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We reformulate basepoint-free theorems using notions introduced by Shokurov,
such as b-divisors and saturation of linear systems. Our formulation is flexible
and has some important applications. One of the main purposes of this paper is
to prove a generalization of the basepoint-free theorem in Fukuda’s paper “On
numerically effective log canonical divisors”.
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1. Introduction

In this paper, we reformulate basepoint-free theorems by using Shokurov’s ideas
[2003] of b-divisors and saturation of linear systems. Combining the refined
Kawamata–Shokurov basepoint-free theorem (quoted here as Theorem 2.1) or its
generalization (Theorem 6.1) with Ambro’s formulation of Kodaira’s canonical
bundle formula, we obtain new basepoint-free theorems (Theorems 4.4 and 6.2),
which are flexible and have some important applications (Theorem 7.11). One
of the main purposes of this paper is to prove the following generalization of the
basepoint-free theorem given in [Fukuda 2002, Proposition 3.3]:

Theorem 1.1. Let (X, B) be an lc pair and let π : X → S be a proper morphism
onto a variety S. Assume the following conditions:
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(A) H is a π -nef Q-Cartier Q-divisor on X.

(B) H − (K X + B) is π -nef and π -abundant.

(C) κ(Xη, (aH − (K X + B))η)≥ 0 and

ν(Xη, (aH − (K X + B))η)= ν(Xη, (H − (K X + B))η)

for some a ∈Q with a > 1, where η is the generic point of S.

(D) There is a positive integer c such that cH is Cartier and

OT (cH) := OX (cH)|T

is π -generated, where T = Nklt(X, B) is the non-klt locus of (X, B).

Then H is π -semiample.

This will be proved on page 816. As an application of Theorem 1.1, we have:

Theorem 1.2 [Fujino and Gongyo 2011, Theorem 4.12]. Let π : X → S be a
projective morphism between projective varieties. Let (X, B) be an lc pair such
that K X + B is nef and log abundant over S. Then K X + B is f -semiample.

We also used Theorem 1.1 to prove the finite generation of the log canonical
ring for log canonical 4-folds in [Fujino 2010]; see Remark 3.4 of that paper. As
we explain elsewhere [Fujino 2007b, Remark 3.10.3; 2011d, 5.1], the proof of
Theorem 4.3 of [Kawamata 1985] contains a gap. Because of that gap, Theorem 5.1
of [Kawamata 1985] was also not rigorously proved, and since Proposition 3.3 of
[Fukuda 2002] depends on it, our proof of Theorem 1.1 is the first rigorous proof
of this important result of Fukuda.

Another purpose of this paper is to show how to use Shokurov’s ideas, such as
b-divisors, saturation of linear systems, various kinds of adjunction, and so on, by
reproving some known results in our formulation. Thus one can regard this paper
as Chapter 8 1

2 of the book [Corti et al. 2007]. It is also a complement of the paper
[Fujino 2011d]. We do not use the powerful new method developed in [Ambro
2003; Fujino 2009a; 2009b; 2009c; 2011a; 2011b; 2011c]. For related topics and
applications, see [Fujino 2010; Gongyo 2010, Section 6; Cacciola 2011; Fujino and
Gongyo 2011].

Remark 1.3. Professor Yujiro Kawamata [2011a] has announced a correction to
the error in the proof of [Kawamata 1985, Theorem 4.3]. The new proof seems
to depend heavily on arguments in his preprints [2011b; 2010]. If we accept his
correction, then Theorem 1.1 holds under the assumption that (X, B) is dlt and
S is a point, by [Fukuda 2002, Proposition 3.3] (see Remark 6.7 (ii)). As stated
in the introduction of [Kawamata 2011a], our arguments are simpler. We note
that our approach is completely different from Kawamata’s original one. Anyway,
Theorem 1.1 plays a crucial role in our study of the log abundance conjecture for
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log canonical pairs; see [Fujino and Gongyo 2011, Section 4]. Therefore, this paper
is very relevant for the minimal model program for log canonical pairs.

Let us explain the motivation for our formulation.

1.4. Motivation. Let (X, B) be a projective klt pair and let D be a nef Cartier
divisor on X such that D−(K X+B) is nef and big. Then the Kawamata–Shokurov
basepoint-free theorem means that |m D| is free for every m� 0. Let f : Y → X
be a projective birational morphism from a normal projective variety Y such that
KY + BY = f ∗(K X + B). We note that f ∗D is a nef Cartier divisor on Y and that
f ∗D− (KY + BY ) is nef and big. It is obvious that |m f ∗D| is free for every m� 0
because |m D| is free for every m � 0. In general, we cannot directly apply the
Kawamata–Shokurov basepoint-free theorem to f ∗D and (Y, BY ). This is because
(Y, BY ) is sub-klt but is not always klt. Note that a Q-Cartier Q-divisor L on X
is nef, big, or semiample if and only if so is f ∗L . However, the notion of klt is
not stable under birational pull-backs. By adding a saturation condition, which is
trivially satisfied for klt pairs, we can apply the Kawamata–Shokurov basepoint-
free theorem for sub-klt pairs (see Theorem 2.1). By this new formulation, the
basepoint-free theorem becomes more flexible and has some important applications.

1.5. Background. A key result we need is [Ambro 2004, Theorem 0.2], which
is a generalization of [Fujino 2003, Section 4: Pull-back of Lss

X/Y ]. It originates
from Kawamata’s positivity theorem [1998] and Shokurov’s idea of adjunction.
For details, see [Ambro 2004, Introduction]. The formulation and calculation we
borrow from [Ambro 2005b; 2007] grew out from Shokurov’s saturation of linear
systems [2003, 4.32].

1.6. Outline of the paper. In Section 2, we reformulate the Kawamata–Shokurov
basepoint-free theorem for sub-klt pairs with a saturation condition. To state our
theorem, we use the notion of b-divisors. It is very useful to discuss linear systems
with some base conditions. In Section 3, we collect basic properties of b-divisors and
prove some elementary properties. In Section 4, we discuss a slight generalization
of the main theorem of [Kawamata 1985]. We need this generalization in Section 7.
The main ingredient of our proof is Ambro’s formulation of Kodaira’s canonical
bundle formula. By this formula and the refined Kawamata–Shokurov basepoint-
free theorem obtained in Section 2, we can quickly prove Kawamata’s theorem
in [Kawamata 1985] and its generalization without appealing to the notion of
generalized normal crossing varieties. In Section 5, we treat the basepoint-free
theorem of Reid–Fukuda type. In this case, the saturation condition behaves very
well for inductive arguments. It helps us understand the saturation condition of linear
systems. In Section 6, we prove some variants of basepoint-free theorems, mainly
due to Fukuda [2002]. We reformulate them by using b-divisors and saturation
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conditions. Then we use Ambro’s canonical bundle formula to reduce them to the
easier case instead of proving them directly by the X-method. In Section 7, we
generalize the Kawamata–Shokurov basepoint-free theorem and Kawamata’s main
theorem in [Kawamata 1985] for pseudo-klt pairs. Theorem 7.11, which is new,
is the main theorem of this section. It will be useful for the study of lc centers
(Theorem 7.13).

Notation. Let B =
∑

bi Bi be a Q-divisor on a normal variety X such that Bi is
prime for every i and that Bi 6= B j for i 6= j . We denote by

dBe =
∑
dbieBi , bBc =

∑
bbicBi , and {B} = B−bBc

the round-up, the round-down, and the fractional part of B. Note that we do not
use R-divisors in this paper. We make one general remark here. Since the freeness
(or semiampleness) of a Cartier divisor D on a variety X depends only on the linear
equivalence class of D, we can freely replace D by a linearly equivalent divisor to
prove the freeness (or semiampleness) of D.

We will work over an algebraically closed field k of characteristic zero throughout
this paper.

