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For an acyclic quiver Q, we solve the Clebsch–Gordan problem for the pro-
jective representations by computing the multiplicity of a given indecomposable
projective in the tensor product of two indecomposable projectives. Motivated by
this problem for arbitrary representations, we study idempotents in the represen-
tation ring of Q (the free abelian group on the indecomposable representations,
with multiplication given by tensor product). We give a general technique for
constructing such idempotents and for decomposing the representation ring into
a direct product of ideals, utilizing morphisms between quivers and categorical
Möbius inversion.

1. Introduction

The problem of describing a tensor product of two representations of some alge-
braic object has appeared in many contexts. When the category of representations
in question has the Krull–Schmidt property (unique decomposition into indecom-
posables), the problem can be stated for representations X, Y, Z as “What is the
multiplicity of Z as a direct summand in X ⊗Y ?” This is sometimes referred to as
the Clebsch–Gordan problem, in honor of A. Clebsch and P. Gordan, who studied
the problem for certain Lie groups in the language of invariant theory.

These multiplicities for representations of the groups SU(2) and SO(3,R) give
rise to the Clebsch–Gordan coefficients used in quantum mechanics. In the case
of representations of GL(n,C), these multiplicities are the Littlewood–Richardson
coefficients, which play an important role in algebraic combinatorics and Schubert
calculus [Fulton 1997].

Tensor products of quiver representations have been studied by Strassen [2000]
in relation to orbit-closure degenerations, and Herschend [2008b] studied the rela-
tion to bialgebra structures on the path algebra. The Clebsch–Gordan problem for
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quiver representations is solved explicitly in various situations where a classifica-
tion of indecomposables is known [Herschend 2009; 2008a; 2010], whereas other
results on tensor product multiplicities without a classification of indecomposables
have appeared in [Kinser 2008; 2010].

In this paper, we study the tensor products of representations of a quiver Q
in terms of the representation ring R(Q) of the quiver. This ring has a Z-basis
consisting of indecomposable representations of Q, with sum corresponding to
direct sum and product to tensor product. The same construction has been used
in modular representation theory of finite groups, where it is sometimes called the
Green ring [Benson 1986]. Besides the actual representations, R(Q) also contains
formal additive inverses of representations, and thus “differences” of representa-
tions. Understanding the multiplication in this ring can be easier than directly
working with the tensor product of representations. We recall the definition and
basic properties of R(Q) in Section 2.

In Section 3, we solve the Clebsch–Gordan problem for projective representa-
tions of an acyclic quiver Q with an explicit formula as follows. Let x, y, w be
vertices in Q and P(x), P(y), P(w) be the corresponding indecomposable projec-
tive representations.

Theorem 1. The multiplicity of P(w) in P(x)⊗ P(y) equals

nxwnyw −
∑
z→w

nxznyz,

where the sum is over all arrows with terminal vertex w, and ni j denotes the num-
ber of paths from i to j in the quiver.

The proof technique is to give an integral change of basis in the subring of R(Q)
spanned by projectives to a new basis consisting of orthogonal idempotents. These
are trivial to multiply, and then changing back to the original basis gives a multi-
plication formula for projective representations. This motivates the construction of
other sets of orthogonal idempotents in R(Q).

The projective representations of Q can be concretely presented in terms of
discrete data from Q, namely, the set of paths in Q. In Section 4.1, we review a
general method for constructing a representation which is not necessarily projective
from discrete data, using a morphism of quivers f : Q′→ Q, also called a coloring
of Q′ by Q, or a quiver over Q. We describe how such a morphism gives rise to a
representation of Q via linearization, which generalizes the process of passing from
a permutation representation of a finite group to the associated linear representation.
This can be thought of as the opposite course of action to taking a coefficient quiver
of a representation [Crawley-Boevey 1990].

Linearization allows us to study certain representations combinatorially from
the discrete data in a quiver over Q. A result of Herschend states that, under some
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mild technical hypotheses, linearization takes the fiber product of two quivers over
Q to the tensor product of their linearizations [Herschend 2010]. Thus we expect to
be able to analyze the tensor product of certain representations via quivers over Q.

The first main result of the paper, presented in Section 5, is a sufficient condition
for a collection of quivers over Q to give rise to a set of orthogonal idempotents in
R(Q) (Theorem 9). The basic idea is to form an acyclic category (a generalization
of a poset) from a collection of quivers over Q, then use a categorical form of
Möbius inversion to orthogonalize the linearizations of these quivers in R(Q).

The motivating application for Theorem 9 is covered in Section 6. For any
acyclic quiver Q, we define a category PIE of quivers over Q such that the objects
in PIE are in bijection with those indecomposable representations of Q which, after
restriction to some subquiver of Q, are either projective, injective, or of dimension 1
at each vertex. We describe morphisms and fiber products in PIE and show that PIE
satisfies the hypotheses of Theorem 9. This allows us to associate an idempotent
ex ∈ R(Q) to every object x ∈ PIE, and to prove our second main result:

Theorem 2. Let Q be an acyclic quiver. Then R(Q) has a direct product structure

R(Q)∼=
∏

x∈PIE0

〈ex 〉,

where 〈ex 〉 is the principal ideal generated by ex .

Finally, we present some closed-form expressions for certain values of the Möbius
function of PIE.

2. Background

A quiver (or directed graph) is given by Q= (Q0, Q1, s, t), where Q0 is a vertex set,
Q1 is an arrow set, and s, t are functions from Q1 to Q0 giving the start and terminal
vertex of an arrow, respectively. We assume Q0 and Q1 are finite in this paper. For
any quiver Q and field K , there is a category repK (Q) of representations of Q over
K . An object V = (Vx , ϕα) of repK (Q) is an assignment of a finite dimensional
K -vector space Vx to each vertex x ∈ Q0, and an assignment of a K -linear map
ϕα : Vsα → Vtα to each arrow α ∈ Q1. For any path p in Q, we get a K -linear
map ϕp by composition. Morphisms in repK (Q) are given by linear maps at each
vertex which form commutative diagrams over each arrow; see the book by Assem,
Simson, and Skowroński [Assem et al. 2006] for a precise definition of morphisms,
and other fundamentals of quiver representations. We will fix some arbitrary field
K throughout the paper and hence omit it from notation when possible.

There is a natural tensor product of quiver representations, induced by the tensor
product in the category of vector spaces. More precisely, the tensor product of
V = (Vx , ϕα) and W = (Wx , ψα) is defined pointwise: the representation V ⊗W =
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(Ux , ρα) is given by
Ux := Vx ⊗Wx for x ∈ Q0,

ρα := ϕα ⊗ψα for α ∈ Q1.

It is not difficult to see that ⊗ is an additive bifunctor which is commutative and
associative, and distributive over ⊕ (up to isomorphism). In other words, this gives
the category rep(Q) the structure of a tensor category in the sense of [Deligne and
Milne 1982].

