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Cox rings and pseudoeffective cones of
projectivized toric vector bundles

José González, Milena Hering, Sam Payne and Hendrik Süß

We study projectivizations of a special class of toric vector bundles that includes
cotangent bundles whose associated Klyachko filtrations are particularly simple.
For these projectivized bundles, we give generators for the cone of effective
divisors and a presentation of the Cox ring as a polynomial algebra over the
Cox ring of a blowup of a projective space along a sequence of linear subspaces.
As applications, we show that the projectivized cotangent bundles of some toric
varieties are not Mori dream spaces and give examples of projectivized toric
vector bundles whose Cox rings are isomorphic to that of M0,n .

1. Introduction

Projectivizations of toric vector bundles over complete toric varieties are a large
class of rational varieties that have interesting moduli and share some of the pleas-
ant properties of toric varieties and other Mori dream spaces. Hering, Mustat,ă, and
Payne [Hering et al. 2010] showed that their cones of effective curves are polyhe-
dral and asked whether their Cox rings are indeed finitely generated. For rank-two
bundles an affirmative answer is given in [Hausen and Süß 2010; González 2010]
or can be derived from the results of [Knop 1993].

Here we apply general results of Hausen and Süß on Cox rings for varieties
with torus actions to give a presentation of the Cox ring for certain projectivized
toric vector bundles as a polynomial algebra over the Cox ring of the blowup of
projective space along a collection of linear subspaces. The question of finite gener-
ation for the Cox rings of these blowups is completely understood when the collec-
tion of linear subspaces consists of finitely many points in very general position,
through work of Mukai [2004], and Castravet and Tevelev [2006] in connection
with Hilbert’s fourteenth problem.

Let k be an algebraically closed field, and let X be a smooth projective toric
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variety of dimension d over k, corresponding to a fan 6 with n rays. Throughout,
we use r to denote the rank of a vector bundle on X (6). By a toric vector bundle
on X we mean a vector bundle admitting an action of the dense torus T in X that is
linear on fibers and compatible with the action on the base. By the projectivization
of a toric vector bundle we mean the bundle of rank-one quotients.

Theorem 1.1. Suppose k is uncountable, n > r ≥ d , and 1
r +

1
n−r ≤

1
2 . Then there

is a nonsplit toric vector bundle F of rank r on X (6) such that the Cox ring of the
projectivization P(F) is not finitely generated.

In particular, on any smooth projective toric surface corresponding to a fan with
at least nine rays, there is a rank-three toric vector bundle whose projectivization is
not a Mori dream space. The bundles that we construct in the proof of Theorem 1.1
are of a special form: in Klyachko’s classification, they correspond to collections
of filtrations each of which contains at most one nontrivial subspace; moreover
this subspace has codimension one, and this arrangement of hyperplanes is in very
general position. The inequality in the theorem is sharp; if 1

r +
1

n−r >
1
2 and the

hyperplanes are in general position, then the projectivization of any such bundle is
a Mori dream space. See Corollary 3.7.

Remark 1.2. The techniques used to prove Theorem 1.1 give more information
than just whether or not a Cox ring is finitely generated. In Section 3 we give pre-
sentations for the Cox rings of certain projectivized toric vector bundles as algebras
over Cox rings of blowups of projective spaces along linear subspace arrangements.
As one special case, we produce an example of a vector bundle on a toric surface
whose projectivization has the same Cox ring as M0,n . See Example 3.9.

Remark 1.3. If P(F) is a projectivized bundle whose Cox ring is not finitely gen-
erated, it may still happen that the section ring of the tautological quotient line
bundle O(1) on P(F) is finitely generated. However, Theorem 1.1 implies that
there also exist toric vector bundles F′ such that the section ring of O(1) on P(F′)

is not finitely generated.
Suppose P(F) is a projectivized toric vector bundle on X (6) whose Cox ring is

not finitely generated, and let L1, . . . ,Lk be line bundles that positively generate
the Picard group of X (6). Then the section ring of O(1) on the projectivization of
F′ = F⊕L1⊕ · · ·⊕Lk is not finitely generated. So Theorem 1.1 gives negative
answers to Questions 7.1 and 7.2 of [Hering et al. 2010].

A necessary, but not sufficient, condition for a projective variety to be a Mori
dream space is that its pseudoeffective cone be polyhedral. In many of the examples
covered by Theorem 1.1, it is unclear whether this condition holds. However, by
choosing the toric variety carefully, with an even larger number of rays, we produce
examples of projectivized toric vector bundles whose pseudoeffective cones are not
polyhedral.
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Theorem 1.4. Suppose k is uncountable, n− d > r ≥ d and 1
r +

1
n−d−r ≤

1
2 , and

assume there is some cone σ ∈6 such that every ray of 6 is contained in either σ
or −σ . Then there is a nonsplit toric vector bundle F of rank r on X (6) such that
the pseudoeffective cone of P(F) is not polyhedral.

Examples of toric varieties satisfying the hypotheses of Theorem 1.4 can be con-
structed through sequences of iterated blowups of (P1)d , as in Example 1.7, below.

The constructions used to prove Theorems 1.1 and 1.4 involve choosing bun-
dles that are very general in their moduli spaces. However, by choosing the fan
sufficiently carefully, one gets examples of smooth projective toric varieties in char-
acteristic zero whose projectivized cotangent bundles are not Mori dream spaces.
For these examples, the bundle is determined by the combinatorial data in the fan.

Theorem 1.5. Suppose d ≥ 3 and the characteristic of k is not two or three. Then
there exists a smooth projective toric variety X (6′) of dimension d over k such
that the Cox ring of the projectivized cotangent bundle on X (6′) is not finitely
generated.

In this respect, cotangent bundles behave quite differently from tangent bundles,
since the Cox ring of the projectivization of the tangent bundle on any smooth toric
variety is finitely generated [Hausen and Süß 2010, Theorem 5.9]. So, Theorem 1.5
shows that there are toric vector bundles F such that P(F) is a Mori dream space,
but the projectivized dual bundle P(F∨) is not.

Remark 1.6. In Theorems 1.1 and 1.4, we assume the field is uncountable in order
to choose a configuration of points in very general position in the projective space
Pr−1. Examples constructed by Totaro in his work on Hilbert’s 14th Problem over
finite fields [2008] show that this restriction on the cardinality of the field is not
necessary in some cases. For instance, to prove these theorems in the special case
where r is three, it is enough to find a configuration S of nine points in P2(k)

such that BlS P2 contains infinitely many −1-curves, and Totaro constructed such
configurations over Q and over Fp, for p > 3.

