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Spherical varieties and integral
representations
of L-functions

Yiannis Sakellaridis

We present a conceptual and uniform interpretation of the methods of integral
representations of L-functions (period integrals, Rankin–Selberg integrals). This
leads to (i) a way to classify such integrals, based on the classification of certain
embeddings of spherical varieties (whenever the latter is available), (ii) a conjec-
ture that would imply a vast generalization of the method, and (iii) an explanation
of the phenomenon of “weight factors” in a relative trace formula. We also prove
results of independent interest, such as the generalized Cartan decomposition for
spherical varieties of split groups over p-adic fields (following an argument of
Gaitsgory and Nadler).
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1. Introduction

1.1. Goals. The study of automorphic L-functions (and their special values at
distinguished points, or L-values) is very central in many areas of present-day
number theory, and an incredible variety of methods has been developed in order
to understand the properties of these mysterious objects and their deep links with
seemingly unrelated arithmetic invariants. Oddly enough, notwithstanding their

MSC2000: primary 11F67; secondary 22E55, 11F70.
Keywords: automorphic L-functions, spherical varieties, Rankin–Selberg, periods of automorphic
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elegant and very general definition by Langlands in terms of Euler products, vir-
tually all methods for studying them depart from an integral construction of the
form:

A suitable automorphic form (considered as a function on the automor-
phic quotient [G] := G(k) \G(Ak)), integrated against a suitable distri-
bution on G(k) \G(Ak), is equal to a certain L-value.

For “geometric” automorphic forms, such an integral can often be expressed as
a pairing between elements in certain homology and cohomology groups, but the
essence remains the same. Given the importance of such methods, it appears as a
paradox that there is no general theory of integral representations of L-functions,
and in fact, they are often considered as “accidents”.

In this article, I present a uniform interpretation of a large array of such methods,
which includes Tate integrals, period integrals and Rankin–Selberg integrals. This
interpretation leads to the first systematic classification of such integrals, based on
the classification of certain spherical varieties (see Sections 4 and 5). Moreover,
it naturally gives rise to a very general conjecture (Conjecture 3.2.2), whose proof
would lead to a vast extension of the method and would allow us to study many
more L-functions than are within our reach at this moment. Finally, it explains
phenomena that have been observed in the theory of the relative trace formula,
in a way that is well suited to the geometric methods employed in the proof of
the fundamental lemma by Ngô [2010]. In the course of the article we also prove
some results that can be of independent interest, including results on the orbits of
hyperspecial and congruence subgroups on the p-adic points of a spherical variety
(Theorems 2.3.8 and 2.3.10).

The main idea is based on the well-known principle that a “multiplicity-freeness”
property usually underlies integral constructions of L-functions. For our present
purposes, a multiplicity-freeness property can be taken to mean that a suitable
space of functions S(X) on a G(Ak)-space X admits at most one, up to constants,
morphism into any irreducible admissible representation π of G(Ak). Here G
denotes a connected reductive algebraic group over a global field k, and Ak denotes
the ring of adeles of k. Such spaces arise as the adelic points of spherical varieties.
By definition, a spherical variety for G is a normal variety with a G-action such
that, over the algebraic closure, the Borel subgroup of G has a dense orbit. Let X
be an affine spherical variety, and denote by X+ the open G-orbit on X . A second
principle behind the main idea is based on ideas around the geometric Langlands
program, according to which the correct “Schwartz space” S(X) of functions to
consider (which are actually functions on X+(Ak), not X (Ak)) should be one re-
flecting the geometry and singularities of X . Then, for every cuspidal automorphic
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representation π of G with “sufficiently positive” central character, there is a nat-
ural pairing PX : S(X (Ak))⊗ π → C. The weak version of our Conjecture 3.2.4
asserts that this pairing admits meromorphic continuation to all π . (A stronger
version, 3.2.2, states that an “Eisenstein series” construction, obtained by summing
over the k-points of X and integrating against characters of a certain torus acting
on X , has meromorphic continuation.) Then, assuming the multiplicity-freeness
property, one expects the pairing to be associated to some L-value of π .

If our variety is of the form H \ G with H a reductive subgroup of G, then
from this construction we recover in Section 4.2 the period integral of automorphic
forms over H(k) \ H(Ak). More generally, if X is fibered over such a variety and
the fibers are (related to) flag varieties, then we can prove meromorphic continu-
ation using the meromorphic continuation of Eisenstein series, and we recover in
Section 4.4 integrals of “Rankin–Selberg” type. Thus, we reduce the problem of
finding Rankin–Selberg integrals to the problem of classifying affine spherical va-
rieties with a certain geometry. For smooth affine spherical varieties, this geometric
problem has been solved by Knop and Van Steirteghem [2006]. By inspection of
their tables, we recover in Section 5 some of the best-known constructions, such as
those of Rankin [1939] and Selberg [1940], Godement and Jacquet [1972], Bump
and Friedberg [1990], all spherical period integrals, as well as some new ones.

In Section 4.5 we give an example, involving the tensor product L-function of n
cuspidal representations on GL2, to support the point of view that the basic object
giving rise to an Eulerian integral related to an L-function is the spherical variety
X and not a geometry related to flag varieties. Finally, in Section 6 we apply these
ideas to the relative trace formula to show that certain “weight factors” that have
appeared in examples of this theory and are often considered an “anomaly” can, in
fact, be understood using the notion of Schwartz spaces.

1.2. Background on the methods. To an automorphic representation π '
⊗
′

v πv

of a reductive group G over a global field k, and to an algebraic representation ρ of
its Langlands dual group LG, Langlands attached a complex L-function L(π, ρ, s),
defined for s in some right-half plane of the complex plane as the product, over all
places v, of local factors Lv(πv, ρ, s).1

Despite the beauty of its generality, the definition is of little use when attempting
to prove analytic properties of L-functions, such as their meromorphic continuation
and functional equation. Such properties are usually obtained by integration tech-
niques, namely presenting the L-function as some integral transform of an element
in the space of the given automorphic representation. Such methods in fact predate
Langlands by more than a century, but the most definitive construction (since every

1At ramified places and for most ρ, the definition still depends on the local functoriality
conjectures.
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automorphic L-function should be a GLn L-function) was studied by Godement
and Jacquet [1972] (generalizing Tate’s construction [1967] for GL1), who proved
the analytic continuation and functional equation of L(π, s) := L(π, std, s), where
π is an automorphic representation of G = GLn and std is the standard represen-
tation of LG = GLn(C)×Gal(k̄/k). Their method relies on proving the equality

L(π, s− 1
2(n− 1))=

∫
GLn(Ak)

〈
π(g)φ, φ̃

〉
8(g)|det(g)|s dg, (1-1)

with φ a suitable vector in π , φ̃ a suitable vector in its contragredient and 8 a
suitable function in S(Matn(Ak)), the Schwartz space of functions on Matn(Ak).
The main analytic properties of L(π, ρ, s), then, follow from Fourier transform on
the Schwartz space and the Poisson summation formula.

Several decades before, Hecke showed that the standard L-function of a cusp-
idal automorphic representation on GL2 (with, say, trivial central character) has a
presentation as a period integral, which in adelic language reads

L(π, s+ 1
2)=

∫
k×\A×k

φ
(( a 0

0 1

))
|a|s da, (1-2)

where φ is again a suitable vector in the automorphic representation under consid-
eration.

Period integrals (by which we mean integrals over the orbit of some subgroup on
the automorphic space G(k)\G(Ak), possibly against a character of that subgroup)
have since been studied extensively, although there are still many open conjectures
about their relation to L-functions; see, for instance, [Ichino and Ikeda 2010].
Still, they form perhaps the single class of examples where we have a general
principle answering the question, How do we write down an integral with good
analytic properties, which is related to some L-function (or L-value)? Piatetski-
Shapiro discussed this in [1975], and suggested that the period integral of a cusp
form on a group G over a subgroup H (against, perhaps, an analytic family δs

of characters of H as in (1-2)) should always be related to some L-value if the
subgroup H enjoys a “multiplicity-one” property: dim HomH(Ak)(π, δs) ≤ 1 for
every irreducible representation π of G(Ak) and (almost) every s.

The method of periods usually fails when the subgroup H is nonreductive, the
reason being that, typically, the group H(Ak) has no closed orbits on G(k)\G(Ak).
Therefore there is no a priori reason that the period integral should have nice ana-
lytic properties (as the character δs varies), and one can in fact check in examples
(see, for instance, Example 3.2.1) that for values of s such that the period integral
converges, it does not represent an L-function.

In a different vein, Rankin [1939] and Selberg [1940] independently discovered
an integral representing the tensor product L-function of two cuspidal automorphic
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representations of GL2. The integral uses as auxillary data an Eisenstein series on
GL2 and has the form

L(π1×π2,⊗, s)=
∫

PGL2(k)\PGL2(Ak)

φ1(g)φ2(g)E(g, s) dg

with suitable φ1 ∈ π1 and φ2 ∈ π2.
Later, this method was taken up by Jacquet, Piatetski-Shapiro, Shalika, Ral-

lis, Gelbart, Ginzburg, Bump, Friedberg and many others, in order to construct
numerous examples of automorphic L-functions expressed as integrals of cusp
forms against Eisenstein series, with important corollaries for every such expres-
sion discovered. Despite the abundance of examples, however, there has not been a
systematic understanding of how to produce an integral representing an L-function.

1.3. Schwartz spaces and X-Eisenstein series. While the method of Godement
and Jacquet can also be phrased in the language of Rankin–Selberg integrals (see
[Gelbart et al. 1987]), the fact that no systematic theory of these constructions
exists has led many authors to consider them as coincidental or to seek direct
generalizations of [Godement and Jacquet 1972], as being a “more canonical”
construction [Braverman and Kazhdan 2000]. We adopt a different point of view
that treats Godement–Jacquet, Rankin–Selberg, and period integrals as parts of the
same concept, in fact a concept that should be much more general!

The basic object here is an affine spherical variety X of the group G. The reason
that such varieties are suitable is that they are related to the “multiplicity-free” prop-
erty discussed above. For instance, in the category of algebraic representations,
the ring of regular functions k[X ] of an affine G-variety is multiplicity-free if and
only if the variety is spherical. In the p-adic setting and for unramified repre-
sentations, questions of multiplicity were systematically examined in [Sakellaridis
2008; 2009], and of course in special cases such questions have been examined in
much greater detail; see, for example, [Prasad 1990].

The main idea is to associate to every affine spherical variety a space of distri-
butions on G(k) \G(Ak) that should have “good analytic properties”. For reasons
of convenience we set up our formulations so that the analytic problem does not
have to do with varying a character of some subgroup H (the isotropy subgroup of
a “generic” point on X ), but with varying a cuspidal automorphic representation of
G. For instance, to the Hecke integral (for PGL2) we do not associate the variety
Gm \ PGL2, but the variety X = PGL2 under the G = Gm × PGL2-action. Our
distributions (in fact, smooth functions) on G(k) \G(Ak) come from a “Schwartz
space” of functions on X+(Ak) via a theta series construction (that is, summation
over k-points of X+). Here X+ denotes the open G-orbit on X . The main conjec-
ture, 3.2.2, then states that the integral of these X -theta series against central idele
class characters (I call this integral an X -Eisenstein series), originally defined in
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some domain of convergence, has meromorphic continuation everywhere. Under
added assumptions on X (related to the multiplicity-freeness property mentioned
above), the pairings of X -theta series with automorphic forms should be related,
in a suitable sense, to automorphic L-functions or special values of those.

The geometric Langlands program provides ideas that allow us to speculate on
the form of these Schwartz spaces, motivated also by the work of Braverman and
Kazhdan [1999; 2002] on the special case that X is the affine closure of [P, P]\G,
where P is a parabolic subgroup. Let us discuss this work: The prototype here is the
case X+=U\SL2=A2r{0} (where U denotes a maximal unipotent subgroup) and
X =A2 (two-dimensional affine space). The Schwartz space is the usual Schwartz
space on X (Ak) which, by definition, is the restricted tensor product S(X (Ak)) :=⊗
′

v(S(k
2
v) : 8

0
v), where for finite places kv with rings of integers ov the “basic

vectors” 80
v are the characteristic functions of X (ov) = o2

v. There is a natural
meromorphic family of morphisms S(X (Ak)) → I G(Ak)

B(Ak)
(χ) (where I G

P denotes
normalized parabolic induction from the parabolic P and B denotes the Borel
subgroup), and for idele class characters χ the composition with the Eisenstein
series morphism Eisχ : I G(Ak)

B(Ak)
(χ)→ C∞(G(k) \ G(Ak)) provides meromorphic

sections of Eisenstein series, whose functional equation can be deduced from the
Poisson summation formula on A2

k — in particular, the L-factors that appear in the
functional equation of “usual” (or “constant”) sections are absent here.

This was found to be the case more generally in [Braverman and Kazhdan 1999;
Braverman and Gaitsgory 2002; Braverman et al. 2002; Braverman and Kazhdan
2002]: One can construct normalized sections of Eisenstein series from certain
Schwartz spaces of functions on [P, P] \ G(Ak) (or UP \ G(Ak), where UP is
the unipotent radical of P). These Schwartz spaces should be defined as tensor
products over all places, restricted with respect to some basic vector; and the ba-
sic vector should be the function-theoretic analog of the intersection cohomology
sheaf of some geometric model for the space X (ov). For instance, if X is smooth
then the intersection cohomology sheaf is constant, which means that 80

v is the
characteristic function of X (ov); this explains the distributions in Tate’s thesis, the
work of Godement and Jacquet, and the case of period integrals. (In the latter, the
characteristic function of X (ov)= H \G(ov) is obtained as the “smoothening” of
the delta function at the point H1 ∈ X .)

Such geometric models were recently defined by Gaitsgory and Nadler [2010]
for every affine spherical variety. They provide us with the data necessary to spec-
ulate on a generalization of the Rankin–Selberg method. It should be noted, how-
ever, that even to define the “correct” functions on X+(Ak) out of these geometric
models one has to rely on certain natural conjectures on them — therefore the prob-
lem of finding an independent or unconditional definition should be considered as
one of the steps needed for establishing our conjecture.
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1.4. Comments. Most of the ingredients in the present work are not new. Experts
in the Rankin–Selberg method will recognize in our method, to a lesser or greater
extent, the heuristics they have been using to find new integrals. The idea that geo-
metric models and intersection cohomology should give rise to the “correct” space
of functions on the p-adic points of a variety comes straight out of the geometric
Langlands program and the work of Braverman and Kazhdan; I have nothing to
offer in this direction.

However, the mixture of these ingredients is new and I think that there is enough
evidence that it is the correct one. For the first time, a precise criterion is formulated
on how to construct a “Rankin–Selberg” integral, reducing the problem to a purely
geometric one — classifying certain embeddings of spherical varieties. And evi-
dence shows that there should be a vast generalization that does not depend on such
embeddings. I prove no “hard” theorems and, in particular, I do not know how to
establish the meromorphic continuation of the X -Eisenstein series. Hence, I do not
know whether I am putting the cart before the horse — however, as opposed to other
conjectures that have appeared in the literature in the past, the distributions defined
here are completely geometric and have nothing to do a priori with L-functions,
which leaves a lot of room for hope. Finally, this point of view proves useful in
explaining the phenomenon of “weight factors” in the relative trace formula.

2. Elements of the theory of spherical varieties

2.1. Invariants associated to spherical varieties. A spherical variety for a con-
nected reductive group G over a field k is a normal variety X together with a
G-action, such that over the algebraic closure the Borel subgroup of G has a dense
orbit.

We denote throughout by k a number field and, unless otherwise stated, we make
the following assumptions on G and X :
• G is a split, connected, reductive group.

• X is affine.

The open G-orbit in X will be denoted by X+, and the open B-orbit by X̊+,
where B is a fixed Borel subgroup of G, whose unipotent radical we denote by U .2

The assumption that G is split is certainly very restrictive, but it is enough to
demonstrate our point of view, and convenient because of many geometric and
representation-theoretic results that have been established in this case. We will
discuss affine spherical varieties in more detail later, but we just mention here that
a common source of examples is when X+=H \G, a quasiaffine homogeneous va-
riety, and X = H\Gaff

= spec k[H \G], the affine closure of H \G; see Section 2.2.

2Notice that this is different from that of [Gaitsgory and Nadler 2010], but compatible with the
notation used in [Sakellaridis 2008; 2009; Sakellaridis and Venkatesh 2012].
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We will be using standard and self-explanatory notation for varieties and alge-
braic groups; for example, N(H),Z(H), H 0 will be, respectively, the normalizer,
center and connected component of a (sub)group H , and Y will be the closure of a
subvariety Y , etc. The isotropy group of a point x under a G-action will be denoted
by Gx and the fiber over y ∈ Y of a morphism X→ Y by X y . The base change of
an S-scheme Y with respect to a morphism T → S will be denoted by YT , but if v
denotes a completion of a number field k and Y is defined over k then we will be
denoting by Yv the set Y (kv).

Let us discuss certain invariants associated to a spherical variety. First of all, for
any algebraic group 0 we denote by X(0) its character group, and for any variety Y
with an action of 0 we denote by X0(Y ) the group of 0-eigencharacters appearing
in the action of 0 on k(Y ). If 0 is our fixed Borel subgroup B, then we will
denote XB(Y ) simply by X(Y ). The multiplicative group of nonzero eigenfunctions
(semiinvariants) for B on k(Y ) will be denoted by k(Y )(B). If Y has a dense B-
orbit, then we have a short exact sequence 0→ k×→ k(Y )(B)→ X(Y )→ 0.

For a finitely generated Z-module M , we denote the dual module HomZ(M,Z)

by M∗. For our spherical variety X , we let 3X = X(X)∗ and Q = 3X ⊗Z Q. A
B-invariant valuation on k(X) that is trivial on k× induces by restriction to k(X)(B)

an element of3X . We let V⊂Q be the cone3 generated by G-invariant valuations
which are trivial on k×; see [Knop 1991, Corollary 1.8]. It is known that V is a
polyhedral cone, and in fact that it is a fundamental domain for the action of a
finite reflection group WX on Q. We denote by 3+X the intersection 3X ∩V. Under
the quotient map X(A)∗ ⊗Q→ Q, V contains the image of the negative Weyl
chamber of G [Knop 1991, Corollary 5.3].

The associated parabolic of X is the standard parabolic

P(X) := {p ∈ G | X̊+ · p = X̊+}.

Make once and for all a choice of a point x0∈ X̊+(k) and let H denote its stabilizer;
hence X+ = H \G, and H B is open in G. There is the following “good” way of
choosing a Levi subgroup L(X) of P(X): Pick f ∈ k[X ], considered by restriction
as an element of k[G]H , such that the set-theoretic zero locus of f is X r X̊+. Its
differential d f at 1 ∈ G defines an element in the coadjoint representation of G,
and the centralizer L(X) of d f is a Levi subgroup of P(X). We fix throughout a
maximal torus A in B∩ L(X). We define AX to be the torus L(X)/(L(X)∩H)=
A/(A ∩ H); its cocharacter group is 3X . We consider AX as a subvariety of X̊+

via the orbit map on x0.

3A cone in a Q-vector space is a subset that is closed under addition and under multiplication by
Q≥0, its relative interior is its interior in the vector subspace that it spans, and a face of it is the zero
set, in the cone, of a linear functional that is nonnegative on the cone — hence, the whole cone is a
face as well.
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The finite reflection group WX ⊂ End(Q) for which V is a fundamental domain
is called the little Weyl group of X . The set of simple roots of G corresponding to B
and the maximal torus A⊂ B will be denoted by 1. Consider the (strictly convex)
cone negative-dual to V, that is, the set {χ ∈X(X)⊗Q | 〈χ, v〉≤0 for every v∈V}.
The generators of the intersections of its extremal rays with X(X) are called the
(simple) spherical roots4 of X and their set is denoted by 1X . They are known
to form the set of simple roots of a based root system with Weyl group WX . We
will denote by 1(X) the subset of 1 consisting of simple roots in L(X), and by
WL(X) ⊂ W the Weyl groups of L(X), respectively G. There is a canonical way
[Knop 1994b, Theorem 6.5] to identify WX with a subgroup of W , which normal-
izes and intersects trivially the Weyl group WL(X) of L(X). The data X(X),WX ,V

are usually easy to compute by finding a point on the open B-orbit and using
Knop’s action of the Borel subgroup on the set of B-orbits [Knop 1995b]; for a
more systematic treatment, see [Losev 2008].

If V is equal to the image of the negative Weyl chamber, we say that the variety is
a wavefront spherical variety. (This term is justified by the proof for asymptotics of
generalized matrix coefficients in [Sakellaridis and Venkatesh 2012].) Symmetric
varieties, for example, are all wavefront [Knop 1991, Section 5]. Motivated by the
results of [Sakellaridis 2008], we will call geometric multiplicity of X the cardinal-
ity of the generic nonempty fiber of the map X(X)/WX → X(A)/W . While none
implies the other, it is usually the case that varieties with geometric multiplicity
one are wavefront. On the other hand, let us call arithmetic multiplicity of X the
torsion subgroup of X(A)/X(X). It was shown in [Sakellaridis 2008] that if F
is a local nonarchimedean field, then for an irreducible unramified representation
π of G(F) that is in general position among X -distinguished ones (that is, with
HomG(π,C∞(X (F))) 6= 0), we have dim HomG(π,C∞(X (F))) = 1 if and only
if both the geometric and arithmetic multiplicities of X are 1.

The G-automorphism group of a homogeneous G-variety X+ = H \G is equal
to the quotient N(H)/H . It is known [Losev 2008, Lemma 7.17] that for X+

spherical the G-automorphisms of X+ extend to any affine completion X of X+.
Moreover, it is known that AutG(X) is diagonalizable; the cocharacter group of its
connected component can be canonically identified (by considering the scalars by
which an automorphism acts on rational B-eigenfunctions) with 3X ∩V∩ (−V).
We will be denoting Z(X) := (AutG(X))0. It will be convenient many times to
replace the group G by a central extension thereof and then divide by the subgroup

4The work of Gaitsgory and Nadler [2010] and Sakellaridis and Venkatesh [2012] suggests that
for representation-theoretic reasons one should slightly modify this definition of spherical roots.
However, the lines on which the modified roots lie are still the same, and for the purposes of the
present article this is enough.
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of Z(G)0 that acts trivially on X , so that the map Z(G)0 → Z(X) becomes an
isomorphism.

2.2. Spherical embeddings and affine spherical varieties. We will use the words
“embedding”, “completion” or “compactification” of a spherical G-variety X for a
spherical G-variety X (not necessarily complete) with an open equivariant embed-
ding X→ X . A spherical embedding is called simple if it contains a unique closed
G-orbit. Spherical embeddings have been classified by Luna and Vust [1983]; our
basic reference for this theory will be [Knop 1991]. We will now recall the main
theorem classifying simple spherical embeddings.

For now we assume that k is an algebraically closed field in characteristic zero.
However, for Theorem 2.2.1 below the assumption on the characteristic is un-
necessary, and any result that does not involve “colors” holds verbatim without
the assumption of algebraic closedness when the group G is split. Let X be a
spherical variety and let X+ be its open G-orbit. The colors of X are the closures
of the B-stable prime divisors of X+; their set will be denoted by D. For every
B-stable divisor D in any completion X of X+, we denote by ρ(D) the element of
Q induced by the valuation defined by D. A strictly convex colored cone is a pair
(C,F) with C⊂ Q, F⊂ D such that

(1) C is a strictly (that is, not containing lines) convex cone generated by ρ(F)
and finitely many elements of V,

(2) the intersection of V with the relative interior of C is nonempty, and

(3) 0 /∈ ρ(F).

If X is a simple embedding of X+ with closed orbit Y , we let F(X) denote the
set of D ∈ D such that D ⊃ Y , and we let C(X) denote the cone in Q generated
by all ρ(D), where D is a B-invariant divisor (possibly also G-invariant) in X
containing Y .

Theorem 2.2.1 [Knop 1991, Theorem 3.1]. The association X→ (C(X),F(X)) is
a bijection between isomorphism classes of simple embeddings of X+ and strictly
convex colored cones.

Now let us focus on affine and quasiaffine spherical varieties. We recall from
[Knop 1991, Theorem 6.7]:

Theorem 2.2.2. A spherical variety X is affine if and only if X is simple and there
exists a χ ∈ X(X) with χ |V ≥ 0, χ |C(X) = 0 and χ |ρ(DrF(X)) < 0. In particular,
H \G is affine if and only if V and ρ(D) are separated by a hyperplane, while it
is quasiaffine if and only if ρ(D) does not contain zero and spans a strictly convex
cone.
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Recall from [Braverman and Gaitsgory 2002, Section 1.1] that a variety Y over
a field k is called strongly quasiaffine if the algebra k[Y ] of global functions on
Y is finitely generated and the natural map Y → spec k[Y ] is an open embedding.
Then the variety Y aff

:= spec k[Y ] is called the affine closure of Y .

Proposition 2.2.3. A homogeneous quasiaffine spherical variety Y = H \ G is
strongly quasiaffine. If X := H \Gaff, then the data (C(X),F(X)) can be de-
scribed as follows: Consider the cone R ⊂ X(X) ⊗ Q generated by the set of
χ ∈ X(X) such that χ |V ≥ 0 and χ |ρ(D) ≤ 0. Choose a point χ in the relative
interior of R. Then F(X)={D∈D |ρ(D)(χ)=0} and C(X) is the cone generated
by F(X).

Remark 2.2.4. The first statement of the proposition generalizes a result of Hoch-
schild and Mostow [1973] for the variety UP \G, where UP is the unipotent radical
of a parabolic subgroup P of G. Indeed, this variety is spherical under the action
of M ×G, where M is the reductive quotient of P .

Proof. As a representation of G, k[Y ] is locally finite and decomposes as

k[Y ] =
⊕
λ

Vλ, (2-1)

where Vλ is the isotypic component corresponding to the representation with high-
est weight λ, and the sum is taken over all λwith Vλ 6= 0. Since the variety is spher-
ical, each Vλ is isomorphic to one copy of the representation with highest weight λ.
Moreover, the multiplicative monoid of nonzero highest-weight vectors k[Y ](B) is
the submonoid of k(Y )(B) (the group of nonzero rational B-eigenfunctions) con-
sisting of regular functions. Regular B-eigenfunctions are precisely those whose
eigencharacter satisfies χ |ρ(D) ≥ 0; since the set D is finite, the monoid of λ that
appears in the decomposition (2-1) is finitely generated. Since the multiplication
map Vµ⊗Vν has image in the sum of Vλ with λ≤µ+ν, and since its composition
with the projection k[Y ] → Vµ+ν is surjective, the sum of the Vλ, for λ in a set of
generators for the monoid of λ’s appearing in (2-1), generates k[Y ].

The second condition, namely that Y → X is an open embedding, follows from
the assumption that Y is quasiaffine and from the homogeneity of Y . Hence, Y is
strongly quasiaffine.

The affine closure X has the property that for every affine completion X ′ of Y ,
there is a morphism X→ X ′. The description of (C(X),F(X)) now follows from
Theorem 2.2.2 and [Knop 1991, Theorem 4.1], which describes morphisms be-
tween spherical embeddings. The cone C(X), as described, will necessarily con-
tain the intersection of V with the cone generated by ρ(D) in its relative interior;
therefore its relative interior will have nonempty intersection with V. �
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Let us now discuss the geometry of affine spherical varieties. The following is
a corollary of Luna’s slice theorem:

Theorem 2.2.5 [LuS 1973, III.1, Corollaire 2]. If G is a reductive group over an
algebraically closed field k in characteristic zero, acting on an affine variety X so
that k[X ]G = k, then X contains a closed G-homogeneous affine subvariety Y such
that the embedding Y ↪→ X admits an equivariant splitting X � Y . If G is smooth,
then the fiber over any (closed) point y ∈ Y is G y-equivariantly isomorphic to the
vector space of a linear representation of G y .

Luna’s theorem also states that Y is contained in the closure of any G-orbit,
which is easily seen to be true in the spherical case since affine spherical varieties
are simple. The G-automorphism group “retracts” X onto Y :

Proposition 2.2.6. Let X be an affine spherical G-variety and let Y be as in the
theorem above, considered both as a quotient and as a subvariety of X. Let T be
the maximal torus in AutG(X) that acts trivially on Y . Then the closure of the
T -orbit of every point on X meets Y . Equivalently, k[X ]T = k[Y ].

Proof. This is essentially [Knop 1994a, Corollary 7.9]. More precisely, let us
assume that G has a fixed point on X , that is, Y is a point. (The question is easily
reduced to this case, since every G y-automorphism of the fiber of X → Y over y
extends uniquely to a G-automorphism of X .) The proof of [loc. cit.] shows that
for a generic point x ∈ X there is a one-parameter subgroup H of AutG(X) such
that x ·H contains the fixed point in its closure. Hence k[X ]T = k and therefore X
contains a unique closed T -orbit. �

If G has a fixed point on X , we can embed X into a finite sum V =
⊕

i Vi of
finite-dimensional representations of G, such that the fixed point is the origin in V
and there is a subtorus T of

∏
i AutG(Vi ) acting on X with the origin as its only

closed orbit. (Simply take V to be the dual of a G-stable, generating subspace
of k[X ].)

2.3. Generalized Cartan decomposition. Let K= C((t)), the field of formal Lau-
rent series over C, and O = C[[t]], the ring of formal power series. Let X+ be a
homogeneous spherical variety over C.

Theorem 2.3.1 [Luna and Vust 1983]. G(O)-orbits on X+(K) are parametrized
by 3+X , where to λ̌ ∈3+X corresponds the orbit through λ̌(t) ∈ AX (K).

A new proof given by Gaitsgory and Nadler [2010] can be used to prove the
analogous statement over p-adic fields. We revisit their argument, adapt it to the
p-adic case, and extend it to determine the set of G(oF )-orbits on X (oF ), when
G and X are affine and defined over a number field and F is a nonarchimedean
completion (outside of a finite set of places).
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Remark 2.3.2. In the case of symmetric spaces, similar statements on the set of
G(oF )-orbits on X (F) and in a more general setting — without assuming that G
is split — have been proven by Benoist and Oh [2007] and Delorme and Sécherre
[2011].

The argument uses compactification results of Brion, Luna and Vust. We first
need to recall a few more elements of the theory of spherical varieties. The results
below have appeared in the literature for k an algebraically closed field in char-
acteristic zero, but the proofs hold verbatim when k is any field in characteristic
zero and the groups in question are split over k. (The basic observation being,
here, that in all proofs one gets to choose B-eigenfunctions in k(X), and since the
variety is spherical and the group is split, the eigenspaces of B are one-dimensional
and defined over k, and therefore the chosen eigenfunctions are k-rational up to k̄-
multiple.)

A toroidal embedding of X+ is an embedding X c of X+ in which no color (B-
stable divisor which is not G-stable) contains a G-orbit. Theorem 2.2.1 implies
that simple toroidal embeddings are classified by strictly convex, finitely generated
subcones of V. Moreover, the simple toroidal embedding X c obtained from a
simple embedding X by taking the cone C(X c) = C(X)∩V comes with a proper
equivariant morphism X c

→ X [Knop 1991, Theorem 4.1] that is surjective [ibid.,
Lemma 3.2].

The local structure of a simple toroidal embedding is given by the following
theorem of Brion, Luna and Vust:

Theorem 2.3.3 [Brion et al. 1986, Théorème 3.5]. Let X c be a simple toroidal
embedding of X+ and let X c

B denote the complement of all colors. Then X c
B is an

open, P(X)-stable, affine variety with the following properties:

(1) X c
B meets every G-orbit.

(2) If we let Y c be the closure of AX in X c
B , then the action map Y c

×UP(X)→ X c
B

is an isomorphism.

We emphasize the structure of the affine toric variety Y c: Its cone of regular
characters is precisely C(X c)∨ := {χ ∈ X(X)⊗Q | 〈χ, v〉 ≥ 0 for all v ∈ C(X c)};
in other words,

Y c
= spec k[C(X c)∨ ∩X(X)].

By the theory of toric varieties, the theorem also implies that X c is smooth if and
only if the monoid C(X c)∩3X is generated by primitive elements in its “extremal
rays” (that is, is a free abelian monoid).

When V is strictly convex (equivalently AutG(X+) is finite), then X+ admits a
canonical toroidal embedding X , with C(X)=V, which is complete. This is some-
times called the wonderful completion of X+, although often the term “wonderful”
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is reserved for the case that this completion is smooth. If V is not strictly convex,
then X+ still admits a (nonunique) complete toroidal embedding X , which is not
simple, but as remarked in [Gaitsgory and Nadler 2010, 8.2.7], Theorem 2.3.3 still
holds, with Y c a suitable (nonaffine) toric variety containing AX . The fan of Y c

depends on the chosen embedding X , but its support is precisely the dual cone of V

(that is, the set of cocharacters λ of AX such that limt→0 λ(t)∈ Y c is equal to3+X ).
We will use Theorem 2.3.3 for two toroidal varieties: First, for a complete

toroidal embedding X of X+. Secondly, for the variety X̂ obtained from our affine
spherical variety X by taking C(X̂) = C(X)∩V. Before we proceed, we discuss
models of these varieties over rings of integers.

2.3.4. Models over rings of integers. We start with toric varieties. Let o be an
integral domain with fraction field k, and let Y be a simple (equivalently, affine)
toric variety for a split torus T over k. We endow T with its smooth model T =

o[X(T )] over o. Since Y = spec k[M] for some saturated monoid M ⊂ X(T ), the
o-scheme Y= spec o[M] is a model for Y over o with an action of T, and we will
call it the standard model. The notion easily extends to the case where Y is not
necessarily affine, but defined by a fan. If T and Y are defined over a number field
k and endowed with compatible models over the S-integers oS for a finite set S of
places of k, then these models will coincide with the standard models over oS′ , for
some finite S′ ⊃ S.

Now we return to the setting where k is a number field, G, X , X+, X , X̂ are
as before (over k), and let us also fix a point x0 ∈ X̊+(k). Then we can choose
compatible integral models outside of a finite set of places, such that the structure
theory of Brion, Luna and Vust continues to hold for these models:

Proposition 2.3.5. There are a finite set of places S0 of k and compatible flat mod-
els G, X, X and X̂ for G, X , X and X̂ , respectively, over the S0-integers oS0 of k,
such that

• S0 contains all archimedean places;

• the chosen point x0 is in inX̊+(oS0);

• G is reductive over oS0 , and X+→ spec oS0 is smooth and surjective;

• the statement of Theorem 2.3.3 holds for X and X̂ over oS0 , namely, if we
denote any either of them by Xc, then there is an open, P(X)-stable subscheme
Xc

B and a toric A-subscheme Yc of standard type such that the subscheme
Xc

B meets every G-orbit on Xc and the action map Yc
×UP(X) → Xc

B is an
isomorphism of oS0-schemes.

• X is proper over oS0 , and the morphism X̂→ X is proper.
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Remarks 2.3.6. (1) By X+ and X̊+ we denote the complement of the closure, in
any of the above schemes, of the complement of X+ and X̊+, respectively, in
the generic fiber.

(2) It is implicitly part of the “compatibility” of the models that the scheme struc-
tures on X+ and X̊+ do not depend on which of the ambient schemes we
choose to define them.

(3) We understand the statement “meets every orbit” as follows: Let |Z| denote
the set of scheme-theoretic points of a scheme Z. Consider the two maps
p : G×X→ X (projection to the second factor) and a : G×X→ X (action
map). Then for every x ∈ |Xc

| the set a(p−1
{x}) intersects |Xc

B | nontrivially.

Proof. For a finite set S of places and a flat model Xc of X c over oS (assumed
proper if X c

= X ), let D denote the union of all colors over the generic point of
spec oS , let D denote the closure of D in Xc, and let Xc

B be the complement of
D in Xc. Let G denote a compatible reductive model for G over oS . (All these
choices are possible by sufficiently enlarging S.) The image of G×Xc

B → Xc is
open and contains the generic fiber; hence by enlarging the set S, if necessary, we
can make it surjective.

Now define Yc as the closure of Y c in Xc
B . By enlarging the set S, if necessary,

we may assume that Yc is of standard type. The action map Yc
×UP(X)→Xc

B being
an isomorphism over the generic fiber, it is an isomorphism over oS by enlarging S,
if necessary. �

From now on we fix such a finite set of places S0 and such models. The combi-
natorial invariants of the schemes above are the same at all places of S0:

Proposition 2.3.7. Each of the data5 X(X),V,C(X),C(X),C(X̂) is the same for
the reductions of X,X, X̂ at all closed points of oS0 . The set of G-orbits on each
of these varieties is in natural bijection with the set of G-orbits on each of their
reductions.

Proof. The toric scheme Yc being of the standard type, it means that X(X) =
XA(Y c) is the same at all reductions. For every place v of oS the reductions XFv

and X̂Fv are toroidal: Indeed, denoting by Xc either of them, the complement of
(Xc

B)Fv is a BFv -stable union of divisors that does not contain any GFv -orbit, since
(Xc

B)Fv meets every GFv -orbit. Moreover, Xc
B meets no colors, for if it did, then

a nonopen AFv -orbit on Yc
Fv

would belong to the open GFv -orbit, and hence the
open GFv -orbit would belong to the closure of a nonopen G-orbit over the generic
point, a contradiction since by assumption X+ is smooth and surjective. Therefore,

5Since X is not necessarily simple, it is not described by a cone but by a fan. However, we slightly
abuse the common notation here and write C(X) for the set of invariant valuations whose center is in
X — that is, for the support of the fan associated to X .
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the complement of (Xc
B)Fv is the union of all colors of Xc

Fv
, and Xc

Fv
is toroidal.

Moreover, the GFv -invariant valuations on Fv(X
+

Fv ) whose centers are in Xc
Fv

are
precisely those of 3X ∩C(X c) (which proves the equality of C(Xc

Fv
) with C(X c)

at all v /∈ S0), and from the fact that XFv is complete and C(XFv )=3
+

X , it follows
that V is precisely the cone of invariant valuations on Fv(X

+). �

Now we are ready to apply the argument of [Gaitsgory and Nadler 2010, The-
orem 8.2.9] to describe representatives for the set of G(oF )-orbits on X+(oF ), for
every completion F of k outside of S0, and also extend it to a description of the
set of orbits that are contained in X(oF ). Notice that since G is reductive, G(oF )

is a hyperspecial maximal compact subgroup of G(F). From now on we denote
our fixed models over oS0 by regular script, since there will be no possibility of
confusion. There is a canonical AX (oF )-invariant homomorphism AX (F)→ 3X

(under which an element of the form λ($), where $ is a uniformizer for F , maps
to λ) and we denote by AX (F)+ the preimage of 3+X .

Theorem 2.3.8. For F a completion of k outside of S0, each G(oF )-orbit on
X+(F) contains an element of AX (F)+, and elements of AX (F)+ with different
image in3+X belong to distinct G(oF )-orbits. If the quotient X(A)/X(X) is torsion-
free, then the map from G(oF )-orbits on X+(F) to 3+X is a bijection. The orbits
contained in X (oF ) are precisely those mapping to 3+X ∩C(X).

Remark 2.3.9. The torsion of the quotient X(A)/X(X) is the “arithmetic multi-
plicity” defined in Section 2.1. It is trivial if and only if the map AX (F)/A(o)→
3X is bijective; hence the statement about bijectivity in that case is straightforward.
In general, elements in different A(oF )-orbits may belong to the same G(oF )-orbit;
for instance, if X+ = H \G with H connected then the map G(oF ) 3 g 7→ x0 · g ∈
X+(oF ) will be surjective by an application of Lang’s theorem (the vanishing of
Galois cohomology of H over a finite field). But it is also not always the case that
elements corresponding to the same λ will always be in the same G(oF )-orbit —
for instance, when H is not connected.

We will prove this theorem together with a theorem about orbits of the first
congruence subgroup, which will not be used here but will be useful elsewhere.
Let F denote the residue field of F .

Theorem 2.3.10. Let K1, AX,1,U1 be the preimages of 1 ∈ G(F), 1 ∈ AX (F),
1 ∈U (F) in G(oF ), AX (oF ), U (oF ), respectively. Then for every x ∈ AX (F)+, we
have x · K1 ⊂ x · AX,1 ·U1.

Proof of Theorems 2.3.8 and 2.3.10. Denote oF by o. We use the notation X c,
X c

B , Y c, etc. as above for the scheme X . The o-scheme X c is proper and hence
X c(o) = X c(F). We will first show that Y c(o) contains representatives for all
G(o)-orbits on X c(o). Let x ∈ X c(o) and denote by x̄ ∈ X c(F) its reduction. The
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open, P(X)-stable subvariety X c
B meets every G-orbit; for a spherical variety for

a split reductive group over an arbitrary field (denoted F, since we will apply it to
this field) the F-points of the open B-orbit meet every G(F)-orbit. (This is proven
following the argument of [Sakellaridis 2008, Lemma 3.7.3], that is, reducing to
the case of rank one groups, and by inspection of the spherical varieties for SL2,
classified in [Knop 1995a, Theorem 5.1].) This means that there is a ḡ ∈ G(F)
(which we can lift to a g ∈ G(o)) such that x · g ∈ X c

B(F). Since X c
B is open, this

means that x · g ∈ X c
B(o) = Y c(o)×UP(X)(o). Acting by a suitable element of

UP(X)(o), we get a representative for the G(o)-orbit of x in Y c(o). Hence, G(o)-
orbits on X+(F) are represented by elements of AX (F)+ = Y c(o)∩ AX (F).

To prove that elements mapping to distinct λ, λ′ ∈3+X belong to different G(o)-
orbits, the argument of Gaitsgory and Nadler carries over verbatim: If λ and λ′

are not Q-multiples of each other, we can construct as in [Knop 1991] a toroidal
embedding X t of X+ over o such that λ($)∈ X t(o) but λ′($) /∈ X t(o). Finally, if
λ and λ′ are Q-multiples of each other (without loss of generality, λ 6= 0), then we
can find a toroidal compactification X t such that limt→0 λ(t) belongs to some G-
orbit D of codimension one, and then the intersection numbers of λ($) and λ′($)
(considered as 1-dimensional subschemes of X t ) with D are different. (Notice that
the constructions of [Knop 1991] are over a field of arbitrary characteristic, and
based on Proposition 2.3.7 one can carry them over the ring oF .)

To finish the proof of Theorem 2.3.8, if we now consider X̂ then we have a proper
morphism X̂ → X that is an isomorphism on X+. By the valuative criterion for
properness, every point in X (o)∩ X+(F) lifts to a point on X̂(o); therefore for the
last statement it suffices to determine the set of G(o)-orbits on X̂(o)∩ X+(F). By
the same argument as before, every G(o)-orbit meets Ŷ (o), and the latter intersects
AX (F) precisely in the union of AX (o)-orbits represented by 3X ∩C(X).

For Theorem 2.3.10, we first notice that X c
B(o) (where X c still denotes X ) is

K1-stable; indeed, for any x ∈ X c
B(o) and g ∈ K1 the reduction of x · g belongs to

X c
B(F), and since X c

B is open this implies that x · g ∈ X c
B(o). Now we claim that

Y c(o) ·U1 is also K1-stable; indeed, this is the preimage in X c
B(F) of Y c(F), and

for every x ∈ Y c(o) ·U1 and g ∈ K1, the reduction of x · g belongs to Y c(F). We
have already argued that elements of AX (F)+ with different images in 3+X belong
to distinct G(o)-orbits, hence to distinct K1-orbits; hence, x ·K1 belongs to the set
of elements of AX (F)+ ·U1 with the same image λx ∈3

+

X as x .
To distinguish between those elements, we assign to them some invariants that

will be preserved by the K1-action. First of all, if λx = 0, then the reduction of
x modulo p is an element of X+(F) that is preserved by K1, and the elements of
AX (F)+ · U1 having the same reduction are precisely the elements in the same
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AX,1 ·U1-orbit as x . Assume now that λx 6= 0 and fix as above a spherical em-
bedding X t of X+ over o such that limt→0 λ(t) belongs to a G-orbit of codimen-
sion one, whose closure we denote by D. Let n be the intersection number of
x ∈ X t(o)∩ X+(F) with D; then x : spec o→ X t has reductions x̄ : spec F→ D,
x̄n
: spec(o/pn) → D and x̄n+1

: spec(o/pn+1) → X t , which give rise to an F-
linear map from the fiber at x̄ of the conormal bundle of D in X t to pn/pn+1. The
group K1 preserves the reduction of x and acts trivially on the fiber of the conormal
bundle of D over it; therefore preserves this map. It is straightforward to see that
for elements of AX (F)+ ·U1 with the same image in3+X this invariant characterizes
the AX,1 ·U1-orbit of x . �

3. Conjectures on Schwartz spaces and automorphic distributions

This section is highly conjectural and only aims at fixing ideas. We speculate on
the existence of some “Schwartz space” of functions on the points of an affine
spherical variety over a local field, and explain how to construct from it distri-
butions on the automorphic quotient [G] := G(k) \G(Ak) that should have good
analytic properties. At almost every place this space of functions should come
equipped with a distinguished, unramified element that should be related (in a
rather ad hoc way, using the generalized Cartan decomposition) to intersection
cohomology sheaves on spaces defined by Gaitsgory and Nadler. In subsequent
sections we will specialize to the case where X has a certain geometry (which
we call a “preflag bundle”), and these distinguished functions will be described
explicitly, in order to understand the Rankin–Selberg method.

3.1. Formalism of Schwartz spaces and theta series.

3.1.1. Schwartz space. We fix an affine spherical variety X for a (split) reduc-
tive group G over a global field k, and for every place v of k, we denote by X+v
the space of kv-points of X+. We assume as given, for every v, a Gv-invariant
“Schwartz space” of functions S(Xv)⊂C∞(X+v ), and for almost every (finite) v a
distinguished unramified element80

v ∈S(Xv)G(ov) (called “basic vector” or “basic
function”) such that

80
v|X+(ov) = 1. (3-1)

(Clearly, the integral model that is implicit in the definitions will not play any
role.) We also assume the following regarding the support of Schwartz functions
and their growth close to the complement of X+:

• The closure in Xv of the support of any element of S(Xv) is compact.

• There exist a finite set { f1, . . . , fn} of elements of k[X ], whose common ze-
roes lie in X r X+, and a natural number n, such that for any place v and any
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8v ∈ S(Xv), there is a constant cv, equal to 1 for 8v = 80
v, such that for all

x ∈ X+(kv) we have |8v(x)| ≤ cv · (maxi | fi (x)|)−1.

At archimedean places the requirement of compact support is far from ideal, but
for our present purposes it is enough. One should normally impose similar growth
conditions on the derivatives (at archimedean places) of elements of the Schwartz
space, but we will not need them here.

The corresponding global Schwartz space is, by definition, the restricted tensor
product

S(X (Ak)) :=

′⊗
v

S(Xv) (3-2)

with respect to the basic vectors 80
v.

Despite the notation, the elements of S(X (Ak)) cannot be interpreted as func-
tions on X (Ak). They can be considered, though, as functions on X+(Ak), because
of the requirement (3-1).

We may require, without serious loss of generality, that X+(Ak) carries a pos-
itive G(Ak)-eigenmeasure dx whose eigencharacter ψ is the absolute value of an
algebraic character. We normalize the regular representation of G(Ak) on functions
on X+(Ak) so that it is unitary when restricted to L2(X)= L2(X, dx):

g ·8(x) :=
√
ψ(g)8(x · g).

The X-theta series is the following functional on S(X (Ak)):

θ(8) :=
∑

γ∈X+(k)

8(γ ). (3-3)

Translating by G(Ak), we can also consider it as a morphism

S(X (Ak))→ C∞([G]), (3-4)

which will be denoted by the same letter, that is,

θ(8, g)=
∑

γ∈X+(k)

(g ·8)(γ ). (3-5)

This sum is absolutely convergent, by the first growth assumption. (Notice that
X is affine and hence X (k) is discrete in X (Ak).)

3.1.2. Mellin transform. Now recall (Proposition 2.2.6) that, unless X is affine
homogeneous, it has a positive-dimensional group of G-automorphisms, that is,
Z(X) 6= 0. By enlarging G and dividing by the subgroup of Z(G)0 that acts triv-
ially, we will from now on assume that Z(G)0 ' Z(X) under its action on X . An
algebraic character of Z(X)will be called X-positive if it extends to the closure of a
generic orbit of Z(X), that is, χ :Z(X)→Gm is positive if for Y =Z(X) · x , where
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x is a generic point (say, a point on the open G-orbit), the function z · x 7→ χ(z) ∈
Gm ⊂Ga extends to a morphism Y→Ga . Obviously, X -positive characters span a
polyhedral cone in X(Z(X))⊗Q, and we will use the expression “sufficiently X -
positive characters” to refer to characters in the translate of this cone by an element
belonging to its relative interior. This notion will also be used for complex-valued
characters: A sufficiently X -positive character is one whose absolute value can
be written as the product of the absolute values sufficiently X -positive algebraic
characters, raised to powers ≥ 1. Similar notions will be used for the dual cone, in
the space of cocharacters into Z(X); for example, a cocharacter λ̌ is X -positive if
and only if for a generic point x ∈ X we have limt→0 x · λ̌(t)∈ X . Finally, since by
our assumption, X(G)⊗Q = X(Z(X))⊗Q, we can use the notion of X -positive
characters for characters of G, as well.

Proposition 3.1.3. The function θ(8, g) on G(k) \G(Ak) is of moderate growth.
Moreover, it is compactly supported in the direction of X-positive cocharacters
into Z(G); that is, for every g ∈ G(Ak) we have

θ(8, g · λ̌(a))= 0

if λ̌ is a nontrivial X-positive cocharacter into Z(X) = Z(G)0 and the norm of
a ∈ A×k is sufficiently large.

The statement about the support is an obvious corollary of the compact support
of8, and the statement on moderate growth will be proven in the next subsections.
Assuming it for now, we may consider the Mellin transform of θ(8, g)with respect
to the action of Z(G):

E(8, ω, g)=
∫

Z(X)(Ak)

θ(z ·8, g)ω(z) dz, (3-6)

originally defined for sufficiently X -positive idele class characters ω. We will call
this an X-Eisenstein series.

Proposition 3.1.4. For sufficiently X-positive ω, the integral (3-6) converges and
the function E(8, ω, g) is of moderate growth in g.

Proof. The convergence statement follows immediately from Proposition 3.1.3; the
statement on moderate growth is proven in the same way as Proposition 3.1.3, and
we will not comment on it separately. �

3.1.5. Adelic distance functions. Let Z ⊂ X be a closed subvariety of an affine
variety, and let X+ denote the complement of Z . We would like to define some
“natural” notion of distance from Z (denoted dZ ) for the adelic points of X+. The
distance function will be an Euler product

dZ (x)=
∏
v

dZ ,v(xv),
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where, for x ∈ X+(Ak), almost all factors will be equal to one.
We do it in the following way: First, we fix a finite set S of places, including

the archimedean ones, and an affine flat model for X over the S-integers oS . The
closure of Z in this model defines an ideal J ⊂ oS[X ]. We can choose a finitely
generated oS-submodule M of J such that M generates J as an oS[X ]-module. In
the case when X carries the action of a group G and Z is G-stable, we also choose
a compatible flat model for G over oS and require that M be G-stable (that is, the
action map maps M to M ⊗oS oS[G]).

Finally, let { fi }i be a finite set of generators of M over oS . Then for a point
x ∈ X+(Ak), we define

dZ ,v(xv)=max
i
{| fi (xv)|v} (3-7)

and

dZ (x)=
∏
v

dZ ,v(xv). (3-8)

We will call this an adelic distance function from Z . Notice that almost all
factors of this product are 1 since x ∈ X+(Ak). Moreover, the function extends by
zero to a continuous function on X (Ak).

Remark 3.1.6. For v /∈ S, the local factor dZ ,v depends only on M and not the
choices of the fi : It is the absolute value of the fractional ideal generated by the
image of M under xv : oS[X ] → ov. Moreover, the restriction of dZ ,v to X (ov)
does not depend on M , either, since the image of J generates the same fractional
ideal. (The restriction of dZ ,v to X (ov) is a height function, that is, qv raised to the
intersection number of x ∈ X (ov) with Z .)

Finally, the restriction of dZ to any compact subset of X (Ak) is up to a constant
multiple independent of choices. Indeed, such a compact subset is the product of
X (ov), for v outside of a finite number of places S′ ⊃ S, with a compact subset of∏
v∈S′ X (kv); therefore it suffices to prove independence for the dZ ,v when v ∈ S′.

For any two sets of functions { f j } j , { f ′i }i as above, we can write f ′i =
∑

j hi j f j

with hi j ∈ oS[X ] and for each v ∈ S′ there is a constant Cv such that |hi j (xv)|v ≤Cv
when x is in the given compact set. Then maxi | f ′i (xv)|v ≤ Cv max j | f ′j (xv)|v, and
therefore d ′Z (x)≤ CdZ (x) in the given compact set, where C =

∏
v∈S′ Cv.

For two complex valued functions f1 and f2 we will write f1 �
p f2 (where

the exponent p stands for “polynomially”) if there exists a polynomial P such that
| f1| ≤ P(| f2|). We will say that f1 and f2 are polynomially equivalent if f1�

p f2

and f2�
p f1.

In this language, it is easy to see that the assumption of Section 3.1.1 on growth
of Schwartz functions close to the complement of X+ is equivalent to the following:
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If Z denotes the complement of X+ in X , then for any adelic distance function dZ

from Z and any 8 ∈ S(X (Ak)), we have

|8(x)| �p dZ (x)−1 (3-9)

for every 8 ∈ S(X (Ak)).
Indeed, let the functions fi be as in the assumption of Section 3.1.1 and let the

functions f ′j define an adelic distance function as above. By enlarging S we may
assume that fi ∈ oS[X ] for all i , and by enlarging it further we may assume that the
support of 8 is the product of

∏
v /∈S X (ov) with a compact subset of

∏
v∈S X (kv).

By the assumption, the functions fi generate an ideal whose radical contains J .
Therefore, ( fi )i ⊃ J n for some J and hence for each j there are hi j ∈ oS[X ] such
that

( f ′j )
n
=

∑
i

hi j fi .

Therefore for v /∈ S and xv ∈ X (ov) we have

dZ ,v(xv)n ≤max
i
| fi (x)|,

and for v ∈ S we can find Cv such that |hi j (xv)|v ≤ Cv if x is in the support of 8.
Therefore, for x in the support of 8, we have∏

v

(max
i
| fi (xv)|v)−1

≤

∏
v∈S

C−1
v · dZ (x)−n.

Vice versa, if 8 is known to be polynomially bounded by dZ (x)−1, then it is
bounded by a constant times dZ (x)−n for some n (since dZ (x) is bounded in the
support of 8), which implies the bound of the assumption.

3.1.7. Proof of Proposition 3.1.3. Recall that an automorphic function φ is “of
moderate growth” if φ �p

‖g‖ for some natural norm ‖ · ‖ on G∞. Recall that
a “natural norm” is a positive function on G∞ that is polynomially equivalent
to ‖ρ(g)‖, where ρ denotes an algebraic embedding G ↪→ GLn , and ‖g‖ :=
max{|g|l∞, |g−1

|l∞} on GLn(k∞) (where | · |l∞ denotes the operator norm for the
standard representation of GLn on l∞({1, . . . , n})).

Assume without loss of generality that 8 =
⊗

v 8v, with 8v ∈ S(Xv), and let
S8 =

∏
S8v , where S8v is the support of 8v in X (kv) (a compact subset).

The claim of the proposition will follow from (3-9) if, in addition, we establish
that (for g ∈ G∞ and x ∈ X+(Ak))

• #(X+(k)∩ S8g)�p
‖g‖, and

• (inf dZ (X+(k)g))−1
�

p
‖g‖.
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Indeed, assuming these properties we have

θ(8, g)=
∑

γ∈X+(k)

(g ·8)(γ )≤ #(X+(k)∩ S8g−1) · sup
x∈X+(k)

|8(xg)| �p

�
p
‖g‖ ·

(
inf

x∈X+(k)
dZ (xg)

)−1
�

p
‖g‖ · ‖g‖.

The first property is standard, and follows from the analogous claim for GLn

(after fixing an equivariant embedding of X in the vector space of a representation
of G), since S8 is a compact subset of X (Ak).

To prove the second property, we may assume that the elements fi ∈ k[X ]
defining dZ span over k a G-invariant space M ⊂ k[X ] and that the norm on G∞
is induced by the l∞({ fi }i )-operator norm on GL(M∞). (If the homomorphism
G→GL(M) is not injective, then this l∞ norm is bounded by some natural norm
on G∞, which is enough for the proof of this property.) Then for every x ∈ X∞
and g ∈ G∞, we have

‖g‖−1
· dZ ,∞(x)≤ dZ ,∞(x · g)≤ ‖g‖ · dZ ,∞(x)

(where we keep assuming that dZ is defined by a basis for M).
We apply this to points x ∈ X+(F). For every x ∈ X+(k), fi (x) is in k and is

nonzero for at least one i ; hence dZ (x)=
∏
v maxi | fi (x)|v ≥maxi

∏
v| fi (x)|v = 1.

Therefore, we have dZ ,∞(x · g)≥ ‖g‖−1
· dZ ,∞(x)≥ ‖g‖−1. �

3.2. Conjectural properties of the Schwartz space. We saw in Proposition 3.1.4
that, under very mild assumptions on the basic functions 80

v, the Mellin transform
of the corresponding X -theta series converges for sufficiently X -positive charac-
ters ω. However, there is no reason to expect in general that it admits meromorphic
continuation to the set of all ω. Indeed, this often fails for the most naive choice
of basic functions, namely the characteristic functions of X+(ov). We discuss an
example, which will be encountered again in Section 4.5:

Example 3.2.1. Let G = (PGL2)
3
×Gm , and let H denote the subgroup{(

a x1

1

)
×

(
a x2

1

)
×

(
a x3

1

)
× a

∣∣∣∣ x1+ x2+ x3 = 0
}
.

If we defined the local Schwartz space to be equal to C∞c (Hv \Gv), with basic
function 8v equal to the characteristic function of (H \G)(ov) (which is equal to
the characteristic function of a single G(ov)-orbit), then, as we will explain in more
detail in Section 4.2, the integral of a cusp form against an X -Eisenstein series is
equal to the period integral of a cusp form on G over H(k)\H(Ak), and the usual
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“unfolding” method shows that this can be written as∫
A×k

W1

(
a

1

)
W2

(
a

1

)
W3

(
a

1

)
|a|s da,

where the Wi are Whittaker functions of cusp forms on PGL2 and the parameter s
depends on the restriction of the given representation to Gm(Ak) (assumed to factor
through the absolute value map, for simplicity). For <(s) large this integral can be
written as a convergent Euler product of the analogous local integrals.

An explicit but lengthy computation shows that, if the Wi (1) are normalized
to be equal to 1, if a, b, c denote the Satake parameters of the three PGL2-cusp
forms (considered as elements in C×, well-defined up to inverse), and if we set
Q = q−3/2−s , then the local unramified factors of this Euler product are equal, for
a certain choice of measure on A×k , equal to

(−1+ 3Q2
+ 3Q4

− Q6)+ (Q2
+ Q4)(a2

+ a−2
+ b2
+ b−2

+ c2
+ c−2)∏

σ=(σ1,σ2,σ3)∈{±1}3(1− Qaσ1bσ2cσ3)

−
2Q3(a+ a−1)(b+ b−1)(c+ c−1)∏
σ=(σ1,σ2,σ3)∈{±1}3(1− Qaσ1bσ2cσ3)

.

The denominator of this expression is very pleasant (it is equal to the denomina-
tor of the tensor product L-function of the three cuspidal representations), but the
numerator does not represent an L-function and it would be unreasonable to expect
that its Euler product admits meromorphic continuation. Therefore, this was not
the correct Schwartz space.

The conjectures that follow are very speculative, but will provide the suitable
ground for unifying various methods of integral representations of L-functions.
There are several reasonable assumptions that one could impose on the spheri-
cal variety, the strongest of which would be that for every irreducible admissible
representation π of G(Ak), we have dimG(Ak)(π,C∞(X+(Ak))) ≤ 1. At the very
minimum, we require from now on that the arithmetic multiplicity (Section 2.1)
of X is trivial. Equivalently, at every place v there is a unique open B(kv)-orbit,
and this also implies that generic G-stabilizers are connected6 and therefore, at
almost every (finite) place v, the space X+(ov) is homogeneous under G(ov).

Conjecture 3.2.2. Given an affine spherical variety X over k with trivial arith-
metic multiplicity, there exists a Schwartz space S(X (Ak)), in the sense described
above, such that

6If H is not connected then we have a finite cover H0
\ G → H \ G that gives rise to a finite

cover of the associated open B-orbits. But this implies that the B-stabilizer Bx of a generic point is
not connected; hence H1(k, Bx ) 6= 0, and therefore (Bx \ B) (k)) Bx (k) \ B(k).
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• the basic functions 80
v factor through the map of the generalized Cartan de-

composition

{G(ov)-orbits on X+v } →3+X

and as functions on 3+X are equal to the functions obtained via the function-
sheaf correspondence from the “basic sheaf” of Gaitsgory and Nadler, as will
be explained in 3.3.3; and

• for every 8 ∈ S(X (Ak)), the X-Eisenstein series E(8, ω, g), originally de-
fined for sufficiently X-positive characters, admits a meromorphic continua-
tion everywhere.

Remarks 3.2.3. (1) The first property could be taken as the definition of the basic
function, if one knew that the functions obtained from the Gaitsgory–Nadler
sheaf are independent of some choices, which we will explain in Section 3.3.3.
In any case, such a definition would be very ad hoc and not useful; one
hopes that there exists an alternative construction of the Schwartz space, as in
[Braverman and Kazhdan 1999].

(2) The property of meromorphic continuation is mostly dependent on the basic
vectors and not on the whole Schwartz space; for instance, at a finite number
of places we may replace any function with a function whose (local) Mellin
transform is a meromorphic multiple of the Mellin transform of the original
function without affecting the meromorphicity property. Therefore, the prop-
erties do not determine the Schwartz space uniquely; they should hold, for
instance, if we take S(Xv) to be the G-space generated by the basic vector
and C∞c (X

+
v ).

(3) The fact that the theta series is defined with reference to the group G (since
we are summing over the k-points of its open orbit) certainly seems unnatural;
it would be more “geometric” to sum over the k-points of the open subvari-
ety where Z(X) acts faithfully. However, this does not affect the validity of
Conjecture 3.2.2, since one case can be inferred from the other by induction
on the dimension of X .

The conjecture about meromorphic continuation of the Mellin transform is a
very strong one (see Section 4.5 for an example) and, in fact, is not even known
in the case of usual Eisenstein series, that is, the case of X =UP \G

aff
, where UP

is the unipotent radical of a parabolic P (except when P is a Borel subgroup). We
now formulate a weaker conjecture that says that the X -Eisenstein series can be
continued meromorphically “as functionals on the space of automorphic forms”.
In fact, the precise interpretation of them as functionals on the whole space of
automorphic forms would require a theory similar to the spectral decomposition of
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the relative trace formula, that lies beyond the scope of the present paper. There-
fore, we confine ourselves to the cuspidal component of this functional. (Notice,
however, that there are a lot of interesting examples which have zero cuspidal
contribution, e.g., X = Sp2n \GL2n .)

Conjecture 3.2.4 (weak form). Same assumptions as in Conjecture 3.2.2, but the
second property is replaced by the following:

• For every cusp form φ on G(k) \G(Ak), the integral∫
[G]
φ ·ω(g)θ(8, g) dg (3-10)

originally defined for sufficiently X-positive idele class characters ω of G,
admits meromorphic continuation to the space of all idele class characters
of G.