2. Kawamata–Shokurov basepoint-free theorem revisited

Kawamata and Shokurov claimed the following theorem for klt pairs, that is, they
assumed that B is effective, which implies that condition (2) is trivially satisfied.
We think that our formulation is useful for some applications. Readers not familiar
with the notion of b-divisors are referred to Section 3.

Theorem 2.1 (Basepoint-free theorem). Let (X, B) be a sub-klt pair, let π : X→ S
be a proper surjective morphism onto a variety S and let D be a π-nef Cartier
divisor on X. Assume the following conditions:

(1) r D− (K X + B) is nef and big over S for some positive integer r .

(2) (Saturation condition.) There exists a positive integer j0 such that

π∗OX (dA(X, B)e+ j D)⊆ π∗OX ( j D)

for every integer j ≥ j0.

Then m D is π -generated for every m� 0, that is, there exists a positive integer m0

such that for every m ≥ m0 the natural homomorphism π∗π∗OX (m D)→ OX (m D)
is surjective.
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Proof. The usual proof of the basepoint-free theorem, that is, the X-method, works
without any changes if we note Lemma 3.10. For the details, see, for example,
[Kawamata et al. 1987, Section 3-1]. See also Remarks 3.14–3.17. �

The assumptions in Theorem 2.1 are birational in nature. This point is indispens-
able in Section 4. We note that we can assume that X is nonsingular and Supp B is
a simple normal crossing divisor because conditions (1) and (2) are invariant for
birational pull-backs. So, it is easy to see that Theorem 2.1 is equivalent to the
following theorem.

Theorem 2.2. Let X be a nonsingular variety and let B be a Q-divisor on X such
that bBc ≤ 0 and Supp B is a simple normal crossing divisor. Let π : X→ S be a
projective morphism onto a variety S and let D be a π-nef Cartier divisor on X.
Assume the following conditions:

(1) r D− (K X + B) is nef and big over S for some positive integer r .

(2) (Saturation condition.) There exists a positive integer j0 such that

π∗OX (d−Be+ j D)' π∗OX ( j D)

for every integer j ≥ j0.

Then m D is π -generated for every m� 0.

The following example says that the original Kawamata–Shokurov basepoint-free
theorem does not necessarily hold for sub-klt pairs.

Example 2.3. Let X = E be an elliptic curve. We take a Cartier divisor H such that
deg H = 0 and l H 6∼ 0 for every l ∈Z\{0}. In particular, H is nef. We put B=−P ,
where P is a closed point of X . Then (X, B) is sub-klt and H− (K X + B) is ample.
However, H is not semiample. In this case, H 0(X,OX (dA(X, B)e + j H)) '
H 0(X,OX (P + j H)) ' k for every j . However, H 0(X,OX ( j H)) = 0 for all j .
Therefore, the saturation condition in Theorem 2.1 does not hold.

We note that Kollár’s effective basepoint-freeness holds under the same assump-
tion as in Theorem 2.1.

Theorem 2.4 (Effective freeness). We use the same notation and assumption as in
Theorem 2.1. Then there exists a positive integer l, which depends only on dim X
and max{r, j0}, such that l D is π-generated, that is, π∗π∗OX (l D)→ OX (l D) is
surjective.

Sketch of the proof. We need no new ideas. So, we just explain how to modify the
arguments in [Kollár 1993, Section 2]. From now on, we use the notation in [Kollár
1993]. In that reference, (X,1) is assumed to be klt, that is, (X,1) is sub-klt and1
is effective. The effectivity of1 implies that H ′ is f -exceptional in [ibid., (2.1.4.3)].
We need this to prove H 0(Y,OY ( f ∗N + H ′))= H 0(X,OX (N )) in [ibid., (2.1.6)].
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It is not difficult to see that 0≤ H ′ ≤ dA(X,1)Y e in our notation. Therefore, it is
sufficient to assume the saturation condition Theorem 2.1(2) in the proof of Kollár’s
effective freeness (see [ibid., Section 2]). We make one more remark. Applying the
argument in the first part of [ibid., 2.4] to OX ( j D+dA(X, B)e) on the generic fiber
of π : X→ S with the saturation condition (2) in Theorem 2.1, we obtain a positive
integer l0 that depends only on dim X and max{r, j0} such that π∗OX (l0 D) 6= 0.
As explained above, the arguments in Section 2 in [ibid.] work with only minor
modifications in our setting. We leave the details as an exercise for the reader. �

3. b-divisors

Let us recall the notion of singularities of pairs, referring the reader to [Fujino
2007b] for a more extended treatment.

Definition 3.1 (Singularities of pairs). Let X be a normal variety and let B be a
Q-divisor on X such that K X + B is Q-Cartier. Let f : Y → X be a resolution of
singularities such that Exc( f )∪ f −1

∗
B has a simple normal crossing support, where

Exc( f ) is the exceptional locus of f . We write

KY = f ∗(K X + B)+
∑

ai Ai .

We note that ai is called the discrepancy of Ai . Then the pair (X, B) is sub-klt
(resp. sub-lc) if ai >−1 (resp. ai ≥−1) for every i . The pair (X, B) is klt (resp. lc)
if (X, B) is sub-klt (resp. sub-lc) and B is effective. (In some literature, sub-klt and
sub-lc are sometimes called klt and lc.)

Let (X, B) be an lc pair. If there exists a resolution f : Y → X such that Exc( f )
and Exc( f )∪ f −1

∗
B are simple normal crossing divisors on Y and

KY = f ∗(K X + B)+
∑

ai Ai

with ai >−1 for all f -exceptional Ai ’s, then (X, B) is called dlt.

Remark 3.2. Let (X, B) be a klt (resp. lc) pair and let f : Y → X be a proper
birational morphism of normal varieties. We put KY + BY = f ∗(K X + B). Then
(Y, BY ) is not necessarily klt (resp. lc) but it is sub-klt (resp. sub-lc).

Let us recall the definition of log canonical centers.

Definition 3.3 (Log canonical center). Let (X, B) be a sub-lc pair. A subvariety
W ⊂ X is called a log canonical center or an lc center of (X, B) if there is a
resolution f : Y → X such that Exc( f )∪Supp f −1

∗
B is a simple normal crossing

divisor on Y and a divisor E with discrepancy −1 such that f (E) = W . A log
canonical center W ⊂ X of (X, B) is called exceptional if there is a unique divisor
EW on Y with discrepancy −1 such that f (EW )=W and f (E)∩W =∅ for every
other divisor E 6= EW on Y with discrepancy −1; see [Kollár 2007, 8.1].
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3.4. b-divisors. The notion of b-divisors, introduced by Shokurov, plays a central
role in this paper, and we now recall its definition. For details, we refer to [Ambro
2005b, 1-B] and [Corti 2007, 2.3.2]. The reader can find various examples of
b-divisors in [Iskovskikh 2003].

Definition 3.5 (b-divisor). Let X be a normal variety and let Div(X) be the free
abelian group generated by Weil divisors on X . A b-divisor on X is an element

D ∈ Div(X)= projlimY→X Div(Y ),

where the projective limit is taken over all proper birational morphisms f : Y → X
of normal varieties, under the push forward homomorphism f∗ :Div(Y )→Div(X).
A Q-b-divisor on X is an element of DivQ(X)= Div(X)⊗Z Q.

Definition 3.6 (Discrepancy Q-b-divisor). Let X be a normal variety and let B be
a Q-divisor on X such that K X + B is Q-Cartier. Then the discrepancy Q-b-divisor
of the pair (X, B) is the Q-b-divisor A=A(X, B) with the trace AY defined by the
formula

KY = f ∗(K X + B)+AY ,

where f : Y → X is a proper birational morphism of normal varieties.

Definition 3.7 (Cartier closure). Let D be a Q-Cartier Q-divisor on a normal variety
X . Then the Q-b-divisor D denotes the Cartier closure of D, whose trace on Y is
DY = f ∗D, where f : Y → X is a proper birational morphism of normal varieties.