We conclude the introduction with an example of a projectivized rank three
bundle on an iterated blowup of P1

× P1 at seven points whose effective cone
agrees with the effective cone of P2 blown up at nine very general points, and
hence is not polyhedral.

Example 1.7. Let X (6) be the toric variety obtained by first blowing up one of
the toric fixed points on P1

×P1, then blowing up both of the toric fixed points in
the exceptional divisor, and then blowing up all four of the torus fixed points in the
new exceptional divisors. The corresponding fan is as shown in Figure 1.
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Figure 1. The fan of Example 1.7.

Note that every ray of the fan is contained in either the cone σ spanned by ρ10

and ρ11, or in −σ , and 1
3 +

1
11−2−3 =

1
2 . So X (6) satisfies the hypotheses of

Theorems 1.1 and 1.4.
Let F be a three-dimensional vector space, and define filtrations

Fρi ( j)=


F for j ≤ 0,
Fi for j = 1,
0 for j > 1,

where F1, . . . , F9 are two-dimensional subspaces in very general position, and F10

and F11 are zero. By [Klyachko 1989] these filtrations give rise to a toric vector
bundle F on X (6), see also Section 2. The subspaces F1, . . . , F9 correspond to a
set S = {p1, . . . , p9} of nine points in very general position in the projective plane
PF of one-dimensional quotients of F . Our first main construction, in Section 3,
shows that the Cox ring of P(F) is canonically isomorphic to a polynomial ring
in two variables over the Cox ring of the blowup BlS PF of the plane at this set
of points. Furthermore, in Section 5 we give an isomorphism of class groups
Cl(P(F))

∼
−→ Cl(BlS PF ) that takes O(1) to the pullback of the hyperplane class

of PF , and the class of P(F|Dρi
) to the class of the exceptional divisor Ei , for

i = 1, . . . , 9, and show that this isomorphism induces an identification of the effec-
tive cones of the two spaces. Therefore, the pseudoeffective cone of P(F), like the
pseudoeffective cone of BlS PF , is not polyhedral, and P(F) is not a Mori dream
space.

2. Preliminaries

We work over an uncountable field k of arbitrary characteristic with the exception
of the proof of Theorem 1.5, where we restrict to characteristic not two or three.



Cox rings and pseudoeffective cones of projectivized toric vector bundles 999

Let T be a torus of dimension d, with character lattice M . Let X (6) be a
toric variety with dense torus T , and let ρ1, . . . , ρn be the rays of 6. We write
v j for the primitive generator in N = Hom(M,Z) of the ray ρ j , and Dρ j for the
corresponding prime T -invariant divisor in X (6).

Suppose F is a toric vector bundle of rank r on X (6). The Klyachko filtrations
associated to F are decreasing filtrations of the fiber F over the identity 1T , indexed
by the rays of 6,

· · · ⊃ Fρ j (k− 1)⊃ Fρ j (k)⊃ Fρ j (k+ 1)⊃ · · · ,

and characterized by the following property. If Uσ is the torus-invariant affine
open subvariety of X (6) corresponding to a cone σ in 6, then the torus T acts on
H 0(Uσ ,F) by (ts)(x)= t (s(t−1x)). If u is a character of the torus, then the space
of isotypical sections

H 0(Uσ ,F)u = {s ∈ H 0(Uσ ,F) | ts = χu(t)sfor all t ∈ T }

injects into F , by evaluation at 1T , and the image is

Fσu =
⋂
ρ j�σ

Fρ j (〈u, v j 〉).

In particular, if Fρ j (0)= F for all j then the space of T -invariant sections of F is
canonically isomorphic to F .

The Klyachko filtrations satisfy the following compatibility condition.

Klyachko’s compatibility condition. For each maximal cone σ ∈ 6, there are
lattice points u1, . . . , ur ∈ M and a decomposition into one-dimensional subspaces
F = L1⊕ · · ·⊕ Lr such that

Fρ j (k)=
⊕

〈ui ,v j 〉≥ k
L i ,

for each ρ j � σ and all k ∈ Z.

The bundle F can be recovered from the family of filtrations {Fρ j (k)}, and the
induced correspondence between toric vector bundles and finite dimensional vector
spaces with compatible families of filtrations gives an equivalence of categories.
See [Klyachko 1989] or the summary in [Payne 2008, Section 2] for details.

We write P(F) for the projective bundle Proj(Sym(F)) of rank one quotients of
F, and

π : P(F)→ X (6)

for its structure map. The fiber of P(F) over 1T is the projective space PF of
one-dimensional quotients of F . If F ′ is a linear subspace of F then

PF/F ′ ⊂ PF
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is a projective linear subspace of codimension equal to the dimension of F ′.
Following the usual convention, we write O(1) for the tautological quotient bun-

dle on P(F), which is relatively ample with respect to π , and O(m) for its mth
tensor power.

For our primary examples in this paper, we will focus on bundles whose filtra-
tions are especially simple, and in particular those satisfying

Fρ j (k)=


F for k ≤ 0,
F j for k = 1,
0 for k > 1,

(∗)

where F j is either 0 or a subspace of F of dimension at least two, and all of the
nonzero F j are distinct.

One reason for working with a bundle given by filtrations satisfying (∗) is that
the T -invariant global sections of O(m) on P(F), and their orders of vanishing
along the divisors π−1(Dρ j ), are particularly easy to understand. See Lemmas 5.1
and 5.2.

Remark 2.1. Suppose {Fρ j ( j)} is a collection of filtrations satisfying (∗) in which
all of the F j are hyperplanes. Using the fact that X (6) is smooth, one checks that
Klyachko’s compatibility condition for a cone σ is satisfied for some u1, . . . , ur if
and only if the hyperplanes F j for ρ j � σ intersect transversely. Since at most r
hyperplanes can meet transversely in a vector space of rank r , the condition r ≥ d
appearing in Theorems 1.1 and 1.4 is necessary for such a collection of filtrations
to define a toric vector bundle. If the F j are chosen in general position, then the
condition r ≥ d is also sufficient.