Remark 3.2.5. Following up on the third part of Remarks 3.2.3, we will see
in Proposition 4.4.3 that for the large class of wavefront spherical varieties (see
Section 2.1), the integral (3-10) is the same whether the theta series is defined by
summation over X+(k) or over the largest subvariety where Z(X) acts faithfully.
The reason is a phenomenon that has frequently been observed in the Rankin–
Selberg method, namely that the stabilizers of points in all but the open orbit
contain unipotent radicals of proper parabolics. Although this is not a feature of the
Rankin–Selberg method only, we present the proof there in order not to interrupt
the exposition here.

3.3. Geometric models and the basic function. We now discuss the geometric
models and explain the first requirement of Conjecture 3.2.2. The models we are
about to discuss are relevant to a spherical variety X over an equal-characteristic
local field F , and are not local, but global in nature.

3.3.1. The Gaitsgory–Nadler spaces [Gaitsgory and Nadler 2010]. Let X be an
affine spherical variety over C, and let C be a smooth complete complex algebraic
curve. Consider the ind-stack Z of meromorphic quasimaps which, by definition,
classifies data

(c,PG, σ ),

where c ∈ C , PG is a principal G-bundle on C , and σ is a section C r {c} →
PG ×

G X whose image is not contained in X r X+. Clearly, Z is fibered over C
(projection to the first factor). It is a stack of infinite type; however it is a union
of open substacks of finite type, each being the quotient of a scheme by an affine
group, and therefore one can define intersection cohomology sheaves on it without
a problem.

The same definitions can be given if G and X are defined over a finite field F.
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To any quasimap one can associate an element of X+(K)/G(O) (where O =

C[[t]], K= C((t))) as follows: Choose a trivialization of PG in a formal neighbor-
hood of c and an identification of this formal neighborhood with spec(O)— then
the section σ defines a point in X+(K), that depends on the choices made. The
corresponding coset in X+(K)/G(O) is independent of choices.

This allows us to stratify our space according to the stratification, provided by
Theorem 2.3.1, of X+(K)/G(O). We only describe some of the strata here: For
θ ∈3+X , let Zθ denote the quasimaps of the form (c,PG, σ :C r{c}→PG×

G X+)
that correspond to the coset θ ∈ X+(K)/G(O) at c. Then Zθ can be thought of
as a (global) geometric model for that coset. The basic stratum Z0 consists of
quasimaps of the form (c∈C,PG, σ :C→PG×

G X+). Notice that these substacks
do not depend on the compactification X of X+. Their closure, though, does. For
instance, the closure of Z0 can be identified with an open substack in the quotient
stack XC/GC over C , namely the stack whose S-objects are S-objects of XC/GC

but not of (X r X+)C/GC . These are the quasimaps for which the corresponding
point in X+(K)/G(O) lies in the image of X+(K)∩ X (O). Hence, the closure of
Z0 should be thought of as a geometric model for X+(K)∩ X (O).

Since the spaces of Gaitsgory and Nadler are global in nature, it is in fact im-
precise to say that they are geometric models for local spaces. However, their
singularities are expected to model the singularities of G(O)-invariant subsets
of X+(K).

3.3.2. Drinfeld’s compactifications. The spaces of Gaitsgory and Nadler described
above are (slightly modified) generalizations of spaces introduced by Drinfeld in
the cases X =UP \G

aff
or X = [P, P] \G

aff
, where P ⊂ G is a proper parabolic

and UP its unipotent radical. The corresponding spaces are denoted by B̃unP and
BunP , respectively. Our basic references here are [Braverman and Gaitsgory 2002;
Braverman et al. 2002]. The only differences between the definition of these stacks
and the stacks Z of Gaitsgory and Nadler are that the section σ has to be defined
on all C , and it does not have a distinguished point c. Therefore, for a quasimap in
Drinfeld’s spaces and any point c∈C , the corresponding element of X+(K)/G(O)
has to belong to the cosets that belong to X (O). (These will be described later when
we review the computations of [Braverman et al. 2002].)

This particular case is very important to us because it is related to Eisenstein
series, and moreover the intersection cohomology sheaf of the “basic stratum” has
been computed (when G, X are defined over F).

3.3.3. The basic function. We return to the setting where X is an affine spherical
variety for a split group G over a local, nonarchimedean field F whose ring of
integers we denote by o and whose (finite) residue field we denote by F. We
assume that X , G and the completions X , X̂ introduced before have the properties
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of Proposition 2.3.5 over o, and denote K =G(o). The goal is to define the “basic
function” 80 on X+(F), which will be K -invariant and supported in X (o). This
function will factor through the map X+(F)/K→3+X of Theorem 2.3.8. The idea
is to define a function on 3+X using equal-characteristic models of X .

Define the Gaitsgory–Nadler stack Z as in Section 3.3.1 over F. Since, by as-
sumption, XF has a completion XF with the properties of Proposition 2.3.5 (and,
hence, the same holds for the base change XF[[t]]), the generalized Cartan decom-
position 2.3.8 holds for G(F[[t]])-orbits on X+(F((t))): They admit a natural map
onto 3+X . Hence the strata Zθ of Z are well-defined over F. Let I C0 denote
the intersection cohomology sheaf of the closure of the basic stratum Z0 (how
exactly to normalize it is not important at this point, since we will normalize the
corresponding function). We will obtain the value of our function at λ̌∈3+X as the
trace of Frobenius acting on the stalk of I C0 at an F-object xλ̌ in the stratum Zλ̌.
However, since these strata are only locally of finite type, and not of pure dimen-
sion, we must be careful to make compatible choices of points as λ̌ varies. (It is
expected that I C0 is locally constant on the strata — this will be discussed below.)

The compatibility condition is related to the natural requirement that the action
of the unramified Hecke algebra on the functions that will be obtained from sheaves
is compatible, via the function-sheaf correspondence, with the action of its geo-
metric counterpart on sheaves. First of all, let us fix a quasimap x0 = (c0,P0, σ0)

in the F-objects of the basic stratum Z0. Now consider the subcategory Zx0 of
Z consisting of F-quasimaps (c0,PG, σ ) with the property that there exists an
isomorphism ι :P0|Cr{c0}

∼
−→PG |Cr{c0} (inducing isomorphisms between P0×

G X
and PG×

G X , also to be denoted by ι) such that σ = ι◦σ0. Hence, the objects in Zx0

are those obtained from x0 via meromorphic Hecke modifications at the point c0

[Gaitsgory and Nadler 2010, §4].
For each λ̌ ∈ 3+X , pick an object xλ̌ ∈ Zx0 that belongs to the stratum Zλ̌. We

define the basic function 80 on 3+X to be

80(λ̌)= c ·
∑

i

(−1)i tr(Fr, H i (I C0
xλ̌)), (3-11)

where I C0
xλ̌ denotes the stalk of I C0 at xλ̌ and Fr denotes the geometric Frobenius.

The constant c (independent of λ̌) is chosen so that 80(0)= 1.
Now we return to X (F) and we identify 80 with a K -invariant function on

X+(F) (also to be denoted by 80) via the stratification of Theorem 2.3.8.
This is the “basic function” of Conjecture 3.2.2 at the given place. The definition

implies that the support of the basic function is contained in X (o), since the closure
of the basic stratum includes the stratum Zθ only if θ corresponds to a G(o)-orbit
belonging to X (o). The independence of choices of the basic function is widely
expected but, in the absence of suitable finite-dimensional geometric models, not
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known. We impose it as an assumption, together with other properties that should
naturally follow from the properties of intersection cohomology if one had suitable
local models. Notice that for X =UP \G

aff
or X = [P, P] \G

aff
, one could have

used instead the Drinfeld models of 3.3.2 to define the basic function.

Assumption 3.3.4. (1) The basic function 80 on X+(F) is well-defined and in-
dependent of

• the choices of objects xλ̌;
• (if X = UP \G

aff
or X = [P, P] \G

aff
) which model of Section 3.3 one

uses to define them;
• the group G acting on X ; more precisely, if G1,G2 act on X and we

denote by X+1 , X+2 the open orbits, then the restriction of 80 to X+1 (F)∩
X+2 (F) should be the same.

(2) If Z is an affine homogeneous spherical G-variety and p : X→ Z a surjective
equivariant morphism, then the basic function on X , evaluated at any point
x ∈ X+(F)∩ X (o), is equal to the basic function of the fiber of p over p(x)
(considered as a G p(x)-spherical variety).

We discuss how to deduce the growth assumption on elements of the Schwartz
space (Section 3.1) for the basic function. Assume now that X is defined globally
over a number field k, and fix a finite set of places S0 and suitable oS0-models as
in Proposition 2.3.5. Recall (Section 3.1.5) that these models define a distance
function dZ =

∏
v /∈S0

dZ ,v from Z = X r X+ on
∏
v /∈S0

X (ov).

Proposition 3.3.5. Assume that there are a χ ∈ X(X)⊗R such that

|80
v(λ̌)| ≤ q〈χ,λ̌〉v

for all places v and all λ̌ ∈3+X (where qv = |Fv|). Then there is a natural number
n such that ∣∣∣∏

v /∈S0

80
v(x)

∣∣∣≤ (dZ (x))−n for all x ∈ X+(AS0
k ).

Here A
S0
k denotes the adeles outside of S0. Of course, the function is zero off∏

v /∈S0
X (ov) so the extension of the distance function off integral points of X plays

no role in the statement.

Proof. First of all, we claim:

The local distance function dZ ,v on X (ov) is G(ov)-invariant.

Indeed, G(ov) preserves the ideal of Z in ov[X ] and therefore its image in ov under
any ov-point.
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Hence, since both dZ and
∏
v /∈S0

80
v are

∏
v /∈S0

G(ov)-invariant, it suffices to
prove the proposition for a set of representatives of

∏
v /∈S0

G(ov)-orbits in the sup-
port of

∏
v /∈S0

80
v, namely elements of AX (A

S0
k ) that at every place v have image

in 3̌+X ∩C(X).
Let Y denote the “standard oS0-model” of the affine toric embedding of AX

corresponding to the cone 3̌+X ∩ C(X). By assumption (see Proposition 2.3.5),
there is a morphism Y → X . Therefore, if Y1 denotes the complement of the open
orbit on Y , the corresponding distance functions on AX (kv), for every v /∈ S0,
compare as dZ ,v ≤ dY1,v. On the other hand, clearly, for every χ ∈X(X)⊗R there
is a natural number n such that

d−n
Y1,v
≥ q〈χ,λ̌〉v

on AX (kv)∩ Y (ov) for all v /∈ S0. The claim follows. �

4. Periods and the Rankin–Selberg method

4.1. Preflag bundles. We are about to describe the geometric structure that gives
rise to Rankin–Selberg integrals. We hasten to clarify, and it will probably be clear
to the reader, that it is not a very natural structure from the general point of view
that we have taken thus far, and its occurrence should be seen as a coincidence.
Indeed, the structure is not defined in terms of the original group G, but in terms
of a possibly different group G̃, and relies on being able to decompose the variety
by a sequence of maps with simple, easily identifiable fibers.

We keep assuming that Z(G)0 ∼−→ Z(X). We will say that an affine spherical
G-variety X has the structure of a preflag bundle if it is the affine closure of a
G-stable subvariety X̃+, which has the following structure:

(1) X̃+ is homogeneous under a reductive group G̃;

(2) there is a diagram of homogeneous G̃-varieties with surjective morphisms

X̃+

L-torsor
��

Ỹ

fiber over y∈Y is a flag variety for G̃ y
��

Y (' G ′y \G ′ ' G̃ y \ G̃ with G ′y, G̃ y reductive),

where
• Y is an affine, G̃-homogeneous variety (called the base of the preflag

bundle);
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• Ỹ is proper over Y (hence the fiber over y ∈ Y is a flag variety for G̃ y);
• Ỹ is the quotient of X̃+ by the free, G̃-equivariant action of a reductive

group L that contains Z(X); and
• L is an almost direct factor of G.

Remark 4.1.1. The group G ′ has been inserted in the diagram for later reference.
It is supposed to belong to an almost direct decomposition G = L · G ′ and it
necessarily acts transitively on Y , since Z(X) acts trivially on Y while, on the other
hand, it retracts all points onto a homogeneous subvariety by Proposition 2.2.6.

Hence, the notion of a preflag bundle combines the notion of a homogeneous
affine variety (which here is the base Y ), with the notion of a preflag variety, that
is, a quasiaffine quotient of N ′′ \ G ′′ by a subgroup of M ′′, where M ′′N ′′ is the
Levi decomposition of a parabolic of G ′′ (here, the fibers over Y are such,7 setting
G ′′ equal to the stabilizer of a point on Y ). Of course, each of these constituents
can be trivial; for instance Y can be a point (in which case we are dealing with a
preflag variety, but possibly for a different group than G), or X could be equal to Y
(in which case we are dealing with affine homogeneous varieties).

In this paper we will additionally impose the condition, without mentioning it
further, that the fiber X̃+y over y ∈ Y is a product of varieties [Pi , Pi ] \Gi or is of
the form UPi \Gi , where

∏
i Gi = G̃ y . This condition will allow us to restrict our

discussion to Eisenstein series induced either from cusp forms or from characters
of parabolic subgroups, and to use the computations of [Braverman et al. 2002].
Notice that the dual group of L acts on the unipotent radical of the dual parabolic
to P̃y inside of the dual group of G̃ y ; indeed the quotient P̃y � L gives rise to a
homomorphism

Ľ→ ˇ̃L y,

where ˇ̃L y is the standard Levi dual to P̃y . We let ǔP̃ denote8 the Lie algebra of the
unipotent radical of the parabolic dual to P̃y , considered as a representation of Ľ .

7 Notice that L is necessarily a quotient of a Levi subgroup of G̃ y . Indeed, if we write as X̃+y =

H̃y \ G̃ y → P̃y \ G̃ y the map between the fibers of X̃+, resp. X̃+/L over y ∈ Y , where P̃y is a

parabolic of G̃ y , then L can be identified with a subgroup of AutG̃ y (X y) preserving the fiber of this

map, that is with a subgroup of NP̃y (H̃y)/H̃y . Since it acts transitively on the fibers of this map, it

follows that H̃y must be normal in P̃y , and L must be the quotient P̃y/H̃y . Since L is reductive, this

also implies that H̃y contains the unipotent radical of P̃y .
8 It would be more correct to consider only what will later be denoted by ǔ

f
P̃ for those factors

of X̃+y that are of the form [Pi , Pi ] \ Gi , but that does not make any difference for the statement

of Theorem 4.1.3 below, since we are only using ǔP̃ to require the meromorphic continuation of an

L-function, and the difference if we took ǔ
f
P̃ instead would just be some abelian L-function.
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The requirement that G̃ commutes with the action of Z(X) (by the condition
Z(X) ⊂ L) is meant to allow us to relate the Z(X)-Mellin transforms of X -theta
series to usual Eisenstein series on G̃ y induced from P̃y .

Example 4.1.2. The variety Matn for GLn ×GLn (n ≥ 2) is a preflag variety, and
more generally so is any N -dimensional vector space (here N = n2) with a linear
G-action, as it is equal to the affine closure of PN \GLN (with PN the mirabolic
subgroup). Notice, however, that an (n+m)-dimensional vector space (n,m ≥ 2)
can be considered as a preflag variety for both G̃ =GLn+m and G̃ =GLn ×GLm ;
which one we will choose will depend on which torus action we will consider (that
is, what is Z(X)). For instance, for the second possibility, decomposing the given
vector space as X = V = Vn ⊕ Vm we find that

(1) Y is a point;

(2) X̃+ = (Vn r {0})× (Vm r {0});
(3) G̃ = GL(Vn)×GL(Vm);

(4) L =Z(X)=Gm×Gm , the two copies acting on Vn and Vm , respectively; and

(5) we can take G = G̃ (with L identified as its center), or any subgroup thereof
that contains the center and acts spherically.

From our point of view, whether a spherical variety is a preflag bundle or not is
a matter of “chance” and in fact should be irrelevant as far as properties of X -theta
series and their applications go — the fundamental object is just X as a G-variety,
and not its structure of a preflag bundle. We will try to provide support for this point
of view in Section 4.5. However, in absence of a general proof of Conjecture 3.2.2,
this is the only case where its validity, in the weaker form of Conjecture 3.2.4, can
be proven. Moreover, the concept of preflag bundles is enough to explain a good
part of the Rankin–Selberg method.

We assume throughout in this section that the local Schwartz spaces S(Xv) are
the G-spaces generated by the “basic function”, which we extract from computa-
tions on Drinfeld spaces (outside of a finite number of places), and by functions in
C∞c (X

+
v ) obtained as convolutions of delta functions with smooth, compactly sup-

ported measures on Gv. (At nonarchimedean places, such functions span C∞c (Xv).)
The main result of this section is the following:

Theorem 4.1.3. Assume that X is a wavefront spherical variety with trivial arith-
metic multiplicity that has the structure of a preflag bundle, and let τ vary over
a holomorphic family of cuspidal automorphic representations of G (that is, an
irreducible cuspidal representation twisted by idele class characters of the group).
Let τ1 denote the isomorphism class of the restriction of τ to L , and assume that for
some finite set of places S, the partial L-function L S(τ1, ǔP̃ , 1) has meromorphic
continuation everywhere (as τ varies in this family).
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Then Conjecture 3.2.4 holds for φ ∈ τ and S(Xv) as described above.

We prove this theorem in Section 4.4 by appealing to the meromorphic con-
tinuation of usual Eisenstein series, after explicitly describing the basic vectors
according to the computations of intersection cohomology sheaves on Drinfeld
spaces in [Braverman et al. 2002]. However, the application of the meromorphic
continuation of Eisenstein series is not completely trivial as in some cases we have
to use the theory of spherical varieties to show that as we “unfold” this integral cer-
tain summands vanish (in the language often used in the theory of Rankin–Selberg
integrals, certain G-orbits on X are “negligible”). We start by demonstrating an
extreme case, which gives rise to period integrals.

4.2. Period integrals. First consider the extreme case of a preflag bundle with
trivial fibers: Namely, choosing a point x0∈ X (k), we have X=H\G with H=Gx0

reductive. Then at each place v /∈ S0 the basic function is the characteristic function
of X (ov), and we may assume that S(X (Ak)) = C∞c (X (Ak)). The multiplicity-
freeness assumption of Section 3.2 implies, in particular, that at almost every place
G(ov) acts transitively on X (ov). Then we can take 8 ∈ S(X (Ak)) of the form
8 = h ? δx0 , where h ∈ H(G(Ak)), the Hecke algebra of compactly supported
smooth measures on G(Ak), and δx0 is the delta function at x0 (considered as a
generalized function).

Then, if ȟ denotes the element of H(G(Ak)) adjoint to h, the integral∫
G(k)\G(Ak)

φ ·ω(g)θ(8, g) dg

of Conjecture 3.2.4 is equal to∫
H(k)\H(Ak)

(ȟ ? φ) ·ω(g) dg. (4-1)

This is called a period integral, and such integrals have been studied extensively.
Hence period integrals are the special case of the pairing of Conjecture 3.2.4 that
is obtained from preflag bundles with trivial fibers (that is, affine homogeneous
spherical varieties).

For example, when X =GL2 and G=Gm×GL2, with Gm acting as a noncentral
torus of GL2 by multiplication on the left, we get the period integral of Hecke (1-2),
discussed in the introduction. All spherical period integrals are included in the lists
of Knop and van Steirteghem [2006] which we will discuss in the next section.

4.3. Connection to usual Eisenstein series.

4.3.1. Certain stacks and sheaves related to flag varieties. The goal of this subsec-
tion is to explicate the basic functions80

v for preflag bundles, based on the compu-
tations of [Braverman et al. 2002]. We work with the varieties X = [P, P] \G

aff
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or X = UP \G
aff

and use the notation of Section 3.3.2. We do not aim to give
complete definitions of the constructions of [ibid.], but to provide a guide for the
reader who would like to extract from it the parts most relevant to our present
discussion. The final result will be the following formula for the basic function80

(locally at a nonarchimedean place, which we suppress from the notation):

Theorem 4.3.2. Let X = H \G in each of the following cases.

• If H =UP , then

80
=

∑
i≥0

q−i
|SatM

(
Symi (ǔP)

)
? 1H K

= |SatM

(
1∧top

(1−q−1ǔP)

)
? 1H K . (4-2)

• If H = [P, P], then

80
=

∑
i≥0

q−i
|SatMab

(
Symi (ǔ

f
P)

)
? 1H K

= |SatMab

(
1∧top

(1−q−1ǔ
f
P)

)
? 1H K . (4-3)

Here |Sat denotes the power series in the Hecke algebra associated by the Satake iso-
morphism to the given power series in the representation ring of the dual group —
it will be explained in detail in Section 4.3.5.

We denote by 3G,P the lattice of cocharacters of the torus M/[M,M] and by
3

pos
G,P the subsemigroup spanned by the images of 1̌r 1̌M . For every θ ∈ 3pos

G,P

we have a canonical locally closed embedding jθ :C×BunP→BunP [Braverman
et al. 2002, Proposition 1.5]. The image will be denoted by (θ)BunP . (Notice:
This is not the same as what is denoted in [loc. cit.] by θBunP , but rather what
is denoted by U(θ)BunP , when U(θ) is the trivial partition of θ .) Its preimage in
B̃unP will be denoted by (θ)B̃unP . We have a canonical isomorphism

(θ)B̃unP ' BunP ×BunM H(θ)
M ,

where H(θ)
M is a stack that will be described below.

Remarks 4.3.3. (i) If X = [P, P] \G
aff

under the Mab
= M/[M,M]×G-action,

then 3+X can be identified with 3G,P , and (θ)BunP is precisely the analog of what
we denoted by Zw0θ on the Gaitsgory–Nadler stacks, where w0 is the longest el-
ement in the Weyl group of G. The reason that only θ ∈ 3pos

G,P appear is that, as
we remarked in Section 3.3.2, the quasimaps on Drinfeld spaces are, by definition,
not allowed to have poles. For the reader who would like to trace this back to
the combinatorics of quasiaffine varieties and their affine closures of Section 2.2,
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we mention that the cone spanned by ρ(D) is the cone spanned by the images
of 1̌r 1̌M .

(ii) If X =UP \G
aff

under the M ×G-action, then

3+X ' {λ̌ ∈3A | 〈λ̌, α〉 ≤ 0 for all α ∈1M}

(where we denote by A the maximal torus of G and by 3A its cocharacter lattice).
There is a map 3X → 3G,P , and (θ)B̃unP corresponds to the union of the strata
Zw0λ̌ of Gaitsgory–Nadler, with λ̌ ranging over all the M-dominant preimages of θ .

We have the geometric Satake isomorphism, that is, a functor Loc : Rep(Ǧ)→
Perv(GG) such that the irreducible representation of Ǧ with highest weight λ̌
goes to the intersection cohomology sheaf of a G(o)-equivariant closed, finite-
dimensional subscheme GG

λ̌. We will make use of this functor for M , rather
than G. If V is a representation of M̌ — assumed “positive” (this has to do with
the fact that we don’t allow poles, but there’s no need to explain it here) — and
θ ∈ 3

pos
G,P , then we define Loc(θ)(V ) to be Loc(Vθ ), where Vθ is the θ -isotypic

component of V . (We ignore a twist by Ql[1](1
2)
−1 introduced in [Braverman

et al. 2002], and modify the results accordingly.)
We now introduce relative, global versions of the spaces above. We denote by

HM the Hecke stack of M . It is related to GM as follows: If we fix a curve C and a
point x ∈ C then, by definition, GM is the functor Schemes→ Sets that associates
to every scheme S the set of pairs (FG, β), where FM is a principal M-bundle
over C × S and β is an isomorphism of it outside of (C r {x})× S with the trivial
M-bundle. The relative version of this, as we allow the point x to move over the
curve, is denoted by GM,C , and the relative version of the latter, as we replace the
trivial M-bundle with an arbitrary M-bundle, is HM . It is fibered over C ×BunM .

3pt In [ibid., p. 389], certain closed, finite-dimensional subschemes G+,θM of
GM are defined for every θ ∈ 3pos

G,P , which at the level of reduced schemes are
isomorphic to GM

[(θ), where [(θ) is an M-dominant coweight associated to θ —
the “least dominant” coweight mapping to θ . The relative versions of those give
rise to substacks H(θ)

M of HM .
For these relative versions we have: Functors LocBunM ,C (resp. Loc(θ)BunM ,C ) from

Rep(M̌) to perverse sheaves on HM (resp. H(θ)
M ) and LocBunP ,C (resp. Loc(θ)BunP ,C )

to perverse sheaves on BunP ×BunM HM (resp. BunP ×BunM H(θ)
M ), the latter being

I CBun P along the base BunP .
Then the main theorem of Braverman et al. [Theorem 1.12] is a description of the
∗-restriction of I CB̃unP

to (θ)B̃unP ' BunP ×BunM H(θ)
M . Moreover, [Theorem 7.3]

does the same thing for I CBunP
and (θ)BunP ' C ×BunP . The normalization of

I C sheaves is that they are pure of weight 0; that is, for a smooth variety Y of
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dimension n we have I CY ' (Ql(
1
2)[1])

⊗n , where Ql(
1
2) is a fixed square root

of q .

Theorem 4.3.4 [Braverman et al. 2002, Theorems 1.12 and 7.3]. The ∗-restriction
of I CB̃unP

to (θ)B̃unP ' BunP ×BunM H(θ)
M is equal to

Loc(θ)BunP ,C

(⊕
i≥0 Symi (ǔP)⊗Ql(i)[2i]

)
. (4-4)

The *-restriction of I CBunP
to (θ)BunP ' C ×BunP is equal to

I C
(θ)BunP

⊗Loc
(⊕

i≥0 Symi (ǔ
f
P)θ ⊗Ql(i)[2i]

)
. (4-5)

Here ǔP denotes the adjoint representation of M̌ on the unipotent radical of the
parabolic dual to P . Moreover, ǔ

f
P denotes the subspace that is fixed under the

nilpotent endomorphism f of a principal sl2-triple (h, e, f ) in the Lie algebra
of M̌ . For the definition of Loc(V ), which takes into account the grading on V
arising from the h-action, see [ibid., §7.1].

4.3.5. The corresponding functions. Let us fix certain normalized Satake isomor-
phisms. As before, our local, nonarchimedean field is denoted by F , its ring of
integers by oF , and our groups are assumed to have reductive models over oF . As
usual, we normalize the action of M(F) (resp. Mab(F)) on functions on (H\G)(F)
where H =UP (resp. [P, P]) so that it is unitary on L2((H \G)(F)):

m · f (H(F)g)= δ1/2
P (m) f (H(F)m−1g), (4-6)

where δP is the modular character of P . We let M0 = M(oF ), and normalize the
(classical) Satake isomorphism as follows:

• For the Hecke algebra H(M,M0) in the usual way,

SatM : C[M̌]M̌ ' C[Rep M̌] ∼−→H(M,M0),

where C[Rep M̌] is the Grothendieck algebra over C of the category of alge-
braic representations of M̌ .

• For the Hecke algebra H(Mab,Mab
0 ) we shift the usual Satake isomorphism

H(Mab,Mab
0 ) ' C[Z(M̌)] ' C[Rep Z(M̌)] by e−ρM , where ρM denotes half

the sum of positive roots of M . In other words, if h is a compactly supported
measure on M(F)/M0, considered (canonically) as a linear combination of
cocharacters of Mab and hence as a regular function f on the center Z(M̌)
of its dual group, then we will assign to h the function z 7→ f (eρM z) on the
subvariety e−ρM Z(M̌) of Ǧ:

SatMab : C[e−ρM Z(M̌)] ∼−→H(Mab,Mab
0 ).
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Let 1H K denote the characteristic function of H \ H K (where K = G(oF )),
and consider the action map H(M,M0)→ C∞c ((UP \G)(F))M0×K , respectively
H(Mab,Mab

0 ) → C∞c (([P, P] \ G)(F))K given by h 7→ h ? 1H K . The map is
bijective, and identifies the module C∞c ((H \ G)(F))M0×K with C[M̌]M̌ , resp.
C[e−ρM Z(M̌)]. Our normalization of the Satake isomorphism is such that this is
compatible with the Satake isomorphism SatG :H(G, K )= C[Ǧ]Ǧ = C[Rep(Ǧ)]
for G, in the sense that for f ∈ C[Ǧ]Ǧ we have

SatG( f ) ? 1H K = |SatM or Mab( f ) ? 1H K .

Here and later, by the symbol ȟ we will be denoting the adjoint of the element h
in a Hecke algebra. Its appearance is due to the definition (4-6) of the action of M
as a right action on the space and a left action on functions. We extend the “Sat”
notation to the fraction field of C[Rep M̌] (and, respectively, of C[e−ρM Z(M̌)]),
where SatM or Mab(R) (with R in the fraction field) is thought of as a power series
in the Hecke algebra.

Returning to the Drinfeld spaces discussed in the previous subsection, we let
Ff(E)(x) :=

∑
i (−1)i tr(Fr, H i (Ex)) denote the alternating sum of the trace of

Frobenius acting on the homology of the stalks of a perverse sheaf (Ff stands
for “faisceaux-fonctions”). As in Section 3.3.3, we fix an object x0 on the basic
stratum, a point c0 ∈C (recall that in the definition of Drinfeld’s spaces, quasimaps
do not have distinguished points) and we evaluate Ff(E), where E = I CB̃unP

or
I CBunP

, only at objects xλ̌ that are obtained by M ×G-Hecke modifications at c0.
This way, and using the Iwasawa decomposition, we obtain our basic function 80,
which is an M0×K -invariant function on (H \G)(F). Recall that it is by definition
normalized such that 80(H \ H1)= 1.

The study of the Hecke correspondences in [Braverman and Gaitsgory 2002]
implies that

Ff(LocBunP ,C(V ))= |SatM(V ) ?Ff(LocBunP ,C(1)) if H =UP ,

and

Ff(Loc(V ))= |SatMab(V ) ?Ff(Loc(1)) if H = [P, P].

Remark 4.3.6. The “unitary” normalization of the action of M is already present
in the sheaf-theoretic setting as follows: Suppose that an object xλ̌ belongs to
(λ̌)BunP and can be obtained from x0 via Hecke modifications at the distinguished
object of x0. Then the dimension of (λ̌)BunP 'C×BunP at xλ̌ is 〈λ̌, 2ρP〉 less than
that of (0)BunP around x0, where ρP denotes the half-sum of roots in the unipotent
radical of P , that is, δP = e2ρP . Hence, by the aforementioned normalization of
I C sheaves, the contribution of the factor I C(λ̌)BunP (via Theorem 4.3.4) to80(λ̌)
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will be q〈λ̌,ρP 〉 times the contribution of the factor I C(0)BunP to 80(0). Similarly
for the strata of B̃unP .

Thus, Theorem 4.3.4 translates to the statement of Theorem 4.3.2:
• If H =UP , then 80

=

∑
i≥0

q−i
|SatM(Symi (ǔP)) ? 1H K

= |SatM

(
1∧top

(1−q−1ǔP)

)
? 1H K .

• If H = [P, P], then 80
=

∑
i≥0

q−i
|SatMab(Symi (ǔ

f
P)) ? 1H K

= |SatMab

(
1∧top

(1−q−1ǔ
f
P)

)
? 1H K .

Notice that in the last expression ǔ
f
P is considered as a representation of the maxi-

mal torus Ǎ of M̌ determined by the principal sl2-triple (h, e, f ) and, by restricting
its character to the subvariety e−ρM Z(M̌), as an element of H(Mab,Mab

0 ). This is
the case studied in [Braverman and Kazhdan 2002], and80 is the function denoted
by cP,0 there.

4.3.7. Connection to Eisenstein series. Now we discuss our main conjecture when
the variety is X = UP \G

aff
or X = [P, P] \G

aff
under the (normalized) action

of M ×G, resp. Mab
×G. In the latter case, our Eisenstein series E(8, ω, g) are

the usual (degenerate, if P is not the Borel) principal Eisenstein series normal-
ized as in [Braverman and Kazhdan 1999; 2002], and hence E(8, ω, g) is indeed
meromorphic for all ω.

It will be useful to recall how these meromorphic sections are related to the
more usual sections E( f, ω, g), which are defined in the same way but with f ∈
C∞c (([P, P] \G)(Ak)). We assume that 8=

∏
v 8v, f =

∏
v fv and S is a finite

set of places (including S0) such that 8v =80
v and fv = f 0

v := 1U\G(ov) for v /∈ S.
Let us also assume for simplicity that 8v = fv for v ∈ S (a finite number of places
certainly do not affect meromorphicity properties). Clearly, for E(8, ω, g) and
E( f, ω, g) to be nonzero, the character ω must be unramified outside of S. Then
by the results of the previous paragraph we have

E(8, ω, g)= L S(e−ρMω, ǔ
f
P , 1)E( f, ω, g), (4-7)

where L S(e−ρMω, ǔ
f
P , 1) denotes the value at 1 of the partial (abelian) L-function

corresponding to the representation ǔ
f
P , whose local factors (at each place v) are

considered as rational functions on the maximal torus Ǎ⊂ M̌ and evaluated at the
point e−ρMωv ∈ e−ρM Z(M̌)⊂ Ǎ.

Now let us consider the case X =UP \G
aff

. We let τ vary over a holomorphic
family of cuspidal representations of M × G and let τ 7→ φτ be a meromorphic



Spherical varieties and integral representations of L-functions 649

section; write τ = τ1 ⊗ τ2 according to the decomposition of the group M × G,
and assume that, accordingly, φτ = φτ1 ⊗ φτ2 , a pure tensor. Assume momentar-
ily that the central character of τ is sufficiently X -positive. If in the notation of
Conjecture 3.2.4 we replace the group G by the group M × G, and perform the
integration of the conjecture, but only over the factor M(k) \ M(Ak), then this
integral can be written as∫

M(k)\M(Ak)

φτ (m, g)θ(8, (m, g))dm = φτ2(g)
∫

M(k)\M(Ak)

φτ1

(m)θ(8, (m, g))dm. (4-8)

It is valued in the space of functions on G(k) \ G(Ak). If Eis : I G(Ak)
P(Ak)

(τ1) →

C∞(G(k) \ G(Ak)) denotes the usual Eisenstein operator, then by unfolding the
last integral we see that it is equal to the Eisenstein series

EM(8, φ1, g) := Eis
(∫

M(Ak)

φτ1(m)(m ·8)dm
)
(g), (4-9)

hence the connection to usual Eisenstein series.

Proposition 4.3.8. Assume that the partial L-function L S(τ1, ǔP , 1) (for some
large enough S) has meromorphic everywhere as τ1 is twisted by characters of M.
Then the expression (4-8) admits meromorphic continuation to all τ1.

Proof. By the meromorphic continuation of Eisenstein series, it is enough to show
that the integral (8, φτ1) 7→

∫
M(Ak)

φτ1(m)(m ·8)dm, which represents a morphism

ιτ1 : S(UP \G(Ak))→ I G(Ak)
P(Ak)

(τ1),

admits meromorphic continuation in τ1. This would be the case if 8 was in
C∞c (UP \G(Ak)). The analogous morphism C∞c (UP \G(Ak))→ I G(Ak)

P(Ak)
(τ1) will

also be denoted by ιτ1 .
Again, we let S be a finite set of places containing S0 and take functions 8 =∏
8v ∈ S(UP \ G(Ak)) and f =

∏
v fv ∈ C∞c (UP \ G(Ak)) such that for v /∈ S

8v = 8
0
v is the basic M0× K -invariant function of the previous paragraph, fv =

f 0
v = 1UP K and for v ∈ S we have 8v = fv (for simplicity). Moreover, we assume

that τ1 is unramified for v /∈ S, otherwise the integral will be zero.
We saw previously that

80
v =
|SatM

(
1∧top

(1−q−1ǔP)

)
? f 0

v .

By definition of the Satake isomorphism and the equivariance of ιτ , in the domain
of convergence we have ιτ1(8)= L S(τ1, ǔP , 1)ιτ1( f ).

Therefore Eis(ιτ1(8)) = L S(τ1, ǔP , 1)Eis(ιτ1( f )), and the claim follows from
the meromorphic continuation of Eis(ιτ1( f )). �
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Remarks 4.3.9. (1) The meromorphic continuation of L S(τ1, ǔP , 1) is known
in many cases, e.g., for G a classical group and τ generic, by the work of
Langlands, Shahidi and Kim; see [Cogdell et al. 2004].

(2) Notice that, as was also observed in [Braverman and Kazhdan 1999; 2002], the
Eisenstein series (4-9) has normalized functional equations without L-factors.

4.4. The Rankin–Selberg method. According to [Bump 2005, §5], the Rankin–
Selberg method involves a cusp form on G and an Eisenstein series on a group G̃,
where we have either an embedding G ↪→ G̃ or an embedding G̃ ↪→G, or “some-
thing more complicated”. We certainly do not claim to explain all constructions
that have been called “Rankin–Selberg integrals”, but let us see how a large part9

of this method is covered by our constructions.
Let X be a preflag bundle; we will use the notation of Section 4.1. For notational

simplicity (the arguments do not change), let us also assume that L is a direct factor
of G, that is, G= L×G ′. Let8∈S(X (Ak)). Recall that the X -theta series θ(8, g)
has been defined via a sum over X+(k), where X+ denotes the open G-orbit on X .
On the other hand, to relate our integrals to usual Eisenstein series, we need to sum
over X̃+(k), where X̃+ is the open G̃-orbit. Hence, we define

θ̃ (8, g)=
∑

γ∈X̃+(k)

8(γ · g).

We compare the integral of Conjecture 3.2.4 with the corresponding integral
when θ is substituted by θ̃ :

Proposition 4.4.1. Suppose that X is a wavefront spherical variety with the struc-
ture of a preflag bundle. If φ is a cusp form on G (with sufficiently X-positive
central character, so that the following integrals converge), then∫

G(k)\G(Ak)

φ(g)θ(8, g) dg =
∫

G(k)\G(Ak)

φ(g)θ̃(8, g) dg. (4-10)

Assume this proposition for now, and let us prove Theorem 4.1.3; at the same
time, we will see that the integral of Conjecture 3.2.4 is equal to a Rankin–Selberg
integral.

9The multiplicity-one property that seems to underlie almost every integral representation
of an L-function can be achieved by nonspherical subgroups if we put extra restrictions on
the representations we are considering. For example, in the construction of the symmetric
square L-function by Bump and Ginzburg [1992], we have H = the diagonal copy of GLn in
GLn ×(a central quotient of) G̃Ln

2, where G̃Ln denotes a metaplectic cover, but one restricts to
certain “exceptional” (and induced-from-exceptional) representations on G̃Ln

2. The examples that
our method covers should be seen as the part of the method where such restrictions do not enter.
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Without loss of generality, 8 =
∏
v 8v, and φ = φ1(l)φ2(g) according to the

decomposition G = L ×G ′. By Assumption 3.3.4, and repeating the argument of
Section 4.2, we may write 8 as the convolution with an element h ∈H(G ′(Ak)) of
a Schwartz function 8y on X y(Ak), where y ∈ Y (k) and the Schwartz function on
X y(Ak) is considered as a generalized function on X̃+(Ak). Then, as in Section 4.2,∫

G(k)\G(Ak)

φ(g)θ̃(8, g) dg =
∫

G y(k)\G y(Ak)

ȟ ? φ(h)θ̃X̃+y (8
y, h),

where θ̃X̃+y (8, g) denotes the theta series for the G̃ y-spherical variety X y .
By the decomposition G = L ×G ′ this is equal to∫

G ′y(k)\G ′y(Ak)

ȟ ? φ2(g)
∫

L(k)\L(Ak)

φ1(l)θ̃X̃+y (8
y, lg) dl dg.

The inner integral is equal to the Eisenstein series EL(8, φ1, g′) on the group
G̃ ′y , in the notation of (4-9), or a degenerate Eisenstein series as in (4-7), or a
product of such,10 and it has meromorphic continuation under the assumption that
L S(τ1, ǔP̃ , 1) does. Hence, we see that the integral of Conjecture 3.2.4 is equal to
the Rankin–Selberg integral:∫

G ′y(k)\G ′y(Ak)

ȟ ? φ2(g)EL(8, φ1, g) dg (4-11)

and this also completes the proof of Theorem 4.1.3. In the language of [Bump
2005, §5], our formalism combines the appearance of a subgroup G y ⊂ G with an
embedding of it into another group: G y ↪→ G̃ y .

4.4.2. Proof of Proposition 4.4.1: Negligible orbits. Proposition 4.4.1 will follow
from the following statement on the structure of certain spherical varieties:

Proposition 4.4.3. If X is a wavefront spherical variety for G with AutG(X) finite,
then the isotropy groups of all nonopen G-orbits contain the unipotent radical of a
proper parabolic of G.

From this, Proposition 4.4.1 follows easily; in the domain of convergence we
have ∫

G(k)\G(Ak)

φ(g)θ̃(8, g)=
∑

ξ∈[X̃+(k)/G(k)]

∫
Gξ (k)\G(Ak)

φ(g)g ·8(ξ) dg,

where [X̃+(k)/G(k)] denotes any set of representatives for the set of G(k)-orbits
on X̃+(k). Notice that, by the multiplicity-freeness assumption on X , the k-points

10Rankin–Selberg constructions with products of Eisenstein series have often been encountered
in the literature, e.g., [Bump et al. 1999; Ginzburg and Hundley 2004].
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of the open G-orbit form a unique G(k)-orbit. The summand corresponding to ξ
can be written ∫

Gξ (Ak)\G(Ak)

g ·8(ξ)
∫

Gξ (k)\Gξ (Ak)

φ(hg) dh dg

Since AutG(X̃+/Z(X)) is finite, for ξ in the nonopen orbit the stabilizer Gξ con-
tains the unipotent radical of a proper parabolic by Proposition 4.4.3, and since φ is
cuspidal the inner integral will vanish. Therefore, only the summand corresponding
to the open orbit survives, which folds back to the integral∫

G(k)\G(Ak)

φ(g)θ(8, g).

Proposition 4.4.3, in turn, rests on the following result of Luna. A G-homo-
geneous variety Y is said to be induced from a parabolic P if it is of the form
Y ′×P G, where Y ′ is a homogeneous spherical variety for the Levi quotient of P;
equivalently, Y = H \G, where H ⊂ P contains the unipotent radical of P .

Proposition 4.4.4 [Luna 2001, Proposition 3.4]. A homogeneous spherical variety
Y for G is induced from a parabolic P (assumed opposite to a standard para-
bolic P) if and only if the union of 1(Y ) with the support11 of the spherical roots
of Y is contained in the set of simple roots of the Levi subgroup of P.

Proof of Proposition 4.4.3. For every G-orbit Y in a spherical variety X , there is
a simple toroidal variety X̃ with a morphism X̃ → X that is birational and whose
image contains Y . Therefore, it suffices to assume that X is a simple toroidal
variety.

Moreover, if X denotes the wonderful compactification of X+ (that is, the simple
toroidal compactification with C(X) = V), then every simple toroidal variety X
admits a morphism X → X which, again, is birational and has the property that
every nonopen G-orbit on X goes to a nonopen G-orbit in X . Indeed, any nonopen
G-orbit Y ⊂ X corresponds to a nontrivial face of C(X), and its character group
X(Y ) is the orthogonal complement of that face in X(X), which is of lower rank
than X(X); therefore Y has to map to an orbit of lower rank. Moreover, Y is a
torus bundle over its image. This reduces the problem to the case where X is a
wonderful variety, which we will now assume.

By Proposition 4.4.4, it suffices to show that the union of 1(X) and the support
of the spherical roots of Y is not the whole set 1 of simple roots. The spherical
roots of Y are a proper subset of the spherical roots of X , and 1(Y ) = 1(X). It
therefore suffices to prove that for any proper subset2⊂1X , there exists a simple
root α ∈1r1(X) such that α is not contained in the support of 2.

11The support of a subset in the span of 1 is the smallest set of elements of 1 in the span of
which it lies.
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Define a∗ :=X(A)∗⊗Q and a∗P(X)= (1(X))
⊥
⊂ a∗, and consider the canonical

quotient map q : a→ Q. Denote by f∅ ⊂ a∗ the antidominant Weyl chamber in a.
Every set of spherical roots s ⊂1X corresponds to a face Vs ⊂V=V∅⊂Q (more
precisely, Vs is the face spanning the orthogonal complement of s), and similarly
every set r ⊂ 1 of simple roots of G corresponds to a face fr ⊂ f∅. The simple
roots in the support of γ ∈ 1X are those corresponding to the largest face f of f∅
that is contained in q−1(V{γ }). Notice that the maximal vector subspace f1 of f∅
maps into the maximal vector subspace V1X of V.

By assumption, f∅ surjects onto V. Moreover, since every element of f∅ can
be written as a sum of an element in f1(X) and a nonnegative linear combination
of 1̌(X) := {α̌ | α ∈1(X)}, and since 1̌(X) is in the kernel of a→ Q, it follows
that f1(X) surjects onto V. Now let 2⊂1X be a proper subset. Let fs be a face of
f1(X) that surjects onto V2. Since fs 6= f1, there is an α ∈1r1(X) that is not in
the support of 2. �

4.5. Tensor product L-functions of GL2 cusp forms. In Section 3 we proposed a
general conjecture involving distributions that are obtained from the geometry of
an affine spherical variety X , and in this section we saw how this conjecture is true,
and gives rise to period- and Rankin–Selberg integrals, in the case that X admits the
structure of a “preflag bundle”. It was written above that such a structure should
be considered essentially irrelevant and a matter of “chance”. We now wish to
provide some evidence for this point of view by recalling the known constructions
of n-fold tensor product L-functions for GL2, where n ≤ 3. The point is that while
these constructions seem completely different from the point of view of Rankin–
Selberg integrals, from the point of view of spherical varieties they are completely
analogous!

Before we consider the specific example, let us become a bit more precise about
what it means that a period integral is related to some L-value. Let π =

⊗
′
πv

be an (abstract) unitary representation of G(Ak), the tensor product of unitary
irreducible representations πv of G(kv) with respect to distinguished unramified
vectors u0

v (for almost every place v) of norm 1. Let P be a functional on π . In
our applications the functional P will arise as the composition of a cuspidal auto-
morphic embedding ν : π→ L2

cusp(G(k) \G(Ak)), assumed unitary, with a period
integral or, more generally, the pairing (3-10) with a fixed X -theta series. Let ρ
be a representation of the dual group, and let L(π, ρ, s) denote the value of the
corresponding L-function at the point s. We say that |P|2 is related to L(π, ρ, s)
if there exist nonzero skew-symmetric forms 3v : πv ⊗ π̄v → C for every v such
that for any large enough set of places S, and for a vector u =

⊗
v∈S u0

v ⊗v /∈S uv,
one has |P(u)|2= L S(π, ρ, s)·

∏
v∈S 3v(uv, ūv). (Of course, for this to happen we

must have3v(u0
v, ū0

v)= Lv(πv, ρv, s).) Moreover, it is required that each3v has a
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definition that has no reference to any other representation but πv. The reader will
notice that the last condition does not stand the test of mathematical rigor; however,
not imposing it would make the rest of the statement void up to whether P is zero
or not. In practice, the 3v will be given by reference to some nonarithmetic model
for πv. See [Ichino and Ikeda 2010] for a precise conjecture in a specific case, and
[Sakellaridis and Venkatesh 2012] for a more general but less precise conjecture.12

Example 4.5.1. If P denotes the Whittaker period

φ 7→

∫
U (k)\U (Ak)

φ(u)ψ−1(u) du

(where ψ is a generic idele class character of the maximal unipotent subgroup) on
cusp forms for G = GLn , then |P|2 is related to the L-value

1
L(π,Ad, 1)

.

see [Jacquet 2001; Sakellaridis and Venkatesh 2012]. Notice that the examples we
are about to discuss admit “Whittaker unfolding” and this factor will enter, although
most references introduce a different normalization and ignore this factor.

Now we are ready to discuss our example: Let n be a positive integer, let G =
(GL2)

n
× Gm , and let H be the subgroup: We let X = H \G

aff
. As usual, we

normalize the action of G on functions on X+ so that it is unitary with respect
to the natural measure. Let us see that for n = 1, 2, 3, the variety X admits the
structure of a preflag bundle, and hence the integral of Conjecture 3.2.4 can be
interpreted as a Rankin–Selberg integral, as discussed above:

• n = 1. Here H \Gaff
= H \ G and we get the integral (1-2) of Hecke. If

τs = τ⊗|·|
s , where τ is a cuspidal representation of GL2 (for simplicity, with

trivial central character), the square of the absolute value of the corresponding
linear functional on τs ⊗ τ̃s is related to the L-value

L(τ, 1
2 + s)L(τ̃ , 1

2 − s)
L(τ,Ad, 1)

.

• n = 2. Here the projection of H to GL2
2 is conjugate to the mirabolic sub-

group of GL2 embedded diagonally. Therefore, the affine closure of H \ G
is equal to the bundle over GLdiag

2 \(GL2)
2 with fiber equal to the affine clo-

sure of U2 \GL2, where U2 denotes a maximal unipotent subgroup of GL2.
Corresponding to this preflag bundle is a Rankin–Selberg integral “with the

12For the sake of completeness, we should mention that when P comes from a period integral one
should in general modify the conjecture above by some “mild” arithmetic factors, such as the sizes
of centralizers of Langlands parameters — see [Ichino and Ikeda 2010]. However, in the example we
are about to discuss there is no such issue since the group is GL2.
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Eisenstein series on the smaller group” GLdiag
2 , namely the classical integral

of Rankin and Selberg. If τ = τ1 ⊗ τ2 ⊗ | · |
s is a cuspidal automorphic

representation of G (for simplicity, with trivial central character), the square
of the absolute value of the corresponding integral is related to the L-value

L(τ1⊗ τ2,
1
2 + s)L(τ̃1⊗ τ̃2,

1
2 − s)

L(τ,Ad, 1)
.

• n = 3. In this case there is a structure of a preflag variety not on X , but on
X0, the corresponding spherical variety for the subgroup

G0
= {(g1, g2, g3, a) ∈ G | det(g1)= det(g2)= det(g3)}.

The structure of a preflag variety involves the group G̃ = GSp6 and the sub-
group H̃ = [P̃, P̃], where P̃ is the Siegel parabolic — this is a construction
of Garrett [1987]. The group (GL3

2)
0 is embedded in GSp6 as (GSp3

2)
0. Then,

according to [Piatetski-Shapiro and Rallis 1987, Corollary 1 to Lemma 1.1],
the group G0 has an open orbit in [P̃, P̃] \ G̃ with stabilizer equal to H .

Lemma 4.5.2. The affine closure X0 of H \G0 is equal to the affine closure
of [P̃, P̃] \ G̃.

Proof. Denote by Y the affine closure of [P̃, P̃] \ G̃. We have an open em-
bedding X0 ↪→ Y . By [Piatetski-Shapiro and Rallis 1987, Lemma 1.1], all
nonopen G-orbits have codimension at least two. Therefore, the embedding
is an isomorphism. �

Hence, our integral for X0 coincides with the Rankin–Selberg integral of Gar-
rett. The only thing that remains to do is to compare the normalizations for
the sections of Eisenstein series. From [Piatetski-Shapiro and Rallis 1987,
Theorem 3.1], one sees that the square of the absolute value of our integral is
related to the L-value

L(τ1⊗ τ2⊗ τ3,
1
2 + s)L(τ̃1⊗ τ̃2⊗ τ̃3,

1
2 − s)

L(τ,Ad, 1)
.

(Again, for simplicity, we assume trivial central characters. Notice that the
zeta factors in [Piatetski-Shapiro and Rallis 1987, Theorem 3.1] disappear
because of the correct normalization of the Eisenstein series!)

It is completely natural to expect the corresponding integral for n = 4 or higher
to be related to the n-fold tensor product L-function. It becomes obvious from the
example above that the point of view of the spherical variety is the natural setting
for such integrals, while at the same time the structure of a preflag bundle may not
exist and, even if it exists, it has a completely different form in each case, which
conceals the uniformity of the construction.
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5. Smooth affine spherical varieties

Given that we do not know how to prove Conjecture 3.2.4, except in the cases
of wavefront preflag bundles, it is natural to ask the purely algebro-geometric
question, Which spherical varieties admit the structure of a preflag bundle? An
answer would amount to a complete classification of Rankin–Selberg integrals, in
the restricted sense that “Rankin–Selberg” has been used here. Such an answer has
been given in the special case of smooth affine spherical varieties: These varieties
automatically have the structure of a preflag bundle, and they have been classified
by Knop and Van Steirteghem [2006], and hence can be used to produce Eulerian
integrals of automorphic forms! There seems to be little point in computing every
single example in the tables of [Knop and Van Steirteghem 2006], and my exami-
nation of most of the cases has not produced any striking new examples. However,
we get some of the best-known integral constructions, as well as some new ones
(which do not produce any interesting new L-functions).

5.1. Smooth affine spherical triples. By Theorem 2.2.5 of Luna, every smooth
affine spherical variety of G (over an algebraically closed field in characteristic
zero) is of the form V ×H G, where H is a reductive subgroup (so that H \G is
affine) and V is an H -module. As we have seen in Example 4.1.2, vector spaces
are preflag varieties, and therefore all smooth affine spherical varieties are preflag
bundles. We check the details carefully:

Lemma 5.1.1. Every smooth affine spherical variety admits the structure of a pre-
flag bundle.13

Proof. If X = V ×H G as above, we set Y = (N(H)0 · H) \G. We let X̃+ be the
subvariety on which Z(X) acts freely, and take G̃ =G. Clearly, Z(X) contains the
connected centralizer of H in GL(V ) (which is a torus, since X is spherical), so
if V =

⊕
i Vi is the decomposition into irreducible H -representations according

to Z(H)0, then X̃+ =
∏

i (Vi r {0})×H G, and G acts transitively on X̃+. By the
assumption Z(X) = Z(G)0, Z(X) is the connected center of N(H), and hence
Ỹ := X̃+/Z(X) has fibers PV1×· · ·×PVn over Y and is therefore proper over Y .

�

The corresponding integrals include all period integrals over reductive sub-
groups, as well as Rankin–Selberg integrals involving mirabolic Eisenstein series
(that is, those induced from the mirabolic subgroup of GLn).

13Strictly speaking, the “affine closure” condition is not satisfied when the fibers have one-
dimensional summands under the action of Z(X); one should modify the definition of a preflag
bundle to allow this case, but in order not to over complicate things we prefer not to do so. Notice
that after integrating by characters of Z(X) the “basic function” of Gm differs from that of Ga only
by a Dirichlet L-function, so the meromorphic properties of the integrals we are considering are not
affected by whether we compactify Gm or not.
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In [2006], Knop and Van Steirteghem classify all smooth affine spherical triples
(g, h, V ), which amounts to a classification of smooth affine spherical varieties up
to coverings, central tori and Gm-fibrations. We recall their definitions:

Definition 5.1.2. (1) Let h ⊂ g be semisimple Lie algebras and let V be a rep-
resentation of h. For s, a Cartan subalgebra of the centralizer cg(h) of h, put
h̄ := h⊕s, a maximal central extension of h in g. Let z be a Cartan subalgebra
of gl(V )h (the centralizer of h in gl(V )). We call (g, h, V ) a spherical triple
if there exists a Borel subalgebra b of g and a vector v ∈ V such that

(a) b+ h̄= g and
(b) [(b∩ h̄)+ z]v = V , where s acts via any homomorphism s→ z on V .

(2) Two triples (gi , hi , Vi ) for i = 1, 2 are isomorphic if there exist isomorphisms
of Lie algebras resp. vector spaces α : g1→ g2 and β : V1→ V2 such that

(a) α(h1)= h2 and
(b) β(ξv)= α(ξ)β(v) for all ξ ∈ h1 and v ∈ V1.

(3) Triples of the form (g1⊕g2, h1⊕h2, V1⊕V2) with (gi , hi , Vi ) 6= (0, 0, 0) are
called decomposable.

(4) Triples of the form (k, k, 0) and (0, 0, V ) are said to be trivial. A pair (g, h)
of semisimple Lie algebras is called spherical if (g, h, 0) is a spherical triple.

(5) A spherical triple (or pair) is primitive if it is nontrivial and indecomposable.

Clearly, every smooth affine spherical variety gives rise to a spherical triple.
Conversely, each spherical triple is obtained from a (not necessarily unique) smooth
affine spherical variety, as follows by an a posteriori inspection of all spherical
triples. (The nonobvious step here is that the h-module V integrates to an H -
module, where H is the corresponding subgroup.)

The classification of all primitive spherical triples is given in [ibid., Tables 1, 2,
4 and 5], modulo the inference rules described in [Table 3]. The diagrams are read
in the following way: The nodes in the first row correspond to the simple direct
summands gi of g, the ones in the second row to the simple direct summands hi

of h and the ones in the third row to the simple direct summands Vi of V . If (g, h)
contains a direct summand of the form (h1, h1), then the h1 summand is omitted
from the first row. There is an edge between gi and h j if h j ↪→ g � gi is nonzero
and an edge between h j and Vk if Vk is a nontrivial h j -module. The edges are
labeled to describe the inclusion of h in g, resp. the action of h on V ; the labels
are omitted when those are the “natural” ones.

We number the cases appearing in the list of Knop and Van Steirteghem as
follows: First, according to the table on which they appear [Tables 1, 2, 4, 5]; and
for each table, numbered from left to right, top to bottom.
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5.2. Eulerian integrals arising from smooth affine varieties. In what follows we
will discuss a sample of the global integrals obtained from varieties in the list
of Knop and Van Steirteghem [2006]. At this point it is more convenient not to
normalize the action of G unitarily. We allow ourselves to choose the spherical
variety corresponding to a given spherical triple as is most convenient, and in
fact we sometimes replace semisimple groups by reductive ones. Of course, the
classification in [ibid.] is over an algebraically closed field, which leaves a lot of
freedom for choosing the precise form of the spherical variety over k, even when
G is split. In the discussion that follows we will always take both the group and
generic stabilizer to be split. Many of the varieties of Knop and Van Steirteghem
have zero cuspidal contribution (that is, the integral (3-10) is zero for every cusp
form) or are not multiplicity-free. Still, this list contains some of the best-known
examples of integral representations of L-functions. It contains also some new
ones.

In Section 4.5 we explained what it means for a period integral P to be “related
to” an L-value, namely by considering the value of P|π ·P|π̄ , assuming that π is
an abstract unitary representation of an adelic group, embedded unitarily into the
space of cuspidal automorphic forms for that group. For the examples that we are
about to see, we will adopt a language that describes the value of P|π itself, divided
by the value of a period integral that does not depend on a continuous parameter,
such as the Whittaker period. For example, for the Hecke integral (1-2) we say
that it is related to L(π, s+ 1

2) with respect to Whittaker normalization, while for
the Godement–Jacquet integral (1-1) we say that it is related to L(π, s− 1

2(n−1))
with respect to the “inner product” period on π ⊗ π̃ .

5.2.1. Table 1. In this table the group H is equal to G, that is, the data consists
of a group and a spherical representation of it. This table contains the following
interesting integrals (numbered according to their occurrence in the tables of Knop
and Van Steirteghem):

1. The integrals of Godement and Jacquet. Here the group is GLn ×GLm with the
tensor product representation (that is, on Matn×m). It is easy to see that if m 6= n,
then the stabilizer is parabolically induced; hence the only interesting case (as far
as cusp forms are concerned) is m = n. In this case, our integral (3-10) is that of
Godement and Jacquet:∫

Zdiag(Ak)GLdiag
n (k)\GLn(Ak)×GLn(Ak)

φ1(g1)φ2(g2)8(g−1
1 g2)|det(g−1

1 g2)|
sd(g1, g2).

15. Two new integrals. (Here there is a choice between the first and the last fun-
damental representation of GLn . It can easily be seen that they amount to the same
integral, so we will consider only ω1.)
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The group is GLm ×GLn and the representation is the direct sum Matm×n with
the standard representation for GLn . If m 6= n, n − 1 then we can easily see that
the stabilizer is parabolically induced. Hence there are two interesting cases:

(i) m = n. We let φ1 ∈ π1, φ2 ∈ π2 be two cusp forms on GLn . Then the integral
is∫

Pdiag
n (k)\GLn(Ak)×GLn(Ak)

φ1(g1)φ2(g2)8(g−1
1 g2)8

′([0, . . . , 0, 1] · g1)

· |det(g−1
1 g2)|

s1 |det(g1)|
s2 dg1 dg2.

Here 8 is a Schwartz function on Matn(Ak) and 8′ is a Schwartz function
on An

k .

Theorem 5.2.2. The integral above is Eulerian and with respect to Whittaker nor-
malization is related to the L-value

L(π1⊗π2, s2) · L(π2, s1−
1
2(n− 1)). (5-1)

Proof. It follows from the standard “unfolding” technique that the integral above,
in the domain of convergence, is equal to∫
(Un(Ak)\GLn(Ak))2

W1(g1)W ′2(g2)8(g−1
1 g2)8

′([0, . . . , 0, 1] · g1)

· |det(g−1
1 g2)|

s1 |det(g1)|
s2 dg1 dg2,

where W1(g) =
∫

Un(k)\Un(Ak)
φ1(ug)ψ(u) du and W ′2 the is same but with φ1 re-

placed by φ2 and ψ replaced by ψ−1.
The last integral is (for “factorizable data”) a product of local factors:∫

(Un(kv)\GLn(kv))2
W1,v(g1)W ′2,v(g2)8v(g−1

1 g2)8
′

v([0, . . . , 0, 1] · g1)

· |det(g−1
1 g2)|

s1 |det(g1)|
s2 dg1 dg2.

Assume that 8v = 80
v, the basic function of S(Matn(kv)). By considering the

action of the spherical Hecke algebra of G2 (that is, the second copy of GLn) on
S(Matn(kv)), the work of Godement and Jacquet [1972, Lemma 6.10] proves that

80
v(x)|det(x)|s1 = |SatG2

(
1∧

>
(
1−q

−s1+
1
2 (n−1)

v ·std
)
)
? 1GLn(o) (5-2)
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Therefore for unramified data, the last integral is equal to

L(π2, s1−
1
2(n− 1))

·

∫
(Un(kv)\GLn(kv))2

W1,v(g1)W ′2,v(g2)1GLn(ov)(g
−1
1 g2)8

′

v([0, . . . , 0, 1] · g1)

· |det(g−1
1 g2)|

s1 |det(g1)|
s2 dg1 dg2

= L(π2, s1−
1
2(n− 1))

·

∫
(Un(kv)\GLn(kv))

W1,v(g)W ′2,v(g)8
′

v([0, . . . , 0, 1] · g)|det(g)|s2 dg.

The latter is the classical Rankin–Selberg integral, which with respect to Whittaker
normalization is related to L(π1⊗π2, s2); see, for instance, [Cogdell 2003]. �

(ii) m=n−1. Notice that if V denotes the standard representation of GLn , then the
space Mat(n−1)×n ⊕V can be identified under the G1×G2 :=GLn−1×GLn-
action with the space X =Matn , where g ∈G1 acts as diag(g−1, 1) on the left
Let φ1 ∈ π1 be a cusp form on GLn−1 and φ2 ∈ π2 a cusp form in GLn . Then
the integral is∫

GLdiag
n (k)\GLn+1(Ak)×GLn(Ak)

φ1(g1)φ2(g2)

·8
(
diag(g−1

1 , 1)g2
)∣∣∣∣det(g2)

det(g1)

∣∣∣∣s1

|det(g1)|
s2 dg1 dg2,

where 8 ∈ S(Matn(Ak)).

Theorem 5.2.3. The integral above is Eulerian and with respect to Whittaker nor-
malization related to the L-value

L(π1⊗π2, s2+
1
2) · L(π2, s1−

1
2 n). (5-3)

5.2.4. Table 2. In this table H is smaller than G and the representation V of H is
nontrivial. This table contains the following interesting integrals:

1. The Bump–Friedberg integral. The group is GLm+n , where m = n or n+1, the
subgroup H is GLm ×GLn and the representation is the standard representation of
the second factor. This is the integral examined in [Bump and Friedberg 1990]:∫

GLm(k)×GLn(k)\GLm(Ak)×GLn(Ak)

φ diag(g1, g2)

∣∣∣∣det(g1)

det(g2)

∣∣∣∣s1

·8([0, . . . , 0, 1] · g2)|det g2|
s2 dg1 dg2.

