσ2cσ3)

−
2Q3(a+ a−1)(b+ b−1)(c+ c−1)∏
σ=(σ1,σ2,σ3)∈{±1}3(1− Qaσ1bσ2cσ3)

.

The denominator of this expression is very pleasant (it is equal to the denomina-
tor of the tensor product L-function of the three cuspidal representations), but the
numerator does not represent an L-function and it would be unreasonable to expect
that its Euler product admits meromorphic continuation. Therefore, this was not
the correct Schwartz space.

The conjectures that follow are very speculative, but will provide the suitable
ground for unifying various methods of integral representations of L-functions.
There are several reasonable assumptions that one could impose on the spheri-
cal variety, the strongest of which would be that for every irreducible admissible
representation π of G(Ak), we have dimG(Ak)(π,C∞(X+(Ak))) ≤ 1. At the very
minimum, we require from now on that the arithmetic multiplicity (Section 2.1)
of X is trivial. Equivalently, at every place v there is a unique open B(kv)-orbit,
and this also implies that generic G-stabilizers are connected6 and therefore, at
almost every (finite) place v, the space X+(ov) is homogeneous under G(ov).

Conjecture 3.2.2. Given an affine spherical variety X over k with trivial arith-
metic multiplicity, there exists a Schwartz space S(X (Ak)), in the sense described
above, such that

6If H is not connected then we have a finite cover H0
\ G → H \ G that gives rise to a finite

cover of the associated open B-orbits. But this implies that the B-stabilizer Bx of a generic point is
not connected; hence H1(k, Bx ) 6= 0, and therefore (Bx \ B) (k)) Bx (k) \ B(k).
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• the basic functions 80
v factor through the map of the generalized Cartan de-

composition

{G(ov)-orbits on X+v } →3+X

and as functions on 3+X are equal to the functions obtained via the function-
sheaf correspondence from the “basic sheaf” of Gaitsgory and Nadler, as will
be explained in 3.3.3; and

• for every 8 ∈ S(X (Ak)), the X-Eisenstein series E(8, ω, g), originally de-
fined for sufficiently X-positive characters, admits a meromorphic continua-
tion everywhere.

Remarks 3.2.3. (1) The first property could be taken as the definition of the basic
function, if one knew that the functions obtained from the Gaitsgory–Nadler
sheaf are independent of some choices, which we will explain in Section 3.3.3.
In any case, such a definition would be very ad hoc and not useful; one
hopes that there exists an alternative construction of the Schwartz space, as in
[Braverman and Kazhdan 1999].

(2) The property of meromorphic continuation is mostly dependent on the basic
vectors and not on the whole Schwartz space; for instance, at a finite number
of places we may replace any function with a function whose (local) Mellin
transform is a meromorphic multiple of the Mellin transform of the original
function without affecting the meromorphicity property. Therefore, the prop-
erties do not determine the Schwartz space uniquely; they should hold, for
instance, if we take S(Xv) to be the G-space generated by the basic vector
and C∞c (X

+
v ).

(3) The fact that the theta series is defined with reference to the group G (since
we are summing over the k-points of its open orbit) certainly seems unnatural;
it would be more “geometric” to sum over the k-points of the open subvari-
ety where Z(X) acts faithfully. However, this does not affect the validity of
Conjecture 3.2.2, since one case can be inferred from the other by induction
on the dimension of X .

The conjecture about meromorphic continuation of the Mellin transform is a
very strong one (see Section 4.5 for an example) and, in fact, is not even known
in the case of usual Eisenstein series, that is, the case of X =UP \G

aff
, where UP

is the unipotent radical of a parabolic P (except when P is a Borel subgroup). We
now formulate a weaker conjecture that says that the X -Eisenstein series can be
continued meromorphically “as functionals on the space of automorphic forms”.
In fact, the precise interpretation of them as functionals on the whole space of
automorphic forms would require a theory similar to the spectral decomposition of
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the relative trace formula, that lies beyond the scope of the present paper. There-
fore, we confine ourselves to the cuspidal component of this functional. (Notice,
however, that there are a lot of interesting examples which have zero cuspidal
contribution, e.g., X = Sp2n \GL2n .)

Conjecture 3.2.4 (weak form). Same assumptions as in Conjecture 3.2.2, but the
second property is replaced by the following:

• For every cusp form φ on G(k) \G(Ak), the integral∫
[G]
φ ·ω(g)θ(8, g) dg (3-10)

originally defined for sufficiently X-positive idele class characters ω of G,
admits meromorphic continuation to the space of all idele class characters
of G.

Remark 3.2.5. Following up on the third part of Remarks 3.2.3, we will see
in Proposition 4.4.3 that for the large class of wavefront spherical varieties (see
Section 2.1), the integral (3-10) is the same whether the theta series is defined by
summation over X+(k) or over the largest subvariety where Z(X) acts faithfully.
The reason is a phenomenon that has frequently been observed in the Rankin–
Selberg method, namely that the stabilizers of points in all but the open orbit
contain unipotent radicals of proper parabolics. Although this is not a feature of the
Rankin–Selberg method only, we present the proof there in order not to interrupt
the exposition here.

3.3. Geometric models and the basic function. We now discuss the geometric
models and explain the first requirement of Conjecture 3.2.2. The models we are
about to discuss are relevant to a spherical variety X over an equal-characteristic
local field F , and are not local, but global in nature.

3.3.1. The Gaitsgory–Nadler spaces [Gaitsgory and Nadler 2010]. Let X be an
affine spherical variety over C, and let C be a smooth complete complex algebraic
curve. Consider the ind-stack Z of meromorphic quasimaps which, by definition,
classifies data

(c,PG, σ ),

where c ∈ C , PG is a principal G-bundle on C , and σ is a section C r {c} →
PG ×

G X whose image is not contained in X r X+. Clearly, Z is fibered over C
(projection to the first factor). It is a stack of infinite type; however it is a union
of open substacks of finite type, each being the quotient of a scheme by an affine
group, and therefore one can define intersection cohomology sheaves on it without
a problem.

The same definitions can be given if G and X are defined over a finite field F.
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To any quasimap one can associate an element of X+(K)/G(O) (where O =

C[[t]], K= C((t))) as follows: Choose a trivialization of PG in a formal neighbor-
hood of c and an identification of this formal neighborhood with spec(O)— then
the section σ defines a point in X+(K), that depends on the choices made. The
corresponding coset in X+(K)/G(O) is independent of choices.

This allows us to stratify our space according to the stratification, provided by
Theorem 2.3.1, of X+(K)/G(O). We only describe some of the strata here: For
θ ∈3+X , let Zθ denote the quasimaps of the form (c,PG, σ :C r{c}→PG×

G X+)
that correspond to the coset θ ∈ X+(K)/G(O) at c. Then Zθ can be thought of
as a (global) geometric model for that coset. The basic stratum Z0 consists of
quasimaps of the form (c∈C,PG, σ :C→PG×

G X+). Notice that these substacks
do not depend on the compactification X of X+. Their closure, though, does. For
instance, the closure of Z0 can be identified with an open substack in the quotient
stack XC/GC over C , namely the stack whose S-objects are S-objects of XC/GC

but not of (X r X+)C/GC . These are the quasimaps for which the corresponding
point in X+(K)/G(O) lies in the image of X+(K)∩ X (O). Hence, the closure of
Z0 should be thought of as a geometric model for X+(K)∩ X (O).

Since the spaces of Gaitsgory and Nadler are global in nature, it is in fact im-
precise to say that they are geometric models for local spaces. However, their
singularities are expected to model the singularities of G(O)-invariant subsets
of X+(K).

3.3.2. Drinfeld’s compactifications. The spaces of Gaitsgory and Nadler described
above are (slightly modified) generalizations of spaces introduced by Drinfeld in
the cases X =UP \G

aff
or X = [P, P] \G

aff
, where P ⊂ G is a proper parabolic

and UP its unipotent radical. The corresponding spaces are denoted by B̃unP and
BunP , respectively. Our basic references here are [Braverman and Gaitsgory 2002;
Braverman et al. 2002]. The only differences between the definition of these stacks
and the stacks Z of Gaitsgory and Nadler are that the section σ has to be defined
on all C , and it does not have a distinguished point c. Therefore, for a quasimap in
Drinfeld’s spaces and any point c∈C , the corresponding element of X+(K)/G(O)
has to belong to the cosets that belong to X (O). (These will be described later when
we review the computations of [Braverman et al. 2002].)

This particular case is very important to us because it is related to Eisenstein
series, and moreover the intersection cohomology sheaf of the “basic stratum” has
been computed (when G, X are defined over F).

3.3.3. The basic function. We return to the setting where X is an affine spherical
variety for a split group G over a local, nonarchimedean field F whose ring of
integers we denote by o and whose (finite) residue field we denote by F. We
assume that X , G and the completions X , X̂ introduced before have the properties
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of Proposition 2.3.5 over o, and denote K =G(o). The goal is to define the “basic
function” 80 on X+(F), which will be K -invariant and supported in X (o). This
function will factor through the map X+(F)/K→3+X of Theorem 2.3.8. The idea
is to define a function on 3+X using equal-characteristic models of X .

Define the Gaitsgory–Nadler stack Z as in Section 3.3.1 over F. Since, by as-
sumption, XF has a completion XF with the properties of Proposition 2.3.5 (and,
hence, the same holds for the base change XF[[t]]), the generalized Cartan decom-
position 2.3.8 holds for G(F[[t]])-orbits on X+(F((t))): They admit a natural map
onto 3+X . Hence the strata Zθ of Z are well-defined over F. Let I C0 denote
the intersection cohomology sheaf of the closure of the basic stratum Z0 (how
exactly to normalize it is not important at this point, since we will normalize the
corresponding function). We will obtain the value of our function at λ̌∈3+X as the
trace of Frobenius acting on the stalk of I C0 at an F-object xλ̌ in the stratum Zλ̌.
However, since these strata are only locally of finite type, and not of pure dimen-
sion, we must be careful to make compatible choices of points as λ̌ varies. (It is
expected that I C0 is locally constant on the strata — this will be discussed below.)