The category rep(Q) has the Krull-Schmidt property [Assem et al. 2006, Theo-
rem I.4.10], meaning that each V ∈ rep(Q) has an essentially unique expression

V '
n⊕

i=1

Vi

as a direct sum of indecomposable representations Vi . That is, given any other
expression V '

⊕
Ṽi with each Ṽi indecomposable, there is a permutation σ of

{1, . . . , n} such that Ṽi ' Vσ i for all i . Thus the Clebsch–Gordan problem is well
defined for rep(Q).

Since the tensor product distributes over direct sum, to study V ⊗W we can
assume without loss of generality that V and W are indecomposable. A good
starting point would then be to have a description of indecomposable objects in
rep(Q). But a description of all indecomposables is not available for most quivers,
so we approach the problem by placing the representations of Q inside a ring
R(Q), in which addition corresponds to direct sum and multiplication corresponds
to tensor product (the split Grothendieck ring of rep(Q)). Analyzing the properties
of R(Q) (for example ideals, idempotents, nilpotents) gives a way of stating and
approaching problems involving tensor products of quiver representations even in
the absence of an explicit description of the isomorphism classes in rep(Q).

Let [V ] denote the isomorphism class of a representation V . Then define R(Q)
to be the free abelian group generated by isomorphism classes of representations
of Q, modulo the subgroup generated by all [V ⊕W ]− [V ]− [W ]. The operation

[V ] · [W ] := [V ⊗W ] for V,W ∈ rep(Q)

induces a well-defined multiplication on R(Q), making R(Q) into a commutative
ring, called the representation ring of Q.

The Krull–Schmidt property of rep(Q) gives that R(Q) is a free Z-module with
the indecomposable representations as a basis. The ring R(Q) generally depends
on the base field K , but we omit K from the notation since this is fixed in our
case. Also we usually omit the brackets [ ] and just refer to representations of Q
as elements of R(Q).
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Although we introduce “virtual representations” (those with some negative co-
efficient in the basis of indecomposables), every element r ∈ R(Q) can be written
as a formal difference

r = V −W, with V,W ∈ rep(Q).

Then any additive or multiplicative relation z = x + y or z = xy, respectively, can
be rewritten to give some isomorphism of actual representations of Q.

Remark 3. If one wishes to consider an ideal of relations I for a quiver Q, the
pointwise tensor product will not generally preserve these relations and thus not be
defined for representations of the bound quiver (Q, I ). However, if I is generated
by commutativity relations (that is, relations of the form p− q for paths p, q) then
the representations of (Q, I ) do generate a subring of R(Q). If I is generated by
zero relations (relations of the form p = 0 for p a path), then representations of
(Q, I ) generate an ideal in R(Q) since the tensor product of any map with a zero
map is still zero. The identity element of R(Q) will not satisfy the zero relations, so
the ring of representations satisfying I will not generally have an identity element.
Thus, if I consists of zero relations and commutativity relations, we can get a
representation ring R(Q, I ) without identity. Throughout the paper, we will not
assume that the rings of representations that we work with have identity elements,
and thus the term “subring” is taken to mean a nonempty subset of a ring which is
closed under subtraction and multiplication (and possibly with a different identity
element).

3. Projective representations

Let Q be a quiver without oriented cycles. For every vertex x ∈ Q0, let P(x)
denote the indecomposable projective representation at x . For any two vertices
x, y, denote by nxy the number of paths from x to y in Q. The vector space P(x)y

of the representation P(x) at a vertex y has a basis consisting of all paths from x
to y; thus dim P(x)y = nxy .

We will first show in this section that the tensor product of two projective rep-
resentations is projective, and then we compute the multiplicities cz

xy in the direct
sum decompositions

P(x)⊗ P(y)=
⊕
z∈Q0

cz
xy P(z).

Lemma 4. The tensor product of two projectives is projective.

Proof. Since the tensor product is distributive over the direct sum, it is enough to
show the statement for indecomposable projectives. Let i, j be two vertices in Q.
We need to show that P(i)⊗ P( j) is projective.
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We will proceed by induction on the number of vertices in Q. If this number
is one, then i = j , and P(i) is a representation of dimension one, since Q has no
oriented cycles, and thus P(i)⊗ P(i)= P(i) is projective.

Now suppose Q has more than one vertex, and let i0 be a sink in Q. If i = i0

then P(i) is the simple representation S(i), and P(i)⊗ P( j) is equal to P(i)⊕n j i ;
in particular, it is equal to zero if there is no path from j to i . This shows that the
lemma holds if i = i0, and a similar argument shows that the lemma holds if j = i0.

Suppose now that i and j are different from i0. Denote by Q′ the quiver obtained
from Q by deleting the vertex i0 and all arrows incident to it. Let P(i)|Q′ be the
representation of Q′ obtained by restricting to the subquiver Q′. Since i0 is a sink
in Q, we have that P(i)|Q′ is a projective Q′ representation and therefore the in-
duction hypothesis implies that P(i)|Q′⊗ P( j)|Q′ is a projective Q′ representation,
thus there is an isomorphism

f :
⊕

k

ck
i j PQ′(k) −→ P(i)|Q′ ⊗ P( j)|Q′,

for some ck
i j ≥ 0 and PQ′(k) the indecomposable projective Q′ representation at ver-

tex k. Let P̃ = (P̃x , ϕ̃α)i∈Q0,α∈Q1 be the corresponding projective Q representation,
more precisely,

P̃ =
⊕

k

ck
i j PQ(k).

Let us use the notation P(i)⊗ P( j)= (Mx , ϕα)x∈Q0,α∈Q1 . Then for every vertex
x , the vector space Mx has a basis consisting of pairs (ci , c j ), where ci is any path
from i to x and c j any path from j to x . On the other hand, since i, j are both
different from i0, the vector space Mi0 has a basis consisting of pairs (ciα, c jβ),
where α, β are arrows with terminal point i0, and ci is a path from i to s(α) and
c j is a path from j to s(β). The maps ϕα are given by ϕα(ci , c j )= (ciα, c jα), in
particular, ⊕

α:x→i0

ϕα :
⊕
α:x→i0

Mx → Mi0

is injective.
The morphism f induces a morphism f̃ = ( f̃x)x∈Q0 : P̃→ P(i)⊗ P( j), where

f̃x = fx if x 6= i0, and f̃i0 is defined on any path cα, with α an arrow with t (α)= i0,
as f̃i0(cα) = ϕα f̃s(α)(c). Clearly, f̃x is an isomorphism for every x 6= i0, and we
will show that f̃i0 is injective.
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Now in the commutative diagram⊕
α:t (α)=i0

P̃s(α)

⊕
α:t (α)=i0

ϕ̃α
//

⊕
α:t (α)=i0

f̃x

��

P̃i0

f̃i0

��⊕
α:t (α)=i0

Ms(α)

⊕
α:t (α)=i0

ϕα
// Mi0

the left column and the top row are isomorphisms, and the bottom row is injective.
Therefore the right column f̃i0 is injective too.