It is related with respect to Whittaker normalization to the L-value

L(π, s1+
1
2)L(π,∧

2, s2).
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3. A new integral. The group is GLm+1×GLn , and G ′ = GLm ×GLn with the
tensor product of the standard representations (that is, on Matm×n). The only in-
teresting case is m = n. If n > m, then the stabilizer is parabolically induced, and
when m > n it unfolds to a parabolically induced model.

If m = n, we get∫
GLdiag(k)\GLn(Ak)×GLn(Ak)

φ1 diag(g1, 1)φ2(g2)8(g−1
1 g2)

·

∣∣∣det(g2)
det(g1)

∣∣∣s1
|det(g1)|

s2d(g1, g2).

The next result is proved as before:

Theorem 5.2.5. The integral above is Eulerian and with respect to Whittaker nor-
malization related to the L-value

L(π1⊗π2, s2+
1
2) · L(π2, s1−

1
2(n− 1)). (5-4)

5. The classical Rankin–Selberg integral. The group is GLn ×GLn and the sub-
group G ′ is GLdiag

n with the standard representation. This is the classical Rankin–
Selberg integral,∫

GLn(k)\GLn(Ak)

φ1(g)φ2(g)8([0, . . . , 0, 1] · g)|det g|s dg.

It is related with respect to Whittaker normalization to the L-value L(π1⊗π2, s);
see [Cogdell 2003].

5.2.6. Tables 4 and 5. Here the representation V is trivial; hence we get period
integrals over reductive algebraic subgroups (Section 4.2). All known cases of
multiplicity-free period integrals are contained in these tables.

6. A remark on a relative trace formula

At this point we drop our assumptions on the group G, in order to discuss nonsplit
examples. We will assume the existence of Schwartz spaces with similar properties
in this setting, in order to give a conceptual explanation to the phenomenon of
“weight factors” in a relative trace formula.

The relative trace formula is a method that was devised by Jacquet and his coau-
thors to study period integrals of automorphic forms. In its most simplistic form, it
can be described as follows: Let H1 and H2 be two reductive spherical subgroups
of G (a reductive group defined over a global field k) and let f ∈ C∞c (G(Ak)).
Then one builds the usual kernel function

K f (x, y)=
∑

γ∈G(k)

f (x−1γ y)
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for the action of f on the space of automorphic functions and (ignoring analytic
difficulties) defines the functional

RTFG
H1,H2

( f )=
∫

H1(k)\H1(Ak)

∫
H2(k)\H2(Ak)

K f (h1, h2) dh1 dh2. (6-1)

The functional can be decomposed in two ways, one geometric and one spectral,
and the spectral expansion involves period integrals of automorphic forms. By
comparing two such RTFs (that is, made with different choices of H1, H2, maybe
even different groups G) one can deduce properties of those period integrals, such
as that their nonvanishing characterizes certain functorial lifts.

The presentation above is too simplistic for several reasons: First, the correct
functional has something to do with the stack-theoretic quotient H1\G/H2, which
sometimes forces one to take a sum over certain inner forms of G and Hi . We will
not discuss stack-theoretic quotients or inner forms here, but at first approximation
we observe that from this algebro-geometric point of view the variety Hi\G is more
natural than the space Hi (k)\G(k); hence, if G(k) does not surject onto (Hi\Gi )(k)
one should take the sum of the expressions above over stabilizers Hi,ε of a set of
representatives of G(k)-orbits. (This will become clearer in a reformulation we
will present below.) Moreover, one can consider an idele class character η of Hi

and integrate against this character; we will adjust our notation accordingly, for
instance, RTFG

H1,(H2,η)
. There are often analytic difficulties in making sense of

the integrals above. And one does not have to restrict to reductive subgroups, but
can consider parabolically induced subgroups together with a character on their
unipotent radical (such as in the Whittaker period). However, we will ignore most
of these issues and focus on another one, first noticed in [Jacquet et al. 1993]: It
seems that in certain cases, in order for the relative trace formula RTFG

H1,H2
to be

comparable to some other relative trace formula, the functional (6-1) is not the
correct one and one has to add a “weight factor” in the definition, such as

RTFG
H1,H2

( f )=
∫

H1(k)\H1(Ak)

∫
H2(k)\H2(Ak)

K f (h1, h2)θ(h1) dh1 dh2, (6-2)

where θ is a suitable automorphic form on H1.
Our goal here is to explain how, under the point of view developed in this paper,

the expression above is not a relative trace formula for H1, H2 but represents a
relative trace formula for some other subgroups. We will discuss this in the context
of [Jacquet et al. 1993], though our starting point will not be (6-2) but another
formula of [ibid.] from which the identities for (6-2) are derived, and which is
closer to our point of view.

More precisely, let E/F be a quadratic extension of number fields with corre-
sponding idele class character η, G=ResE/F PGL2, G ′=PGL2×PGL2 (over F),
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H ⊂ G the projectivization of the quasisplit unitary group (which is in fact split,
that is, isomorphic to PGL2 over F), H ′ = the diagonal copy of PGL2 in G ′.
(Compared to [Jacquet et al. 1993], we restrict to PGL2 for simplicity.) We con-
sider η as a character of H in the natural way. Naively, one would like to compare
the functional RTFG

H,(H,η) to the functional RTFG ′
H ′,H ′ (usual trace formula for G ′).

However, it turns out that the correct comparison is between the functionals

f 7→
∫
(H(k)\H(Ak))2

K f (h1, h2)E(h1, s)η(h1) dh1 dh2, (6-3)

f ′ 7→
∫
(H ′(k)\H ′(Ak))2

K f ′(h′1, h′2)E
′(h′1, s) dh′1 dh′2 (6-4)

on G and G ′ respectively, where E, E ′ are suitable Eisenstein series on H, H ′.
(More precisely, in the first case one takes the sum over the unitary groups of all
G(k)-conjugacy classes of nondegenerate hermitian forms for E/F , as we men-
tioned above, but only in the second variable.)

We have already made a modification to the formulation of [Jacquet et al. 1993],
namely in the second case they let G ′ = PGL2 and consider the integral∫

PGL2(k)\PGL2(Ak)

K f ′(x, x)E ′(x, s) dx,

but this is easily seen to be equivalent to our present formulation.

Claim. The functionals (6-3) and (6-4) can naturally be understood as pairings

RTFGm×G,ω
X1,X2

: S(X1(Ak))⊗S(X2(Ak))→ C

and
RTFGm×G ′,ω′

X ′1,X
′

2
: S(X ′1(Ak))⊗S(X ′2(Ak))→ C,

respectively, where X2 = H \G, X ′2 = H ′ \G ′ and X1, X ′1 are the affine closures
of the varieties UF \G and U ′F \G ′, respectively, where UF and U ′F are maximal
unipotent subgroups of H and H ′ respectively.

The varieties X1 and X ′1 are considered here as spherical varieties under Gm×G
(resp. Gm×G ′), where Gm = B2/U2, and we extend the Gm-action to the varieties
X2, X ′2 in the trivial way. The exponent ω in RTFGm×G,ω

X1,X2
will be explained below.

Before we explain the claim, let us go back to the simpler formula (6-1) and
explain how it can be considered as a pairing between S(X1(Ak)) and S(X2(Ak))

(where X i = Hi \Gi ). Here we will identify Hecke algebras with spaces of func-
tions, by choosing Haar measures. Assume that f = f̌1 ? f2 with fi ∈C∞c (G(Ak)).
Then we set 8i (g) =

∫
Hi (Ak)

fi (hg) dh. By the definition of S(X i (Ak)) when
Hi is reductive, it follows that 8i ∈ S(X i (Ak)). (It is at this point that one
should add over representatives for Gi (k)-orbits on X i (k), since in general the
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map C∞c (G(Ak))→S(X i (Ak)) is not surjective.) The functional RTFG
H1,H2

( f1? f2)

clearly does not depend on f1 and f2 but only on 81 and 82. Hence, it defines a
Gdiag-invariant functional

S(X1(Ak))⊗S(X2(Ak))→ C.

Now let us return to the setting of the claim, and of equations (6-3) and (6-4).
The product E(h1, s)η(h1) in (6-3) will be considered as an Eisenstein series on
H(k) \ H(Ak). We have seen that suitable sections of Eisenstein series can be
obtained from integrating X -theta series θGm×H

U2
(8, g), where 8∈S(U2 \H(Ak)),

against a character ω of Gm . Now consider 8 ∈ S(U2 \ H(Ak)) as a generalized
function on U2 \ G(Ak). Assume again that f = f̌1 ? f2 ∈ C∞c (G(Ak)). Then
81 := f1 ? 8 ∈ S(U2 \ H(Ak)) and 82(g) :=

∫
H2(Ak)

f (hg) dg ∈ S(H \G(Ak)).
Again, of course, we must take many f ’s and sum over representatives for orbits
of G(k) on X2(k)— incidentally, our point of view explains why there is no need
to sum over representatives for orbits in the first variable: because G(k) surjects
on X1(k)!

Similarly, one can explain (6-4) as a pairing between S(X ′1(Ak))⊗S(X ′2(Ak)),
and this completes the explanation of our claim. (We have introduced the exponents
ω and ω′ in the notation, because we have already integrated against the corre-
sponding character of Gm in order to form Eisenstein series.) Hence, by viewing
the Jacquet–Lai–Rallis trace formulas as being attached to the spaces X1, X2 and
X ′1, X ′2 instead of the original H \G and H ′ \G ′, the weight factors do not appear
as corrections any more, but as a natural part of the setup.

This point of view is very close to the geometric interpretation of the fundamen-
tal lemma which led to its proof by Ngô [2010] in the case of the Arthur–Selberg
trace formula. Indeed, by the geometric methods of Ngô (see also [Gaitsgory
and Nadler 2010]), one naturally gets a hold on the orbital integrals of unramified
functions arising from intersection cohomology, not the “naive” ones defined as
characteristic functions of G(ov)-orbits. I hope that this point of view will lead to
a more systematic study of the relative trace formula — at least by alleviating the
impression created by weight factors that it is something “less canonical” than the
Arthur–Selberg trace formula.
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Nonuniruledness results for spaces of
rational curves in hypersurfaces

Roya Beheshti

We prove that the sweeping components of the space of smooth rational curves in
a smooth hypersurface of degree d in Pn are not uniruled if (n+1)/2≤ d ≤ n−3.
We also show that for any e≥ 1, the space of smooth rational curves of degree e in
a general hypersurface of degree d in Pn is not uniruled roughly when d ≥ e

√
n.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of characteristic
zero. Let X be a smooth hypersurface of degree d in Pn , and for e ≥ 1, let Re(X)
denote the closure of the open subscheme of Hilbet+1(X) parametrizing smooth
rational curves of degree e in X . It is known that if d < (n+1)/2 and X is general,
then Re(X) is an irreducible variety of dimension e(n+ 1− d)+ n− 4, and it is
conjectured that the same holds for general Fano hypersurfaces; see [Harris et al.
2004; Coskun and Starr 2009]. If X is not general, Re(X) may be reducible. We
call an irreducible component R of Re(X) a sweeping component if the curves
parametrized by its points sweep out X , or equivalently, if for a general curve C
parametrized by R the normal bundle of C in X is globally generated. If d ≤ n−1,
or if d = n and e ≥ 2, then Re(X) has at least one sweeping component.

In this paper, we study the birational geometry of sweeping components of
Re(X). Recall that a projective variety Y of dimension m is called uniruled if there
is a variety Z of dimension m − 1 and a dominant rational map Z × P1 99K Y .
We are interested in the following question: for which values of n, d, and e does
Re(X) have nonuniruled sweeping components? Our original motivation for this
study comes from the question of whether or not general Fano hypersurfaces of
low indices are unirational.

We give a complete answer to the above question when (n+ 1)/2≤ d ≤ n− 3:

Theorem 1.1. Let X be any smooth hypersurface of degree d in Pn , where
(n + 1)/2 ≤ d ≤ n − 3. Then for all e ≥ 1, no sweeping component of Re(X)
is uniruled.

MSC2010: primary 14J70; secondary 14J40, 14E05.
Keywords: rational curves on hypersurfaces.
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We also consider the case d = n− 2 and prove:

Theorem 1.2. Let X be a smooth hypersurface of degree n− 2 in Pn , and let C be
a smooth rational curve of degree e in X. Every irreducible sweeping component
of Re(X) which contains C is nonuniruled provided that when we split the normal
bundle of C in Pn as a sum of line bundles

NC/Pn = OC(a1)⊕ · · ·⊕OC(an−1),

we have ai + a j < 3e for every 1≤ i < j ≤ n− 1.

When n = 5 and d = 3, Re(X) is irreducible for any smooth X ; see [Coskun and
Starr 2009]. J. de Jong and J. Starr [2004] studied the birational geometry of Re(X)
with regards to the question of rationality of general cubic fourfolds. Let M0,0(X, e)
be the Kontsevich moduli stack of stable maps of degree e from curves of genus
zero to X and M0,0(X, e) the corresponding coarse moduli scheme. There is an
open subscheme of M0,0(X, e) parametrizing smooth rational curves of degree e in
X . Presenting a general method to produce differential forms on desingularizations
of M0,0(X, e), de Jong and Starr prove that if X is a general cubic fourfold, then
Re(X) is not uniruled when e > 5 is an odd integer, and the general fibers of the
MRC fibration of a desingularization of Re(X) are at most 1-dimensional when
e > 4 is an even integer.

If X is a general cubic fourfold, then for a general rational curve C of degree e
in X , the normal bundle of C in P5 is isomorphic to OC((3e− 1)/2)⊕4 if e ≥ 5 is
odd and to OC(3e/2)⊕2

⊕OC((3e/2)−1)⊕2 if e≥ 6 is an even integer; see [de Jong
and Starr 2004, Proposition 7.1]. Thus Theorem 1.2 gives a new proof of the result
of de Jong and Starr when e ≥ 5 is odd. In Section 4 we study the case when e is
an even integer and show:

Theorem 1.3. Let X be a smooth cubic fourfold, and let C be a general smooth
rational curve of degree e ≥ 5 in X.
• Re(X) is not uniruled if e is odd and NC/P5 = OC((3e− 1)/2)⊕4.

• If R̃ is a desingularization of Re(X), then the general fibers of the MRC
fibration of R̃ are at most 1-dimensional if e is even and

NC/P5 = OC(3e/2)⊕2
⊕OC((3e/2)− 1)⊕2.

It is an interesting question whether or not the splitting type of NC/Pn is always
as above for a general rational curve C of degree ≥ 5 in an arbitrary smooth cubic
fourfold.

Finally, we consider the case d < (n+ 1)/2. When d2
≤ n, Re(X) is uniruled.

In fact, in this range a much stronger statement holds: for every e ≥ 2, the space
of based, 2-pointed rational curves of degree e in X is rationally connected in a
suitable sense; see [de Jong and Starr 2006; Starr 2006]. By [Harris et al. 2004],
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when X is general and d < (n + 1)/2, M0,0(X, e) is irreducible and therefore it
is birational to Re(X). Starr [2003] shows that if d < min(n− 6, (n+ 1)/2) and
d2
+d ≥ 2n+2, then for every e≥ 1, the canonical divisor of M0,0(X, e) is big. This

suggests that when d2
+ d ≥ 2n+ 2 and X is general, Re(X) may be nonuniruled.

In Section 5, we show:

Theorem 1.4. Let X ⊂ Pn (n ≥ 12) be a general hypersurface of degree d, and
let m ≥ 1 be an integer. If a general smooth rational curve C in X of degree e
is m-normal (that is, if the global sections of OPn (m) map surjectively to those of
OPn (m)|C ), and if

d2
+ (2m+ 1)d ≥ (m+ 1)(m+ 2)n+ 2,

then Re(X) is not uniruled.

In particular, since every smooth curve of degree e ≥ 3 in Pn is (e− 2)-normal, it
follows that Re(X) is not uniruled when X is general and

d2
+ (2e− 3)d ≥ e(e− 1)n+ 2.

2. A consequence of uniruledness

In this section, we prove a proposition, analogous to the existence of free rational
curves on nonsingular uniruled varieties, for varieties whose spaces of smooth
rational curves are uniruled. We first fix notation and recall some definitions.

For a morphism f : Y → X between smooth varieties, by the normal sheaf of f
we will mean the cokernel of the induced map on the tangent bundles TY → f ∗TX .

If Y is an irreducible projective variety, and if Ỹ is a desingularization of Y ,
then the maximal rationally connected (MRC) fibration of Ỹ is a smooth morphism
π : Y 0

→ Z from an open subset Y 0
⊂ Ỹ such that the fibers of π are all rationally

connected, and such that for a very general point z ∈ Z , any rational curve in Ỹ
intersecting π−1(z) is contained in π−1(z). The MRC fibration of any smooth
variety exists and is unique up to birational equivalences [Kollár et al. 1992].

Let Y be an irreducible projective variety, and assume the fiber of the MRC
fibration of Ỹ at a general point is m-dimensional. Then it follows from the
definition that there is an irreducible component Z of Hom(P1, Y ) such that the
map µ1 : Z ×P1

→ Y defined by µ1([g], b)= g(b) is dominant and the image of
the map µ2 : Z×P1

×P1
→ Y ×Y defined by µ2([g], b1, b2)= (g(b1), g(b2)) has

dimension ≥ dim Y +m.

Proposition 2.1. Let X ⊂ Pn be a nonsingular projective variety. If an irreducible
sweeping component R of Re(X) is uniruled, then there exist a smooth rational
surface S with a dominant morphism π : S→ P1 and a generically finite morphism
f : S→ X with the following two properties:
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(i) If C is a general fiber of π , then f |C is a closed immersion onto a smooth
curve parametrized by a general point of R.

(ii) If Nf denotes the normal sheaf of f , then π∗Nf is globally generated.

Moreover, if the fiber of the MRC fibration of a desingularization of R at a general
point is at least m-dimensional, then there are such S and f with the additional
property that π∗Nf has an ample subsheaf of rank = m− 1.

Proof. Let U ⊂ R× X be the universal family over R. Since R is uniruled, there
exist a quasiprojective variety Z and a dominant morphism µ : Z ×P1

→ R. Let
V ⊂ Z ×P1

× X be the pullback of the universal family to Z ×P1, and denote by
q : V → Z × X and p : V → Z the projection maps.

Consider a desingularization g : Ṽ → V , and let q̃ = q ◦ g and p̃ = p ◦ g. Let
z ∈ Z be a general point, and denote the fibers of p and p̃ over z by S and S̃,
respectively. Let f : S→ X be the restriction of q to S, and let f̃ = f ◦ g : S̃→ X .
Since z is general, by generic smoothness S̃ is a smooth surface whose general fiber
over P1 is a smooth connected rational curve. We claim that S̃ and f̃ satisfy the
desired properties. The first property is clearly satisfied.

Since every coherent sheaf on P1 splits as a torsion sheaf and a direct sum of
line bundles, to show that π∗Nf is globally generated it suffices to check that the
restriction map H 0(P1, π∗Nf )→ Nf |b is surjective for a general point b ∈ P1, or
equivalently, that the restriction map H 0(S, Nf )→ H 0(C, Nf |C) is surjective for a
general fiber C . To show this, we consider the Kodaira–Spencer map associated to
Ṽ at a general point z ∈ Z . Denote by Nq̃ the normal sheaf of the map q̃ . We get a
sequence of maps

TZ ,z→ H 0(S̃, p̃∗TZ |S̃)→ H 0(S̃, q̃ ∗TX×Z |S̃)→ H 0(S̃, Nq̃ |S̃).

Let b be a general point of P1. Composing the above map with the projection
map TZ×P1,(z,b)→ TZ ,z , we get a map TZ×P1,(z,b)→ H 0(S̃, Nq̃ |S̃). Note that if N f̃

denotes the normal sheaf of f̃ , then Nq̃ |S̃ is naturally isomorphic to N f̃ . Also, if C
is the fiber of π : S̃→P1 over b, then since b is general, C is smooth, and we have
a short exact sequence

0→ NC/S̃→ N f̃ (C)/X → N f̃ |C → 0.

So we get a commutative diagram

TZ×P1,(z,b)

dµ(z,b)
��

// TZ ,z // H 0(S̃, N f̃ )

��
TR,[ f̃ (C)] = H 0( f̃ (C), N f̃ (C)/X )

// H 0(C, N f̃ |C)
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Since µ is dominant, and since R is sweeping and therefore generically smooth,
dµ(z,b) is surjective. Since the bottom row is also surjective, the map H 0(S̃, N f̃ )→

H 0(C, N f̃ |C) is surjective as well. Thus π̃∗N f̃ is globally generated.
Suppose now that R is uniruled and that the general fibers of the MRC fibration

of R are at least m-dimensional. Let dim R = r . Then there exists a morphism
µ1 : Z ×P1

→ R such that the image of

µ2 : Z ×P1
×P1

→ R× R, µ2(z, b1, b2)= (µ1(z, b1), µ1(z, b2))

has dimension ≥ r +m. Constructing S̃ and f̃ as before, and if C1 and C2 denote
the fibers of π over general points b1 and b2 of P1, then the image of the map

dµ2 : TZ×P1×P1,(z,b1,b2)→ TR×R,([ f̃ (C1)],[ f̃ (C2)])

= H 0(C1, N f̃ (C1)/X )⊕ H 0(C2, N f̃ (C2)/X )

is at least (r +m)-dimensional. The desired result now follows from the following
commutative diagram and the observation that the kernel of the bottom row is
2-dimensional:

TZ×P1×P1,(z,b1,b2)

(dµ2)(z,b1,b2)

��

// TZ ,z // H 0(S̃, N f̃ )

��
TR×R,([ f̃ (C1)],[ f̃ (C2)])

// H 0(C1, N f̃ |C1)⊕ H 0(C2, N f̃ |C2) �

Proposition 2.1 will be enough for the proof of Theorem 1.1, but to prove
Theorem 1.3 in the even case, we will need a slightly stronger variant. Let f :Y→ X
be a morphism between smooth varieties, and let Nf be the normal sheaf of f

0→ TY → f ∗TX → Nf → 0.

Suppose there is a dominant map π : Y → P1, and let M be the image of the map
induced by π on the tangent bundles TY → π∗TP1 . Consider the push-out of the
above sequence by the map TY → M :

0 // TY //

��

f ∗TX //

��

Nf //

=

��

0

0 // M //

��

N f,π //

��

Nf // 0

0 0

The sheaf N f,π in the above diagram will be referred to as the normal sheaf of f
relative to π .
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Property (ii) of Proposition 2.1 says that H 0(S, Nf )→ H 0(C, Nf |C) is surjective.
An argument parallel to the proof of Proposition 2.1 shows the following:

Proposition 2.2. Let X be as in Proposition 2.1. Then property (ii) can be strength-
ened as follows:

(ii′) If Nf denotes the normal sheaf of f and N f,π denotes the normal sheaf of f
relative to π , then the composition of the maps

H 0(S, N f,π )→ H 0(C, N f,π |C)→ H 0(C, Nf |C)

is surjective for a general fiber C of π .

Moreover, if the general fibers of the MRC fibration of a desingularization of R are
at least m-dimensional, then there are S and f with properties (i) and (ii′) such that
the image of the map

H 0(S, N f,π ⊗ IC)→ H 0(C, (Nf ⊗ IC)|C)

is at least (m− 1)-dimensional.

3. The case when n+1
2 ≤ d

Let X be a smooth hypersurface of degree d in Pn . Assume that a sweeping
component R of Re(X) is uniruled. The following result, along with Proposition 2.1,
will prove Theorem 1.1.

Proposition 3.1. Suppose d ≤ n− 3, and let S and f be as in Proposition 2.1. If
C is a general fiber of π : S→ P1 and IC is the ideal sheaf of C in S, then the
restriction map

H 0(S, f ∗OX (2d − n− 1)⊗ I∨C )→ H 0(C, f ∗OX (2d − n− 1)⊗ I∨C |C)

is zero.

Proof of Theorem 1.1. Granting Proposition 3.1, since

H 0(S, f ∗OX (2d − n− 1)⊗ I∨C )→ H 0(C, f ∗OX (2d − n− 1)⊗ I∨C |C)

is the zero map, we have

H 0(S, f ∗OX (2d − n− 1))= H 0(S, f ∗OX (2d − n− 1)⊗ I∨C ).

Thus,

H 0(P1, π∗ f ∗OX (2d − n− 1))= H 0(P1, π∗( f ∗OX (2d − n− 1)⊗ I∨C ))

= H 0(P1, (π∗ f ∗OX (2d − n− 1))⊗OP1(1)),

which is only possible if H 0(P1, π∗ f ∗OX (2d − n − 1)) vanishes. So we have
H 0(S, f ∗OX (2d − n− 1))= 0 and d < (n+ 1)/2. �



Nonuniruledness results for spaces of rational curves in hypersurfaces 675

Proof of Proposition 3.1.
Let ωS be the canonical sheaf of S. By Serre duality and the long exact se-

quence of cohomology, it suffices to show that if S and f satisfy the properties of
Proposition 2.1, then the restriction map

H 1(S, f ∗OX (n+ 1− 2d)⊗ωS)→ H 1(C, f ∗OX (n+ 1− 2d)⊗ωS|C)

is surjective. Let N be the normal sheaf of the map f : S→ X , and let N ′ be the
normal sheaf of the map S→ Pn .

There is a short exact sequence

0→ N → N ′→ f ∗OX (d)→ 0. (1)

Taking the (n− 3)-rd exterior power of this sequence, we get the exact sequence

0→
∧n−3 N ⊗ f ∗OX (−d)→

∧n−3 N ′⊗ f ∗OX (−d)→
∧n−4 N → 0.

For an exact sequence of sheaves of OS-modules 0→ E→ F→ M→ 0 with
E and F locally free of ranks e and f , there is a natural map of sheaves∧f−e−1 M ⊗

∧e E ⊗ (
∧f F)∨→ M∨

which is defined locally at a point s ∈ S as follows: assume γ1, . . . , γ f−e−1 ∈ Ms ,
α1, . . . , αe ∈ Es , and φ :

∧f Fs → OS,s ; then for γ ∈ Ms , we set γ f−e = γ , and
we define the map to be γ 7→ φ(γ̃1 ∧ γ̃2 ∧ · · · ∧ γ̃ f−e ∧ α1 ∧ · · · ∧ αe), where
γ̃i is any lifting of γi in Fs . Clearly, this map does not depend on the choice
of the liftings, and thus it is defined globally. So from the short exact sequence
0→ TS→ f ∗TX → N → 0, we get a map∧n−4 N → N∨⊗ f ∗OX (n+ 1− d)⊗ωS,

and from the short exact sequence 0→ TS→ f ∗TPn → N ′→ 0, we get a map∧n−3 N ′⊗ f ∗OX (−d)→ (N ′)∨⊗ f ∗OX (n+ 1)⊗ωS.

With the choices of the maps we have made, the following diagram, whose
bottom row is obtained from dualizing sequence (1) and tensoring with

f ∗OX (n+ 1− 2d)⊗ωS,

is commutative with exact rows:

0 // ∧n−3 N⊗ f ∗OX (−d) //

��

∧n−3 N ′⊗ f ∗OX (−d) //

��

∧n−4 N

��

// 0

0 // f ∗OX (n+1−2d)⊗ωS // (N ′)∨⊗ f ∗OX (n+1−d)⊗ωS

// N∨⊗ f ∗OX (n+1−d)⊗ωS // 0
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Since the cokernel of the first vertical map restricted to C is a torsion sheaf, to
show the assertion it suffices to show that the map

H 1(S,
∧n−3 N ⊗ f ∗OX (−d))→ H 1(C,

∧n−3 N ⊗ f ∗OX (−d)|C)

is surjective. Applying the long exact sequence of cohomology to the top sequence,
the surjectivity assertion follows if we show that

(1) H 0(S,
∧n−4 N )→ H 0(C,

∧n−4 N |C) is surjective,

(2) H 1(C,
∧n−3 N ′⊗ f ∗OX (−d)|C)= 0.

To prove (1), we consider the following commutative diagram:

∧n−4 H 0(S, N ) //

��

∧n−4 H 0(C, N |C)

��

H 0(S,
∧n−4 N ) // H 0(C,

∧n−4 N |C)

The top horizontal map is surjective since H 0(S, N )→ H 0(C, N |C) is surjective,
and the right vertical map is surjective since N |C is a globally generated line bundle
over P1. By commutativity of the diagram the bottom horizontal map is surjective.

To prove (2), note that there is a surjective map f ∗OPn (1)⊕n+1
→ N ′. Taking the

(n− 3)-rd exterior power, and then tensoring with f ∗OX (−d), we get a surjective
map

f ∗OPn (n− 3− d)⊕(
n+1
n−3)→

∧n−3 N ′⊗ f ∗OX (−d).

Restricting to C , since n− 3− d ≥ 0, we have

H 1(C,
∧n−3 N ′⊗ f ∗OX (−d)|C)= 0. �

Proof of Theorem 1.2. Suppose that X is a smooth hypersurface of degree n− 2
in Pn . Let C be a smooth rational curve of degree e in Pn whose normal bundle
NC/Pn is globally generated. If we write

NC/Pn = OC(a1)⊕ · · ·⊕OC(an−1),

then
∑

1≤i≤n−1 ai =e(n+1)−2. Assume that ai+a j <3e for every 1≤ i< j ≤n−1.
Then H 1(C,

∧n−3 NC/Pn ⊗ OPn (−d)|C) = 0, and so if N ′ is as in the proof of
Theorem 1.1, then

H 1(C,
∧n−3 N ′⊗ f ∗OX (−d)|C)= 0.

The assertion now follows from the proof of Theorem 1.1. �
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We remark that when d=n−1 or n, the uniruledness of the sweeping subvarieties
of Re(X) has been studied in [Beheshti and Starr 2008]. It is proved that if e ≤ n,
then a subvariety of Re(X) is nonuniruled if the curves parametrized by its points
sweep out X or a divisor in X .

4. Cubic fourfolds

In this section we prove Theorem 1.3. When e ≥ 5 is odd, the theorem follows
from Theorem 1.2 and [de Jong and Starr 2004, Proposition 7.1].

So let e≥ 6 be an even integer, and assume to the contrary that the general fibers
of the MRC fibration of Re(X) are at least 2-dimensional. Let S and f be as in
Proposition 2.2, and let C be a general fiber of π . Set N = Nf and Q = N f,π . Then
by Proposition 2.1 the following properties are satisfied:

• Property (i): The composition of the maps

H 0(S, Q)→ H 0(S, Q|C)→ H 0(C, N |C)

is surjective.

• Property (ii): The composition of the maps

H 0(S, Q⊗ IC)→ H 0(C, Q⊗ IC |C)→ H 0(C, N ⊗ IC |C)

is nonzero.

We show these lead to a contradiction. Note that IC |C is isomorphic to the trivial
bundle OC , but we write IC |C instead of OC to keep track of various maps and exact
sequences involved in the proof.

Let Q′ be the normal sheaf of the map S→P5 relative to π . We have Q|C=NC/X

and Q′|C = NC/P5 . Since NX/P5 = OX (3), there is a short exact sequence

0→ Q→ Q′→ f ∗OX (3)→ 0. (2)

Taking exterior powers, we obtain the short exact sequence

0→
∧2 Q⊗ f ∗OX (−3)→

∧2 Q′⊗ f ∗OX (−3)→ Q→ 0. (3)

Since this sequence splits locally, its restriction to C is also a short exact sequence

0→
∧2 Q⊗ f ∗OX (−3)|C →

∧2 Q′⊗ f ∗OX (−3)|C → Q|C → 0. (4)

To get a contradiction, we show that the image of the boundary map

γ : H 0(C, Q|C)→ H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)



678 Roya Beheshti

is of codimension at least 2 in H 1(C,
∧2 Q⊗ f ∗OX (−3)|C). This is not possible

since by our assumption NC/P5 = OC(3e/2)⊕2
⊕OC((3e/2)− 1)⊕2, and so

H 1(C,
∧2 Q′⊗ f ∗OX (−3)|C)= H 1(C,

∧2 NC/P5 ⊗ f ∗OX (−3)|C)

= H 1(C,OC(−2)⊕OC(−1)⊕4
⊕OC)

= k.

Lemma 4.1. The kernel of the map f ∗TX → Q is a line bundle which contains∧2 TS ⊗π
∗ωP1 as a subsheaf.

Proof. The kernel of f ∗TX → Q is equal to the kernel of the map induced by π on
the tangent bundles TS→ π∗TP1 , which we denote by F :

0→ F→ TS→ π∗TP1 .

Since F is reflexive, it is locally free on S, and it is clearly of rank 1. Also, the
composition of the maps∧2 TS ⊗π

∗ωP1 →
∧2 TS ⊗�S = TS→ π∗TP1

is the zero map. So
∧2 TS ⊗π

∗ωP1 is a subsheaf of F . �

Given a section r ∈ H 0(C, Q⊗ IC |C), we can define a map

βr : H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)−→ H 1(C, ωS|C)= k

as follows. Let F be the line bundle from the proof of Lemma 4.1. It follows from
the proof of the lemma that there is an injection

∧2 TS⊗π
∗ωP1→ F , and from the

short exact sequence
0→ F→ f ∗TX → Q→ 0

we get a generically injective map of sheaves∧3 Q⊗ F→
∧4 f ∗TX .

Combining these, we get a morphism∧3 Q⊗ (ωS ⊗π
∗TP1)∨→

∧4 f ∗TX .

Since
∧4 f ∗TX = f ∗OX (3), we get a generically injective map

9 :
∧3 Q⊗ f ∗OX (−3)⊗ IC → ωS ⊗π

∗TP1 ⊗ IC ,

and by restricting to C , we get a map

9|C :
(∧3 Q⊗ f ∗OX (−3)⊗ IC

)
|C → ωS|C .
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Finally, r gives a map

8r :
∧2 Q⊗ f ∗OX (−3)|C

∧r
−→

∧3 Q⊗ f ∗OX (−3)⊗ IC |C ,

and we define βr to be the map induced by the composition 9|C ◦8r . Note that βr

is nonzero if r 6= 0.

Lemma 4.2. For r, r ′ ∈ H 0(C, Q⊗ IC |C), ker(βr )= ker(βr ′) if and only if r and
r ′ are scalar multiples of each other.

Proof. By Serre duality, it is enough to show that the images of the maps

H 0(C, I∨C |C)= H 0(C, ω∨S |C ⊗ωC)
β∨r //

β∨r ′

// H 0
(
C,
(∧2 Q∨⊗ f ∗OX (3)

)
|C ⊗ωC

)
are the same if and only if r and r ′ are scalar multiples of each other. Since
Q|C = NC/X , we have

∧3 Q|C =
∧3 NC/X = f ∗OX (3)⊗ωC , so(∧2 Q∨⊗ f ∗OX (3)

)
|C ⊗ωC = Q|C ,

and the map

β∨r : H
0(C, I∨C |C)→ H 0(C, Q|C)

is simply given by r . Similarly, β∨r ′ is given by r ′, and the lemma follows. �

Recall that by definition, we have a short exact sequence

0→ π∗TP1 |C → Q|C → N |C → 0,

and π∗TP1 |C = I−1
C |C . If we tensor this sequence with IC |C , we get the short exact

sequence

0→ OC → Q⊗ IC |C → N ⊗ IC |C → 0.

Let i be a nonzero section in the image of H 0(C,OC)→ H 0(C, Q⊗ IC |C). Then
i induces a map

βi : H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)−→ H 1(C, ωS|C)= k

as described before. Let

γ : H 0(C, Q|C)→ H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)

be the connecting map in sequence (4).

Lemma 4.3. We have image(γ )⊂ kerβi .
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Proof. Since the short exact sequence 0→ N→ N ′→ f ∗OX (3)→ 0 splits locally,
there is an exact sequence

0→
∧2 N ⊗ f ∗OX (−3)→

∧2 N ′⊗ f ∗OX (−3)→ N → 0.

Applying the long exact sequence of cohomology to the restriction of this sequence
to C , we get a map

H 0(C, N |C)→ H 1(C,
∧2 N ⊗ f ∗OX (−3)|C).

Also from the exact sequence 0→ TS→ f ∗TX → N → 0, we get a map∧2 TS ⊗
∧2 N →

∧4 f ∗TX = f ∗OX (3),

and hence a map ∧2 N ⊗ f ∗OX (−3)→ ωS.

It follows from the definition of βi that the map βi ◦ γ factors through

H 0(C, Q|C)→ H 0(C, N |C)→ H 1(C,
∧2 N ⊗ f ∗OX (−3)|C)→ H 1(C, ωS|C),

so we have a commutative diagram

H 0(S, N ) //

����

H 1(S,
∧2 N ⊗ f ∗OX (−3)) // H 1(S, ωS)= 0

��
H 0(C, Q|C) // H 0(C, N |C) // H 1(C, ωS|C)

Thus we can conclude the assertion by the fact that the restriction map H 0(S, N )→
H 0(C, N |C) is surjective, and so the image of the composition of the above maps
is contained in the image of the restriction map H 1(S, ωS)→ H 1(C, ωS|C), which
is zero. �

In the following lemma we prove a similar result for the sections of Q⊗ IC |C

which are obtained by restricting the global sections of Q⊗ IC to C .

Lemma 4.4. If r̃ ∈ H 0(S, Q⊗ IC), and if r = r̃ |C , then image(γ )⊂ ker(βr ).

Proof. We have a commutative diagram

H 0(S, Q) //

��

H 1(S,
∧2 Q⊗ f ∗OX (−3)) //

��

H 1(S, ωS)= 0

��
H 0(C, Q|C)

γ // H 1(C,
∧2 Q⊗ f ∗OX (−3))

βr // H 1(C, ωS|C)

Therefore we have βr (γ (u)) = 0 for any u ∈ H 0(C, Q|C) in the image of the
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restriction map H 0(S, Q)→ H 0(C, Q|C). Consider the exact sequence

0→ I−1
C |C → Q|C → N |C → 0.

From the hypothesis that the composition map

H 0(S, Q)→ H 0(C, Q|C)→ H 0(C, N |C)

is surjective, we see that to prove the statement it is enough to show that for any
nonzero u in the image of H 0(C, I−1

C |C)→ H 0(C, Q|C), we have γ (u) ∈ kerβr .
Consider the following diagram, where λ is obtained from applying the long

exact sequence of cohomology to the third wedge power of sequence (2), and ψ is
induced by the map 9|C :

H 0(C, Q|C)
γ //

∧i
��
∧r





H 1(C,
∧2 Q⊗ f ∗OX (−3)|C)

∧i
��
∧r



 βi ++

βr

''

H 0(C,
∧2 Q⊗ IC |C) λ

// H 1(C,
∧3 Q⊗ f ∗OX (−3)⊗ IC |C) ψ

// H 1(C, ωS|C)

Then we have

βr ◦ γ (u)= ψ ◦ λ(u ∧ r)

= ψ ◦ λ(r ∧ i) (up to a scalar factor)

= βi ◦ γ (r)

= 0,

where the last equality comes from γ (H 0(C, Q|C))⊂ kerβi , by Lemma 4.3. �

Now, let r̃0 ∈ H 0(S, Q⊗ IC) be so that its image in H 0(C, N⊗ IC |C) is nonzero.
Such an r̃0 exists by Property (ii). Then r0 := r̃0|C defines a map βr0 . Since the
image of r0 in H 0(C, N ⊗ IC |C) is nonzero, r0 and i are not scalar multiples, so
according to Lemma 4.2, kerβr0 6= kerβi . Thus the codimension of kerβi ∩kerβr0

is at least 2. On the other hand, by the previous lemmas, image(γ )⊂ kerβi∩kerβr0 .
This is a contradiction since dim H 1(C,

∧2 Q′⊗ f ∗OX (−3)|C)= 1.

5. The case when d < n+1
2

Throughout this section, X ⊂ Pn is a general hypersurface of degree d < (n+ 1)/2.
By the main theorem of [Harris et al. 2004], Re(X) is irreducible for every e ≥ 1.
If d2

≤ n and e ≥ 2, then by [de Jong and Starr 2006; Starr 2006], the space of
rational curves of degree e in X passing through two general points of X is rationally
connected. In particular, Re(X) is rationally connected for e ≥ 2. If e = 1, then
R1(X) is the Fano variety of lines in X which is rationally connected if and only if
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d2
+ d ≤ 2n [Kollár 1996, V.4.7]. In this section, we will consider the case when

d2
+ d > 2n.
Assume that Re(X) is uniruled. Then there are S and f with the two properties

given in Proposition 2.1. We can take the pair (S, f ) to be minimal in the sense
that a component of a fiber of π which is contracted by f cannot be blown down.
Let N be the normal sheaf of f , and let C be a general fiber of π with ideal sheaf
IC in S. Denote by H the pullback of a hyperplane in Pn to S, and denote by K a
canonical divisor on S. From the exact sequences 0→ TS→ f ∗TX → N → 0 and
0→ f ∗TX → f ∗TPn → f ∗OPn (d)→ 0, we get

χ(N ⊗ IC)

= (n+ 1)χ( f ∗OPn (1)⊗ IC)−χ( f ∗OPn (d)⊗ IC)−χ(IC)−χ(TS ⊗ IC)

= (n+ 1)
(
(H−C)·(H−C−K )

2
+ 1

)
−
(d H−C)·(d H−C−K )

2
− 1

−
−C ·(−C−K )

2
− 1− (2K 2

− 14)

=
(n+1−d2)

2
H 2
−
(n+1−d)

2
H · K − 2K 2

− (n+ 1− d)e+ 14.

We claim that 2H + 2C + K is base-point free and hence has a nonnegative
self-intersection number. By the main theorem of [Reider 1988], if 2H + 2C + K
is not base-point free, then there exists an effective divisor E such that either

(2H + 2C) · E = 1, E2
= 0 or (2H + 2C) · E = 0, E2

=−1.

The first case is clearly not possible. In the second case, H · E = 0, and C · E = 0.
So E is a component of one of the fibers of π which is contracted by f and which
is a (−1)-curve. This contradicts the assumption that (S, f ) is minimal. Thus
(2H + 2C + K )2 ≥ 0. Also, since H 1(S, f ∗OX (−1))= 0, we have

H · (H + K )= 2χ( f ∗OX (−1))− 2≥−2,

so we can write

χ(N ⊗ IC)=
2n+2−d2

−d
2

H 2
− (n−d−15)(e−1)−2−2(2H +2C+ K )2

−
n−d−15

2
(H · (H + K )+2)

≤
2n+2−d2

−d
2

H 2
− (n−d−15)(e−1)−2,

and therefore χ(N ⊗ IC) is negative when d2
+ d ≥ 2n+ 2 and n ≥ 30.

The Leray spectral sequence gives a short exact sequence

0→ H 1(P1, π∗(N ⊗ IC))→ H 1(S, N ⊗ IC)→ H 0(P1, R1π∗(N ⊗ IC))→ 0,
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and by our assumption on S and f , H 1(P1, π∗(N⊗ IC))= 0. If we could choose S
such that H 0(P1, R1π∗(N ⊗ IC))= 0, then we could conclude that χ(N ⊗ IC)≥ 0,
and hence Re(X) could not be uniruled for d2

+ d ≥ 2n+ 2 and n ≥ 30.
We cannot show that for a general X , a minimal pair (S, f ) as in Proposition 2.1

can be chosen so that H 0(P1, R1π∗(N ⊗ IC))= 0. However, we prove that if X is
general and (S, f ) is minimal, then for every t ≥ 1,

H 0(P1, R1π∗(N ⊗ IC ⊗ f ∗OX (t)))= 0.

We also show that if t ≥ 0 and f (C) is t-normal, then

H 1(P1, π∗(N ⊗ IC ⊗ f ∗OX (t)))= 0.

These imply that χ(N⊗ IC⊗ f ∗OX (t)) is nonnegative when X is general and f (C)
is t-normal. To finish the proof of Theorem 1.4, we compute χ(N⊗ IC⊗ f ∗OX (t))
directly and show that it is negative when the inequality in the statement of the
theorem holds.

Proof of Theorem 1.4. Let X be a general hypersurface of degree d in Pn . If Re(X)
is uniruled, then there are S and f as in Proposition 2.1. Assume the pair (S, f ) is
minimal. Let N be the normal sheaf of f , and let C be a general fiber of π . Then
H 0(S, N )→ H 0(C, N |C) is surjective. The restriction map H 0(S, f ∗OX (m))→
H 0(C, f ∗OX (m)|C) is also surjective since f (C) is m-normal, so the restriction map
H 0(S, N ⊗ f ∗OX (m))→ H 0(C, N ⊗ f ∗OX (m)|C) is surjective as well. Therefore,

H 1(P1, π∗(N ⊗ f ∗OX (m)⊗ IC))= 0.

Now let C be an arbitrary fiber of π , and let C0 be an irreducible component
of C . Then by Proposition 5.2, f ∗(TX (t))|C0 is globally generated for every t ≥ 1,
and hence N ⊗ f ∗OX (t)|C0 is globally generated too. So Lemma 5.1 shows that
for every t ≥ 1,

H 0(P1, R1π∗(N ⊗ f ∗OX (t)⊗ IC))= 0.

By the Leray spectral sequence,

H 1(S, N ⊗ f ∗OX (m)⊗ IC)

= H 1(P1, π∗(N ⊗ f ∗OX (m)⊗ IC))⊕ H 0(P1, R1π∗(N ⊗ f ∗OX (m)⊗ IC))

= 0,

and therefore, χ(N⊗ f ∗OX (m)⊗ IC)≥ 0. We next compute χ(N⊗ f ∗OX (m)⊗ IC).
For an integer t ≥ 0, set

at = χ(N ⊗ IC ⊗ f ∗OX (t)).
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We have

at = χ(N ⊗ IC)+
2t (n+1−d)+t2(n−3)

2
H 2
−

t (n−5)
2

H · K − t (n− 3)e.

So

at =
bt
2

H 2
+

ct
2

H · K − 2K 2
+ dt ,

where
bt = (n+ 1− d2)+ 2t (n+ 1− d)+ t2(n− 3),

ct =−(n+ 1− d)− t (n− 5),

and dt =−t (n− 3)e− (n+ 1− d)e+ 14.

A computation similar to the computation in the beginning of this section shows
that

at =
bt−ct

2
H 2
− 2(2H + 2C + K )2+ ct+16

2
(H · (H + K )+ 2)

+ (dt − ct − 32+ 16e)

≤
bt−ct

2
H 2
+ (dt − ct − 32+ 16e).

Since dt − ct − 32+ 16e =−(e− 1)(n− 15− d + t (n− 3))− 2t − 2, and since
n− 15− d + t (n− 3)≥ 2n− d − 18≥ 0 for t ≥ 1 and n ≥ 12, we get

at <
bt−ct

2
H 2.

When d2
+ (2t + 1)d ≥ (t + 1)(t + 2)n+ 2, bt < ct , and so at < 0. If we let t =m,

we get the desired result. �

Lemma 5.1. If E is a locally free sheaf on S such that for every irreducible compo-
nent C0 of a fiber of π , E |C0 is globally generated, then R1π∗E = 0.

Proof. By cohomology and base change [Hartshorne 1977, Theorem III.12.11], it
suffices to prove that for every fiber C of π , H 1(C, E |C)= 0. We first show that if
l is the number of irreducible components of C counted with multiplicity, then we
can write C = C1+ · · · +Cl such that each Ci is an irreducible component of C
and for every 1≤ i ≤ l− 1, (C1+· · ·+Ci ) ·Ci+1 ≤ 1. This is proven by induction
on l. If l = 1, there is nothing to prove. Otherwise, there is at least one component
C0 of C which can be contracted. Let r be the multiplicity of C0 in C . Blowing
down C0, we get a rational surface S′ over P1. Denote by C ′ the blow-down of C .
Then by the induction hypothesis, we can write

C ′ = C ′1+ · · ·+C ′l−r
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such that (C ′1+· · ·+C ′i ) ·C
′

i+1 ≤ 1 for every 1≤ i ≤ l−r−1. Let Ci be the proper
transform of C ′i . Then if in the above sum we replace C ′i by Ci when Ci does not
intersect C0, and by Ci +C0 when Ci intersects C0, we get the desired result for C .

Since E |Ci+1 is globally generated, H 1(Ci+1, E(−C1− · · · −Ci )|Ci+1)= 0 for
every 0 ≤ i ≤ l − 1. On the other hand, for every 0 ≤ i ≤ l − 2, we have a short
exact sequence of OS-modules

0→ E(−C1− · · ·−Ci+1)|Ci+2+···+Cl → E(−C1− · · ·−Ci )|Ci+1+···+Cl

→ E(−C1− · · ·−Ci )|Ci+1 → 0.

So a decreasing induction on i shows that for every 0 ≤ i ≤ l − 2, we have
H 1(S, E(−C1−· · ·−Ci )|Ci+1+···+Cl )= 0. Letting i = 0, the statement follows. �

Proposition 5.2. Let X ⊂ Pn be a general hypersurface of degree d.

(i) For any morphism h : P1
→ X , h∗(TX (1)) is globally generated.

(ii) If C is a smooth, rational, d-normal curve on X , then H 1(C, TX |C)= 0.

Proof. (i) This follows from [Voisin 1996, Proposition 1.1]. We give a proof here
for the sake of completeness. Consider the short exact sequence

0→ h∗TX → h∗TPn → h∗OX (d)→ 0.

Since X is general, the image of the pullback map

H 0(X,OX (d))→ H 0(P1, h∗OX (d))

is contained in the image of the map H 0(P1, h∗TPn )→ H 0(P1, h∗OX (d)). Choose
a homogeneous coordinate system for Pn . Let p be a point in P1, and without loss of
generality assume that h(p)= (1 : 0 : · · · : 0). We show that for any r ∈ h∗(TX (1))|p,
there is r̃ ∈ H 0(P1, h∗(TX (1))) such that r̃ |p = r .

Consider the exact sequence

0−→ H 0(P1, h∗TX (1))−→ H 0(P1, h∗TPn (1))
φ
−→ H 0(P1, h∗OX (d + 1)).

Denote by s the image of r in h∗(TPn (1))|p. There exists S ∈ H 0(Pn, TPn (1))
such that the restriction of s̃ := h∗(S) to p is s. Denote by T the image of S in
H 0(Pn,OPn (d + 1)), and let t̃ = h∗(T ). Then T is a form of degree d + 1 on
Pn , and since t̃ |p = 0, we can write T = x1G1 + · · · + xnGn , where the Gi are
forms of degree d. Our assumption implies that for every 1 ≤ i ≤ n, there is
s̃i ∈ H 0(P1, h∗TPn ) such that φ(s̃i )= h∗Gi . Then

φ(s̃− h∗(x1)s̃1− · · ·− h∗(xn)s̃n)= t̃ − h∗(x1G1)− · · ·− h∗(xnGn)= 0,

and therefore there is some r̃ ∈ H 0(P1, h∗(TX (1))) whose image is

s̃− h∗(x1)s̃1− · · ·− h∗(xn)s̃n.
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Since (s̃− h∗(x1)s̃1− · · ·− h∗(xn)s̃n)|p = s̃|p = s, we have r̃ |p = r .

(ii) There is a short exact sequence

0→ TX |C → TPn |C → OC(d)→ 0.

The fact that X is general implies that any section of OC(d)) which is the restriction
of a section of OPn (d) can be lifted to a section of TPn |C . Since the first cohomology
group of TPn |C vanishes, the result follows. �

Although for every e and n with e ≥ n+ 1≥ 4, there are smooth nondegenerate
rational curves of degree e in Pn which are not (e − n)-normal [Gruson et al.
1983, Theorem 3.1], a general smooth rational curve of degree e in a general
hypersurface of degree d has possibly a much smaller normality: if a maximal-rank
type conjecture holds for rational curves contained in general hypersurfaces (at
least when d < (n+ 1)/2), then it follows that if c is the smallest positive number
such that

(n+c
n

)
−
(n+c−d

n

)
≥ ce+ 1, a general smooth rational curve of degree e in

a general hypersurface of degree d in Pn is c-normal.
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Degeneracy of triality-symmetric
morphisms
Dave Anderson

We define a new symmetry for morphisms of vector bundles, called triality
symmetry, and compute Chern class formulas for the degeneracy loci of such
morphisms. In an appendix, we show how to canonically associate an octonion
algebra bundle to any rank-2 vector bundle.

1. Introduction

Let ϕ : E→ F be a morphism of vector bundles on a smooth variety X , of respective
ranks m and n. The r -th degeneracy locus of ϕ is the set of points of X defined by

Dr (ϕ)= {x ∈ X | rkϕ(x)≤ r},

where ϕ(x) : E(x) → F(x) is the corresponding linear map in the fibers over
x ∈ X . Such loci are ubiquitous in algebraic geometry: many interesting varieties,
from Veronese embeddings of projective spaces to Brill–Noether loci parametrizing
special divisors in Jacobians, can be realized as degeneracy loci for appropriate
maps of vector bundles. General geometric information about degeneracy loci is
therefore often useful. In particular, one can ask for Chern class formulas for the
cohomology class of Dr (ϕ) in H∗X — what is [Dr (ϕ)] as a polynomial in the
Chern classes of E and F?

When ϕ is sufficiently general, so Dr (ϕ) has expected codimension equal to
(m− r)(n− r), the answer is given by the Giambelli–Thom–Porteous determinan-
tal formula. In two cases of particular interest, Chern class formulas are known
for degeneracy loci where ϕ is not general in this sense. Taking F = E∗, one
has the dual morphism ϕ∗ : E∗∗ = E → E∗. Call ϕ symmetric if ϕ∗ = ϕ, and
skew-symmetric if ϕ∗ = −ϕ. The codimension of Dr (ϕ) is at most

(m−r+1
2

)
(in

the symmetric case) or
(m−r

2

)
(in the skew-symmetric case), so such morphisms

are never sufficiently general for the Giambelli–Thom–Porteous formula to apply.
Formulas for these loci were given by Harris and Tu [1984] and Józefiak, Lascoux
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MSC2010: primary 14M15; secondary 14F43, 14N15, 20G99, 17A75.
Keywords: degeneracy locus, triality, octonions, equivariant cohomology.
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and Pragacz [Józefiak et al. 1981]. As explained in [Fehér et al. 2005], these for-
mulas can also be found by computing the equivariant classes of appropriate orbit
closures in the GL(E)-representations Sym2 E∗ and

∧2 E∗, where E is a vector
space. See [Fulton and Pragacz 1998, Chapter 6] for more detailed discussions of
the formulas.

The primary goal of the present article is to give degeneracy locus formulas for
a new class of morphisms, which we call triality-symmetric morphisms. Letting E
be a rank-2 vector bundle, these are maps

ϕ : E→ End(E)⊕ E∗

possessing a certain symmetry related to the S3 symmetry of the D4 Dynkin dia-
gram. Specifically, we use the following definition:

Definition 1.1. Consider the canonical identification

Hom(E,End(E)⊕ E∗)= (E∗⊗ E∗⊗ E)⊕ (E∗⊗ E∗)

= (E∗⊗ E∗⊗ E∗⊗
∧2 E)⊕ (E∗⊗ E∗).

A morphism ϕ : E→End(E)⊕E∗ is triality-symmetric if the corresponding section
of Hom(E,End(E)⊕ E∗) lies in the subbundle

(Sym3 E∗⊗
∧2 E)⊕

∧2 E∗.

That is, ϕ = ϕ1⊕ϕ2, with ϕ1 defining a symmetric trilinear form Sym3 E→
∧2 E

and ϕ2 defining an alternating bilinear form
∧2 E→ OX .

We will sometimes write tSym(E∗) = (Sym3 E∗⊗
∧2 E)⊕

∧2 E∗ for the sub-
bundle of triality-symmetric morphisms.

A few words of motivation are in order concerning this definition. For simplicity,
consider the case where X is a point, and take vector spaces E and F of respective
dimensions m and n. The space of all linear maps Hom(E, F) is also the tangent
space to the Grassmannian Gr(m,m + n) = Gr(m, E ⊕ F) = GLm+n /P (for an
appropriate maximal parabolic subgroup P) at the point corresponding to E . When
F = E∗, there is a canonical symplectic form ω on E⊕E∗, defining the Lagrangian
Grassmannian LG(m, 2m)⊆ Gr(m, 2m), and the space of symmetric morphisms
Sym2 E∗ is naturally identified with the tangent space to LG(m, 2m) = Sp2m /P
at the point [E]. Moreover, LG(m, 2m) is the fixed locus for the involution of
Gr(m, 2m) which sends a subspace to its orthogonal complement under ω. The sit-
uation is similar for skew-symmetric morphisms, replacing the Lagrangian Grass-
mannian with the orthogonal Grassmannian OG(m, 2m)= SO2m /P .

From this point of view, it is natural to expect nice degeneracy locus formulas
corresponding to other finite symmetries of homogeneous spaces. A particularly
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interesting one is the triality action on OG(2, 8), which we identify as

OG(2, E ⊕End(E)⊕ E∗)

for a two-dimensional vector space E . A concise description of this S3 action may
be found in [Anderson 2009, Appendix B]; for more details, see [van der Blij and
Springer 1960; Garibaldi 1999]. For our purposes, the relevant facts are that the
fixed locus is the “G2 Grassmannian” G2/P (for P corresponding to the long root),
and the tangent space to G2/P is naturally identified with tSym(E∗) at the point
[E] ∈ G2/P ⊆ OG(2, 8). (In Section 3, we will explicitly exhibit the S3 action
on the tangent space T[E]OG(2, 8)∼=Hom(E,End(E))⊕

∧2 E∗ fixing tSym(E∗).)
Further motivation comes from the fact that there is a canonical octonion algebra
structure on E ⊕End(E)⊕ E∗, when E is a rank-2 vector bundle, just as there is a
canonical symplectic structure on E ⊕ E∗. This is the content of Proposition A.1.

Since E is required to have rank-2, a triality-symmetric morphism may have
rank 0, 1, or 2. Write Dr (ϕ)⊆ X for the locus of points where ϕ has rank at most
r . For a triality-symmetric morphism ϕ, define the expected codimension of Dr (ϕ)

to be 5, 3, or 0 if r = 0, r = 1, or r = 2, respectively. With this understood, we
may state our main theorem:

Theorem 1.2. Let c1, c2 be the Chern classes of E∗, and let x1, x2 be Chern roots.
Let ϕ : E→ End(E)⊕ E∗ be a triality-symmetric morphism. If Dr (ϕ) has expected
codimension and X is Cohen–Macaulay, then we have [Dr (ϕ)] = Pr (c1, c2) in
H∗X , where

P2 = 1,

P1 = 3 c2 c1 = 3x1x2(x1+ x2),

P0 = c2 c1 (9 c2− 2 c2
1)= x1x2(x1+ x2)(2x1− x2)(−x1+ 2x2).

A secondary goal of this article is to illustrate two points of view on degeneracy
loci. In this spirit, we will give two proofs of the main theorem, both involving the
simple Lie group of type G2, but using substantially different approaches. The first
relates degeneracy loci for triality-symmetric morphisms to certain Schubert loci in
a G2 flag bundle, just as Fulton’s generalization of the Harris–Tu formulas relates
symmetric morphisms to type C flag bundles [Fulton 1996]. One then applies the
formulas for G2 Schubert loci developed in [Anderson 2011] to derive the formulas
of Theorem 1.2.

The second proof uses equivariant cohomology in the spirit of [Fehér and Rimányi
2004; Fehér et al. 2005] (but see Remark 5.3). More precisely, when P is the
maximal parabolic subgroup of G2 which omits the long root and E is a two-
dimensional vector space, we consider (Sym3 E∗⊗

∧2 E)⊕
∧2 E∗ as a P-module

and compute the equivariant classes of the P-orbit closures in this vector space.



692 Dave Anderson

Certain of these orbit closures correspond to degeneracy loci, and one can deduce
Theorem 1.2 from the equivariant formulas. Along the way, we explicitly identify
the P-orbit closures in (Sym3 E∗⊗

∧2 E)⊕
∧2 E∗, and compute all their equivariant

classes (Proposition 5.1 and Theorem 5.2).
Triality symmetry is the G2 case of a general notion of symmetry for morphisms

of vector bundles. In fact, two types of symmetry for morphisms can be naturally
associated to any maximal parabolic subgroup P of a complex reductive group
G, as described in [Anderson 2009, Appendix C]. The “orbit” approach used in
the second proof of Theorem 1.2 generalizes to the following problem: Compute
the equivariant classes of P-orbit (or B-orbit) closures for the adjoint action on
g/p. Solutions to this problem account for many of the known degeneracy locus
formulas; see, for example, [Fehér and Rimányi 2003; Knutson and Miller 2005].

A related problem is to classify situations where there are finitely many orbits.
In the case of P acting on g/p, this problem was investigated by Popov and Röhrle
[1997], and such parabolic actions have been classified [Bürgstein and Hesselink
1987; Hille and Röhrle 1999; Jürgens and Röhrle 2002]. The classification of Borel
or Levi subgroup actions on g/p with finitely many orbits appears to be unknown.

We have endeavored to make our perspective on triality and G2 accessible to
general algebraic geometers, and in this spirit, the ingredients of the first proof of
Theorem 1.2 are spelled out quite explicitly. The second proof is more streamlined,
but requires a little more specialized background; we hope that the reader versed
in Lie theory will appreciate both points of view.

2. Preliminaries

All varieties are over C. We will write X for the base variety. If E is a vector
bundle on X , we write E(x) for the fiber over x ∈ X . We often suppress notation
for pullback of vector bundles.

2.1. Octonions. An octonion algebra over C is an 8-dimensional complex vector
space C , equipped with

• a nondegenerate quadratic norm N , and

• a bilinear multiplication with unit e, written u⊗ v 7→ uv,

such that N (uv)= N (u)N (v) for all u, v ∈ C . Recall that any quadratic norm N
corresponds to a symmetric bilinear form 〈 · , · 〉, by N (v)= 1

2〈v, v〉 and 〈u, v〉 =
N (u+ v)− N (u)− N (v), and a norm is called nondegenerate if the corresponding
bilinear form is nondegenerate.

Up to isomorphism, there is only one octonion algebra over C (or over any
algebraically closed field). The multiplication is only required to be bilinear, and
indeed it is neither commutative nor associative.
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The notion of an octonion algebra globalizes easily to octonion bundles, where
C is a rank-8 vector bundle on a variety X , the multiplication is a vector bundle map
C ⊗C→ C , and for simplicity we assume the norm takes values in OX . For more
on octonions and octonion bundles, see [Springer and Veldkamp 2000, Sections
1–2; Petersson 1993; Anderson 2009, Section 2].

The group of algebra automorphisms of an octonion algebra (that is, linear au-
tomorphisms preserving multiplication) is the simple complex Lie group of type
G2 [Springer and Veldkamp 2000, Section 2]; abusing notation, we will write G2

to denote this group.1

Let E be a rank-2 vector bundle on X . Then C = E ⊕ End(E)⊕ E∗ has a
canonical structure of an octonion bundle, which is described in Proposition A.1.
In the case where X is a point, so E is a 2-dimensional vector space, the same
formulas (1) and (2) define an octonion algebra. It will be convenient to use a
basis adapted to this construction. Let v1, v2 be a basis for E , with dual basis
v∗1 , v

∗

2 for E∗, and extend to a basis for C = E ⊕End(E)⊕ E∗ by setting

v3 = v
∗

2 ⊗ v1, v4 = v
∗

1 ⊗ v1, v5 = v
∗

2 ⊗ v2,

v6 = v
∗

1 ⊗ v2, v7 = v
∗

2 , v8 = v
∗

1 .
(1)

One checks that the identity element of C is e = v4+ v5.
With respect to this basis, the symmetric bilinear form 〈 · , · 〉 is given by

〈vp, v9−q〉 = −δpq , for {p, q} 6= {4, 5};

〈v4, v5〉 = 1.
(2)

Write V = e⊥ ⊂ C for the orthogonal complement of the identity element with
respect to 〈 · , · 〉. Thus V is defined by v∗4 + v

∗

5 = 0.
Let the torus T = (C∗)2 act on C in this basis via the matrix

diag(z1, z2, z1z−1
2 , 1, 1, z−1

1 z2, z−1
2 , z−1

1 ), (3)

with weights

{t1, t2, t1− t2, 0, 0, −t1+ t2, −t2, −t1}. (4)

This is induced from the standard action on E = span {v1, v2}. The algebra structure
of C is preserved by this action, so T ⊆ G2; in fact, T is a maximal torus.