The compatibility condition is related to the natural requirement that the action
of the unramified Hecke algebra on the functions that will be obtained from sheaves
is compatible, via the function-sheaf correspondence, with the action of its geo-
metric counterpart on sheaves. First of all, let us fix a quasimap x0 = (c0,P0, σ0)

in the F-objects of the basic stratum Z0. Now consider the subcategory Zx0 of
Z consisting of F-quasimaps (c0,PG, σ ) with the property that there exists an
isomorphism ι :P0|Cr{c0}

∼
−→PG |Cr{c0} (inducing isomorphisms between P0×

G X
and PG×

G X , also to be denoted by ι) such that σ = ι◦σ0. Hence, the objects in Zx0

are those obtained from x0 via meromorphic Hecke modifications at the point c0

[Gaitsgory and Nadler 2010, §4].
For each λ̌ ∈ 3+X , pick an object xλ̌ ∈ Zx0 that belongs to the stratum Zλ̌. We

define the basic function 80 on 3+X to be

80(λ̌)= c ·
∑

i

(−1)i tr(Fr, H i (I C0
xλ̌)), (3-11)

where I C0
xλ̌ denotes the stalk of I C0 at xλ̌ and Fr denotes the geometric Frobenius.

The constant c (independent of λ̌) is chosen so that 80(0)= 1.
Now we return to X (F) and we identify 80 with a K -invariant function on

X+(F) (also to be denoted by 80) via the stratification of Theorem 2.3.8.
This is the “basic function” of Conjecture 3.2.2 at the given place. The definition

implies that the support of the basic function is contained in X (o), since the closure
of the basic stratum includes the stratum Zθ only if θ corresponds to a G(o)-orbit
belonging to X (o). The independence of choices of the basic function is widely
expected but, in the absence of suitable finite-dimensional geometric models, not
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known. We impose it as an assumption, together with other properties that should
naturally follow from the properties of intersection cohomology if one had suitable
local models. Notice that for X =UP \G

aff
or X = [P, P] \G

aff
, one could have

used instead the Drinfeld models of 3.3.2 to define the basic function.

Assumption 3.3.4. (1) The basic function 80 on X+(F) is well-defined and in-
dependent of

• the choices of objects xλ̌;
• (if X = UP \G

aff
or X = [P, P] \G

aff
) which model of Section 3.3 one

uses to define them;
• the group G acting on X ; more precisely, if G1,G2 act on X and we

denote by X+1 , X+2 the open orbits, then the restriction of 80 to X+1 (F)∩
X+2 (F) should be the same.

(2) If Z is an affine homogeneous spherical G-variety and p : X→ Z a surjective
equivariant morphism, then the basic function on X , evaluated at any point
x ∈ X+(F)∩ X (o), is equal to the basic function of the fiber of p over p(x)
(considered as a G p(x)-spherical variety).

We discuss how to deduce the growth assumption on elements of the Schwartz
space (Section 3.1) for the basic function. Assume now that X is defined globally
over a number field k, and fix a finite set of places S0 and suitable oS0-models as
in Proposition 2.3.5. Recall (Section 3.1.5) that these models define a distance
function dZ =

∏
v /∈S0

dZ ,v from Z = X r X+ on
∏
v /∈S0

X (ov).

Proposition 3.3.5. Assume that there are a χ ∈ X(X)⊗R such that

|80
v(λ̌)| ≤ q〈χ,λ̌〉v

for all places v and all λ̌ ∈3+X (where qv = |Fv|). Then there is a natural number
n such that ∣∣∣∏

v /∈S0

80
v(x)

∣∣∣≤ (dZ (x))−n for all x ∈ X+(AS0
k ).

Here A
S0
k denotes the adeles outside of S0. Of course, the function is zero off∏

v /∈S0
X (ov) so the extension of the distance function off integral points of X plays

no role in the statement.

Proof. First of all, we claim:

The local distance function dZ ,v on X (ov) is G(ov)-invariant.

Indeed, G(ov) preserves the ideal of Z in ov[X ] and therefore its image in ov under
any ov-point.
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Hence, since both dZ and
∏
v /∈S0

80
v are

∏
v /∈S0

G(ov)-invariant, it suffices to
prove the proposition for a set of representatives of

∏
v /∈S0

G(ov)-orbits in the sup-
port of

∏
v /∈S0

80
v, namely elements of AX (A

S0
k ) that at every place v have image

in 3̌+X ∩C(X).
Let Y denote the “standard oS0-model” of the affine toric embedding of AX

corresponding to the cone 3̌+X ∩ C(X). By assumption (see Proposition 2.3.5),
there is a morphism Y → X . Therefore, if Y1 denotes the complement of the open
orbit on Y , the corresponding distance functions on AX (kv), for every v /∈ S0,
compare as dZ ,v ≤ dY1,v. On the other hand, clearly, for every χ ∈X(X)⊗R there
is a natural number n such that

d−n
Y1,v
≥ q〈χ,λ̌〉v

on AX (kv)∩ Y (ov) for all v /∈ S0. The claim follows. �

4. Periods and the Rankin–Selberg method

4.1. Preflag bundles. We are about to describe the geometric structure that gives
rise to Rankin–Selberg integrals. We hasten to clarify, and it will probably be clear
to the reader, that it is not a very natural structure from the general point of view
that we have taken thus far, and its occurrence should be seen as a coincidence.
Indeed, the structure is not defined in terms of the original group G, but in terms
of a possibly different group G̃, and relies on being able to decompose the variety
by a sequence of maps with simple, easily identifiable fibers.

We keep assuming that Z(G)0 ∼−→ Z(X). We will say that an affine spherical
G-variety X has the structure of a preflag bundle if it is the affine closure of a
G-stable subvariety X̃+, which has the following structure:

(1) X̃+ is homogeneous under a reductive group G̃;

(2) there is a diagram of homogeneous G̃-varieties with surjective morphisms

X̃+

L-torsor
��

Ỹ

fiber over y∈Y is a flag variety for G̃ y
��

Y (' G ′y \G ′ ' G̃ y \ G̃ with G ′y, G̃ y reductive),

where
• Y is an affine, G̃-homogeneous variety (called the base of the preflag

bundle);
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• Ỹ is proper over Y (hence the fiber over y ∈ Y is a flag variety for G̃ y);
• Ỹ is the quotient of X̃+ by the free, G̃-equivariant action of a reductive

group L that contains Z(X); and
• L is an almost direct factor of G.

Remark 4.1.1. The group G ′ has been inserted in the diagram for later reference.
It is supposed to belong to an almost direct decomposition G = L · G ′ and it
necessarily acts transitively on Y , since Z(X) acts trivially on Y while, on the other
hand, it retracts all points onto a homogeneous subvariety by Proposition 2.2.6.

Hence, the notion of a preflag bundle combines the notion of a homogeneous
affine variety (which here is the base Y ), with the notion of a preflag variety, that
is, a quasiaffine quotient of N ′′ \ G ′′ by a subgroup of M ′′, where M ′′N ′′ is the
Levi decomposition of a parabolic of G ′′ (here, the fibers over Y are such,7 setting
G ′′ equal to the stabilizer of a point on Y ). Of course, each of these constituents
can be trivial; for instance Y can be a point (in which case we are dealing with a
preflag variety, but possibly for a different group than G), or X could be equal to Y
(in which case we are dealing with affine homogeneous varieties).

In this paper we will additionally impose the condition, without mentioning it
further, that the fiber X̃+y over y ∈ Y is a product of varieties [Pi , Pi ] \Gi or is of
the form UPi \Gi , where

∏
i Gi = G̃ y . This condition will allow us to restrict our

discussion to Eisenstein series induced either from cusp forms or from characters
of parabolic subgroups, and to use the computations of [Braverman et al. 2002].
Notice that the dual group of L acts on the unipotent radical of the dual parabolic
to P̃y inside of the dual group of G̃ y ; indeed the quotient P̃y � L gives rise to a
homomorphism

Ľ→ ˇ̃L y,

where ˇ̃L y is the standard Levi dual to P̃y . We let ǔP̃ denote8 the Lie algebra of the
unipotent radical of the parabolic dual to P̃y , considered as a representation of Ľ .

7 Notice that L is necessarily a quotient of a Levi subgroup of G̃ y . Indeed, if we write as X̃+y =

H̃y \ G̃ y → P̃y \ G̃ y the map between the fibers of X̃+, resp. X̃+/L over y ∈ Y , where P̃y is a

parabolic of G̃ y , then L can be identified with a subgroup of AutG̃ y (X y) preserving the fiber of this

map, that is with a subgroup of NP̃y (H̃y)/H̃y . Since it acts transitively on the fibers of this map, it

follows that H̃y must be normal in P̃y , and L must be the quotient P̃y/H̃y . Since L is reductive, this

also implies that H̃y contains the unipotent radical of P̃y .
8 It would be more correct to consider only what will later be denoted by ǔ

f
P̃ for those factors

of X̃+y that are of the form [Pi , Pi ] \ Gi , but that does not make any difference for the statement

of Theorem 4.1.3 below, since we are only using ǔP̃ to require the meromorphic continuation of an

L-function, and the difference if we took ǔ
f
P̃ instead would just be some abelian L-function.
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The requirement that G̃ commutes with the action of Z(X) (by the condition
Z(X) ⊂ L) is meant to allow us to relate the Z(X)-Mellin transforms of X -theta
series to usual Eisenstein series on G̃ y induced from P̃y .

Example 4.1.2. The variety Matn for GLn ×GLn (n ≥ 2) is a preflag variety, and
more generally so is any N -dimensional vector space (here N = n2) with a linear
G-action, as it is equal to the affine closure of PN \GLN (with PN the mirabolic
subgroup). Notice, however, that an (n+m)-dimensional vector space (n,m ≥ 2)
can be considered as a preflag variety for both G̃ =GLn+m and G̃ =GLn ×GLm ;
which one we will choose will depend on which torus action we will consider (that
is, what is Z(X)). For instance, for the second possibility, decomposing the given
vector space as X = V = Vn ⊕ Vm we find that

(1) Y is a point;

(2) X̃+ = (Vn r {0})× (Vm r {0});
(3) G̃ = GL(Vn)×GL(Vm);

(4) L =Z(X)=Gm×Gm , the two copies acting on Vn and Vm , respectively; and

(5) we can take G = G̃ (with L identified as its center), or any subgroup thereof
that contains the center and acts spherically.