Thus f̃ : P̃ → P(i)⊗ P( j) is injective with semisimple projective cokernel
P(i0)

⊕t for some integer t , and we get a split short exact sequence

0→ P̃→ P(i)⊗ P( j)→ P(i0)
⊕t
→ 0,

since P(i0)
⊕t is projective. This shows that P(i)⊗ P( j) is projective. �

The lemma implies that the free abelian group generated by all indecomposable
projectives P(x), x ∈ Q0 has a ring structure whose addition is given by the direct
sum and multiplication by the tensor product (that is, the projectives span a subring
of R(Q)). As an additive group, this is isomorphic to ZQ0 and an isomorphism is
given by the Cartan matrix

C =
[
nxy
]

x,y∈Q0
=
[
dim P(1) · · · dim P(n)

]
,

where n= #Q0 and
[
dim P(1) · · · dim P(n)

]
is the n×n integer matrix whose x-th

column is equal to the dimension vector of P(x). The Cartan matrix is invertible.
Since the dimension vector is multiplicative with respect to the tensor product, this
is a ring isomorphism.

We also have that the (x, y) entry of the transposed inverse matrix (C−1)t can
be computed by the formula dim Hom(S(x), S(y))− dim Ext(S(x), S(y)); see for
example [Assem et al. 2006, III.3.13]. Therefore

(C−1)tx,y =

{
1 if x = y,
−(number of arrows x→ y) if x 6= y.

Let εx denote the standard basis vector [0, . . . , 0, 1, 0, . . . , 0]t with 1 at position
x , and define e(x) to be the inverse image of εx under the above isomorphism. In
other words

e(x)= [P(1) · · · P(n)]C−1εx ,

where [P(1) · · · P(n)] denotes the 1× n matrix whose entries are the indecompos-
able projective modules, and C−1εx is the x-th column of C−1.
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It follows that

e(x)= P(x)−
∑
x→y

P(y), (1)

where the sum is over all arrows starting at x , and

P(x)=
∑

z

nxze(z). (2)

We are now ready to prove the main result of this section.

Theorem 5. Let x, y ∈ Q0. Then

P(x)⊗ P(y)=
⊕
w∈Q0

cwxy P(w),

with cwxy = nxwnyw−
∑

z→w nxznyz , where the sum is over all arrows with terminal
vertex w.

Proof. The proof is a simple computation in the representations ring with the
orthogonal idempotents {e(z) | z ∈ Q0}. We have

P(x)⊗ P(y)=
∑

z nxze(z)
∑

z nyze(z)

=
∑

z nxznyze(z),

since the e(z) are orthogonal idempotents. Now using (1), we get

P(x)⊗ P(y)=
∑

z

nxznyz

(
P(z)−

∑
z→u

P(u)
)
.

For a fixed vertex w, we can compute cwxy by collecting terms. We then obtain
cwxy = nxwnyw −

∑
z→w nxznyz , where the sum is over all arrows with terminal

vertex w. This completes the proof. �

4. Linearization and Möbius rings

4.1. Quivers over Q and linearization. A morphism of quivers f ′ : Q′→ Q sends
vertices to vertices and arrows to arrows, and satisfies s( f ′(α)) = f ′(s(α)) and
t ( f ′(α)) = f ′(t (α)) for each arrow α ∈ Q′1. A quiver over Q is a pair (Q′, f ′)
where Q′ is a quiver, and f ′ : Q′→ Q is a morphism of quivers called the structure
map of (Q′, f ′). A morphism g of quivers over Q is a morphism of quivers which
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commutes with the structure maps to Q:

Q′ Q′′

Q

f ′ f ′′

g

	 (3)

So the collection of all quivers over a given Q forms a category denoted by ↓Q,
and we write g ∈ Hom↓Q(Q′, Q′′).

To simplify the notation, we consider the maps ϕα of a representation V to be
defined on the total vector space

⊕
x∈Q0

Vx by taking ϕα(Vy)= 0 when y 6= s(α).
If f ′ : Q′→ Q is a morphism of quivers then the pushforward f ′

∗
V = (Ux , ρα) ∈

rep(Q) of a representation V = (Vx , ϕα) ∈ rep(Q′) is given by

Ux :=
⊕

y∈ f ′−1(x)

Vy for x ∈ Q0, (4)

ρα :=
∑

β∈ f ′−1(α)

ϕβ for α ∈ Q1. (5)

Extending f ′
∗

linearly to R(Q′), we get an induced homomorphism

f ′
∗
: R(Q′)→ R(Q)

between additive groups, which will not generally be a ring homomorphism.
For a quiver Q, we denote by 1Q ∈ rep(Q) the identity representation of Q: it

has a one-dimensional vector space K at each vertex, and the identity map over
each arrow. (The name comes from the fact that this is the identity element of the
representation ring R(Q)). When S ⊂ Q is a subquiver, we can consider 1S to
be a representation of Q via extension by zero: that is, we assign the zero map
or vector space to each arrow or vertex outside of S. More generally, we can take
any quiver over Q and get a representation of Q by pushing forward the identity
representation. Thus we get a map on objects

L : ↓Q // rep(Q)

(Q′, f ′) � // f ′
∗
1Q′

which we call the linearization map. The representation f ′
∗
1Q′ has a standard basis

{ex | x ∈ Q′0}. For example, when (Q′, f ′) is the inclusion of a single vertex in Q,
then its linearization is the simple representation concentrated at that vertex. When
Q′ is a quiver of type A with some technical conditions on f ′, the linearization is a
string module. Similarly, we get a band module or tree module when Q is of type
Ã or when it is a tree, respectively.
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Remark 6. There is a natural way that one would try to make the linearization
functorial: if g is a morphism in ↓Q as illustrated in (3), one might try to send
a standard basis vector ex of f ′

∗
1Q′ to the vector eg(x) in f ′′

∗
1Q′′ . However, this

will not be a morphism of quiver representations, in general. To see this, one need
only take Q = •→ • and consider the map of quivers given by the inclusion of
the left vertex. The corresponding map of vector spaces just described would be a
nontrivial morphism from the simple representation of dimension vector (1, 0) to
the indecomposable of dimension vector (1, 1), which is not possible. By working
in some (not necessarily full) subcategory of ↓Q, one may have some success in
making the linearization functorial; see for example [Crawley-Boevey 1989; Kinser
2010, Theorem 18].

The categorical product of two objects (Q′, f ′)×Q (Q′′, f ′′), which we refer
to as the fiber product of Q′ and Q′′ over Q, exists in ↓Q. It can be realized
concretely as having vertex set

(Q′×Q Q′′)0 = {(x ′, x ′′) ∈ Q′0× Q′′0 | f ′(x ′)= f ′′(x ′′)}

consisting of pairs of vertices lying over the same vertex of Q, with an arrow

(x ′, x ′′)
(α′,α′′)
−−−−→ (y′, y′′)

for each pair of arrows (x ′ α′
−→ y′, x ′′ α

′′

−→ y′′)∈ Q′1×Q′′1 such that f ′(α′)= f ′′(α′′).
This common value should be taken as the value of the structure map on the arrow
(α′, α′′).

4.2. Acyclic categories and the Möbius function. In order to use an inclusion/ex-
clusion technique to orthogonalize elements of the representation ring, we need a
categorial analogue of Möbius inversion. This is provided by the work of Haigh
[1980], and one may also see the more recent works [Leinster 2008; Kozlov 2008,
Chapter 10]. We summarize here the tools that we need from this construction.