2.2. Roots and weights. For general Lie-theoretic notions, we refer to [Humphreys
1975]; here we explain the relevant facts for type G2. Let G2 be the automorphism
group of an octonion algebra C , as above, so G2 is presented as a subgroup of

1In fact, one can show that u2
= 〈u, e〉u− N (u)e for any element u ∈ C , so any algebra automor-

phism also preserves the norm.
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GL(C)∼= GL8. Let T ⊂ B ⊂ G2 be a maximal torus and Borel subgroup, and let
t⊂ b⊂ g2 be the corresponding Lie algebras. Once a basis for C has been chosen
as in (1), we will always take T to be the torus acting as in (3), and we may take
B to be the intersection of the upper-triangular matrices in GL8 with the subgroup
G2. Write α1 and α2 for the two simple roots, with α2 the long root. In terms of
the weights t1, t2 of (4), we have

α1 = t1− t2, α2 =−t1+ 2 t2. (5)

The positive roots are α1, α2, α1+α2, 2α1+α2, 3α1+α2, 3α1+2α2; the negative
roots are −α, for α a positive root.

Let P ⊂ G2 be the standard maximal parabolic subgroup omitting the long root,
with Lie algebra p⊂ g2. Thus p= b⊕ g−α1 , where g−α1 ⊂ g2 is the weight space
for the negative root −α1.

The Weyl group is W = N (T )/T , where N (T ) is the normalizer of T in G2. It is
isomorphic to the dihedral group with 12 elements, and is generated by the simple
reflections s = sα1 and t = sα2 , and is defined by the relations s2

= t2
= (st)6 = 1.

There is an embedding W ↪→ S7 coming from the action of G2 on V ⊂ C given by

s 7→2 1 5 4 3 7 6,

t 7→1 3 2 4 6 5 7;

see [Anderson 2009, Section A.3]. We will sometimes treat elements of W as
permutations via this embedding.

2.3. Flag bundles and Schubert loci. We refer to [Anderson 2009; 2011] for
proofs of the following facts with more details. (There the term “γ -isotropic” is
used instead of “G2-isotropic” in reference to a trilinear form γ .)

Let C be an octonion algebra, and let V = e⊥ ⊂ C be as before. A subspace
E ⊆ C is called G2-isotropic if E ⊆ V and uv = 0 for all u, v ∈ E . A maximal
G2-isotropic subspace has dimension 2, and a G2-isotropic flag is a chain E1 ⊂

E2⊂ V (with dim Ei = i), where E2 is G2-isotropic. Such a flag can be canonically
extended to a complete flag E1 ⊂ E2 ⊂ E3 ⊂ · · · ⊂ E7 = V : When E1 ⊂ E2 is
G2-isotropic, with E1 spanned by a vector u, then Eu := {v ∈ V | uv = 0} is a
three-dimensional subspace containing E2. To get a complete flag, set E3 = Eu ,
and then take orthogonal complements with respect to the norm N for the rest, so
E4 = E⊥3 , etc. (See [Anderson 2011, Section 2.2] for this construction.)

The G2 flag variety FlG2 parametrizes all G2-isotropic flags in V ⊂ C . It is a
six-dimensional projective homogeneous space, isomorphic to G2/B for a Borel
subgroup B ⊂ G2. The G2 Grassmannian GrG2 parametrizes two-dimensional G2-
isotropic subspaces of V ; this is isomorphic to the five-dimensional homogeneous
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space G2/P . The construction of a complete G2-isotropic flag gives an embedding
FlG2 ↪→ Fl(C7)= SL7 /B.

For an octonion bundle C on X with its rank-7 subbundle V , there is an associ-
ated G2-isotropic flag bundle FlG2(V )→ X , as well as a G2-isotropic Grassmann
bundle GrG2(V )→ X . These are (étale-)locally trivial fiber bundles, with fibers
FlG2 and GrG2 , respectively. The flag bundle FlG2 comes with a tautological flag
of subbundles Ẽ• of V .

Given a complete G2-isotropic flag of subbundles F1 ⊂ F2 ⊂ · · · ⊂ F7 = V on
X , the Schubert loci in FlG2(V ) are defined by

�w(F•)= {x ∈ FlG2 | dim(Ẽ p(x)∩ Fq(x))≥ rw(q, p) for 1≤ p, q ≤ 7}, (6)

where for w ∈ W , rw(q, p) is #{i ≤ q |w(8− i) ≤ p}, and Ẽ• is the tautological
flag on FlG2 . Here we are using the embedding W ↪→ S7 discussed above.2 The
codimension of�w is the length of w, i.e., the least number of simple transpositions
needed to write w as a word in s and t .

If E• is a second G2-isotropic flag on X , it defines a section sE• : X→ FlG2 such
that s∗E• Ẽ• = E•. We define degeneracy loci in X as the scheme-theoretic inverse
images of Schubert loci:

�w(E•, F•)= s−1
E• �w(F•).

3. Triality symmetry

Triality symmetry is described in terms of coordinates as follows. Assume X is a
point, so E is a two-dimensional vector space. Choose a basis {v1, v2} for E , and
let {v3, . . . , v8} be a basis for End(E)⊕E∗ as in (1). Suppose ϕ : E→End(E)⊕E∗

is given by ϕ = ϕ1⊕ϕ2, with

ϕ1(v1)=

(
a1 b1

c1 d1

)
, ϕ1(v2)=

(
a2 b2

c2 d2

)
,

and ϕ2(v1)= z v∗2 , ϕ2(v2)=−z v∗1 . In terms of the chosen bases for E and End(E)⊕
E∗, ϕ has matrix At

ϕ , whose transpose is

Aϕ =

(
b1 a1 d1 c1 z 0
b2 a2 d2 c2 0 −z

)
. (7)

2This definition of rw differs slightly from that of [Anderson 2011]; there the assignment
(q, p) 7→ #{i ≤ q | w(i)≤ p} is called rw . The two are related by replacing w with ww◦, where w◦
is the longest element of W .
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Identify Hom(E,End(E))= E∗⊗ E∗⊗ E with E∗⊗ E∗⊗ E∗ by mapping

v∗i ⊗ v
∗

j ⊗ v1 7→ v∗i j2,

v∗i ⊗ v
∗

j ⊗ v2 7→ −v
∗

i j1,

where v∗i jk = v
∗

i ⊗ v
∗

j ⊗ v
∗

k for 1 ≤ i, j, k ≤ 2. (The sign appears because of the
canonical isomorphism E∗⊗ E∗⊗ E ∼= E∗⊗ E∗⊗ E∗⊗

∧2 E ; we are using v1∧v2

to identify E ∼= E∗ ⊗
∧2 E with E∗.) Thus ϕ is triality-symmetric if and only

if the corresponding coordinates of v∗i jk are invariant under permutations of the
indices. Explicitly, there is an S3-action on Hom(E,End(E))⊕

∧2 E∗ generated
by elements τ and σ whose action on matrices Aϕ is given by

τ

(
b1 a1 d1 c1 z 0
b2 a2 d2 c2 0 −z

)
=

(
−d2 −d1 c2 c1 z 0
b2 b1 −a2 −a1 0 −z

)

and σ

(
b1 a1 d1 c1 z 0
b2 a2 d2 c2 0 −z

)
=

(
a2 a1 c2 c1 z 0
b2 b1 d2 d1 0 −z

)
.

This means that the triality-symmetric maps are those whose (transposed) matrix
is of the form

Aϕ =

(
a −d d c z 0
b a −a d 0 −z

)
. (8)

Here a is also the coordinate of v∗122, b is the coordinate of v∗222, −c is the coordi-
nate of v∗111, and −d is the coordinate of v∗112. Note that the S3-invariants coincide
with the τ -invariants.

Remark 3.1. “Triality” usually refers to several phenomena related to the S3 sym-
metry of the D4 Dynkin diagram. It was first described by Cartan [1925]; see [Knus
et al. 1998] for a thorough discussion. The connection with our context can be ex-
plained briefly as follows. Automorphisms of the D4 Dynkin diagram correspond
to outer automorphisms of the simply connected group Spin8; these all fix a para-
bolic subgroup P , and therefore define automorphisms of Spin8 /P ∼=OG(2, 8) and
the tangent space TeP Spin8 /P . The tangent space can be identified with matrices
as in (7), and under this identification the automorphism group S3 acts as described
above.

4. Graphs

For any morphism ϕ : E→ F , let Eϕ ⊂ E ⊕ F be its graph, that is, the subbundle
whose fiber over x is Eϕ(x)= {(v, ϕ(v)) | v ∈ E(x)}. If ϕ : E→ E∗ is symmetric,
then its graph is isotropic for the canonical skew-symmetric form on E⊕E∗ defined
by (v1⊕ f1, v2⊕ f2)= f1(v2)− f2(v1). Thus one obtains a map to the Lagrangian
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bundle of isotropic flags in E ⊕ E∗, and formulas for the degeneracy loci of ϕ are
deduced from formulas for Schubert loci; see [Fulton 1996; Fulton and Pragacz
1998].

In this section, we consider morphisms ϕ : E → End(E)⊕ E∗. There is, by
Proposition A.1, a canonical octonion algebra structure on E ⊕End(E)⊕ E∗. We
give formulas for degeneracy loci of morphisms whose graphs are G2-isotropic
with respect to this structure. In general such morphisms are not triality-symmetric
(nor vice versa). For rank-1 maps, however, the two notions agree.

After a suitable change of coordinates (including a switch to opposite Schubert
cells), the parametrization of the open Schubert cell in G2/P given in [Anderson
2009, Section D.1] becomes

�̃◦ =

(
1 0 a −d d c z −X
0 1 b a −a d −Z −Y

)
, (9)

where X = −ac− d2, Y = z + ad − bc, and Z = −a2
− bd. Morphisms E →

End(E)⊕ E∗ with G2-isotropic graph are exactly those whose (transposed) matrix
has the form of the last six columns of (9).

Lemma 4.1. Suppose X is a point and ϕ : E→End(E)⊕E∗ is a triality-symmetric
map with matrix At

ϕ as in (8). Then the graph Eϕ is contained in V ⊂ C , and is
G2-isotropic if and only if

a2
+ bd = ac+ d2

= ad − bc = 0. (10)

Conversely, suppose ϕ : E→ End(E)⊕ E∗ has G2-isotropic graph as in (9). Then
ϕ is triality-symmetric if and only if the equations (10) hold.

Proof. This is a straightforward verification, using the basis {vi } as in (1). It is
clear that the row span of (9) is always in V ⊂ C since the fourth and fifth columns
add to zero. The condition that the row span be the graph Eϕ means X = Z = 0
and Y = z, which are precisely the equations (10). �

Corollary 4.2. Let ϕ : E → End(E)⊕ E∗ be a morphism of rank at most 1 such
that the component ϕ2 : E→ E∗ is zero. Then ϕ is triality-symmetric if and only
if Eϕ ⊂ C is G2-isotropic. (This holds scheme-theoretically, that is, the equations
locally defining these two subsets of Hom(E,End(E)) are the same.)

Proof. This is a local statement, so we may assume X is a point and compute in
coordinates. In this case, it follows from Lemma 4.1 by adding the equation z = 0.
(In fact, for a morphism with G2-isotropic graph, the rank condition is forced by
ϕ2 ≡ 0.) �
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Corollary 4.2 implies that the formulas of Theorem 1.2 (for triality-symmetric
morphisms) will agree with formulas for morphisms with G2-isotropic graphs. Be-
fore proceeding with the proof of Theorem 1.2, we will describe the connection
between triality-symmetry and G2-isotropic graphs more precisely.

Let GrG2 ⊆ Gr(2,C) be the G2-Grassmannian bundle on X , and let Gr◦ be
the open subset parametrizing subbundles of C = E ⊕ End(E)⊕ E∗ whose pro-
jection onto E is an isomorphism; locally on X , coordinates for Gr◦ are given
as in (9). Identifying a morphism E → End(E)⊕ E∗ with its graph, note that
Hom(E,End(E)⊕E∗) is identified with the corresponding open subset of Gr(2,C),
so Gr◦=GrG2∩Hom(E,End(E)⊕E∗) parametrizes morphisms with G2-isotropic
graph.

When X is a point, we have remarked that the space of triality-symmetric maps
tSym(E∗) is naturally isomorphic to the tangent space T[E]GrG2 . For general X ,
this globalizes to an identification of the vector bundle tSym(E∗) with the nor-
mal bundle NX/Gr = NX/Gr◦ , where X is embedded in Gr◦ ⊂ Gr by the section
corresponding to the subbundle E ⊂ C .

Now let D1 ⊆ tSym(E∗) be the locus of triality symmetric morphisms of rank
at most 1, and let �◦1 ⊂Gr◦ be the locus of morphisms with G2-isotropic graph of
rank at most 1 such that the component ϕ2 is zero. The next lemma identifies D1

with the normal cone to X in �◦1.

Lemma 4.3. Inside tSym(E∗)= NX/Gr◦ , we have D1 = CX�
◦

1.

Proof. This can be checked locally on X , so assume X is a point. Note that both
tSym(E∗) and Gr◦ are isomorphic to A5. By Corollary 4.2, D1 and �◦1 are defined
by the same equations, namely (10) together with z = 0; since these equations are
already homogeneous, we have that �◦1 is equal to its tangent cone at the origin. �

Corollary 4.4. Let ϕ be any triality-symmetric morphism and let ψ be any mor-
phism with G2-isotropic graph. Let sϕ : X→ tSym(E∗) and sψ : X→Gr◦ be the
sections determined by ϕ and ψ . Then s∗ϕ[D1] = s∗ψ [�1] in H∗X.

Proof. Let s0 be the zero section of tSym(E∗), and let sE be the section of Gr◦

corresponding to E ⊂ C . By Lemma 4.3 and the basic construction of intersection
theory (see [Fulton 1998, Section 6]), we have s∗0 [D1] = s∗E [�1]. On the other
hand, both tSym(E∗) and Gr◦ are affine bundles on X , so every section determines
the same pullback on cohomology. (In fact, Gr◦ is isomorphic to tSym(E∗), as
one sees from the parametrization in (9), although it is not a vector subbundle of
Hom(E,End(E)⊕ E∗).) �

Consequently, for morphisms ϕ and ψ as in Corollary 4.4, we have [D1(ϕ)] =

[D1(ψ)] whenever

s∗ϕ[D1] = [s−1
ϕ D1] and s∗ψ [�1] = [s−1

ψ �1]. (11)
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(Indeed, D1(ϕ)= s−1
ϕ D1 and D1(ψ)= s−1

ψ �1 by definition.) When X is Cohen–
Macaulay, so are D1 and �1; this can be seen directly from the equations, or by
using the fact that Schubert varieties are Cohen–Macaulay. The conditions (11)
are therefore equivalent to the condition that D1(ϕ) and D1(ψ) have expected
codimension in X , by [Fulton and Pragacz 1998, Lemma, p. 108].

First proof of Theorem 1.2. Let ϕ : E→ End(E)⊕ E∗ have G2-isotropic graph Eϕ .
Suppose E has a rank-1 subbundle, so Eϕ also does. (One can always arrange for
this, by passing to a P1-bundle if necessary.) Write E1 ⊂ E2 = E and F1 ⊂ F2 =

Eϕ , and extend these to complete G2-isotropic flags E• and F•. For w ∈ W , set
�w(ϕ)=�w(E•, F•). Since Eϕ ∼= E , the Chern classes are the same. Let−x1,−x2

be Chern roots of E , so x1, x2 are Chern roots of E∗. Then, by [Anderson 2011,
Theorem 2.4 and Section 2.5], we have

[�w(ϕ)] =Gw(x1, x2;−x1,−x2) (12)

in H∗X , where Gw(x1, x2; y1, y2) is the “G2 double Schubert polynomial” defined
in the same reference.

It remains to determine the w for which Dr (ϕ)=�w(ϕ). We have

Dr (ϕ)= {x ∈ X | dim(E(x)∩ Eϕ(x))≥ 2− r},

and it is easy to check that

D2(ϕ)=�id(ϕ)= X, D1(ϕ)=�tst(ϕ), and D0(ϕ)=�tstst(ϕ). (13)

Indeed, the element tst ∈ W corresponds to the permutation 3 6 1 4 7 2 5 (see
[Anderson 2011, Section A.3]), so the condition defining �tst is dim(E2 ∩ F2)≥

rtst(2, 2) = 1. The other two identities are clear. This also justifies our defini-
tion of expected codimension for triality-symmetric degeneracy loci: the expected
codimension of Dr (ϕ) is the length of the corresponding element of W .

Specializing the polynomials Gw given in [Anderson 2009, Section D.2] for
these three w, we obtain the desired formulas for Pr . �

Remark 4.5. The twelve polynomials Gw(x1, x2;−x1,−x2) become the equivari-
ant localizations of Schubert classes in G2/B at the point eB after the substitution
xi =−ti ; see [Anderson 2009, Section D.3].

Remark 4.6. We defined the scheme structure on D1(ϕ) for a triality-symmetric
morphism by taking the equations (10) together with z = 0. In fact, the ideal
generated by 2× 2 minors of the matrix (8) is the same as the one generated by
minors of (9), but this ideal is not radical. (It is generated by (10) together with
az, bz, cz, dz, z2.) The requirement ϕ2 ≡ 0 for rank-1 maps is transparent on the
triality-symmetric side; for G2-isotropic graphs, the scheme structure is defined by
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pullback from the Schubert locus �tst , and one sees ϕ2 ≡ 0 from a parametrization
of Schubert cells [Anderson 2009, Section D.1].

5. Orbits

Another approach to the computation of triality-symmetric degeneracy loci is as
follows. Inside the vector bundle(

Sym3 E∗⊗
∧2 E

)
⊕
∧2 E∗ ⊂ Hom

(
E,End(E)⊕ E∗

)
,

there is a locus Dr consisting of morphisms of rank at most r . By definition, a
triality-symmetric morphism ϕ defines a section sϕ of

(
Sym3 E∗⊗

∧2 E
)
⊕
∧2 E∗,

and Dr (ϕ)= s−1
ϕ Dr is the scheme-theoretic preimage.

It suffices to solve this problem on the classifying space for the vector bundle E
(or on algebraic approximations thereof), so let X = BGL2.3 Replace E with the
standard representation of GL2, and write

U =
(
Sym3 E∗⊗

∧2 E
)
⊕
∧2 E∗.

The relevant vector bundle on BGL2 is U ×GL2 EGL2, where EGL2→ BGL2 is the
universal principal GL2-bundle. Letting Dr ⊆U ⊂ Hom(E,End(E)⊕ E∗) be the
locus of maps of rank at most r , we have

Dr = Dr ×
GL2 EGL2 ⊆U ×GL2 EGL2 .

Therefore [Dr ] = [Dr ]
GL2 in H∗(U ×GL2 EGL2) = H∗GL2

(U ), and the problem
becomes a computation in the equivariant cohomology of the vector space U .

Moreover, as we shall see below, Dr is an orbit closure for the action of GL2 on
U . In fact, we will use a larger group action. As discussed in Section 1, U may be
identified with the tangent space

T[E]G2/P ∼= g2/p,

so P acts on U via the adjoint action on g2/p. Let P = L · Pu be the Levi decompo-
sition, with Pu the unipotent radical and L a Levi subgroup. We will be interested
in P-orbit closures in g2/p.

First observe that L is isomorphic to GL2. Here is one way to see this. Since E
defines a point in G2/P , the parabolic P may be identified with the subgroup of G2

stabilizing E . Every linear automorphism of E induces an algebra automorphism
of C = E ⊕ End(E)⊕ E∗; therefore GL(E) ∼= GL2 is a (reductive) subgroup of
P , and we have GL(E)⊆ L . On the other hand, L is connected (since P is) and
four-dimensional (by the root decomposition), so this inclusion must be an equality.

3Topologically, we may assume E is pulled back from the tautological bundle on Gr(2, n), for
n� 0, so one can take a Grassmannian for an approximation to BGL2.
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The L-action on g2/p is identified with the natural GL2-action on U : as an
L-module, we have

g2/p∼=
(
Sym3 E∗⊗

∧2 E
)
⊕
∧2 E∗,

where E ∼=C2 is the standard representation of L ∼=GL2 (with weights t1= 2α1+α2

and t2 = α1+α2). As a P-module, g2/p is indecomposable, but there is an exact
sequence

0→ Sym3 E∗⊗
∧2 E→ g2/p→

∧2 E∗→ 0.

These identifications of L- and P-modules follow directly from the weight decom-
position of g2/p: the T -weights are

−α2, −α1−α2, −2α1−α2, −3α1−α2, −3α1− 2α2. (14)

As a first step to computing the classes of P-orbits in H∗T (g/p), we give explicit
descriptions of these orbits.

By the classification given in [Jürgens and Röhrle 2002], there are finitely many
P-orbits on g/p. In fact, there are five orbits. To describe them, let

U ′ = Sym3 E∗⊗
∧2 E ⊂U = g2/p.

Let b, a, d, c be coordinates on U ′ with weights−α2,−α1−α2,−2α1−α2,−3α1−

α2, respectively. The five orbits are Oc, with c = 0, 1, 2, 3, 5 giving the codimen-
sion; their closures are nested and described by the following proposition:

Proposition 5.1. The P-orbit closures in U = g2/p are as follows:

• O0 =U.

• O1 =U ′.

• O2 is the discriminant locus in U ′ defined by the vanishing of the quartic
polynomial a2d2

+ 4a3c+ 4bd3
− 27b2c2

+ 18abcd.

• O3 is the (affine) cone over the twisted cubic curve in P3
= PU ′ defined by

the condition that the matrix (
a −d c
b a d

)
have rank 1.

• O5 = O5 = {0}.

The proof is straightforward, using the orbit classification of [Bürgstein and
Hesselink 1987, Table 2]. See [Anderson 2009, Section 5.2] for details. Each
of these orbit closures is Cohen–Macaulay, as may be checked easily from the
equations.
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From the description in terms of cubic polynomials, it is easy to find represen-
tatives for orbits in U ′. Here we give representatives as weight vectors in g/p. Let
Yα ∈ g2/p be a weight vector for α. We have

O0 = P · Y−3α1−2α2 =U r U ′,

O1 = P · (Y−3α1−α2 + Y−α2)
∼= P/Pu ∼= GL2,

O2 = P · Y−α1−α2,

O3 = P · Y−α2,

O5 = {0}.

Using Proposition 5.1, it is a simple matter to compute the equivariant classes.

Theorem 5.2. In H∗T (U )= Z[α1, α2] = Z[t1, t2], we have

[O0] = 1,

[O1] = −3α1− 2α2 =−t1− t2,

[O2] = 2(−3α1− 2α2)
2
= 2(t1+ t2)2,

[O3] = −3(α1+α2)(2α1+α2)(3α1+ 2α2)

=−3t1t2(t1+ t2),

[O5] = −α2(α1+α2)(2α1+α2)(3α1+α2)(3α1+ 2α2)

= t1t2(t1+ t2)(2t1− t2)(t1− 2t2).

Proof. The normal space to U ′= O1⊂U has weight−3α1−2α2, so the formula for
[O1] is clear. Since the restriction H∗T (U )→ H∗T (U

′) is an isomorphism, the Gysin
pushforward H∗T (U

′)→ H∗T (U ) is multiplication by [U ′]. Therefore it suffices
to compute the remaining classes in H∗T (U

′). The locus O2 is a hypersurface
in U ′ defined by an equation of weight −6α1 − 4α2, so its class in H∗T (U ) is
(−6α1−4α2)·[U ′]. The class of [O3] in H∗T (U

′) is found by the classical Giambelli
(or Salmon–Roberts) formula; see for example [Fulton and Pragacz 1998, Section
1.1]. Finally, the class of the origin is the product of all the T -weights on U . �

Remark 5.3. These classes cannot be computed using the “restriction equation”
method of Fehér and Rimányi [2004] because the stabilizer of O1 = P/Pu is uni-
potent. This means the restriction map H∗P(U )→ H∗P(O1) ∼= H∗Pu

(pt) = H∗(pt)
is zero in positive degrees, and all the restriction equations are of the form 0= 0.
The problem persists for the other orbits.

Lemma 5.4. The orbit O3 ⊂ g/p⊂ Hom(E,End(E)⊕ E∗) consists of the triality-
symmetric morphisms of rank 1.
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Proof. Any rank-1 map ϕ must correspond to an element ϕ1⊕ϕ2 ∈U =U ′⊕
∧2 E∗

with ϕ2 = 0, that is, ϕ lies in U ′. (If ϕ2 6= 0, then ϕ surjects onto E∗.)
The action of P on U ′ is the same as that of its Levi subgroup GL2. Let P2̂⊂GL8

be the parabolic which stabilizes E . The inclusion P ↪→ P2̂ ⊂ GL8 induces an
inclusion of Levi subgroups GL2 = GL2×1 ↪→ GL2×GL6, and the latter group
acts on Hom(E,End(E)⊕ E∗) by left-right matrix multiplication,4 so it preserves
ranks of morphisms. Therefore it will suffice to check that a representative for O2

has rank 2, and a representative from O3 has rank 1.
For these, we use the coordinate description given in Section 3. Under the identi-

fication of U ′ with the space of cubic polynomials, the monomial xy2 corresponds
to the basis vector v∗122. The orbit is O2 (since xy2 has two distinct zeroes), and
the corresponding matrix Aϕ has b = c = d = 0 and a 6= 0; it is easy to see this
means ϕ has rank 2. Similarly, x3 corresponds to v∗111, and the corresponding Aϕ
has a = b = d = 0 and c 6= 0, so ϕ has rank 1. �

The formulas of Theorem 1.2 now follow from those of Theorem 5.2.

Second proof of Theorem 1.2. Let f : X → BGL2 be the map defined (up to
homotopy) by the given vector bundle E on X . The corresponding map

f ∗ : H∗ BGL2 = H∗GL2
(pt)= Z[c1, c2] → H∗X

is given by ci 7→ ci (E)= (−1)i ci (E∗). Equivalently, using the inclusion H∗GL2
(pt)⊂

H∗T (pt)= Z[t1, t2] and Chern roots x1, x2 for E∗, the map is given by ti 7→ −xi .
Using Lemma 5.4, we have f −1O3 = D1(ϕ), so by [Fulton and Pragacz 1998,

p. 108] and the fact that O3 is Cohen–Macaulay, we obtain f ∗[O3] = [D1(ϕ)]

when D1(ϕ) has expected codimension. �

Remark 5.5. The proof of Theorem 1.2 given in Section 4 works verbatim for
Chow cohomology. The proof in this section also works, though to apply equivari-
ant techniques, one needs to take extra care to ensure that the bundle E is pulled
back from an algebraic approximation to the classifying space. To achieve this,
one can replace X with an appropriate composition of an affine bundle and a Chow
envelope; see [Graham 1997, p. 486] for the argument.

Appendix: Octonion bundles

There is a G2 analogue of the well-known fact that for any vector bundle E , the
direct sum E ⊕ E∗ carries canonical symplectic (type C) and symmetric (type D)
forms; see for example [Fulton and Pragacz 1998, p. 71]. The intrinsic construction

4Identifying Hom(E,End(E)⊕ E∗) with 6× 2 matrices, the action is by (g, h) · A = h Ag−1.
This is the action induced by restricting the conjugation action of GL8 on 8× 8 matrices when the
subspace of 6× 2 matrices is placed in the lower-left corner.
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presented here seems to appear first in [Landsberg and Manivel 2006, p. 151]; it is
closely related to the Cayley–Dickson doubling construction [Petersson 1993].

We fix some notation. For any vector bundle E , let

Tr : End(E)= E∗⊗ E→ OX

be the canonical contraction map, and let

End0(E)= ker(Tr)⊂ End(E)

be the subbundle of trace-zero endomorphisms. Let e : OX → End(E) be the
identity section. Thus the composition Tr ◦ e : OX → OX is multiplication by rk(E).
Also, when E has rank 2, the conjugation map End(E)→ End(E) is given by
e ◦Tr− id. (Here id is the identity morphism, as opposed to the identity section e.)
Conjugation is an involution; locally, it is ξ 7→ ξ := Tr(ξ)e− ξ .

The norm on an octonion bundle C corresponds to a nondegenerate symmetric
bilinear form 〈 · , · 〉. Let V ⊂ C be the orthogonal complement to the identity
subbundle defined by e. A subbundle E ⊂ C is G2-isotropic if it is contained in V
and the multiplication map E ⊗ E→ C is the zero map.

Proposition A.1 (cf. [Landsberg and Manivel 2006, p. 151]). Let E be a rank-2
vector bundle on a variety X. Then C = E⊕End(E)⊕E∗ has a canonical octonion
bundle structure with identity section e : OX → End(E)⊂ C. The subbundle E =
E ⊕ 0⊕ 0⊂ C is G2-isotropic.

More specifically, there is a quadratic norm N : C→ OX and bilinear multipli-
cation m : C⊗C→ C for C = E⊕End(E)⊕ E∗ which are compatible. The norm
corresponds to the bilinear form 〈 · , · 〉 defined by

〈x ⊕ ξ ⊕ f, y⊕ η⊕ g〉 = Tr(ξ)Tr(η)−Tr(ξη)− f (y)− g(x). (1)

The multiplication is given by

(x ⊕ ξ ⊕ f ) · (y⊕ η⊕ g)= (ηx + ξ y)⊕ (g⊗ x + ξη+ f ⊗ y)⊕ (gξ + f η). (2)

One only needs to verify compatibility of the norm with multiplication; see
[Anderson 2009, Section 2.4] for details.
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Multi-Frey Q-curves and the
Diophantine equation a2 + b6 = cn

Michael A. Bennett and Imin Chen

We show that the equation a2
+b6
=cn has no nontrivial positive integer solutions

with (a, b) = 1 via a combination of techniques based upon the modularity of
Galois representations attached to certain Q-curves, corresponding surjectivity
results of Ellenberg for these representations, and extensions of multi-Frey curve
arguments of Siksek.

1. Introduction

Following the proof of Fermat’s last theorem [Wiles 1995], there has developed an
extensive literature on connections between the arithmetic of modular abelian vari-
eties and classical Diophantine problems, much of it devoted to solving generalized
Fermat equations of the shape

a p
+ bq
= cr ,

1
p
+

1
q
+

1
r
< 1, (1)

in coprime integers a, b, and c, and positive integers p, q, and r . That the number
of such solutions (a, b, c) is finite, for a fixed triple (p, q, r), is a consequence
of [Darmon and Granville 1995]. It has been conjectured that there are in fact
at most finitely many such solutions, even when we allow the triples (p, q, r) to
vary, provided we count solutions corresponding to 1p

+23
= 32 only once. Being

extremely optimistic, one might even believe that the known solutions constitute a
complete list, namely (a, b, c, p, q, r) corresponding to 1p

+ 23
= 32, for p ≥ 7,

and to nine other identities (see [Darmon and Granville 1995; Beukers 1998]):

25
+ 72
= 34, 73

+ 132
= 29, 27

+ 173
= 712, 35

+ 114
= 1222,

177
+762713

=210639282, 14143
+22134592

=657, 92623
+153122832

=1137,

438
+ 962223

= 300429072, and 338
+ 15490342

= 156133.

Research supported by NSERC.
MSC2010: primary 11D41; secondary 11D61, 11G05, 14G05.
Keywords: Fermat equations, Galois representations, Q-curves, multi-Frey techniques.
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(For brevity, we omit listing the solutions which differ only by sign changes and
permutation of coordinates: for instance, if p is even, (−1)p

+ 23
= 32, etc.)

Since all known solutions have min{p, q, r} < 3, a closely related formulation
is that there are no nontrivial solutions in coprime integers once min{p, q, r} ≥ 3.

There are a variety of names associated to the above conjectures, including,
alphabetically, Beal (see [Mauldin 1997]), Darmon and Granville [1995], van der
Poorten, Tijdeman, and Zagier (see, for example, [Beukers 1998; Tijdeman 1989]),
and apparently financial rewards have even been offered for their resolution, posi-
tive or negative.

Techniques based upon the modularity of Galois representations associated to
putative solutions of (1) have, in many cases, provided a fruitful approach to these
problems, though the limitations of such methods are still unclear. Each situa-
tion where finiteness results have been established for infinite families of triples
(p, q, r) has followed along these lines. We summarize the results to date; in each
case, no solutions outside those mentioned above have been discovered:

(p,q,r) Reference(s)

(n,n,n), n ≥ 3 [Wiles 1995; Taylor and Wiles 1995]
(n,n,2), n ≥ 4 [Darmon and Merel 1997; Poonen 1998]
(n,n,3), n ≥ 3 [Darmon and Merel 1997; Poonen 1998]
(2n,2n,5), n ≥ 2 [Bennett 2006]
(2,4,n), n ≥ 4 [Bruin 1999; Ellenberg 2004; Bennett et al. 2010]
(2,n,4), n ≥ 4 Immediate from [Bruin 2003; Bennett and Skinner 2004]
(2,2n,k), n ≥ 2,

k ∈ {9,10,15}
[Bennett et al. ≥ 2012]

(4,2n,3), n ≥ 2 [Bennett et al. ≥ 2012]
(2,n,6), n ≥ 3 [Bennett et al. ≥ 2012]
(3,3,n), n ≥ 3∗ [Kraus 1998; Bruin 2000; Dahmen 2008;

Chen and Siksek 2009]
(3 j,3k,n),

j,k,n ≥ 2
[Kraus 1998]

(3,3,2n), n ≥ 2 [Bennett et al. ≥ 2012]
(3,6,n), n ≥ 2 [Bennett et al. ≥ 2012]
(2,2n,3), n ≥ 3∗ [Bruin 1999; Chen 2008; Dahmen 2008; 2011; Siksek 2008]
(2,2n,5), n ≥ 3∗ [Chen 2010]
(2,3,n),

6≤ n ≤ 10
[Bruin 1999; 2003; 2005; Poonen et al. 2007; Siksek 2010;

Brown 2012]

The (∗) here indicates that the result has been proven for a family of exponents of
natural density one (but that there remain infinitely many cases of positive Dirichlet
density untreated).
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In this paper, we will prove the following theorem.

Theorem 1. Let n ≥ 3 be an integer. Then the equation

a2
+ b6
= cn (2)

has no solutions in positive integers a, b, and c, with a and b coprime.

Our motivations for considering this problem are two-fold. Firstly, the exponents
(2, 6, n) provide one of the final examples of an exponent family for which there
is known to exist a corresponding family of Frey–Hellegouarch elliptic Q-curves.
A remarkable program for attacking the generalized Fermat equation of signa-
ture (n, n,m) (and perhaps others) is outlined in [Darmon 2000], relying upon the
construction of Frey–Hellegouarch abelian varieties. Currently, however, it does
not appear that the corresponding technology is suitably advanced to allow the
application of such arguments to completely solve families of such equations for
fixed m ≥ 5.

In some sense, the signatures (2, 6, n) and (2, n, 6) (the latter equations are
treated in [Bennett et al. ≥ 2012]) represent the final remaining families of gen-
eralized Fermat equations approachable by current techniques. More specifically,
as discussed in [Darmon and Granville 1995], associated to a generalized Fermat
equation x p

+ yq
= zr is a triangle Fuchsian group with signature (1/p, 1/q, 1/r).

A reasonable precondition to applying the modular method using rational elliptic
curves or Q-curves is that this triangle group be commensurable with the full mod-
ular group. Such a classification has been performed in [Takeuchi 1977], where
it is shown that the possible signatures containing ∞ are (2, 3,∞), (2, 4,∞),
(2, 6,∞), (2,∞,∞), (3, 3,∞), (3,∞,∞), (4, 4,∞), (6, 6,∞), (∞,∞,∞). A
related classification of Frey representations for prime exponents can be found in
[Darmon and Granville 1995; Darmon 2000]. The above list does not, admittedly,
explain all the possible families of generalized Fermat equations that have been
amenable to the modular method. In all other known cases, however, the Frey
curve utilized is derived from a descent step to one of the above “pure” Frey curve
families. Concerning the applicability of using certain families of Q-curves, see
the conclusions section of [Chen 2010] for further remarks.

Our secondary motivation is as an illustration of the utility of the multi-Frey
techniques of S. Siksek (see [Bugeaud et al. 2008a; 2008b]). A fundamental dif-
ference between the case of signature (2, 4, n) considered in [Ellenberg 2004] and
that of (2, 6, n) is the existence, in this latter situation, of a potential obstruction to
our arguments in the guise of a particular modular form without complex multipli-
cation. To eliminate the possibility of a solution to the equation x2

+y6
= zn arising

from this form requires fundamentally new techniques, based upon a generalization
of the multi-Frey technique to Q-curves (rather than just curves over Q).
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The computations in this paper were performed in MAGMA [Bosma et al. 1997].
The programs, data, and output files are posted in this paper’s Electronic Supple-
ment and at http://people.math.sfu.ca/ ichen/firstb3i-data. Throughout the text, we
have included specific references to the MAGMA code employed, indicated as
sample.txt .

2. Review of Q-curves and their attached Galois representations

The exposition of Q-curves and their attached Galois representations we provide in
this section closely follows that of [Ribet 1992; Quer 2000; Ellenberg and Skinner
2001; Chen 2012]; we include it in the interest of keeping our exposition reasonably
self-contained.

Let K be a number field and C/K be a non-CM elliptic curve such that there is
an isogeny µ(σ) : σC→C defined over K for each σ ∈ GQ. Such a curve C/K is
called a Q-curve defined over K . Let φ̂C,p :G K →GL2(Zp) be the representation
of G K on the Tate module V̂p(C). One can attach a representation

ρ̂C,β,p : GQ→Q∗p GL2(Qp)

to C such that Pρ̂C,β,p|G K
∼= Pφ̂C,p. The representation depends on the choice of

splitting map β (in what follows, we will provide more details of this choice).
Let π be a prime above p of the field Mβ generated by the values of β. In
practice, the representation ρ̂C,β,π is constructed in a way so that its image lies
in M∗β,π GL2(Qp), and we choose to use the notation ρ̂C,β,p = ρ̂C,β,π to indicate
the choice of π in this explicit construction.

Let

cC(σ, τ )= µC(σ )
σµC(τ )µC(στ)

−1
∈ (HomK (C,C)⊗Z Q)∗ =Q∗,

where µ−1
C := (1/ degµC)µ

′

C and µ′C is the dual of µC . Then cC(σ, τ ) determines
a class in H 2(GQ,Q∗) which depends only on the Q-isogeny class of C . The class
cC(σ, τ ) factors through H 2(G K/Q,Q∗), depending now only on the K -isogeny
class of C . Alternatively,

cC(σ, τ )= α(σ)
σα(τ)α(στ)−1

arises from a class α ∈ H 1(GQ,Q∗/Q∗) through the map

H 1(GQ,Q∗/Q∗)→ H 2(GQ,Q∗),

resulting from the short exact sequence

1→Q∗→Q∗→Q∗/Q∗→ 1.

Explicitly, α(σ) is defined by σ ∗(ωC)= α(σ)ωC .

http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
http://people.math.sfu.ca/~ichen/firstb3i-data
http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
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Tate showed that H 2(GQ,Q∗) is trivial where the action of GQ on Q∗ is trivial.
Thus, there is a continuous map β : GQ→Q∗ such that

cC(σ, τ )= β(σ)β(τ)β(στ)
−1

as cocycles, and we call β a splitting map for cC . We define

ρ̂C,β,π (σ )(1⊗ x)= β(σ)−1
⊗µC(σ )(σ (x)).

Given a splitting cC(σ, τ ) = β(σ)β(τ)β(στ)
−1, Ribet attaches an abelian variety

Aβ defined over Q, of GL2-type and having C as a simple factor over Q.
In practice, what we do in this paper is find a continuous β : GQ → Q∗, fac-

toring over an extension of low degree, such that cC(σ, τ )= β(σ)β(τ)β(στ)
−1 as

elements in H 2(GQ,Q∗), using results in [Quer 2000]. Then we choose a suitable
twist Cβ/Kβ of C , where Kβ is the splitting field of β, such that cCβ (σ, τ ) is exactly
the cocycle cβ(σ, τ )= β(σ)β(τ)β(στ)−1. In this situation, the abelian variety Aβ
is constructed as a quotient over Q of ResKβ

Q Cβ .
The endomorphism algebra of Aβ is given by Mβ = Q({β(σ)}) and the repre-

sentation on the πn-torsion points of Aβ coincides with the representation ρ̂C,β,π

defined earlier.
Let ε : GQ→Q∗ be defined by

ε(σ )= β(σ)2/ degµ(σ). (3)

Then ε is a character and

det ρ̂C,β,π = ε
−1
·χp, (4)

where χp : GQ→ Z∗p is the p-th cyclotomic character.

3. Q-curves attached to a2 + b6 = cp and their Galois representations

Let (a, b, c) ∈ Z3 be a solution to a2
+ b6

= cp where we suppose that p is a
prime. We call (a, b, c) proper if gcd(a, b, c) = 1 and trivial if |c| = 1. Note
that a solution (a, b, c) ∈ Z3 is proper if and only if the integers a, b, and c are
pairwise coprime. In what follows, we will always assume that the triple (a, b, c)
is a proper, nontrivial solution. We consider the following associated (Frey or
Frey–Hellegouarch) elliptic curve:

E : Y 2
= X3

− 3(5b3
+ 4ai)bX + 2(11b6

+ 14ib3a− 2a2),

with j-invariant

j = 432i
b3(4a− 5ib3)3

(a− ib3)(a+ ib3)3
(5)

and discriminant 1=−28
· 33
· (a− ib3) · (a+ ib3)3.
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Lemma 2. Suppose a/b3
∈ P1(Q). Then the j-invariant of E does not lie in Q

except when

• a/b3
= 0 and j = 54000, or

• a/b3
=∞ and j = 0.

Proof. This can be seen by solving the polynomial equation in Q[i][ j, a/b3
] de-

rived from (5) by clearing the denominators and collecting terms with respect to
{1, i}, using the restriction that j, a/b3

∈ P1(Q). �

Corollary 3. E does not have complex multiplication unless

• a/b3
= 0, j = 54000, and d(O)=−12, or

• a/b3
=∞, j = 0, and d(O)=−3.

Proof. If E has complex multiplication by an order O in an imaginary quadratic
field, then j (E) has a real conjugate over Q (for instance, arising from j (E0),
where E0 is the elliptic curve associated to the lattice O itself). Hence, j (E) ∈ Q

in fact. For a list of the j-invariants of elliptic curves with complex multiplication
by an order of class number 1, see, for instance, [Cox 1989, p. 261]. �

Lemma 4. If (a, b, c) ∈ Z3 with gcd(a, b, c) = 1 and a2
+ b6

= cp, then either
c = 1 or c is divisible by a prime not equal to 2 or 3.

Proof. The condition gcd(a, b, c)= 1 together with inspection of a2
+ b6 modulo

3 shows that c is never divisible by 3. Similar reasoning allows us to conclude,
since p > 1, that c is necessarily odd, whereby the lemma follows. �

From here on, let us suppose that E arises from a nontrivial proper solution to
a2
+b6
= cp where p is an odd prime. Note that ab is even and, from the preceding

discussion, that a− b3i and a+ b3i are coprime p-th powers in Z[i].
The elliptic curve E is defined over Q(i). Its conjugate over Q(i) is 3-isogenous

to E over Q(
√

3, i); see isogeny.txt . This is in contrast to the situation in [Ellen-
berg 2004], where the corresponding isogeny is defined over Q(i). We make a
choice of isogenies µ(σ) : σE→ E such that µ(σ)= 1 for σ ∈ GQ(i) and µ(σ) is
the 3-isogeny above when σ /∈ GQ(i).

Let d(σ ) denote the degree of µ(σ). We have d(GQ)= {1, 3} ⊆Q∗/Q∗2. The
fixed field Kd of the kernel of d(σ ) is Q(i) and so (a, d)= (−1, 3) is a dual basis
in the terminology of [Quer 2000]. The quaternion algebra (−1, 3) is ramified at
2, 3 and so a choice of splitting character for cE(σ, τ ) is given by ε = ε2ε3 where
ε2 is the nontrivial character of Z/4Z× and ε3 is the nontrivial character of Z/3Z×.
The fixed field of ε is Kε =Q(

√
3).

Let GQ(i)/Q = {σ1, σ−1}. We have that

α(σ1)= 1 and α(σ−1)= i
√

3.

http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
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This can be checked by noting that the quotient of E by the 3-torsion point of E
using Vélu multiplies the invariant differential by 1. The resulting quotient elliptic
curve is then a twist over Q(

√
3, i) of the original E . This twisting multiplies the

invariant differential by i
√

3.
So now we can express cE(σ, τ )=α(σ)

σα(τ)α(στ)−1. Let β(σ)=
√
ε(σ)
√

d(σ)
and cβ(σ, τ )=β(σ)β(τ)β(στ)−1

∈H 2(GQ,Q∗). We know from [Quer 2000] that
cβ(σ, τ ) and cE(σ, τ ) represent the same class in H 2(GQ,Q∗). The fixed field of
β is Kβ = Kε · Kd =Q(

√
3, i) and Mβ =Q(

√
3, i).

Our goal is to find a γ ∈Q∗ such that cβ(σ, τ )= α1(σ )
σα1(τ )α1(στ)

−1, where
α1(σ )=α(σ)

σ(
√
γ )/
√
γ . Using a similar technique as for the equation a2

+b2p
=

c5 (compare [Chen 2010], where the corresponding Kβ is cyclic quartic), we can
narrow down the possibilities for choices of γ and subsequently verify that a par-
ticular choice actually works.

In more detail, recall that Kβ = Q(
√

3, i) = Q(z), where z = (i +
√

3)/2 is a
primitive twelfth root of unity. Let GQ(

√
3,i)/Q={σ1, σ−1, σ3, σ−3} and assume that

α1(σ−3)
2/α(σ−3)

2
= α1(σ−3)

2/− 3 is a unit, say 1. This implies that σ−3γ /γ = 1,
whereby γ ∈Q(

√
−3). Furthermore, let us assume that σ−1γ /γ is a square in Kβ of

a unit in Q(
√
−3), say z2 (the other choices produce isomorphic twists). Solving

for γ , we obtain that γ = (−3+ i
√

3)/2 is one possible choice.
The resulting values of α2(σ )= α(σ)

√
σγ /γ are

α2(σ1)= 1, α2(σ−1)= i
√

3z, α2(σ3)= z, and α2(σ−3)= i
√

3,

where we have fixed a choice of square root for each σ ∈ G K/Q. It can be verified
that cβ(σ, τ )= α2(σ )

σα2(τ )α2(στ)
−1.

Consider the twist Eβ of E given by the equation

Eβ : Y 2
= X3

− 3(5b3
+ 4ai)bγ 2 X + 2(11b6

+ 14ib3a− 2a2)γ 3. (6)

From the relationship between Eβ and E , the initial µ(σ)’s for E give rise to
choices for µβ(σ ) for Eβ which are, in general, locally constant on a smaller
subgroup than G K . For these choices of µβ(σ ) we have

αEβ (σ )= α1(σ )= α(σ)
σ
(
√
γ )/
√
γ .

Now,
√
σγ /γ = ξ(σ )δ(σ ) where δ(σ ) = σ(

√
γ )/
√
γ and ξ(σ ) = ±1. Since

δ(σ )σδ(τ )δ(στ)−1
= 1, it follows that cEβ (σ, τ ) = cβ(σ, τ )ξ(σ )ξ(τ )ξ(στ)−1.

Hence, by using the alternate set of isogenies µ′β(σ ) = µβ(σ )ξ(σ ), which are
now locally constant on G K , the corresponding αEβ (σ ) = α(σ)

√
σγ /γ = α2(σ ),

and hence cEβ (σ, τ ) = α2(σ )
σα2(τ )α2(στ)

−1
= cβ(σ, τ ) as cocycles, not just as

classes in H 2(G K/Q,Q∗). The elliptic curve Eβ/Kβ is a Q-curve defined over
Kβ ; see isogenyp.txt .

http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
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Another way to motivate the preceding calculation is as follows. Without loss
of generality, we may assume that γ is square-free in the ring of integers of Kβ (if
γ is a square, then the corresponding Eβ is isomorphic over Kβ to E). The field
Kβ has class number 1. If γ = λγ ′ where λ ∈ Z, then using γ ′ instead of γ yields
an Eβ whose cEβ (σ, τ ) is the same cocycle in H 2(G K/Q,Q∗). The condition that
√
σγ /γ be a square in Kβ for all σ ∈G K/Q shows that only ramified primes divide

γ and there are two such primes in Kβ =Q(
√

3, i).
The discriminant of Kβ is dKβ/Q = 24

· 32
= 144. The prime factorizations of

(2) and (3) in Kβ are given by

(2)= q2
2 and (3)= q2

3.

Let ν2 and ν3 be uniformizers at q2 and q3 respectively with associated valuations
v2 and v3. The units in Kβ are generated by z of order 12 and a unit u2 of infinite
order. Thus, up to squares, γ is a product of a subset of the elements {z, u2, ν2, ν3}.

The authors have subsequently learned that a similar technique for finding γ
also appeared in [Dieulefait and Urroz 2009] (where Kβ is polyquadratic).

It would be interesting to study the twists Eβ which arise from other choices of
splitting maps. We will not undertake this here.

Lemma 5. Suppose that E and E ′ are elliptic curves defined by

E :Y 2
+ a1 XY + a3Y = X3

+ a2 X2
+ a4 X + a6,

E ′:Y 2
+ a′1 XY + a′3Y = X3

+ a′2 X2
+ a′4 X + a′6,

where the ai and a′i lie in a discrete valuation ring O with uniformizer ν.

(a) Suppose the valuation at ν of the discriminants is, in each case, equal to 12.
If E has reduction type II∗ and a′i ≡ ai (mod ν6), then E ′ also has reduction
type II∗. If E has reduction type I0 and a′i ≡ ai (mod ν6), then E ′ also has
reduction type I0.

(b) Suppose the valuation at ν of the discriminants is, in each case, equal to 16.
If E has reduction type II and a′i ≡ ai (mod ν8), then E ′ also has reduction
type II.

(c) Suppose the Weierstrass equation of E is in minimal form, and E has reduc-
tion type II or III. If a′i ≡ ai (mod ν8), then E ′ has the same reduction type as
E and is also in minimal form.

Proof. We give a proof for case (a); the remaining cases are similar. Since the
discriminants of E and E ′ have valuation 12, when E and E ′ are processed through
Tate’s algorithm [Silverman 1994], the algorithm terminates at one of Steps 1–10
or reaches Step 11 to loop back a second time at most once.
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If E has reduction type II∗, the algorithm applied to E terminates at Step 10.
Since the transformations used in Steps 1–10 are translations, they preserve the
congruence ai ≡ a′i (mod ν6) as E and E ′ are processed through the algorithm,
and since the conditions to exit at Steps 1–10 are congruence conditions modulo
ν6 on the coefficients of the Weierstrass equations, we see that if the algorithm
applied to E terminates at Step 10, it must also terminate at Step 10 for E ′.

If E has reduction type I0, the algorithm applied to E reaches Step 11 to loop
back a second time to terminate at Step 1 (because the valuation of the discriminant
of the model for E is equal to 12). Again, since a′i ≡ ai (mod ν6), it follows that
the algorithm applied to E ′ also reaches Step 11 to loop back a second time and
terminate at Step 1 (again because the valuation of the discriminant of the model
for E ′ is equal to 12). �

Theorem 6. The conductor of Eβ is

m= q4
2 ·q

ε
3

∏
q|c

q-2,3

q,

where ε = 0, 4.

Proof. See tate2m.txt and tate3m.txt for the computations. Recall that Eβ is given
by

Eβ : Y 2
= X3

− 3(5b3
+ 4ai)bγ 2 X + 2(11b6

+ 14ib3a− 2a2)γ 3, (7)

with
1Eβ =−28

· 33
· (a− ib3)(a+ ib3)3 · γ 6. (8)

Then

c4 = 24
· 32
· b(4ia+ 5b3) · γ 2

c6 = 25
· 33
· (2a+ (−7i − 6z2

+ 3)b3)(2a+ (−7i + 6z2
− 3)b3) · γ 3.

(9)

Let q be a prime not dividing 2 ·3 but dividing 1Eβ . The elliptic curve Eβ has bad
multiplicative reduction at q if one of c4, c6 6≡ 0 (mod q). Since γ is not divisible
by q and gcd(a, b)= 1, we note that c4 ≡ c6 ≡ 0 (mod q) happens if and only if

b3
≡ 0 (mod q) or 4ia+ 5b3

≡ 0 (mod q),

and

2a+ (−7i − 6z2
+ 3)b3

≡ 0 (mod q) or 2a+ (−7i + 6z2
− 3)b3

≡ 0 (mod q).

The determinants of the resulting linear system in the variables a and b3, in all
four cases, are only divisible by primes above 2 and 3. It follows that Eβ has bad
multiplicative reduction at q.

http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
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By (8), since gcd(a, b) = 1, we have v3(1Eβ ) = 12. We run through all possi-
bilities for (a, b) modulo ν6

3 and, in each case, we compute the reduction type of
Eβ at q3 using MAGMA; in every case, said reduction type turns out to be of type
II∗ or I0. By Lemma 5(a), this determines all the possible conductor exponents for
Eβ at q3.

Since a and b are of opposite parity, (8) implies that v2(1Eβ )= 16. Checking all
possibilities for (a, b) modulo ν8

2 , and in each case computing the reduction type
of Eβ at q2, via MAGMA, we always arrive at reduction type II. By Lemma 5(b),
this determines all the possible conductor exponents for Eβ at q2. �

Theorem 7. The conductor of ResKβ

Q
Eβ is

dKβ/Q
2
· NKβ/Q(m)= 216

· 34+2ε
·

∏
q|c

q 6=2,3

q4,

where ε = 0, 4.

Proof. See [Milne 1972, Lemma, p. 178]. We also note that Kβ is unramified
outside {2, 3} so the product is of the form stated. �

Corollary 8. The elliptic curve Eβ has potentially good reduction at q2 and q3. In
the latter case, the reduction is potentially supersingular.

Let A = ResKβ
Q Eβ . By [Quer 2000, Theorem 5.4], A is an abelian variety of

GL2 type with Mβ=Q(
√

3, i). The conductor of the system of Mβ,π [GQ]-modules
{V̂π (A)} is given by

24
· 31+ε/2

·

∏
q|c

q 6=2,3

q, (10)

using the conductor results explained in [Chen 2010].
For the next two theorems, it is useful to recall that a − b3i and a + b3i are

coprime p-th powers in Z[i].

Theorem 9. The representation φE,p|Ip is finite flat for p 6= 2, 3.

Proof. This follows from the fact that E has good or bad multiplicative reduction
at primes above p when p 6= 2, 3, and in the case of bad multiplicative reduction,
the exponent of a prime above p in the minimal discriminant of E is divisible by
p. Also, p is unramified in Kβ so that Ip ⊆ G Kβ

. �

Theorem 10. The representation φE,p|I` is trivial for ` 6= 2, 3, p.

Proof. This follows from the fact that E has good or bad multiplicative reduction
at primes above ` when ` 6= 2, 3, and, in the case of bad multiplicative reduction,
the exponent of a prime above ` in the minimal discriminant of E is divisible by
p. Also, ` is unramified in Kβ so that I` ⊆ G Kβ

. �
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Theorem 11. Suppose p 6= 2, 3. The conductor of ρ = ρE,β,π is one of 48 or 432.

Proof. Since we are determining the Artin conductor of ρ, we consider only rami-
fication at primes above ` 6= p.

Suppose ` 6= 2, 3, p. Since ` 6= 2, 3, we see that Kβ is unramified at ` and hence
G Kβ

contains I`. Now, in our case, ρ|G Kβ
is isomorphic to φE,p. Since φE,p|I` is

trivial, ρ|I` is trivial, so ρ is unramified outside {2, 3, p}.
Suppose ` = 2, 3. The representation φ̂E,p|I` factors through a finite group of

order only divisible by the primes 2 and 3. Now, in our case, ρ̂|G Kβ
is isomorphic

to φ̂E,p. Hence, the representation ρ̂|I` also factors through a finite group of order
only divisible by the primes 2 and 3. It follows that the exponent of ` in the
conductor of ρ is the same as in the conductor of ρ̂ as p 6= 2, 3. �

Proposition 12. Suppose p 6= 2, 3. Then the weight of ρ = ρE,β,π is 2.

Proof. The weight of ρ is determined by ρ|Ip . Since p 6= 2, 3, we see that Kβ is
unramified at p and hence G Kβ

contains Ip. Now, in our case, ρ|G Kβ
is isomorphic

to φE,p. Since φE,p|Ip is finite flat and its determinant is the p-th cyclotomic
character, the weight of ρ is necessarily 2 [Serre 1987, Proposition 4]. �

Proposition 13. The character of ρE,β,π is ε.

Proof. This follows from (4). �

Let X K
0,B(d, p), X K

0,N (d, p), and X K
0,N ′(d, p) be the modular curves with level-p

structure corresponding to a Borel subgroup B, the normalizer of a split Cartan
subgroup N , the normalizer of a nonsplit Cartan subgroup N ′ of GL2(Fp), and
level-d structure consisting of a cyclic subgroup of order d, twisted by the quadratic
character associated to K through the action of the Fricke involution wd .

Lemma 14. Let E be a Q-curve defined over K ′, K a quadratic number field
contained in K ′, and d a prime number such that

(a) the elliptic curve E is defined over K ,

(b) the choices of µE(σ ) are constant on G K cosets, µE(σ ) = 1 when σ ∈ G K ,
and degµE(σ )= d when σ /∈ G K , and

(c) µE(σ )
σµE(σ )=±d whenever σ /∈ G K .

If ρE,β,π has image lying in a Borel subgroup, normalizer of a split Cartan sub-
group, or normalizer of a nonsplit Cartan subgroup of F×p GL2(Fp), then E gives
rise to a Q-rational point on the corresponding modular curve above.

Proof. This proof is based on [Ellenberg 2004, Proposition 2.2]. Recall the action
of GQ on PE[d] is given by x 7→µE(σ )(

σx). Suppose PρE,β,p has image lying in
a Borel subgroup. Then we have that µE(σ )(

σC p)=C p for some cyclic subgroup
C p of order p in E[p] and all σ ∈GQ. Let Cd be the cyclic subgroup of order d in
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E[d] defined by µE(σ )(
σE[d]) where σ is an element of GQ which is nontrivial

on K . This does not depend on the choice of σ . Suppose σ is an element of GQ

which is nontrivial on K . The kernel of µE(σ ) is precisely σCd as µE(σ )(
σCd)=

µE(σ )
σµE(σ )(

σ 2
E[d])= [±d](σ

2
E[d])= 0. Hence, we see that

wd
σ(E,Cd ,C p)= wd(

σE, σCd ,
σC p)

= (µE(σ )(
σE), µE(σ )(

σE[d]), µE(σ )(
σC p))

= (E,Cd ,C p),

so σ(E,Cd ,C p) = wd(E,Cd ,C p), where wd is the Fricke involution. Suppose σ
is an element of GQ which is trivial on K . In this case, we have σ(E,Cd ,C p) =

(E,Cd ,C p). Thus, (E,Cd ,C p) gives rise to a Q-rational point on X0,B(d, p).
The case when the image of ρE,β,π lies in the normalizer of a Cartan subgroup

is similar except now we have the existence of a set of distinct points Sp={αp, βp}

of PE[p] ⊗ Fp2 such that the action of σ ∈ GQ by x 7→ µE(σ )(
σx) fixes Sp as a

set. �

Theorem 15. Suppose the representation ρE,β,π is reducible for p 6= 2, 3, 5, 7, 13.
Then E has potentially good reduction at all primes above ` > 3.

Proof. See [Ellenberg 2004, Proposition 3.2]. E gives rise to a Q-rational point on
X K

0,N (3, p) by Lemma 14, even though the isogeny between E and its conjugate
is only defined over Q(

√
3, i). �

Corollary 16. The representation ρE,β,π is irreducible for p 6= 2, 3, 5, 7, 13.

Proof. Lemma 4 shows that E must have bad multiplicative reduction at some
prime of K above ` > 3. �

Proposition 17. If p = 13, then ρE,β,π is irreducible.

Proof. By Lemma 14, if ρE,β,π were reducible, then E would give rise to a noncus-
pidal K -rational point on X0(39) where K = Q(i) and a noncuspidal Q-rational
point on X0(39)/w3. We can now use [Kenku 1979] which says that X0(39)/w3

has four Q-rational points. Two of them are cuspidal. Two of them arise from
points in X0(39) defined over Q(

√
−7). Hence, no such E can exist, since a

K -rational point on X0(39) which is also Q(
√
−7)-rational must be Q-rational

(and again by [Kenku 1979], X0(39) has no noncuspidal Q-rational points). �

Outline of proof of Theorem 1. Using the modularity of E , which now follows
from Serre’s conjecture [Serre 1987; Khare and Wintenberger 2009a; 2009b; Kisin
2009] plus the usual level-lowering arguments based on results in [Ribet 1990],
we have ρE,π,β ∼= ρg,π , where g is a newform in S2(00(M), ε) where M = 48 or
M = 432. This holds for n = p ≥ 11.
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There is one newform F1 in S2(00(48), ε) and this has CM by Q(−3); see
inner-48.txt , cm-48.txt . At level 432, we find three newforms G1, G2, and G3

in S2(00(432), ε); inner-432.txt . As it transpires, both G1 and G2 have CM by
Q(−3); cm-432.txt . The form G3 is harder to eliminate as it does not have com-
plex multiplication and its field of coefficients is Mβ = Q(

√
3, i). Furthermore,

the complex conjugate of G3 is a twist of G3 by ε−1. In fact, G3 arises from the
near solution 12

+16
= 2 (this near solution gives rise to a form at level 432 and it

is the unique non-CM form at that level) so it shares many of the same properties
g should have as both arise from the same geometric construction. Note, however,
that one cannot have a ≡ b ≡ 1 (mod 2) in the equation a2

+ b6
= cp as p > 1.

Unfortunately, it is not possible to eliminate the possibility of g=G3 by consid-
ering the fields cut out by images of inertia at 2. Using [Kraus 1990, théorème 3]
and its proof, it can be checked that these fields are the same regardless of whether
or not a ≡ b ≡ 1 (mod 2).

In the next two sections, we show that in each case g = Gi , for i = 1, 2 (CM
case), and i = 3, we are led to a contradiction, if n = p ≥ 11. Finally, in the last
section, we deal with the cases n = 3, 4, 5, 7. This suffices to prove the theorem
as any integer n ≥ 3 is either divisible by an odd prime or by 4.

4. Eliminating the CM forms

When g = Gi for i = 1 or 2, g has complex multiplication by Q(
√
−3) so that

ρE,β,π has image lying in the normalizer of a Cartan subgroup for p> 3. However,
this leads to a contradiction using the arguments below.

Proposition 18. Let p ≥ 7 be prime and suppose there exists either a p-newform
in S2(00(3p2)) with wp f = f , w3 f = − f , or a p-newform in S2(00(p2)) with
wp f = f , such that L( f ⊗ χ−4, 1) 6= 0, where χ−4 is the Dirichlet character
associated to K =Q(i). Let E be an elliptic curve which gives rise to a noncusp-
idal Q-rational point on X K

0,N (3, p) or X K
0,N ′(3, p). Then E has potentially good

reduction at all primes of K above ` > 3.