Definition 3.8. Let D be a Q-b-divisor on X . The round up dDe∈Div(X) is defined
componentwise. The restriction of D to an open subset U ⊂ X is a well-defined
Q-b-divisor on U , denoted by D|U . Then OX (D) is an OX -module whose sections
on an open subset U ⊂ X are given by

H 0(U,OX (D))= {a ∈ k(X)×; ((a)+D)|U ≥ 0} ∪ {0},

where k(X) is the function field of X . Note that OX (D) is not necessarily coherent.

3.9. Basic properties. We recall the first basic property of discrepancy Q-b-divisors.
We will treat a generalization of Lemma 3.10 for sub-lc pairs below.

Lemma 3.10. Let (X, B) be a sub-klt pair and let D be a Cartier divisor on X. Let
f : Y → X be a proper surjective morphism from a nonsingular variety Y . We write
KY = f ∗(K X + B)+

∑
ai Ai . We assume that

∑
Ai is a simple normal crossing

divisor. Then, for every integer j ,

OX (dA(X, B)e+ j D)= f∗OY (
∑
daieAi )⊗OX ( j D)

Let E be an effective divisor on Y such that E ≤
∑
daieAi . Then

π∗ f∗OY (E + f ∗ j D)' π∗OX ( j D)
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if
π∗OX (dA(X, B)e+ j D)⊆ π∗OX ( j D),

where π : X→ S is a proper surjective morphism onto a variety S.

Proof. For the first equality, see [Corti 2007, Lemmas 2.3.14 and 2.3.15] or their
generalizations: Lemmas 3.19 and 3.20 below. Since E is effective,

π∗OX ( j D)⊆ π∗ f∗OY (E + f ∗ j D)' π∗( f∗OY (E)⊗OX ( j D)).

By the assumption and E ≤
∑
daieAi ,

π∗( f∗OY (E)⊗OX ( j D))⊆ π∗
(

f∗OY
(∑
daieAi

)
⊗OX ( j D)

)
= π∗OX (dA(X, B)e+ j D)

⊆ π∗OX ( j D).

Therefore, we obtain π∗ f∗OY (E + f ∗ j D)' π∗OX ( j D). �

We will use Lemma 3.11 in Section 4. The vanishing theorem in Lemma 3.11 is
nothing but the Kawamata–Viehweg–Nadel vanishing theorem.

Lemma 3.11. Let X be a normal variety and let B be a Q-divisor on X such that
K X + B is Q-Cartier. Let f : Y → X be a proper birational morphism from a
normal variety Y . We put KY + BY = f ∗(K X + B). Then

f∗OY (dA(Y, BY )e)= OX (dA(X, B)e)

and
Ri f∗OY (dA(Y, BY )e)= 0

for every i > 0.

Proof. Let g : Z→ Y be a resolution such that Exc(g)∪g−1
∗

BY has a simple normal
crossing support. We put K Z + BZ = g∗(KY + BY ). Then K Z + BZ = h∗(K X + B),
where h = f ◦ g : Z→ X . By Lemma 3.10,

OY (dA(Y, BY )e)= g∗OZ (d−BZe)

and
OX (dA(X, B)e)= h∗OZ (d−BZe).

Therefore, f∗OY (dA(Y, BY )e)=OX (dA(X, B)e). Since, −BZ = K Z−h∗(K X+B),
we have

d−BZe = K Z +{BZ }− h∗(K X + B).

Therefore, Ri g∗OZ (d−BZe)= 0 and Ri h∗OZ (d−BZe)= 0 for every i > 0 by the
Kawamata–Viehweg vanishing theorem. Thus, Ri f∗OY (dA(Y, BY )e)= 0 for every
i > 0 by Leray’s spectral sequence. �
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Remark 3.12. We use the same notation as in Remark 3.2. Let (X, B) be a klt pair.
Let D be a Cartier divisor on X and let π : X → S be a proper morphism onto a
variety S. We put p = π ◦ f : Y → S. Then

p∗OY ( j f ∗D)' π∗OX ( j D)' p∗OY (dA(Y, BY )e+ j f ∗D)

for every integer j . This is because f∗OY (dA(Y, BY )e)= OX (dA(X, B)e)' OX by
Lemma 3.11.

Remark 3.13 (Multiplier ideal sheaf). Let D be an effective Q-divisor on a non-
singular variety X . Then OX (dA(X, D)e) is nothing but the multiplier ideal sheaf
J(X, D)⊆ OX of D on X . See [Lazarsfeld 2004, Definition 9.2.1]. More generally,
let X be a normal variety and let1 be a Q-divisor on X such that K X+1 is Q-Cartier.
Let D be a Q-Cartier Q-divisor on X . Then OX (dA(X,1+ D)e)= J((X,1); D),
where the right hand side is the multiplier ideal sheaf defined (but not investigated) in
[Lazarsfeld 2004, Definition 9.3.56]. In general, OX (dA(X,1+D)e) is a fractional
ideal of k(X).

The next four remarks help us understand Theorem 2.1.

Remark 3.14 (Nonvanishing theorem). By Shokurov’s nonvanishing theorem (see
[Kawamata et al. 1987, Theorem 2-1-1]), we have π∗OX (dA(X, B)e+ j D) 6= 0 for
every j� 0. Thus π∗OX ( j D) 6= 0 for every j� 0 by condition (2) in Theorem 2.1.

Remark 3.15. We know that dA(X, B)e ≥ 0 since (X, B) is sub-klt. Therefore,
π∗OX ( j D)⊆ π∗OX (dA(X, B)e+ j D). This implies that

π∗OX ( j D)' π∗OX (dA(X, B)e+ j D)

for j ≥ j0, by condition (2) in Theorem 2.1.

Remark 3.16. If the pair (X, B) is klt, then dA(X, B)e is effective and exceptional
over X . In this case, it is obvious that π∗OX ( j D)= π∗OX (dA(X, B)e+ j D).

Remark 3.17. Condition (2) in Theorem 2.1 is a very elementary case of saturation
of linear systems. See [Corti 2007, 2.3.3] and [Ambro 2005b, 1-D].

We next introduce the notion of non-klt Q-b-divisor, which is trivial for sub-klt
pairs. We will use this in Section 5.

Definition 3.18 (Non-klt Q-b-divisor). Let X be a normal variety and let B be a
Q-divisor on X such that K X + B is Q-Cartier. Then the non-klt Q-b-divisor of the
pair (X, B) is the Q-b-divisor N= N(X, B) with the trace NY =

∑
ai≤−1 ai Ai for

KY = f ∗(K X + B)+
∑

ai Ai ,

where f :Y→ X is a proper birational morphism of normal varieties. It is easy to see
that N(X, B) is a well-defined Q-b-divisor. We put A∗(X, B)=A(X, B)−N(X, B).
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Of course, A∗(X, B) is a well-defined Q-b-divisor and dA∗(X, B)e ≥ 0. If (X, B)
is sub-klt, then N(X, B)= 0 and A(X, B)= A∗(X, B).

The next lemma is a generalization of Lemma 3.10.

Lemma 3.19. Let (X, B) be a sub-lc pair and let f : Y → X be a resolution such
that Exc( f ) ∪ Supp f −1

∗
B is a simple normal crossing divisor on Y . We write

KY = f ∗(K X + B)+
∑

ai Ai . Then

OX (dA∗(X, B)e)= f∗OY

( ∑
ai 6=−1

daieAi

)
.

In particular, OX (dA∗(X, B)e) is a coherent OX -module. If (X, B) is lc, then
OX (dA∗(X, B)e)' OX .

Let D be a Cartier divisor on X and let E be an effective divisor on Y such that
E ≤

∑
ai 6=−1daieAi . Then

π∗ f∗OY (E + f ∗ j D)' π∗OX ( j D)

if
π∗OX (dA∗(X, B)e+ j D)⊆ π∗OX ( j D),

where π : X→ S is a proper morphism onto a variety S.