Following the terminology of Kozlov’s book, we call a small category acyclic
if the only endomorphisms are identity morphisms and only identity morphisms
are invertible. This terminology is justified by the observation that if we draw a
directed graph whose vertices are the objects and arrows are the morphisms of an
acyclic category, then this graph will be acyclic. For brevity, we denote by [x, y]C
the number of morphisms from an object x to an object y in C. An acyclic category
C with finitely many objects C0 and morphisms C1 admits a Möbius function

µC : C0×C0→ Z
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with the following properties:

µC(x, x)= 1 for all x,∑
z∈C0

[x, z]C µC(z, y)=
{

0 for x 6= y,
1 for x = y.

We drop the subscripts C when this can cause no confusion.
For example, when C is a poset (whose elements are taken to be the objects

of C, with a unique morphism from x to y if and only if x ≤ y), we get exactly the
classical Möbius function of the poset [Stanley 1997, Section 3.7].

For any acyclic category C, let HC be the Hom matrix associated to C, whose
rows and columns are indexed by the objects of C such that the entry Hxy in row x
and column y is [x, y]. One can choose an ordering of the objects of C such that
this matrix is upper triangular with ones on the diagonal since C is acyclic, and
then one can see from the definition of matrix multiplication that M def

= H−1 will
have the value µ(x, y) in row x , column y.

A few facts which will be used frequently are noted here:

(a) From the matrix description we see that∑
z∈C0

µ(x, z)[z, y] = 0

for all x 6= y.

(b) If [x, y] = 0, then µ(x, y)= 0.

(c) The value µ(x, y) can be recursively calculated as

µ(x, y)=−
∑

x<z≤y

[x, z]µ(z, y), (6)

where we write x ≤ y if there exists a morphism from x to y.

4.3. The Möbius ring of a finite acyclic category. The Möbius ring M(C) of an
acyclic category C [Haigh 1980] generalizes an object of the same name associated
to a poset [Greene 1973]. The additive group of M(C) is free on the set of objects of
C. A direct (but somewhat opaque) definition of the product xy of two basis vectors
can be given, but we will first give a more computationally useful formulation. For
each object x of C, define an element

δx
def
=

∑
z∈C0

µ(z, x)z (7)

in M(C). The additive group of M(C) is freely generated by {δx}x∈C0 also, since
the Hom matrix and its inverse (which have determinant 1) give the change of basis
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between this and the defining basis. Then we just declare these basis elements to
be orthogonal idempotents in M(C):

δxδy =

{
δx if x = y,
0 if x 6= y,

(8)

and extend by Z-linearity (so M(C) is commutative). We can recover the original
basis elements as

x =
∑
z∈C0

[z, x] δz, (9)

and by substitution the product of two such elements is then

xy =
∑
z∈C0

( ∑
w∈C0

µ(z, w)[w, x][w, y]
)

z, (10)

recovering the standard definition.

Lemma 7. If x is a terminal object for C (that is, each object of C has a unique
morphism to x), then x serves as the identity element of M(C).

Proof. If [w, x] = 1 for all w ∈ C0, the formula (10) simplifies to

xy =
∑
z∈C0

( ∑
w∈C0

µ(z, w)[w, y]
)

z.

The second sum is always 0 unless z = y, by fact (a) of the previous subsection,
and 1 when z = y; thus we have xy = y for all y ∈ C0. �

Remark 8. The finiteness of C can be relaxed in various ways. For example, the
definition (7) still makes sense if, for each object x , there are only finitely many
objects z such that [z, x] 6= 0.

5. Main result on Möbius rings

Let C be a full, acyclic subcategory of ↓Q. From here on, we will always assume
that each object of C is a connected quiver over Q. Let L : C→ rep Q be the
linearization, which we recall is defined only on the objects of C. Then L extends
by Z-linearity to a map M(C)→ R(Q), which we also denote by L . In this section,
we will show that L is a ring homomorphism when C satisfies suitable conditions,
and study the image of L in R(Q). We give sufficient conditions on the category
C so that this subring is isomorphic to the Möbius ring M(C) of the category C

and construct a basis of idempotents in that case.
We say that the category C is closed under fiber products if the fiber product of

quivers in C is a disjoint union of quivers in C. We need one more technical condi-
tion for linearization to behave well with respect to tensor product. Following the
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terminology of [Herschend 2010], we say that a morphism of quivers f ′ : Q′→ Q
is a wrapping if, for every pair of vertices i ′, j ′ ∈ Q′0, the induced map

{arrows from i ′ to j ′} f ′
−→{arrows from f ′(i ′) to f ′( j ′)}

is injective. Intuitively, this says that f ′ does not collapse parallel arrows. The
fiber product of two wrappings is again a wrapping.

Theorem 9. Let C be an acyclic subcategory of ↓Q whose objects are connected
and wrappings, which is closed under fiber products, and such that for all x, y ∈ C,

L(x) is indecomposable in rep Q and L(x) 6' L(y) if x 6= y. (11)

Then the subring of R(Q) generated by L(C) is isomorphic to the Möbius ring
M(C) of C.

Proof. The Möbius ring M(C) has the two Z-bases

{x | x ∈ C} and
{
δx =

∑
z∈C0

µ(z, x)z
∣∣∣ x ∈ C

}
.

Consider the linearization map

L : M(C)−→ R(Q), x = (Q′, f ′) 7→ L(x)= f ′
∗
1Q′ .

We will show that L is an injective ring homomorphism.
The map L is additive by definition, and by condition (11), L is injective. In

M(C) the product is given by xy =
∑

z∈C0
[z, x][z, y]δz , for x, y ∈ C, using the

basis of orthogonal idempotents. Now let x ×Q y = tiwi be the decomposition
into connected components, where each wi ∈ C. For a fixed z, the set of pairs of
maps {(z f

−→ x, z g
−→ y)} is in bijection with the set of maps

⋃
i {z

h
−→wi }, by

the universal property of fiber products and the assumption that elements of C are
connected quivers. This implies that [z, x][z, y] =

∑
i [z, wi ] and so after applying

L we have that
L(xy)=

∑
z∈C0

∑
i

[z, wi ]L(δz).

On the other hand, L(x)⊗ L(y) is isomorphic to the linearization of x ×Q y,
by [Herschend 2010, Corollary 1] (which requires that x, y be wrappings). In
the representation ring R(Q), this gives L(x)L(y) =

∑
i Lt (wi ). Now since we

already know L is a homomorphism of additive groups, we can use formula (9) to
obtain ∑

i

L(wi )=
∑

i

∑
z∈C0

[z, wi ] L(δz).

This shows that L is a ring homomorphism, and moreover, the image of L is the
subring of R(Q) generated by L(C); thus it is isomorphic to M(C). �
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Corollary 10. Let the assumptions be as in Theorem 9.

(1) The subring of R(Q) generated by L(C) has a basis B = {L(δx) | x ∈ C} of
orthogonal idempotents.