From our point of view, whether a spherical variety is a preflag bundle or not is
a matter of “chance” and in fact should be irrelevant as far as properties of X -theta
series and their applications go — the fundamental object is just X as a G-variety,
and not its structure of a preflag bundle. We will try to provide support for this point
of view in Section 4.5. However, in absence of a general proof of Conjecture 3.2.2,
this is the only case where its validity, in the weaker form of Conjecture 3.2.4, can
be proven. Moreover, the concept of preflag bundles is enough to explain a good
part of the Rankin–Selberg method.

We assume throughout in this section that the local Schwartz spaces S(Xv) are
the G-spaces generated by the “basic function”, which we extract from computa-
tions on Drinfeld spaces (outside of a finite number of places), and by functions in
C∞c (X

+
v ) obtained as convolutions of delta functions with smooth, compactly sup-

ported measures on Gv. (At nonarchimedean places, such functions span C∞c (Xv).)
The main result of this section is the following:

Theorem 4.1.3. Assume that X is a wavefront spherical variety with trivial arith-
metic multiplicity that has the structure of a preflag bundle, and let τ vary over
a holomorphic family of cuspidal automorphic representations of G (that is, an
irreducible cuspidal representation twisted by idele class characters of the group).
Let τ1 denote the isomorphism class of the restriction of τ to L , and assume that for
some finite set of places S, the partial L-function L S(τ1, ǔP̃ , 1) has meromorphic
continuation everywhere (as τ varies in this family).
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Then Conjecture 3.2.4 holds for φ ∈ τ and S(Xv) as described above.

We prove this theorem in Section 4.4 by appealing to the meromorphic con-
tinuation of usual Eisenstein series, after explicitly describing the basic vectors
according to the computations of intersection cohomology sheaves on Drinfeld
spaces in [Braverman et al. 2002]. However, the application of the meromorphic
continuation of Eisenstein series is not completely trivial as in some cases we have
to use the theory of spherical varieties to show that as we “unfold” this integral cer-
tain summands vanish (in the language often used in the theory of Rankin–Selberg
integrals, certain G-orbits on X are “negligible”). We start by demonstrating an
extreme case, which gives rise to period integrals.

4.2. Period integrals. First consider the extreme case of a preflag bundle with
trivial fibers: Namely, choosing a point x0∈ X (k), we have X=H\G with H=Gx0

reductive. Then at each place v /∈ S0 the basic function is the characteristic function
of X (ov), and we may assume that S(X (Ak)) = C∞c (X (Ak)). The multiplicity-
freeness assumption of Section 3.2 implies, in particular, that at almost every place
G(ov) acts transitively on X (ov). Then we can take 8 ∈ S(X (Ak)) of the form
8 = h ? δx0 , where h ∈ H(G(Ak)), the Hecke algebra of compactly supported
smooth measures on G(Ak), and δx0 is the delta function at x0 (considered as a
generalized function).

Then, if ȟ denotes the element of H(G(Ak)) adjoint to h, the integral∫
G(k)\G(Ak)

φ ·ω(g)θ(8, g) dg

of Conjecture 3.2.4 is equal to∫
H(k)\H(Ak)

(ȟ ? φ) ·ω(g) dg. (4-1)

This is called a period integral, and such integrals have been studied extensively.
Hence period integrals are the special case of the pairing of Conjecture 3.2.4 that
is obtained from preflag bundles with trivial fibers (that is, affine homogeneous
spherical varieties).

For example, when X =GL2 and G=Gm×GL2, with Gm acting as a noncentral
torus of GL2 by multiplication on the left, we get the period integral of Hecke (1-2),
discussed in the introduction. All spherical period integrals are included in the lists
of Knop and van Steirteghem [2006] which we will discuss in the next section.

4.3. Connection to usual Eisenstein series.

4.3.1. Certain stacks and sheaves related to flag varieties. The goal of this subsec-
tion is to explicate the basic functions80

v for preflag bundles, based on the compu-
tations of [Braverman et al. 2002]. We work with the varieties X = [P, P] \G

aff
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or X = UP \G
aff

and use the notation of Section 3.3.2. We do not aim to give
complete definitions of the constructions of [ibid.], but to provide a guide for the
reader who would like to extract from it the parts most relevant to our present
discussion. The final result will be the following formula for the basic function80

(locally at a nonarchimedean place, which we suppress from the notation):

Theorem 4.3.2. Let X = H \G in each of the following cases.

• If H =UP , then

80
=

∑
i≥0

q−i
|SatM

(
Symi (ǔP)

)
? 1H K

= |SatM

(
1∧top

(1−q−1ǔP)

)
? 1H K . (4-2)

• If H = [P, P], then

80
=

∑
i≥0

q−i
|SatMab

(
Symi (ǔ

f
P)

)
? 1H K

= |SatMab

(
1∧top

(1−q−1ǔ
f
P)

)
? 1H K . (4-3)

Here |Sat denotes the power series in the Hecke algebra associated by the Satake iso-
morphism to the given power series in the representation ring of the dual group —
it will be explained in detail in Section 4.3.5.

We denote by 3G,P the lattice of cocharacters of the torus M/[M,M] and by
3

pos
G,P the subsemigroup spanned by the images of 1̌r 1̌M . For every θ ∈ 3pos

G,P

we have a canonical locally closed embedding jθ :C×BunP→BunP [Braverman
et al. 2002, Proposition 1.5]. The image will be denoted by (θ)BunP . (Notice:
This is not the same as what is denoted in [loc. cit.] by θBunP , but rather what
is denoted by U(θ)BunP , when U(θ) is the trivial partition of θ .) Its preimage in
B̃unP will be denoted by (θ)B̃unP . We have a canonical isomorphism

(θ)B̃unP ' BunP ×BunM H(θ)
M ,

where H(θ)
M is a stack that will be described below.

Remarks 4.3.3. (i) If X = [P, P] \G
aff

under the Mab
= M/[M,M]×G-action,

then 3+X can be identified with 3G,P , and (θ)BunP is precisely the analog of what
we denoted by Zw0θ on the Gaitsgory–Nadler stacks, where w0 is the longest el-
ement in the Weyl group of G. The reason that only θ ∈ 3pos

G,P appear is that, as
we remarked in Section 3.3.2, the quasimaps on Drinfeld spaces are, by definition,
not allowed to have poles. For the reader who would like to trace this back to
the combinatorics of quasiaffine varieties and their affine closures of Section 2.2,
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we mention that the cone spanned by ρ(D) is the cone spanned by the images
of 1̌r 1̌M .

(ii) If X =UP \G
aff

under the M ×G-action, then

3+X ' {λ̌ ∈3A | 〈λ̌, α〉 ≤ 0 for all α ∈1M}

(where we denote by A the maximal torus of G and by 3A its cocharacter lattice).
There is a map 3X → 3G,P , and (θ)B̃unP corresponds to the union of the strata
Zw0λ̌ of Gaitsgory–Nadler, with λ̌ ranging over all the M-dominant preimages of θ .

We have the geometric Satake isomorphism, that is, a functor Loc : Rep(Ǧ)→
Perv(GG) such that the irreducible representation of Ǧ with highest weight λ̌
goes to the intersection cohomology sheaf of a G(o)-equivariant closed, finite-
dimensional subscheme GG

λ̌. We will make use of this functor for M , rather
than G. If V is a representation of M̌ — assumed “positive” (this has to do with
the fact that we don’t allow poles, but there’s no need to explain it here) — and
θ ∈ 3

pos
G,P , then we define Loc(θ)(V ) to be Loc(Vθ ), where Vθ is the θ -isotypic

component of V . (We ignore a twist by Ql[1](1
2)
−1 introduced in [Braverman

et al. 2002], and modify the results accordingly.)
We now introduce relative, global versions of the spaces above. We denote by

HM the Hecke stack of M . It is related to GM as follows: If we fix a curve C and a
point x ∈ C then, by definition, GM is the functor Schemes→ Sets that associates
to every scheme S the set of pairs (FG, β), where FM is a principal M-bundle
over C × S and β is an isomorphism of it outside of (C r {x})× S with the trivial
M-bundle. The relative version of this, as we allow the point x to move over the
curve, is denoted by GM,C , and the relative version of the latter, as we replace the
trivial M-bundle with an arbitrary M-bundle, is HM . It is fibered over C ×BunM .

3pt In [ibid., p. 389], certain closed, finite-dimensional subschemes G+,θM of
GM are defined for every θ ∈ 3pos

G,P , which at the level of reduced schemes are
isomorphic to GM

[(θ), where [(θ) is an M-dominant coweight associated to θ —
the “least dominant” coweight mapping to θ . The relative versions of those give
rise to substacks H(θ)

M of HM .
For these relative versions we have: Functors LocBunM ,C (resp. Loc(θ)BunM ,C ) from

Rep(M̌) to perverse sheaves on HM (resp. H(θ)
M ) and LocBunP ,C (resp. Loc(θ)BunP ,C )

to perverse sheaves on BunP ×BunM HM (resp. BunP ×BunM H(θ)
M ), the latter being

I CBun P along the base BunP .
Then the main theorem of Braverman et al. [Theorem 1.12] is a description of the
∗-restriction of I CB̃unP

to (θ)B̃unP ' BunP ×BunM H(θ)
M . Moreover, [Theorem 7.3]

does the same thing for I CBunP
and (θ)BunP ' C ×BunP . The normalization of

I C sheaves is that they are pure of weight 0; that is, for a smooth variety Y of
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dimension n we have I CY ' (Ql(
1
2)[1])

⊗n , where Ql(
1
2) is a fixed square root

of q .