Proof. See [Ellenberg 2004] and comments in [Bennett et al. 2010, Proposition 6]
about the applicability to the split case (see also the argument in [Ellenberg 2004,
Lemma 3.5] which shows potentially good reduction at a prime of K above p in
the split case). �

Proposition 19. If p ≥ 11 is prime, then there exists a p-newform f ∈ S2(00(p2))

with wp f = f and L( f ⊗χ−4, 1) 6= 0.

Proof. For p ≥ 61, this is, essentially, the content of the proof of [Bennett et al.
2010, Proposition 7] (the proof applies to p≡ 1 (mod 8), not just to p 6≡ 1 (mod 8)

http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
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as stated). Further, a relatively short Magma computation newform-twists.txt re-
veals the same to be true for smaller values of p with the following forms f (the
number following the level indicates Magma’s ordering of forms; one should note
that this numbering is consistent neither with Stein’s modular forms database nor
with Cremona’s tables):

p f dim f p f dim f p f dim f

11 121 (1) 1 29 841 (1) 2 47 2209 (9) 16
13 169 (2) 3 31 961 (1) 2 53 2809 (1) 1
17 289 (1) 1 37 1369 (1) 1 59 3481 (1) 2
19 361 (1) 1 41 1681 (1) 2
23 529 (7) 4 43 1849 (1) 1 �

Theorem 20. Suppose the representation ρE,β,π has image lying in the normalizer
of a Cartan subgroup for p ≥ 11. Then E has potentially good reduction at all
primes of K above ` > 3.

Proof. We note that E still gives rise to a Q-rational point on X K
0,N (3, p) or

X K
0,N ′(3, p) with K = Q(i), even though, as a consequence of Lemma 14, the

isogeny between E and its conjugate is only defined over Q(
√

3, i). �

Theorem 21. If p ≥ 11 is prime, the representation ρE,β,π does not have image
lying in the normalizer of a Cartan subgroup.

Proof. Lemma 4 immediately implies that E necessarily has bad multiplicative
reduction at a prime of K lying above some ` > 3. �

5. Eliminating the newform G3

Recall that E = Ea,b is given by

E : Y 2
= X3

− 3(5b3
+ 4ai)bX + 2(11b6

+ 14ib3a− 2a2).

Let E ′ = E ′a,b be the elliptic curve

E ′ : Y 2
= X3

+ 3b2 X + 2a,

which is a Frey–Hellegouarch elliptic curve over Q for the equation a2
+ (b2)3 =

cp. We will show how to eliminate the case of g = G3 using a combination of
congruences from the two Frey curves E and E ′. This is an example of the multi-
Frey technique [Bugeaud et al. 2008a; 2008b], as applied to the situation when one
of the Frey curves is a Q-curve. We are grateful to Siksek for suggesting a version
of Lemma 24 which allows us to do this.

http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
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The discriminant of E ′ is given by

1′ =−26
· 33(a2

+ b6). (11)

For a 6≡ b (mod 2), v2(1
′) = 6, so E ′ is in minimal form at 2. Since a and b are

not both multiples of 3, we have v3(1
′) = 3 and so E ′ is also minimal at 3. If q

divides 1′ and is neither 2 nor 3, then E ′ has bad multiplicative reduction at q .
For each congruence class of (a, b) modulo 24 where a 6≡ b (mod 2), we com-

pute the conductor exponent at 2 of E ′ using MAGMA. The conductor exponent at
2 of each test case was 5 (reduction type III) or 6 (reduction type II): tate2m-3.txt .
By Lemma 5(c), the conductor exponent at 2 of E ′ is 5 or 6. In a similar way,
the conductor exponent at 3 of E ′ is 2 (reduction type III) or 3 (reduction type II):
tate3m-3.txt .

We are now almost in position to apply the modular method to E ′. We need
only show that the representation ρE ′,p arising from the p-torsion points of E ′ is
irreducible.

Lemma 22. If p ≥ 11 is prime, then ρE ′,p is irreducible.

Proof. If p 6= 13, the result follows essentially from [Mazur 1978] (see [Dahmen
2008, Theorem 22]), provided jE ′ is not one of

−215, −112, −11 ·1313,
−17·3733

217 ,
−172
·1013

2
, −215

·33, −7 ·1373
·20833,

−7 · 113, −218
· 33
· 53, −215

· 33
· 53
· 113, −218

· 33
· 53
· 233
· 293.

Since

jE ′ =
1728b6

a2+ b6 > 0,

we may thus suppose that p = 13. In this case, if ρE ′,p were reducible, the repre-
sentation would correspond to a rational point on the curve defined via the equation
j13(t)= jE ′ , where j13(t) is the map from the modular curve X0(13) to X (1), given
by

j13(t)=
(t4
+ 7t3

+ 20t2
+ 19t + 1)3(t2

+ 5t + 13)
t

=
(t6
+ 10t5

+ 46t4
+ 108t3

+ 122t2
+ 38t − 1)2(t2

+ 6t + 13)
t

+ 1728.

Writing s = a/b3, we thus have 1728/(s2
+ 1)= j13(t), for some t ∈Q, and so

s2
=

1728− j13(t)
j13(t)

=−
(t6
+10t5

+46t4
+108t3

+122t2
+38t−1)2(t2

+6t+13)
(t4+7t3+20t2+19t+1)3(t2+5t+13)

.

http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip


722 Michael A. Bennett and Imin Chen

It follows that there exist rational numbers x and y with

y2
=−(x2

+ 6x + 13)(x2
+ 5x + 13)(x4

+ 7x3
+ 20x2

+ 19x + 1),

and hence coprime, nonzero integers u and v, and an integer z for which

(u2
+ 6uv+ 13v2)(u2

+ 5uv+ 13v2)(u4
+ 7u3v+ 20u2v2

+ 19uv3
+ v4)=−z2.

Note that, via a routine resultant calculation, if a prime p divides both u2
+6uv+

13v2 and the term (u2
+ 5uv + 13v2)(u4

+ 7u3v + 20u2v2
+ 19uv3

+ v4), then
necessarily p ∈ {2, 3, 13}. Since u2

+ 6uv+ 13v2 is positive-definite and u, and v
are coprime (whereby u2

+ 6uv+ 13v2
≡±1 (mod 3)), we thus have

u2
+ 6uv+ 13v2

= 2δ113δ2 z2
1,

(u2
+ 5uv+ 13v2)(u4

+ 7u3v+ 20u2v2
+ 19uv3

+ v4)=−2δ113δ2 z2
2,

for z1, z2 ∈ Z and δi ∈ {0, 1}. The first equation, with δ1 = 1, implies that u ≡ v ≡
1 (mod 2), contradicting the second. We thus have δ1 = 0, whence

u2
+ 6uv+ 13v2

≡ u2
+ v2
≡ z2

1 ≡ 1 (mod 3),

so that 3 divides one of u and v, again contradicting the second equation, this time
modulo 3. �

Applying the modular method with E ′ as the Frey curve thus shows that ρE ′,p∼=

ρg′,π ′ for some newform g′ ∈ S2(00(M)) where M = 2r 3s , r ∈ {5, 6}, and s ∈ {2, 3}
(here π ′ is a prime above p in the field of coefficients of g′). The possible forms g′

were computed using b3i-modformagain.txt . The reason the multi-Frey method
works is because when a 6≡ b (mod 2), we that r ∈ {5, 6}, whereas when a ≡ b ≡
1 (mod 2), we have r = 7. Thus, the 2-part of the conductor of ρE ′,π separates
the cases a 6≡ b (mod 2) and a ≡ b (mod 2). Hence, the newform g′ that the near
solution a = b = 1 produces does not cause trouble from the point of view of the
Frey curve E ′. By linking the two Frey curves E and E ′, it is possible to pass
this information from the Frey curve E ′ to the Frey curve E , by appealing to the
multi-Frey technique.

The following lemma results from the condition ρE ′,p ∼= ρg′,π ′ and standard
modular method arguments.

Lemma 23. Let q ≥ 5 be prime and assume q 6= p, where p ≥ 11 is a prime. Let

Cx,y(q, g′)=
{

aq(E ′x,y)− aq(g′) if x2
+ y6
6≡ 0 (mod q),

(q + 1)2− aq(g′)2 if x2
+ y6
≡ 0 (mod q).

If (a, b)≡ (x, y) (mod q), then p|Cx,y(q, g′).

http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
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For our choice of splitting map β, we attached a Galois representation ρE,β,π to
E such that ρE,β,π ∼=ρg,π for some newform g∈ S2(00(M), ε)where M=48, 432.
We wish to eliminate the case of g=G3. The following is the analog of Lemma 23
for E = Ea,b.

Lemma 24. Let q ≥ 5 be prime and assume q 6= p, where p ≥ 11 is prime. Let

Bx,y(q, g)

=


N (aq(Ex,y)

2
−ε(q)aq(g)2) if x2

+ y6
6≡ 0 (mod q) and

(
−4
q

)
= 1,

N (aq(g)2−aq2(Ex,y)−2qε(q)) if x2
+ y6
6≡ 0 (mod q) and

(
−4
q

)
=−1,

N (ε(q)(q+1)2−aq(g)2) if x2
+ y6
≡ 0 (mod q),

where aq i (Ex,y) is the trace of Frobi
q acting on the Tate module Tp(Ex,y).

If (a, b)≡ (x, y) (mod q), then p|Bx,y(q, g).

Proof. Recall the setup in Sections 2 and 3. Let π be a prime of Mβ above p. The
mod π representation ρAβ ,π of GQ attached to Aβ is related to Eβ by

PρAβ ,π |G K
∼= PφEβ ,p,

where φEβ ,p is the representation of G K on the p-adic Tate module Tp(Eβ) of
Eβ , and the P indicates that we are considering isomorphism up to scalars. The
algebraic formula which describes ρEβ ,β,π = ρAβ ,π

∼= ρ f,π is

ρAβ ,π (σ )(1⊗ x)= β(σ)−1
⊗µ′β(σ )(φEβ ,p(σ )(x))

where 1⊗x ∈Mβ,π⊗Tp(Eβ). Here, µ′β(σ ) is the chosen isogeny from σEβ→ Eβ
for each σ which is constant on G K (see the paragraph after (6)).

If x2
+ y6
≡ 0 (mod q), then q|c. Recall the conductor of Aβ is given by

24
· 31+ε/2

·

∏
q|c

q 6=2,3

q,

so that q exactly divides the conductor of Aβ . Using the condition ρ f,π ∼= ρg,π ,
we can deduce from [Carayol 1983, théorème 2.1], [Carayol 1986, théorème (A)],
[Darmon et al. 1997, Theorem 3.1], and [Gross 1990, (0.1)] that

p|N
(
aq(g)2− ε−1(q)(q + 1)2

)
.

If x2
+ y6

6≡ 0 (mod q), then let q be a prime of Kβ over q. Let E = Ea,b be
the reduction modulo q of E . Since (a, b) ≡ (x, y) (mod q), we have E = Ex,y .
Furthermore, since q is a prime of good reduction, Tp(E)∼= Tp(E).
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We now wish to relate the representation ρEβ ,β,π = ρAβ ,π
∼= ρ f,π to the repre-

sentation φE,p for the original E . We know that

cEβ (σ, τ )= β(σ)β(τ)β(στ)
−1 and cEβ (σ, τ )= cE(σ, τ )κ(σ )κ(τ )κ(στ)

−1,

where κ(σ )=
σ(
√
γ )
√
γ

and γ = −3+i
√

3
2

. It follows that

cE(σ, τ )= β
′(σ )β ′(τ )β ′(στ)−1,

where β ′(σ ) = β(σ)κ(σ ), so that β ′ is a splitting map for the original cocycle
cE(σ, τ ). Also, recall that ε(Frobq)=

( 12
q

)
.

Now we have

ρAβ′ ,π (σ )(1⊗ x)= β ′(σ )−1
⊗µ(σ)(φE,p(σ )(x)),

where 1⊗ x ∈ Mβ,π ⊗ Tp(E). For this choice of β ′(σ ),

ρAβ′ ,π
∼= κ(σ )ξ(σ )⊗ ρAβ ,π

∼= κ(σ )ξ(σ )⊗ ρ f,π .

This can be seen by fixing the isomorphism ι : E ∼= Eβ , using standard Weierstrass
models and then appealing to the

Eβ
σ // σEβ

µEβ (σ ) // Eβ

E

ι

OO

σ // σE

σι

OO

µE (σ ) // E .

ι

OO

Recall that β(σ) =
√
ε(σ )
√

d(σ ), so that β ′(σ ) =
√
ε(σ )
√

d(σ )κ(σ ). We note
that d(σ )= 1 if σ ∈ GQ(

√
−1) and d(σ )= 3 if σ /∈ GQ(

√
−1).

Now
(
−4
q

)
= 1 means σ = Frobq ∈ GQ(

√
−1). If σ ∈ GQ(

√
−1), then µ(σ) = id

and d(σ )= 1 so

ρAβ′ ,π (σ )(1⊗x)=β ′(σ )−1
⊗µ(σ)(φE,p(σ )(x))=

√
ε(σ )

−1
κ(σ )−1

⊗φE,p(σ )(x),

so tr ρAβ′ ,π (σ ) =
√
ε(σ )

−1
κ(σ )−1

· trφE,p(σ ) and ε(q)aq( f )2 = aq(E)2. Also
aq( f )≡ aq(g) (mod π), giving the assertion that p|Bα(q, g) in the case

(
−4
q

)
= 1.

If
(
−4
q

)
=−1, then σ = Frobq /∈ GQ(

√
−1). But then σ 2

∈ GQ(
√
−1), and in fact,

σ 2
∈ GQ(

√
−1,
√

3), so by the argument above we get

tr ρAβ′ ,π (σ
2)=

√
ε(σ )

−1
κ(σ )−1

· trφE,p(σ
2)= trφE,p(σ

2)= aq2(E).
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Also, tr ρAβ′ ,π (σ )= κ(σ )ξ(σ )aq( f ) so tr ρAβ′ ,π (σ )
2
= aq( f )2. We have

1
det(1− ρAβ′ ,π (σ )q

−s)
= exp

∞∑
r=1

tr ρAβ′ ,π (σ
r )

q−sr

r

=
1

1− tr ρAβ′ ,π (σ )q
−s + qε(q)q−2s .

The determinant and traces are of vector spaces over Mβ,π . Computing the coeffi-
cient of q−2s and equating, we find that tr ρAβ′ ,π (σ

2)= tr ρAβ′ ,π (σ )
2
−2qε(q) and

hence conclude that aq( f )2− 2qε(q)= aq2(E). Since aq( f )≡ aq(g) (mod π), it
follows that p|Bα(q, g) in the case

(
−4
q

)
=−1 as well. �

Let
Aq(g, g′) :=

∏
(x,y)∈F2

q
(x,y) 6=(0,0)

gcd(Bx,y(q, g),Cx,y(q, g′)).

Then we must have p|Aq(g, g′). For a pair g, g′, we can pick a prime q and
compute Aq(g, g′). Whenever this Aq(g, g′) 6= 0, we obtain a bound on p so that
the pair g, g′ cannot arise for p larger than this bound.

For g = G3, and g′ running through the newforms in S2(00(2r 3s)) where r ∈
{5, 6} and s ∈ {2, 3}, the above process eliminates all possible pairs g = G3 and
g′; see multi-frey.txt . In particular, using q = 5 or q = 7 for each pair shows that
p ∈ {2, 3, 5}. Hence, if p /∈ {2, 3, 5, 7}, then a solution to our original equation
cannot arise from the newform g = G3.

6. The cases n = 3, 4, 5, 7

It thus remains only to treat the equation a2
+ b6
= cn for n ∈ {3, 4, 5, 7}. In each

case, without loss of generality, we may suppose that we have a proper, nontrivial
solution in positive integers a, b, and c. If n=4 or 7, the desired result is immediate
from [Bruin 1999] and [Poonen et al. 2007], respectively. In the case n = 3, a
solution with b 6= 0 implies, via the equation( a

b3

)2
=

( c
b2

)3
− 1,

a rational point on the elliptic curve given by E : y2
= x3
− 1, Cremona’s 144A1

of rank 0 over Q with E(Q)∼= Z/2Z. It follows that c = b2 and hence a = 0.
Finally, we suppose that a2

+b6
= c5, for coprime positive integers a, b, and c.

From parametrizations for solutions to x2
+ y2
= z5 (see, for example, [Chen 2010,

Lemma 2]), it is easy to show that there exist coprime integers u and v (and z) for
which

v4
− 10v2u2

+ 5u4
= 5δz3, (12)

http://msp.berkeley.edu/ant/2012/6-4/ant-v6-n4-x04-suppl.zip
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with either

(a) v = β3, δ = 0, β coprime to 5, or

(b) v = 52β3, δ = 1, for some integer β.

Let us begin by treating the latter case. From (12), we have

(u2
− v2)2− 4 · 57

·β12
= z3
;

and hence taking

x =
z

52β4 , y =
u2
− v2

53β6 ,

we have a rational point on E : y2
= x3

+ 20, Cremona’s 2700E1 of rank 0 and
trivial torsion (with no corresponding solutions of interest to our original equation).

We may thus suppose that we are in situation (a), so that

β12
− 10β6u2

+ 5u4
= z3. (13)

Since β and u are coprime, we may assume that they are of opposite parity (and
hence that z is odd), since β ≡ u ≡ 1 (mod 2) with (13) leads to an immediate
contradiction modulo 8. Writing T = β6

− 5u2, (13) becomes T 2
− 20u4

= z3,
where T is coprime to 10. Factoring over Q(

√
5) (which has class number 1), we

deduce the existence of integers m and n, of the same parity, such that

T + 2
√

5u2
=

(1+
√

5
2

)δ(m+n
√

5
2

)3
, (14)

with δ ∈ {0, 1, 2}.
Let us first suppose that δ = 1. Then, expanding (14), we have

m3
+15m2n+15mn2

+25n3
= 16T and m3

+3m2n+15mn2
+5n3

= 32u2.

It follows that
3m2n+ 5n3

= 4T − 8u2
≡ 4 (mod 8),

contradicting the fact that m and n have the same parity. Similarly, if δ = 2, we
find that

3m3
+15m2n+45mn2

+25n3
= 16T and m3

+9m2n+15mn2
+15n3

= 32u2,

and so
3m2n+ 5n3

= 24u2
− 4T ≡ 4 (mod 8),

again a contradiction.
We thus have δ = 0, and so

m(m2
+ 15n2)= 8T = 8(β6

− 5u2) and n(3m2
+ 5n2)= 16u2. (15)
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Combining these equations, we may write

16β6
= (m+ 5n)(2m2

+ 5mn+ 5n2). (16)

Returning to the last equation of (15), since gcd(m, n) divides 2, we necessarily
have n = 2δ13δ2r2 for some integers r and δi ∈ {0, 1}. Considering the equation
n(3m2

+ 5n2) = 16u2 modulo 5 implies that (δ1, δ2) = (1, 0) or (0, 1). In case
(δ1, δ2) = (1, 0), the two equations in (15), taken together, imply a contradiction
modulo 9.

We may thus suppose that (δ1, δ2) = (0, 1) and, setting y = (2β/r)3 and x =
6m/n in (16), we find that

y2
= (x + 30)(x2

+ 15x + 90).

This elliptic curve is Cremona’s 3600G1, of rank 0 with nontrivial torsion corre-
sponding to x =−30, y = 0.

It follows that there do not exist positive coprime integers a, b, and c for which
a2
+ b6
= c5, which completes the proof of Theorem 1.
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Detaching embedded points
Dawei Chen and Scott Nollet

Suppose that closed subschemes X ⊂ Y ⊂ PN differ at finitely many points:
when is Y a flat specialization of X union isolated points? Our main result says
that this holds if X is a local complete intersection of codimension two and the
multiplicity of each embedded point of Y is at most three. We show by example
that no hypothesis can be weakened: the conclusion fails for embedded points of
multiplicity greater than three, for local complete intersections X of codimension
greater than two, and for nonlocal complete intersections of codimension two.
As applications, we determine the irreducible components of Hilbert schemes of
space curves with high arithmetic genus and show the smoothness of the Hilbert
component whose general member is a plane curve union a point in P3.

1. Introduction

An attractive aspect of algebraic geometry is that moduli spaces for its objects tend
themselves to be algebraic varieties. Ever since Grothendieck [1961] proved their
existence, the Hilbert schemes Hilbp(z)(PN ) classifying flat families of subschemes
in PN with fixed Hilbert polynomial p(z) have drawn great interest. One of the
first major results was the connectedness of Hilbert schemes, proved in [Hartshorne
1966]. More recently Liaison theory [Peskine and Szpiro 1974; Martin-Deschamps
and Perrin 1990; Migliore 1998] has focused attention on Hilbert schemes Hd,g

of degree d, arithmetic genus g, locally Cohen–Macaulay curves in P3. The
connectedness of Hd,g remains an open question [Nollet 1997; 2006; Hartshorne
2000; Nollet and Schlesinger 2003].

While Hilbert schemes can be quite complicated in general, Piene and Sch-
lessinger [1985] gave a satisfying picture of Hilb3z+1(P3): there are two smooth
irreducible components of dimensions 12 and 15 which meet transversely along
an 11-dimensional family. In [Chen 2008], Mori’s program was applied to the
12-dimensional component of twisted cubics, working out the effective cone de-
composition and the corresponding models, exhibiting it as a flip of the Kontsevich
moduli space of stable maps over the Chow variety. Similarly the Hilbert scheme

MSC2010: primary 14B07; secondary 14H10, 14H50.
Keywords: Hilbert schemes, embedded points.
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component of unions of a pair of codimension-two linear subspaces of PN is a
smooth Mori dream space [Chen et al. 2011].

In an effort to achieve a similar understanding of the geometry of the Hilbert
scheme component H1 of rational quartic curves in P3, the first obstacle is deter-
mining the other irreducible components of Hilb4z+1(P3). There are three natural
families whose general members consist of the disjoint union of a line and a plane
cubic, the disjoint union of an elliptic quartic curve and a point, and the disjoint
union of a plane quartic and three points, but what about a possible component
whose general member has an embedded point? We show in Example 2.9 that such
Hilbert scheme components exist for curves of degree four and sufficiently negative
genus. This motivates the following question:

Question 1.1. If X is obtained from Y ⊂ PN by removing the zero-dimensional
components, under what conditions is Y in the Hilbert scheme closure of the family
consisting of X union isolated points?

When this is the case, we say that Y is a flat limit of X union isolated points, or
simply that one can detach the embedded points of Y .

Remarks 1.2. (a) From the Hilbert scheme perspective, we should allow X to vary
in the flat family. On the other hand, it is clearly desirable to have results requiring
no information on how X sits in its Hilbert scheme, for they will be easier to apply.

(b) Question 1.1 is already interesting when X is empty. Fogarty [1968] observed that
Hilbd(P2) is irreducible for all d > 0, but Iarrobino [1972] showed that Hilbd(P3) is
reducible for d � 0. The minimum such value of d is still unknown. Iarrobino and
Emsalem [1978] showed that Hilb8(P4) is reducible and [Mazzola 1980] showed
that Hilbd(Pn) is irreducible for d ≤ 7. Cartwright et al. [2009] extended this to
prove that for d ≤ 8, Hilbd(PN ) is reducible if and only if d = 8 and N ≥ 4.

We are interested in the case dim X > 0. The kernel K of the surjection OY→OX

has finite length and may be written
⊕

K p with p in the support of K . For such p,
we say that the multiplicity of p is length K p. The following criterion tells when
all subschemes obtained from X by adding an embedded point of multiplicity one
at p ∈ X are flat limits of X union an isolated point (see Theorem 2.3).

Theorem 1.3. For p ∈ X ⊂ PN , the following are equivalent:

(1) All subschemes Y obtained from X by adding an embedded point of multiplicity
one at p are flat limits of X union an isolated point.

(2) The ideal sheaf IX has r minimal generators at p with r ≤ N and π−1(p)∼=
Pr−1, where π : P̃N

→ PN is the blow-up at X.

In particular, if X is a local complete intersection, then any embedded point of
multiplicity one can be detached from X.
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Condition (2) makes it easy to recognize when there exist schemes Y obtained
from X which are not flat limits of X union an isolated point (see Example 2.6).
Sometimes an embedded point of multiplicity one cannot be detached even if X
is allowed to move in the deformation (see Example 1.5). Our main result gives
conditions under which embedded points of various multiplicities can be detached
(see Theorem 3.9):

Theorem 1.4. Let X ⊂ PN be a local complete intersection of codimension two. If
Y is obtained from X by adding embedded points of multiplicity at most three, then
Y is a flat limit of X union isolated points.

The hypotheses may seem restrictive, but Theorem 1.4 is sharp in all aspects, as
the following examples show.

Example 1.5. For any g ≤ −15, the Hilbert scheme Hilb4z+1−g(P3) has an irre-
ducible component H of dimension 9−2g whose general member is the union of a
multiplicity 4-line containing the triple line of generic embedding dimension three
and an embedded point of multiplicity one. Details are given in Example 2.9.

Example 1.6. There are local complete intersections X ⊂ PN of codimension
greater than two and Y obtained from X by adding an embedded point of multiplicity
two which are not flat limits of X union two isolated points. Let X be the nonreduced
curve in P4 with ideal IX = (x2, y2, z2). The family of double point structures on
X has dimension equal to eight, the same as the dimension of the family consisting
of X union two isolated points, hence the former cannot lie in the closure of the
latter. See Example 3.6 for details.

Example 1.7. There are local complete intersections X ⊂ PN of codimension two
and Y obtained from X by adding an embedded point of multiplicity four which
are not flat limits of X union four isolated points. For X with ideal IX = (x2, y2)

in PN , we give a family of such subschemes Y having dimension 5N − 6, hence
the general member cannot be a flat limit of X union four isolated points for N > 5.
See Example 3.10 for details.

Remark 1.8. (a) For Y and X as in Theorem 1.4, there is an exact sequence

0→ IY → IX
ϕ
→ K → 0, (1)

where K is a sheaf of finite length. It is clear that the sheaf K is uniquely determined
by Y (it is the quotient IX/IY ) and that two surjections ϕ and ϕ′ yield the same
subscheme Y if and only if there exists an automorphism σ of K such that ϕ′=σ ◦ϕ.
The technique of our proof deforms the pair (ϕ, K ).

(b) It is not the case that the embedded points can be pulled away one at a time; see
Example 3.5.
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(c) If X is a hypersurface and Y is obtained from X by adding embedded points
of any multiplicities, then Y is a flat limit of X union isolated multiple points. In
particular, such Y is a flat limit of X union isolated reduced points if the multiplicities
are less than eight (Proposition 2.4).

Applying Theorem 1.4 to plane curves in P3, we deduce the following:

Corollary 1.9. For d ≥ 6 and (d − 1)(d − 2)/2− 3 ≤ g ≤ (d − 1)(d − 2)/2, the
Hilbert scheme Hilbdz+1−g(P3) is irreducible.

In Section 3 we give many other applications to space curves of low degree.
Letting g = (d − 1)(d − 2)/2 be the genus of a degree-d plane curve, we give the
following smoothness result:

Theorem 1.10. Let Hd ⊂ Hilbdz+2−g(P3) be the closure of the family of degree-d
plane curves union an isolated point. Then Hd is smooth for all d ≥ 1, and
hence isomorphic to the blow-up of Hilbdz+1−g(P3) × P3 along the incidence
correspondence.

Remark 1.11. Similarly the Hilbert scheme of a hypersurface in PN union an
isolated point is smooth (Theorem 4.1), but the Hilbert scheme is not smooth at
plane curves union certain double embedded points (Remark 4.4).

Regarding organization, we deal with the question of detaching embedded points
of multiplicity one in Section 2, and with embedded points of multiplicities two or
three in Section 3. Our applications to Hilbert schemes are found in Section 4.

Conventions. For a subscheme Z ⊂ PN , IZ denotes its sheaf of ideals and IZ

denotes its homogeneous (saturated) ideal or sometimes the ideal of Z in an open
affine chart. We often write O for the structure sheaf of the ambient projective space
and S for the homogeneous coordinate ring. A curve is a (purely) one-dimensional
scheme. We say that Y is a flat limit of X union isolated points if Y is in the Hilbert
scheme closure of this family. This is equivalent to the existence of a one-parameter
family {Yt }t∈T in which Yt is X union isolated points for t general and Y = Y0, and
this is typically how we exhibit such a flat limit. We sometimes speak of a flat limit
of ideals (or ideal sheaves) when working with the corresponding ideals. If two
schemes X ⊂ Y differ at an embedded point supported at p ∈ X , the multiplicity
of the embedded point is the length of IX,p/IY,p. Throughout the paper we work
over an algebraically closed field k of arbitrary characteristic, but will occasionally
assume char k 6= 2, 3 to apply irreducibility results.

2. Detaching embedded points of multiplicity one

In this section we study embedded point structures of multiplicity one on a local
complete intersection X ⊂PN of codimension two. We also give a global result for
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ACM subschemes with 3-generated ideal (Proposition 2.7). We begin by determining
when an embedded point of multiplicity one can be detached from a subscheme
X ⊂ PN .

Proposition 2.1. For a proper subscheme X ⊂ PN , let V ⊂ Hilbp(z)+1(PN ) be the
closed subset of subschemes which may be obtained from X by adding a point p
(embedded or isolated). Then there is a diagram

P̃N (X) � � f //

π
��

V

h
��

PN = PN ,

(2)

in which π is the blow-up at X , h sends a subscheme in V to the added point, and
f extends the map PN

− X→ V given by p 7→ X ∪ p. Moreover, f is injective.

Proof. There is a uniform bound for the Castelnuovo–Mumford regularity of
every ideal sheaf defining a closed subscheme with Hilbert polynomial p(z), hence
h0(IY (m)) is independent of [Y ] ∈ Hilbp(z)+1(PN ) for sufficiently large m and the
map

Y 7→
(
H 0(PN ,IY (m))⊂ H 0(PN ,OPN (m))

)
yields a closed immersion F :Hilbp(z)+1(PN ) ↪→G to a suitable Grassmann variety
[Harris and Morrison 1998]. Since H 0(PN ,IY (m))⊂ H 0(PN ,IX (m)) has codi-
mension one for [Y ]∈V , the image F(V ) is contained in P(H 0(PN ,IX (m)))∨⊂G.
On the other hand, a standard construction [Peskine and Szpiro 1974, Proposi-
tion 4.1] yields a closed immersion P̃N (X)

j
↪→ P(H 0(PN ,IX (m)))∨ and for each

p ∈ PN
− X we have j (π−1(p)) = F(h−1(p)). Since V is closed, we obtain an

injective map P̃N (X) ↪→ V and accompanying diagram (2). �

Proposition 2.2. In diagram (2), the following are equivalent:

(a) V is irreducible.

(b) For each p ∈ X , dimk(p) IX,p⊗ k(p)= r ≤ N and π−1(p)∼= Pr−1.

(c) The map P̃N (X)
f
→ V is bijective.

Proof. For each [Y ] ∈ V , there is an exact sequence

0→ IY → IX → K p→ 0,

where K p ∼= Op is the skyscraper sheaf of length 1 supported at p. For fixed p, the
set of all such Y is given by surjections

φ ∈ Hom(IX ,Op)∼= Hom(IX,p, k(p))∼= Hom(IX ⊗ k(p), k(p)) (3)

modulo scalar. In view of Nakayama’s lemma, we see that h−1(p)∼= Pr−1
k(p), where

r is the minimal number of generators for IX at p.
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The equivalence of (a) and (c) is clear from Proposition 2.1. Condition (c) implies
that π−1(p)∼= h−1(p)∼=Pr−1 for each p ∈ X and r ≤ N because π−1(p)⊂ P̃N (X)
is a proper subset, proving (b). Conversely if (b) holds, then for p ∈ X , we have
injections Pr−1 ∼= π−1(p) ↪→ h−1(p)∼= Pr−1 which must be surjective by reason
of dimension, hence f : P̃N (X)→ V is bijective on the fibers over PN and is
therefore bijective. �

The next result follows from the argument above. It allows one to determine
when all embedded structures of multiplicity one supported at a fixed point can be
detached.

Theorem 2.3. For p ∈ X ⊂ PN , the following are equivalent:

(1) Every subscheme Y obtained from X by adding an embedded point of multi-
plicity one at p is a flat limit of X union an isolated point.

(2) X satisfies condition (b) of Proposition 2.2 at p.

In particular, these conditions hold if X is a local complete intersection.

Proof. In the setting of Proposition 2.1, let U = h−1(PN
−X)⊂ V correspond to the

subschemes obtained from X by adding an isolated point. Note that f (P̃N (X))=
U ⊂V , since it is a closed subset with dense open subset U ; hence for fixed p∈ X we
have an inclusion f (π−1(p))⊂h−1(p)∼=Pr−1. Now condition (b) holds if and only
if π−1(p)∼=Pr−1, if and only if f (π−1(p))= h−1(p) by reason of dimension and
irreducibility of Pr−1; but this equality is equivalent to h−1(p)⊂ f (P̃N (X))=U ,
which is equivalent to condition (a). If X is a local complete intersection of
codimension r , then it is well-known that π−1(p) ∼= Pr−1 [Hartshorne 1977, II,
Theorem 8.24(b)]; hence condition (b) from Proposition 2.2 holds. �

We can make a stronger statement when X is a hypersurface.

Proposition 2.4. If Y is obtained from a hypersurface X ⊂PN by adding embedded
points of any multiplicities, then Y is a flat limit of X union isolated multiple points.
In particular, Y is a flat limit of X union isolated reduced points if the multiplicities
are at most seven. For N ≥ 4, there exist embedded structures of multiplicity eight
in Y such that Y is not a flat limit of X union eight reduced points.

Proof. Suppose that Y is defined by the surjection IX → K , where K is of finite
length supported at the embedded points p. Then K ∼=

⊕
p OZ p for finite length

subschemes Z p supported at p (IX is principal) and IY = IX · IZ , where Z is
the union of the zero-dimensional subschemes Z p. Use automorphisms of PN to
deform Z to Z t such that the support of Z t does not intersect X for t 6= 0. Then
IX∪Z t = IX ·IZ t for t 6= 0 and in considering the associated schemes it is clear
that Y is a flat limit of X ∪ Z t . If the length of Z t is ≤ 7, then Z t is a flat limit of
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reduced points [Mazzola 1980; Cartwright et al. 2009]; hence Y is a flat limit of X
union isolated reduced points.

For N ≥ 4, there exists a nonsmoothable, length-8 subscheme Z ⊂PN [Iarrobino
and Emsalem 1978; Cartwright et al. 2009]. Choose an open affine U ∼= AN

on which IX is trivial, apply an automorphism of PN to translate Z so that the
support of Z lies in U ∩ X , and let Y be the subscheme defined by the surjection
IX ∼= O→ OZ . If IX = ( f ) locally, then IY = ( f )IZ and Y cannot be a flat
limit of X union eight isolated points, for then IY would be the flat limit of ideals
( f )IZ t , where Z t consists of eight isolated points and from the expression of IY

we would obtain IZ as a flat limit of IZ t , a contradiction. �

Example 2.5. We give two examples in which Theorem 2.3 applies.

(a) If X ⊂ PN is a local complete intersection of codimension r at p, then IX,p =

( f1, . . . , fr ) ⊂ OPN ,p, where f1, . . . , fr cut out X at p. An embedded point is
determined by a surjection ϕ : IX,p→ k(p). After changing generators, we may
assume ϕ( f1)= 1 and ϕ( fi )= 0 for i > 1 so that the ideal for the corresponding
subscheme Y locally at p is (m p f1, f2, . . . , fr ).

(b) Use [x, y, z, w] to denote the coordinates of P3. Let C ⊂ P3 be the union of
three coordinate axes with ideal IC = (xy, xz, yz). Away from the origin [0, 0, 0, 1],
C is a local complete intersection. Working on the affine patch w 6= 0, one computes
that the blow-up at C has fiber P2 over the origin, so condition (b) of Proposition 2.2
holds at each point. It follows from Theorem 2.3 that any subscheme D obtained
from C by adding an embedded point is a flat limit of C with an isolated point.

Example 2.6. We give two examples where Theorem 2.3 does not apply.

(a) Fix a line L ⊂ P3 and define X by IX = Id
L with d > 1. Then IX is generated

by d+1 elements at each p ∈ X (IX = I d
L ), but π−1(p)∼=P1 because the blow-ups

of P3 at IL and Id
L are isomorphic [Hartshorne 1977, II, Example 7.11(a)], so

condition (b) of Proposition 2.2 fails.

(b) The curve X ⊂ P3 with ideal (x2, xy, y3) is ACM with locally 3-generated
ideal sheaf at each point p ∈ X ; hence it is not possible that π−1(p)∼= P2 for each
p ∈C , for then the exceptional divisor would have dimension 3. Therefore a general
embedded point cannot be detached while leaving X fixed. Nevertheless, such an
embedded point can be detached in the Hilbert scheme due to the following.

Proposition 2.7. Let X0 ⊂ PN be ACM of codimension two with 3-generated
homogeneous ideal IX0 . Then each subscheme Y obtained from X0 by adding an
embedded point of multiplicity one is the flat limit of local complete intersection
ACM subschemes union an isolated point.
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Proof. Write O for the structure sheaf of PN . Since X0 is ACM and IX0 is
3-generated, the ideal sheaf has minimal resolution

0→
2⊕

j=1
O(−b j )

ψ0
→

3⊕
i=1

O(−ai )
π0
→ IX0 → 0 (4)

and IY is the kernel of a surjection ϕ :IX0→Op. Our strategy is to deform the exact
sequence (4) along with ϕ to obtain subschemes X t that are local complete intersec-
tions and maps ϕt : IX t → Opt to define the family Yt . We carry this out in steps:

Claim 1. There is a lift of ϕ ◦ π0 :
⊕3

i=1 O(−ai )→ Op to ϕ̃ :
⊕3

i=1 O(−ai )→ O

such that the composite

ϕ̃ ◦ψ0 :
2⊕

j=1
O(−b j )→ O

is induced by multiplying (F,G), where F and G are homogeneous polynomials of
degrees b1 and b2 with no common factor.

Claim 2. There is a map

ψ1 :
2⊕

j=1
O(−b j )→

3⊕
i=1

O(−ai )

whose cokernel is the ideal sheaf of a local complete intersection X1.

Once we have established the claims, the rest is straightforward. Construct the
linear deformation ψt = tψ1+ (1− t)ψ0 for t ∈ A1 and write the composite maps
ϕ̃ ◦ψt :

⊕2
j=1 O(−b j )→ O as (Ft ,G t). Then the schemes St given by Ft =G t = 0

are complete intersections in a neighborhood of t = 0 because this is true for S0 by
construction. If S⊂PN

×A1 is the total family, there is an integral curve T through
(p, 0) inside S which is not vertical at (p, 0) and base extension by T →A1 allows
us to pick out a moving point pt ∈ St with p0 = p. By abuse of notation we will
use the same letter t for the parameter.

Let
ϕt :

3⊕
i=1

O(−ai )
ϕ̃
→ O→ Opt = k(pt)

be the composition. For general t 6= 0, Cokerψt is the ideal sheaf of an ACM
local complete intersection X t and ϕt ◦ ψt = 0 by construction (since pt ∈ St );
hence we get induced maps IX t → Opt . Since ϕ0 is onto, so is ϕt for general t , the
kernels giving a family of ideals IYt for a family of local complete intersections X t

converging to X0 along with a point pt converging to p = p0. If pt 6∈ X t , then we
are done. If pt ∈ X t for each t , then we have at least shown that Y is a flat limit of
complete intersections having an embedded point. By Proposition 2.2, these are flat
limits of local complete intersections with an isolated point and we again conclude
the proof. It remains to establish the two claims above.
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Proof of Claim 1. The composition ϕ ◦π :
⊕3

i=1 O(−ai )→ Op lifts to

ϕ̃ :
3⊕

i=1
O(−ai )→ O

because H 0
∗
(OP3)→ H 0

∗
(Op) is surjective in positive degrees. Let us write this

map as ϕ̃ = (A1, A2, A3) ∈ H 0(
⊕3

i=1 O(ai )). Then the general such lift ϕ̃ may be
written (A1+ B1, A2+ B2, A3+ B3) with Bi ∈ Ip. Writing

ψ0 =

(
f1 f2 f3

g1 g2 g3

)
,

the desired composite map is given by (F,G)= (
∑
(Ai + Bi ) fi ,

∑
(Ai + Bi )gi )

and we need to show that F and G have no common factor. For this it suffices
to show that the zero loci of F and G meet properly. Letting L be a line missing
X0 (and p), we will show that there are no common zeros along L , for general Bi .
Restricting the resolution (4) to L and dualizing yields the exact sequence

0→ OL →
3⊕

i=1
OL(ai )

ψ∨0 ⊗OL
→

2⊕
j=1

OL(b j )→ 0.

Since b j >0, the rank-two bundle on the right has a nonvanishing section, which lifts
to a section (r1, r2, r3) of the rank-three bundle

⊕3
i=1 OL(ai ). Since the equations

in Ip of degree d > 0 cut out the complete linear system H 0(OL(d)), we can find
Bi ∈ Ip such that (Ai + Bi )

∣∣
L = ri , for i = 1, 2, 3, and this choice proves our

claim because the nonvanishing image of (r1, r2, r3) in
⊕2

j=1 OL(b j ) is given by
the restrictions of the polynomials

∑
(Ai + Bi ) fi and

∑
(Ai + Bi )gi ; hence these

have no common zeros along L . �

Proof of Claim 2. It is well-known that the degeneracy locus X1 of the general such
map ψ1 is codimension two and regular in codimension one [Chang 1989]. Here
we show that X1 is a local complete intersection as well. In the exact sequence
(4) we may take a1 ≤ a2 ≤ a3, b1 ≤ b2, and b1 > a1 (if b1 = a1, we can cancel off
this summand and X0 is a complete intersection, when Claim 2 is clear). Since∑

b j =
∑

ai (because c1(IX0)= 0), it follows that d1= a3+a2−b1= b2−a1 > 0
and d2 = a3+ a2− b2 = b1− a1 > 0, so let Z be a complete intersection of two
general hypersurfaces of degrees d1 and d2. It is easy to check d2 ≤ d1 ≤ a3 and
d2 ≤ a2, therefore we can link Z to X by a complete intersection C = K1 ∩ K2 of
hypersurfaces of degrees a2 and a3. The inclusion

0 // O(b1+ b2− 2a2− 2a3) // O(b2− a2− a3)⊕O(b1− a2− a3) // IZ // 0

0 // O(−a2− a3) //

OO

O(−a2)⊕O(−a3) //

OO

IC //

OO

0,
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and the cone construction from liaison theory [Migliore 1998, Proposition 5.2.10]
yields the resolution

0→ O(−b1)⊕O(−b2)→ O(−a1)⊕O(−a2)⊕O(−a3)→ IX → 0.

Hence X has the same type of resolution as X0. By Bertini’s theorem, the general
hypersurface K2 containing Z is smooth, so X is Cartier on K2 and hence a local
complete intersection. Now just take X1 = X and the claim is proved. �

Example 2.8. The easiest way to construct curves in P3 satisfying the hypotheses
of Proposition 2.7 is by linking to a complete intersection, as in the proof of Claim 2.

(a) Any purely one-dimensional curve C ⊂ P3 of degree 3 and genus 0 is ACM
[Piene and Schlessinger 1985] and has a resolution of the form

0→ O(−3)2→ O(−2)3→ IC → 0

as noted in [Ellingsrud 1975, Example 1], and links to a line by a complete intersec-
tion of two quadric surfaces. In particular, this holds for the triple line with ideal
(x2, xy, y2).

(b) If C ⊂P3 is any locally Cohen–Macaulay curve of degree 4 and genus 1, then C
is nonplanar, so h1(IC0(n))≤ (d−2)(d−3)/2−g= 0 for all n [Martin-Deschamps
and Perrin 1993, Theorem 1.3] and therefore C is ACM. Now χ(IC(1))= 0, so
H 2(IC(1))= 0. Furthermore H 1(IC(2))= 0 (C is ACM) and H 3(IC(0))= 0 so
IC is Mumford 3-regular. In particular IC(3) is generated by global sections, and
we can link C by the complete intersection of a quadric and cubic to a curve D of
degree 2 and genus 0. Since D is planar, it is a complete intersection, so using the
method of the proof of Claim 2, above, we see that C has resolution

0→ O(−4)⊕O(−3)→ O(−3)⊕O(−2)2→ IC → 0

and again Proposition 2.7 applies to C . The quadruple line with ideal (x2, xy, y3)

is such an example, explaining Example 2.6(b).

Sometimes a one-dimensional subscheme D with embedded points is not a flat
limit of curves C union isolated points even if one allows C to deform. In other
words, the Hilbert scheme can have irreducible components whose general member
has an embedded point.

Example 2.9. We exhibit an irreducible component of Hilb4z+1−g(P3) whose gen-
eral member has an embedded point for any g ≤−15. The irreducible components
of the Hilbert schemes H4,g of locally Cohen–Macaulay curves of degree 4 and
arithmetic genus g are known [Nollet and Schlesinger 2003, Table III]. We note
two typographical errors in the table, namely the family G5 of double conics has
dimension 13− 2g instead of 13− 3g [Nollet and Schlesinger 2003, p. 189] and
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the general member of family G7,a should be W ∪3p L instead of just W . Now
consider the irreducible component G4 of dimension 9− 3g, consisting of thick
quadruple lines. Each curve [C] ∈ G4 has a supporting line L and there is an exact
sequence

0→ IC → IW
φ
→ OL(−g− 1)→ 0,

where W is the triple line given by IW = I2
L [Nollet and Schlesinger 2003, Propo-

sition 2.1]. The surjection φ factors through IW ⊗OL ∼= OL(−2)2, hence is given
by φ(x2)= a, φ(xy)= b, and φ(y2)= c for three homogeneous polynomials a, b,
and c of degree −g+ 1. Writing the ideal of C as

IC = (x3, x2 y, xy2, y3, axy− bx2, by2
− cxy),

we see that at general point p ∈ L , a, b, and c are units in the local ring OP3,p,
therefore IC,p = (x3, axy− bx2, by2

− cxy) and IC is generically 3-generated for
general φ.

Now consider the locus V ⊂ Hilb4z+2−g(P3) obtained by adding an isolated or
embedded point to C as above, as in Proposition 2.1. The closure of the component
corresponding to C along with isolated points has dimension three. Since IC is
generically 3-generated, the set of embedded point structures at general p ∈ C is
parametrized by P2 and we obtain a second three-dimensional family. Thus V
is reducible with at least these two three-dimensional components (conceivably
the locus where IC is generated by more elements could generate another family).
Varying the curve [C] ∈ G4, we obtain at least two corresponding families of
dimension 12− 3g (because dim G4 = 9− 3g). Let F be the closure of the family
whose general curve has an embedded point.

We claim that F is an irreducible component of Hilb4z+2−g(P3). The general
member [D]∈ F cannot be a flat limit of curves possessing more than one isolated or
embedded point (counted with multiplicity). Since G4 is an irreducible component
of H4,g for g ≤ −2, D is not a flat limit of another family of curves with an
isolated or embedded point of multiplicity one, because the underlying locally
Cohen–Macaulay curve C ⊂ D is not. Finally D cannot be a flat limit of locally
Cohen–Macaulay curves of genus g− 1 because the maximal dimension of such a
family for g ≤−15 is 12− 3g = dim F .

3. Detaching embedded points of multiplicity two or three

In this section we prove that if Y has embedded points of multiplicity two (see
Proposition 3.3) or three (see Proposition 3.7) and the underlying subscheme X⊂PN

is a local complete intersection of codimension two, then Y is a flat limit of X
union isolated points. Along with Theorem 2.3, this shows that an embedded point
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of multiplicity at most three can be detached from X , from which we deduce our
main result, Theorem 1.4.

We begin with several propositions that take care of the easier cases, leaving the
more difficult cases to Proposition 3.7. We also show that these results may fail for
local complete intersections of codimension greater than two (Example 3.6) and
for embedded points of multiplicity greater than three (Example 3.10).

Proposition 3.1. Let X ⊂ PN be a local complete intersection of codimension two,
Z a zero-dimensional subscheme of embedding dimension at most one and suppose
that Y is defined by the exact sequence

0→ IY → IX
ϕ
→ OZ → 0.

Then Y is a flat limit of X union isolated points.

Proof. Since the result is local, we may assume that Z is supported at a point p
and has length d . Since Z has embedding dimension ≤ 1, we can choose a smooth
connected curve C0 of high degree containing Z and not entirely in X . If p 6∈ X ,
the result is clear because Z is a flat limit of isolated points in C0. In the interesting
case p ∈ X , our idea is to take a deformation Ct of C0 and use d isolated points in
Ct to perform the detaching process.

Let C be a translation of C0 by PGL(N + 1) which misses X . Now for m� 0,
the general pair F,G ∈ H 0(IX (m)) give hypersurfaces which cut out X in an open
neighborhood of p. Write O for the structure sheaf of PN . For the purposes of this
proof we may assume that X is equal to the complete intersection defined by F and
G, giving the Koszul resolution

0→ O(−2m)
ψ
→ O(−m)⊕O(−m)

π
→ IX → 0. (5)

Because the restriction map H 0(O(m))→ H 0(OZ (m)) is surjective for m� 0,
we can lift the images of F,G to O, hence the composition ϕ ◦π : O(−m)2→ OZ

factors through O and we obtain ϕ̃ : O(−m)2→ O inducing ϕ. The composition
ϕ̃ ◦ψ vanishes on a hypersurface S of degree 2m containing both X and Z .

By Bertini’s theorem, we could have chosen the equations F and G cutting
out X near p to be smooth away from X , meeting C in disjoint reduced sets of
points, so the restrictions to C induce a sheaf surjection O2

C → OC(m). If ϕ̃ is
given by A0, B0 ∈ H 0(O(m)), then S has equation F A0 + G B0 = 0, but A0 and
B0 are only determined up to elements of H 0(IZ (m)). Since the natural map
H 0(IZ (m))2→ H 0(OC(m)) is surjective, given by (A, B) 7→ F A+G B, we may
choose A0 and B0 to assume that S ∩C is a reduced set of 2m(deg C) points.

Now consider a family of translations Ct from C to C0, parametrized by t ∈ A1.
Now C0 ∩ S contains Z at p and Ct ∩ S consists of 2m(deg C) reduced points
for general t 6= 0. Possibly after a base extension, we may pick d distinct points
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p1,t , p2,t , . . . , pd,t in S ∩ Ct near p. Letting Z t = {p1,t , p2,t , . . . , pd,t }, the flat
limit of Z t is exactly Z , because the ideal of the limit contains the equations of the
curve C0 by construction, and Z is the unique length-d subscheme of C0 at p.

Letting ϕt be the composition

O(−m)2
ϕ̃
→ O→ OZ t ,

we have ϕt ◦ψ = 0 by construction, so these maps factor through IX and we obtain
a family of maps ϕt : IX → OZ t . Since ϕ0 = ϕ is surjective, so are ϕt for t near 0
and the family IYt = kerϕt gives the desired family. �

Proposition 3.2. Let X ⊂ PN be a local complete intersection, K a sheaf of finite
length supported at p, and Y and Y 1 defined by the commutative diagram of short
exact sequences

0 // IY //

��

IX
ϕ=(α,β) //

��

K ⊕Op //

π1��

0

0 // IY 1 // IX
α // K // 0.

Then Y is a flat limit of Y 1 union an isolated point. In particular, if Y 1 is a flat limit
of X union isolated points, then so is Y .

Proof. The result is local at p. The direct sum allows us to write ϕ = (α, β), where
α defines Y 1 as above. The surjection β : IX → Op defines an embedded point
structure Y 2 on X . Since X is a local complete intersection, Y 2 is a flat limit of X
union an isolated point by Theorem 2.3, meaning that there is a flat family Y 2

t for
t ∈ T with Y 2

0 = Y 2 and Y 2
t = X ∪ pt with pt 6∈ X for t 6= 0. This gives a family of

surjections βt : IX → Opt with IY 2
t
= kerβt and β0 = β.

Let γt : IY 1 ⊂ IX
βt
→ Opt be the composite map. Clearly γt is surjective for

t 6= 0, because pt 6∈ IX , so the inclusion IY 1 ⊂ IX is an equality at these points.
The map γ0 is also a surjection, since, locally at p, if we choose f ∈ IX such that
ϕ( f )= (0, 1), then α( f )= 0⇒ f ∈IY 1 and γ0( f )= 1. This family of maps gives
a flat family Yt , and for t 6= 0 Yt consists of Y 1 union an isolated point. Finally, the
kernel of γ0 : IY 1 → Op is exactly IY , for g ∈ IY 1 ⇒ g ∈ IX and α(g)= 0. Now
γ0(g)= 0⇐⇒ β(g)= 0⇐⇒ ϕ(g)= 0⇐⇒ g ∈ IY . �

Proposition 3.3. Let X ⊂ PN be a local complete intersection of codimension two
and obtain Y by adding an embedded point of multiplicity two with associated exact
sequence

0→ IY → IX
ϕ
→ K p→ 0,

where K p is a sheaf of length 2 supported at p. Then either (a) K p ∼= Op ⊕ Op,
or (b) K p ∼= OZ , where Z ⊂ PN has length 2. In either case, Y is a flat limit of X
union two isolated points.



744 Dawei Chen and Scott Nollet

Proof. If K p ∼= Op ⊕ Op, apply Proposition 3.2. Since Y 1 is obtained from X by
adding an embedded point of multiplicity one, it is a flat limit of X union an isolated
point, hence Y is a flat limit of X union two isolated points.

Now suppose K p � Op ⊕ Op. Then the surjection K p→ K p ⊗ k(p) is not an
isomorphism, thus K p ⊗ Op is one-dimensional as an Op = k(p) vector space.
Therefore K p is principal by Nakayama’s lemma, so there is a surjection O→ K p

whose kernel is the ideal sheaf IZ of a length-2 subscheme, which is contained in
a unique line and has embedding dimension one. We apply Proposition 3.1 to see
that Y is a flat limit of X union two isolated points. �

Remark 3.4. We give the local equations of the embedded point structures for
cases (a) and (b) of Proposition 3.3 for X ⊂ PN :

(a) If IX,p = ( f, g), then IY,p = m p · IX,p.

(b) Replacing generators so that ϕ( f )=1 and ϕ(g)=0, we obtain IY,p= (g, f ·IZ ),
Z being the length-2 subscheme.

Example 3.5. In case (b) of Proposition 3.3, there is a unique subscheme X ⊂
E ⊂ Y with an embedded point of multiplicity one, because the unique length-1
quotient of OZ is Op, obtained by modding out by the maximal ideal. Using such
subschemes E , we explain why it was necessary to prove case (b) by pulling away
two points simultaneously. For example, let X ⊂ A3 have ideal IX = (x2, y2) and
let p = (0, 0, 0), where [x, y, z] denotes the coordinates of A3. Add an embedded
point to X at p using the map IX → k by x2

7→ 1, y2
7→ 0 to obtain E with

IE = (y2, x3, x2 y, x2z) being 4-generated. By Proposition 2.2, one can add a
second point at p to obtain Y with an embedded point of multiplicity two, which is
not a flat limit of E union an isolated point.

Example 3.6. Proposition 3.3 may fail for local complete intersections of codi-
mension greater than two. For example, suppose that C ⊂ P4 is the complete
intersection with ideal IC = (x2, y2, z2), where [x, y, z, u, w] denotes the projective
coordinates. Consider the double point structures D on C given by surjections
φ : (x2, y2, z2)→ K =OZ , where Z is the double point with ideal IZ = (x, y, z, u2).
An arbitrary map φ : IC → S/IZ is given by

φ(x2)= a+ bu, φ(y2)= c+ du, φ(z2)= e+ f u,

where S is the coordinate ring of P4, a, b, c, d, e, f ∈ k, and any tuple (a, b, c, d,
e, f ) is possible because IC ⊂ IZ . The automorphisms of K = OZ are given by
multiplication by A+ Bu with A 6= 0. Thus the maps for which φ(x2) generates K
(that is, a 6= 0) are uniquely determined up to automorphisms of K by the quotients
φ(y2)/φ(x2) = (c + du)/(a + bu) and φ(z2)/φ(x2) = (e + f u)/(a + bu). By
Remark 1.8(a), these quantities uniquely determine the corresponding subschemes
D. In other words, if we compose the map above by the automorphism of OZ given
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by multiplication by (a + bu)−1
= (a − bu)/a2, we may assume that φ(x2) = 1

when the corresponding ideal of D is given by

(x2(IZ ), y2
− (c+ du)x2, z2

− (e+ f u)x2)

= (x3, x2 y, x2z, x2w2, y2
− (c+ du)x2, z2

− (e+ f u)x2)

and each tuple (c, d, e, f ) ∈ k4 yields a distinct subscheme D, so we obtain a
four-dimensional family of such double point structures D.

Finally, the same argument applies to any double point structure D on C . Since
there is a choice of any point p ∈ C for the support of K = OZ and the structure
of Z is uniquely determined by a line through p (parametrized by a hyperplane
P3), the family of such double point structures has dimension 1+ 3+ 4= 8. The
general such structure cannot be a flat limit of C union two isolated points, for this
family also has dimension eight.

Now we turn to the case of multiplicity three.

Proposition 3.7. Let X ⊂ PN be a local complete intersection of codimension two.
Let Y be the subscheme obtained from X by an exact sequence

0→ IY → IX
ϕ
→ K → 0,

where K is a length-3 sheaf supported at p. Then one of the following holds:

(a) K ∼= Op⊕OZ , where Z ⊂ PN is a double point on a line.

(b) K ∼= OZ , where Z ⊂ PN is a triple point on a line.

(c) K ∼= OZ , where Z ⊂ PN is a triple point on a smooth conic.

(d) K ∼= OZ , where Z is contained in a plane H and IZ ,H = I2
p,H .

(e) K ∼= HomOp(OZ ,Op) with Z as in case (d).

In each case, Y is a flat limit of X union three isolated points.

Proof. If K is a direct summand, one summand is Op and the other is O2
p or OZ for

a double point Z . The former is not possible as a quotient of the locally 2-generated
ideal IC , leading to case (a). If K is principal, then the surjection O→ K shows
that K ∼= OZ for a length-3 subscheme supported at p. Since h0(OZ (1)) = 3 and
h0(O(1)) = N + 1, Z is a planar triple point. It is easy to classify planar triple
points, leading to cases (b), (c), and (d). If K is not principal and not a direct
summand, then it is 2-generated as a quotient of IX via ϕ. The two generators
have a common nonzero multiple, otherwise they would express K as a direct sum
of two principal modules. The common nonzero multiple is therefore a generator
of the dual Hom(OZ ,Op), where OZ must be one of cases (b), (c), or (d). However,
the duals to cases (b) and (c) are principal and we are left with the dual of case (d),
which is case (e).
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That Y is a flat limit of X union three isolated points follows from Propositions 3.2
and 3.3 in case (a) and from Proposition 3.1 in cases (b) and (c). Cases (d) and (e)
require new ideas.

In case (d) we have K p ∼= OZ , where Z ⊂ H is the planar triple point supported
at p of embedding dimension two. As in Proposition 3.1, X is contained in
hypersurfaces with equations F and G of degree m� 0, giving a Koszul resolution
(5), ϕ :IX→OZ lifts to ϕ̃ :O(−m)2→O and there is a hypersurface S of degree 2m,
where ϕ̃ ◦ ψ = 0. The intersection H ∩ S contains an integral curve T passing
through p. Our idea is to realize this triple embedded structure as the flat limit of a
fixed double embedded structure at p union a single point varying in T .

Let T̃
f
→ T ⊂ H ∼= P2 be the normalization of T and choose a point 0 ∈ T

such that f (0) = p. For t 6= 0, let L t ⊂ H be the line through p and f (t). As
t→ 0, f (t)→ p and the line L t has a unique limit L0 (complete the associated
map T −{0}→ (P2)∨ to obtain this limiting line). Choose local coordinates x, y on
A2
⊂ P2 so that p = (0, 0) and L0 = {x = 0}. The double point W at p with ideal

(x2, y) is a closed subscheme of Z (which has ideal (x2, xy, y2)). We now show
that limt→0 f (t)∪W = Z in the Hilbert scheme of length-3 subschemes of H . If
f (t)= (a(t), b(t)) in the local coordinates above, then the ideal for W ∪ f (t) is

It = (x2, y)∩ (x − a(t), y− b(t)),

which contains the product of the two ideals. Since limt→0(a(t), b(t))= (0, 0), the
limiting ideal contains (x3, xy, y2). If the line L t has equation lt = 0, then l2

t ∈ It

and by choice of coordinates we have limt→0 l2
t = x2, so the limiting ideal also

contains x2 and hence (x2, xy, y2), which defines Z .
The rest is analogous to Proposition 3.1. The composite map

O(−2m)
ψ
→ O(−m)2

ϕ̃
→ O→ OS→ OW∪ f (t)

is zero, inducing a family of maps ϕt : IX → OW∪ f (t). Since ϕ0 is onto, so is ϕt

for t near 0. Therefore the kernels IYt give a flat family whose limit is Y as t→ 0.
Using our earlier results, for t 6= 0 each Yt is a flat limit of X union isolated points,
and therefore so is Y .

Finally consider case (e), where K p ∼= HomOp(OZ ,Op) with Op = k(p) the
residue field at p and Z ⊂ H ⊂ PN , with H a plane and IZ ,H = I2

p,H . Choose
affine coordinates x, y, z1, . . . , zN−2 centered at p so that IH = (z1, . . . , zN−2) and
x, y are coordinates for H ∼= A2. Let f, g be the restrictions of F,G to this affine
patch, so that IX = ( f, g). If g− u f = h ∈ IH for some unit u in the local ring,
replace g with h as a generator for IX . In this way we may assume g ∈ IH or ( f, g)
is not principal modulo IH locally around p. Now OZ is generated by 1, x, y as an
Op-vector space, so K p is generated by dual basis x∗, y∗, 1∗ as a vector space and
by x∗, y∗ as an OH -module with structure given by xx∗= 1∗= yy∗, xy∗= yx∗= 0.
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Since ϕ is surjective, ϕ( f ) = ax∗ + by∗ + c1∗ and ϕ(g) = dx∗ + ey∗ + f 1∗ are
also module generators for K p, and in particular ae − bd 6= 0. Now consider
the new coordinates X = ay − bx, Y = ex − dy for H . With these one sees that
Ann(ϕ( f ))= (IH , X), Ann(ϕ(g))= (IH , Y ), and Yϕ( f )= (ae−bd)1∗ = Xϕ(g).
It follows that IY = (IH ( f, g), X f, Y g, Y f − Xg). So by replacing the coordinates,
we can present the ideal of Y as

IY = (IH ( f, g), x f, yg, y f − xg).

We will directly deform this ideal to obtain the result. The locus

S = {(A, B,C, D) :

f (A, B)= 0, g(C, D)= 0, (B− D)g(C, B)− (C − A) f (C, B)= 0}

contains (0, 0, 0, 0) and each component has dimension ≥ 1; hence S contains an
integral curve T through the origin. Let σ : T → H × H ∼= A4 be the inclusion
with coordinate functions σ(t)= (a(t), b(t), c(t), d(t)) and 0 ∈ T chosen so that
σ(0)= (0, 0, 0, 0). We claim that T can be chosen with (a(t), b(t)) 6= (c(t), d(t)).
This is clear if g ∈ IH , for then the second equation g(C, D)= 0 puts no restriction
on C and D, and S is defined by only two equations: on a surface there are many
integral curves T through the origin. The other possibility by our assumption is
that g 6= u f modulo IH for any invertible u in an affine neighborhood of the origin.
Here the restrictions of f and g to H have a greatest common divisor h so that
f = h f1 and g = hg1 with f1 and g1 vanishing at the origin and relatively prime
modulo IH locally around the origin. If we look at the sublocus of S defined as
above with f1 and g1 in place of f and g, the condition of the claim holds and we
obtain the desired integral curve T .

Now consider the family of ideals

It =
(
IH ( f, g), (x − c(t)) f, (y− b(t))g, (y− d(t)) f − (x − a(t))g

)
.