(2) When (Q, id) ∈ C, this results in a direct product decomposition

R(Q)∼=
∏
x∈C

〈L(δx)〉,

where 〈L(δx)〉 is the principal ideal of R(Q) generated by L(δx).

Proof. Statement (1) is immediate from the theorem. Then statement (2) follows
because the identity element of R(Q) is the linearization of the identity element
(Q, id) of M(C), so 1 =

∑
x L(δx) is a decomposition as a sum of orthogonal

idempotents in R(Q). �

6. The PIE category

In Section 3 we have seen that the projective representations of an acyclic quiver
Q span a subring of R(Q), in which multiplication can more easily be carried
out using a basis of orthogonal idempotents. The duality functor gives a ring
isomorphism R(Q) ∼= R(Qop), so the same can be said for the injective repre-
sentations of Q. In [Kinser 2010, Section 4.1], a similar construction is carried out
for the collection of idempotent representations of Q (those which are the identity
representation of some subquiver).

So the natural question arises as to whether these three sets of idempotents in
R(Q) have a common refinement. That is, we would like to find a subring of R(Q)
containing a complete set of orthogonal idempotents which span the set of projec-
tive, injective, and idempotent representations. The first problem one encounters
is that the tensor product of a projective with an idempotent representation (which
results in the restriction of the projective to a subquiver) is not necessarily projec-
tive, injective, or idempotent. So we need to enlarge the scope of representations
that we look at.

6.1. Subprojective and subinjective representations. Recall that the support of a
representation V of Q, written supp V , is the subquiver of Q consisting of the
vertices to which V assigns a nonzero vector space, and the arrows to which V
assigns a nonzero map. For an object X = (Q′, f ′) of ↓Q, we define supp X =
f ′(Q′), so that supp X = supp L(X)⊆ Q when X is a wrapping.

Definition 11. A representation V of a quiver is subprojective or subinjective if it
restricts to a projective or injective representation of its support, respectively.

To utilize Theorem 9 in the study of tensor products of these representations,
we must first present them as linearizations of some quivers over Q.
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Definition 12. A structure quiver for V ∈ rep(Q) is an object X ∈ ↓Q0 such that
L(X)' V . A structure quiver X = (Q′, f ′) for V is said to be minimal if any other
structure quiver Y = (Q′′, f ′′) for V has at least as many arrows as Q′.

In the language of [Ringel 1998], a structure quiver is a “coefficient quiver” in
some basis. By dimension reasons, any two structure quivers for a given V have
the same number of vertices over each vertex of Q. But the following example
shows a basic way that a structure quiver can fail to be minimal.

Example 13. Take for our base quiver

Q =
3 2 1

α

β

γ

and consider P(3), the projective representation associated to vertex 3. The “natu-
ral” structure quiver for P(3) is

Q′ =
3

2 1

2 1

α

β

γ

γ

(where we mark the vertices and edges according to what they lie over in Q). But
one can quickly see that the linearization of

Q′′ =
3

2 1

2 1

α

β

γ

γ

γ

will also give a representation isomorphic to P(3), and that we have an embedding
Q′ ⊆ Q′′ as quivers over Q.

6.2. Definition of the PIE category. We now present the natural structure quivers
for subprojective, subinjective, and idempotent representations of an acyclic quiver.
Then we justify calling them “natural” by showing that these are the unique mini-
mal structure quivers for these representations. For each subquiver T ⊆ Q, consider
the following quivers over Q.

• When T has a unique source t , we define the vertex set of the quiver PT

as the set of all paths in T starting at t ; the structure map as a quiver over
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Q sends such a path to its endpoint in Q. We put an arrow from the vertex
associated to a path p to the one for a path q in PT exactly when q is obtained
by concatenating a single arrow α onto the end of p; in this case, that arrow
in PT is sent to the arrow α ∈ Q1 by the structure map. So in Example 13, we
have Q′ = PQ . In [Enochs et al. 2004, Section 2], this is called the component
of the “(left) path space” of Q associated to t .

• When T has a unique sink, IT is defined dually; its vertex set is the collection
of all paths within T that end at the sink.

• For any subquiver T ⊆ Q, the inclusion of T into Q will be denoted by ET

when being considered as a quiver over Q.

It will always be implicit that PT or IT is only defined when T has a unique
source or sink, respectively.

Remark 14. There are coincidences among the P-, I -, and E-type objects, which
we record for reference later. Two distinct paths are said to be parallel if they start
at the same vertex and end at the same vertex. Then ET = PT if and only if T has
a unique source and no parallel paths, while ET = IT if and only if T has a unique
sink and no parallel paths. We have IT = PT exactly when T is just a single path,
in which case we get that these both equal ET as well.

Definition 15. Let PIE be the full subcategory of the category of quivers over Q
whose objects are all the PT , IT , and ET as T varies over all subquivers of Q.

Example 16. With Q as in Example 13, the distinct objects of PIE are as follows:

• The ten connected subquivers of Q.

• The P-type objects which are not subquivers:

Pαβ =
3

2

2

α

β

PQ =
3

2 1

2 1

α

β

γ

γ

• The I -type objects not included above:

Iαβ =

3

3

2

α

β

IQ =

3

3

2 1

α

β

γ
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Lemma 17. The objects of PIE are the unique minimal structure quivers for the
indecomposable subprojective, subinjective, and idempotent representations.

Proof. It is easy to see that L(PT ) is subprojective, L(IT ) is subinjective, and
L(ET ) is idempotent, and that each of these is indecomposable; this is just the
standard construction of projectives and injectives which can be found, for example,
in [Assem et al. 2006, Lemma III.2.4]. Thus, we need to show that they are minimal
and uniquely so.

If X = (Q′, f ′) is such that L(X) = L(ET ) is an idempotent representation,
there is exactly one vertex of Q′ over each vertex of T . Consequently, all arrows
of Q′ over a given α ∈ T1 must be parallel; taking precisely one arrow over each
α ∈ T1 is then the unique minimal choice, which is exactly the definition of ET .

Now the P-type and I -type cases are dual (each follows from the other by
working with quivers over Qop), so it is enough to prove the statement for the
P-type case. Suppose X = (Q′, f ′) is such that L(X)= L(PT ), and fix an arrow
α ∈ T1. Then the map L(X)α is injective with rank equal to the number of paths
in T from the source of T to s(α), by the description of projectives. Since a rank
r map cannot be the sum of strictly less than r rank one maps, the pushforward
construction (5) requires that Q′ must have at least this many arrows over α. So
PT is minimal since it has precisely this many arrows.

To see that it is unique, we use induction on the number of arrows in T . When T
has no arrows the uniqueness is clear. Now if T has arrows, let α be an arrow ending
at some sink of T , and denote by T̃ the connected component of T \α containing
the source of T (that is, remove α, and if that isolates the vertex t (α), discard that
vertex). Then working with representations over T̃ (which has a unique source),
we define Q̃′ = f ′−1(T̃ ) and see that the linearization of X̃ = (Q̃′, f ′) is L(PT̃ ).