Theorem 4.3.4 [Braverman et al. 2002, Theorems 1.12 and 7.3]. The ∗-restriction
of I CB̃unP

to (θ)B̃unP ' BunP ×BunM H(θ)
M is equal to

Loc(θ)BunP ,C

(⊕
i≥0 Symi (ǔP)⊗Ql(i)[2i]

)
. (4-4)

The *-restriction of I CBunP
to (θ)BunP ' C ×BunP is equal to

I C
(θ)BunP

⊗Loc
(⊕

i≥0 Symi (ǔ
f
P)θ ⊗Ql(i)[2i]

)
. (4-5)

Here ǔP denotes the adjoint representation of M̌ on the unipotent radical of the
parabolic dual to P . Moreover, ǔ

f
P denotes the subspace that is fixed under the

nilpotent endomorphism f of a principal sl2-triple (h, e, f ) in the Lie algebra
of M̌ . For the definition of Loc(V ), which takes into account the grading on V
arising from the h-action, see [ibid., §7.1].

4.3.5. The corresponding functions. Let us fix certain normalized Satake isomor-
phisms. As before, our local, nonarchimedean field is denoted by F , its ring of
integers by oF , and our groups are assumed to have reductive models over oF . As
usual, we normalize the action of M(F) (resp. Mab(F)) on functions on (H\G)(F)
where H =UP (resp. [P, P]) so that it is unitary on L2((H \G)(F)):

m · f (H(F)g)= δ1/2
P (m) f (H(F)m−1g), (4-6)

where δP is the modular character of P . We let M0 = M(oF ), and normalize the
(classical) Satake isomorphism as follows:

• For the Hecke algebra H(M,M0) in the usual way,

SatM : C[M̌]M̌ ' C[Rep M̌] ∼−→H(M,M0),

where C[Rep M̌] is the Grothendieck algebra over C of the category of alge-
braic representations of M̌ .

• For the Hecke algebra H(Mab,Mab
0 ) we shift the usual Satake isomorphism

H(Mab,Mab
0 ) ' C[Z(M̌)] ' C[Rep Z(M̌)] by e−ρM , where ρM denotes half

the sum of positive roots of M . In other words, if h is a compactly supported
measure on M(F)/M0, considered (canonically) as a linear combination of
cocharacters of Mab and hence as a regular function f on the center Z(M̌)
of its dual group, then we will assign to h the function z 7→ f (eρM z) on the
subvariety e−ρM Z(M̌) of Ǧ:

SatMab : C[e−ρM Z(M̌)] ∼−→H(Mab,Mab
0 ).
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Let 1H K denote the characteristic function of H \ H K (where K = G(oF )),
and consider the action map H(M,M0)→ C∞c ((UP \G)(F))M0×K , respectively
H(Mab,Mab

0 ) → C∞c (([P, P] \ G)(F))K given by h 7→ h ? 1H K . The map is
bijective, and identifies the module C∞c ((H \ G)(F))M0×K with C[M̌]M̌ , resp.
C[e−ρM Z(M̌)]. Our normalization of the Satake isomorphism is such that this is
compatible with the Satake isomorphism SatG :H(G, K )= C[Ǧ]Ǧ = C[Rep(Ǧ)]
for G, in the sense that for f ∈ C[Ǧ]Ǧ we have

SatG( f ) ? 1H K = |SatM or Mab( f ) ? 1H K .

Here and later, by the symbol ȟ we will be denoting the adjoint of the element h
in a Hecke algebra. Its appearance is due to the definition (4-6) of the action of M
as a right action on the space and a left action on functions. We extend the “Sat”
notation to the fraction field of C[Rep M̌] (and, respectively, of C[e−ρM Z(M̌)]),
where SatM or Mab(R) (with R in the fraction field) is thought of as a power series
in the Hecke algebra.

Returning to the Drinfeld spaces discussed in the previous subsection, we let
Ff(E)(x) :=

∑
i (−1)i tr(Fr, H i (Ex)) denote the alternating sum of the trace of

Frobenius acting on the homology of the stalks of a perverse sheaf (Ff stands
for “faisceaux-fonctions”). As in Section 3.3.3, we fix an object x0 on the basic
stratum, a point c0 ∈C (recall that in the definition of Drinfeld’s spaces, quasimaps
do not have distinguished points) and we evaluate Ff(E), where E = I CB̃unP

or
I CBunP

, only at objects xλ̌ that are obtained by M ×G-Hecke modifications at c0.
This way, and using the Iwasawa decomposition, we obtain our basic function 80,
which is an M0×K -invariant function on (H \G)(F). Recall that it is by definition
normalized such that 80(H \ H1)= 1.

The study of the Hecke correspondences in [Braverman and Gaitsgory 2002]
implies that

Ff(LocBunP ,C(V ))= |SatM(V ) ?Ff(LocBunP ,C(1)) if H =UP ,

and

Ff(Loc(V ))= |SatMab(V ) ?Ff(Loc(1)) if H = [P, P].

Remark 4.3.6. The “unitary” normalization of the action of M is already present
in the sheaf-theoretic setting as follows: Suppose that an object xλ̌ belongs to
(λ̌)BunP and can be obtained from x0 via Hecke modifications at the distinguished
object of x0. Then the dimension of (λ̌)BunP 'C×BunP at xλ̌ is 〈λ̌, 2ρP〉 less than
that of (0)BunP around x0, where ρP denotes the half-sum of roots in the unipotent
radical of P , that is, δP = e2ρP . Hence, by the aforementioned normalization of
I C sheaves, the contribution of the factor I C(λ̌)BunP (via Theorem 4.3.4) to80(λ̌)
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will be q〈λ̌,ρP 〉 times the contribution of the factor I C(0)BunP to 80(0). Similarly
for the strata of B̃unP .

Thus, Theorem 4.3.4 translates to the statement of Theorem 4.3.2:
• If H =UP , then 80

=

∑
i≥0

q−i
|SatM(Symi (ǔP)) ? 1H K

= |SatM

(
1∧top

(1−q−1ǔP)

)
? 1H K .

• If H = [P, P], then 80
=

∑
i≥0

q−i
|SatMab(Symi (ǔ

f
P)) ? 1H K

= |SatMab

(
1∧top

(1−q−1ǔ
f
P)

)
? 1H K .

Notice that in the last expression ǔ
f
P is considered as a representation of the maxi-

mal torus Ǎ of M̌ determined by the principal sl2-triple (h, e, f ) and, by restricting
its character to the subvariety e−ρM Z(M̌), as an element of H(Mab,Mab

0 ). This is
the case studied in [Braverman and Kazhdan 2002], and80 is the function denoted
by cP,0 there.

4.3.7. Connection to Eisenstein series. Now we discuss our main conjecture when
the variety is X = UP \G

aff
or X = [P, P] \G

aff
under the (normalized) action

of M ×G, resp. Mab
×G. In the latter case, our Eisenstein series E(8, ω, g) are

the usual (degenerate, if P is not the Borel) principal Eisenstein series normal-
ized as in [Braverman and Kazhdan 1999; 2002], and hence E(8, ω, g) is indeed
meromorphic for all ω.

It will be useful to recall how these meromorphic sections are related to the
more usual sections E( f, ω, g), which are defined in the same way but with f ∈
C∞c (([P, P] \G)(Ak)). We assume that 8=

∏
v 8v, f =

∏
v fv and S is a finite

set of places (including S0) such that 8v =80
v and fv = f 0

v := 1U\G(ov) for v /∈ S.
Let us also assume for simplicity that 8v = fv for v ∈ S (a finite number of places
certainly do not affect meromorphicity properties). Clearly, for E(8, ω, g) and
E( f, ω, g) to be nonzero, the character ω must be unramified outside of S. Then
by the results of the previous paragraph we have

E(8, ω, g)= L S(e−ρMω, ǔ
f
P , 1)E( f, ω, g), (4-7)

where L S(e−ρMω, ǔ
f
P , 1) denotes the value at 1 of the partial (abelian) L-function

corresponding to the representation ǔ
f
P , whose local factors (at each place v) are

considered as rational functions on the maximal torus Ǎ⊂ M̌ and evaluated at the
point e−ρMωv ∈ e−ρM Z(M̌)⊂ Ǎ.

Now let us consider the case X =UP \G
aff

. We let τ vary over a holomorphic
family of cuspidal representations of M × G and let τ 7→ φτ be a meromorphic



Spherical varieties and integral representations of L-functions 649

section; write τ = τ1 ⊗ τ2 according to the decomposition of the group M × G,
and assume that, accordingly, φτ = φτ1 ⊗ φτ2 , a pure tensor. Assume momentar-
ily that the central character of τ is sufficiently X -positive. If in the notation of
Conjecture 3.2.4 we replace the group G by the group M × G, and perform the
integration of the conjecture, but only over the factor M(k) \ M(Ak), then this
integral can be written as∫

M(k)\M(Ak)

φτ (m, g)θ(8, (m, g))dm = φτ2(g)
∫

M(k)\M(Ak)

φτ1

(m)θ(8, (m, g))dm. (4-8)

It is valued in the space of functions on G(k) \ G(Ak). If Eis : I G(Ak)
P(Ak)

(τ1) →

C∞(G(k) \ G(Ak)) denotes the usual Eisenstein operator, then by unfolding the
last integral we see that it is equal to the Eisenstein series

EM(8, φ1, g) := Eis
(∫

M(Ak)

φτ1(m)(m ·8)dm
)
(g), (4-9)

hence the connection to usual Eisenstein series.

Proposition 4.3.8. Assume that the partial L-function L S(τ1, ǔP , 1) (for some
large enough S) has meromorphic everywhere as τ1 is twisted by characters of M.
Then the expression (4-8) admits meromorphic continuation to all τ1.