Proof. By definition, A∗(X, B)Y =
∑

ai 6=−1 ai Ai . If g :Y ′→Y is a proper birational
morphism from a normal variety Y ′, then

dA∗(X, B)Y ′e = g∗dA∗(X, B)Y e+ F,

where F is a g-exceptional effective divisor, by Lemma 3.20 below. This implies
f∗OY (dA∗(X, B)Y e) = f ′

∗
OY ′(dA∗(X, B)Y ′e), where f ′ = f ◦ g, from which it

follows that OX (dA∗(X, B)e) = f∗OY (
∑

ai 6=−1daieAi ) is a coherent OX -module.
The last statement is easy to check. �

Lemma 3.20. Let (X, B) be a sub-lc pair and let f : Y → X be a resolution as in
Lemma 3.19. We consider the Q-b-divisor A∗ = A∗(X, B)= A(X, B)−N(X, B).
If Y ′ is a normal variety and g : Y ′→ Y is a proper birational morphism, then

dA∗Y ′e = g∗dA∗Y e+ F,

where F is a g-exceptional effective divisor.

Proof. By definition, we have KY = f ∗(K X + B)+AY . Therefore we may write

KY ′ = g∗ f ∗(K X + B)+AY ′ = g∗(KY −AY )+AY ′

= g∗(KY +{−A∗Y }−NY +b−A∗Y c)+AY ′

= g∗(KY +{−A∗Y }−NY )+AY ′ − g∗dA∗Y e.
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We note that (Y, {−A∗Y }−NY ) is lc and that the set of lc centers of (Y, {−A∗Y }−NY )

coincides with that of (Y,−A∗Y −NY ) = (Y,−AY ). Therefore, the round-up of
AY ′ − g∗dA∗Y e−NY ′ is effective and g-exceptional. Thus, we can write dA∗Y ′e =
g∗dA∗Y e+ F, where F is a g-exceptional effective divisor. �

The next lemma is obvious by Lemma 3.19.

Lemma 3.21. Let (X, B) be a sub-lc pair and let f : Y→ X be a proper birational
morphism from a normal variety Y . We put KY + BY = f ∗(K X + B). Then
f∗OY (dA∗(Y, BY )e)= OX (dA∗(X, B)e).

4. Basepoint-free theorem; nef and abundant case

We recall the definition of abundant divisors, which are called good divisors in
[Kawamata 1985]. See [Kawamata et al. 1987, Section 6-1].

Definition 4.1 (Abundant divisor). Let X be a complete normal variety and let D
be a Q-Cartier nef Q-divisor on X . We define the numerical Iitaka dimension to be

ν(X, D)=max{e; De
6≡ 0}.

This means that De′
· S = 0 for any e′-dimensional subvarieties S of X with e′ > e

and there exists an e-dimensional subvariety T of X such that De
·T > 0. Then it is

easy to see that κ(X, D)≤ ν(X, D), where κ(X, D) denotes Iitaka’s D-dimension.
A nef Q-divisor D is said to be abundant if the equality κ(X, D)= ν(X, D) holds.
Let π : X→ S be a proper surjective morphism of normal varieties and let D be a
Q-Cartier Q-divisor on X . Then D is said to be π-abundant if D|Xη is abundant,
where Xη is the generic fiber of π .

The next theorem is the main theorem of [Kawamata 1985]. For the relative state-
ment, see [Nakayama 1986, Theorem 5]. We reduced Theorem 4.2 to Theorem 2.1
by using Ambro’s results in [Ambro 2004] and [Ambro 2007], which is the main
theme of [Fujino 2011d]. For the details, see [Fujino 2011d, Section 2].

Theorem 4.2 cf. [Kawamata et al. 1987, Theorem 6-1-11]. Let (X, B) be a klt pair
and let π : X → S be a proper morphism onto a variety S. Assume the following
conditions:

(a) H is a π -nef Q-Cartier Q-divisor on X.

(b) H − (K X + B) is π -nef and π -abundant.

(c) κ(Xη, (aH − (K X + B))η)≥ 0 and

ν(Xη, (aH − (K X + B))η)= ν(Xη, (H − (K X + B))η)

for some a ∈Q with a > 1, where η is the generic point of S.

Then H is π -semiample.
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Definition 4.3 (Iitaka fibration). Let π : X→ S be a proper surjective morphism of
normal varieties. Let D be a Q-Cartier Q-Weil divisor on X such that κ(Xη, Dη)≥0,
where η is the generic point of S. Let X 99KW be the rational map over S induced
by π∗π∗OX (m D)→ OX (m D) for a sufficiently large and divisible integer m. We
consider a projective surjective morphism f : Y → Z of nonsingular varieties that
is birational to X 99KW . We call f : Y → Z the Iitaka fibration with respect to D
over S.

We now state the main result of this section, which will be used in the proof of
Theorem 7.11. It is a slight generalization of Theorem 4.2.

Theorem 4.4. Let (X, B) be a sub-klt pair and let π : X→ S be a proper morphism
onto a variety S. Assume the following conditions:

(a) H is a π -nef Q-Cartier Q-divisor on X.

(b) H − (K X + B) is π -nef and π -abundant.

(c) κ(Xη, (aH − (K X + B))η)≥ 0 and

ν(Xη, (aH − (K X + B))η)= ν(Xη, (H − (K X + B))η)

for some a ∈Q with a > 1, where η is the generic point of S.

(d) Let f : Y → Z be the Iitaka fibration with respect to H − (K X + B) over S.
We assume that there exists a proper birational morphism µ : Y → X and put
KY+BY =µ

∗(K X+B). In this setting, we assume rank f∗OY (dA(Y, BY )e)=1.

(e) (Saturation condition.) There exist positive integers b and j0 such that bH is
Cartier and π∗OX (dA(X, B)e+ jbH)⊆π∗OX ( jbH) for every positive integer
j ≥ j0.

Then H is π -semiample.

Proof. The proof of Theorem 4.2 given in [Fujino 2011d, Section 2] works without
any changes. We note that condition (d) implies [ibid., Lemma 2.3] and that we
can use condition (e) in the proof of [ibid., Lemma 2.4]. �

Remark 4.5. The rank of f∗OY (dA(Y, BY )e) is a birational invariant for f :Y→ Z
by Lemma 3.11.

Remark 4.6. If (X, B) is klt and bH is Cartier, it is obvious that

π∗OX (dA(X, B)e+ jbH)' π∗OX ( jbH)

for every positive integer j (see Remark 3.16).

Remark 4.7. We can easily generalize Theorem 4.4 to varieties in class C by
suitable modifications. For details, see [Fujino 2011d, Section 4].

The following examples help us understand condition (d).
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Example 4.8. Let X = E be an elliptic curve and let P ∈ X be a closed point. Take
a general member P1+ P2+ P3 ∈ |3P|. We put B = 1

3(P1+ P2+ P3)− P . Then
(X, B) is sub-klt and K X + B ∼Q 0. In this case, OX (dA(X, B)e) ' OX (P) and
H 0(X,OX (dA(X, B)e))' k.

Example 4.9. Let f : X = PP1(OP1 ⊕ OP1(1)) → Z = P1 be the Hirzebruch
surface and let C (resp. E) be the positive (resp. negative) section of f . We take a
general member B0 ∈ |5C |. Note that |5C | is a free linear system on X . We put
B = − 1

2 E + 1
2 B0 and consider the pair (X, B). Then (X, B) is sub-klt. We put

H = 0. Then H is a nef Cartier divisor on X and aH − (K X + B)∼Q
1
2 F for every

rational number a, where F is a fiber of f . Therefore, aH − (K X + B) is nef and
abundant for every rational number a. In this case, OX (dA(X, B)e)' OX (E). Thus

H 0(X,OX (dA(X, B)e+ j H))' H 0(X,OX (E))' k

' H 0(X,OX )' H 0(X,OX ( j H))

for every integer j . Therefore, π : X→ Spec k, H , and (X, B) satisfy conditions
(a), (b), (c), and (e) in Theorem 4.4. However, (d) is not satisfied. In our case, it is
easy to see that f : X → Z is the Iitaka fibration with respect to H − (K X + B).
Since f∗OX (dA(X, B)e)' f∗OX (E), we have rank f∗OX (dA(X, B)e)= 2.