Let {v′1, . . . , v
′
n} be the vertices of Q′ lying over s(α). Each v′i must have at least

one outgoing arrow α′i in Q′ lying over α, because otherwise the vector correspond-
ing to v′i in L(X) would be in the kernel of the linear map over α, which is not
possible since the maps in a projective representation are injective. By dimension
count at the vertex t (α), each α′i ends at a new vertex w′i of Q′ which is not in Q̃′.
By the assumption that X is a minimal structure quiver for L(PT ), we know that
Q′ has the same number of arrows as PT . If some v′i had more than one outgoing
arrow over α, that would leave Q̃′ with fewer arrows than PT̃ , contradicting the
fact that PT̃ is minimal. So there are exactly n arrows over α in Q′, and Q̃′ has
the same number of arrows as PT̃ . By induction, we get that X̃ = PT̃ , then the
remaining arrows over α are configured exactly so that X = PT . �

It is worth remarking that we have proven something slightly stronger, namely,
that an object of the PIE category actually embeds in any quiver over Q giving the
same linearization.
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6.3. Morphisms in PIE. In order to see that the Theorem 9 can be applied to PIE,
and eventually do some computations in its Möbius ring, we need to know the
cardinalities of Hom sets. We first record some simple facts, continuing to use the
notation [X, Y ] for the cardinality of Hom↓Q(X, Y ).

Lemma 18. Let X, Y be quivers over Q.

(a) [X, Y ] = 0 unless supp X ⊆ supp Y .

(b) For T ⊆ Q we have

[X, ET ] =

{
1 if supp(X)⊆ T,
0 otherwise.

(12)

Proof. We can see (a) immediately from the diagram (3) in the definition of mor-
phisms in ↓Q. Then specializing this diagram to the situation of (b), we see that
the dotted line in

Q′ ET

Q

f ′ ⊆

	

can only be filled in when supp(X)= f ′(Q′)⊆ T , and only by the morphism f ′. �

Describing maps to P-type objects is slightly more complicated, but we can get
enough of a description to count morphism sets in PIE.

Proposition 19. Let T ⊆ Q be a subquiver, and X = (Q′, f ′) a quiver over Q
with supp X ⊆ T .

(a) Given a map of vertex sets g0 : Q′0→ (PT )0 that respects the structure maps
to Q, there is a unique map of arrow sets g1 : Q′1→ (PT )1 which respects the
structure maps to Q and also the start vertex function s.

(b) The maps in (a) give a morphism g = (g0, g1) : Q′→ PT in ↓Q if and only
if , when regarding the vertices of PT as paths in T , the equation

g0(t (α′))= g0(s(α′)) f ′(α′) (13)

holds for each arrow α′ ∈ Q′1. (The operation on the right hand side is con-
catenation.)

Proof. Given a map between vertex sets as in the hypotheses of (a), we explicitly
describe the resulting map of arrows. For each α′ ∈ Q′1, the arrow g1(α

′) in PT

must start at g0(s(α′)) to respect the s function. To respect the structure maps to
Q, this arrow must be labeled with f ′(α′). But in PT , each vertex has at most one
outgoing arrow labeled by a given arrow in Q, and the assumption that supp X ⊆ T
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guarantees that there is such an arrow for this vertex. So we can define g1(α
′) as

the unique arrow of PT lying over f ′(α′) in Q and satisfying s(g1(α
′))= g0(s(α′)).

This shows (a).
Now suppose that the resulting map is a morphism in ↓Q. Then it must respect

both the start and terminal vertex functions s, t , and so an arrow s(α′) α′
−→ t (α′) is

sent to
g0(s(α′))

g1(α
′)

−−−→ g0(t (α′))

in PT , with g1(α
′) lying over f ′(α′). But the construction of PT is such that this

is equivalent to (13). Conversely, we need to see that the function t is respected
when this equation holds for all arrows. Since at least s(g1(α

′))= g0(s(α′)), any
arrow s(α′) α′

−→ t (α′) is sent to an arrow

g0(s(α′))
g1(α

′)
−−−→ t (g1(α

′))

in PT . But then g1(α
′) lying over f ′(α′) gives the equation of paths

t (g1(α
′))= g0(s(α′)) f ′(α′)

by the construction of PT again, which is exactly equal to g0(t (α′)) by assumption.
So t is respected by these maps of vertices and arrows, and thus g is a morphism
in ↓Q. �

Corollary 20. If Q′ has a unique source i ′, then any morphism g : Q′→ PT in ↓Q
is uniquely determined by g(i ′). Consequently, [PS, PT ] is equal to the number of
paths in T from the source of T to the source of S if S ⊆ T , and 0 otherwise.

Proof. Part (a) of Proposition 19 tells us that the images of arrows under g are
determined by the images of the vertices. Repeated use of (13) shows that g(i ′)
determines g( j ′) for any vertex j ′ lying on a path starting at i ′. Since i ′ is the
unique source, this determines g completely.

To show the second statement of the corollary, observe first that if S * T then
Lemma 18 (a) implies that [PS, PT ] = 0. Suppose now that S ⊆ T . Compatibility
with structure maps requires that any morphism in ↓Q sends the source of PS to
a vertex of PT associated to a path q in T ending at the source of S. Any such
choice extends to a morphism PS→ PT in the obvious way, by sending a path in
S to its concatenation with q , which is a path in T . Similarly, there is one obvious
way to define the map on arrows of PS . Now the previous paragraph implies that
this extension to the rest of PS is unique. �

Corollary 21. If there exists a morphism g : Q′→ PT in ↓Q, then any two arrows
with the same terminal vertex in Q′ must lie over the same arrow in Q. That is, for
α′, β ′ ∈ Q′1 with t (α′)= t (β ′), we have f ′(α′)= f ′(β ′). Consequently, we get that
[ES, PT ] = 0 unless ES = PS , and [IS, PT ] = 0 unless IS = PS .
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from\to ET PT IT

ES 1
0 unless 0 unless
ES = PS ES = IS

PS 1
# paths in T from 0 unless

source T to source S PS = IS = ES

IS 1
0 unless # paths in T from

IS = PS = ES sink S to sink T

Table 1. Summary of morphisms in PIE if S ⊆ T .

Proof. If there exists such a morphism g, we apply (13) to both α′ and β ′ and then
use the assumption that t (α′)= t (β ′) to get

g(s(α′)) f ′(α′)= g(t (α′))= g(t (β ′))= g(s(β ′)) f ′(β ′)

as paths in Q. Since a path can only end with one arrow, it must be that f ′(α′)=
f ′(β ′). Now if ES is distinct from PS , then the subquiver S must either have
parallel paths or more than one source. In either case, there will be two arrows in
ES with the same terminal vertex but different labels, preventing any morphism
from ES to PT . Similarly, if IS is distinct from PS , then there are distinct arrows
in IS with the same terminal vertex.

Thus there can be no morphism from IS to PT . �

The results of this subsection are summarized Table 1, keeping in mind that by
Lemma 18(a) we need S ⊆ T for any corresponding entry to be nonzero, though
we don’t write this in each entry of the table.