3. Torus quotients and Cox rings

Let X be a smooth variety whose divisor class group is finitely generated and
torsion free. Choose divisors D1, . . . , Dk whose classes form a basis for the class
group Cl(X). Then the Cox total coordinate ring of X is

R(X)=
⊕

(m1,...,mk)∈Zk

H 0(X,O(m1 D1+ · · ·+mk Dk)),

with the natural multiplication map of global sections. See [Hu and Keel 2000]
for further details and a discussion of the special properties of Mori dream spaces,
those varieties whose Cox rings are finitely generated. If X0 ⊂ X is an open sub-
variety whose complement has codimension at least two, then Cl(X0) and R(X0)

are naturally identified with Cl(X) and R(X), respectively.

Remark 3.1. Cox rings can be defined in greater generality, for possibly singular
and nonseparated prevarieties whose class groups are finitely generated, but may
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contain torsion [Hausen 2008]. Cox rings of smooth and separated varieties with
torsion free class groups suffice for all of the purposes of this paper, although we do
consider nonseparated quotients in some generalizations of Theorem 3.3 presented
in Section 6.

Our main technical result is a description of the Cox ring of certain projectivized
toric vector bundles as a polynomial ring over the Cox ring of a blowup of projec-
tive space. Let S be a finite set of projective linear subspaces of PF and let S′

be the set of intersections of subspaces in S. Say L1, . . . , Ls are the elements of
S′. We write BlS′ PF for the space obtained by blowing up first the points in S′,
then the strict transforms of the lines in S′, then the strict transforms of the two-
dimensional subspaces in S′, and so on. We write Ei for the exceptional divisor in
BlS′ PF dominating L i , and define

BlS PF = BlS′ PF r
⋃

L i 6∈S
Ei .

Example 3.2. Let x1, x2, and x3 be noncollinear points in P3, and let L i j be the
line through xi and x j , and set

S = {x1, L12, L13, L23}.

Then S′ = S ∪ {x2, x3} and BlS P3 is the space obtained by blowing up first the
points x1, x2, and x3, and then the strict transforms of the lines L12, L13, and L23,
and then removing the exceptional divisors over x2 and x3.

Our main technical result can now be stated as follows. Let F be a toric vector
bundle on a complete toric variety X given by filtrations satisfying the condition (∗)
discussed in Section 2. After renumbering, say the Fi are distinct linear subspaces
for i ≤ s, and F j is zero for s < j ≤ n. Let

S = {PF/F1, . . . ,PF/Fs }

be the set of projective linear subspaces in PF corresponding to F1, . . . , Fs .

Theorem 3.3. The Cox ring R(P(F)) is isomorphic to a polynomial ring in n− s
variables over R(BlS PF ).

Our proof of Theorem 3.3 will be an application of the following presentation
of Cox rings for certain varieties with torus actions.

Proposition 3.4. Let X be a smooth variety such that H 0(X,O∗X )=k
∗ and Cl(X) is

free, and let T be a torus acting on X. Suppose D1, . . . , Dh are irreducible divisors
in X with positive dimensional generic stabilizers, T acts freely on Xr(D1∪·· ·∪Dh),
and the geometric quotient is a smooth variety Y with free class group. Then R(X)
is isomorphic to a polynomial ring in h variables over R(Y ).
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Proof. This is the special case of [Hausen and Süß 2010, Theorem 1.1], where
X is smooth, the T -action on the complement of D1 ∪ · · · ∪ Dh is free, and the
geometric quotient Y is separated, with torsion free class group. Although stated
in the case where X is complete, the proof of that theorem is also given under the
assumption that H 0(X,O∗X )= k

∗ and Cl(X) is free, which is what we use here. �

We prove Theorem 3.3 by constructing a dominant rational map

ϕ : P(F) 99K BlS PF ,

and producing open sets U ⊂U ′ in P(F) with the following properties:

(1) The complement of U ′ has codimension 2 in P(F).

(2) There are n− s irreducible divisors in U ′ with positive dimensional generic
stabilizers, the complement of these divisors is U , and T acts freely on U .

(3) The restriction ϕ|U is regular and a geometric quotient.

(4) The complement of ϕ(U ) has codimension 2 in BlS PF .

To see that Theorem 3.3 follows from the existence of such a map, first note that
class groups, global invertible functions and Cox rings are all invariant under the
removal of sets of codimension 2. Therefore, (1) implies that H 0(U ′,O∗U ′) = k

∗,
the class group Cl(U ′) is free, and R(U ′) ∼=R(P(F)). Then, by Proposition 3.4,
properties (2) and (3) imply that R(U ′) is isomorphic to a polynomial ring in n− s
variables over R(ϕ(U )). Finally, (4) gives R(ϕ(U )) ∼= R(BlS PF ). Therefore,
(1)–(4) together imply that R(P(F)) is isomorphic to a polynomial ring in n− s
variables over R(BlS PF ).

We construct the birational map ϕ and open sets U and U ′ as follows. There is
a unique dominant, T -invariant rational map

ψ : P(F) 99K PF

that restricts to the identity on the fiber PF over 1T . Over the dense torus T , this
map takes a point x in the fiber over t to t−1

·x . One can also describe ψ as the ratio-
nal map associated to the T -invariant linear series H 0(P(F),O(1))0; the sections
of O(1) are canonically identified with sections of F, and evaluation at 1T maps
H 0(X,F)0 isomorphically onto F . Alternatively, ψ can be constructed directly
from the T -invariant sections of F, which generate all fibers over T , following the
general construction in [Lazarsfeld 2004, Example 6.1.15].

Since ψ is dominant, it induces a T -invariant rational map ϕ to BlS PF . To
prove Theorem 3.3, we produce open sets U ⊂U ′ in P(F) satisfying (1)–(4) with
respect to ϕ.

We write xi for the distinguished point in the codimension one orbit correspond-
ing to ρi ; see [Fulton 1993, Section 2.1]. The fiber of F over xi is canonically
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isomorphic to Fi ⊕ F/Fi ; this is the eigenspace decomposition for the action of
the one parameter subgroup corresponding to the primitive generator of ρi , which
is the stabilizer of xi . Let Zi be the projective linear subspace corresponding to PFi

in the fiber of P(F) over xi . Let Wi be the projective linear subspace corresponding
to PF/Fi in the fiber over 1T .

We now define U ′ to be the complement in P(F) of the following closed subsets:

• The preimages of the T -invariant closed subsets of codimension 2 in X .

• The torus orbit closures T · Zi , for Fi 6= 0.

• The torus orbit closures T ·Wi , for Fi 6= 0.