Remark 4.10. In Theorem 4.4, assumptions (a)–(c) are the same as in Theorem 4.2.
Condition (e) is indispensable by Example 2.3 for sub-klt pairs. By using the
nonvanishing theorem for generalized normal crossing varieties in [Kawamata
1985, Theorem 5.1], which is the hardest part to prove in [Kawamata 1985], the
semiampleness of H seems to follow from conditions (a), (b), (c), and (e). However,
we need (d) to apply Ambro’s canonical bundle formula to the Iitaka fibration
f : Y → Z . See, for example, [Fujino 2011d, Section 3]. Unfortunately, as we
saw in Example 4.9, condition (d) does not follow from the other assumptions.
Anyway, condition (d) is automatically satisfied if (X, B) is klt; see [Fujino 2011d,
Lemma 2.3].

The following two examples show that the effective version of Theorem 4.2 does
not necessarily hold. The first one is an obvious example.

Example 4.11. Let X = E be an elliptic curve and let m be an arbitrary positive
integer. Then there is a Cartier divisor H on X such that m H ∼ 0 and l H 6∼ 0 for
0 < l < m. Therefore, the effective version of Theorem 4.2 does not necessarily
hold.

The next one shows the reason why Theorem 2.4 does not imply the effective
version of Theorem 4.2.

Example 4.12. Let E be an elliptic curve and G = Z/mZ = 〈ζ 〉, where ζ is a
primitive m-th root of unity. We take an m-torsion point a ∈ E . The cyclic group
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G acts on E ×P1 as follows:

E ×P1
3 (x, [X0 : X1]) 7→ (x + a, [ζ X0 : X1]) ∈ E ×P1.

We put X = (E ×P1)/G. Then X has a structure of elliptic surface p : X → P1.
In this setting,

K X = p∗
(

KP1 +
m− 1

m
[0] +

m− 1
m
[∞]

)
.

We put H = p−1(0)red. Then H is a Cartier divisor on X . It is easy to see
that H is nef and H − K X is nef and abundant. Moreover, κ(X, aH − K X ) =

ν(X, aH−K X )= 1 for every rational number a> 0. It is obvious that |m H | is free.
However, |l H | is not free for 0< l <m. Thus, the effective version of Theorem 4.2
does not hold.

5. Basepoint-free theorem of Reid–Fukuda type

The following result is a reformulation of the main theorem of [Fujino 2000].

Theorem 5.1 (Basepoint-free theorem of Reid–Fukuda type). Let X be a nonsin-
gular variety and let B be a Q-divisor on X such that Supp B is a simple normal
crossing divisor and (X, B) is sub-lc. Let π : X → S be a proper morphism onto
a variety S and let D be a π-nef Cartier divisor on X. Assume the following
conditions:

(1) r D− (K X + B) is nef and log big over S for some positive integer r .

(2) (Saturation condition.) There exists a positive integer j0 such that

π∗OX (dA∗(X, B)e+ j D)⊆ π∗OX ( j D)

for every integer j ≥ j0.

Then m D is π -generated for every m� 0, that is, there exists a positive integer m0

such that for every m ≥ m0 the natural homomorphism π∗π∗OX (m D)→ OX (m D)
is surjective.

Definition 5.2. Let (X, B) be a sub-lc pair and let π : X→ S be a proper morphism
onto a variety S. Let L be a line bundle on X . We say that L is nef and log big over
S if and only if L is π -nef and π -big and the restriction L|W is big over π(W ) for
every lc center W of the pair (X, B). A Q-Cartier Q-divisor H on X is said to be
nef and log big over S if and only if so is OX (cH), where c is a positive integer
such that cH is Cartier.

Proof of Theorem 5.1. We write B = T + B+− B− such that T , B+, and B− are
effective divisors, they have no common irreducible components, bB+c = 0, and
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bT c = T . If T = 0, then (X, B) is sub-klt. So, theorem follows from Theorem 2.1.
Thus, we assume T 6= 0. Let T0 be an irreducible component of T . If m ≥ r , then

m D+dB−e− T0− (K X + B+dB−e− T0)= m D− (K X + B)

is nef and log big over S for the pair (X, B+dB−e−T0). We note that B+dB−e−T0

is effective. Therefore, R1π∗OX (dB−e− T0+m D)= 0 for m ≥ r by the vanishing
theorem: Lemma 5.3. Thus, we obtain the following commutative diagram for
m ≥max{r, j0}:

π∗OX (dB−e+m D) −−−→ π∗OT0(dB−|T0e+m D|T0) −−−→ 0x∼= xι
π∗OX (m D)

α
−−−→ π∗OT0(m D|T0).

Here, we used

π∗OX (m D)⊆ π∗OX (dB−e+m D)

' π∗OX (dA∗(X, B)e+m D)

⊆ π∗OX (m D)

for m ≥ j0 (see Lemma 3.19). We put KT0 + BT0 = (K X + B)|T0 and DT0 = D|T0 .
Then (T0, BT0) is sub-lc and it is easy to see that r DT0− (KT0+ BT0) is nef and log
big over π(T0). It is obvious that T0 is nonsingular and Supp BT0 is a simple normal
crossing divisor. We note that π∗OT0(dA∗(T0, BT0)e + j DT0) ' π∗OT0( j DT0) for
every j ≥max{r, j0} follows from the above diagram, that is, the natural inclusion
ι is isomorphism for m ≥max{r, j0}. Thus, α is surjective for m ≥max{r, j0}. By
induction, m DT0 is π -generated for every m� 0. We can apply the same argument
to every irreducible component of T . Therefore, the relative base locus of m D
is disjoint from T for every m � 0 since the restriction map α : π∗OX (m D)→
π∗OT0(m DT0) is surjective for every irreducible component T0 of T . The arguments
in [Fukuda 1996, Proof of Theorem 3], which is a variant of the X-method, work
without any changes (cf. Theorem 6.1). So, we obtain that m D is π -generated for
every m� 0. �

The following vanishing theorem was already used in the proof of Theorem 5.1.
The proof is an easy exercise by induction on dim X and on the number of the
irreducible components of b1c.

Lemma 5.3. Let π : X→ S be a proper morphism from a nonsingular variety X.
Let 1=

∑
di1i be a sum of distinct prime divisors such that Supp1 is a simple

normal crossing divisor and di is a rational number with 0≤ di ≤ 1 for every i . Let
D be a Cartier divisor on X. Assume that D− (K X +1) is nef and log big over S
for the pair (X,1). Then Riπ∗OX (D)= 0 for every i > 0.
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As in Theorem 2.4, effective freeness holds under the same assumption as in
Theorem 5.1.

Theorem 5.4 (Effective freeness). We use the same notation and assumption as in
Theorem 5.1. Then there exists a positive integer l, which depends only on dim X
and max{r, j0}, such that l D is π-generated, that is, π∗π∗OX (l D)→ OX (l D) is
surjective.

Sketch of the proof. If (X, B) is sub-klt, then this theorem is nothing but Theorem 2.4.
So, we can assume that (X, B) is not sub-klt. In this case, the arguments in [Fukuda
1996, Section 4] work with only minor modifications. From now on, we use the
notation in [Fukuda 1996, Section 4]. By minor modifications, the proof in [Fukuda
1996, Section 4] works under the following weaker assumptions: X is nonsingular
and 1 is a Q-divisor on X such that Supp1 is a simple normal crossing divisor and
(X,1) is sub-lc. In [Fukuda 1996, Claim 5], Ei is f -exceptional. In our setting,
this is not true. However, the bound

0≤
∑

cbi−ei+pi<0
d−(cbi − ei + pi )eEi ≤ dA∗(X,1)Y e,

which always holds even when 1 is not effective, is sufficient for us. It is because
we can use the saturation condition (2) in Theorem 5.1. We leave the details as an
exercise for the reader since all we have to do is to repeat the arguments in [Kollár
1993, Section 2] and [Fukuda 1996, Section 4]. �

The final statement in this section is the (effective) basepoint-free theorem of
Reid–Fukuda type for dlt pairs.