Proof. By the meromorphic continuation of Eisenstein series, it is enough to show
that the integral (8, φτ1) 7→

∫
M(Ak)

φτ1(m)(m ·8)dm, which represents a morphism

ιτ1 : S(UP \G(Ak))→ I G(Ak)
P(Ak)

(τ1),

admits meromorphic continuation in τ1. This would be the case if 8 was in
C∞c (UP \G(Ak)). The analogous morphism C∞c (UP \G(Ak))→ I G(Ak)

P(Ak)
(τ1) will

also be denoted by ιτ1 .
Again, we let S be a finite set of places containing S0 and take functions 8 =∏
8v ∈ S(UP \ G(Ak)) and f =

∏
v fv ∈ C∞c (UP \ G(Ak)) such that for v /∈ S

8v = 8
0
v is the basic M0× K -invariant function of the previous paragraph, fv =

f 0
v = 1UP K and for v ∈ S we have 8v = fv (for simplicity). Moreover, we assume

that τ1 is unramified for v /∈ S, otherwise the integral will be zero.
We saw previously that

80
v =
|SatM

(
1∧top

(1−q−1ǔP)

)
? f 0

v .

By definition of the Satake isomorphism and the equivariance of ιτ , in the domain
of convergence we have ιτ1(8)= L S(τ1, ǔP , 1)ιτ1( f ).

Therefore Eis(ιτ1(8)) = L S(τ1, ǔP , 1)Eis(ιτ1( f )), and the claim follows from
the meromorphic continuation of Eis(ιτ1( f )). �
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Remarks 4.3.9. (1) The meromorphic continuation of L S(τ1, ǔP , 1) is known
in many cases, e.g., for G a classical group and τ generic, by the work of
Langlands, Shahidi and Kim; see [Cogdell et al. 2004].

(2) Notice that, as was also observed in [Braverman and Kazhdan 1999; 2002], the
Eisenstein series (4-9) has normalized functional equations without L-factors.

4.4. The Rankin–Selberg method. According to [Bump 2005, §5], the Rankin–
Selberg method involves a cusp form on G and an Eisenstein series on a group G̃,
where we have either an embedding G ↪→ G̃ or an embedding G̃ ↪→G, or “some-
thing more complicated”. We certainly do not claim to explain all constructions
that have been called “Rankin–Selberg integrals”, but let us see how a large part9

of this method is covered by our constructions.
Let X be a preflag bundle; we will use the notation of Section 4.1. For notational

simplicity (the arguments do not change), let us also assume that L is a direct factor
of G, that is, G= L×G ′. Let8∈S(X (Ak)). Recall that the X -theta series θ(8, g)
has been defined via a sum over X+(k), where X+ denotes the open G-orbit on X .
On the other hand, to relate our integrals to usual Eisenstein series, we need to sum
over X̃+(k), where X̃+ is the open G̃-orbit. Hence, we define

θ̃ (8, g)=
∑

γ∈X̃+(k)

8(γ · g).

We compare the integral of Conjecture 3.2.4 with the corresponding integral
when θ is substituted by θ̃ :

Proposition 4.4.1. Suppose that X is a wavefront spherical variety with the struc-
ture of a preflag bundle. If φ is a cusp form on G (with sufficiently X-positive
central character, so that the following integrals converge), then∫

G(k)\G(Ak)

φ(g)θ(8, g) dg =
∫

G(k)\G(Ak)

φ(g)θ̃(8, g) dg. (4-10)

Assume this proposition for now, and let us prove Theorem 4.1.3; at the same
time, we will see that the integral of Conjecture 3.2.4 is equal to a Rankin–Selberg
integral.

9The multiplicity-one property that seems to underlie almost every integral representation
of an L-function can be achieved by nonspherical subgroups if we put extra restrictions on
the representations we are considering. For example, in the construction of the symmetric
square L-function by Bump and Ginzburg [1992], we have H = the diagonal copy of GLn in
GLn ×(a central quotient of) G̃Ln

2, where G̃Ln denotes a metaplectic cover, but one restricts to
certain “exceptional” (and induced-from-exceptional) representations on G̃Ln

2. The examples that
our method covers should be seen as the part of the method where such restrictions do not enter.
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Without loss of generality, 8 =
∏
v 8v, and φ = φ1(l)φ2(g) according to the

decomposition G = L ×G ′. By Assumption 3.3.4, and repeating the argument of
Section 4.2, we may write 8 as the convolution with an element h ∈H(G ′(Ak)) of
a Schwartz function 8y on X y(Ak), where y ∈ Y (k) and the Schwartz function on
X y(Ak) is considered as a generalized function on X̃+(Ak). Then, as in Section 4.2,∫

G(k)\G(Ak)

φ(g)θ̃(8, g) dg =
∫

G y(k)\G y(Ak)

ȟ ? φ(h)θ̃X̃+y (8
y, h),

where θ̃X̃+y (8, g) denotes the theta series for the G̃ y-spherical variety X y .
By the decomposition G = L ×G ′ this is equal to∫

G ′y(k)\G ′y(Ak)

ȟ ? φ2(g)
∫

L(k)\L(Ak)

φ1(l)θ̃X̃+y (8
y, lg) dl dg.

The inner integral is equal to the Eisenstein series EL(8, φ1, g′) on the group
G̃ ′y , in the notation of (4-9), or a degenerate Eisenstein series as in (4-7), or a
product of such,10 and it has meromorphic continuation under the assumption that
L S(τ1, ǔP̃ , 1) does. Hence, we see that the integral of Conjecture 3.2.4 is equal to
the Rankin–Selberg integral:∫

G ′y(k)\G ′y(Ak)

ȟ ? φ2(g)EL(8, φ1, g) dg (4-11)

and this also completes the proof of Theorem 4.1.3. In the language of [Bump
2005, §5], our formalism combines the appearance of a subgroup G y ⊂ G with an
embedding of it into another group: G y ↪→ G̃ y .

4.4.2. Proof of Proposition 4.4.1: Negligible orbits. Proposition 4.4.1 will follow
from the following statement on the structure of certain spherical varieties:

Proposition 4.4.3. If X is a wavefront spherical variety for G with AutG(X) finite,
then the isotropy groups of all nonopen G-orbits contain the unipotent radical of a
proper parabolic of G.

From this, Proposition 4.4.1 follows easily; in the domain of convergence we
have ∫

G(k)\G(Ak)

φ(g)θ̃(8, g)=
∑

ξ∈[X̃+(k)/G(k)]

∫
Gξ (k)\G(Ak)

φ(g)g ·8(ξ) dg,

where [X̃+(k)/G(k)] denotes any set of representatives for the set of G(k)-orbits
on X̃+(k). Notice that, by the multiplicity-freeness assumption on X , the k-points

10Rankin–Selberg constructions with products of Eisenstein series have often been encountered
in the literature, e.g., [Bump et al. 1999; Ginzburg and Hundley 2004].
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of the open G-orbit form a unique G(k)-orbit. The summand corresponding to ξ
can be written ∫

Gξ (Ak)\G(Ak)

g ·8(ξ)
∫

Gξ (k)\Gξ (Ak)

φ(hg) dh dg

Since AutG(X̃+/Z(X)) is finite, for ξ in the nonopen orbit the stabilizer Gξ con-
tains the unipotent radical of a proper parabolic by Proposition 4.4.3, and since φ is
cuspidal the inner integral will vanish. Therefore, only the summand corresponding
to the open orbit survives, which folds back to the integral∫

G(k)\G(Ak)

φ(g)θ(8, g).

Proposition 4.4.3, in turn, rests on the following result of Luna. A G-homo-
geneous variety Y is said to be induced from a parabolic P if it is of the form
Y ′×P G, where Y ′ is a homogeneous spherical variety for the Levi quotient of P;
equivalently, Y = H \G, where H ⊂ P contains the unipotent radical of P .

Proposition 4.4.4 [Luna 2001, Proposition 3.4]. A homogeneous spherical variety
Y for G is induced from a parabolic P (assumed opposite to a standard para-
bolic P) if and only if the union of 1(Y ) with the support11 of the spherical roots
of Y is contained in the set of simple roots of the Levi subgroup of P.

Proof of Proposition 4.4.3. For every G-orbit Y in a spherical variety X , there is
a simple toroidal variety X̃ with a morphism X̃ → X that is birational and whose
image contains Y . Therefore, it suffices to assume that X is a simple toroidal
variety.

Moreover, if X denotes the wonderful compactification of X+ (that is, the simple
toroidal compactification with C(X) = V), then every simple toroidal variety X
admits a morphism X → X which, again, is birational and has the property that
every nonopen G-orbit on X goes to a nonopen G-orbit in X . Indeed, any nonopen
G-orbit Y ⊂ X corresponds to a nontrivial face of C(X), and its character group
X(Y ) is the orthogonal complement of that face in X(X), which is of lower rank
than X(X); therefore Y has to map to an orbit of lower rank. Moreover, Y is a
torus bundle over its image. This reduces the problem to the case where X is a
wonderful variety, which we will now assume.

By Proposition 4.4.4, it suffices to show that the union of 1(X) and the support
of the spherical roots of Y is not the whole set 1 of simple roots. The spherical
roots of Y are a proper subset of the spherical roots of X , and 1(Y ) = 1(X). It
therefore suffices to prove that for any proper subset2⊂1X , there exists a simple
root α ∈1r1(X) such that α is not contained in the support of 2.

11The support of a subset in the span of 1 is the smallest set of elements of 1 in the span of
which it lies.
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Define a∗ :=X(A)∗⊗Q and a∗P(X)= (1(X))
⊥
⊂ a∗, and consider the canonical

quotient map q : a→ Q. Denote by f∅ ⊂ a∗ the antidominant Weyl chamber in a.
Every set of spherical roots s ⊂1X corresponds to a face Vs ⊂V=V∅⊂Q (more
precisely, Vs is the face spanning the orthogonal complement of s), and similarly
every set r ⊂ 1 of simple roots of G corresponds to a face fr ⊂ f∅. The simple
roots in the support of γ ∈ 1X are those corresponding to the largest face f of f∅
that is contained in q−1(V{γ }). Notice that the maximal vector subspace f1 of f∅
maps into the maximal vector subspace V1X of V.