Note that the condition (∗) says that Fi has dimension at least 2 and codimension
at least 1 whenever it is nonzero. Therefore, every component of the complement
of U ′ has codimension at least 2.

This choice of closed subsets is closely related to the indeterminacy locus of ϕ.
On the fiber over 1T , this map is the birational inverse of the blowup morphism from
BlS PF to PF , so its indeterminacy locus is the discriminant, which is the union of
the Wi . The closures T ·W j may meet the fiber over xi , and these intersections are
also in the indeterminacy locus of ϕ because the indeterminacy locus is closed. In
the special case where i = j , the intersection of T ·Wi with the fiber over xi is the
linear subspace PF/Fi . Now, ϕ maps the fiber over xi into the exceptional divisor
over P(F/Fi ), via the canonical rational map

P(Fi ⊕ F/Fi ) 99K PF/Fi ×PFi ,

which is regular away from the linear subspaces Wi and Zi . In particular, Zi is
the only remaining indeterminacy locus of ϕ in the fiber over xi . Therefore, after
removing the preimage of the codimension 2 strata in X , the open set U ′ is simply
the locus where ϕ is regular.

For i = s+ 1, . . . , n, the subspace Fi is zero. Then the one parameter subgroup
corresponding to the primitive generator of ρi acts trivially on P(F|Oρi

). Let U be
the complement in U ′ of these n− s irreducible divisors with positive dimensional
stabilizers.

We claim that T acts freely on U . Over the dense torus, T acts freely on the base.
Over a codimension one orbit Oρi , the stabilizer on the base is the one-parameter
subgroup corresponding to the primitive generator of ρi . Because the eigenspace
decomposition of the fiber of F over xi is Fi ⊕ F/Fi , with the one parameter
subgroup acting by scaling on Fi and trivially on F/Fi , this subgroup acts freely
away from the T -orbits of the linear subspaces PFi and PF/Fi , both of which are
in the complement of U ′ and hence of U . Therefore, T acts freely on U .

To prove the theorem, it remains to show that ϕ|U is a geometric quotient and
the image ϕ(U ) has codimension 2 in BlS PF . We first treat the special case where
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the fan 6 has only a single ray ρ. Let Uρ be the toric variety corresponding to a
single ray ρ, and let F be the toric vector bundle on Uρ given by the filtration

Fρ(k)=


F for k ≤ 0,
Fρ for k = 1,
0 for k > 1,

where Fρ is a proper subspace of dimension at least two. Then F splits canonically
as a sum F= Fρ ⊕F/Fρ , where Fρ is the toric subbundle with fiber Fρ over 1T .
Let Z be the projective linear subspace PFρ in the fiber over xρ , and let W be the
projective linear subspace PF/Fρ in the fiber over 1T .

Proposition 3.5. The torus T acts freely on the open set

P(F)r (T · Z ∪ T ·W )

with geometric quotient BlW PF , and the preimage of Oρ under the structure map
surjects onto the exceptional divisor over W .

Proof. The open set P(F)r (T · Z ∪ T ·W ) is the set denoted U in the discus-
sion above, and hence T acts freely. We use a toric computation to compute the
geometric quotient.

The projectivization of any toric vector bundle G of rank r on Uρ is isomorphic
to a toric variety. The toric variety is canonical, but the isomorphism depends on
the choice of a splitting of the fiber over 1T ,

G = L1⊕ · · ·⊕ Lr ,

satisfying Klyachko’s compatibility condition. Fix such a splitting. For 1≤ j ≤ r ,
define the integer n j =max{k | Gρ(k) contains L j }. Let σ be the cone in NR×Rr

spanned by the standard vectors (0, e1), . . . , (0, er ) and

ṽρ = (vρ, n1e1+ · · ·+ nr er ),

where vρ is the primitive generator of ρ, and let 1 in NR× (R
r/(1, . . . , 1)) be the

fan whose maximal cones are projections of the facets of σ that contain ṽρ . Then
there is a natural isomorphism from P(G) to X (1) taking P(G|Oρ

) to the torus
invariant divisor corresponding to the image of ṽρ and the codimension one projec-
tivized subbundle corresponding to L j to the torus invariant divisor corresponding
to the image of (0, e j ). For further details on this construction, see [Oda 1988, pp.
58–59].

We now apply the preceding general construction to our particular bundle F. The
decomposition into line bundles induces a decomposition of F = L1⊕ · · · ⊕ Lr

into one-dimensional coordinate subspaces. After relabeling we may assume that
Fρ = L1 ⊕ · · · ⊕ Lk and so ṽρ = (vρ, e1 + · · · + ek). Then the complement
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P(F)r (T · Z ∪ T ·W ), with its induced toric structure, corresponds to the fan
1′ in NR× (R

r/(1, . . . , 1)) obtained by removing from the fan for P(F) the cones
containing either ṽρ and (0, ek+1), . . . , (0, er ) (corresponding to T · Z ), or all of
(0, e1), . . . , (0, ek) (corresponding to T ·W ).

The projection of NR×Rr/(1, . . . , 1) onto Rr/(1, . . . , 1) induces a map of fans
from 1′ to the fan of the blow up of PF along PF/Fρ . This map of fans satisfies
the conditions of [A’Campo-Neuen and Hausen 1999, Proposition 3.2], and hence
the corresponding morphism of toric varieties is a geometric quotient. �

We now apply the special case treated above, where the fan consists of a single
ray ρ, to prove the general case.

Proof of Theorem 3.3. By the discussion following Proposition 3.4, it remains to
show that ϕ|U is a geometric quotient and the complement of ϕ(U ) has codimen-
sion 2 in BlS PF . The property of being a geometric quotient is local on the base.
For each i , let Ui be the complement in BlS PF of the exceptional divisors over
W j for j 6= i .