Corollary 5.5. Let (X, B) be a dlt pair and let π : X→ S be a proper morphism
onto a variety S. Let D be a π -nef Cartier divisor on X. Assume that r D−(K X+B)
is nef and log big over S for some positive integer r . Then there exists a positive
integer m0 such that m D is π -generated for every m≥m0 and we can find a positive
integer l, which depends only on dim X and r , such that l D is π -generated.

Proof. Let f :Y→ X be a resolution such that Exc( f ) and Exc( f )∪Supp f −1
∗

B are
simple normal crossing divisors, KY +BY = f ∗(K X+B), and f is an isomorphism
over all the generic points of lc centers of the pair (X, B). Then (Y, BY ) is sub-lc,
and r DY−(KY+BY ) is nef and log big over S, where DY = f ∗D. Since dA∗(X, B)e
is effective and exceptional over X , p∗OY (dA∗(Y, BY )e+ j DY )' p∗OY ( j DY ) for
every j , where p = π ◦ f . So, we can apply Theorems 5.1 and 5.4 to DY and
(Y, BY ). This concludes the proof. �

For the (effective) basepoint-freeness for lc pairs, see [Fujino 2009a; Fujino
2009b, 3.3.1 Base Point Free Theorem; Fujino 2011a, Theorem 13.1; Fujino 2011c,
Theorem 1.2].
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6. Variants of basepoint-free theorems due to Fukuda

The starting point of this section is a slight generalization of Theorem 2.1. It is
essentially the same as [Fukuda 1996, Theorem 3].

Theorem 6.1. Let X be a nonsingular variety and let B be a Q-divisor on X such
that (X, B) is sub-lc and Supp B is a simple normal crossing divisor. Let π : X→ S
be a proper morphism onto a variety S and let H be a π-nef Q-Cartier Q-divisor
on X. Assume the following conditions:

(1) H − (K X + B) is nef and big over S.

(2) (Saturation condition.) There exist positive integers b and j0 such that

π∗OX (dA∗(X, B)e+ jbH)⊆ π∗OX ( jbH)

for every integer j ≥ j0.

(3) There is a positive integer c such that cH is Cartier and

OT (cH) := OX (cH)|T

is π -generated, where T =−N(X, B)X .

Then H is π -semiample.

Proof. If (X, B) is sub-klt, then this follows from Theorem 2.1. By replacing H by
a multiple, we can assume that b = 1, j0 = 1, and c = 1. Since

l H +dA∗Xe− T − (K X +{B})= l H − (K X + B)

is nef and big over S for every positive integer l, we have the following commutative
diagram by the Kawamata–Viehweg vanishing theorem:

π∗OX (l H +dA∗Xe) −−−→ π∗(OT (l H)⊗OT (dA∗X |T e)) −−−→ 0x∼= xι
π∗OX (l H) −−−→

α
π∗OT (l H).

Thus, the natural inclusion ι is an isomorphism and α is surjective for every l ≥ 1.
In particular, π∗OX (l H) 6= 0 for every l ≥ 1. The same arguments as in [Fukuda
1996, Proof of Theorem 3] show that H is π -semiample. �

The main purpose of this section is to prove Theorem 6.2 below, which is a
generalization of Theorem 4.4 and Theorem 6.1. The basic strategy of the proof
is the same as that of Theorem 4.4. That is, by using Ambro’s canonical bundle
formula, we reduce it to the case when H−(K X+B) is nef and big. This is nothing
but Theorem 6.1.
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Theorem 6.2. Let X be a nonsingular variety and let B be a Q-divisor on X such
that (X, B) is sub-lc and Supp B is a simple normal crossing divisor. Let π : X→ S
be a proper morphism onto a variety S. Assume the following conditions:

(a) H is a π -nef Q-Cartier Q-divisor on X.

(b) H − (K X + B) is π -nef and π -abundant.

(c) κ(Xη, (aH − (K X + B))η)≥ 0 and ν(Xη, (aH − (K X + B))η)= ν(Xη, (H −
(K X + B))η) for some a ∈Q with a > 1, where η is the generic point of S.

(d) Let f : Y → Z be the Iitaka fibration with respect to H − (K X + B) over S.
We assume that there exists a proper birational morphism µ : Y → X and put
KY + BY = µ

∗(K X + B). We also assume rank f∗OY (dA∗(Y, BY )e)= 1.

(e) (Saturation condition.) There exist positive integers b and j0 such that bH
is Cartier and π∗OX (dA∗(X, B)e + jbH) ⊆ π∗OX ( jbH) for every positive
integer j ≥ j0.

(f) There is a positive integer c such that cH is Cartier and

OT (cH) := OX (cH)|T

is π -generated, where T =−N(X, B)X .

Then H is π -semiample.

Proof. If H − (K X + B) is big, this follows from Theorem 6.1. So, we can assume
that H − (K X + B) is not big. Form now on, we use the notation from the proof of
Theorem 4.2, which is given in [Fujino 2011d, Section 2]. We just explain how to
modify that proof. Let us recall the commutative diagram

Y
f

−−−→ Z

µ

y yϕ
X −−−→

π
S

from the proof of [Fujino 2011d, Theorem 1.1], where f : Y → Z is the Iitaka
fibration with respect to H − (K X + B) over S. For the details, see [Fujino 2011d,
Section 2]. We note that µ∗H = HY and HY ∼ f ∗D. Here, we replaced H with
a multiple and assumed that H and D are Cartier (see [Fujino 2011d, page 307]).
We can also assume that b = j0 = 1 in (e) and c = 1 in (f) by replacing H with a
multiple. We start with the following obvious lemma.

Lemma 6.3. We put T ′ = −N(X, B)Y . Then µ(T ′) ⊂ T . Therefore, OT ′(HY ) :=

OY (HY )|T ′ is p-generated, where p = π ◦µ.

Lemma 6.4. If f (T ′) = Z , then HY is p-semiample. In particular, H is π-
semiample.
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Proof. There exists an irreducible component T ′0 of T ′ such that f (T ′0)= Z . Since
(HY )|T ′0 ∼ ( f ∗D)|T ′0 is p-semiample, D is ϕ-semiample. This implies that HY is
p-semiample and H is π -semiample. �

Therefore, we can assume that T ′ is not dominant onto Z . Thus A(Y, BY ) =

A∗(Y, BY ) over the generic point of Z . Equivalently, (Y, BY ) is sub-klt over the
generic point of Z . As in [Fujino 2011d, Proof of Theorem 1.1], we have these
properties:

(1) KY + BY ∼Q f ∗(K Z + BZ +M), where BZ is the discriminant Q-divisor of
(Y, BY ) on Z and M is the moduli Q-divisor on Z .

(2′) (Z , BZ ) is sub-lc.

(3) M is a ϕ-nef Q-divisor on Z .

(4′) ϕ∗OZ (dA∗(Z , BZ )e+ j D)⊆ ϕ∗OZ ( j D) for every positive integer j .

(5) D− (K Z + BZ ) is ϕ-nef and ϕ-big.

(6) Y and Z are nonsingular and Supp BY and Supp BZ are simple normal crossing
divisors.

(7) OT ′′(D) := OZ (D)|T ′′ is ϕ-generated where T ′′ =−N(Z , BZ )Z .