6.4. Fiber products in PIE.

Lemma 22. For T ⊆ Q and X = (Q′, f ′), we have ET ×Q X ' f ′−1(T ). In other
words, fiber product with ET restricts X to T .

Proof. The universal property of the fiber product can be quickly verified: suppose
we have a commutative diagram of quiver morphisms given by the solid lines in

Z

f ′−1(T ) Q′

ET Q

g

f ′f ′
h
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where Z is an arbitrary quiver over Q. We need to see that there is a unique map
along the dashed arrow making the diagram commutative everywhere. The outer
square shows that g(Z) ⊆ f ′−1(T ), so filling in the dashed arrow with g gives a
map from Z to f ′−1(T ) over Q making the two triangles commute. The upper
triangle shows that g is unique. �

We now show that PIE is closed under products with E-type objects. For a
vertex i in a quiver Q, denote by

−→

i the successor closure of i in Q, that is, the full
subquiver of Q containing the vertices which can be reached by a path starting at i .

Proposition 23. For any S, T ⊆ Q, the fiber product PS ×Q ET is a disjoint union
of P-type quivers over Q. More specifically, for each source i of S ∩ T , the quiver
P−→i appears as a component of PS ×Q ET with multiplicity equal to the number
of paths from the source of S to i in S, where the successor closure is taken inside
S ∩ T .

Proof. We know from the previous lemma that PS ×Q ET can be identified with a
subquiver of PS lying over S ∩ T . So, the vertices of PS ×Q ET can be identified
with paths starting at the source of S and ending in S ∩ T , with the arrows between
them exactly the ones in PS that lie over S ∩ T ; in particular, the arrows still fit the
description of those in a P-type quiver over Q. Now each path ending in S ∩ T
passes through precisely one source of S ∩ T , naturally partitioning the vertices as
described in the proposition. �

As one would expect, describing the fiber product of an arbitrary X = (Q′, f ′)
with P-type objects is more complicated. Roughly, we can think of X ×Q PS as a
path space for Q′ that records only the labels from Q which are traversed to get to
a vertex, rather than the exact path.

Proposition 24. The fiber product of a P-type and an I -type quiver over Q is a
disjoint union of paths in Q (that is, E-type quivers).

Proof. Let S, T ⊆ Q be subquivers, so that we want to describe PS ×Q IT . By the
definition of fiber products, we know that PS ×Q IT has support S ∩ T , over which
PS and IT decompose as disjoint unions of P-type and I -type quivers, respectively.
So if S 6= T , we can distribute the product over these disjoint unions and then
compute PS ×Q IT from the product of smaller P-type and I -type quivers. For
each of these products, we can repeat the process until we are left with products
over the same subquiver of Q in the base.

Hence we can assume without loss of generality that S = T = Q for the remain-
der of the proof. Since, by assumption, PQ and IQ are defined, it follows that Q
has a unique source i and a unique sink j . Then the vertices of PQ ×Q IQ lying
over k ∈ Q0 are pairs (p, q) consisting of a path p from i to k, and a path q from
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k to j ; in other words, each vertex corresponds to a maximal path pq in Q with a
distinguished vertex k. Unraveling the definitions, we see that an arrow

(p1, q1)
(a,b)
−−→ (p2, q2)

in PQ ×Q IQ occurs exactly when p1q1 and p2q2 are the same maximal path in Q
and a = b is an arrow between adjacent distinguished vertices on this path. Thus
each connected component of PQ ×Q IQ is a maximal path in Q. �

Example 25. Continuing with the setup of Examples 13 and 16, we get that

PQ ×Q IQ ' 3

3

2 1

2 1

a

b

c

c

can be identified with the two maximal paths in Q.

Proposition 26. The fiber product of two P-type quivers over Q is a disjoint union
of P-type quivers.

Proof. The same argument as in Proposition 24 allows us to reduce to the case
PQ ×Q PQ , where Q has unique source i . Then the vertices of PQ ×Q PQ can be
identified with pairs of paths (p, q) that start at i and end at the same vertex of Q,
and since each vertex of PQ has at most one incoming arrow, so must each vertex
of PQ ×Q PQ .

More precisely, an arrow

(p1, q1)
(a,b)
−−→ (p2, q2)

in PQ ×Q PQ occurs exactly when a and b lie over the same arrow c of Q, and
both p1c= p2 and q1c= q2 as paths in Q; in particular p2 and q2 are parallel paths
starting at i that end with the same arrow. So any pair of paths (p, q)∈ (PQ×Q PQ)0

that do not end with the same arrow give a source of PQ×Q PQ , and, for each vertex
of the form (pr, qr), where r varies over the paths starting at the common endpoint
j of p and q, there is a unique path in PQ ×Q PQ starting at (p, q) and ending
at (pr, qr). So in fact (p, q) is the unique source of a connected component of
PQ ×Q PQ which is isomorphic to P−→j . Since all vertices fall into some connected
component of this form (not forgetting the case where both p and q are the trivial
path at i), we see that PQ ×Q PQ is a disjoint union of P-type quivers. �

6.5. Main result on PIE. We now apply Theorem 9 to the category PIE.

Lemma 27. For any acyclic quiver Q, the corresponding PIE category satisfies
the hypotheses of Theorem 9.
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Proof. The category PIE was defined so that the objects are connected, wrappings,
and linearize to distinct indecomposables.

To see that PIE is acyclic, we demonstrate an ordering of its objects making
the Hom matrix upper triangular unipotent. First, we “block” the objects together
into sets BS = {PS, IS, ES} for each S ⊆ Q, keeping in mind our convention of
omitting PS or IS when the object is undefined, and the possibility of coincidences
among PS, IS and ES . If these blocks are ordered so that BS comes before BT

whenever S ⊆ T , the Hom matrix will be block lower triangular by Lemma 18(a).
On the diagonal are then the blocks where S = T , which we see from Table 1 are
always lower triangular: to get a nonzero entry above the main diagonal, we need
a coincidence ES = PS or ES = IS , but in this case the corresponding row and
column would be omitted as redundant since S = T .

The fact that PIE is closed under fiber products follows from applying Lemma 22
and Propositions 23, 24 and 26 to Q and Qop. �

As in Section 5, each object x of PIE, defines an idempotent

δx
def
=

∑
z∈PIE0

µ(z, x)z (14)

in M(PIE). Let ex = L(δx) be its image in R(Q). (Note that ex is different than
the e(x) of Section 3.)

We are ready for the main result of this section.

Theorem 28. Let Q be a quiver without oriented cycles. Then R(Q) has a direct
product structure

R(Q)∼=
∏

x∈PIE0

〈ex 〉,

where 〈ex 〉 is the principal ideal generated by ex .