We claim that the preimage of Ui under ϕ is the preimage in U of the T -invariant
affine open set Uρi , under the structure map π . Indeed, by Proposition 3.5, the
rational map ϕ takes the generic point of P(F)|Oρ j

to the generic point of the
exceptional divisor over W j . The part of U that lives over T maps into every Ui ,
but for the parts of U over codimension one orbits of X , only the part over Oρi

maps into Ui . This proves the claim.
The union of the sets Ui cover all but a codimension 2 locus in BlS PF, so it only

remains to show that the restriction of ϕ to the preimage of Ui is a geometric quo-
tient. Again, this follows from the local computation in Proposition 3.5, because
Ui is just the complement of the codimension 2 loci given by the strict transforms
of the W j for j 6= i in BlWi PF , and the restriction of ϕ to ϕ−1(Ui ) is the restriction
of the geometric quotient onto BlWi PF described in Proposition 3.5. �

Proof of Theorem 1.1. Let S be a subset of s very general points of PF ∼=Pr−1 such
that s ≥ r + 2+ 4

r−2 . Then R(BlS PF ) is not finitely generated, see [Mukai 2004].
Let X be any smooth toric variety of dimension at most dim(PF ) with at least s
rays. Then by Remark 2.1 there exists a vector bundle F on X satisfying (∗) such
that the nonzero Fi correspond to the points pi in S. The conclusion then follows
from Theorem 3.3. �

Remark 3.6. The isomorphism of Theorem 3.3 is not an isomorphism of graded
rings. However, the pull back by the quotient map ϕ constructed in the proof
of Theorem 3.3 induces a group homomorphism ϕ∗ : Cl(BlS(PF )→ Cl(P(F)).
Letting deg(xi )= [π

−1(Dρi )] for s+ 1≤ i ≤ n, we obtain a Cl(P(F))-grading of
the polynomial ring in n− s variables over the Cox ring of BlS(PF ) such that the
isomorphism of Theorem 3.3 is graded.
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Corollary 3.7. Suppose F is given by filtrations satisfying (∗) with the Fi being
hyperplanes in general position. If 1

r +
1

n−r >
1
2 then P(F) is a Mori dream space.

Proof. Suppose 1
r +

1
n−r >

1
2 . Then the blow up of Pr−1 at n points in general

position is a Mori dream space [Castravet and Tevelev 2006, Theorem 1.3], and
then so is the blow up Bls Pr−1 of Pr−1 at s points in general position, where
s is the number of rays ρ j such that F j is nonzero. The corollary then follows
immediately from Theorem 3.3, which says that R(P(F)) is finitely generated
over R(Bls Pr−1). �

If the points p1, . . . , ps are not in general position then P(F) can be a Mori
dream space, even when 1

r +
1

n−r ≤
1
2 . For instance, if p1, . . . , ps are collinear then

BlS PF is a rational variety with a torus action with orbits of codimension one, and
hence is a Mori dream space [Elizondo et al. 2004; Hausen and Süß 2010; Ottem
2011]. Also, if p1, . . . , ps lie on a rational normal curve, then BlS PF is a Mori
dream space [Castravet and Tevelev 2006, Theorem 1.2].

We conclude this section with the observation that the Cox ring of the blowup of
projective space along an arbitrary arrangement of linear subspaces can be realized
as the Cox ring of a projectivized toric vector bundle.

Corollary 3.8. Let S be an arbitrary arrangement of n linear subspaces of codi-
mension at least 2 in PF and let 6 be a fan with n rays that defines a smooth
projective toric surface. Then there is a toric vector bundle F on X (6) such that

R(P(F))∼=R(BlS PF ).

Proof. An arbitrary collection of filtrations of F indexed by the rays of 6 satisfies
Klyachko’s compatibility condition, because X (6) is a smooth surface [Klyachko
1989, Example 2.3.4]. Therefore, if S = {PF/F1, . . . ,PF/Fn } then the filtrations

Fρ j (k)=


F for k ≤ 0,
F j for k = 1,
0 for k > 1,

satisfy (∗) and determine a toric vector bundle on X (6). By Theorem 3.3, the Cox
ring R(P(F)) is isomorphic to R(BlS PF ). �

Example 3.9. Let S be the arrangement of all linear subspaces of codimension at
least 2 spanned by subsets of a set of r + 1 points in general position in k

r . Then
Kapranov’s construction [1993] shows that BlS Pr−1 is isomorphic to the Deligne–
Mumford moduli space M0,r+2. Therefore, there is a toric vector bundle F on a
smooth projective toric surface such that R(P(F)) is isomorphic to the Cox ring
of M0,n . It is not known whether this ring is finitely generated.



Cox rings and pseudoeffective cones of projectivized toric vector bundles 1007

4. Cotangent bundles

In the previous section, we gave a presentation of Cox rings of some projectivized
toric vector bundles as polynomial rings over Cox rings of certain blowups of pro-
jective space, and used this to give examples where Cox rings of projectivized toric
vector bundles are finitely generated, where they are not finitely generated, and
where they are isomorphic to the Cox ring of M0,n . We now apply the same meth-
ods and results to study Cox rings of projectivized cotangent bundles of smooth
projective toric varieties.

By [Klyachko 1989] the filtrations of cotangent bundles have the form

�ρ j (k)=


M ⊗ k for k ≤−1,
v⊥j for k = 0,
0 for k > 0.

If the fan does not contain any pair of opposite rays, then the filtrations for the
twist of the cotangent bundle by the anticanonical line bundle satisfy (∗). Since
twisting by a line bundle does not change the projectivization, Theorem 3.3 shows
that the Cox ring of the projectivized cotangent bundle is isomorphic to the Cox
ring of BlS(PM⊗k), where S is the set of points p j corresponding to v⊥j . The case
where the fan does contain opposite rays is treated on page 1014.

Example 4.1. For the cotangent bundle on projective space Pr , the corresponding
set S consists of r +1 points in linearly general position in Pr−1. Then R(P(�1

Pr ))

is identified with R(BlS Pr−1), which is isomorphic to the coordinate ring of the
Grassmannian Grass(2, r+2) in its Plücker embedding; see [Castravet and Tevelev
2006, Remark 3.9].

Example 4.1 is a special case of the Cox rings of wonderful varieties studied by
Brion [2007].

We now give an example of a smooth projective toric threefold whose projec-
tivized cotangent bundle is not a Mori dream space. The construction uses a partic-
ularly nice configuration of nine points in Z3, due to Totaro, such that, for any field
k of characteristic not two or three, the blowup of P2(k) at the corresponding nine
k-points is not a Mori dream space. The proof of Theorem 1.5 will be by induction
on dimension, starting from this example.