We claim that the ideal It scheme-theoretically cuts out exactly X and the three points
(a(t), b(t)), (c(t), b(t)), and (c(t), d(t)) (which may be isolated or embedded, two
may coincide if a(t)= c(t) or b(t)= d(t)) for generic t near 0.

The claim holds away from H via the generators IH ( f, g). At points (x, y) ∈ H
away from (a, b), (c, b), and (c, d) (we suppress the variable t) the claim also holds.
If x 6= c, then x − c is a unit, f ∈ It and there are two cases: if x = a, then y 6= b,
hence y− b is a unit and g ∈ It ; otherwise x 6= a and the last equation shows that
g ∈ It . If x = c, then y 6= b, d , so g ∈ It and f ∈ It by the last equation.

Finally we consider (x, y) ∈ {(a, b), (c, b), (c, d)}. The claim is easily checked
if these points are distinct (a 6= c and b 6= d) by checking that length IX/It = 1.
For example, at (x, y)= (a, b) we have x 6= c so f ∈ It , when IX/It is generated
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by g alone, and since IH g, (y− b)g, (x − a)g ∈ It , we have IX/It ∼= k. The other
points (x, y)= (c, b), (c, d) are similar. In the degenerate case a = c, we need to
show that length IX/It = 2 at (x, y)= (a, b)= (c, b). Here y 6= d so u = (y− d)
is a unit and u f − (x − a)g ∈ It , showing that IX/It is generated by g. Further It

contains IH g, (y − b)g, and (x − c)2g (use (x − c) f and u f − (x − c)g), so the
quotient has length 2. The other degenerate case b = d can be verified similarly.
This proves the claim.

With the claim, the ideal It cuts out X and three other points (possibly embedded
in X , but not all supported at the same point). Using our earlier results, these
schemes are flat limits of X and isolated points. Since limt→0(a(t), b(t), c(t), d(t))
= (0, 0, 0, 0) by construction, we also have limt→0 It = IY , and we conclude. �

Remark 3.8. For IX,p = ( f, g) locally at p in Proposition 3.7, we write local
equations for the embedded point structure Y according to the various cases:

(a) If K p = Op ⊕ OZ and ϕ( f ) = (1, 0), ϕ(g) = (0, 1), then IY,p = ( f m p, gIZ )

with f ∈ IZ .

(b) If K p = OZ and ϕ( f )= 1, ϕ(g)= 0, then IY,p = ( f IZ , g) with g ∈ IZ .

(c) Similarly we have IY,p = ( f IZ , g) with g ∈ IZ .

(d) Again we have IY,p = ( f IZ , g) with g ∈ IZ .

(e) This is the most interesting structure. As shown in the proof, IY,p = (x f −
yg, y f, z f, xg, zg) for suitable coordinates x, y, z.

Putting these results together, we obtain our main theorem.

Theorem 3.9. Let X ⊂ PN be a local complete intersection of codimension two. If
Y is obtained from X by adding embedded points of multiplicity at most three, then
Y is a flat limit of X union isolated points.

Proof. Suppose the embedded points are supported at p1, . . . , pr with respective
multiplicities m1, . . . ,mr ≤ 3. If Y1 is the scheme which is isomorphic to Y near
p1 and equal to X away from p1, it follows from Theorem 2.3 and Propositions 3.3
and 3.7 that Y1 is in the Hilbert scheme closure of the family consisting of X union
m1 isolated points. Similarly if Y2 is locally isomorphic to Y near p2 and equal to
X away from p2, Y2 is in the closure of the family of X union m2 points. It follows
that Y1 ∪ Y2 is in the closure of the family of Y1 union m2 isolated points, the fixed
embedded point at p1 not affecting the relevant deformations. Since Y1 union m2

isolated points is in the closure of the family of X union m1+m2 isolated points,
we see that Y1∪Y2 is in this closure as well. Adding one point at a time in this way
we find that Y is in the closure of the family of X union m1 + · · · +mr isolated
points. �
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Example 3.10. Here we show that it is not always possible to detach embedded
points of multiplicity four. For linearly independent variables x, y, z, w, consider
the R = k[x, y, z, w]-module K given by

K = 〈a, b〉/(za, wa, xb, yb, xa− zb, ya−wb).

In changing the choice of vector space basis for the linear forms x, y, z, w, we
obtain a family of such modules on which the group GL(4) acts. It’s easily checked
that the R-module automorphisms of any fixed K have dimension five (one can
write them down explicitly). For another K ′ determined by basis x ′, y′, z′, w′ and
an isomorphism ψ : K → K ′, the map ψ uniquely determines x ′, y′, z′, w′ in terms
of x, y, z, w, because the relations yield 16 equations in 16 unknowns. One can
check that the family of candidate isomorphisms ψ has dimension 12 and a five-
dimensional subspace corresponds to the identity coordinate change. Hence, we find
that the isomorphism classes of such modules K has dimension 16− (12− 5)= 9.

Now for X ⊂PN given by IX = (x2, y2), the family of embedded point structures
on X given by such K has dimension 5N − 6. The choice of the support of K has
dimension equal to dim X = N − 2; choosing the linear subspace 〈x, y, z, w〉 at
p is given by G(4, N ) of dimension 4N − 16; choosing the isomorphism class of
K has dimension nine (see above); the choice of map ϕ : IX → K depends on
eight parameters, but the resulting family of ideals IY given by the kernels has
dimension three because the automorphisms of K have dimension five. All in all,
the family has dimension (N −2)+ (4N −16)+9+ (8−5)= 5N −6. For N ≥ 6,
we have 5N − 6≥ 4N , so the family cannot lie in the 4N -dimensional closure of
those obtained by unions of X with isolated points.

4. Applications to Hilbert schemes

In the previous section we proved various results about when a local complete
intersection X with embedded points are flat limits of X union isolated points. In
this section we apply these results to describe the irreducible components of certain
Hilbert schemes. In view of Proposition 2.4, we deduce the following:

Theorem 4.1. Let p(z) be the Hilbert polynomial of a degree-d hypersurface in
PN . Then:

(a) The Hilbert schemes Hilbp(z)+e(PN ) are irreducible for 0≤ e ≤ 7.

(b) The Hilbert scheme Hilbp(z)+1(PN) is smooth, isomorphic to Hilbp(z)(PN)×PN.

Proof. It follows from Proposition 2.4 that any (multiple) embedded point can be
detached from a hypersurface, and for e ≤ 7 we also know that any subscheme of
length e≤ 7 is a flat limit of reduced points [Mazzola 1980; Cartwright et al. 2009].
Therefore Hilbp(z)+e(PN ) is the closure of the open subset formed by a degree-d
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hypersurface and e isolated points and Hilbp(z)+e(PN ) is irreducible of dimension(d+N
d

)
− 1+ Ne.

Now take e = 1. It is easily checked that the Hilbert scheme is smooth at points
corresponding to a hypersurface and an isolated point. Write [x0, x1, . . . , xN ] for
the coordinates of PN . If X ⊂PN is a degree-d hypersurface and Y is obtained from
X by adding an embedded point located at x1 = x2 = · · · = xN = 0, then the ideal
of Y is simply IY = (x1, x2, . . . , xN ) · IX , so IY is generated in degree d+ 1. Since
the generator of IX → K is onto, H 1(IY (n))= 0 for n ≥ d and so the comparison
theorem [Piene and Schlessinger 1985] applies (see also [Ellingsrud 1975; Kleppe
1979]). Now the argument of [Piene and Schlessinger 1985, Lemma 4, Case (iii)]
goes through, which we include for self-containment: H 0(NY )= Hom(IY , S/IY )0,
where S is the coordinate ring of PN and NY is the normal sheaf to Y . Given
the dimension of Hilbp(z)+1(PN ), it suffices to prove that dim Hom(IY , S/IY )0 ≤(d+N

d

)
− 1+ N . Setting A = S/IY and K = IX/IY , the S-module K has Koszul

resolution of the form

0→ S(−d−N )→· · ·→ S(−d−2)N (N−1)/2
→ S(−d−1)N

→ S(−d)→ K→ 0.

Applying Hom(−, A) to this resolution shows Hom(K , A)= K (d) and Ext1(K , A)
is generated by the vectors ( f x0)ei with 1≤ i ≤ N , where f is the defining equation
of X . Applying Hom(−, A) to the short exact sequence IY → IX → K gives

0→ Hom(K , A)→ Hom(IX , A)→ Hom(IY , A)→ Ext1(K , A)→ · · ·

but dim Hom(K , A)0 = dim K (d)0 = 1 and Hom(IX , A) ∼= A(d), hence we have
dim Hom(IX , A)0=

(d+N
d

)
. Since dim Ext1(K , A)0≤ N by the above, we conclude

that the Hilbert scheme is smooth. The natural rational map Hilbp(z)(PN )×PN
→

Hilbp(z)+1(PN ) is actually a bijective morphism in view of the unique form of the
ideal, and hence is an isomorphism by Zariski’s main theorem. �

We are also interested in Hilbert schemes of space curves and obtain the following
irreducibility result for one-dimensional subschemes of high genus. Recall that if
C is a space curve of degree d, then g = pa(C) ≤

(d−1
2

)
with equality for plane

curves.

Theorem 4.2. The Hilbert scheme Hilbdz+1−g(P3) is irreducible for (d, g) satisfy-
ing d ≥ 3,

(d−1
2

)
−4< g ≤

(d−1
2

)
, and g >

(d−2
2

)
, with a general member consisting

of a plane curve of degree d union isolated points.

Proof. The Hilbert scheme is nonempty for all g ≤
(d−1

2

)
due to plane curves

union isolated points. For d ≥ 3, the genus of a nonplane curve satisfies g ≤
(d−2

2

)
[Hartshorne 1994], so if [C] ∈ Hilbdz+1−g(P3) and C0 ⊂ C is the curve remaining
after removing embedded or isolated points, then C0 is planar, hence a complete
intersection. Since C is obtained by adding at most three embedded or isolated
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points, it is a flat limit of those with isolated points by Propositions 2.2, 3.3, and 3.7,
and we conclude that the corresponding Hilbert scheme is irreducible. �

When just one isolated or embedded point is added to a plane curve of degree d
and genus g= (d−1)(d−2)/2, the resulting Hilbert scheme component is smooth:

Theorem 4.3. For g = (d − 1)(d − 2)/2, the component Hd ⊂ Hilbdz+2−g(P3)

of the Hilbert scheme whose general member is a degree-d plane curve union an
isolated point is smooth for all d ≥ 1. Moreover, Hd is isomorphic to the blow-up
of Hilbdz+1−g(P3)×P3 along the incidence correspondence.

Proof. For d = 2 and 3, this was proved in [Chen et al. 2011] and [Piene and
Schlessinger 1985], respectively, even though Hd is not the full Hilbert scheme in
these cases. For d = 1 and d ≥ 4, Hd is the full Hilbert scheme, and it suffices
to compute the global sections H 0(ND) of the normal sheaf associated to a point
[D] ∈ Hd ; so let D be the union of a plane curve C and the point p = (0, 0, 0, 1).
If p 6∈ C , smoothness follows from ND ∼= NC ⊕Np. If p ∈ C is an embedded
point, write IC = (z, f ) with f ∈ (x, y) and z = 0 the equation of the plane H
containing C . Consider the exact sequence (1):

0→ ID→ IC
ϕ
→ Op→ 0.

If ϕ(z)= 0, then D⊂ H and h0(ND,H )=
(d+2

2

)
+1 from Theorem 4.1, so the exact

sequence
0→ ND,H → ND,P3 → OD(1)→ 0

yields h0(ND,P3) ≤
(d+2

2

)
+ 1+ h0(OD(1)). If d ≥ 4, then h0(OD(1))= 4 and we

have h0(ND,P3) ≤ dim Hd , so Hd is smooth at [D]. Similarly, h0(OD(1)) = 3 if
d = 1 and we obtain h0(ND)≤ 7= dim H1.

Now suppose that ϕ(z) 6= 0 and d ≥ 4, since the case d = 1 is straightforward.
Write [x, y, z, w] for the coordinates of P3 and S for the coordinate ring. The exact
sequence (1) shows that h1(ID(n))= 0 for all n > 0; hence the map (S/ID)n→

H 0(OD(n)) is an isomorphism for all n > 0. It follows that the comparison theorem
[Piene and Schlessinger 1985] (see also [Ellingsrud 1975; Kleppe 1979]) applies
to D so that H 0(ND) ∼= Hom(ID, S/ID)0. Since ϕ( f ) = λϕ(zwd−1) for some
λ ∈ k, ϕ( f − λzwd−1)= 0 and we may write ID = (xz, yz, z2, f − λzwd−1). For
smoothness at [D], it suffices to show this when λ = 0, because the members of
the family parametrized by λ are projectively equivalent for λ 6= 0. Thus we may
assume ID = (xz, yz, z2, f ) with f ∈ (x, y) and write f = xg+ yh for g, h ∈ Sd−1.

Now consider ρ ∈Hom(ID, S/ID)0. Observe that a basis for (S/ID)2 consists of
{x2, xy, y2, zw,w2, wx, wy} and there is a similar basis for (S/ID)3 consisting of
eleven monomials because deg f > 3. In terms of these bases, the Koszul relations

zρ(xz)= xρ(z2), zρ(xy)= yρ(z2), xρ(yz)= yρ(xz)
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require that

ρ(z2)= a1wz, ρ(xz)= a2wz+ a3xz+ a4x2
+ a5xy,

ρ(yz)= a6wz+ a3zy+ a4xy+ a5 y2.

Modulo (xz, yz, z2) we may write

ρ( f )= a7zwd−1
+G,

with G ∈ k[x, y, w]d . Now gρ(zx)+ hρ(zy) = zρ( f ) = zG modulo ID gives a
linear relation between the coefficient of wd in G and a2 and a6. Since ρ( f ) is
only determined modulo f , there are

(d+2
2

)
− 2 degrees of freedom in choosing

ρ( f ), so that

dim Hom(ID, S/ID)0 ≤ 7+
(

d + 2
2

)
− 2=

(
d + 2

2

)
+ 5= dim Hd .

The second statement follows from Proposition 2.1 by varying C . Indeed,
the rational map M = Hilbdz+1−g(P3)× P3 99K Hd ⊂ Hilbdz+2−g(P3) given by
(C, p) 7→ C ∪ p has indeterminacy locus equal to the incidence correspondence
1={(C, p) : p ∈C}. For fixed [C] ∈Hilbdz+1−g(P3), the fiber is isomorphic to P3

and via this isomorphism the intersection with 1 is identified with C ⊂ P3. Thus
when 1 is blown up, the fiber over C is identified with P̃3(C), which according to
Proposition 2.1 is in bijective correspondence with V ⊂ Hd (using the notation in
Proposition 2.1). It follows that after blowing up the indeterminacy locus 1⊂ M
we obtain a bijective morphism M̃(1)→ Hd , which is an isomorphism by Zariski’s
main theorem. �

Remark 4.4. One can verify by similar tangent space calculations that the Hilbert
scheme of plane curves with two isolated or embedded points is singular exactly
along the plane curves with the double embedded points of type (a) in Proposition 3.3.
It is interesting that the Hilbert scheme is smooth along curves with the double
embedded points of type (b).

Example 4.5. The only locally Cohen–Macaulay curve of degree 1 is a line. By our
results, any curve obtained from a line L by adding ≤ 3 embedded points is a flat
limit of L union the right number of isolated points. It follows that Hilbz+1−g(P3)

is irreducible of dimension 4−3g for −3≤ g≤ 0. On the other hand, it is reducible
for g � 0 because the Hilbert scheme of sufficiently many points in P3 is not
irreducible [Iarrobino 1972].

Example 4.6. For one-dimensional subschemes of degree 2 and high genus the
irreducible components of Hilb2z+1−g(P3) are as follows:

(a) If g = 0, the Hilbert scheme is irreducible, consisting of plane curves.
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(b) If g = −1, there are two irreducible components. The first component H1

has general member a pair of skew lines and has dimension eight. The second
component H2 has general member a plane conic union an isolated point and has
dimension 11. There are also plane curves with embedded points, but these lie in
H2 by Proposition 2.2. Both components H1 and H2 are smooth [Chen et al. 2011].

(c) Similarly if g =−2, there are three irreducible components. There is the family
H1 of double lines of genus g =−2 with no embedded points of dimension nine,
the family H2 of two skew lines union an isolated point of dimension 11, and
the family H3 of conics union two isolated points of dimension 14. Because all
the underlying locally Cohen–Macaulay curves in question are local complete
intersections, we know from Proposition 2.2 and Proposition 3.3 that we have not
missed any possibilities.

(d) For g = −3 we can write down four irreducible components following the
same pattern as above and our results show that we have not missed any irreducible
components. However when g=−4 we cannot be sure that there is not an irreducible
component whose general member consists of a plane curve with some horrible
quadruple point.

Example 4.7. For one-dimensional subschemes of degree 3 and high genus, we
can make similar lists of the irreducible components of Hilb3z+1−g(P3):

(a) If g = 1, the Hilbert scheme is irreducible and consists of plane curves.

(b) If g= 0, the Hilbert scheme has two irreducible components. The family H1 has
general member a twisted cubic and has dimension 12. The family H2 has general
member a plane cubic union an isolated point and has dimension 15. This example
has been well-studied in [Piene and Schlessinger 1985].

(c) If g =−1, there are three irreducible components. The component H1 whose
general member is a line and a disjoint conic has dimension 12. The component H2

whose general member is a twisted cubic union an isolated point has dimension 15.
The component H3 whose general member is a plane cubic union two isolated points
has dimension 18. To see that these are all, we need to show that degenerations of a
twisted cubic curve union an embedded point cannot form an irreducible component
of their own, something which is not clear in view of Example 2.6(a). However all
ACM curves of degree 3 and genus 0 have resolution

0→ O(−3)2→ O(−2)3→ IC → 0

[Ellingsrud 1975, Example 1] and we can apply Proposition 2.7.

Example 4.8. Consider the Hilbert schemes Hilb4z+1−g(P3):

(a) If g = 3 or 2, the Hilbert scheme is irreducible by Theorem 4.2.
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(b) If g= 1, the Hilbert scheme has two irreducible components. One component H1

has general member a plane quartic union two isolated points and has dimension 23.
Any subschemes not parametrized by H1 have no isolated or embedded points
(any nonplanar locally Cohen–Macaulay curve satisfies the genus bound g ≤
(d − 2)(d − 3)/2 [Martin-Deschamps and Perrin 1993]), so we are looking at
the Hilbert scheme H4,1 of locally Cohen–Macaulay curves, which we described in
Example 2.8.

This brings us to the last example, which might be known to experts, though we
have not seen a rigorous proof in the literature.

Theorem 4.9. The Hilbert scheme Hilb4z+1(P3) has four irreducible components:

H1: The closure of the family of rational quartic curves has dimension 16.

H2: The family whose general member is a disjoint union of a plane cubic and a
line has dimension 16.

H3: The family whose general member is a disjoint union of an elliptic quartic
curve and a point has dimension 19.

H4: The family whose general member is a disjoint union of a plane quartic curve
and three distinct points has dimension 26.

Proof. The dimension counts are standard, so we only need to show that every
subscheme parametrized by Hilb4z+1(P3) is contained in one of these families and
no family is contained in another. The second part is easy: the family H4 has the
largest dimension, but none of the others lie in its closure due to the three isolated
or embedded points. Similarly H3 has larger dimension than H1 and H2, but H1

and H2 are not in its closure due to the isolated or embedded point. Since families
H1 and H2 have the same dimension, neither lies in the closure of the other.

To complete the proof, we show that each [C] ∈ Hilb4z+1(P3) lies in one of
the families Hi listed above. Fixing such C ⊂ P3, let C0 ⊂ C be the purely one-
dimensional part. There is no such curve of genus g= 2 [Hartshorne 1994], leaving
three cases. If g(C0)= 0, then C = C0 is locally Cohen–Macaulay, and it is known
that the Hilbert scheme H4,0 of locally Cohen–Macaulay curves has two irreducible
components, described in H1 and H2 above [Nollet and Schlesinger 2003]. If
g(C0)= 3, then C0 is a plane quartic and hence a complete intersection. It follows
from Propositions 2.2, 3.3, and 3.7 that C is a flat limit of subschemes which are
plane quartics union three isolated points, so [C] ∈ H4. If g(C0)= 1, then [C] ∈ H3

by Example 2.8. �

It would be interesting to describe more precisely the intersection of the compo-
nents H1 through H4 in Hilb4z+1(P3) as done in [Piene and Schlessinger 1985] for
Hilb3z+1(P3), though this will require a classification of all curves of degree 4 and
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genus 0 up to projective equivalence. It would also be interesting to determine the
birational geometry of the component H1, as done in [Chen 2008] for Hilb3z+1(P3).
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We define a proper moduli stack classifying covers of curves of prime degree p.
The objects of this stack are torsors Y → X under a finite flat X-group scheme,
with X a twisted curve and Y a stable curve. We also discuss embeddings of finite
flat group schemes of order p into affine smooth 1-dimensional group schemes.
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1. Introduction

Fix a prime number p. The study of families of Galois p-cyclic covers of curves
is well understood in characteristic 0, where there is a nice smooth proper stack
classifying (generically étale) covers of stable curves, with a dense open substack
composed of covers of smooth curves. The reduction of this stack at a prime ` 6= p
is also well understood, but the question of the reduction at p is notably much
harder. For the classical modular curves, namely the unramified genus-1 case, there
has been in the last years renewed intense research on this topic; see, for example,
[Edixhoven 1990; Bouw and Wewers 2004; McMurdy and Coleman 2010].

The aim of the present paper is to consider the case of arbitrary genus. More
precisely, we define a complete moduli stack of degree-p covers Y → X, with
Y a stable curve which is a G-torsor over X, for a suitable group scheme G/X.
The curve X is a twisted curve in the sense of [Abramovich and Vistoli 2002;
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Abramovich et al. 2011] but in general not stable. This follows the same general
approach as the characteristic-0 paper [Abramovich et al. 2003], but diverges from
that of [Abramovich et al. 2011], where the curve X is stable, the group scheme
G is assumed linearly reductive, but Y is in general much more singular. Here the
approach is based on [Raynaud 1999, Proposition 1.2.1] of Raynaud, and the more
general notion of effective model of a group-scheme action from [Romagny 2011].
The general strategy was outlined in [Abramovich 2012] in a somewhat special
case.

The ideal goal is a moduli space where, on the one hand, the object parametrized
are concrete and with minimal singularities — ideally nodes, and on the other
hand the singularities of the moduli space are well understood. This would allow
one to easily describe objects in characteristic p and to identify their liftings in
characteristic 0. In this paper we have not given a description of the singularities of
the moduli space, so we fall short of this goal.

1.1. Rigidified group schemes. The group scheme G in our covers comes with a
supplementary structure which we call a generator. Before we define this notion, let
us briefly recall from [Katz and Mazur 1985, §1.8] the concept of a full set of sections.
Let Z→ S be a finite locally free morphism of schemes of degree N . Then for all
affine S-schemes Spec(R), the R-algebra 0(Z R,OZ R ) is locally free of rank N and
has a canonical norm mapping. We say that a set of N sections x1, . . . , xN ∈ Z(S)
is a full set of sections if and only if for any affine S-scheme Spec(R) and any
f ∈ 0(Z R,OZ R ), the norm of f is equal to the product f (x1) . . . f (xN ).

Definition 1.2. Let G → S be a finite locally free group scheme of order p. A
generator is a morphism of S-group schemes γ : (Z/pZ)S → G such that the
sections xi = γ (i), 0 ≤ i ≤ p − 1, are a full set of sections. A rigidified group
scheme is a group scheme of order p with a generator.

The notion of generator is easily described in terms of the Tate–Oort classification
of group schemes of order p. This is explained and complemented in Appendix A.

Remark 1.3. One can define the stack of rigidified group schemes a bit more
directly: consider the Artin stack GSp of group schemes of order p, and let
Gu
→ GSp be the universal group-scheme - an object of Gu over a scheme S

consists of a group-scheme G→ S with a section S→ G. It has a unique nonzero
point over Q corresponding to Z/pZ with the section 1. The stack of rigidified
group schemes is canonically isomorphic to the closure of this point.

Of course describing a stack as a closure of a substack is not ideal from the
moduli point of view, and we find the definition using Katz–Mazur generators more
satisfying.
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1.4. Stable p-torsors. Fix a prime number p and integers g, h, n ≥ 0 with 2g−
2+ n > 0.

Definition 1.5. A stable n-marked p-torsor of genus g (over some base scheme S)
is a triple

(X,G, Y ),

where

(1) (X, {6i }
n
i=1) is an n-marked twisted curve of genus h,

(2) (Y, {Pi }
n
i=1) is a nodal curve of genus g with étale marking divisors Pi → S,

which is stable in the sense of Deligne, Mumford, and Knudsen,

(3) G→ X is a rigidified group scheme of order p,

(4) Y → X is a G-torsor and Pi =6i ×X Y for all i .

Note that as usual the markings 6i (resp. Pi ) are required to lie in the smooth
locus of X (resp. Y ). They split into two groups. In the first group 6i is twisted
and [Pi : S] = 1, while in the second group 6i is a section and [Pi : S] = p. The
number m of twisted markings is determined by (2g− 2)= p(2h− 2)+m(p− 1)
and it is equivalent to fix h or m.

The notion of stable marked p-torsor makes sense over an arbitrary base scheme
S. Given stable n-marked p-torsors (X,G, Y ) over S and (X′,G′, Y ′) over S′, one
defines as usual a morphism (X,G, Y )→ (X′,G′, Y ′) over S→ S′ as a fiber diagram.
This defines a category fibered over Spec Z that we denote STp,g,h,n .

Our main result is:

Theorem 1.6. The category STp,g,h,n/Spec Z is a proper Deligne–Mumford stack
with finite diagonal.

Notice that STp,g,h,n contains an open substack of étale Z/pZ-covers. Identifying
the closure of this open locus remains an interesting question.

1.7. Organization. Section 2 is devoted to Proposition 2.1, in particular showing
the algebraicity of STp,g,h,n . Section 3 completes the proof of Theorem 1.6 by
showing properness. We give simple examples in Section 4. In Appendix A we
discuss embeddings of group schemes of order p into smooth group schemes. In
Appendix B we recall some facts about the Weil restriction of closed subschemes,
and state the representability result in a form useful for us.

2. The stack STp,g,h,n

In this section, we review some basic facts on twisted curves and then we show:

Proposition 2.1. The category STp,g,h,n/Spec Z is an algebraic stack of finite type
over Z.
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2.2. Twisted curves and log twisted curves. We review some material from Ols-
son’s treatment in [Abramovich et al. 2011, Appendix A], with some attention to
properness of the procedure of “log twisting”.

Recall that a twisted curve over a scheme S is a tame Artin stack C→ S (we
refer to [Abramovich et al. 2008, Definition 3.1] for this notion) with a collection
of gerbes 6i ⊂ C satisfying the following conditions:

(1) The coarse moduli space C of C is a prestable curve over S, and the images
6̄i of 6i in C are the images of disjoint sections σi : S→C of C→ S landing
in the smooth locus.

(2) Étale locally on S there are positive integers ri such that, on a neighborhood
of 6i we can identify C with the root stack C( ri

√
6̄i ).

(3) Near a node z of C write C sh
= Spec(Osh

S [x, y]/(xy− t))sh. Then there exists
a positive integer az and an element s ∈ Osh

S such that saz = t and

Csh
= [Spec Osh

S [u, v]/(uv− s))sh/µaz ],

where µaz acts via (u, v) 7→ (ζu, ζ−1v) and where x = uaz and y = vaz .

The index of a geometric point z on a twisted curve is a measure of its automorphisms:
it is the integer ri for a twisted marking or the integer az for a twisted node.

The purpose of [Abramovich et al. 2011, Appendix A] was to show that twisted
curves form an Artin stack which is locally of finite type over Z. There are two
steps involved.

The introduction of the stack structure over the markings is a straightforward
step: the stack Mtw

g,n of twisted curves with genus G and n markings is the infinite
disjoint union Mtw

g,n = tM
r
g,n , where r runs over the possible marking indices,

namely vectors of positive integers r = (r1, . . . , rn), and the stacks Mr
g,n are all

isomorphic to each other - the universal family over Mr
g,n is obtained form that

over M
(1,...,1)
g,n by taking the ri -th root of 6̄i .

The more subtle point is the introduction of twisting at nodes. Olsson achieves this
using the canonical log structure of prestable curves, and provides an equivalence
between twisted curves with r = (1, . . . , 1) and log-twisted curves. A log twisted
curve over a scheme S is the data of a prestable curve C/S along with a simple
extension MS

C/S ↪→ N, see [Abramovich et al. 2011, Definition A.3]. Here MS
C/S is

F. Kato’s canonical locally free log structure of the base S of the family of prestable
curves C/S, and a simple extension is an injective morphism MS

C/S ↪→N of locally
free log structures of equal rank where an irreducible element is sent to a multiple
of an irreducible element up to units. See [Abramovich et al. 2011, Definition A.1].

We now describe an aspect of this equivalence which is relevant for our main
results. Consider a family of prestable curves C/S and denote by ι : Sing C/S→C
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the embedding of the locus where π : C→ S fails to be smooth. A node function
is a section a of π∗ι∗NSing C/S . In other words it gives a positive integer az for each
singular point z of C/S in a continuous manner. Given a morphism T → S, we say
that a twisted curve C/T with coarse moduli space CT is a-twisted over C/S if the
index of a node of C over a node z of C is precisely az .

Proposition 2.3. Fix a family of prestable curves C/S of genus g with n markings
over a noetherian scheme S. Further fix marking indices r = (r1, . . . , rn) and a
node function a. Then the category of a-twisted curves over C/S with marking
indices given by r is a proper and quasifinite tame stack over S.

Proof. The problem is local on S, and further it is stable under base change in S.
So it is enough to prove this when S is a versal deformation space of a prestable
curve Cs of genus g with n markings, over a closed geometric point s ∈ S, in such
a way that we have a chart Nk

→MS
C/S of the log structure, where k is the number

of nodes of Cs . The image of the i-th generator of Nk in OS is the defining equation
of the smooth divisor Di where the i-th node persists. Now consider an a-twisted
curve over φ : T → S, corresponding to a simple extension φ∗MS

C/S→N where the
image of the i-th generator mi becomes an ai -multiple up to units. This precisely
means that O∗CT

mi , the principal bundle associated to OS(−Di ), is an ai -th power.
In other words, the stack of a-twisted curves over C/S is isomorphic to the stack

S( a1
√

D1 · · ·
an
√

Dn) = S( a1
√

D1) ×S · · · ×S S( an
√

Dn)

encoding ai -th roots of OS(Di ). This is evidently a proper and quasifinite tame
stack over S. �

We now turn to the indices of twisted points in a stable p-torsor.

Lemma 2.4. Let (X,G, Y ) be a stable p-torsor. Then the index of a point x ∈ X

divides p.

Proof. Let r be the index of x and d the local degree of Y → X at a point y above
x . Since Y → X is finite flat of degree p and G acts transitively on the fibers, then
d | p. Let f : X→ X be the coarse moduli space of X. In order to compute d,
we pass to strict henselizations on S, X and Y at the relevant points. Thus S is
the spectrum of a strictly henselian local ring (R,m), and we have two cases to
consider.

If x is a smooth point,

• X ' Spec R[a]sh,

• Y ' Spec R[s]sh,

• X' [D/µr ] with D = Spec R[u]sh and ζ ∈ µr acting by u 7→ ζu.
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Consider the fibered product E = Y ×X D. The map E → Y is a µr -torsor of
the form E ' Spec OY [w]/(w

r
− f ) for some invertible function f ∈ O×Y , and

E→ D is a µr -equivariant map given by u 7→ ϕw for some function ϕ on Y . Let
x̃ : Spec k→ D be a point mapping to x in X, i.e., corresponding to u = m = 0,
and let ϕ̄, f̄ be the restrictions of ϕ, f to Yx̃ . The preimage of x̃ under E→ D is a
finite k-scheme with algebra k[s][w]/(ϕ̄, wr

− f̄ ). We see that d = r dimk k[s]/(ϕ̄)
and hence the index r divides p.

If x is a singular point, there exist λ,µ, ν in m such that

• X ' Spec(R[a, b]/(ab− λ))sh,

• Y ' Spec(R[s, t]/(st −µ))sh,

• X' [D/µr ], where D = Spec(R[u, v]/(uv− ν))sh,

and ζ ∈µr acts by u 7→ ζu and v 7→ ζ−1v. The scheme E = Y ×X D is of the form
E'Spec OY [w]/(w

r
− f ) for some invertible function f ∈O×Y , and the map E→ D

is given by u 7→ ϕw, v 7→ ψw−1 for some functions ϕ,ψ on Y satisfying ϕψ = ν.
Let x̃ : Spec k→ D be a point mapping to x and let ϕ̄, ψ̄, f̄ be the restrictions of
ϕ,ψ, f to Yx̃ . The preimage of x̃ under E→ D is a finite k-scheme with algebra
k[s, t][w]/(st, ϕ̄, ψ̄, wr

− f̄ ). We see that d = r dimk k[s, t]/(st, ϕ̄, ψ̄) and hence
r divides p. �

Proof of Proposition 2.1. Let δ = (δ1, . . . , δn) be the sequence of degrees of the
markings Pi on the total space of stable p-torsors, with each δi equal to 1 or p. We
build STp,g,h,n from existing stacks: the stack Mg,δ of Deligne–Mumford–Knudsen
stable marked curves (for the family of curves Y ), the stack M of twisted curves
(for the family of marked twisted curves X), and Hilbert schemes and Hom-stacks
for construction of Y → X and G.

Bounding the twisted curves. We have an obvious forgetful functor STp,g,h,n→

Mg,δ ×M. Note that the image of STp,g,h,n→M lies in an open substack M′ of
finite type over Z: the index of the twisted curve X divides p by Lemma 2.4, and its
topological type is bounded by that of Y . The stack M′ parametrizing such twisted
curves is of finite type over Z by [Abramovich et al. 2011, Corollary A.8].

Set MY,X =Mg,δ ×M′. This is an algebraic stack of finite type over Z.

The map Y→X. Consider the universal family Y→MY,X of stable curves of genus
g and the universal family X→ MY,X of twisted curves, with associated family of
coarse curves X→ MY,X. Since Hilbert schemes of fixed Hilbert polynomial are
of finite type, there is an algebraic stack Hom≤p

MY,X
(Y, X), of finite type over MY,X,

parametrizing morphisms Ys→ Xs of degree ≤ p between the respective fibers. By
[Abramovich et al. 2011, Corollary C.4] the stack Hom≤p

MY,X
(Y,X) corresponding to

maps Ys→ Xs with target the twisted curve is of finite type over Hom≤p
MY,X

(Y, X),
hence over MY,X. There is an open substack MY→X parametrizing flat morphisms
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of degree precisely p. We have an obvious forgetful functor STp,g,h,n→ MY→X

lifting the functor STp,g,h,n→Mg,δ ×M′ above.

The rigidified group scheme G. The scheme Y2 = Y ×X Y is flat of degree p over Y .
Giving it the structure of a group scheme over Y with unit section equal to the
diagonal Y → Y2 is tantamount to choosing structure Y -arrows m : Y2×Y Y2→ Y2

and i ′ : Y2→ Y2, which are parametrized by a Hom-scheme, and passing to the
closed subscheme where these give a group-scheme structure (that this condition
is closed follows from representability of the Weil restriction; see the discussion
in Appendix B and in particular Corollary B.4). Giving a group scheme G over
X with isomorphism G ×X Y ' Y2 is tantamount to giving descent data for Y2

with its chosen group-scheme structure. This is again parametrized by a suitable
Hom-scheme. Finally requiring that the projection Y2→ Y correspond to an action
of G on Y is a closed condition (again by Weil restriction, see Corollary B.4).

Passing to a suitable Hom-stack we can add a homomorphism Z/pZ→G, giving
a section X→G (equivalently a morphism X→Gu , see Remark 1.3). By [Katz and
Mazur 1985, corollary 1.3.5], the locus of the base where this section is a generator
is closed. Since Y2→ Y and Y → X are finite, all the necessary Hom-stacks are in
fact of finite type.

The resulting stack is clearly isomorphic to STp,g,h,n . �

3. Properness

Since STp,g,h,n→ Spec Z is of finite type, we need to prove the valuative criterion
for properness.

We have the following situation:

(1) R is a discrete valuation ring with spectrum S = Spec R, fraction field K with
corresponding generic point η=Spec K , and residue field κ with corresponding
special point s = Spec κ .

(2) (Xη,Gη, Yη) a stable marked p-torsor of genus g over η.

By an extension of (Xη,Gη, Yη) across s we mean

(1) a local extension R→ R′ with K ′/K finite,

(2) a stable marked p-torsor (X′,G′, Y ′) of genus g over S′ = Spec R′, and

(3) an isomorphism (X′,G′, Y ′)′η ' (Xη,Gη, Yη)×η η′.

Proposition 3.1. An extension exists. When extension over S′ exists, it is unique up
to a unique isomorphism.

Proof. We proceed in three steps.
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Extension of Yη. Since Mg,δ is proper, there is a stable marked curve Y ′ extending
Yη over some S′, and this extension is unique up to a unique isomorphism. We
replace S by S′, and assume that there is Y over S with generic fiber Yη.

Coarse extension of Xη. By uniqueness, the action of G = Z/pZ on Yη induced by
the map GXη → Gη extends to Y . There is a finite extension K ′/K such that the
intersection points of the orbits of geometric irreducible components of Yη under
the action of G are all K ′-rational. We may and do replace S by the spectrum of
the integral closure of R in K ′. Let us call Y1, . . . , Ym the orbits of irreducible
components of Y and {yi, j }1≤i, j≤m their intersections, which is a set of disjoint
sections of Y . For each i = 1, . . . ,m we define a morphism πi : Yi → X i as
follows. If the action of G on Yi is nontrivial we put X i := Yi/G and πi equal
to the quotient morphism. If the action of G on Yi is trivial, note that we must
have char(K ) = p, since the map from Yi to its image in X is a G-torsor while
GX→ G is an isomorphism in characteristic 0. Then we consider the Frobenius
twist X i := Y (p)i and we define πi : Yi→ X i to be the relative Frobenius. Finally we
let X be the scheme obtained by gluing the X i along the sections xi, j =πi (yi, j )∈ X i

and x j,i = π j (yi, j ) ∈ X j . There are markings 6X
i ⊂ X given by the closures in X

of the generic markings 6Xη
i . It is clear that the morphisms πi glue to a morphism

π : Y → X .

Extension of Xη and Yη→ Xη along generic nodes and markings. In the following
two lemmas we extend the stack structure of Xη, and then the map Yη→ Xη, along
the generic nodes and the markings:

Lemma 3.2. There is a unique extension X of the twisted curve Xη over X , such
that X→ X is an isomorphism away from the generic nodes and the markings.

Proof. We follow [Abramovich et al. 2011, proof of Proposition 4.3]. First, let 6Xη
i,η

be a marking on Xη. There is an extension 6X
i ⊂ X . Let r be the index of Xη at

6
Xη
i,η . Then we define X to be the stack of r -th roots of 6X

i on X . This extension is
unique by the separatedness of stacks of r -th roots.

Now let xη ∈ Xη be a node with index r and let x ∈ Xs be its reduction. Locally
in the étale topology, around x the curve X looks like the spectrum of R[u, v]/(uv).
Let Bu resp. Bv be the branches at x in X . The stacks of r-th roots of the divisor
u= 0 in Bu and of the divisor v= 0 in Bv are isomorphic and glue to give a stack X.
By definition of r we have Xη ' Xη. This extension is unique by the separatedness
of stacks of r -th roots, so the construction of X descends to X . �

Lemma 3.3. There is a unique lifting Y → X.

Proof. We need to check that there is a lifting at any point y ∈ Ys which either lies
on a marking or is the reduction of a generic node. We can apply the purity lemma
[Abramovich et al. 2011, Lemma 4.4] provided that the local fundamental group
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of Y at y is trivial and the local Picard group of Y at y is torsion-free. In order to
see this, we replace R by its strict henselization and Y by the spectrum of the strict
henselization of the local ring at y. We let U = Y \ {y}.

If y lies on a marking then Y is isomorphic to the spectrum of R[a]sh. Since
this ring is local regular of dimension 2, the scheme U has trivial fundamental
group by the Zariski–Nagata purity theorem, and trivial Picard group by Auslander–
Buchsbaum. Hence the purity lemma applies.

If y is the reduction of a generic node, then Y is isomorphic to the strict hensel-
ization of R[a, b]/(ab). Let Ba = Spec(R[a]sh) resp. Bb = Spec(R[b]sh) be the
branches at y and Ua =U ∩ Ba , Ub =U ∩ Bb.

The schemes Ua and Ub have trivial fundamental group by Zariski–Nagata,
and they intersect in Y in a single point of the generic fiber. Moreover the map
Ua t Ub→U , being finite surjective and finitely presented, is of effective descent
for finite étale coverings [Grothendieck 1971, corollaire 4.12]. It then follows from
the van Kampen theorem [ibid., théorème 5.1] that π1(U )= 1.

For the computation of the local Picard group, first notice that since Ba, Bb are
local regular of dimension 2 we have Pic(Ua) = Pic(Ub) = 0, and moreover it is
easy to see that H 0(Ua,O×Ua

) = H 0(Ub,O×Ub
) = R×. Now we consider the long

exact sequence in cohomology associated to the short exact sequence

0→ O×U → ia,∗O
×

Ua
⊕ ib,∗O

×

Ub
→ iab,∗O

×

Uab
→ 0,

where the symbols i? stand for the obvious closed immersions. We obtain

Pic(U )= coker
(
H 0(Ua,O×Ua

)⊕ H 0(Ub,O×Ua
)→ H 0(Uab,O×Uab

)
)

= K×/R× = Z,

which is torsion-free as desired. �

Note that we still need to introduce stack structure over special nodes of X.

Extension of Gη over generic points of Xs . Let ξ be the generic point of a component
of Xs . Let U be the localization of X at ξ and V be its inverse image in Y . Consider
the closure Gξ of Gη in AutU V .

Proposition 3.4. The scheme Gξ →U is a finite flat group scheme of order p, and
V →U is a Gξ -torsor.

Proof. This is a generalization of [Raynaud 1999, Proposition 1.2.1], see [Romagny
2011, Theorem 4.3.5]. �

Extension of Gη over the smooth locus of X/S. Quite generally, for a stable p-torsor
(X,G, Y ) over a scheme T , by AutXY we denote the algebraic stack whose objects
over an T -scheme U are pairs (u, f ) with u ∈ X(U ) and f a U -automorphism of
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Y ×X U . Now consider Xsm, the smooth locus of X/S, and its inverse image Y sm

in Y . Then Y sm
→ Xsm is flat. Let Gsm be the closure of Gη in AutXsmY sm.

Proposition 3.5. The scheme Gsm
→ Xsm is a finite flat group scheme of order p,

and Y sm
→ Xsm is a Gsm-torsor.

Proof. Given Proposition 3.4, and since Xsm has local charts U → Xsm with U
regular 2-dimensional, this follows from [Abramovich 2012, Propositions 2.2.2 and
2.2.3]. �

Extension of Gsm over generic nodes of X/S. Consider the complement X0 of the
isolated nodes of Xs , and its inverse image Y 0 in Y .

Lemma 3.6. The morphism Y 0
→ X0 is flat.

Proof. It is enough to verify the claim at the reduction xs of an arbitrary generic
node xη ∈ Xη. Since generic nodes remain distinct in reduction, it is enough to
prove that Y → X is flat at a chosen point ys ∈ Y above xs . Since the branches at
ys are not exchanged by G, étale locally Y and X are the union of two branches
which are flat over S and the restriction of Y → X to each of the branches at xs is
flat. Since proper morphisms descend flatness [EGA IV3 1966, IV.11.5.3, p. 152],
it follows that Y → X is flat at ys . �

Let G0 be the closure of Gsm in AutX0Y 0.

Proposition 3.7. The stack G0
→ X0 is a finite flat group scheme of order p, and

Y 0
→ X0 is a G0 torsor.

Proof. We only have to look around the closure of a generic node. Again since
proper morphisms descend flatness, it is enough to prove the claim separately on the
two branches. Then the result follows again from [Abramovich 2012, Propositions
2.2.2 and 2.2.3] by the same reason as in the proof of 3.5. �

Twisted structure at special nodes. Let P be a special node of X . By [Abramovich
2012, Section 3.2] there is a canonical twisted structure X at P determined by the
local degree of Y/X . If near a given node Yη/Xη is inseparable, then this degree is
p. Otherwise Y/X has an action of Z/pZ which is nontrivial near P , and therefore
the local degree is either 1 or p. Then X is twisted with index p at P whenever
this local degree is p. These twisted structures at the various nodes P glue to give
a twisted curve X.

We claim that this X is unique up to a unique isomorphism. This follows from
Proposition 2.3 above. Indeed, let a be the node function which to a node P of X
gives the local degree of Y/X at Y , and let ri be the fixed indices at the sections.
Then the stack of a-twisted curves over X/S with markings of indices ri is proper
over S, hence X is uniquely determined by Xη up to unique isomorphism.
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By Lemma 3.2.1 of [Abramovich 2012], there is a unique lifting Y → X, and
by Theorem 3.2.2 in the same reference the group scheme G0 extends uniquely to
G→ X such that Y is a G-torsor. The rigidification extends immediately by taking
the closure, since G→ X is finite. �

4. Examples

4.1. First, some nonexamples. Consider a smooth projective curve X of genus
h > 1 in characteristic p and a p-torsion point in its Jacobian, corresponding to
a µp-torsor Y ′→ X . This is not a stable p-torsor in the sense of Definition 1.5:
the curve Y ′ is necessarily unstable, with singularities which are not even nodal.
In fact, Y ′→ X may be described by a locally logarithmic differential form ω on
X , such that if locally ω = d f/ f for some f ∈ O×X then Y ′ is given by an equation
z p
= f . Since the genus h > 1, all differentials on X have zeroes, and each zero of

ω (i.e., a zero of the derivative of f with respect to a coordinate) contributes to a
unibranch singularity on Y ′.

Now consider a ramified Z/pZ-cover Y → X of smooth projective curves over a
field. Let y ∈ Y be a fixed point for the action of Z/pZ and let x ∈ X be its image.
In characteristic 0, since the stabilizer of y is a multiplicative group, the curve X
may be twisted at x to yield a stable Z/pZ-torsor Y→X. However in characteristic
p the stabilizer is additive and the result is not a Z/pZ-torsor. Hence ramified
covers of smooth curves in characteristic p do not provide stable Z/pZ-torsors.

However something else does occur in both examples: the torsor Y ′→ X of the
first example, and the branched cover Y → X in the second, lift to characteristic 0.
The reduction back to characteristic p of the corresponding stable torsor “contains
the original cover” in the following sense: there is a unique component X whose
coarse moduli space is isomorphic to X . In particular that component X is necessarily
a twisted curve, and the group scheme over it has to degenerate to αp over the
twisted points. We see a manifestation of this in the next example.

4.2. Limit of a p-isogeny of elliptic curves. Now consider the case where X is an
elliptic curve, with a marked point x , over a discrete valuation ring R of charac-
teristic 0 and residue characteristic p. For simplicity assume that R contains µp;
let η be the generic point of Spec R and s the closed point of Spec R. Given a
p-torsion point on X with nontrivial reduction, we obtain a corresponding nontrivial
µp-isogeny Y ′→ X . Over the generic point η we can make Y ′η stable by marking
the fiber Pη over xη. But note that the reduction of Pη in Y ′ is not étale, hence
something must modified. Since our stack is proper, a stable p-torsor Y → X

limiting Y ′η→ Xη exists, at least over a base change of R. Here is how to describe
it.
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Consider the completed local ring ÔY ′,O ' R[[Z ]] at the origin O ∈ Y ′s and its
spectrum D. Then Dη is identified with an open p-adic disk modulo Galois action.
Write Pη = {Pη,1, . . . , Pη,p} as a sum of points permuted by the µp-action. Then
the Pη,i induce K -rational points of Dη which moreover are π -adically equidistant;
i.e., the valuation v = vπ (Pη,i − Pη, j ) is independent of i, j . It follows that after
blowing-up the closed subscheme with ideal (πv, Z) these points reduce to p
distinct points in the exceptional divisor. Thus after twisting at the node, the fiber
Ys→ Xs over the special point s of R is described as follows:

Ys

��

Y ′s ∪P1

��

P

��

? _oo

X ′s E ∪ Q {0}? _oo

Here

• Ys is a union of two components Y ′s ∪P1, attached at the origin of Y ′s ,

• Xs is a twisted curve with two components E ∪ Q,

• E = Xs(
p
√

x) and Q = P1( p
√
∞), with the twisted points attached,

• the map Ys→ Xs decomposes into Y ′s → E and P1
→ Q,

• P1
→ Q is an Artin–Schreier cover ramified at∞,

• the curve is marked by the inverse image of 0∈Q in P1, which is a Z/pZ-torsor
P ⊂ P1,

• the map Y ′s → E is a lift of Y ′s → Xs , and

• the group scheme G→ X is generically étale on Q and generically µp on E ,
but the fiber over the node is αp.

Notice that we can view Y ′s→ E , marked by the origin on Y ′s , as a twisted torsor
as well, but this twisted torsor does not lift to characteristic 0 simply because the
marked point on Y ′s can not be lifted to an invariant divisor. This is an example of
the phenomenon described at the end of Section 4.1 above.

A very similar picture occurs when the cover Y ′η→ Xη degenerates to an αp-
torsor. If, however, the reduction of the cover is a Z/pZ-torsor, then Y ′ → X ,
marked by the fiber over the origin, is already stable and new components do not
appear.

4.3. The double cover of P1 branched over 4 points. Consider an elliptic double
cover Y over P1 in characteristic 0 given by the equation y2

= x(x − 1)(x − λ).
Marked by the four branched points, it becomes a stable µ2-torsor over the twisted
curve Q = P1(

√
0, 1,∞, λ). What is its reduction in characteristic 2? We describe

here one case, the others can be described in a similar way.
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If the elliptic curve Y has good ordinary reduction Es , the picture is as follows:
Ys has three components P1

∪ Es ∪P1. The twisted curve Xs also has three rational
components Q1 ∪ Q2 ∪ Q3. The map splits as P1

→ Q1, Es→ Q2 and P1
→ Q3,

where the first and last are generically µ2-covers, and Es → Q2 is a lift of the
hyperelliptic cover Es→ P1. The fibers of G at the nodes of Xs are both α2. The
points 0, 1,∞, λ reduce to two pairs, one pair on each of the two P1 components,
for instance:

P1
∪ Es ∪P1

��
{0, 1} �

� // Q1 ∪ Q2 ∪ Q3 {λ,∞}.? _oo

Appendix A. Group schemes of order p

In this appendix, we give some complements on group schemes of order p. The
main topic is the construction of an embedding of a given group scheme of order
p into an affine smooth one-dimensional group scheme (an analogue of Kummer
or Artin–Schreier theory). Although not strictly necessary in the paper, this result
highlights the nature of our stable torsors in two respects: firstly because the
original definition of generators in [Katz and Mazur 1985, §1.4] involves a smooth
ambient group scheme, and secondly because the short exact sequence given by
this embedding induces a long exact sequence in cohomology that may be useful
for computations of torsors.

Anyway, let us now state the result.

Definition A.1. Let G→ S be a finite locally free group scheme of order p.

(1) A generator is a morphism of S-group schemes γ : (Z/pZ)S→ G such that
the sections xi = γ (i), 0≤ i ≤ p− 1, are a full set of sections.

(2) A cogenerator is a morphism of S-group schemes κ : G→ µp,S such that the
Cartier dual (Z/pZ)S→ G∨ is a generator.

We will prove the following.

Theorem A.2. Let S be a scheme and let G → S be a finite locally free group
scheme of order p. Let κ : G→ µp,S be a cogenerator. Then κ can be canonically
inserted into a commutative diagram with exact rows

0 // G //

κ

��

G
ϕκ //

��

G′

��

// 0

0 // µp,S // Gm,S
p // Gm,S // 0
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where ϕκ : G→ G′ is an isogeny between affine smooth one-dimensional S-group
schemes with geometrically connected fibers.

In order to obtain this, we introduce two categories of invertible sheaves with
sections: one related to groups with a cogenerator and one related to groups defined
as kernels of isogenies, and we compare these categories.

Remark A.3. Not all group schemes of order p can be embedded into an affine
smooth group scheme as in the theorem. For example, assume that there exists
a closed immersion from G = (Z/pZ)Q to some affine smooth one-dimensional
geometrically connected Q-group scheme G. Then G is a form of Gm,Q and G is its
p-torsion subgroup. Since G is trivialized by a quadratic field extension K/Q, we
obtain G K ' µp,K . This implies that K contains the p-th roots of unity, which is
impossible for p > 3. Similar examples can be given for Z/pZ over the Tate–Oort
ring 3⊗Q.

A.4. Tate–Oort group schemes. We recall the notations and results of the Tate–
Oort classification of group schemes of order p over the ring 3 [Tate and Oort
1970, Section 2]. We introduce two fibered categories:

• a 3-category T G of triples encoding groups, and

• a 3-category T GC of triples encoding groups with a cogenerator.

Let χ : Fp→ Zp be the unique multiplicative section of the reduction map, that
is χ(0) = 0 and if m ∈ F×p then χ(m) is the (p− 1)-st root of unity with residue
equal to m. Set

3= Z[χ(Fp),
1

p(p− 1)
] ∩Zp.

There is in 3 a particular element wp equal to p times a unit.

Definition A.5. The category T G is the category fibered over Spec3 whose fiber
categories over a 3-scheme S are as follows.

• Its objects are the triples (L , a, b), where L is an invertible sheaf and a ∈
0(S, L⊗(p−1)), b ∈ 0(S, L⊗(1−p)) satisfy a⊗ b = wp1OS .

• Morphisms between (L , a, b) and (L ′, a′, b′) are the morphisms of invertible
sheaves f : L → L ′, viewed as global sections of L⊗−1

⊗ L ′, such that
a⊗ f ⊗p

= f ⊗ a′ and b′⊗ f ⊗p
= f ⊗ b.

The main result of [Tate and Oort 1970] is an explicit description of a covariant
equivalence of fibered categories between T G and the category of finite locally
free group schemes of order p. The group scheme associated to a triple (L , a, b) is
denoted GL

a,b. Its Cartier dual is isomorphic to GL−1

b,a .
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Examples A.6. We have (Z/pZ)S = GOS
1,wp

and µp,S = GOS
wp,1. Moreover if G =

GL
a,b then a morphism (Z/pZ)S → G is given by a global section u ∈ 0(S, L)

such that u⊗p
= u ⊗ a and a morphism G → µp,S is given by a global section

v ∈ 0(S, L−1) such that v⊗p
= v⊗ b.

Lemma A.7. Let S be a 3-scheme and let G = GL
a,b be a finite locally free group

scheme of rank p over S. Then:

(1) Let γ : (Z/pZ)S→ G be a morphism of S-group schemes given by a section
u ∈ 0(S, L) such that u⊗p

= u ⊗ a. Then γ is a generator if and only if
u⊗(p−1)

= a.

(2) Let κ : G → µp,S be a morphism of S-group schemes given by a section
v ∈ 0(S, L−1) such that v⊗p

= v⊗ b. Then κ is a cogenerator if and only if
v⊗(p−1)

= b.

Proof. The proof of (2) follows from (1) by Cartier duality so we only deal with (1).
The claim is local on S so we may assume that S is affine equal to Spec(R) and
L is trivial. It follows from [Tate and Oort 1970] that G = Spec R[x]/(x p

− ax)

and the section γ (i) : Spec(R)
i
→ (Z/pZ)R → G is given by the morphism of

algebras R[x]/(x p
− ax)→ R, x 7→ χ(i)u. Thus γ is a generator if and only if

Norm( f )=
∏

f (χ(i)u) for all functions f = f (x). In particular for f = 1+x one
finds Norm( f )= (−1)pa+ 1 and

∏
(1+χ(i)u)= (−1)pu p−1

+ 1. Therefore if γ
is a generator then u p−1

= a. Conversely, assuming that u p−1
= a we want to prove

that Norm( f )=
∏

f (χ(i)u) for all f . It is enough to prove this in the universal
case where R =3[a, b, u]/(ab−wp, u p

−u). Since a is not a zerodivisor in R, it
is in turn enough to prove the equality after base change to K = R[1/a]. Then G K

is étale and the morphism

K [x]/(x p
− ax)= K [x]/

∏
(x −χ(i)u)→ K p

taking f to the tuple ( f (χ(i)u))0≤i≤p−1 is an isomorphism of algebras. Since the
norm in K p is the product of the coordinates, the result follows. �

Definition A.8. The category T GC is the category fibered over Spec3 whose
fibers over a 3-scheme S are as follows.

• Its objects are the triples (L , a, v), where L is an invertible sheaf and a ∈
0(S, L⊗(p−1)), v ∈ 0(S, L⊗−1) satisfy a⊗ v⊗(p−1)

= wp1OS .

• Morphisms between (L , a, v) and (L ′, a′, v′) are the morphisms of invertible
sheaves f : L → L ′, viewed as global sections of L⊗−1

⊗ L ′, such that
a⊗ f ⊗p

= f ⊗ a′ and v′⊗ f = v.

By Lemma A.7, the category T GC is equivalent to the category of group schemes
with a cogenerator. The functor from group schemes with a cogenerator to group
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schemes that forgets the cogenerator is described in terms of categories of invertible
sheaves by the functor ω : T GC→ T G given by ω(L , a, v)= (L , a, v⊗(p−1)).

Note also that Lemma A.7 tells us that for any locally free group scheme G over
a 3-scheme S, there exists a finite locally free morphism S′→ S of degree p− 1
such that G×S S′ admits a generator or a cogenerator.

A.9. Congruence group schemes. Here, we introduce and describe a Z-category
T CG of triples encoding congruence groups.

Let R be ring with a discrete valuation v and let λ ∈ R be such that (p −
1)v(λ) ≤ v(p). In [Sekiguchi et al. 1989] are introduced some group schemes
Hλ= Spec R[x]/(((1+λx)p

−1)/λp) with multiplication x1?x2= x1+x2+λx1x2.
(The notation in loc. cit. is N.) Later Raynaud called them congruence groups
of level λ and we will follow his terminology. We now define the analogues of
these group schemes over a general base. The objects that are the input of the
construction constitute the following category.

Definition A.10. The category T CG is the category fibered over Spec Z whose
fibers over a scheme S are as follows.

• Its objects are the triples (M, λ, µ), where M is an invertible sheaf over S
and the global sections λ ∈ 0(S,M−1) and µ ∈ 0(S,M p−1) are subject to the
condition λ⊗(p−1)

⊗µ= p1OS .

• Morphisms between (M, λ, µ) and (M ′, λ′, µ′) are morphisms of invertible
sheaves f : M→ M ′ viewed as sections of M−1

⊗M ′ such that f ⊗ λ′ = λ
and f ⊗(p−1)

⊗µ= µ′.

We will exhibit a functor (M, λ, µ) H M
λ,µ from T CG to the category of group

schemes, with H M
λ,µ defined as the kernel of a suitable isogeny.

First, starting from (M, λ) we construct a smooth affine one-dimensional group
scheme denoted G(M,λ), or simply G(λ). We see λ as a morphism λ :V(M)→Ga,S of
(geometric) line bundles over S, where V(M)= Spec Sym(M−1) is the (geometric)
line bundle associated to M . We define G(λ) as a scheme by the fibered product

G(λ)
1+λ //

��

Gm,S

��
V(M)

1+λ // Ga,S .

The points of G(λ) with values in an S-scheme T are the global sections u ∈
0(T,M⊗OT ) such that 1+λ⊗u is invertible. We endow G(λ) with a multiplication
given on the T -points by

u1 ? u2 = u1+ u2+ λ⊗ u1⊗ u2 .
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The zero section of V(M) sits in G(λ) and is the unit section for the law just defined.
The formula

(1+ λ⊗ u1)(1+ λ⊗ u2)= 1+ λ⊗ (u1 ? u2)

shows that 1+ λ : G(λ)→ Gm,S is a morphism of group schemes. Moreover, if the
locus where λ : V(M)→ Ga,S is an isomorphism is scheme-theoretically dense,
then ? is the unique group law on G(λ) for which this holds. This construction is
functorial in (M, λ): given a morphism of invertible sheaves f : M→ M ′, in other
words a global section of M−1

⊗ M ′, such that f ⊗ λ′ = λ, there is a morphism
f : G(λ)→ G(λ

′) making the diagram

G(λ)
1+λ //

f
��

Gm,S

G(λ
′)

1+λ′

<<

commutative. The notation is coherent since that morphism is indeed induced by
the extension of f to the sheaves of symmetric algebras.

Then, we use the section µ ∈ 0(S,M p−1) and the relation λ⊗(p−1)
⊗µ= p1OS

to define an isogeny ϕ fitting into a commutative diagram

G(λ)
ϕ //

1+λ
��

G(λ
⊗p)

1+λ⊗p

��
Gm,S

∧ p // Gm,S .

The formula for ϕ is given on the T -points u ∈ 0(T,M ⊗OT ) by

ϕ(u)= u⊗p
+

p−1∑
i=1

{p
i
}
λ⊗(i−1)

⊗µ⊗ u⊗i ,

where {p
i
}
=

1
p

(p
i

)
is the binomial coefficient divided by p. In order to check that

the diagram is commutative and that ϕ is an isogeny, we may work locally on S
hence we may assume that S is affine and that M = OS . In this case, the two claims
follow from the universal case; i.e., from points (1) and (2) in the following lemma.

Lemma A.11. Let O = Z[E, F]/(E p−1 F − p) and let λ,µ ∈ O be the images of
the indeterminates E, F. Then, the polynomial

P(X)= X p
+

p−1∑
i=1

{p
i
}
λi−1µX i

∈ O[X ]

satisfies:
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(1) 1+ λp P(X)= (1+ λX)p, and

(2) P(X + Y + λXY )= P(X)+ P(Y )+ λp P(X)P(Y ).

Proof. Point (1) follows by expanding (1+λX)p and using the fact that p= λp−1µ

in O. Then we compute:

1+ λp P(X + Y + λXY )= (1+ λ(X + Y + λXY ))p

= (1+ λX)p(1+ λY )p

= (1+ λp P(X))(1+ λp P(Y ))

= 1+ λp(P(X)+ P(Y )+ λp P(X)P(Y )).

Since λ is a nonzerodivisor in O, point (2) follows. �

Definition A.12. We denote by H M
λ,µ the kernel of ϕ, and call it the congruence

group scheme associated to (M, λ, µ).

This construction is functorial in (M, λ, µ). Precisely, consider two triples
(M, λ, µ) and (M ′, λ′, µ′) and a morphism of invertible sheaves f : M → M ′

viewed as a section of M−1
⊗ M ′ such that f ⊗ λ′ = λ and f ⊗(p−1)

⊗ µ = µ′.
Then we have morphisms f : G(λ)→ G(λ

′) and f ⊗p
: G(λ

⊗p)
→ G(λ

′⊗p) compatible
with the isogenies ϕ and ϕ′, and f induces a morphism H M

λ,µ→ H M ′
λ′,µ′ . Note also

that the image of H M
λ,µ under 1+ λ : G(λ)→ Gm,S factors through µp,S , so that by

construction H M
λ,µ comes embedded into a diagram

0 // H M
λ,µ

//

κ

��

G(λ) //

1+λ
��

G(λ
⊗p)

1+λ⊗p

��

// 0

0 // µp,S // Gm,S // Gm,S // 0.

The formation of this diagram is also functorial.

Lemma A.13. The morphism κ : H M
λ,µ→ µp,S is a cogenerator.