By assumption, f∅ surjects onto V. Moreover, since every element of f∅ can
be written as a sum of an element in f1(X) and a nonnegative linear combination
of 1̌(X) := {α̌ | α ∈1(X)}, and since 1̌(X) is in the kernel of a→ Q, it follows
that f1(X) surjects onto V. Now let 2⊂1X be a proper subset. Let fs be a face of
f1(X) that surjects onto V2. Since fs 6= f1, there is an α ∈1r1(X) that is not in
the support of 2. �

4.5. Tensor product L-functions of GL2 cusp forms. In Section 3 we proposed a
general conjecture involving distributions that are obtained from the geometry of
an affine spherical variety X , and in this section we saw how this conjecture is true,
and gives rise to period- and Rankin–Selberg integrals, in the case that X admits the
structure of a “preflag bundle”. It was written above that such a structure should
be considered essentially irrelevant and a matter of “chance”. We now wish to
provide some evidence for this point of view by recalling the known constructions
of n-fold tensor product L-functions for GL2, where n ≤ 3. The point is that while
these constructions seem completely different from the point of view of Rankin–
Selberg integrals, from the point of view of spherical varieties they are completely
analogous!

Before we consider the specific example, let us become a bit more precise about
what it means that a period integral is related to some L-value. Let π =

⊗
′
πv

be an (abstract) unitary representation of G(Ak), the tensor product of unitary
irreducible representations πv of G(kv) with respect to distinguished unramified
vectors u0

v (for almost every place v) of norm 1. Let P be a functional on π . In
our applications the functional P will arise as the composition of a cuspidal auto-
morphic embedding ν : π→ L2

cusp(G(k) \G(Ak)), assumed unitary, with a period
integral or, more generally, the pairing (3-10) with a fixed X -theta series. Let ρ
be a representation of the dual group, and let L(π, ρ, s) denote the value of the
corresponding L-function at the point s. We say that |P|2 is related to L(π, ρ, s)
if there exist nonzero skew-symmetric forms 3v : πv ⊗ π̄v → C for every v such
that for any large enough set of places S, and for a vector u =

⊗
v∈S u0

v ⊗v /∈S uv,
one has |P(u)|2= L S(π, ρ, s)·

∏
v∈S 3v(uv, ūv). (Of course, for this to happen we

must have3v(u0
v, ū0

v)= Lv(πv, ρv, s).) Moreover, it is required that each3v has a
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definition that has no reference to any other representation but πv. The reader will
notice that the last condition does not stand the test of mathematical rigor; however,
not imposing it would make the rest of the statement void up to whether P is zero
or not. In practice, the 3v will be given by reference to some nonarithmetic model
for πv. See [Ichino and Ikeda 2010] for a precise conjecture in a specific case, and
[Sakellaridis and Venkatesh 2012] for a more general but less precise conjecture.12

Example 4.5.1. If P denotes the Whittaker period

φ 7→

∫
U (k)\U (Ak)

φ(u)ψ−1(u) du

(where ψ is a generic idele class character of the maximal unipotent subgroup) on
cusp forms for G = GLn , then |P|2 is related to the L-value

1
L(π,Ad, 1)

.

see [Jacquet 2001; Sakellaridis and Venkatesh 2012]. Notice that the examples we
are about to discuss admit “Whittaker unfolding” and this factor will enter, although
most references introduce a different normalization and ignore this factor.

Now we are ready to discuss our example: Let n be a positive integer, let G =
(GL2)

n
× Gm , and let H be the subgroup: We let X = H \G

aff
. As usual, we

normalize the action of G on functions on X+ so that it is unitary with respect
to the natural measure. Let us see that for n = 1, 2, 3, the variety X admits the
structure of a preflag bundle, and hence the integral of Conjecture 3.2.4 can be
interpreted as a Rankin–Selberg integral, as discussed above:

• n = 1. Here H \Gaff
= H \ G and we get the integral (1-2) of Hecke. If

τs = τ⊗|·|
s , where τ is a cuspidal representation of GL2 (for simplicity, with

trivial central character), the square of the absolute value of the corresponding
linear functional on τs ⊗ τ̃s is related to the L-value

L(τ, 1
2 + s)L(τ̃ , 1

2 − s)
L(τ,Ad, 1)

.

• n = 2. Here the projection of H to GL2
2 is conjugate to the mirabolic sub-

group of GL2 embedded diagonally. Therefore, the affine closure of H \ G
is equal to the bundle over GLdiag

2 \(GL2)
2 with fiber equal to the affine clo-

sure of U2 \GL2, where U2 denotes a maximal unipotent subgroup of GL2.
Corresponding to this preflag bundle is a Rankin–Selberg integral “with the

12For the sake of completeness, we should mention that when P comes from a period integral one
should in general modify the conjecture above by some “mild” arithmetic factors, such as the sizes
of centralizers of Langlands parameters — see [Ichino and Ikeda 2010]. However, in the example we
are about to discuss there is no such issue since the group is GL2.
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Eisenstein series on the smaller group” GLdiag
2 , namely the classical integral

of Rankin and Selberg. If τ = τ1 ⊗ τ2 ⊗ | · |
s is a cuspidal automorphic

representation of G (for simplicity, with trivial central character), the square
of the absolute value of the corresponding integral is related to the L-value

L(τ1⊗ τ2,
1
2 + s)L(τ̃1⊗ τ̃2,

1
2 − s)

L(τ,Ad, 1)
.

• n = 3. In this case there is a structure of a preflag variety not on X , but on
X0, the corresponding spherical variety for the subgroup

G0
= {(g1, g2, g3, a) ∈ G | det(g1)= det(g2)= det(g3)}.

The structure of a preflag variety involves the group G̃ = GSp6 and the sub-
group H̃ = [P̃, P̃], where P̃ is the Siegel parabolic — this is a construction
of Garrett [1987]. The group (GL3

2)
0 is embedded in GSp6 as (GSp3

2)
0. Then,

according to [Piatetski-Shapiro and Rallis 1987, Corollary 1 to Lemma 1.1],
the group G0 has an open orbit in [P̃, P̃] \ G̃ with stabilizer equal to H .

Lemma 4.5.2. The affine closure X0 of H \G0 is equal to the affine closure
of [P̃, P̃] \ G̃.

Proof. Denote by Y the affine closure of [P̃, P̃] \ G̃. We have an open em-
bedding X0 ↪→ Y . By [Piatetski-Shapiro and Rallis 1987, Lemma 1.1], all
nonopen G-orbits have codimension at least two. Therefore, the embedding
is an isomorphism. �

Hence, our integral for X0 coincides with the Rankin–Selberg integral of Gar-
rett. The only thing that remains to do is to compare the normalizations for
the sections of Eisenstein series. From [Piatetski-Shapiro and Rallis 1987,
Theorem 3.1], one sees that the square of the absolute value of our integral is
related to the L-value

L(τ1⊗ τ2⊗ τ3,
1
2 + s)L(τ̃1⊗ τ̃2⊗ τ̃3,

1
2 − s)

L(τ,Ad, 1)
.

(Again, for simplicity, we assume trivial central characters. Notice that the
zeta factors in [Piatetski-Shapiro and Rallis 1987, Theorem 3.1] disappear
because of the correct normalization of the Eisenstein series!)

It is completely natural to expect the corresponding integral for n = 4 or higher
to be related to the n-fold tensor product L-function. It becomes obvious from the
example above that the point of view of the spherical variety is the natural setting
for such integrals, while at the same time the structure of a preflag bundle may not
exist and, even if it exists, it has a completely different form in each case, which
conceals the uniformity of the construction.
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5. Smooth affine spherical varieties

Given that we do not know how to prove Conjecture 3.2.4, except in the cases
of wavefront preflag bundles, it is natural to ask the purely algebro-geometric
question, Which spherical varieties admit the structure of a preflag bundle? An
answer would amount to a complete classification of Rankin–Selberg integrals, in
the restricted sense that “Rankin–Selberg” has been used here. Such an answer has
been given in the special case of smooth affine spherical varieties: These varieties
automatically have the structure of a preflag bundle, and they have been classified
by Knop and Van Steirteghem [2006], and hence can be used to produce Eulerian
integrals of automorphic forms! There seems to be little point in computing every
single example in the tables of [Knop and Van Steirteghem 2006], and my exami-
nation of most of the cases has not produced any striking new examples. However,
we get some of the best-known integral constructions, as well as some new ones
(which do not produce any interesting new L-functions).

5.1. Smooth affine spherical triples. By Theorem 2.2.5 of Luna, every smooth
affine spherical variety of G (over an algebraically closed field in characteristic
zero) is of the form V ×H G, where H is a reductive subgroup (so that H \G is
affine) and V is an H -module. As we have seen in Example 4.1.2, vector spaces
are preflag varieties, and therefore all smooth affine spherical varieties are preflag
bundles. We check the details carefully:

Lemma 5.1.1. Every smooth affine spherical variety admits the structure of a pre-
flag bundle.13

Proof. If X = V ×H G as above, we set Y = (N(H)0 · H) \G. We let X̃+ be the
subvariety on which Z(X) acts freely, and take G̃ =G. Clearly, Z(X) contains the
connected centralizer of H in GL(V ) (which is a torus, since X is spherical), so
if V =

⊕
i Vi is the decomposition into irreducible H -representations according

to Z(H)0, then X̃+ =
∏

i (Vi r {0})×H G, and G acts transitively on X̃+. By the
assumption Z(X) = Z(G)0, Z(X) is the connected center of N(H), and hence
Ỹ := X̃+/Z(X) has fibers PV1×· · ·×PVn over Y and is therefore proper over Y .

�

The corresponding integrals include all period integrals over reductive sub-
groups, as well as Rankin–Selberg integrals involving mirabolic Eisenstein series
(that is, those induced from the mirabolic subgroup of GLn).