Example 4.2. In this example, we work over a field k of characteristic not two or
three. The vectors

v1 = (0, 0, 1), v2 = (0, 1, 0), v3 = (1, 1, 1), v4 = (−1,−2,−2)

span the four rays of a unique complete fan 64 in R3. The corresponding toric
variety X (64) is isomorphic to P3. Consider the vectors
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v5 = (1,1,2), v8 = (1,−1,1), v11 = (−1,−1,1), v13 = (−1,1,1),
v6 = (0,−1,1), v9 = (−1,−2,−1), v12 = (−1,0,1), v14 = (0,1,1),
v7 = (1,0,1), v10 = (−1,−1,0),

and let 6i be the stellar subdivision of 6i−1 along the ray spanned by vi , for 5≤
i ≤ 14. For each such i , the vector vi is the sum of two or three of the v j that span a
cone in 6i−1. Therefore, the toric variety X (6i ) is the blowup of X (6i−1) at either
a point or a torus invariant smooth rational curve. In particular, if we set 6 =614,
then the corresponding toric variety X (6) is smooth and projective. The twist F

of the cotangent bundle on X (6) by the anticanonical bundle O(Dρ1 + · · ·+ Dρ14)

is given by the vector space F = k
3 with filtrations

Fρi ( j)=


k

3 for j ≤ 0,
v⊥i for j = 1,
0 for j > 1.

Since the characteristic of k is not two or three, the points v⊥i are all distinct in
P2
k
, and hence the filtrations satisfy (∗). Twisting by a line bundle does not change

the projectivization, so Theorem 3.3 says that the Cox ring of the projectivized
cotangent bundle of X (6) is isomorphic to the Cox ring of BlS P2

k
, where S =

{v⊥1 , . . . , v
⊥

14}. The subset

S′ = {v⊥1 , v
⊥

3 , v
⊥

6 , v
⊥

7 , v
⊥

8 , v
⊥

11, v
⊥

12, v
⊥

13, v
⊥

14}

is the complete intersection of two smooth cubics, and the Cox ring of BlS′ P
2
k

is
not finitely generated [Totaro 2008, Theorem 2.1, Corollary 5.1 and Theorem 5.2].
It follows that BlS P2

k
is not a Mori dream space, and neither is the projectivized

cotangent bundle of X (6).

We use the following lemma on Cox rings of blowups of projective space at
finitely many points contained in a hyperplane in the proof of Theorem 1.5. Instances
of this basic fact have appeared, for instance in [Hassett and Tschinkel 2004,
Example 1.8]. However, lacking a suitable reference, we give a proof.

Lemma 4.3. Let S be a finite set of points contained in a hyperplane H in Pd , and
assume d > 2. Then the Cox ring of BlS Pd is isomorphic to a polynomial ring in
one variable over the Cox ring of BlS H.

Proof. Choose coordinates on Pd so that H is a coordinate hyperplane, and let Gm

act by scaling on the coordinate that cuts out H . The action of Gm lifts to an action
on BlS Pd , and we let Y be the locus of fixed points of this action. Then Gm acts
freely on BlS Pd r Y , with quotient BlS H . The strict transform of H is the only
divisor contained in Y , so the lemma follows by applying Proposition 3.4. �

Proof of Theorem 1.5. Let k be a field of characteristic not two or three. We must
show that, for each dimension d ≥ 3, there is a fan 6 in Rd such that
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(1) The toric variety X (6) is smooth and projective.

(2) The hyperplanes in k
d perpendicular to the primitive generators of the rays of

6 are distinct.

(3) The Cox ring of BlS Pd−1
k

is not finitely generated, where S is the set of points
corresponding to these hyperplanes.

For d = 3, we have Example 4.2, and we proceed by induction.
Suppose 6 is a fan in Rd satisfying (1), (2), and (3). Embed Rd as the last

coordinate hyperplane in Rd+1, and let 6′ be the fan in Rd+1 whose maximal
cones are spanned by a maximal cone of 6 together with either (1, . . . , 1) or
(1, . . . , 1,−1). The corresponding toric variety X (6′) is smooth and projective
and, since the characteristic of k is not two, the hyperplanes in k

d+1 perpendicular
to the rays of 6′ are distinct. It remains to show that 6′ satisfies (3). Let S′ be
the corresponding set of points in Pd

k
. Now S′ contains the subset S of points

corresponding to rays of 6, and S is contained in a hyperplane H . By hypothesis,
the Cox ring of BlS H is not finitely generated. By Lemma 4.3, it follows that
BlS Pd

k
is not a Mori dream space, and neither is BlS′ P

d . The theorem follows,
since the Cox ring of the projectivized cotangent bundle of X (6) is isomorphic to
the Cox ring of BlS′ P

d
k
, by Theorem 3.3. �

5. Pseudoeffective cones

In this section we prove Theorem 1.4. The techniques of the proof are independent
from those of Section 3.

The pseudoeffective cone of a projective variety X is the closure of the cone
spanned by the classes of all effective divisors in the space of numerical equiv-
alence classes of divisors N 1(X)R = N 1(X)⊗Z R. For projectivized toric vec-
tor bundles and for blowups of projective spaces at finite sets of points, linear
equivalence and numerical equivalence coincide and then we identify N 1(X)R and
Cl(X)R = Cl(X)⊗Z R.

Now we consider again a toric vector bundle F on a complete toric variety X (6).
Any effective divisor D on P(F) is linearly equivalent to a torus invariant effective
divisor; this can be seen by applying the Borel fixed-point theorem to the torus orbit
closure of the point [D] in the Chow variety of effective codimension 1 cycles on
P(F). So the pseudoeffective cone of P(F) is the closure of the cone generated
by classes of torus invariant prime divisors. Note that every torus invariant prime
divisor in P(F) is either the preimage of a torus invariant prime divisor in X (6)
or surjects onto X (6). If a torus invariant prime divisor surjects onto X (6) then
it must be the closure of the torus orbit of its intersection with the fiber over the
identity. We write DH for the closure of the torus orbit of a hypersurface H in PF .
One key step toward understanding the pseudoeffective cone of P(F) is to express
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the class of each such DH as a linear combination of O(1) and the π−1(Dρi ). Such
expressions may be somewhat complicated in general, but are relatively simple for
bundles given by filtrations of the special form discussed in Section 2.

Suppose the filtrations {Fρi ( j)} associated to the vector bundle F satisfy condi-
tion (∗) of Section 2 and all proper subspaces Fρi ( j)⊂ F are distinct hyperplanes.

Lemma 5.1. Restriction to the fiber PF gives an isomorphism from the space of
T -invariant global sections of O(m) on P(F) to Symm(F).