Proof. We have to show that the dual map (Z/pZ)S→ (H M
λ,µ)
∨ is a generator. This

means verifying locally on S certain equalities of norms. Hence we may assume
that S is affine and that M is trivial, then reduce to the universal case where S is the
spectrum of the ring O with elements λ,µ satisfying λp−1µ= p as in Lemma A.11,
and finally restrict to the schematically dense open subscheme S′ = D(λ) ⊂ S.
Since G(λ)×S S′→Gm,S′ is an isomorphism, then H M

λ,µ×S S′→µp,S′ and the dual
morphism also are. The claim follows immediately. �
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A.14. Equivalence between T GC and T CG ⊗Z 3. The results of the previous
subsection imply that for a3-scheme S, a triple (M, λ, µ)∈ T CG(S) gives rise in a
functorial way to a finite locally free group scheme with cogenerator κ :H M

λ,µ→µp,S ,
that is, an object of T GC(S).

Theorem A.15. The functor

F : T CG⊗Z3→ T GC

defined above is an equivalence of fibered categories over 3. If (M, λ, µ) has
image (L , a, v) then H M

λ,µ ' GL
a,v⊗(p−1) .

Proof. The main point is to describe F in detail using the Tate–Oort classification,
and to see that it is essentially surjective. The description of the action of F on
morphisms and the verification that it is fully faithful offers no difficulty and will
be omitted.

Let (M, λ, µ) be a triple in T CG(S) and let G = H M
λ,µ. We use the notations

of Section 2 of [Tate and Oort 1970], in particular the structure of the group µp

is described by a function z, the sheaf of χ-eigensections J = yOS ⊂ Oµp with
distinguished generator y = (p− 1)e1(1− z), and constants

w1 = 1, w2, . . . , wp−1, wp = pwp−1 ∈3.

The augmentation ideal of the algebra OG is the sheaf I generated by M−1, and
by Tate and Oort’s results the subsheaf of χ-eigensections is the sheaf I1 = e1(I ),
where e1 is the OS-linear map defined in [Tate and Oort 1970]. It is an invertible
sheaf and L is (by definition) its inverse.

We claim that in fact I1 = e1(M−1). In order to see this, we may work locally.
Let x be a local generator for M−1 and let

t := (p− 1)e1(−x) ∈ I1.

Let us write λ= λ0x for some local function λ0. We first prove that

x =
1

1− p

(
t +

λ0t2

w2
+ · · ·+

λ
p−2
0 t p−1

wp−1

)
. (?)

In fact, by construction the map Oµp → OG is given by z = 1+ λ0x , so we get
y = (p− 1)e1(1− z) = λ0t . In order to check the expression for x in terms of t ,
we can reduce to the universal case (Lemma A.11). Then λ0 is not a zerodivisor
and we can harmlessly multiply both sides by λ0. In this form, the equality to be
proven is nothing else than the identity (16) in [Tate and Oort 1970]. Now write
t = αt∗ with t∗ a local generator for I1 and α a local function. Using (?) we find
that x = αx∗ for some x∗ ∈ OG . Since x generates M−1 in the fibers over S, this
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proves that α is invertible. Finally t is a local generator for I1 and this finishes the
proof that I1 = e1(M−1).

Let x∨ be the local generator for M dual to x and write µ= µ0(x∨)⊗(p−1) for
some local function µ0 such that (λ0)

p−1µ0 = p. Let t∨ be the local generator for
L dual to t . We define a local section a of L⊗(p−1) by

a = wp−1µ0(t∨)⊗(p−1)

and a local section v of L−1 by
v = λ0t.

These sections are independent of the choice of the local generator x , because if
x ′ = αx then

(x ′)∨ = α−1x∨ ; t ′ = αt ; (t ′)∨ = α−1t∨ ; λ′0 = α
−1λ0 ; µ

′

0 = α
p−1µ0

so that

a′ = wp−1µ
′

0(t
′∨)⊗(p−1)

= wp−1α
p−1µ0α

1−p(t∨)⊗(p−1)
= a

and
v′ = λ′0t ′ = α−1λ0αt = v.

They glue to global sections a and v satisfying

a⊗ v⊗(p−1)
= wp1OS .

Let us prove that a and v are indeed the sections defining G and the cogenerator in
the Tate–Oort classification. The verification for a amounts to checking that the
relation

t p
= wp−1µ0t

holds in the algebra OG . This may be seen in the universal case where λ0 is
not a zerodivisor, hence after multiplying by (λ0)

p this follows from the equality
y p
=wp y from [Tate and Oort 1970]. The verification for v amounts to noting that

the cogenerator G→ µp,S is indeed given by y 7→ v.
This completes the description of F on objects. Finally we prove that F is

essentially surjective. Assume given (L , a, v) and let t be a local generator for
I1 = L−1. Write a = wp−1µ0(t∨)⊗(p−1), v = λ0t and define an element x ∈ OG

by the expression (?) above. If we change the generator t to another t ′ = αt , then
λ′0= α

−1λ0 and x ′= αx . It follows that the subsheaf of OG generated by x does not
depend on the choice of the generator for I1, call it N . Reducing to the universal
case as before, we prove that t = (p − 1)e1(−x). This shows that in fact N is
an invertible sheaf and we take M to be its inverse. Finally we define sections
λ ∈ 0(S,M−1) and µ ∈ 0(S,M⊗(p−1)) by the local expressions λ = λ0x and
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µ = µ0(x∨)⊗(p−1). It is verified like in the case of a, v before that they do not
depend on the choice of t and hence are well-defined global sections. The equality
λ⊗(p−1)

⊗µ= p1OS holds true and the proof is now complete. �

Proof of Theorem A.2. We keep the notation of the theorem. Since the construction
of the isogeny ϕκ and the whole commutative diagram is canonical, if we perform
it after fppf base change S′→ S then it will descend to S. We choose S′ = S1q S2,
where S1= S⊗Z Z[1/p] and S2= S⊗Z3. Over S1 the group scheme G is étale and
the cogenerator is an isomorphism by [Katz and Mazur 1985, Lemma 1.8.3]. We
take G= G′ = Gm,S and ϕκ is the p-th power map. Over S2 we use Theorem A.15
which provides a canonical isomorphism between κ and H M

λ,µ with its canonical
cogenerator, embedded into a diagram of the desired form. This completes the
proof. �

Appendix B. Weil restriction of closed subschemes

Let Z → X be a morphism of S-schemes (or algebraic spaces) and denote by
h : X→ S the structure map. The Weil restriction h∗Z of Z along h is the functor
on S-schemes defined by (h∗Z)(T )= HomX (X ×S T, Z). It may be seen as a left
adjoint to the pullback along h, or as the functor of sections of Z→ X .

If Z→ X is a closed immersion of schemes (or algebraic spaces) of finite presen-
tation over S, there are two main cases where h∗Z is known to be representable by
a closed subscheme of S. As is well-known, this has applications to representability
of various equalizers, kernels, centralizers, normalizers, etc. These two cases are:

(i) if X → S is proper flat and Z → S is separated, by the Grothendieck–Artin
theory of the Hilbert scheme,

(ii) if X→ S is essentially free, by [Grothendieck 1970, théorème 6.4].

In this appendix, we want to prove that h∗Z is representable by a closed sub-
scheme of S in a case that includes both situations and is often easier to check in
practice, namely the case where X→ S is flat and pure.

B.1. Essentially free and pure morphisms. We recall the notions of essentially
free and pure morphisms and check that essentially free morphisms and proper
morphisms are pure.

In [Grothendieck 1970, §6], a morphism X→ S is called essentially free if and
only if there exists a covering of S by open affine subschemes Si , and for each i an
affine faithfully flat morphism S′i → Si and a covering of X ′i = X ×S S′i by open
affine subschemes X ′i, j such that the function ring of X ′i, j is free as a module over
the function ring of S′i .

In fact, the proof of [Grothendieck 1970, théorème 6.4] works just as well with
a slightly weaker notion than freeness of modules. Namely, for a module M over a
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ring A, let us say that M is quasireflexive if the canonical map M→ M∨∨ from
M to its linear bidual is injective after any change of base ring A→ A′. It is a
simple exercise to see that this is equivalent to M being a submodule of a product
module AI for some set I , over A and after any base change A→ A′. For instance,
free modules, projective modules, product modules are quasireflexive. This gives
rise to a notion of essentially quasireflexive morphism, and in particular essentially
projective morphism. Then inspection of the proof of [Grothendieck 1970, théorème
6.4] shows that it remains valid for these morphisms.

In [Raynaud and Gruson 1971, 3.3.3], a morphism locally of finite type X→ S is
called pure if and only if for all points s ∈ S, with henselization (S̃, s̃), and all points
x̃ ∈ X̃ where X̃ = X×S S̃, if x̃ is an associated point in its fiber then its closure in X̃
meets the special fiber. Examples of pure morphisms include proper morphisms (by
the valuative criterion for properness) and morphisms locally of finite type and flat,
with geometrically irreducible fibers without embedded components [ibid., 3.3.4].

Finally if X→ S is locally of finite presentation and essentially free, then it is
pure. Indeed, with the notations above for an essentially free morphism, one sees
using [ibid., 3.3.7] that it is enough to see that for each i, j the scheme X ′i, j is pure
over S′i . But since the function ring of X ′i, j is free over the function ring of S′i , this
follows from [ibid., 3.3.5].

B.2. Representability of h∗ Z.

Proposition B.3. Let h : X → S be a morphism of finite presentation, flat and
pure, and let Z → X be a closed immersion. Then the Weil restriction h∗Z is
representable by a closed subscheme of S.

Proof. The question is local for the étale topology on S. Let s ∈ S be a point and
let Oh be the henselization of the local ring at s. By [Raynaud and Gruson 1971,
3.3.13], for each x ∈ X lying over s, there exists an open affine subscheme U h

x
of X ×S Spec(Oh) containing x and whose function ring is free as an Oh-module.
Since Xs is quasi-compact, there is a finite number of points x1, . . . , xn such that
the open affines U h

i =U h
xi

cover it. Since X is locally of finite presentation, after
restricting to an étale neighborhood S′→ S of s, there exist affine open subschemes
Ui of X inducing the U h

i . According to [ibid., 3.3.8], the locus of the base scheme
S where Ui→ S is pure is open, so after shrinking S we may assume that for each i
the affine Ui is flat and pure. This means that its function ring is projective by [ibid.,
3.3.5]. In other words, the union U =U1 ∪ · · · ∪Un is essentially projective over S
in the terms of the comments in B.1. If k : U → X denotes the structure map, it
follows from [Grothendieck 1970, théorème 6.4] that k∗(Z ∩U ) is representable by
a closed subscheme of S. On the other hand, according to [Romagny 2011, 3.1.8],
replacing S again by a smaller neighborhood of s, the open immersion U → X
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is S-universally schematically dense. One deduces immediately that the natural
morphism h∗Z→ k∗(Z ∩U ) is an isomorphism. This finishes the proof. �

This proposition has a long list of corollaries and applications, listed in [Grothen-
dieck 1970, §6]. In particular:

Corollary B.4. Let X→ S be a morphism of finite presentation, flat and pure and
Y → S a separated morphism. Consider two morphisms f, g : X → Y . Then the
condition f = g is represented by a closed subscheme of S.

Proof. Apply the previous proposition to the pullback of the diagonal of Y along
( f, g) : X→ Y ×S Y . �
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Block components of the Lie module for
the symmetric group

Roger M. Bryant and Karin Erdmann

Let F be a field of prime characteristic p and let B be a nonprincipal block of
the group algebra F Sr of the symmetric group Sr . The block component Lie(r)B

of the Lie module Lie(r) is projective, by a result of Erdmann and Tan, although
Lie(r) itself is projective only when p - r . Write r = pmk, where p - k, and let S∗k
be the diagonal of a Young subgroup of Sr isomorphic to Sk × · · ·× Sk . We show
that pm Lie(r)B ∼= (Lie(k)↑Sr

S∗k
)B . Hence we obtain a formula for the multiplici-

ties of the projective indecomposable modules in a direct sum decomposition of
Lie(r)B . Corresponding results are obtained, when F is infinite, for the r -th Lie
power Lr (E) of the natural module E for the general linear group GLn(F).

1. Introduction and summary of results

Let r be a positive integer and let Sr denote the symmetric group of degree r . For
any field F the Lie module Lie(r) is the F Sr -module given by the right ideal ωr F Sr

of the group algebra F Sr where ωr is the Dynkin–Specht–Wever element, defined
by ω1 = 1 and, for r > 2,

ωr = (1− cr )(1− cr−1) · · · (1− c2), (1-1)

where ci is the i-cycle (1 i i−1 . . . 2). It is known that Lie(r) has dimension
(r − 1)! (see Section 2A).

If F has prime characteristic p and p - r then Lie(r) is a direct summand of F Sr

because, as is well known, ω2
r = rωr (see, for example, [Bryant 2009, Section 3]);

so in this case Lie(r) is projective. However, if char F = p and p |r then Lie(r)
is not projective (because its dimension is not then divisible by the order of a
Sylow p-subgroup of Sr ), but it was shown recently that every nonprincipal block
component of Lie(r) is projective (see [Erdmann and Tan 2011]). Here we show
that each such component can be described in a surprisingly simple way in terms
of Lie(k), where k is the p′-part of r .
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The Lie module occurs naturally in a number of contexts in algebra, algebraic
topology and elsewhere (see [Erdmann and Tan 2011] for a fuller discussion). Here
we shall only be concerned with the connection with free Lie algebras, where
our results on the Lie module give new insight into the module structure of the
homogeneous components.

Let G be a group and V an FG-module. Let Lr (V ) denote the homogeneous
component of degree r in the free Lie algebra L(V ) freely generated by any basis of
V . (Here L(V ) may be regarded as the Lie subalgebra generated by V in the tensor
algebra or free associative algebra on V : see Section 2A.) The vector space Lr (V )
is called the r-th Lie power of V and it inherits the structure of an FG-module.

Suppose that F is infinite, let n be a positive integer, and let E denote the natural
n-dimensional module over F for the general linear group GLn(F). Then Lr (E),
as a module for GLn(F), is a homogeneous polynomial module of degree r . In
other words it is a module for the Schur algebra SF (n, r) (see [Green 1980]). In
the case where n > r the Schur functor fr maps SF (n, r)-modules to F Sr -modules
and we have fr (Lr (E))∼= Lie(r) (see Section 2D).

Recall that if B is the set of blocks of an algebra 0 and V is a 0-module then we
may write V as a direct sum of block components: V =

⊕
B∈BVB , where VB ∈ B

for all B. Our main results concern the block components of Lie(r) and Lr (E)
when F has prime characteristic p. The basic results are for Lie(r), and the results
for Lr (E) are obtained from these by means of the Schur functor. To state the
results we write r = pmk where m > 0, k > 1, and p - k.

Let S∗k be a subgroup of Sr such that S∗k ∼= Sk and S∗k is the diagonal of a Young
subgroup of Sr isomorphic to Sk × · · · × Sk (with pm factors). (See Section 2D
for more details.) Since S∗k ∼= Sk we may regard Lie(k) as an F S∗k -module and,
since p - k, this module is projective. Thus the induced module Lie(k)↑Sr

S∗k
is

also projective. It was proved in [Erdmann and Tan 2011, Theorem 3.1] that if
B is a nonprincipal block of F Sr then Lie(r)B is projective. Here we shall prove
(Theorem 3.1) that

Lie(r)B ∼=
1

pm (Lie(k)↑Sr
S∗k
)B (1-2)

when B satisfies the condition B̃ 6=∅ (see Section 2B): this condition is satisfied
when B is nonprincipal. (The notation U ∼= (1/q) V used in (1-2) means that
q U ∼= V , where q U denotes U ⊕ · · · ⊕U with q summands.) The special case
where k = 1 is of particular interest: it yields

Lie(pm)B ∼=
1

pm (F Spm )B .

Since (1-2) holds for each nonprincipal block B, a comparison of dimensions
gives a weaker result (Corollary 3.4) for the principal block B0:
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dim Lie(r)B0 =
1

pm dim (Lie(k)↑Sr
S∗k
)B0 .

The projective indecomposable F Sr -modules may be labelled Pλ where λ ranges
over the p-regular partitions of r (see Section 2B). For any F Sr -block B we write
λ ∈ B when Pλ ∈ B. Since Lie(r)B is projective when B is nonprincipal, there are
nonnegative integers mλ such that

Lie(r)B ∼=
⊕
λ∈B

mλ Pλ.

In Theorem 3.5 we prove that

mλ =
1
r

∑
d|k

µ(d) βλ(τ k/d), (1-3)

where µ is the Möbius function, τ is an element of Sr of cycle type (k, k, . . . , k),
and βλ denotes the Brauer character of Dλ, the irreducible F Sr -module isomorphic
to the head of Pλ.

Now suppose that F is infinite and n is a positive integer. We have observed
that Lr (E) is an SF (n, r)-module. Similarly, Lk(E⊗pm

) is an SF (n, r)-module,
and (by the argument in [Donkin and Erdmann 1998, Section 3.1]) it is isomorphic
to a direct summand of E⊗r . It is a consequence of [Erdmann and Tan 2011,
Theorem 3.2] that if B is a block of SF (n, r) satisfying the condition B̃ 6=∅ (see
Section 2C) then Lr (E)B is isomorphic to a direct sum of summands of E⊗r . Here
we shall prove (Theorem 3.6) that

Lr (E)B ∼=
1

pm Lk(E⊗pm
)B .

The indecomposable summands of E⊗r are tilting modules T (λ), where λ is a
p-regular partition of r with at most n parts (see Section 2C). For any SF (n, r)-
block B we write λ ∈ B when T (λ) ∈ B. In Theorem 3.7 we prove that if B̃ 6=∅
then

Lr (E)B ∼=
⊕
λ∈B

mλ T (λ),

where the multiplicities mλ are given by (1-3). This extends [Donkin and Erdmann
1998, Section 3.3, Theorem], which gives the same result in the case where p - r .

All modules over fields in this paper will be assumed to be finite-dimensional,
and modules for algebras are right modules unless otherwise specified.

2. Preliminaries

2A. The Lie module. Let r and n be positive integers where n > r . Let 1 be
the free associative ring (Z-algebra) on free generators x1, . . . , xn and let L be the
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Lie subring of 1 generated by x1, . . . , xn . By [Bourbaki 1972, chapitre II, §3,
théorème 1], L is free on x1, . . . , xn . Let 1r denote the homogeneous component
of 1 of degree r . Then Sr has a left action by “place permutations” on 1r , given by
α(y1 · · · yr )= y1α · · · yrα for all α ∈ Sr and all y1, . . . , yr ∈ {x1, . . . , xn}. (Note that
we write multiplication in Sr from left to right.) Hence1r is a left ZSr -module. Let
ωr be the element of ZSr given by (1-1). Then it is well known and easily verified
that ωr (y1 · · · yr ) = [y1, . . . , yr ] where [y1, . . . , yr ] denotes the left-normed Lie
product [· · · [[y1, y2], y3], . . . , yr ].

The group Sr also has a right action on 1 by automorphisms, where xiα = xiα

for i = 1, . . . , r and xiα = xi for i > r . Thus 1r becomes a (ZSr ,ZSr )-bimodule.
Let 10

r be the Z-subspace of 1r spanned by the monomials x1α · · · xrα with α ∈ Sr .
Thus 10

r is a subbimodule of 1r and the map ξ : ZSr → 10
r defined by ξ(α) =

x1α · · · xrα is an isomorphism of bimodules.
Let L0

r = L ∩ 10
r . Then L0

r is spanned over Z by all elements of the form
[x1α, . . . , xrα]. Also, by [Bourbaki 1972, chapitre II, §3, théorème 2], L0

r is free of
rank (r − 1)! as a Z-module. We have ωr1

0
r = L0

r . Thus the isomorphism ξ maps
ωr ZSr to L0

r , and so ωr ZSr is isomorphic to L0
r as a right ZSr -module.

All of the above still applies if Z is replaced by R, where R is an arbitrary
commutative ring with unity. Also (using subscripts to show coefficient rings) we
have R ⊗Z L0

r,Z
∼= L0

r,R . The Lie module LieR(r) is the RSr -module defined by
LieR(r) = ωr RSr . Thus LieR(r) ∼= L0

r,R . It follows that LieR(r) ∼= R⊗Z LieZ(r)
and LieR(r) is free of rank (r − 1)! as an R-module. If F is a field we have

dim LieF (r)= (r − 1)! (2-1)

and, if F is understood, we write LieF (r) as Lie(r).
When K is a field of characteristic zero there is a formula for the character ψr of

LieK (r). Let µ denote the Möbius function and let σ be an r -cycle of Sr . For each
divisor d of r let Cd denote the conjugacy class of σ r/d in Sr . Then, for g ∈ Sr ,

ψr (g)=
{
µ(d)(r − 1)!/|Cd | if g ∈ Cd ,
0 if g /∈ Cd for all d.

(2-2)

(See, for example, [Donkin and Erdmann 1998, Section 3.2].) Hence, if θ is any
class function on Sr with values in K and we write

(θ, ψr )Sr =
1
|Sr |

∑
g∈Sr

θ(g)ψr (g−1), (2-3)

we have

(θ, ψr )Sr =
1
r

∑
d|r

µ(d)θ(σ r/d). (2-4)
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2B. Representations of Sr . By a partition of a nonnegative integer r we mean, as
usual, a finite sequence λ= (λ1, . . . , λs) of integers satisfying λ1 > · · ·> λs > 0
and λ1+· · ·+λs = r . We call λ1, . . . , λs the parts of λ. We write 3+(r) for the set
of all partitions of r . If r = 0 then 3+(r) contains only the empty partition, which
we denote by ∅. Let p be a prime number. A partition λ is p-regular if λ does
not have p or more equal parts, and we write 3+p (r) for the set of all p-regular
partitions of r . The p-core of a partition λ of r is the partition λ̃ of r ′, for some
r ′ 6 r , obtained from (the diagram of) λ by the removal of as many “rim p-hooks”
as possible: see [James and Kerber 1981, Section 2.7]. We write Cr for the set of
all p-cores of elements of 3+(r).

Let r be a positive integer and let F be a field of prime characteristic p. The irre-
ducible F Sr -modules may be labelled (up to isomorphism) as Dλ with λ ∈3+p (r),
where Dλ is a quotient module of the Specht module Sλ (see [James and Ker-
ber 1981, 7.1.14]). Here D(r) is isomorphic to the trivial F Sr -module F because
S(r)∼= F . For each λ we write Pλ for the projective cover of Dλ. Thus the projective
indecomposable F Sr -modules are the Pλ with λ∈3+p (r). If F ′ is an extension field
of F then (using subscripts to show coefficient fields) we have Dλ

F ′
∼= F ′⊗F Dλ

F
and PλF ′ ∼= F ′⊗F PλF .

We recall a few general facts about blocks. If 0 is a finite-dimensional F-algebra
we may write 0 uniquely as a finite direct sum of indecomposable two-sided ideals,
0=

⊕
B∈B 0B . These ideals are the blocks of 0, but it is convenient also to refer to

the labels B as the blocks. The identity element of 0 may be written as
∑

B∈B eB ,
with eB ∈ 0B for all B. The elements eB are the block idempotents: they are
primitive central idempotents of 0 (see, for example, [Benson 1995]). Any 0-
module V satisfying V eB = V is said to belong to B, and we write V ∈ B. Every
0-module V may be written uniquely in the form V =

⊕
B∈B VB , where VB ∈ B

for all B (indeed, VB = V eB). We call VB the block component of V corresponding
to B.

By the Nakayama conjecture (see [James and Kerber 1981, 6.1.21]), the blocks
of F Sr may be labelled B(ν) with ν ∈ Cr in such a way that Sλ ∈ B(λ̃) for all
λ ∈3+p (r). Since Dλ is a quotient of Sλ and Pλ is indecomposable with Dλ as a
quotient, we have Dλ, Pλ ∈ B(λ̃). We use the same notation for the blocks of F Sr

for every field F of characteristic p. By consideration of composition factors we
see that, for any F Sr -module V , any extension field F ′ of F , and any ν, we have

(F ′⊗F V )B(ν) ∼= F ′⊗F VB(ν). (2-5)

If B is a block and B = B(ν) we write B̃ = ν. Also, for λ ∈3+p (r), we write λ ∈ B
if Dλ

∈ B (or equivalently Pλ ∈ B). The principal block is the block B0 containing
the trivial irreducible D(r). Thus B̃0 = (r), where r denotes the remainder on
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dividing r by p. If B̃ = ∅ then p |r and r = 0 so that B = B0. Hence if B is
nonprincipal we have B̃ 6=∅.

If p - r then Lie(r) is projective (see Section 1). But if p |r and B̃ 6= ∅ then
B 6= B0 and so Lie(r)B is projective by [Erdmann and Tan 2011, Theorem 3.1].
Hence we have the following result.

Theorem 2.1 [Erdmann and Tan 2011]. If B is a block of F Sr such that B̃ 6= ∅
then Lie(r)B is projective.

As is well known, Brauer characters of F Sr -modules have integer values: this
follows, for example, from [Nagao and Tsushima 1989, Chapter 3, Lemma 6.13].
(Consequently Brauer characters of F Sr -modules are uniquely defined and do not
depend upon choices of roots of unity.) We regard Brauer characters as maps
from Sr to Z by assigning the value zero to p-singular elements of Sr . For each
λ∈3+p (r) we write βλ and ζ λ for the Brauer characters of Dλ and Pλ, respectively.
By the orthogonality relations for Brauer characters (see [Nagao and Tsushima
1989, Chapter 3, Theorem 6.10]) we have

(βλ, ζ ρ)Sr =

{
1 if λ= ρ,
0 if λ 6= ρ,

(2-6)

where (βλ, ζ ρ)Sr is defined as in (2-3).

2C. Polynomial representations of GLn(F). Suppose now that F is an infinite
field of prime characteristic p and let n and r be positive integers. We refer to
[Green 1980] and [Donkin and Erdmann 1998] for background concerning poly-
nomial GLn(F)-modules and the Schur algebra SF (n, r). Let E denote the natural
GLn(F)-module. Thus E⊗r is an SF (n, r)-module. If k and t are positive integers
such that r = kt and if V is an SF (n, t)-module then V⊗k and Lk(V ) are SF (n, r)-
modules.

Let 3+(n, r) denote the set of all partitions of r with at most n parts and let
3+p (n, r) denote the set of all p-regular partitions in 3+(n, r). The irreducible
SF (n, r)-modules may be labelled L(λ) with λ ∈3+(n, r). For each such λ there
is also an indecomposable SF (n, r)-module T (λ) called a “tilting module”, and
(see [Donkin and Erdmann 1998, Section 1.3]) there are nonnegative integers nλ
such that

E⊗r ∼=
⊕

λ∈3+p (n,r)

nλ T (λ). (2-7)

The main facts about the blocks of SF (n, r) were obtained in [Donkin 1994] and
summarised in [Erdmann and Tan 2011]. When n > r the blocks may be labelled
B(ν) with ν ∈ Cr in such a way that L(λ) ∈ B(λ̃). If B is a block and B = B(ν)
we write B̃ = ν. When n < r , p-cores do not necessarily label unique blocks, but
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if L(λ) and L(ρ) are in the same block then λ̃= ρ̃. Thus, for each block B, there
is an element B̃ of Cr (where B̃ has at most n parts) with the property that λ̃= B̃
whenever L(λ)∈ B. For each ν ∈Cr we write B(ν) for the set of blocks B such that
B̃ = ν. (Thus B(ν) is empty if ν has more than n parts.) If V is an SF (n, r)-module
we write VB(ν) for the direct sum of the block components VB of V corresponding
to blocks B in B(ν). For all n and all λ ∈3+(n, r), T (λ) is indecomposable and
has L(λ) as a composition factor (see [Erdmann 1994, Section 1.3]); thus T (λ) and
L(λ) belong to the same block. For a block B and λ ∈3+(n, r) we write λ ∈ B
if L(λ) ∈ B (or equivalently T (λ) ∈ B). We define the principal block to be the
block B0 containing L(λ) where λ= (r). Thus B̃0 = (r), with r as before. As in
the case of F Sr , if n > r and B is nonprincipal then B̃ 6=∅.

Let T denote the class of all SF (n, r)-modules that are isomorphic to direct
sums of tilting modules T (λ) where λ ∈ 3+p (n, r). Thus E⊗r

∈ T by (2-7). If
p - r then Lr (E) is isomorphic to a direct summand of E⊗r (see Section 1) and so
Lr (E) ∈ T. But if p |r and B̃ 6=∅ then Lr (E)B ∈ T by [Erdmann and Tan 2011,
Theorem 3.2]. Hence we have the following result.

Theorem 2.2 [Erdmann and Tan 2011]. If B is a block of SF (n, r) such that B̃ 6=∅
then Lr (E)B ∈ T.

Suppose now that n1 and n2 are positive integers with n1 > n2 and let dn1,n2

denote the functor from the category of SF (n1, r)-modules to the category of
SF (n2, r)-modules described in [Green 1980, Section 6.5]. This functor is ex-
act (in particular it preserves direct sums) and we call it truncation. Note that
3+(n2, r) ⊆ 3+(n1, r). We temporarily use subscripts to distinguish between
modules for SF (n1, r) and SF (n2, r). Then, if λ ∈ 3+(n1, r) and M(λ) denotes
either L(λ) or T (λ), we have

dn1,n2(Mn1(λ))
∼=

{
Mn2(λ) if λ ∈3+(n2, r),
0 otherwise.

(2-8)

(For the case of L(λ) see [Green 1980, Section 6.5] and for T (λ) see [Erdmann
1994, Section 1.7].)

Write d = dn1,n2 and use the same notation for arbitrary r . Then, if k and t are
positive integers and V is an SF (n1, t)-module, it is easy to check that d(V⊗k)∼=

d(V )⊗k and d(Lk(V ))∼= Lk(d(V )). Furthermore d(E⊗t
n1
)∼= E⊗t

n2
. Also, if V is an

SF (n1, r)-module and ν ∈ Cr , it follows from (2-8) that

d(VB(ν))∼= d(V )B(ν). (2-9)

2D. The Schur functor. We continue with the notation of the previous subsection
but now assume that n > r . The Schur functor fr is an exact functor from the
category of SF (n, r)-modules to the category of F Sr -modules (see [Green 1980,
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Chapter 6]). If U is an SF (n, r)-module then fr (U ) may be thought of as the
weight space of U corresponding to the weight (1, . . . , 1, 0, . . . , 0), with r coordi-
nates equal to 1, and the action of Sr on fr (U ) comes by taking Sr as a group of
permutation matrices in GLn(F) (see, for example, [Donkin and Erdmann 1998,
Section 1.2]). It is easily seen that

fr (E⊗r )∼= F Sr . (2-10)

Let {e1, . . . , en} be the standard basis of E . Then fr (Lr (E)) is the subspace of
Lr (E) spanned by the left-normed Lie products [e1α, . . . , erα] with α ∈ Sr . In the
notation of Section 2A, fr (Lr (E))∼= L0

r,F . Thus, since L0
r,F
∼= Lie(r), we obtain

fr (Lr (E))∼= Lie(r). (2-11)

For all λ ∈3+p (n, r)=3
+
p (r), we have (see [Donkin and Erdmann 1998, Sec-

tion 1.3])
fr (T (λ))∼= Pλ. (2-12)

As observed in [Erdmann and Tan 2011], fr sends modules in the SF (n, r)-block
B(ν) to modules in the F Sr -block B(ν) labelled by the same p-core. Thus, if V
is any SF (n, r)-module, we have

fr (VB(ν))∼= fr (V )B(ν). (2-13)

Let k be a divisor of r , and write t = r/k. (We do not at present assume that
p - k.) For each α ∈ Sk we may define α∗ ∈ Sr by ((i − 1)t + j)α∗ = (iα− 1)t + j
for i = 1, . . . , k and j = 1, . . . , t . The set {α∗ : α ∈ Sk} is a subgroup S∗k of
Sr isomorphic to Sk . The subgroup of Sr consisting of all permutations fixing
{(i − 1)t + j : i = 1, . . . , k} setwise for j = 1, . . . , t is a Young subgroup of Sr

isomorphic to Sk × · · · × Sk , and S∗k may be thought of as the diagonal of this
subgroup. The diagonal of any other Young subgroup isomorphic to Sk × · · ·× Sk

is a conjugate of S∗k in Sr . Note that if σ is the r-cycle (1 2 . . . r) of Sr and
σk is the k-cycle (1 2 . . . k) of Sk then σ t

= σ ∗k ∈ S∗k . For i = 1, . . . , k, write
�i = {(i − 1)t + j : j = 1, . . . , t}. The subgroup S(k)t of Sr consisting of all
permutations fixing each�i setwise is a Young subgroup isomorphic to St×· · ·×St .
For each α ∈ Sk we have �iα

∗
=�iα for i = 1, . . . , k. The subgroup S(k)t S∗k of Sr

is isomorphic to the wreath product St wr Sk .
Let V be an SF (n, t)-module. Then ft(V ) is an F St -module, so ft(V )⊗k is an

F S(k)t -module. Indeed, ft(V )⊗k may be regarded as an F S(k)t S∗k -module, where the
action of S∗k is to permute the tensor factors. We regard Lie(k) as an F S∗k -module
by means of the isomorphism α 7→ α∗ from Sk to S∗k . Then Lie(k) may also be
regarded as an F S(k)t S∗k -module, by taking trivial action of S(k)t . The following
result is part of [Lim and Tan 2012, Corollary 3.2].
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Lemma 2.3 [Lim and Tan 2012]. In the above notation,

fr (Lk(V ))∼= ( ft(V )⊗k
⊗Lie(k))↑Sr

S(k)t S∗k
.

Corollary 2.4. In the above notation,

fr (Lk(E⊗t))∼= Lie(k)↑Sr
S∗k
.

Proof. By (2-10) and Lemma 2.3,

fr (Lk(E⊗t))∼= ((F St)
⊗k
⊗Lie(k))↑Sr

S(k)t S∗k
.

Clearly (F St)
⊗k is a transitive permutation module under the action of S(k)t S∗k and

the stabiliser of the basis element 1⊗· · ·⊗1 is S∗k . Thus (F St)
⊗k is induced from a

one-dimensional trivial module for S∗k and (by [Benson 1995, Proposition 3.3.3(i)])
we have

(F St)
⊗k
⊗Lie(k)∼= Lie(k)↑

S(k)t S∗k
S∗k

.

The result follows. �

3. Main results

Recall from Section 2B that if B is a nonprincipal block of F Sr then B̃ 6=∅. Our
main result on the Lie module is as follows. We use the notation of Section 2D,
regarding Lie(k) as an F S∗k -module.

Theorem 3.1. Let F be a field of prime characteristic p. Let r be a positive integer
and write r = pmk where m > 0, k > 1, and p - k. Let B be a block of F Sr such
that B̃ 6= ∅ and let S∗k be the diagonal of a Young subgroup Sk × · · · × Sk of Sr .
Then

Lie(r)B ∼=
1

pm (Lie(k)↑Sr
S∗k
)B .

Note that Lie(k)↑Sr
S∗k

is projective since Lie(k) is projective (see Section 1).
We commence the proof of Theorem 3.1. If F ′ is an extension field of F then,

by the description of the Lie module in Section 2A, LieF ′(r)∼= F ′⊗LieF (r) and
LieF ′(k) ∼= F ′ ⊗ LieF (k). Thus, if B is any block of F Sr , we have LieF ′(r)B ∼=

F ′⊗LieF (r)B and (LieF ′(k)↑
Sr
S∗k
)B ∼= F ′⊗(LieF (k)↑

Sr
S∗k
)B by (2-5). Hence it suffices

to prove Theorem 3.1 for the prime field Fp and then, by the Noether–Deuring
theorem, it suffices to prove the theorem for any chosen field F of characteristic
p. We choose F so that there is a p-modular system (K , R, F) with the properties
specified in [Nagao and Tsushima 1989, Chapter 3, Section 6]. Note, in particular,
that K has characteristic 0 and contains sufficient roots of unity, K is the field of
fractions of R, and F = R/(π) where (π) is the maximal ideal of R.
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We state some standard facts associated with p-modular systems in order to
establish terminology and notation. If G is any finite group then the natural epi-
morphism R→ F yields an epimorphism RG→ FG. If this epimorphism maps
u to v, where u ∈ RG and v ∈ FG, we say that v lifts to u. By an RG-lattice
we mean an RG-module that is free of finite rank as an R-module. If M is an
RG-lattice we write M = M/πM . Thus M ∼= F ⊗R M and M has the structure
of an FG-module. An FG-module V is said to be liftable if there exists M such
that M ∼= V , in which case we say that V lifts to M . If M is an RG-lattice then
K ⊗R M is a K G-module. If U is any K G-module then there is an RG-lattice M
such that U ∼= K ⊗R M (see [Benson 1995, Lemma 1.9.1]) and we say that M is
obtained from U by modular reduction.

By a standard result (see [ibid., Theorem 1.9.4]), each block idempotent eB of
F Sr can be lifted to an element êB of RSr to obtain pairwise-orthogonal primitive
central idempotents of RSr summing to the identity. If M is an RSr -lattice such
that MêB = M we write M ∈ B. Every RSr -lattice M may be written uniquely in
the form M =

⊕
B MB where, for each B, MB is an RSr -lattice belonging to B.

Similar facts and notation apply to K Sr -modules, using the same idempotents êB .
If U is a K Sr -module then, since K has characteristic zero, UB is a direct sum of
irreducible K Sr -modules belonging to B.

It is easily verified that if M is an RSr -lattice and B is a block then

(K ⊗R M)B ∼= K ⊗R MB and MB ∼= M B . (3-1)

We let σ be an r-cycle of Sr chosen as in Section 2D (with t = pm) so that
σ pm
= σ ∗k ∈ S∗k , where σk is a k-cycle of Sk .

Lemma 3.2. If g is an element of the cyclic subgroup 〈σ 〉 such that g has order
divisible by p and if χ is the character of an irreducible K Sr -module U belonging
to a block B such that B̃ 6=∅ then χ(g)= 0.

Proof. Let M be an RSr -lattice such that U ∼= K ⊗R M . Since U belongs to B
it follows from (3-1) that M belongs to B. Let D be the defect group of the F Sr -
block B (see [Benson 1995, Section 6.1]). (Thus D is a p-group, determined up
to conjugacy in Sr .) By [ibid., Corollary 6.1.3], D is also the defect group of B
regarded as a block of RSr . Thus, by [ibid., Proposition 6.1.2], M is projective
relative to D.

Let B = B(ν) where ν ∈ Cr . Thus ν 6=∅ and so ν is a partition of r ′ for some
r ′ satisfying 0< r ′ 6 r . It follows from [James and Kerber 1981, 6.2.45] that D
can be taken to be a Sylow p-subgroup of a subgroup Sr−r ′ of Sr fixing r ′ points
of {1, . . . , r}. Hence every element of D fixes some point of {1, . . . , r}.

Let g be as in the statement of the lemma. The p-part of g is a nontrivial element
of 〈σ 〉 and hence has no fixed points in {1, . . . , r}. It follows that the p-part of g is
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not conjugate in Sr to an element of D. Therefore, by [Nagao and Tsushima 1989,
Chapter 4, Theorem 7.4], we have χ(g)= 0, as required. �

Lemma 3.3. If B is a block such that B̃ 6=∅ then pm LieK (r)B ∼= (LieK (k)↑
Sr
S∗k
)B .

Proof. The result is trivial if r = k. Thus we may assume that p |r . Let ψr

denote the character of the K Sr -module LieK (r) and let ψk denote the character
of the K S∗k -module LieK (k). In order to prove the lemma it suffices to show that
the multiplicity of each irreducible K Sr -module U belonging to B is the same in
pm LieK (r) as in LieK (k)↑

Sr
S∗k

. Let χ be the character of U . By the orthogonality
relations and Frobenius reciprocity for ordinary characters, it suffices to prove

pm (χ, ψr )Sr = (χ↓
Sr
S∗k
, ψk)S∗k . (3-2)

By (2-4) we have

r (χ, ψr )Sr =

∑
d|r

µ(d)χ(σ r/d)

=

∑
d|k

µ(d)χ(σ r/d)−
∑
d|k

µ(d)χ(σ r/pd).

However, for d |k, we have χ(σ r/pd)= 0 by Lemma 3.2. Thus

r (χ, ψr )Sr =

∑
d|k

µ(d)χ((σ pm
)k/d).

Recall that σ pm
= σ ∗k ∈ S∗k where σk is a k-cycle of Sk . Hence, by (2-4) applied to

S∗k ,

k (χ↓Sr
S∗k
, ψk)S∗k =

∑
d|k

µ(d)χ((σ pm
)k/d).

This gives (3-2). �

We can now prove Theorem 3.1. Let B be a block of F Sr such that B̃ 6=
∅. By the description of the Lie module in Section 2A, Lie(r) lifts to the RSr -
lattice LieR(r) and Lie(k) lifts to the RS∗k -lattice LieR(k). Thus pm Lie(r) and
Lie(k)↑Sr

S∗k
lift to pm LieR(r) and LieR(k)↑

Sr
S∗k

, respectively. Also, K ⊗ pmLieR(r)∼=
pmLieK (r) and K ⊗ LieR(k)↑

Sr
S∗k
∼= LieK (k)↑

Sr
S∗k

. Hence pmLie(r) and Lie(k)↑Sr
S∗k

are modular reductions of pmLieK (r) and LieK (k)↑
Sr
S∗k

, respectively. It follows by
(3-1) that pmLie(r)B and (Lie(k)↑Sr

S∗k
)B are modular reductions of pmLieK (r)B and

(LieK (k)↑
Sr
S∗k
)B , respectively. However, by Lemma 3.3, these two last modules are

isomorphic. Therefore, by [Nagao and Tsushima 1989, Chapter 3, Lemma 6.4],
pm Lie(r)B and (Lie(k)↑Sr

S∗k
)B have the same Brauer character.

By Theorem 2.1, Lie(r)B is projective. Since Lie(k) is a projective F S∗k -module,
Lie(k)↑Sr

S∗k
is a projective F Sr -module and so (Lie(k)↑Sr

S∗k
)B is projective. Thus
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pm Lie(r)B and (Lie(k)↑Sr
S∗k
)B are projective modules with the same Brauer charac-

ters. Therefore, by [Benson 1995, Corollary 5.3.6], these modules are isomorphic.
This proves Theorem 3.1.

Corollary 3.4. If B0 is the principal block of F Sr then

dim Lie(r)B0 =
1

pm dim (Lie(k)↑Sr
S∗k
)B0 .

Proof. For each nonprincipal block B of F Sr we have

dim Lie(r)B =
1

pm dim (Lie(k)↑Sr
S∗k
)B ,

by Theorem 3.1. However, by (2-1),

dim Lie(k)↑Sr
S∗k
= (k− 1)! r !/k! = pm(r − 1)! = pm dim Lie(r).

The result follows. �

Theorem 3.5. In the notation of Theorem 3.1, we have

Lie(r)B ∼=
⊕

λ∈3+p (r)
λ∈B

mλ Pλ, (3-3)

where, for each λ,

mλ =
1
r

∑
d|k

µ(d) βλ(τ k/d), (3-4)

where τ is an element of Sr of cycle type (k, k, . . . , k) and βλ denotes the Brauer
character of Dλ.

Proof. By Theorem 2.1, Lie(r)B is projective. Thus it satisfies (3-3) for suitable
nonnegative integers mλ. It remains to prove (3-4). If F ′ is an extension field of
F then LieF ′(r)∼= F ′⊗LieF (r) and PλF ′ ∼= F ′⊗ PλF . Also, block components are
preserved under field extensions, by (2-5). Hence it suffices to prove the result
for the field Fp and then, by a similar argument, it suffices to prove the result for
any chosen field F of characteristic p. We take F from the p-modular system
(K , R, F) used in the proof of Theorem 3.1.

Since Lie(k)↑Sr
S∗k

is projective we have

Lie(k)↑Sr
S∗k
∼=

⊕
ρ∈3+p (r)

m′ρ Pρ

for suitable nonnegative integers m′ρ . Let λ ∈3+p (r) where λ ∈ B. By Theorem 3.1
we have mλ = (1/pm)m′λ. Let φ denote the Brauer character of Lie(k)↑Sr

S∗k
. By the
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orthogonality relation (2-6) we have

mλ =
1

pm m′λ =
1

pm (β
λ, φ)Sr .

As observed in the proof of Theorem 3.1, Lie(k)↑Sr
S∗k

is a modular reduction of
LieK (k)↑

Sr
S∗k

. The character of LieK (k)↑
Sr
S∗k

is ψk↑
Sr
S∗k

, where ψk denotes the char-
acter of LieK (k) as a K S∗k -module. By [Nagao and Tsushima 1989, Chapter 3,
Lemma 6.4], φ and ψk↑

Sr
S∗k

take the same value on p′-elements of Sr . Thus, by
Frobenius reciprocity,

mλ =
1

pm (β
λ, ψk↑

Sr
S∗k
)Sr =

1
pm (β

λ
↓

Sr
S∗k
, ψk)S∗k .

Let τ be as in the statement of the theorem. Then τ is conjugate to, and therefore
can be taken to be, an element σ ∗k of S∗k corresponding to a k-cycle σk of Sk . Thus,
by (2-4), we have

1
pm (β

λ
↓

Sr
S∗k
, ψk)S∗k =

1
pmk

∑
d|k

µ(d) βλ(τ k/d).

The result follows. �

We now turn to Lie powers and, for the rest of this section, we assume that F
is infinite. As before, let n be a positive integer and let E be the natural GLn(F)-
module.

Theorem 3.6. Let F be an infinite field of prime characteristic p. Let r be a
positive integer and write r = pmk where m > 0, k > 1, and p - k. Let B be a block
of SF (n, r) such that B̃ 6=∅. Then

Lr (E)B ∼=
1

pm Lk(E⊗pm
)B .

Proof. Let T be as defined in Section 2C. Thus, by Theorem 2.2, Lr (E)B ∈ T.
Also, since Lk(E⊗pm

) is a direct summand of E⊗r , we have Lk(E⊗pm
) ∈ T, by

(2-7).
Suppose first that n > r . Then we may write B = B(ν) where ν 6=∅. By (2-11)

and (2-13),
fr (pm Lr (E)B(ν))∼= pm Lie(r)B(ν).

Similarly, by Corollary 2.4 and (2-13),

fr (Lk(E⊗pm
)B(ν))∼= (Lie(k)↑Sr

S∗k
)B(ν).

Also, by Theorem 3.1, pm Lie(r)B(ν) ∼= (Lie(k)↑Sr
S∗k
)B(ν). It follows from (2-12)

that if U, V ∈ T and fr (U ) ∼= fr (V ) then U ∼= V . Hence the isomorphism in
Theorem 3.6 holds when n > r .
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Now suppose that n < r and let B̃ = ν. Thus B ∈ B(ν). Consider the SF (r, r)-
block B(ν). By the first case, there is an isomorphism of SF (r, r)-modules,

Lr (E)B(ν) ∼=
1

pm Lk(E⊗pm
)B(ν). (3-5)

We apply truncation dr,n to (3-5). By (2-9) and the other properties of truncation
given in Section 2C, we obtain (3-5) for SF (n, r)-modules. Hence the correspond-
ing block components are isomorphic for all SF (n, r)-blocks in B(ν) and we obtain
the isomorphism of Theorem 3.6. �

Theorem 3.7. In the notation of Theorem 3.6, we have

Lr (E)B ∼=
⊕

λ∈3+p (n,r)
λ∈B

mλ T (λ),

where mλ is given by (3-4).

Proof. By Theorem 2.2, Lr (E)B ∈ T. Thus Lr (E)B is isomorphic to a direct sum
of tilting modules T (λ) with λ ∈3+p (n, r) and λ ∈ B. Let B̃ = ν. Then, for n > r ,
we have fr (Lr (E)B(ν))∼= Lie(r)B(ν), by (2-11) and (2-13), and fr (T (λ))∼= Pλ for
all λ ∈ 3+p (n, r), by (2-12). Thus, for n > r , the result is given by Theorem 3.5.
For n < r the result follows by truncation, as in the proof of Theorem 3.6. (Note
that the effect of truncation on T (λ) is given by (2-8).) �
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Basepoint-free theorems:
saturation, b-divisors,

and canonical bundle formula
Osamu Fujino

We reformulate basepoint-free theorems using notions introduced by Shokurov,
such as b-divisors and saturation of linear systems. Our formulation is flexible
and has some important applications. One of the main purposes of this paper is
to prove a generalization of the basepoint-free theorem in Fukuda’s paper “On
numerically effective log canonical divisors”.

1. Introduction 797
2. Kawamata–Shokurov basepoint-free theorem revisited 800
3. b-divisors 802
4. Basepoint-free theorem; nef and abundant case 807
5. Basepoint-free theorem of Reid–Fukuda type 810
6. Variants of basepoint-free theorems due to Fukuda 813
7. Basepoint-free theorems for pseudo-klt pairs 817
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1. Introduction

In this paper, we reformulate basepoint-free theorems by using Shokurov’s ideas
[2003] of b-divisors and saturation of linear systems. Combining the refined
Kawamata–Shokurov basepoint-free theorem (quoted here as Theorem 2.1) or its
generalization (Theorem 6.1) with Ambro’s formulation of Kodaira’s canonical
bundle formula, we obtain new basepoint-free theorems (Theorems 4.4 and 6.2),
which are flexible and have some important applications (Theorem 7.11). One
of the main purposes of this paper is to prove the following generalization of the
basepoint-free theorem given in [Fukuda 2002, Proposition 3.3]:

Theorem 1.1. Let (X, B) be an lc pair and let π : X → S be a proper morphism
onto a variety S. Assume the following conditions:
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Keywords: basepoint-free theorem, canonical bundle formula, b-divisor, saturation.
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(A) H is a π -nef Q-Cartier Q-divisor on X.

(B) H − (K X + B) is π -nef and π -abundant.

(C) κ(Xη, (aH − (K X + B))η)≥ 0 and

ν(Xη, (aH − (K X + B))η)= ν(Xη, (H − (K X + B))η)

for some a ∈Q with a > 1, where η is the generic point of S.

(D) There is a positive integer c such that cH is Cartier and

OT (cH) := OX (cH)|T

is π -generated, where T = Nklt(X, B) is the non-klt locus of (X, B).

Then H is π -semiample.

This will be proved on page 816. As an application of Theorem 1.1, we have:

Theorem 1.2 [Fujino and Gongyo 2011, Theorem 4.12]. Let π : X → S be a
projective morphism between projective varieties. Let (X, B) be an lc pair such
that K X + B is nef and log abundant over S. Then K X + B is f -semiample.

We also used Theorem 1.1 to prove the finite generation of the log canonical
ring for log canonical 4-folds in [Fujino 2010]; see Remark 3.4 of that paper. As
we explain elsewhere [Fujino 2007b, Remark 3.10.3; 2011d, 5.1], the proof of
Theorem 4.3 of [Kawamata 1985] contains a gap. Because of that gap, Theorem 5.1
of [Kawamata 1985] was also not rigorously proved, and since Proposition 3.3 of
[Fukuda 2002] depends on it, our proof of Theorem 1.1 is the first rigorous proof
of this important result of Fukuda.

Another purpose of this paper is to show how to use Shokurov’s ideas, such as
b-divisors, saturation of linear systems, various kinds of adjunction, and so on, by
reproving some known results in our formulation. Thus one can regard this paper
as Chapter 8 1

2 of the book [Corti et al. 2007]. It is also a complement of the paper
[Fujino 2011d]. We do not use the powerful new method developed in [Ambro
2003; Fujino 2009a; 2009b; 2009c; 2011a; 2011b; 2011c]. For related topics and
applications, see [Fujino 2010; Gongyo 2010, Section 6; Cacciola 2011; Fujino and
Gongyo 2011].

Remark 1.3. Professor Yujiro Kawamata [2011a] has announced a correction to
the error in the proof of [Kawamata 1985, Theorem 4.3]. The new proof seems
to depend heavily on arguments in his preprints [2011b; 2010]. If we accept his
correction, then Theorem 1.1 holds under the assumption that (X, B) is dlt and
S is a point, by [Fukuda 2002, Proposition 3.3] (see Remark 6.7 (ii)). As stated
in the introduction of [Kawamata 2011a], our arguments are simpler. We note
that our approach is completely different from Kawamata’s original one. Anyway,
Theorem 1.1 plays a crucial role in our study of the log abundance conjecture for
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log canonical pairs; see [Fujino and Gongyo 2011, Section 4]. Therefore, this paper
is very relevant for the minimal model program for log canonical pairs.

Let us explain the motivation for our formulation.

1.4. Motivation. Let (X, B) be a projective klt pair and let D be a nef Cartier
divisor on X such that D−(K X+B) is nef and big. Then the Kawamata–Shokurov
basepoint-free theorem means that |m D| is free for every m� 0. Let f : Y → X
be a projective birational morphism from a normal projective variety Y such that
KY + BY = f ∗(K X + B). We note that f ∗D is a nef Cartier divisor on Y and that
f ∗D− (KY + BY ) is nef and big. It is obvious that |m f ∗D| is free for every m� 0
because |m D| is free for every m � 0. In general, we cannot directly apply the
Kawamata–Shokurov basepoint-free theorem to f ∗D and (Y, BY ). This is because
(Y, BY ) is sub-klt but is not always klt. Note that a Q-Cartier Q-divisor L on X
is nef, big, or semiample if and only if so is f ∗L . However, the notion of klt is
not stable under birational pull-backs. By adding a saturation condition, which is
trivially satisfied for klt pairs, we can apply the Kawamata–Shokurov basepoint-
free theorem for sub-klt pairs (see Theorem 2.1). By this new formulation, the
basepoint-free theorem becomes more flexible and has some important applications.

1.5. Background. A key result we need is [Ambro 2004, Theorem 0.2], which
is a generalization of [Fujino 2003, Section 4: Pull-back of Lss

X/Y ]. It originates
from Kawamata’s positivity theorem [1998] and Shokurov’s idea of adjunction.
For details, see [Ambro 2004, Introduction]. The formulation and calculation we
borrow from [Ambro 2005b; 2007] grew out from Shokurov’s saturation of linear
systems [2003, 4.32].

1.6. Outline of the paper. In Section 2, we reformulate the Kawamata–Shokurov
basepoint-free theorem for sub-klt pairs with a saturation condition. To state our
theorem, we use the notion of b-divisors. It is very useful to discuss linear systems
with some base conditions. In Section 3, we collect basic properties of b-divisors and
prove some elementary properties. In Section 4, we discuss a slight generalization
of the main theorem of [Kawamata 1985]. We need this generalization in Section 7.
The main ingredient of our proof is Ambro’s formulation of Kodaira’s canonical
bundle formula. By this formula and the refined Kawamata–Shokurov basepoint-
free theorem obtained in Section 2, we can quickly prove Kawamata’s theorem
in [Kawamata 1985] and its generalization without appealing to the notion of
generalized normal crossing varieties. In Section 5, we treat the basepoint-free
theorem of Reid–Fukuda type. In this case, the saturation condition behaves very
well for inductive arguments. It helps us understand the saturation condition of linear
systems. In Section 6, we prove some variants of basepoint-free theorems, mainly
due to Fukuda [2002]. We reformulate them by using b-divisors and saturation
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conditions. Then we use Ambro’s canonical bundle formula to reduce them to the
easier case instead of proving them directly by the X-method. In Section 7, we
generalize the Kawamata–Shokurov basepoint-free theorem and Kawamata’s main
theorem in [Kawamata 1985] for pseudo-klt pairs. Theorem 7.11, which is new,
is the main theorem of this section. It will be useful for the study of lc centers
(Theorem 7.13).

Notation. Let B =
∑

bi Bi be a Q-divisor on a normal variety X such that Bi is
prime for every i and that Bi 6= B j for i 6= j . We denote by

dBe =
∑
dbieBi , bBc =

∑
bbicBi , and {B} = B−bBc

the round-up, the round-down, and the fractional part of B. Note that we do not
use R-divisors in this paper. We make one general remark here. Since the freeness
(or semiampleness) of a Cartier divisor D on a variety X depends only on the linear
equivalence class of D, we can freely replace D by a linearly equivalent divisor to
prove the freeness (or semiampleness) of D.

We will work over an algebraically closed field k of characteristic zero throughout
this paper.

2. Kawamata–Shokurov basepoint-free theorem revisited

Kawamata and Shokurov claimed the following theorem for klt pairs, that is, they
assumed that B is effective, which implies that condition (2) is trivially satisfied.
We think that our formulation is useful for some applications. Readers not familiar
with the notion of b-divisors are referred to Section 3.

Theorem 2.1 (Basepoint-free theorem). Let (X, B) be a sub-klt pair, let π : X→ S
be a proper surjective morphism onto a variety S and let D be a π-nef Cartier
divisor on X. Assume the following conditions:

(1) r D− (K X + B) is nef and big over S for some positive integer r .

(2) (Saturation condition.) There exists a positive integer j0 such that

π∗OX (dA(X, B)e+ j D)⊆ π∗OX ( j D)

for every integer j ≥ j0.

Then m D is π -generated for every m� 0, that is, there exists a positive integer m0

such that for every m ≥ m0 the natural homomorphism π∗π∗OX (m D)→ OX (m D)
is surjective.
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Proof. The usual proof of the basepoint-free theorem, that is, the X-method, works
without any changes if we note Lemma 3.10. For the details, see, for example,
[Kawamata et al. 1987, Section 3-1]. See also Remarks 3.14–3.17. �

The assumptions in Theorem 2.1 are birational in nature. This point is indispens-
able in Section 4. We note that we can assume that X is nonsingular and Supp B is
a simple normal crossing divisor because conditions (1) and (2) are invariant for
birational pull-backs. So, it is easy to see that Theorem 2.1 is equivalent to the
following theorem.

Theorem 2.2. Let X be a nonsingular variety and let B be a Q-divisor on X such
that bBc ≤ 0 and Supp B is a simple normal crossing divisor. Let π : X→ S be a
projective morphism onto a variety S and let D be a π-nef Cartier divisor on X.
Assume the following conditions:

(1) r D− (K X + B) is nef and big over S for some positive integer r .

(2) (Saturation condition.) There exists a positive integer j0 such that

π∗OX (d−Be+ j D)' π∗OX ( j D)

for every integer j ≥ j0.

Then m D is π -generated for every m� 0.

The following example says that the original Kawamata–Shokurov basepoint-free
theorem does not necessarily hold for sub-klt pairs.

Example 2.3. Let X = E be an elliptic curve. We take a Cartier divisor H such that
deg H = 0 and l H 6∼ 0 for every l ∈Z\{0}. In particular, H is nef. We put B=−P ,
where P is a closed point of X . Then (X, B) is sub-klt and H− (K X + B) is ample.
However, H is not semiample. In this case, H 0(X,OX (dA(X, B)e + j H)) '
H 0(X,OX (P + j H)) ' k for every j . However, H 0(X,OX ( j H)) = 0 for all j .
Therefore, the saturation condition in Theorem 2.1 does not hold.

We note that Kollár’s effective basepoint-freeness holds under the same assump-
tion as in Theorem 2.1.

Theorem 2.4 (Effective freeness). We use the same notation and assumption as in
Theorem 2.1. Then there exists a positive integer l, which depends only on dim X
and max{r, j0}, such that l D is π-generated, that is, π∗π∗OX (l D)→ OX (l D) is
surjective.

Sketch of the proof. We need no new ideas. So, we just explain how to modify the
arguments in [Kollár 1993, Section 2]. From now on, we use the notation in [Kollár
1993]. In that reference, (X,1) is assumed to be klt, that is, (X,1) is sub-klt and1
is effective. The effectivity of1 implies that H ′ is f -exceptional in [ibid., (2.1.4.3)].
We need this to prove H 0(Y,OY ( f ∗N + H ′))= H 0(X,OX (N )) in [ibid., (2.1.6)].
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It is not difficult to see that 0≤ H ′ ≤ dA(X,1)Y e in our notation. Therefore, it is
sufficient to assume the saturation condition Theorem 2.1(2) in the proof of Kollár’s
effective freeness (see [ibid., Section 2]). We make one more remark. Applying the
argument in the first part of [ibid., 2.4] to OX ( j D+dA(X, B)e) on the generic fiber
of π : X→ S with the saturation condition (2) in Theorem 2.1, we obtain a positive
integer l0 that depends only on dim X and max{r, j0} such that π∗OX (l0 D) 6= 0.
As explained above, the arguments in Section 2 in [ibid.] work with only minor
modifications in our setting. We leave the details as an exercise for the reader. �

3. b-divisors

Let us recall the notion of singularities of pairs, referring the reader to [Fujino
2007b] for a more extended treatment.

Definition 3.1 (Singularities of pairs). Let X be a normal variety and let B be a
Q-divisor on X such that K X + B is Q-Cartier. Let f : Y → X be a resolution of
singularities such that Exc( f )∪ f −1

∗
B has a simple normal crossing support, where

Exc( f ) is the exceptional locus of f . We write

KY = f ∗(K X + B)+
∑

ai Ai .

We note that ai is called the discrepancy of Ai . Then the pair (X, B) is sub-klt
(resp. sub-lc) if ai >−1 (resp. ai ≥−1) for every i . The pair (X, B) is klt (resp. lc)
if (X, B) is sub-klt (resp. sub-lc) and B is effective. (In some literature, sub-klt and
sub-lc are sometimes called klt and lc.)

Let (X, B) be an lc pair. If there exists a resolution f : Y → X such that Exc( f )
and Exc( f )∪ f −1

∗
B are simple normal crossing divisors on Y and

KY = f ∗(K X + B)+
∑

ai Ai

with ai >−1 for all f -exceptional Ai ’s, then (X, B) is called dlt.

Remark 3.2. Let (X, B) be a klt (resp. lc) pair and let f : Y → X be a proper
birational morphism of normal varieties. We put KY + BY = f ∗(K X + B). Then
(Y, BY ) is not necessarily klt (resp. lc) but it is sub-klt (resp. sub-lc).

Let us recall the definition of log canonical centers.

Definition 3.3 (Log canonical center). Let (X, B) be a sub-lc pair. A subvariety
W ⊂ X is called a log canonical center or an lc center of (X, B) if there is a
resolution f : Y → X such that Exc( f )∪Supp f −1

∗
B is a simple normal crossing

divisor on Y and a divisor E with discrepancy −1 such that f (E) = W . A log
canonical center W ⊂ X of (X, B) is called exceptional if there is a unique divisor
EW on Y with discrepancy −1 such that f (EW )=W and f (E)∩W =∅ for every
other divisor E 6= EW on Y with discrepancy −1; see [Kollár 2007, 8.1].
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3.4. b-divisors. The notion of b-divisors, introduced by Shokurov, plays a central
role in this paper, and we now recall its definition. For details, we refer to [Ambro
2005b, 1-B] and [Corti 2007, 2.3.2]. The reader can find various examples of
b-divisors in [Iskovskikh 2003].

Definition 3.5 (b-divisor). Let X be a normal variety and let Div(X) be the free
abelian group generated by Weil divisors on X . A b-divisor on X is an element

D ∈ Div(X)= projlimY→X Div(Y ),

where the projective limit is taken over all proper birational morphisms f : Y → X
of normal varieties, under the push forward homomorphism f∗ :Div(Y )→Div(X).
A Q-b-divisor on X is an element of DivQ(X)= Div(X)⊗Z Q.

Definition 3.6 (Discrepancy Q-b-divisor). Let X be a normal variety and let B be
a Q-divisor on X such that K X + B is Q-Cartier. Then the discrepancy Q-b-divisor
of the pair (X, B) is the Q-b-divisor A=A(X, B) with the trace AY defined by the
formula

KY = f ∗(K X + B)+AY ,

where f : Y → X is a proper birational morphism of normal varieties.

Definition 3.7 (Cartier closure). Let D be a Q-Cartier Q-divisor on a normal variety
X . Then the Q-b-divisor D denotes the Cartier closure of D, whose trace on Y is
DY = f ∗D, where f : Y → X is a proper birational morphism of normal varieties.