13Strictly speaking, the “affine closure” condition is not satisfied when the fibers have one-
dimensional summands under the action of Z(X); one should modify the definition of a preflag
bundle to allow this case, but in order not to over complicate things we prefer not to do so. Notice
that after integrating by characters of Z(X) the “basic function” of Gm differs from that of Ga only
by a Dirichlet L-function, so the meromorphic properties of the integrals we are considering are not
affected by whether we compactify Gm or not.
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In [2006], Knop and Van Steirteghem classify all smooth affine spherical triples
(g, h, V ), which amounts to a classification of smooth affine spherical varieties up
to coverings, central tori and Gm-fibrations. We recall their definitions:

Definition 5.1.2. (1) Let h ⊂ g be semisimple Lie algebras and let V be a rep-
resentation of h. For s, a Cartan subalgebra of the centralizer cg(h) of h, put
h̄ := h⊕s, a maximal central extension of h in g. Let z be a Cartan subalgebra
of gl(V )h (the centralizer of h in gl(V )). We call (g, h, V ) a spherical triple
if there exists a Borel subalgebra b of g and a vector v ∈ V such that

(a) b+ h̄= g and
(b) [(b∩ h̄)+ z]v = V , where s acts via any homomorphism s→ z on V .

(2) Two triples (gi , hi , Vi ) for i = 1, 2 are isomorphic if there exist isomorphisms
of Lie algebras resp. vector spaces α : g1→ g2 and β : V1→ V2 such that

(a) α(h1)= h2 and
(b) β(ξv)= α(ξ)β(v) for all ξ ∈ h1 and v ∈ V1.

(3) Triples of the form (g1⊕g2, h1⊕h2, V1⊕V2) with (gi , hi , Vi ) 6= (0, 0, 0) are
called decomposable.

(4) Triples of the form (k, k, 0) and (0, 0, V ) are said to be trivial. A pair (g, h)
of semisimple Lie algebras is called spherical if (g, h, 0) is a spherical triple.

(5) A spherical triple (or pair) is primitive if it is nontrivial and indecomposable.

Clearly, every smooth affine spherical variety gives rise to a spherical triple.
Conversely, each spherical triple is obtained from a (not necessarily unique) smooth
affine spherical variety, as follows by an a posteriori inspection of all spherical
triples. (The nonobvious step here is that the h-module V integrates to an H -
module, where H is the corresponding subgroup.)

The classification of all primitive spherical triples is given in [ibid., Tables 1, 2,
4 and 5], modulo the inference rules described in [Table 3]. The diagrams are read
in the following way: The nodes in the first row correspond to the simple direct
summands gi of g, the ones in the second row to the simple direct summands hi

of h and the ones in the third row to the simple direct summands Vi of V . If (g, h)
contains a direct summand of the form (h1, h1), then the h1 summand is omitted
from the first row. There is an edge between gi and h j if h j ↪→ g � gi is nonzero
and an edge between h j and Vk if Vk is a nontrivial h j -module. The edges are
labeled to describe the inclusion of h in g, resp. the action of h on V ; the labels
are omitted when those are the “natural” ones.

We number the cases appearing in the list of Knop and Van Steirteghem as
follows: First, according to the table on which they appear [Tables 1, 2, 4, 5]; and
for each table, numbered from left to right, top to bottom.
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5.2. Eulerian integrals arising from smooth affine varieties. In what follows we
will discuss a sample of the global integrals obtained from varieties in the list
of Knop and Van Steirteghem [2006]. At this point it is more convenient not to
normalize the action of G unitarily. We allow ourselves to choose the spherical
variety corresponding to a given spherical triple as is most convenient, and in
fact we sometimes replace semisimple groups by reductive ones. Of course, the
classification in [ibid.] is over an algebraically closed field, which leaves a lot of
freedom for choosing the precise form of the spherical variety over k, even when
G is split. In the discussion that follows we will always take both the group and
generic stabilizer to be split. Many of the varieties of Knop and Van Steirteghem
have zero cuspidal contribution (that is, the integral (3-10) is zero for every cusp
form) or are not multiplicity-free. Still, this list contains some of the best-known
examples of integral representations of L-functions. It contains also some new
ones.

In Section 4.5 we explained what it means for a period integral P to be “related
to” an L-value, namely by considering the value of P|π ·P|π̄ , assuming that π is
an abstract unitary representation of an adelic group, embedded unitarily into the
space of cuspidal automorphic forms for that group. For the examples that we are
about to see, we will adopt a language that describes the value of P|π itself, divided
by the value of a period integral that does not depend on a continuous parameter,
such as the Whittaker period. For example, for the Hecke integral (1-2) we say
that it is related to L(π, s+ 1

2) with respect to Whittaker normalization, while for
the Godement–Jacquet integral (1-1) we say that it is related to L(π, s− 1

2(n−1))
with respect to the “inner product” period on π ⊗ π̃ .

5.2.1. Table 1. In this table the group H is equal to G, that is, the data consists
of a group and a spherical representation of it. This table contains the following
interesting integrals (numbered according to their occurrence in the tables of Knop
and Van Steirteghem):

1. The integrals of Godement and Jacquet. Here the group is GLn ×GLm with the
tensor product representation (that is, on Matn×m). It is easy to see that if m 6= n,
then the stabilizer is parabolically induced; hence the only interesting case (as far
as cusp forms are concerned) is m = n. In this case, our integral (3-10) is that of
Godement and Jacquet:∫

Zdiag(Ak)GLdiag
n (k)\GLn(Ak)×GLn(Ak)

φ1(g1)φ2(g2)8(g−1
1 g2)|det(g−1

1 g2)|
sd(g1, g2).

15. Two new integrals. (Here there is a choice between the first and the last fun-
damental representation of GLn . It can easily be seen that they amount to the same
integral, so we will consider only ω1.)
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The group is GLm ×GLn and the representation is the direct sum Matm×n with
the standard representation for GLn . If m 6= n, n − 1 then we can easily see that
the stabilizer is parabolically induced. Hence there are two interesting cases:

(i) m = n. We let φ1 ∈ π1, φ2 ∈ π2 be two cusp forms on GLn . Then the integral
is∫

Pdiag
n (k)\GLn(Ak)×GLn(Ak)

φ1(g1)φ2(g2)8(g−1
1 g2)8

′([0, . . . , 0, 1] · g1)

· |det(g−1
1 g2)|

s1 |det(g1)|
s2 dg1 dg2.

Here 8 is a Schwartz function on Matn(Ak) and 8′ is a Schwartz function
on An

k .

Theorem 5.2.2. The integral above is Eulerian and with respect to Whittaker nor-
malization is related to the L-value

L(π1⊗π2, s2) · L(π2, s1−
1
2(n− 1)). (5-1)

Proof. It follows from the standard “unfolding” technique that the integral above,
in the domain of convergence, is equal to∫
(Un(Ak)\GLn(Ak))2

W1(g1)W ′2(g2)8(g−1
1 g2)8

′([0, . . . , 0, 1] · g1)

· |det(g−1
1 g2)|

s1 |det(g1)|
s2 dg1 dg2,

where W1(g) =
∫

Un(k)\Un(Ak)
φ1(ug)ψ(u) du and W ′2 the is same but with φ1 re-

placed by φ2 and ψ replaced by ψ−1.
The last integral is (for “factorizable data”) a product of local factors:∫

(Un(kv)\GLn(kv))2
W1,v(g1)W ′2,v(g2)8v(g−1

1 g2)8
′

v([0, . . . , 0, 1] · g1)

· |det(g−1
1 g2)|

s1 |det(g1)|
s2 dg1 dg2.

Assume that 8v = 80
v, the basic function of S(Matn(kv)). By considering the

action of the spherical Hecke algebra of G2 (that is, the second copy of GLn) on
S(Matn(kv)), the work of Godement and Jacquet [1972, Lemma 6.10] proves that

80
v(x)|det(x)|s1 = |SatG2

(
1∧

>
(
1−q

−s1+
1
2 (n−1)

v ·std
)
)
? 1GLn(o) (5-2)
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Therefore for unramified data, the last integral is equal to

L(π2, s1−
1
2(n− 1))

·

∫
(Un(kv)\GLn(kv))2

W1,v(g1)W ′2,v(g2)1GLn(ov)(g
−1
1 g2)8

′

v([0, . . . , 0, 1] · g1)

· |det(g−1
1 g2)|

s1 |det(g1)|
s2 dg1 dg2

= L(π2, s1−
1
2(n− 1))

·

∫
(Un(kv)\GLn(kv))

W1,v(g)W ′2,v(g)8
′

v([0, . . . , 0, 1] · g)|det(g)|s2 dg.

The latter is the classical Rankin–Selberg integral, which with respect to Whittaker
normalization is related to L(π1⊗π2, s2); see, for instance, [Cogdell 2003]. �

(ii) m=n−1. Notice that if V denotes the standard representation of GLn , then the
space Mat(n−1)×n ⊕V can be identified under the G1×G2 :=GLn−1×GLn-
action with the space X =Matn , where g ∈G1 acts as diag(g−1, 1) on the left
Let φ1 ∈ π1 be a cusp form on GLn−1 and φ2 ∈ π2 a cusp form in GLn . Then
the integral is∫

GLdiag
n (k)\GLn+1(Ak)×GLn(Ak)

φ1(g1)φ2(g2)

·8
(
diag(g−1

1 , 1)g2
)∣∣∣∣det(g2)

det(g1)

∣∣∣∣s1

|det(g1)|
s2 dg1 dg2,

where 8 ∈ S(Matn(Ak)).

Theorem 5.2.3. The integral above is Eulerian and with respect to Whittaker nor-
malization related to the L-value

L(π1⊗π2, s2+
1
2) · L(π2, s1−

1
2 n). (5-3)

5.2.4. Table 2. In this table H is smaller than G and the representation V of H is
nontrivial. This table contains the following interesting integrals:

1. The Bump–Friedberg integral. The group is GLm+n , where m = n or n+1, the
subgroup H is GLm ×GLn and the representation is the standard representation of
the second factor. This is the integral examined in [Bump and Friedberg 1990]:∫

GLm(k)×GLn(k)\GLm(Ak)×GLn(Ak)

φ diag(g1, g2)

∣∣∣∣det(g1)

det(g2)

∣∣∣∣s1

·8([0, . . . , 0, 1] · g2)|det g2|
s2 dg1 dg2.