Proof. For any bundle F, global sections of O(m) on P(F) are naturally identified
with global sections of Symm F. Now, Symm F is a toric vector bundle, with fiber
Symm F over 1T , and since the filtrations defining F satisfy (∗), the filtrations
defining Symm F are given by

Symm Fρi ( j)=


Symm F for j ≤ 0,
Image(Sym j Fi ⊗Symm− j F→ Symm F) for 1≤ j ≤ m,
0 for j > m.

The space of T -invariant sections of Symm F is the intersection of all of these filtra-
tions evaluated at zero, and the lemma follows, because Symm Fρi (0) is Symm F
for every ray ρi . �

Let pi be the point in PF corresponding to the one-dimensional quotient F/Fi ,
whenever Fi is nonzero. We write D j for the T -invariant prime divisor π−1(Dρ j )

in P(F).

Lemma 5.2. Let H be a hypersurface of degree m in PF , and let mi be the multi-
plicity of H at pi . Then there is a linear equivalence

DH ∼ O(m)−
∑

i

mi (π
−1(Dρi )),

where the sum is over those i such that Fi is nonzero.

Proof. Let h ∈ Symm F be a defining equation for H . Then h corresponds to a
torus invariant section s of O(m) on P(F), by Lemma 5.1. If Fi is zero then s does
not vanish along Di and if Fi is nonzero then mi is the largest integer such that h is
contained in the image of Symmi Fi ⊗Symm−mi F in Symm F . The one parameter
subgroup corresponding to vi extends to an embedding of the affine line A1 in
X (6) meeting Dρi transversely at the image of zero. After restricting the section s
to the preimage of A1, we must show that its order of vanishing along the preimage
of zero is mi . The isotypical decomposition of the module of global sections of O(1)
on the preimage of A1, for the action of the one-parameter subgroup corresponding
to vi , is exactly

⊕
j Fρi ( j), and multiplication by the coordinate x on A1 decreases

degree by one. The sections of O(m) are given by the mth symmetric power of this
module, in which the image of Symk Fi ⊗Symm−k F in Symm F appears in degree
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k, for nonnegative integers k. It follows that the T -invariant section s is equal to
xmi times a section that is nonvanishing along the preimage of zero, and hence
vanishes to order mi , as required. �

Now, we fix a maximal cone σ and, after renumbering, we may assume σ is
spanned by ρ1, . . . , ρd . Moreover, for the remainder of the section we assume that

Fi = 0, for 1≤ i ≤ d.

The class of O(1) and the classes of Dd+1, . . . , Dn form a basis for Cl(P(F)).
Let f : BlS PF → PF be the blowup of PF at the finite set of distinct points
{pi }, corresponding to the nonzero Fi , for i > d . Let L be a hyperplane in PF , and
let Ei be the exceptional divisor over pi . Then f ∗L and {Ei } together form a basis
for Cl(BlS PF ).

We consider the linear map ϕ∗ :Cl(BlS PF )R→Cl(P(F))R, taking f ∗L to O(1)
and the class of Ei to the class of Di , for i > d . If H is a hypersurface of degree m
in PF passing through pi with multiplicity mi , then the class of the strict transform
of H in BlS PF is f ∗mL −

∑
i mi Ei . So Lemma 5.2 says that ϕ∗ maps the class

of the strict transform of H to the class of DH .

Remark 5.3. One can show that the map ϕ∗ is the map on class groups induced by
the map ϕ of the proof of Theorem 3.3; see [González 2011, Section 5]. However,
note that Lemmas 5.1 and 5.2 give an independent proof of the fact that we get a
morphism of class groups, without having to construct the morphism ϕ.

Proposition 5.4. The pseudoeffective cone of P(F) is generated by the image un-
der ϕ∗ of the pseudoeffective cone of BlS PF together with the classes of those Di

such that Fi is zero.

Proof. Every effective divisor on P(F) is in the cone generated by the classes DH ,
for hypersurfaces H in PF , and the classes Di . On BlS PF , every effective divisor
is in the cone generated by the classes of the strict transforms of the hypersurfaces
H in PF , and the classes Ei . Now, the classes Di such that Fi is nonzero are the
images under ϕ∗ of the classes Ei , and Lemma 5.2 says that the class of DH is the
image under ϕ∗ of the strict transform of the hypersurface H in PF . Therefore,
the cone of effective classes on P(F) is equal to the cone generated by the image
under ϕ∗ of the cone of effective classes on BlS PF together with the classes of
those Di such that Fi is zero. The proposition follows by taking closures. �

Proof of Theorem 1.4. Let σ be the cone spanned by ρ1, . . . , ρd , and choose the
toric variety X (6) so that each of the other rays ρi is contained in −σ . This can
be accomplished, as in Example 1.7, by taking a suitable sequence of blowups of
(P1)d . Choose the filtrations defining F so that Fd+1, . . . , Fn are distinct hyper-
planes, and Fi = 0 for i ≤ d.
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The choice of the filtrations ensures that ϕ∗ is an isomorphism on class groups,
since it maps the basis elements f ∗L , Ed+1, . . . , En for Cl(BlS PF ) to the basis
elements O(1), Dd+1, . . . , Dn for Cl(P(F)), respectively. Furthermore, the choice
of the fan 6 ensures that, for i ≤ d, the divisor Dρi is linearly equivalent to an
effective combination of the Dρ j , for j > d. So the classes of D1, . . . , Dd are
in the cone spanned by the classes of Di for i > d, and hence are in the image
under ϕ∗ of the pseudoeffective cone of BlS PF . Therefore, by Proposition 5.4,
the linear isomorphism ϕ∗ identifies the pseudoeffective cone of BlS PF with the
pseudoeffective cone of P(F). If Fd+1, . . . , Fn are in very general position, then
the inequalities on r and n imply that the pseudoeffective cone of BlS PF is not
polyhedral [Mukai 2004], and the theorem follows. �

Remark 5.5. As in Corollary 3.8, a similar construction produces toric vector
bundles F such that the effective cone of P(F) is canonically isomorphic to the
effective cone of BlS PF , for an arbitrary arrangement S of linear subspaces in PF .

6. Some generalizations

The techniques developed here can also be applied more generally to describe Cox
rings of toric vector bundles where the condition (∗) is weakened to allow Fi to
appear for multiple steps in the Klyachko filtrations, where some of the Fi are
allowed to be 1-dimensional, and where the subspaces are not necessarily distinct.
The results are similar to those in Section 3, only the presentations of the Cox rings
are slightly more complex.