Definition 3.8. Let D be a Q-b-divisor on X . The round up dDe∈Div(X) is defined
componentwise. The restriction of D to an open subset U ⊂ X is a well-defined
Q-b-divisor on U , denoted by D|U . Then OX (D) is an OX -module whose sections
on an open subset U ⊂ X are given by

H 0(U,OX (D))= {a ∈ k(X)×; ((a)+D)|U ≥ 0} ∪ {0},

where k(X) is the function field of X . Note that OX (D) is not necessarily coherent.

3.9. Basic properties. We recall the first basic property of discrepancy Q-b-divisors.
We will treat a generalization of Lemma 3.10 for sub-lc pairs below.

Lemma 3.10. Let (X, B) be a sub-klt pair and let D be a Cartier divisor on X. Let
f : Y → X be a proper surjective morphism from a nonsingular variety Y . We write
KY = f ∗(K X + B)+

∑
ai Ai . We assume that

∑
Ai is a simple normal crossing

divisor. Then, for every integer j ,

OX (dA(X, B)e+ j D)= f∗OY (
∑
daieAi )⊗OX ( j D)

Let E be an effective divisor on Y such that E ≤
∑
daieAi . Then

π∗ f∗OY (E + f ∗ j D)' π∗OX ( j D)
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if
π∗OX (dA(X, B)e+ j D)⊆ π∗OX ( j D),

where π : X→ S is a proper surjective morphism onto a variety S.

Proof. For the first equality, see [Corti 2007, Lemmas 2.3.14 and 2.3.15] or their
generalizations: Lemmas 3.19 and 3.20 below. Since E is effective,

π∗OX ( j D)⊆ π∗ f∗OY (E + f ∗ j D)' π∗( f∗OY (E)⊗OX ( j D)).

By the assumption and E ≤
∑
daieAi ,

π∗( f∗OY (E)⊗OX ( j D))⊆ π∗
(

f∗OY
(∑
daieAi

)
⊗OX ( j D)

)
= π∗OX (dA(X, B)e+ j D)

⊆ π∗OX ( j D).

Therefore, we obtain π∗ f∗OY (E + f ∗ j D)' π∗OX ( j D). �

We will use Lemma 3.11 in Section 4. The vanishing theorem in Lemma 3.11 is
nothing but the Kawamata–Viehweg–Nadel vanishing theorem.

Lemma 3.11. Let X be a normal variety and let B be a Q-divisor on X such that
K X + B is Q-Cartier. Let f : Y → X be a proper birational morphism from a
normal variety Y . We put KY + BY = f ∗(K X + B). Then

f∗OY (dA(Y, BY )e)= OX (dA(X, B)e)

and
Ri f∗OY (dA(Y, BY )e)= 0

for every i > 0.

Proof. Let g : Z→ Y be a resolution such that Exc(g)∪g−1
∗

BY has a simple normal
crossing support. We put K Z + BZ = g∗(KY + BY ). Then K Z + BZ = h∗(K X + B),
where h = f ◦ g : Z→ X . By Lemma 3.10,

OY (dA(Y, BY )e)= g∗OZ (d−BZe)

and
OX (dA(X, B)e)= h∗OZ (d−BZe).

Therefore, f∗OY (dA(Y, BY )e)=OX (dA(X, B)e). Since, −BZ = K Z−h∗(K X+B),
we have

d−BZe = K Z +{BZ }− h∗(K X + B).

Therefore, Ri g∗OZ (d−BZe)= 0 and Ri h∗OZ (d−BZe)= 0 for every i > 0 by the
Kawamata–Viehweg vanishing theorem. Thus, Ri f∗OY (dA(Y, BY )e)= 0 for every
i > 0 by Leray’s spectral sequence. �
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Remark 3.12. We use the same notation as in Remark 3.2. Let (X, B) be a klt pair.
Let D be a Cartier divisor on X and let π : X → S be a proper morphism onto a
variety S. We put p = π ◦ f : Y → S. Then

p∗OY ( j f ∗D)' π∗OX ( j D)' p∗OY (dA(Y, BY )e+ j f ∗D)

for every integer j . This is because f∗OY (dA(Y, BY )e)= OX (dA(X, B)e)' OX by
Lemma 3.11.

Remark 3.13 (Multiplier ideal sheaf). Let D be an effective Q-divisor on a non-
singular variety X . Then OX (dA(X, D)e) is nothing but the multiplier ideal sheaf
J(X, D)⊆ OX of D on X . See [Lazarsfeld 2004, Definition 9.2.1]. More generally,
let X be a normal variety and let1 be a Q-divisor on X such that K X+1 is Q-Cartier.
Let D be a Q-Cartier Q-divisor on X . Then OX (dA(X,1+ D)e)= J((X,1); D),
where the right hand side is the multiplier ideal sheaf defined (but not investigated) in
[Lazarsfeld 2004, Definition 9.3.56]. In general, OX (dA(X,1+D)e) is a fractional
ideal of k(X).

The next four remarks help us understand Theorem 2.1.

Remark 3.14 (Nonvanishing theorem). By Shokurov’s nonvanishing theorem (see
[Kawamata et al. 1987, Theorem 2-1-1]), we have π∗OX (dA(X, B)e+ j D) 6= 0 for
every j� 0. Thus π∗OX ( j D) 6= 0 for every j� 0 by condition (2) in Theorem 2.1.

Remark 3.15. We know that dA(X, B)e ≥ 0 since (X, B) is sub-klt. Therefore,
π∗OX ( j D)⊆ π∗OX (dA(X, B)e+ j D). This implies that

π∗OX ( j D)' π∗OX (dA(X, B)e+ j D)

for j ≥ j0, by condition (2) in Theorem 2.1.

Remark 3.16. If the pair (X, B) is klt, then dA(X, B)e is effective and exceptional
over X . In this case, it is obvious that π∗OX ( j D)= π∗OX (dA(X, B)e+ j D).

Remark 3.17. Condition (2) in Theorem 2.1 is a very elementary case of saturation
of linear systems. See [Corti 2007, 2.3.3] and [Ambro 2005b, 1-D].

We next introduce the notion of non-klt Q-b-divisor, which is trivial for sub-klt
pairs. We will use this in Section 5.

Definition 3.18 (Non-klt Q-b-divisor). Let X be a normal variety and let B be a
Q-divisor on X such that K X + B is Q-Cartier. Then the non-klt Q-b-divisor of the
pair (X, B) is the Q-b-divisor N= N(X, B) with the trace NY =

∑
ai≤−1 ai Ai for

KY = f ∗(K X + B)+
∑

ai Ai ,

where f :Y→ X is a proper birational morphism of normal varieties. It is easy to see
that N(X, B) is a well-defined Q-b-divisor. We put A∗(X, B)=A(X, B)−N(X, B).



806 Osamu Fujino

Of course, A∗(X, B) is a well-defined Q-b-divisor and dA∗(X, B)e ≥ 0. If (X, B)
is sub-klt, then N(X, B)= 0 and A(X, B)= A∗(X, B).

The next lemma is a generalization of Lemma 3.10.

Lemma 3.19. Let (X, B) be a sub-lc pair and let f : Y → X be a resolution such
that Exc( f ) ∪ Supp f −1

∗
B is a simple normal crossing divisor on Y . We write

KY = f ∗(K X + B)+
∑

ai Ai . Then

OX (dA∗(X, B)e)= f∗OY

( ∑
ai 6=−1

daieAi

)
.

In particular, OX (dA∗(X, B)e) is a coherent OX -module. If (X, B) is lc, then
OX (dA∗(X, B)e)' OX .

Let D be a Cartier divisor on X and let E be an effective divisor on Y such that
E ≤

∑
ai 6=−1daieAi . Then

π∗ f∗OY (E + f ∗ j D)' π∗OX ( j D)

if
π∗OX (dA∗(X, B)e+ j D)⊆ π∗OX ( j D),

where π : X→ S is a proper morphism onto a variety S.

Proof. By definition, A∗(X, B)Y =
∑

ai 6=−1 ai Ai . If g :Y ′→Y is a proper birational
morphism from a normal variety Y ′, then

dA∗(X, B)Y ′e = g∗dA∗(X, B)Y e+ F,

where F is a g-exceptional effective divisor, by Lemma 3.20 below. This implies
f∗OY (dA∗(X, B)Y e) = f ′

∗
OY ′(dA∗(X, B)Y ′e), where f ′ = f ◦ g, from which it

follows that OX (dA∗(X, B)e) = f∗OY (
∑

ai 6=−1daieAi ) is a coherent OX -module.
The last statement is easy to check. �

Lemma 3.20. Let (X, B) be a sub-lc pair and let f : Y → X be a resolution as in
Lemma 3.19. We consider the Q-b-divisor A∗ = A∗(X, B)= A(X, B)−N(X, B).
If Y ′ is a normal variety and g : Y ′→ Y is a proper birational morphism, then

dA∗Y ′e = g∗dA∗Y e+ F,

where F is a g-exceptional effective divisor.

Proof. By definition, we have KY = f ∗(K X + B)+AY . Therefore we may write

KY ′ = g∗ f ∗(K X + B)+AY ′ = g∗(KY −AY )+AY ′

= g∗(KY +{−A∗Y }−NY +b−A∗Y c)+AY ′

= g∗(KY +{−A∗Y }−NY )+AY ′ − g∗dA∗Y e.
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We note that (Y, {−A∗Y }−NY ) is lc and that the set of lc centers of (Y, {−A∗Y }−NY )

coincides with that of (Y,−A∗Y −NY ) = (Y,−AY ). Therefore, the round-up of
AY ′ − g∗dA∗Y e−NY ′ is effective and g-exceptional. Thus, we can write dA∗Y ′e =
g∗dA∗Y e+ F, where F is a g-exceptional effective divisor. �

The next lemma is obvious by Lemma 3.19.

Lemma 3.21. Let (X, B) be a sub-lc pair and let f : Y→ X be a proper birational
morphism from a normal variety Y . We put KY + BY = f ∗(K X + B). Then
f∗OY (dA∗(Y, BY )e)= OX (dA∗(X, B)e).

4. Basepoint-free theorem; nef and abundant case

We recall the definition of abundant divisors, which are called good divisors in
[Kawamata 1985]. See [Kawamata et al. 1987, Section 6-1].

Definition 4.1 (Abundant divisor). Let X be a complete normal variety and let D
be a Q-Cartier nef Q-divisor on X . We define the numerical Iitaka dimension to be

ν(X, D)=max{e; De
6≡ 0}.

This means that De′
· S = 0 for any e′-dimensional subvarieties S of X with e′ > e

and there exists an e-dimensional subvariety T of X such that De
·T > 0. Then it is

easy to see that κ(X, D)≤ ν(X, D), where κ(X, D) denotes Iitaka’s D-dimension.
A nef Q-divisor D is said to be abundant if the equality κ(X, D)= ν(X, D) holds.
Let π : X→ S be a proper surjective morphism of normal varieties and let D be a
Q-Cartier Q-divisor on X . Then D is said to be π-abundant if D|Xη is abundant,
where Xη is the generic fiber of π .

The next theorem is the main theorem of [Kawamata 1985]. For the relative state-
ment, see [Nakayama 1986, Theorem 5]. We reduced Theorem 4.2 to Theorem 2.1
by using Ambro’s results in [Ambro 2004] and [Ambro 2007], which is the main
theme of [Fujino 2011d]. For the details, see [Fujino 2011d, Section 2].

Theorem 4.2 cf. [Kawamata et al. 1987, Theorem 6-1-11]. Let (X, B) be a klt pair
and let π : X → S be a proper morphism onto a variety S. Assume the following
conditions:

(a) H is a π -nef Q-Cartier Q-divisor on X.

(b) H − (K X + B) is π -nef and π -abundant.

(c) κ(Xη, (aH − (K X + B))η)≥ 0 and

ν(Xη, (aH − (K X + B))η)= ν(Xη, (H − (K X + B))η)

for some a ∈Q with a > 1, where η is the generic point of S.

Then H is π -semiample.
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Definition 4.3 (Iitaka fibration). Let π : X→ S be a proper surjective morphism of
normal varieties. Let D be a Q-Cartier Q-Weil divisor on X such that κ(Xη, Dη)≥0,
where η is the generic point of S. Let X 99KW be the rational map over S induced
by π∗π∗OX (m D)→ OX (m D) for a sufficiently large and divisible integer m. We
consider a projective surjective morphism f : Y → Z of nonsingular varieties that
is birational to X 99KW . We call f : Y → Z the Iitaka fibration with respect to D
over S.

We now state the main result of this section, which will be used in the proof of
Theorem 7.11. It is a slight generalization of Theorem 4.2.

Theorem 4.4. Let (X, B) be a sub-klt pair and let π : X→ S be a proper morphism
onto a variety S. Assume the following conditions:

(a) H is a π -nef Q-Cartier Q-divisor on X.

(b) H − (K X + B) is π -nef and π -abundant.

(c) κ(Xη, (aH − (K X + B))η)≥ 0 and

ν(Xη, (aH − (K X + B))η)= ν(Xη, (H − (K X + B))η)

for some a ∈Q with a > 1, where η is the generic point of S.

(d) Let f : Y → Z be the Iitaka fibration with respect to H − (K X + B) over S.
We assume that there exists a proper birational morphism µ : Y → X and put
KY+BY =µ

∗(K X+B). In this setting, we assume rank f∗OY (dA(Y, BY )e)=1.

(e) (Saturation condition.) There exist positive integers b and j0 such that bH is
Cartier and π∗OX (dA(X, B)e+ jbH)⊆π∗OX ( jbH) for every positive integer
j ≥ j0.

Then H is π -semiample.

Proof. The proof of Theorem 4.2 given in [Fujino 2011d, Section 2] works without
any changes. We note that condition (d) implies [ibid., Lemma 2.3] and that we
can use condition (e) in the proof of [ibid., Lemma 2.4]. �

Remark 4.5. The rank of f∗OY (dA(Y, BY )e) is a birational invariant for f :Y→ Z
by Lemma 3.11.

Remark 4.6. If (X, B) is klt and bH is Cartier, it is obvious that

π∗OX (dA(X, B)e+ jbH)' π∗OX ( jbH)

for every positive integer j (see Remark 3.16).

Remark 4.7. We can easily generalize Theorem 4.4 to varieties in class C by
suitable modifications. For details, see [Fujino 2011d, Section 4].

The following examples help us understand condition (d).
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Example 4.8. Let X = E be an elliptic curve and let P ∈ X be a closed point. Take
a general member P1+ P2+ P3 ∈ |3P|. We put B = 1

3(P1+ P2+ P3)− P . Then
(X, B) is sub-klt and K X + B ∼Q 0. In this case, OX (dA(X, B)e) ' OX (P) and
H 0(X,OX (dA(X, B)e))' k.

Example 4.9. Let f : X = PP1(OP1 ⊕ OP1(1)) → Z = P1 be the Hirzebruch
surface and let C (resp. E) be the positive (resp. negative) section of f . We take a
general member B0 ∈ |5C |. Note that |5C | is a free linear system on X . We put
B = − 1

2 E + 1
2 B0 and consider the pair (X, B). Then (X, B) is sub-klt. We put

H = 0. Then H is a nef Cartier divisor on X and aH − (K X + B)∼Q
1
2 F for every

rational number a, where F is a fiber of f . Therefore, aH − (K X + B) is nef and
abundant for every rational number a. In this case, OX (dA(X, B)e)' OX (E). Thus

H 0(X,OX (dA(X, B)e+ j H))' H 0(X,OX (E))' k

' H 0(X,OX )' H 0(X,OX ( j H))

for every integer j . Therefore, π : X→ Spec k, H , and (X, B) satisfy conditions
(a), (b), (c), and (e) in Theorem 4.4. However, (d) is not satisfied. In our case, it is
easy to see that f : X → Z is the Iitaka fibration with respect to H − (K X + B).
Since f∗OX (dA(X, B)e)' f∗OX (E), we have rank f∗OX (dA(X, B)e)= 2.

Remark 4.10. In Theorem 4.4, assumptions (a)–(c) are the same as in Theorem 4.2.
Condition (e) is indispensable by Example 2.3 for sub-klt pairs. By using the
nonvanishing theorem for generalized normal crossing varieties in [Kawamata
1985, Theorem 5.1], which is the hardest part to prove in [Kawamata 1985], the
semiampleness of H seems to follow from conditions (a), (b), (c), and (e). However,
we need (d) to apply Ambro’s canonical bundle formula to the Iitaka fibration
f : Y → Z . See, for example, [Fujino 2011d, Section 3]. Unfortunately, as we
saw in Example 4.9, condition (d) does not follow from the other assumptions.
Anyway, condition (d) is automatically satisfied if (X, B) is klt; see [Fujino 2011d,
Lemma 2.3].

The following two examples show that the effective version of Theorem 4.2 does
not necessarily hold. The first one is an obvious example.

Example 4.11. Let X = E be an elliptic curve and let m be an arbitrary positive
integer. Then there is a Cartier divisor H on X such that m H ∼ 0 and l H 6∼ 0 for
0 < l < m. Therefore, the effective version of Theorem 4.2 does not necessarily
hold.

The next one shows the reason why Theorem 2.4 does not imply the effective
version of Theorem 4.2.

Example 4.12. Let E be an elliptic curve and G = Z/mZ = 〈ζ 〉, where ζ is a
primitive m-th root of unity. We take an m-torsion point a ∈ E . The cyclic group
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G acts on E ×P1 as follows:

E ×P1
3 (x, [X0 : X1]) 7→ (x + a, [ζ X0 : X1]) ∈ E ×P1.

We put X = (E ×P1)/G. Then X has a structure of elliptic surface p : X → P1.
In this setting,

K X = p∗
(

KP1 +
m− 1

m
[0] +

m− 1
m
[∞]

)
.

We put H = p−1(0)red. Then H is a Cartier divisor on X . It is easy to see
that H is nef and H − K X is nef and abundant. Moreover, κ(X, aH − K X ) =

ν(X, aH−K X )= 1 for every rational number a> 0. It is obvious that |m H | is free.
However, |l H | is not free for 0< l <m. Thus, the effective version of Theorem 4.2
does not hold.

5. Basepoint-free theorem of Reid–Fukuda type

The following result is a reformulation of the main theorem of [Fujino 2000].

Theorem 5.1 (Basepoint-free theorem of Reid–Fukuda type). Let X be a nonsin-
gular variety and let B be a Q-divisor on X such that Supp B is a simple normal
crossing divisor and (X, B) is sub-lc. Let π : X → S be a proper morphism onto
a variety S and let D be a π-nef Cartier divisor on X. Assume the following
conditions:

(1) r D− (K X + B) is nef and log big over S for some positive integer r .

(2) (Saturation condition.) There exists a positive integer j0 such that

π∗OX (dA∗(X, B)e+ j D)⊆ π∗OX ( j D)

for every integer j ≥ j0.

Then m D is π -generated for every m� 0, that is, there exists a positive integer m0

such that for every m ≥ m0 the natural homomorphism π∗π∗OX (m D)→ OX (m D)
is surjective.

Definition 5.2. Let (X, B) be a sub-lc pair and let π : X→ S be a proper morphism
onto a variety S. Let L be a line bundle on X . We say that L is nef and log big over
S if and only if L is π -nef and π -big and the restriction L|W is big over π(W ) for
every lc center W of the pair (X, B). A Q-Cartier Q-divisor H on X is said to be
nef and log big over S if and only if so is OX (cH), where c is a positive integer
such that cH is Cartier.

Proof of Theorem 5.1. We write B = T + B+− B− such that T , B+, and B− are
effective divisors, they have no common irreducible components, bB+c = 0, and
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bT c = T . If T = 0, then (X, B) is sub-klt. So, theorem follows from Theorem 2.1.
Thus, we assume T 6= 0. Let T0 be an irreducible component of T . If m ≥ r , then

m D+dB−e− T0− (K X + B+dB−e− T0)= m D− (K X + B)

is nef and log big over S for the pair (X, B+dB−e−T0). We note that B+dB−e−T0

is effective. Therefore, R1π∗OX (dB−e− T0+m D)= 0 for m ≥ r by the vanishing
theorem: Lemma 5.3. Thus, we obtain the following commutative diagram for
m ≥max{r, j0}:

π∗OX (dB−e+m D) −−−→ π∗OT0(dB−|T0e+m D|T0) −−−→ 0x∼= xι
π∗OX (m D)

α
−−−→ π∗OT0(m D|T0).

Here, we used

π∗OX (m D)⊆ π∗OX (dB−e+m D)

' π∗OX (dA∗(X, B)e+m D)

⊆ π∗OX (m D)

for m ≥ j0 (see Lemma 3.19). We put KT0 + BT0 = (K X + B)|T0 and DT0 = D|T0 .
Then (T0, BT0) is sub-lc and it is easy to see that r DT0− (KT0+ BT0) is nef and log
big over π(T0). It is obvious that T0 is nonsingular and Supp BT0 is a simple normal
crossing divisor. We note that π∗OT0(dA∗(T0, BT0)e + j DT0) ' π∗OT0( j DT0) for
every j ≥max{r, j0} follows from the above diagram, that is, the natural inclusion
ι is isomorphism for m ≥max{r, j0}. Thus, α is surjective for m ≥max{r, j0}. By
induction, m DT0 is π -generated for every m� 0. We can apply the same argument
to every irreducible component of T . Therefore, the relative base locus of m D
is disjoint from T for every m � 0 since the restriction map α : π∗OX (m D)→
π∗OT0(m DT0) is surjective for every irreducible component T0 of T . The arguments
in [Fukuda 1996, Proof of Theorem 3], which is a variant of the X-method, work
without any changes (cf. Theorem 6.1). So, we obtain that m D is π -generated for
every m� 0. �

The following vanishing theorem was already used in the proof of Theorem 5.1.
The proof is an easy exercise by induction on dim X and on the number of the
irreducible components of b1c.

Lemma 5.3. Let π : X→ S be a proper morphism from a nonsingular variety X.
Let 1=

∑
di1i be a sum of distinct prime divisors such that Supp1 is a simple

normal crossing divisor and di is a rational number with 0≤ di ≤ 1 for every i . Let
D be a Cartier divisor on X. Assume that D− (K X +1) is nef and log big over S
for the pair (X,1). Then Riπ∗OX (D)= 0 for every i > 0.



812 Osamu Fujino

As in Theorem 2.4, effective freeness holds under the same assumption as in
Theorem 5.1.

Theorem 5.4 (Effective freeness). We use the same notation and assumption as in
Theorem 5.1. Then there exists a positive integer l, which depends only on dim X
and max{r, j0}, such that l D is π-generated, that is, π∗π∗OX (l D)→ OX (l D) is
surjective.

Sketch of the proof. If (X, B) is sub-klt, then this theorem is nothing but Theorem 2.4.
So, we can assume that (X, B) is not sub-klt. In this case, the arguments in [Fukuda
1996, Section 4] work with only minor modifications. From now on, we use the
notation in [Fukuda 1996, Section 4]. By minor modifications, the proof in [Fukuda
1996, Section 4] works under the following weaker assumptions: X is nonsingular
and 1 is a Q-divisor on X such that Supp1 is a simple normal crossing divisor and
(X,1) is sub-lc. In [Fukuda 1996, Claim 5], Ei is f -exceptional. In our setting,
this is not true. However, the bound

0≤
∑

cbi−ei+pi<0
d−(cbi − ei + pi )eEi ≤ dA∗(X,1)Y e,

which always holds even when 1 is not effective, is sufficient for us. It is because
we can use the saturation condition (2) in Theorem 5.1. We leave the details as an
exercise for the reader since all we have to do is to repeat the arguments in [Kollár
1993, Section 2] and [Fukuda 1996, Section 4]. �

The final statement in this section is the (effective) basepoint-free theorem of
Reid–Fukuda type for dlt pairs.

Corollary 5.5. Let (X, B) be a dlt pair and let π : X→ S be a proper morphism
onto a variety S. Let D be a π -nef Cartier divisor on X. Assume that r D−(K X+B)
is nef and log big over S for some positive integer r . Then there exists a positive
integer m0 such that m D is π -generated for every m≥m0 and we can find a positive
integer l, which depends only on dim X and r , such that l D is π -generated.

Proof. Let f :Y→ X be a resolution such that Exc( f ) and Exc( f )∪Supp f −1
∗

B are
simple normal crossing divisors, KY +BY = f ∗(K X+B), and f is an isomorphism
over all the generic points of lc centers of the pair (X, B). Then (Y, BY ) is sub-lc,
and r DY−(KY+BY ) is nef and log big over S, where DY = f ∗D. Since dA∗(X, B)e
is effective and exceptional over X , p∗OY (dA∗(Y, BY )e+ j DY )' p∗OY ( j DY ) for
every j , where p = π ◦ f . So, we can apply Theorems 5.1 and 5.4 to DY and
(Y, BY ). This concludes the proof. �

For the (effective) basepoint-freeness for lc pairs, see [Fujino 2009a; Fujino
2009b, 3.3.1 Base Point Free Theorem; Fujino 2011a, Theorem 13.1; Fujino 2011c,
Theorem 1.2].
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6. Variants of basepoint-free theorems due to Fukuda

The starting point of this section is a slight generalization of Theorem 2.1. It is
essentially the same as [Fukuda 1996, Theorem 3].

Theorem 6.1. Let X be a nonsingular variety and let B be a Q-divisor on X such
that (X, B) is sub-lc and Supp B is a simple normal crossing divisor. Let π : X→ S
be a proper morphism onto a variety S and let H be a π-nef Q-Cartier Q-divisor
on X. Assume the following conditions:

(1) H − (K X + B) is nef and big over S.

(2) (Saturation condition.) There exist positive integers b and j0 such that

π∗OX (dA∗(X, B)e+ jbH)⊆ π∗OX ( jbH)

for every integer j ≥ j0.

(3) There is a positive integer c such that cH is Cartier and

OT (cH) := OX (cH)|T

is π -generated, where T =−N(X, B)X .

Then H is π -semiample.

Proof. If (X, B) is sub-klt, then this follows from Theorem 2.1. By replacing H by
a multiple, we can assume that b = 1, j0 = 1, and c = 1. Since

l H +dA∗Xe− T − (K X +{B})= l H − (K X + B)

is nef and big over S for every positive integer l, we have the following commutative
diagram by the Kawamata–Viehweg vanishing theorem:

π∗OX (l H +dA∗Xe) −−−→ π∗(OT (l H)⊗OT (dA∗X |T e)) −−−→ 0x∼= xι
π∗OX (l H) −−−→

α
π∗OT (l H).

Thus, the natural inclusion ι is an isomorphism and α is surjective for every l ≥ 1.
In particular, π∗OX (l H) 6= 0 for every l ≥ 1. The same arguments as in [Fukuda
1996, Proof of Theorem 3] show that H is π -semiample. �

The main purpose of this section is to prove Theorem 6.2 below, which is a
generalization of Theorem 4.4 and Theorem 6.1. The basic strategy of the proof
is the same as that of Theorem 4.4. That is, by using Ambro’s canonical bundle
formula, we reduce it to the case when H−(K X+B) is nef and big. This is nothing
but Theorem 6.1.
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Theorem 6.2. Let X be a nonsingular variety and let B be a Q-divisor on X such
that (X, B) is sub-lc and Supp B is a simple normal crossing divisor. Let π : X→ S
be a proper morphism onto a variety S. Assume the following conditions:

(a) H is a π -nef Q-Cartier Q-divisor on X.

(b) H − (K X + B) is π -nef and π -abundant.

(c) κ(Xη, (aH − (K X + B))η)≥ 0 and ν(Xη, (aH − (K X + B))η)= ν(Xη, (H −
(K X + B))η) for some a ∈Q with a > 1, where η is the generic point of S.

(d) Let f : Y → Z be the Iitaka fibration with respect to H − (K X + B) over S.
We assume that there exists a proper birational morphism µ : Y → X and put
KY + BY = µ

∗(K X + B). We also assume rank f∗OY (dA∗(Y, BY )e)= 1.

(e) (Saturation condition.) There exist positive integers b and j0 such that bH
is Cartier and π∗OX (dA∗(X, B)e + jbH) ⊆ π∗OX ( jbH) for every positive
integer j ≥ j0.

(f) There is a positive integer c such that cH is Cartier and

OT (cH) := OX (cH)|T

is π -generated, where T =−N(X, B)X .

Then H is π -semiample.

Proof. If H − (K X + B) is big, this follows from Theorem 6.1. So, we can assume
that H − (K X + B) is not big. Form now on, we use the notation from the proof of
Theorem 4.2, which is given in [Fujino 2011d, Section 2]. We just explain how to
modify that proof. Let us recall the commutative diagram

Y
f

−−−→ Z

µ

y yϕ
X −−−→

π
S

from the proof of [Fujino 2011d, Theorem 1.1], where f : Y → Z is the Iitaka
fibration with respect to H − (K X + B) over S. For the details, see [Fujino 2011d,
Section 2]. We note that µ∗H = HY and HY ∼ f ∗D. Here, we replaced H with
a multiple and assumed that H and D are Cartier (see [Fujino 2011d, page 307]).
We can also assume that b = j0 = 1 in (e) and c = 1 in (f) by replacing H with a
multiple. We start with the following obvious lemma.

Lemma 6.3. We put T ′ = −N(X, B)Y . Then µ(T ′) ⊂ T . Therefore, OT ′(HY ) :=

OY (HY )|T ′ is p-generated, where p = π ◦µ.

Lemma 6.4. If f (T ′) = Z , then HY is p-semiample. In particular, H is π-
semiample.



Basepoint-free theorems: saturation, b-divisors, and canonical bundle formula 815

Proof. There exists an irreducible component T ′0 of T ′ such that f (T ′0)= Z . Since
(HY )|T ′0 ∼ ( f ∗D)|T ′0 is p-semiample, D is ϕ-semiample. This implies that HY is
p-semiample and H is π -semiample. �

Therefore, we can assume that T ′ is not dominant onto Z . Thus A(Y, BY ) =

A∗(Y, BY ) over the generic point of Z . Equivalently, (Y, BY ) is sub-klt over the
generic point of Z . As in [Fujino 2011d, Proof of Theorem 1.1], we have these
properties:

(1) KY + BY ∼Q f ∗(K Z + BZ +M), where BZ is the discriminant Q-divisor of
(Y, BY ) on Z and M is the moduli Q-divisor on Z .

(2′) (Z , BZ ) is sub-lc.

(3) M is a ϕ-nef Q-divisor on Z .

(4′) ϕ∗OZ (dA∗(Z , BZ )e+ j D)⊆ ϕ∗OZ ( j D) for every positive integer j .

(5) D− (K Z + BZ ) is ϕ-nef and ϕ-big.

(6) Y and Z are nonsingular and Supp BY and Supp BZ are simple normal crossing
divisors.

(7) OT ′′(D) := OZ (D)|T ′′ is ϕ-generated where T ′′ =−N(Z , BZ )Z .

Once the conditions above were satisfied, D is ϕ-semiample by Theorem 6.1.
Therefore, H is π-semiample. So, all we have to do is check the conditions.
Conditions (1), (2′), (3), (5), (6) are satisfied by a result of Ambro; see [Fujino 2011d,
Proof of Theorem 1.1]. We note that f∗OY (dA(Y, BY )e) and f∗OY (dA∗(Y, BY )e)

both have rank 1. By the same computation as in [Ambro 2007, Lemma 9.2.2 and
Proposition 9.2.3], we have the following lemma.

Lemma 6.5. OZ (dA∗(Z , BZ )e+ j D)⊆ f∗OY (dA∗(Y, BY )e+ j HY ) for every inte-
ger j .

Thus, we have (4′) by the saturation condition (e) (for details, see [Fujino 2011d,
Proof of Theorem 1.1], and Lemma 3.21). By definition, we have

l HY +dA∗Y e− T ′− (KY +{BY })∼Q f ∗((l − 1)D+M0),

where
HY − (KY + BY )= µ

∗(H − (K X + B))∼Q f ∗M0.

Note that (l−1)D+M0 is ϕ-nef and ϕ-big for l ≥ 1. By the Kollár type injectivity
theorem,

R1 p∗OY (l HY +dA∗Y e− T ′)→ R1 p∗OY (l HY +dA∗Y e)

is injective for l ≥ 1. Note that the above injectivity can be checked easily by
[Fujino 2007a, Theorem 1.1]. Here, we used the fact that f (T ′)( Z . So, we have
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the commutative diagram

p∗OY (l HY +dA∗Y e) −−−→ p∗(OT ′(l HY )⊗OT ′(dA∗Y |T ′e)) −−−→ 0x∼= xι
p∗OY (l HY ) −−−→

α
p∗OT ′(l HY )

The isomorphism of the left vertical arrow follows from the saturation condition
(e). Thus, the natural inclusion ι is an isomorphism and α is surjective for l ≥ 1.
In particular, the relative base locus of l HY is disjoint from T ′ since OT ′(l HY ) is
p-generated (cf. Lemma 6.3). On the other hand, HY ∼ f ∗D. Therefore, OT ′′(D)
is ϕ-generated since T ′′ ⊂ f (T ′). So, we obtain condition (7). This completes the
proof of Theorem 6.2. �

As a corollary of Theorem 6.2, we obtain the generalization of [Fukuda 2002,
Proposition 3.3] stated in the introduction (Theorem 1.1). Before we derive it, we
recall the definition of non-klt loci.

Definition 6.6 (Non-klt locus). Let (X, B) be an lc pair. We consider the closed
subset

Nklt(X, B)= {x ∈ X | (X, B) is not klt at x}

of X . We call Nklt(X, B) the non-klt locus of (X, B).

Proof of Theorem 1.1. Let h : X ′→ X be a resolution such that Exc(h)∪Supp h−1
∗

B
is a simple normal crossing divisor and K X ′+BX ′ = h∗(K X+B). Then HX ′ = h∗H ,
(X ′, BX ′), and π ′=π◦h : X ′→ S satisfy assumptions (a), (b), and (c) in Theorem 6.2.
By the same argument as in the proof of [Fujino 2011d, Lemma 2.3], we obtain
rank f∗OY (dA∗(Y, BY )e)= 1, where f : Y → Z is the Iitaka fibration as in (d) in
Theorem 6.2. Note that dA∗(Y, BY )e is effective and exceptional over X . Since B
is effective, dA∗(X, B)e is effective and exceptional over X ,

π ′
∗
OX ′(dA∗(X ′, BX ′)e+ jbHX ′)⊆ π

′

∗
OX ′( jbHX ′)

for every integer j , where b is a positive integer such that bH is Cartier. So,
the saturation condition (e) in Theorem 6.2 is satisfied. Finally, OT ′(cHX ′) :=

OX ′(cHX ′)|T ′ is π ′-generated, where T ′ = −N(X, B)X ′ , by assumption (D) and
the fact that h(T ′) ⊂ T . So, condition (f) in Theorem 6.2 for HX ′ and (X ′, BX ′)

is satisfied. Therefore, HX ′ is π ′-semiample by Theorem 6.2. Thus, H is π-
semiample. �

Remark 6.7. (i) It is obvious that Supp(−N(X, B)X ) ⊆ Nklt(X, B). In general,
Supp(−N(X, B)X ) ( Nklt(X, B). In particular, Nklt(X, B) is not necessarily of
pure codimension one in X .
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(ii) If (X, B) is dlt, then Nklt(X, B) = Supp(−N(X, B)X ) = bBc. Therefore, if
(X, B) is dlt and S is a point, then Theorem 1.1 is nothing but Fukuda’s result
[Fukuda 2002, Proposition 3.3].

(iii) The reader can find applications of this corollary in [Fukuda 2002; Fujino 2010;
Fujino and Gongyo 2011].

By combining Theorem 1.1 with [Gongyo 2010, Theorem 1.5], we obtain the
following result.

Corollary 6.8. Let (X, B) be a projective dlt pair such that ν(K X+B)=κ(K X+B)
and that (K X + B)|bBc is numerically trivial. Then K X + B is semiample.

Remark 6.9. We can easily generalize Theorem 6.2 and Theorem 1.1 to varieties
in class C by suitable modifications. For details, see [Fujino 2011d, Section 4].

7. Basepoint-free theorems for pseudo-klt pairs

In this section, we generalize the Kawamata–Shokurov base point free theorem and
Kawamata’s theorem: Theorem 4.2 for klt pairs to pseudo-klt pairs. We think that
our formulation is useful when we study lc centers (see Proposition 7.8). First, we
introduce the notion of pseudo-klt pairs.

Definition 7.1 (Pseudo-klt pair). Let W be a normal variety. Assume the following
conditions:

(1) there exist a sub-klt pair (V,B) and a projective surjective morphism f :V→W
with connected fibers.

(2) f∗OV (dA(V, B)e)' OW .

(3) There exists a Q-Cartier Q-divisor K on W such that KV + B ∼Q f ∗K.

Then the pair [W,K] is called a pseudo-klt pair.

Although it is the first time that we use the name of pseudo-klt pair, the notion of
pseudo-klt pair appeared in [Fujino 1999], where we proved the cone and contraction
theorem for pseudo-klt pairs (cf. [Fujino 1999, Section 4]). We note that all the
fundamental theorems for the log minimal model program for pseudo-klt pairs
can be proved by the theory of quasilog varieties (cf. [Ambro 2003; Fujino 2009b;
2011b]).

Remark 7.2. In Definition 7.1, we assume that W is normal. However, the normal-
ity of W follows from condition (2) and the normality of V . Note that dA(V, B)e
is effective.

Remark 7.3. In the definition of pseudo-klt pairs, if (V, B) is klt, the condition
f∗OV (dA(V, B)e) ' OW is automatically satisfied. This is because dA(V, B)e is
effective and exceptional over V .
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We note that a pseudo-klt pair is a very special example of Ambro’s quasilog
varieties (see [Ambro 2003, Definition 4.1]). More precisely, if [V,K] is a pseudo-
klt pair, then we can easily check that [V,K] is a qlc pair. See, for example, [Fujino
2011b, Definition 3.1]. For the details of the theory of quasilog varieties, see [Fujino
2009b].

Theorem 7.4. Let [W,K] be a pseudo-klt pair. Assume that (V, B) is klt and W is
projective or that W is affine. Then we can find an effective Q-divisor BW on W
such that (W, BW ) is klt and that K∼Q KW + BW .

Proof. When (X, B) is klt and W is projective, we can find BW by [Ambro
2005a, Theorem 4.1]. When W is affine, this theorem follows from [Fujino 1999,
Theorem 1.2]. �

Remark 7.5. It is conjectured that one can always find an effective Q-divisor BW

on W such that (W, BW ) is klt and K∼Q KW + BW .

We now collect basic examples of pseudo-klt pairs.

Example 7.6. A klt pair is a pseudo-klt pair.

Example 7.7. Let f : X→W be a Mori fiber space. Then we can find a Q-Cartier
Q-divisor K on W such that [W,K] is a pseudo-klt pair. It is because we can find
an effective Q-divisor B on X such that K X + B ∼Q, f 0 and (X, B) is klt.

Proposition 7.8. An exceptional lc center W of an lc pair (X, B) is a pseudo-klt
pair for some Q-Cartier Q-divisor K on W .

Proof. We take a resolution g :Y→ X such that Exc(g)∪g−1
∗

B has a simple normal
crossing support. We put KY +BY = g∗(K X+B). Then −BY =A(X, B)Y =AY =

A∗Y +NY , where NY =−
∑k

i=0 Ei . Without loss of generality, we can assume that
f (E)=W and E = E0. By shrinking X around W , we can assume that NY =−E .
Note that R1g∗OY (dA∗Y e− E)= 0 by the Kawamata–Viehweg vanishing theorem
since dA∗Y e− E = KY +{−A∗Y }− g∗(K X + B). Therefore, g∗OY (dA∗Y e)' OX →

g∗OE(dA∗Y |Ee) is surjective. This implies that g∗OE(dA∗Y |Ee)' OW . In particular,
W is normal. If we put KE + BE = (KY + BY )|E , then (E, BE) is sub-klt and
A∗Y |E =A(E, BE)E =−BE . So, g∗OE(dA(E, BE)e)= g∗OE(d−BEe)'OW . Since
KE + BE = (KY + BY )|E and KY + BY = g∗(K X + B), we can find a Q-Cartier
Q-divisor K on W such that KE + BE ∼Q g∗K. Therefore, W is a pseudo-klt
pair. �

We make an important remark on minimal lc centers.

Remark 7.9 (Subadjunction for minimal lc center). Let (X, B) be a projective or
affine lc pair and let W be a minimal lc center of the pair (X, B). Then we can find an
effective Q-divisor BW on W such that (W, BW ) is klt and KW+BW ∼Q (K X+B)|W .
For the details, see [Fujino and Gongyo 2012, Theorems 4.1, 7.1].
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The following theorem is the Kawamata–Shokurov basepoint-free theorem for
pseudo-klt pairs. We give a simple proof depending on Kawamata’s positivity theo-
rem. Although Theorem 7.10 seems to be contained in [Ambro 2003, Theorem 7.2],
no proof is given there.

Theorem 7.10. Let [W,K] be a pseudo-klt pair, let π : W → S be a proper
morphism onto a variety S and let D be a π -nef Cartier divisor on W . Assume that
r D−K is π-nef and π-big for some positive integer r . Then m D is π-generated
for every m� 0.

Proof. Without loss of generality, we can assume that S is affine. By the usual
technique (see [Kawamata 1998, Theorem 1] and [Fujino 1999, Theorem 1.2]), we
have

K+ ε(r D−K)∼Q KW +1W

such that (W,1W ) is klt for some sufficiently small rational number 0< ε� 1 (see
also [Kollár 2007, Theorem 8.6.1]). Then r D− (KW +1W )∼Q (1− ε)(r D−K),
which is π-nef and π-big. Therefore, m D is π-generated for every m� 0 by the
usual Kawamata–Shokurov basepoint-free theorem. �

The next theorem is the main theorem of this section. It is a generalization of
Kawamata’s theorem in [Kawamata 1985] (cf. Theorem 4.2) for pseudo-klt pairs.

Theorem 7.11. Let [W,K] be a pseudo-klt pair and let π : W → S be a proper
morphism onto a variety S. Assume the following conditions:

(i) H is a π -nef Q-Cartier Q-divisor on W .

(ii) H −K is π -nef and π -abundant.

(iii) κ(Wη, (aH −K)η)≥ 0 and ν(Wη, (aH −K)η)= ν(Wη, (H −K)η) for some
a ∈Q with a > 1, where η is the generic point of S.

Then H is π -semiample.

Proof. By definition, there exists a proper surjective morphism f : V →W from a
sub-klt pair (V, B). Without loss of generality, we can assume that V is nonsingular
and Supp B is a simple normal crossing divisor. By definition, f∗OV (d−Be)' OW .
From now on, we assume that H is Cartier by replacing it with a multiple. Then
f∗OV (d−Be + j HV ) ' OW ( j H) by the projection formula for every integer j ,

where HV = f ∗H . Pushing forward by π , we have

p∗OV (dA(V, B)e+ j HV )= p∗OV (d−Be+ j HV )

' π∗OW ( j H)

' p∗OV ( j HV )
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for every integer j , where p = π ◦ f . This is nothing but the saturation condition
Theorem 4.4(e). We put L = H−K. We consider the Iitaka fibration with respect to
L over S as in [Fujino 2011d, Proof of Theorem 1.1]. Then we obtain the following
commutative diagram:

V V

f
y y
W

µ
←−−− U

π

y yg

S ←−−−
ϕ

Z

where g : U → Z is the Iitaka fibration over S and µ : U → W is a birational
morphism. Note that we can assume that f : V →W factors through U by blowing
up V .

Lemma 7.12. rank h∗OV (dA(V, B)e)= 1, where h : V →U → Z.

Proof. This proof is essentially the same as that of [Fujino 2011d, Lemma 2.3].
First, we can assume that S is affine. Let A be an ample divisor on Z such
that h∗OV (dA(V, B)e)⊗OZ (A) is ϕ-generated. We note that we can assume that
µ∗L ∼Q g∗M since L is π -nef and π -abundant, where M is a ϕ-nef and ϕ-big Q-
divisor on Z . If we choose a large and divisible integer m, then OZ (A)⊂ OZ (mM).
Thus

ϕ∗(h∗OV (dA(V, B)e)⊗OZ (A))

⊆ ϕ∗(h∗OV (dA(V, B)e)⊗OZ (mM))

' p∗OV (dA(V, B)e+m f ∗L)

' π∗OW (mL)

' ϕ∗OZ (mM).

Therefore, rank h∗OV (dA(V, B)e)≤ 1. Since OZ ⊂ h∗OV ⊂ h∗OV (dA(V, B)e), we
obtain rank h∗OV (dA(V, B)e)= 1 �

Note that h :V→ Z is the Iitaka fibration with respect to f ∗L over S. Assumption
(c) in Theorem 4.4 easily follows from (iii). Thus, by Theorem 4.4, we have that
HV is p-semiample. Equivalently, H is π -semiample. �

The final theorem of this paper is a basepoint-free theorem for minimal lc centers.

Theorem 7.13. Let (X, B) be a quasi-projective lc pair and let W be a minimal lc
center of (X, B). Let π :W → S be a proper morphism onto a variety S. Assume
the following conditions:
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(i) H is a π -nef Q-Cartier Q-divisor on W .

(ii) H − (K X + B)|W is π -nef and π -abundant.

(iii) κ(Wη, (aH − (K X + B))|Wη
)≥ 0 and

ν(Wη, (aH − (K X + B))|Wη
)= ν(Wη, (H − (K X + B))|Wη

)

for some a ∈Q with a > 1, where η is the generic point of S.

Then H is π -semiample.

Proof. Let f : Y → X be a dlt blow-up such that KY + BY = f ∗(K X + B) (see,
for example, [Fujino 2011a, Theorem 10.4] or [Fujino 2011e, Section 4]). Then
we can take a minimal lc center Z of (Y, BY ) such that f (Z) = W . Note that
K Z + BZ = (KY + BY )|Z is klt. We also note that W is normal (see, for example,
[Fujino 2011c, Theorem 2.4 (4)] or [Fujino 2011a, Theorem 9.1 (4)]). Let

f : Z
g

−−−→ V
h

−−−→ W

be the Stein factorization of f : Z→W . Then [V, h∗((K X+B)|W )] is a pseudo-klt
pair by g : (Z , BZ )→ V . We note that H is π-semiample if and only if h∗H is
π ◦ h-semiample. By Theorem 7.11, h∗H is semiample over S. This concludes the
proof. �
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Realizing large gaps in cohomology for
symmetric group modules

David J. Hemmer

Using results of the author with Cohen and Nakano, we find examples of
Young modules Y λ for the symmetric group 6d for which the Tate cohomology
Ĥi (6d , Y λ) does not vanish identically, but vanishes for approximately 1

3 d3/2

consecutive degrees. We conjecture these vanishing ranges are maximal among
all 6d -modules with nonvanishing cohomology. The best known upper bound
on such vanishing ranges stands at (d − 1)2, due to work of Benson, Carlson and
Robinson. Particularly striking, and perhaps counterintuitive, is that these Young
modules have maximum possible complexity.

1. Introduction

Let G be a finite group and k an algebraically closed field of characteristic p. If G
contains an element x of order p such that the centralizer CG(x) is not p-nilpotent,
then a result of Benson [1995] guarantees the existence of a nonprojective kG-
module M in the principal block such that the cohomology H∗(G,M) is identically
zero. For the remaining principal block modules, those with nonvanishing coho-
mology, one might ask for the smallest degree that is nonzero, or the number of
consecutive degrees in which the cohomology vanishes. In [Benson et al. 1990],
Benson, Carlson and Robinson gave an upper bound r = r(G) on the number
of consecutive i for which the cohomology Hi (G,M) can vanish, without being
identically zero:

Theorem 1.1 [Benson et al. 1990, Theorem 2.4]. Given a finite group G, there
exists a positive integer r such that for any commutative ring R of coefficients
and any RG-module M , if Ĥ

i
(G,M) = 0 for r + 1 consecutive values of i then

Ĥ
i
(G,M)= 0 for all i positive and negative.

The Ĥ above denotes Tate cohomology, which agrees with the ordinary coho-
mology in positive degrees. The proof of Theorem 1.1 expresses r in terms of the

Research of the author was supported in part by NSF grant DMS-0808968.
MSC2010: 20C30.
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degrees of a set of homogenous generators for the cohomology ring of G. However,
there is no expectation that this r should be the best possible bound.

There do not appear to be any examples in the literature demonstrating large gaps
in cohomology, or determining the smallest possible value of r for particular groups.
This is not surprising, as calculating H∗(G,M) is generally difficult. In [Cohen et al.
2010] the author, with Cohen and Nakano, obtained some very general results when
M is a Young module Y λ for the symmetric group 6d . The goal of this paper is to
use these results to find very large gaps in Young module cohomology. For certain
partitions λ`d in characteristic two, we find the minimal i ≥0 with Hi (6d , Y λ) 6=0.
These gaps turn out to be the largest possible among all Young modules, and come
“close” to realizing the value of r arising from Theorem 1.1. Remarkably the Young
modules with the largest vanishing ranges also have maximum possible complexity.
That is the dimensions in a minimal projective resolution grow as quickly as possible.
See [Benson 1998, p.153] for the precise definition of complexity.

2. Computing Young module cohomology

In this section we recall results from [Cohen et al. 2010] on computing Young
module cohomology. Let V ∼= kd be the natural module for the general linear group
G :=GLd(k). For a partition λ` d , let L(λ) denote the simple G-module of highest
weight λ, and let Y λ denote the Young module for 6d . We denote by D the usual
dominance order on partitions of d , and by λ′ the transpose or conjugate partition.
Definitions and information on all these modules can be found in [Martin 1993].

The commuting actions of G and 6d on V⊗d give the homology Hi (6d , V⊗d)

the structure of a G-module. The composition multiplicities of this G-module are
related to the dimensions of Young module cohomology in the following way. Let
[M : S] denotes the multiplicity of a simple module S in a composition series of M .

Theorem 2.1 [Doty et al. 2004, Proposition 2.6B].

dimk Hi (6d , Y λ)= [Hi (6d , V⊗d) : L(λ)], i ≥ 0.

Theorem 2.1 indicates that determining the simple constituents of H∗(6d , V⊗d)

as a graded G-module allows one to calculate Young module cohomology in all
degrees. It turned out to be easier to study this for all d simultaneously, using
methods from algebraic topology. In [Cohen et al. 2010, Theorem 8.1.4] the algebra
⊕d≥0 H∗(6d , V⊗d) is described as a G-module. It is a polynomial algebra, tensored
with an exterior algebra if p is odd. Each generator belongs to a certain G-module
direct summand, and this summand belongs to Hi (6d , V⊗d) for a particular i and d .

The G-modules that occur are described below. For a G-module M let M (a)

denote the a-th Frobenius twist of M (see [Jantzen 2003, p. 132]), and let Sa(M)
and 3a(M) denote respectively the a-th symmetric and exterior power of M .
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Theorem 2.2 [Cohen et al. 2010, Corollary 8.2.1]. In characteristic two, the G-
module H∗(6d , V⊗d) is a direct sum of modules of the form

Sa0(V )⊗ Sa1(V (c1))⊗ · · ·⊗ Sas (V (cs)) (2-1)

where each ai ≥ 0, ci > 0 and d = a0+
∑s

j=1 a j 2c j .
In odd characteristic the G-module H∗(6d , V⊗d) is a direct sum of modules of

the form

Sa0(V )⊗ Sa1(V (c1))⊗ · · ·⊗ Sas (V (cs))⊗3d1(V (e1))⊗ · · ·⊗3dt (V (et )) (2-2)

where each ai ≥0, each ci , di , ei >0 and where d=a0+
∑s

j=1 a j pc j+
∑t

j=1 d j pe j .

Each summand in (2-1) or (2-2) occurs in Hi (6d , V⊗d) for a single value of d
but for infinitely many different degrees i , for a description see Theorem 8.1.4 in
[Cohen et al. 2010] or the special cases below, which are all we will use. To compute
a particular Hi (6d , Y λ) one must first determine the (finitely many) summands
which contribute to this d and i , and then compute the multiplicities of L(λ) in each
summand. In the next section we will let p = 2 and make a strategic choice for λ.
For these λ we can determine precisely the summand (2-1) of smallest degree which
contains L(λ) as a composition factor, and thus determine the initial vanishing
range. In Section 4 we use these computations to produce Young modules with
very large gaps in cohomology. In the final section we discuss the situation in odd
characteristic, and present a few open problems.

3. Initial vanishing ranges in characteristic two

In this section assume p = 2. Notation such as (23, 12) will be shorthand for
the partition (2, 2, 2, 1, 1), not the partition (8, 1). It is clear from (2-1) that
understanding the composition factors of Sa(V ) is necessary for computing Young
module cohomology (but not sufficient, as one must also decompose the tensor
products).

Fortunately, Doty [1985] has determined the entire submodule structure for
Sa(V ). The composition factors all occur with multiplicity at most one, and have a
particularly nice form in characteristic two:

Proposition 3.1 [Doty 1985]. (See also [Cohen et al. 2010, Proposition 12.2.1].)
Let λ ` s have a 2-adic expansion

λ=

m∑
i=0

2iλ(i)

where each λ(i) is 2-restricted. Then L(λ) is a constituent of Ss(V ) if and only if
each λ(i) is of the form (1ai ) for ai ≥ 0.
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Let µ= (µ1, µ2, . . . , µr )`d be 2-restricted. Set µ′= ((µ′)1, (µ′)2, . . . , (µ′)µ1).
We will compute the first i such that Hi (62d , Y 2µ) is nonzero, and see that a
particular such µ will maximize the initial vanishing range.

Since µ is 2-restricted, the 2-adic expansion of 2µ is just 2µ. So Steinberg’s
tensor product theorem (STPT) [Jantzen 2003, II.3.17] implies the summands from
(2-1) with any ci > 1 do not have L(2µ) as a composition factor. So to compute
Hi (62d , Y 2µ) we must determine the multiplicity of L(2µ) in summands of the
form

Sa(V )⊗ Sa1(V (1))⊗ · · ·⊗ Sas (V (1))∼= Sa(V )⊗ Sτ (V (1)) (3-1)

where we can assume without loss that ai ≥ ai+1, so τ = (a1, a2, . . . , as) ` d − a
2 .

Analysis just as in Section 10 of [Cohen et al. 2010] shows that a summand of
the form (3-1) corresponds to monomials in the polynomial algebra of the form

va
· Qa1

i1
(v) · · · Qas

is
(v),

for distinct it . By [Cohen et al. 2010, Theorem 8.1.4(a)], such a summand contributes
to the cohomology in degree a1i1+ a2i2+ · · ·+ asis . To determine the smallest i
with Hi (62d , Y 2µ) 6= 0 we must first determine which modules (3-1) contain L(2µ)
as a composition factor. Then for each we must determine the smallest possible
corresponding degree where the summand can occur. Our assumption on µ limits
how L(2µ) can arise as a composition factor in (3-1):

Proposition 3.2. Let 2µ ` 2d where µ is 2-restricted. Then Hi (62d , Y 2µ) 6= 0 if
and only if there exists an integer a ≥ 0, a partition τ = (a1, a2, . . . , as) ` d − a
and integers {it > 0} such that

(i) i = a1i1+ a2i2+ · · ·+ asis ,

(ii)
[L(2a)⊗ L(2a1)⊗ · · ·⊗ L(2as ) : L(2µ)] 6= 0.

Proof. By Proposition 3.1 and the STPT, the composition factors of Sm(V ) are all
of the form

L(1c0)⊗ L(2c1)⊗ L(4c2)⊗ · · · .

But 2µ is its own 2-adic expansion, so any L(2µ) occurring in (3-1) must arise
as in part (2) by the STPT. The corresponding degree i follows from [Cohen et al.
2010, Theorem 8.1.4(a)]. �

Notice that the “if” part of the preceding result did not require µ be 2-restricted,
a fact we will need later.

Now we want to find the smallest degree i where the cohomology Hi (62d , Y 2µ)is
nonzero. Since a1 ≥ a2 ≥ · · · , it is clear from Proposition 3.2(1) that we should
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choose it = t to minimize the degree i . The smallest nonzero degree is given in
terms of the following function on partitions. Let ρ = (ρ1, ρ2, . . . ρs) ` d . Define

x(ρ)=
s∑

l=1

(l − 1)ρl .

The following easy lemma is left to the reader:

Lemma 3.3. Suppose λDµ. Then x(λ)≤ x(µ). If λ 6= µ the inequality is strict.

We can now determine the first nonvanishing degree for H∗(62d , Y 2µ).

Theorem 3.4. Let µ ` d be arbitrary. Then:

(i) Hx(µ′)(62d , Y 2µ) 6= 0.

(ii) If µ is 2-restricted, then

dim Hi (62d , Y 2µ)=

{
0 for 0≤ i < x(µ′),
1 for i = x(µ′).

Proof. For convenience let τ = µ′. Observe that

µ= (1τ1)+ (1τ2)+ · · ·+ (1τµ1 ).

Then L(2τ1)⊗ L(2τ2)⊗ · · ·⊗ L(2τµ1 ) has highest weight 2µ with multiplicity one,
so

[L(2τ1)⊗ L(2τ2)⊗ · · ·⊗ L(2τµ1 ) : L(2µ)] = 1. (3-2)

Thus

[S2τ1(V )⊗ Sτ2(V (1))⊗ Sτ3(V (1)) · · · ⊗ Sτµ1 (V (1)) : L(2µ)] ≥ 1. (3-3)

Choosing a = τ1 and it = t , the proof of Proposition 3.2 tells us that

Hx(µ′)(62d , Y 2µ) 6= 0.

(The “if” part did not require µ be 2-restricted.)
Now suppose further that µ is 2-restricted, and consider Proposition 3.2. Suppose

[L(2a)⊗ L(2a1)⊗ · · ·⊗ L(2as ) : L(2µ)] 6= 0.

In order to minimize the degree i it is clear from Proposition 3.2(2) that we
may assume a ≥ a1 ≥ a2 ≥ · · · ≥ as . Then ρ := (a, a1, a2, . . . , as) ` d, and
by Proposition 3.2(1), the corresponding cohomological degree is x(ρ). Since
L(2a)⊗ L(2a1)⊗· · ·⊗ L(2as ) has highest weight 2ρ ′ then ρ ′Dµ, and thus µ′Dρ.
When ρ =µ′ we get a single copy of L(2µ) as above, contributing to degree x(µ′).
Otherwise µ′B ρ. Then Lemma 3.3 implies x(µ′) < x(ρ), so x(µ′) is the smallest
degree with nonzero cohomology. So the cohomology is one-dimensional in degree
x(µ′) and zero in smaller degrees. �
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4. Mind the gap

In this section we apply Theorem 3.4 to find large gaps in cohomology. For
comparison we first compute the smallest currently known r(6d) which satisfies
Theorem 1.1.

A faithful complex representation of a group G gives rise to an embedding into
a compact unitary group G ↪→ U (n). The cohomology of the classifying space
BU (n) is a polynomial ring on generators in degrees 2, 4, 6, . . . , 2n (see [Benson
1998, Section 2.6]). The value of r coming from these generators by the construction
in [Benson et al. 1990] is 1+ 3+ 5+ · · ·+ (2n− 1)= n2. Thus if G has a faithful
representation of dimension n, one can take r = r(G) = n2 in Theorem 1.1, see
[Benson 1998, Sections 5.14–15] for details.

The smallest faithful irreducible C6d module is d − 1 dimensional, so one can
take r(6d)= (d−1)2, and this is the smallest known bound. To find Young modules
with large vanishing ranges, Theorem 3.4(2) suggests finding p-restricted µ with
x(µ′) as large as possible. In this section we show careful choice of Young module
can realize gaps on the order of 1

3 d3/2.
Fix n ≥ 1 and define ρn = (n, n−1, n−2, . . . , 2, 1) ` 1

2(n
2
+ n). Notice that

ρn = (ρn)
′
= (1n)+ (1n−1)+ · · ·+ (12)+ (1).

One easily computes that

x(ρn)=
n3
− n
6

. (4-1)

Proposition 4.1. Let p = 2 and ρn ` (n2
+ n)/2 be as above. Then:

dim Ĥ
i
(6n2+n, Y 2ρn )=

{
0 for − 1

6(n
3
− n) < i < 1

6(n
3
− n),

1 for i =± 1
6(n

3
− n).

Proof. Since ρn is 2-restricted, we can apply Theorem 3.4(2) and (4-1). The
extension to negative degrees comes from Tate duality, using the fact that Young
modules are self-dual. �

Proposition 4.1 shows that for d = n2
+ n, the best possible r(6d) is at least

1
3(n

3
− n).

Example 4.2. Let λ= (28, 26, 24, . . . , 6, 4, 2) ` 210. Then

Hi (6210, Y λ)=
{

0 if −455< i < 455,
k if i = 455.

It follows from [Hemmer and Nakano 2002, Theorem 3.3.2] that the Y λ in
Example 4.2 has complexity 105, the maximum possible among 6210-modules.
This means the dimension of the module Pi in the minimal projective resolution
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P∗→ k of the trivial module grows like a polynomial of degree 104 in i . However
it is not until P455 that the projective cover P(k) makes its first appearance!

Remark 4.3. Proposition 4.1 applies to62d where d is a triangular number T (n)=
n2
+n
2 . For arbitrary d one can still choose a 2-restricted µ maximizing x(µ′) in a

similar way. Write d = T (n)+ a for 0≤ a < n+ 1 and choose

µ= (n, n− 1, . . . , a+ 1, a, a, a− 1, a− 2, . . . , 2, 1). (4-2)

One still has x((2µ)′) asymptotic to a constant times n3.

So there is a constant c so that for arbitrary d we can obtain Young modules in
characteristic two with cohomology vanishing for the first cd3/2 degrees.

5. Odd primes and further directions

Since Theorem 1.1 gives a bound r(G) independent of the characteristic, we have
focused on p = 2 which gives the cleanest results. For an arbitrary prime one can
still achieve gaps that are a constant times d3/2 in length, using µ = p(p− 1)ρ,
although the answer is messier, and involves polynomials in p. For example the
nice compact form for x(ρn) in (4-1) becomes replaced by

(p− 1)[n(2p− 3)+ (n− 1)(4p− 5)+ · · ·+ 1(2n(p− 1)− 1)].

The corresponding result, which we state without proof, is this:

Proposition 5.1. Let d = 1
2 p(p− 1)(n2

+ n). Let µ= p(p− 1)ρn ` d. Then there
is a constant c(p) and a polynomial p(n)= c(p)n3

+ an2
+ bn such that

Hi (6d , Yµ)= 0 if −p(n) < i < p(n)

So once again we have find an r(6d) asymptotic to a constant times d3/2. The
function c(p) is decreasing, so the best estimates for r(6d) come from the p = 2
case. This might lead one to make a wild conjecture:

Conjecture 5.2. Let d = 1
2 p(p− 1)(n2

+ n). Let µ = p(p− 1)ρn ` d. Among
all 6d modules in the principal block with nonvanishing cohomology, the Young
module Yµ has the largest gap in cohomology, and thus determines the best possible
r in Theorem 1.1. For d not of this form, a similar choice, in the spirit of (4-2), for
µ achieves the maximal gap.

There are many problems which remain, although it isn’t clear one should expect
nice answers to any of them. For example one might find the smallest positive i
with Hi (6d , Y λ) 6= 0. The corresponding problem for simple modules is a subject
of active research, for example for groups of Lie type. A first step would be to
generalize Doty’s work from the µ= (d) case to something more general:
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Problem 5.3. Given λ ` d , find the maximal µ ` d such that [Sµ(V ) : L(λ)] 6= 0.

Determining the λ for which µ = (d) is just Doty’s result on the composi-
tion factors of Sd(V ). At the opposite extreme, such a µ always exists, because
S(1

d )(V )∼= V⊗d and each L(µ) occurs as a composition factor of V⊗d .
Finally we observe that the partition µ appearing in Proposition 5.1 is just the

twist of the Steinberg weight (see [Jantzen 2003, p. 199]), but there seems to be no
representation-theoretic interpretation of this fact.
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