Once the conditions above were satisfied, D is ϕ-semiample by Theorem 6.1.
Therefore, H is π-semiample. So, all we have to do is check the conditions.
Conditions (1), (2′), (3), (5), (6) are satisfied by a result of Ambro; see [Fujino 2011d,
Proof of Theorem 1.1]. We note that f∗OY (dA(Y, BY )e) and f∗OY (dA∗(Y, BY )e)

both have rank 1. By the same computation as in [Ambro 2007, Lemma 9.2.2 and
Proposition 9.2.3], we have the following lemma.

Lemma 6.5. OZ (dA∗(Z , BZ )e+ j D)⊆ f∗OY (dA∗(Y, BY )e+ j HY ) for every inte-
ger j .

Thus, we have (4′) by the saturation condition (e) (for details, see [Fujino 2011d,
Proof of Theorem 1.1], and Lemma 3.21). By definition, we have

l HY +dA∗Y e− T ′− (KY +{BY })∼Q f ∗((l − 1)D+M0),

where
HY − (KY + BY )= µ

∗(H − (K X + B))∼Q f ∗M0.

Note that (l−1)D+M0 is ϕ-nef and ϕ-big for l ≥ 1. By the Kollár type injectivity
theorem,

R1 p∗OY (l HY +dA∗Y e− T ′)→ R1 p∗OY (l HY +dA∗Y e)

is injective for l ≥ 1. Note that the above injectivity can be checked easily by
[Fujino 2007a, Theorem 1.1]. Here, we used the fact that f (T ′)( Z . So, we have
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the commutative diagram

p∗OY (l HY +dA∗Y e) −−−→ p∗(OT ′(l HY )⊗OT ′(dA∗Y |T ′e)) −−−→ 0x∼= xι
p∗OY (l HY ) −−−→

α
p∗OT ′(l HY )

The isomorphism of the left vertical arrow follows from the saturation condition
(e). Thus, the natural inclusion ι is an isomorphism and α is surjective for l ≥ 1.
In particular, the relative base locus of l HY is disjoint from T ′ since OT ′(l HY ) is
p-generated (cf. Lemma 6.3). On the other hand, HY ∼ f ∗D. Therefore, OT ′′(D)
is ϕ-generated since T ′′ ⊂ f (T ′). So, we obtain condition (7). This completes the
proof of Theorem 6.2. �

As a corollary of Theorem 6.2, we obtain the generalization of [Fukuda 2002,
Proposition 3.3] stated in the introduction (Theorem 1.1). Before we derive it, we
recall the definition of non-klt loci.

Definition 6.6 (Non-klt locus). Let (X, B) be an lc pair. We consider the closed
subset

Nklt(X, B)= {x ∈ X | (X, B) is not klt at x}

of X . We call Nklt(X, B) the non-klt locus of (X, B).

Proof of Theorem 1.1. Let h : X ′→ X be a resolution such that Exc(h)∪Supp h−1
∗

B
is a simple normal crossing divisor and K X ′+BX ′ = h∗(K X+B). Then HX ′ = h∗H ,
(X ′, BX ′), and π ′=π◦h : X ′→ S satisfy assumptions (a), (b), and (c) in Theorem 6.2.
By the same argument as in the proof of [Fujino 2011d, Lemma 2.3], we obtain
rank f∗OY (dA∗(Y, BY )e)= 1, where f : Y → Z is the Iitaka fibration as in (d) in
Theorem 6.2. Note that dA∗(Y, BY )e is effective and exceptional over X . Since B
is effective, dA∗(X, B)e is effective and exceptional over X ,

π ′
∗
OX ′(dA∗(X ′, BX ′)e+ jbHX ′)⊆ π

′

∗
OX ′( jbHX ′)

for every integer j , where b is a positive integer such that bH is Cartier. So,
the saturation condition (e) in Theorem 6.2 is satisfied. Finally, OT ′(cHX ′) :=

OX ′(cHX ′)|T ′ is π ′-generated, where T ′ = −N(X, B)X ′ , by assumption (D) and
the fact that h(T ′) ⊂ T . So, condition (f) in Theorem 6.2 for HX ′ and (X ′, BX ′)

is satisfied. Therefore, HX ′ is π ′-semiample by Theorem 6.2. Thus, H is π-
semiample. �

Remark 6.7. (i) It is obvious that Supp(−N(X, B)X ) ⊆ Nklt(X, B). In general,
Supp(−N(X, B)X ) ( Nklt(X, B). In particular, Nklt(X, B) is not necessarily of
pure codimension one in X .
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(ii) If (X, B) is dlt, then Nklt(X, B) = Supp(−N(X, B)X ) = bBc. Therefore, if
(X, B) is dlt and S is a point, then Theorem 1.1 is nothing but Fukuda’s result
[Fukuda 2002, Proposition 3.3].

(iii) The reader can find applications of this corollary in [Fukuda 2002; Fujino 2010;
Fujino and Gongyo 2011].

By combining Theorem 1.1 with [Gongyo 2010, Theorem 1.5], we obtain the
following result.

Corollary 6.8. Let (X, B) be a projective dlt pair such that ν(K X+B)=κ(K X+B)
and that (K X + B)|bBc is numerically trivial. Then K X + B is semiample.

Remark 6.9. We can easily generalize Theorem 6.2 and Theorem 1.1 to varieties
in class C by suitable modifications. For details, see [Fujino 2011d, Section 4].

7. Basepoint-free theorems for pseudo-klt pairs

In this section, we generalize the Kawamata–Shokurov base point free theorem and
Kawamata’s theorem: Theorem 4.2 for klt pairs to pseudo-klt pairs. We think that
our formulation is useful when we study lc centers (see Proposition 7.8). First, we
introduce the notion of pseudo-klt pairs.

Definition 7.1 (Pseudo-klt pair). Let W be a normal variety. Assume the following
conditions:

(1) there exist a sub-klt pair (V,B) and a projective surjective morphism f :V→W
with connected fibers.

(2) f∗OV (dA(V, B)e)' OW .

(3) There exists a Q-Cartier Q-divisor K on W such that KV + B ∼Q f ∗K.

Then the pair [W,K] is called a pseudo-klt pair.

Although it is the first time that we use the name of pseudo-klt pair, the notion of
pseudo-klt pair appeared in [Fujino 1999], where we proved the cone and contraction
theorem for pseudo-klt pairs (cf. [Fujino 1999, Section 4]). We note that all the
fundamental theorems for the log minimal model program for pseudo-klt pairs
can be proved by the theory of quasilog varieties (cf. [Ambro 2003; Fujino 2009b;
2011b]).

Remark 7.2. In Definition 7.1, we assume that W is normal. However, the normal-
ity of W follows from condition (2) and the normality of V . Note that dA(V, B)e
is effective.

Remark 7.3. In the definition of pseudo-klt pairs, if (V, B) is klt, the condition
f∗OV (dA(V, B)e) ' OW is automatically satisfied. This is because dA(V, B)e is
effective and exceptional over V .
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We note that a pseudo-klt pair is a very special example of Ambro’s quasilog
varieties (see [Ambro 2003, Definition 4.1]). More precisely, if [V,K] is a pseudo-
klt pair, then we can easily check that [V,K] is a qlc pair. See, for example, [Fujino
2011b, Definition 3.1]. For the details of the theory of quasilog varieties, see [Fujino
2009b].

Theorem 7.4. Let [W,K] be a pseudo-klt pair. Assume that (V, B) is klt and W is
projective or that W is affine. Then we can find an effective Q-divisor BW on W
such that (W, BW ) is klt and that K∼Q KW + BW .

Proof. When (X, B) is klt and W is projective, we can find BW by [Ambro
2005a, Theorem 4.1]. When W is affine, this theorem follows from [Fujino 1999,
Theorem 1.2]. �

Remark 7.5. It is conjectured that one can always find an effective Q-divisor BW

on W such that (W, BW ) is klt and K∼Q KW + BW .

We now collect basic examples of pseudo-klt pairs.

Example 7.6. A klt pair is a pseudo-klt pair.