Proof. According to Lemma 27, Theorem 9 and its corollary apply in this situation.
The result now follows. �

Example 29. Continuing with the setup of Example 16, we can roughly visualize
the PIE category as in Figure 1 (though we cannot count morphisms from this
visualization). To get the idempotent associated to x = Eαβ , for example, we start
by writing

ex = Eαβ +µ(Pαβ, Eαβ)Pαβ +µ(Iαβ, Eαβ)Iαβ +µ(Eα, Eαβ)Eα
+µ(Eβ, Eαβ)Eβ +µ(E3, Eαβ)E3+µ(E2, Eαβ)E2,

where we have used the definition of ex , that µ(x, x) = 1, and that µ(z, x) = 0
when [z, x] = 0. Then (6) can be used to calculate these coefficients, starting with
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EQ

Eαβ Eαγ Eβγ

Pαβ Iαβ

Eα Eβ Eγ

E3 E2 E1

Figure 1. Visualization of the category PIE. The nodes are objects
of PIE, and there is a path from x to y in the diagram if and only
if there exists a morphism from x to y in PIE.

the ones closest to Eαβ . For example, we first get

µ(Pαβ, Eαβ)= µ(Iαβ, Eαβ)=−1

from the fact that [x, x] = 1. Similarly, we can find µ(Eα, Eαβ)=µ(Eβ, Eαβ)= 1.
Then to get µ(E2, Eαβ), there is a unique morphism from E2 to each object in the
interval between E2 and Eαβ except Pαβ , for which we have [E2, Pαβ] = 2. So
here we find

µ(E2, Eαβ)=−1− 2(−1)− (−1)− 1− 1= 0.

A similar computation shows µ(E3, Eαβ)= 0, so that finally

ex = Eαβ − Pαβ − Iαβ + Eα + Eβ .

The entire basis of orthogonal idempotents for M(PIE) is:

{E1, E2, E3, Eα−E2−E3, Eβ−E2−E3, Eγ−E2−E1,

Pαβ−Eα−Eβ−E3, Iαβ−Eα−Eβ−E2,

Eαβ−Pαβ− Iαβ+Eα+Eβ, Eαγ−Eα−Eγ−E2,

Eβγ−Eβ−Eγ−E2, EQ−Eαβ−Eαγ−Eβγ+Eα+Eβ+Eγ−E2}.
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6.6. Computation of specific Möbius functions. Although one generally cannot
expect closed formulas for values of the Möbius function µ, even in the poset case,
we can calculate them for some pairs of objects in the PIE category. Given two
subquivers S, T ⊆ Q, we say that they have the same skeleton if, for every pair of
vertices v,w ∈ Q0, there is at least one edge between v and w in S exactly when
there is at least one edge between v and w in T . When S and T have the same
skeleton, PS exists if and only if PT exists, and similarly for I -type objects.

Proposition 30. Let S ⊆ T be subquivers of an acyclic quiver Q which have the
same skeleton, and write A= T1 \ S1 for the set of arrows of T which are not in S.
Then the following hold in case PS 6= ES 6= IS:

µ(ES, PT )= 0, (15)

µ(ES, ET )= (−1)#A, (16)

µ(PS, PT )= (−1)#A, (17)

µ(PS, ET )= (−1)#A+1, (18)

µ(PS, IT )= 0. (19)

When X = PS = ES 6= IS , we have the following formulas:

µ(X, ET )= 0, (20)

µ(X, PT )= (−1)#A, (21)

µ(X, IT )= 0. (22)

In the case that Y = PS = ES = IS , we have

µ(Y, ET )= (−1)#A+1, (23)

µ(Y, PT )= (−1)#A. (24)

Dual formulas also hold (that is, when P- and I -type objects are interchanged).

Proof. The key is that when S and T have the same skeleton, all the Hom sets
involved in finding the formulas of the proposition have at most one element. In
other words, we are computing values of the Möbius function of some poset in
each case. For a given T ⊆ Q, there is a unique minimal subquiver of Q with the
same skeleton as T . Remark 14 implies that this is the only possible subquiver
with the same skeleton as T which may be simultaneously P- and E-type.

Equations (15) and (19) follow from fact (b) of Section 4.2. The top row of
Table 1 shows that the full subcategory of PIE consisting of objects between ES

and ET (in the Hom order) is isomorphic to the poset of subsets of A. The Möbius
function of this poset is well known [Stanley 1997, 3.8.3], giving (16). The same
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argument gives (17), since the only objects Z for which there exist morphisms
PS→ Z→ PT are P-type. To see (18), we use (6) to compute

−µ(PS, ET )=
∑

PS<Z≤ET

[PS, Z ]µ(Z , ET )

= µ(ES, ET )+
∑

S(Q′⊆T

(
µ(EQ′, ET )+µ(PQ′, ET )

)
= µ(ES, ET ), (25)

where the rightmost equality follows from induction by canceling out pairwise each
term of the sum.

Now when X = PS = ES , the (25) still holds except that the term µ(ES, ET ) is
absent, so we get (20). Again, morphisms X→ PT can only factor through P-type
objects, so the same argument for (17) applies to give (21). In this case there are
still no morphisms from PS to IT , so (22) follows.

Finally, when Y = PS = ES = IS is just a path in Q, it has morphisms to objects
of all types in PIE. So we get

−µ(Y, ET )=
∑

PS<Z≤ET

[Y, Z ]µ(Z , ET )

=

∑
S(Q′⊆T

(
µ(EQ′, ET )+µ(PQ′, ET )+µ(IQ′, ET )

)
=

∑
S(Q′⊆T

µ(PQ′, ET )

=−

∑
S(Q′⊆T

µ(EQ′, ET )=−(−1)#A
= (−1)#A+1 (26)

by applying formulas from the first group and canceling some terms. The same
argument for (17) and (21) will give (24). By applying the formulas to Qop, we
get similar formulas on Q with P- and I -type objects interchanged. �

The hypothesis that S and T have the same skeleton can be relaxed for several
of the formulas; for example, the same proof shows that (15) and (19) hold for all
subquivers S and T when PS 6= ES .

7. Future directions

Here we suggest a few directions for future work.

(1) What are other examples of categories of quivers over Q satisfying the hypothe-
ses of the Theorem 9? For example, when Q is any quiver, Section 4 of [Herschend
2010] gives such a category (with infinitely many objects, but see Remark 8) in
the course of studying string and band modules. Or when Q is a rooted tree quiver,
there is a collection of “reduced quivers over Q” given in [Kinser 2010] which
satisfies these hypotheses.
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A result of Ringel states that if V is an exceptional representation of a quiver
(that is, Exti (V, V ) = 0, for all i ≥ 1), then V has a structure quiver which is a
tree [Ringel 1998]. This structure quiver is not unique, but one may try to give
“good” choices of structure quivers for some class of exceptional modules so that
Theorem 9 can be applied.

(2) Can we get more closed formulas for values of µ, in addition to Proposition 30
(for the PIE category, or any other example)?

(3) When does Theorem 9 give all of the idempotents of R(Q) (or how can it
be improved to give all idempotents)? That is, under what conditions on C is
it impossible to write each L(δx) as a nontrivial sum of idempotents? The PIE
category will not generally give all idempotents, but the rooted tree case mentioned
above does.

(4) Is there a representation theoretic interpretation for the idempotents obtained
from the PIE category? For example, given x ∈PIE0, what properties of V ∈ rep(Q)
are necessary or sufficient for ex V = 0? (See Propositions 32 and 35 of [Kinser
2010].)
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