It is related with respect to Whittaker normalization to the L-value

L(π, s1+
1
2)L(π,∧

2, s2).
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3. A new integral. The group is GLm+1×GLn , and G ′ = GLm ×GLn with the
tensor product of the standard representations (that is, on Matm×n). The only in-
teresting case is m = n. If n > m, then the stabilizer is parabolically induced, and
when m > n it unfolds to a parabolically induced model.

If m = n, we get∫
GLdiag(k)\GLn(Ak)×GLn(Ak)

φ1 diag(g1, 1)φ2(g2)8(g−1
1 g2)

·

∣∣∣det(g2)
det(g1)

∣∣∣s1
|det(g1)|

s2d(g1, g2).

The next result is proved as before:

Theorem 5.2.5. The integral above is Eulerian and with respect to Whittaker nor-
malization related to the L-value

L(π1⊗π2, s2+
1
2) · L(π2, s1−

1
2(n− 1)). (5-4)

5. The classical Rankin–Selberg integral. The group is GLn ×GLn and the sub-
group G ′ is GLdiag

n with the standard representation. This is the classical Rankin–
Selberg integral,∫

GLn(k)\GLn(Ak)

φ1(g)φ2(g)8([0, . . . , 0, 1] · g)|det g|s dg.

It is related with respect to Whittaker normalization to the L-value L(π1⊗π2, s);
see [Cogdell 2003].

5.2.6. Tables 4 and 5. Here the representation V is trivial; hence we get period
integrals over reductive algebraic subgroups (Section 4.2). All known cases of
multiplicity-free period integrals are contained in these tables.

6. A remark on a relative trace formula

At this point we drop our assumptions on the group G, in order to discuss nonsplit
examples. We will assume the existence of Schwartz spaces with similar properties
in this setting, in order to give a conceptual explanation to the phenomenon of
“weight factors” in a relative trace formula.

The relative trace formula is a method that was devised by Jacquet and his coau-
thors to study period integrals of automorphic forms. In its most simplistic form, it
can be described as follows: Let H1 and H2 be two reductive spherical subgroups
of G (a reductive group defined over a global field k) and let f ∈ C∞c (G(Ak)).
Then one builds the usual kernel function

K f (x, y)=
∑

γ∈G(k)

f (x−1γ y)
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for the action of f on the space of automorphic functions and (ignoring analytic
difficulties) defines the functional

RTFG
H1,H2

( f )=
∫

H1(k)\H1(Ak)

∫
H2(k)\H2(Ak)

K f (h1, h2) dh1 dh2. (6-1)

The functional can be decomposed in two ways, one geometric and one spectral,
and the spectral expansion involves period integrals of automorphic forms. By
comparing two such RTFs (that is, made with different choices of H1, H2, maybe
even different groups G) one can deduce properties of those period integrals, such
as that their nonvanishing characterizes certain functorial lifts.

The presentation above is too simplistic for several reasons: First, the correct
functional has something to do with the stack-theoretic quotient H1\G/H2, which
sometimes forces one to take a sum over certain inner forms of G and Hi . We will
not discuss stack-theoretic quotients or inner forms here, but at first approximation
we observe that from this algebro-geometric point of view the variety Hi\G is more
natural than the space Hi (k)\G(k); hence, if G(k) does not surject onto (Hi\Gi )(k)
one should take the sum of the expressions above over stabilizers Hi,ε of a set of
representatives of G(k)-orbits. (This will become clearer in a reformulation we
will present below.) Moreover, one can consider an idele class character η of Hi

and integrate against this character; we will adjust our notation accordingly, for
instance, RTFG

H1,(H2,η)
. There are often analytic difficulties in making sense of

the integrals above. And one does not have to restrict to reductive subgroups, but
can consider parabolically induced subgroups together with a character on their
unipotent radical (such as in the Whittaker period). However, we will ignore most
of these issues and focus on another one, first noticed in [Jacquet et al. 1993]: It
seems that in certain cases, in order for the relative trace formula RTFG

H1,H2
to be

comparable to some other relative trace formula, the functional (6-1) is not the
correct one and one has to add a “weight factor” in the definition, such as

RTFG
H1,H2

( f )=
∫

H1(k)\H1(Ak)

∫
H2(k)\H2(Ak)

K f (h1, h2)θ(h1) dh1 dh2, (6-2)

where θ is a suitable automorphic form on H1.
Our goal here is to explain how, under the point of view developed in this paper,

the expression above is not a relative trace formula for H1, H2 but represents a
relative trace formula for some other subgroups. We will discuss this in the context
of [Jacquet et al. 1993], though our starting point will not be (6-2) but another
formula of [ibid.] from which the identities for (6-2) are derived, and which is
closer to our point of view.

More precisely, let E/F be a quadratic extension of number fields with corre-
sponding idele class character η, G=ResE/F PGL2, G ′=PGL2×PGL2 (over F),



Spherical varieties and integral representations of L-functions 663

H ⊂ G the projectivization of the quasisplit unitary group (which is in fact split,
that is, isomorphic to PGL2 over F), H ′ = the diagonal copy of PGL2 in G ′.
(Compared to [Jacquet et al. 1993], we restrict to PGL2 for simplicity.) We con-
sider η as a character of H in the natural way. Naively, one would like to compare
the functional RTFG

H,(H,η) to the functional RTFG ′
H ′,H ′ (usual trace formula for G ′).

However, it turns out that the correct comparison is between the functionals

f 7→
∫
(H(k)\H(Ak))2

K f (h1, h2)E(h1, s)η(h1) dh1 dh2, (6-3)

f ′ 7→
∫
(H ′(k)\H ′(Ak))2

K f ′(h′1, h′2)E
′(h′1, s) dh′1 dh′2 (6-4)

on G and G ′ respectively, where E, E ′ are suitable Eisenstein series on H, H ′.
(More precisely, in the first case one takes the sum over the unitary groups of all
G(k)-conjugacy classes of nondegenerate hermitian forms for E/F , as we men-
tioned above, but only in the second variable.)

We have already made a modification to the formulation of [Jacquet et al. 1993],
namely in the second case they let G ′ = PGL2 and consider the integral∫

PGL2(k)\PGL2(Ak)

K f ′(x, x)E ′(x, s) dx,

but this is easily seen to be equivalent to our present formulation.

Claim. The functionals (6-3) and (6-4) can naturally be understood as pairings

RTFGm×G,ω
X1,X2

: S(X1(Ak))⊗S(X2(Ak))→ C

and
RTFGm×G ′,ω′

X ′1,X
′

2
: S(X ′1(Ak))⊗S(X ′2(Ak))→ C,

respectively, where X2 = H \G, X ′2 = H ′ \G ′ and X1, X ′1 are the affine closures
of the varieties UF \G and U ′F \G ′, respectively, where UF and U ′F are maximal
unipotent subgroups of H and H ′ respectively.

The varieties X1 and X ′1 are considered here as spherical varieties under Gm×G
(resp. Gm×G ′), where Gm = B2/U2, and we extend the Gm-action to the varieties
X2, X ′2 in the trivial way. The exponent ω in RTFGm×G,ω

X1,X2
will be explained below.

Before we explain the claim, let us go back to the simpler formula (6-1) and
explain how it can be considered as a pairing between S(X1(Ak)) and S(X2(Ak))

(where X i = Hi \Gi ). Here we will identify Hecke algebras with spaces of func-
tions, by choosing Haar measures. Assume that f = f̌1 ? f2 with fi ∈C∞c (G(Ak)).
Then we set 8i (g) =

∫
Hi (Ak)

fi (hg) dh. By the definition of S(X i (Ak)) when
Hi is reductive, it follows that 8i ∈ S(X i (Ak)). (It is at this point that one
should add over representatives for Gi (k)-orbits on X i (k), since in general the
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map C∞c (G(Ak))→S(X i (Ak)) is not surjective.) The functional RTFG
H1,H2

( f1? f2)

clearly does not depend on f1 and f2 but only on 81 and 82. Hence, it defines a
Gdiag-invariant functional

S(X1(Ak))⊗S(X2(Ak))→ C.

Now let us return to the setting of the claim, and of equations (6-3) and (6-4).
The product E(h1, s)η(h1) in (6-3) will be considered as an Eisenstein series on
H(k) \ H(Ak). We have seen that suitable sections of Eisenstein series can be
obtained from integrating X -theta series θGm×H

U2
(8, g), where 8∈S(U2 \H(Ak)),

against a character ω of Gm . Now consider 8 ∈ S(U2 \ H(Ak)) as a generalized
function on U2 \ G(Ak). Assume again that f = f̌1 ? f2 ∈ C∞c (G(Ak)). Then
81 := f1 ? 8 ∈ S(U2 \ H(Ak)) and 82(g) :=

∫
H2(Ak)

f (hg) dg ∈ S(H \G(Ak)).
Again, of course, we must take many f ’s and sum over representatives for orbits
of G(k) on X2(k)— incidentally, our point of view explains why there is no need
to sum over representatives for orbits in the first variable: because G(k) surjects
on X1(k)!

Similarly, one can explain (6-4) as a pairing between S(X ′1(Ak))⊗S(X ′2(Ak)),
and this completes the explanation of our claim. (We have introduced the exponents
ω and ω′ in the notation, because we have already integrated against the corre-
sponding character of Gm in order to form Eisenstein series.) Hence, by viewing
the Jacquet–Lai–Rallis trace formulas as being attached to the spaces X1, X2 and
X ′1, X ′2 instead of the original H \G and H ′ \G ′, the weight factors do not appear
as corrections any more, but as a natural part of the setup.

This point of view is very close to the geometric interpretation of the fundamen-
tal lemma which led to its proof by Ngô [2010] in the case of the Arthur–Selberg
trace formula. Indeed, by the geometric methods of Ngô (see also [Gaitsgory
and Nadler 2010]), one naturally gets a hold on the orbital integrals of unramified
functions arising from intersection cohomology, not the “naive” ones defined as
characteristic functions of G(ov)-orbits. I hope that this point of view will lead to
a more systematic study of the relative trace formula — at least by alleviating the
impression created by weight factors that it is something “less canonical” than the
Arthur–Selberg trace formula.
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