Example 7.7. Let f : X→W be a Mori fiber space. Then we can find a Q-Cartier
Q-divisor K on W such that [W,K] is a pseudo-klt pair. It is because we can find
an effective Q-divisor B on X such that K X + B ∼Q, f 0 and (X, B) is klt.

Proposition 7.8. An exceptional lc center W of an lc pair (X, B) is a pseudo-klt
pair for some Q-Cartier Q-divisor K on W .

Proof. We take a resolution g :Y→ X such that Exc(g)∪g−1
∗

B has a simple normal
crossing support. We put KY +BY = g∗(K X+B). Then −BY =A(X, B)Y =AY =

A∗Y +NY , where NY =−
∑k

i=0 Ei . Without loss of generality, we can assume that
f (E)=W and E = E0. By shrinking X around W , we can assume that NY =−E .
Note that R1g∗OY (dA∗Y e− E)= 0 by the Kawamata–Viehweg vanishing theorem
since dA∗Y e− E = KY +{−A∗Y }− g∗(K X + B). Therefore, g∗OY (dA∗Y e)' OX →

g∗OE(dA∗Y |Ee) is surjective. This implies that g∗OE(dA∗Y |Ee)' OW . In particular,
W is normal. If we put KE + BE = (KY + BY )|E , then (E, BE) is sub-klt and
A∗Y |E =A(E, BE)E =−BE . So, g∗OE(dA(E, BE)e)= g∗OE(d−BEe)'OW . Since
KE + BE = (KY + BY )|E and KY + BY = g∗(K X + B), we can find a Q-Cartier
Q-divisor K on W such that KE + BE ∼Q g∗K. Therefore, W is a pseudo-klt
pair. �

We make an important remark on minimal lc centers.

Remark 7.9 (Subadjunction for minimal lc center). Let (X, B) be a projective or
affine lc pair and let W be a minimal lc center of the pair (X, B). Then we can find an
effective Q-divisor BW on W such that (W, BW ) is klt and KW+BW ∼Q (K X+B)|W .
For the details, see [Fujino and Gongyo 2012, Theorems 4.1, 7.1].
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The following theorem is the Kawamata–Shokurov basepoint-free theorem for
pseudo-klt pairs. We give a simple proof depending on Kawamata’s positivity theo-
rem. Although Theorem 7.10 seems to be contained in [Ambro 2003, Theorem 7.2],
no proof is given there.

Theorem 7.10. Let [W,K] be a pseudo-klt pair, let π : W → S be a proper
morphism onto a variety S and let D be a π -nef Cartier divisor on W . Assume that
r D−K is π-nef and π-big for some positive integer r . Then m D is π-generated
for every m� 0.

Proof. Without loss of generality, we can assume that S is affine. By the usual
technique (see [Kawamata 1998, Theorem 1] and [Fujino 1999, Theorem 1.2]), we
have

K+ ε(r D−K)∼Q KW +1W

such that (W,1W ) is klt for some sufficiently small rational number 0< ε� 1 (see
also [Kollár 2007, Theorem 8.6.1]). Then r D− (KW +1W )∼Q (1− ε)(r D−K),
which is π-nef and π-big. Therefore, m D is π-generated for every m� 0 by the
usual Kawamata–Shokurov basepoint-free theorem. �

The next theorem is the main theorem of this section. It is a generalization of
Kawamata’s theorem in [Kawamata 1985] (cf. Theorem 4.2) for pseudo-klt pairs.

Theorem 7.11. Let [W,K] be a pseudo-klt pair and let π : W → S be a proper
morphism onto a variety S. Assume the following conditions:

(i) H is a π -nef Q-Cartier Q-divisor on W .

(ii) H −K is π -nef and π -abundant.

(iii) κ(Wη, (aH −K)η)≥ 0 and ν(Wη, (aH −K)η)= ν(Wη, (H −K)η) for some
a ∈Q with a > 1, where η is the generic point of S.

Then H is π -semiample.

Proof. By definition, there exists a proper surjective morphism f : V →W from a
sub-klt pair (V, B). Without loss of generality, we can assume that V is nonsingular
and Supp B is a simple normal crossing divisor. By definition, f∗OV (d−Be)' OW .
From now on, we assume that H is Cartier by replacing it with a multiple. Then
f∗OV (d−Be + j HV ) ' OW ( j H) by the projection formula for every integer j ,

where HV = f ∗H . Pushing forward by π , we have

p∗OV (dA(V, B)e+ j HV )= p∗OV (d−Be+ j HV )

' π∗OW ( j H)

' p∗OV ( j HV )
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for every integer j , where p = π ◦ f . This is nothing but the saturation condition
Theorem 4.4(e). We put L = H−K. We consider the Iitaka fibration with respect to
L over S as in [Fujino 2011d, Proof of Theorem 1.1]. Then we obtain the following
commutative diagram:

V V

f
y y
W

µ
←−−− U

π

y yg

S ←−−−
ϕ

Z

where g : U → Z is the Iitaka fibration over S and µ : U → W is a birational
morphism. Note that we can assume that f : V →W factors through U by blowing
up V .

Lemma 7.12. rank h∗OV (dA(V, B)e)= 1, where h : V →U → Z.

Proof. This proof is essentially the same as that of [Fujino 2011d, Lemma 2.3].
First, we can assume that S is affine. Let A be an ample divisor on Z such
that h∗OV (dA(V, B)e)⊗OZ (A) is ϕ-generated. We note that we can assume that
µ∗L ∼Q g∗M since L is π -nef and π -abundant, where M is a ϕ-nef and ϕ-big Q-
divisor on Z . If we choose a large and divisible integer m, then OZ (A)⊂ OZ (mM).
Thus

ϕ∗(h∗OV (dA(V, B)e)⊗OZ (A))

⊆ ϕ∗(h∗OV (dA(V, B)e)⊗OZ (mM))

' p∗OV (dA(V, B)e+m f ∗L)

' π∗OW (mL)

' ϕ∗OZ (mM).

Therefore, rank h∗OV (dA(V, B)e)≤ 1. Since OZ ⊂ h∗OV ⊂ h∗OV (dA(V, B)e), we
obtain rank h∗OV (dA(V, B)e)= 1 �

Note that h :V→ Z is the Iitaka fibration with respect to f ∗L over S. Assumption
(c) in Theorem 4.4 easily follows from (iii). Thus, by Theorem 4.4, we have that
HV is p-semiample. Equivalently, H is π -semiample. �

The final theorem of this paper is a basepoint-free theorem for minimal lc centers.

Theorem 7.13. Let (X, B) be a quasi-projective lc pair and let W be a minimal lc
center of (X, B). Let π :W → S be a proper morphism onto a variety S. Assume
the following conditions:
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(i) H is a π -nef Q-Cartier Q-divisor on W .

(ii) H − (K X + B)|W is π -nef and π -abundant.

(iii) κ(Wη, (aH − (K X + B))|Wη
)≥ 0 and

ν(Wη, (aH − (K X + B))|Wη
)= ν(Wη, (H − (K X + B))|Wη

)

for some a ∈Q with a > 1, where η is the generic point of S.

Then H is π -semiample.

Proof. Let f : Y → X be a dlt blow-up such that KY + BY = f ∗(K X + B) (see,
for example, [Fujino 2011a, Theorem 10.4] or [Fujino 2011e, Section 4]). Then
we can take a minimal lc center Z of (Y, BY ) such that f (Z) = W . Note that
K Z + BZ = (KY + BY )|Z is klt. We also note that W is normal (see, for example,
[Fujino 2011c, Theorem 2.4 (4)] or [Fujino 2011a, Theorem 9.1 (4)]). Let

f : Z
g

−−−→ V
h

−−−→ W

be the Stein factorization of f : Z→W . Then [V, h∗((K X+B)|W )] is a pseudo-klt
pair by g : (Z , BZ )→ V . We note that H is π-semiample if and only if h∗H is
π ◦ h-semiample. By Theorem 7.11, h∗H is semiample over S. This concludes the
proof. �
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