Longer steps in the filtrations. Consider a toric vector bundle F given by Kly-
achko filtrations of the form

Fρ j (k)=


F for k ≤ 0,
F j for 1≤ k ≤ a j ,
0 for k > a j ,

for some positive integers a j , and distinct linear subspaces F j ( F of dimension
at least 2, for j = 1, . . . , s. The bundles that satisfy the condition (∗) are exactly
those where each a j is equal to 1. The Cox ring of P(F) can be analyzed just as
in Section 3, except that T does not act freely on U ; if D j denotes the preimage of
Oρ j in U , then D j has a stabilizer of order a j . In this case, the Cox ring of P(F)

is a finite extension of a polynomial ring over R(BlS PF ) with a presentation of
the form

R(P(F))∼=R(BlS PF )[x1, . . . , xn]/〈1E j − xa j
j | 1≤ j ≤ s〉,
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by [Hausen and Süß 2010, Theorem 1.1]. Here, 1Ei denotes the canonical section
of the bundle O(Ei ) associated to the exceptional divisor Ei over PF/Fi . It follows
that R(P(F)) is finitely generated if and only if R(BlS PF ) is finitely generated.

One-dimensional subspaces. We now discuss toric vector bundles given by Kly-
achko filtrations of the form (∗), but where some F j are allowed to be 1-dimension-
al. Consider the special case where the fan 6 consists of a single ray ρ, and F is
given by the filtration

Fρ(k)=


F for k ≤ 0,
L for k = 1,
0 for k > 1,

where L is 1-dimensional. The analysis of such a bundle is similar to that in
Proposition 3.5, except that T ·W is a divisor. Still, the torus T acts freely on
the toric variety P(F)r T · Z , and a toric computation shows that the geometric
quotient exists as a nonseparated toric prevariety; it is PF with the hyperplane
PF/L doubled.

Now, consider the general case, and let S be the set of linear subspaces of PF cor-
responding to the F j that have dimension at least 2. Suppose the rays are numbered
so that F1, . . . , F` are 1-dimensional and the rest are not. Then the analysis in the
proof of Theorem 3.3 produces open subsets U and U ′ satisfying (1)–(4), except
that the target of ϕ is BlS PF doubled along the strict transforms of the hyperplanes
Hi = PF/Fi for 1≤ i ≤ `. Then [Hausen and Süß 2010] gives a presentation of the
Cox ring R(P(F)) as a polynomial ring in n− s variables over

R(BlS PF )[x1, . . . , x`, y1, . . . , y`]/〈1Hi − xi yi | 1≤ i ≤ `〉, (1)

where 1Hi is the canonical section of O(Hi ). Setting the n−s free variables equal to
zero and y1, . . . , y` equal to 1, one can obtain R(BlS PF ) as a quotient of R(P(F)),
and hence R(P(F)) is finitely generated if and only if R(BlS PF ) is so.

Example 6.1. Using the above observations, in [Hausen and Süß 2010] the Cox
ring of the projectivized tangent bundle of a toric variety was calculated as fol-
lows. Let X be a toric variety associated to fan 6 with rays ρ1, . . . , ρn having
v1, . . . , vn ∈ N as their primitive generators. By [Klyachko 1989] the tangent
bundle TX corresponds to the filtrations of the form (∗) with Fρ j = k · v j ⊂ N ⊗ k.
In particular, all the subspaces are one-dimensional. Hence, the set S is empty and
R(BlS PF )=R(PF ) is simply the polynomial ring Sym(F). The element 1H j can
be identified with v j ∈ Sym(F). If there are no opposite rays in 6, by the formula
(1) we obtain

k[x1, . . . , xn, y1, . . . , yn]/
〈∑

i λi · xi yi
∣∣ λ ∈ kn , s.t.

∑
i λivi = 0

〉
as the Cox ring of P(TX ).
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Repetitions of subspaces and combinations. If some subspace is repeated, so Fi =

F j for some i 6= j , then the arguments in Section 3 again go through, but the
geometric quotient is nonseparated, with one copy of the exceptional divisor over
PF/Fi for each time that Fi appears. Again, this construction leads to a presentation
of R(P(F)) as a finitely generated algebra over R(BlS PF ) that is finitely generated
if and only if R(BlS PF ) is so.

These generalizations can be combined to give a presentation of the Cox ring of
an arbitrary toric vector bundle for which the Klyachko filtrations contain at most
one nontrivial subspace for each ray.

Proposition 6.2. Let F be a toric vector bundle corresponding to Klyachko filtra-
tions {Fρ( j)} such that at most one proper subspace of F appears in each filtration,
and let S be the collection of linear subspaces of PF corresponding to these proper
subspaces. Then R(P(F)) is finitely generated if and only if R(BlS PF ) is.

Remark 6.3. It may be possible to carry through a similar analysis for more gen-
eral toric vector bundles. However, even when the fan consists of a single ray,
if multiple proper subspaces occur in a single filtration then the torus quotients
that appear are weighted blowups of projective space instead of ordinary blowups.
Since very little is known about Cox rings of weighted blowups of projective space,
we have not considered such bundles in this work.

A bundle on the Losev–Manin moduli space. We conclude with an example of a
bundle on the Losev–Manin moduli space of pointed stable curves.

Let v0, . . . , vd be vectors that generate the rank-d lattice N and sum to zero.
Then the fan 6 whose nonzero cones are spanned by proper subsets of {v0, . . . , vd}

corresponds to projective space Pd , and the barycentric subdivision 6′ is the nor-
mal fan of a permutahedron. The corresponding toric variety is the Losev–Manin
moduli space Ld+1 of pointed stable curves studied in [Losev and Manin 2000].

Let F be the pullback of the cotangent bundle �Pd to the Losev–Manin moduli
space Ld+1 ∼= X (6′). The rays of 6′ are naturally indexed by the proper subsets
of {0, . . . , d}, where the primitive generator of the ray ρI is

vI =
∑
i∈I

vi .

The fiber of F over 1T is canonically identified with M ⊗Z k, and we write MI

for the linear subspace perpendicular to the linear span of the vi for i ∈ I . The
Klyachko filtrations corresponding to F are then

FρI (k)=


M ⊗ k for k ≤−1,
MI for k = 0,
0 for k > 0.
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These filtrations almost satisfy (∗), except that the subspaces MI corresponding to
sets I of size d− 1 are 1-dimensional, and the last nonzero subspace appears in the
wrong place in the filtration. Tensoring with an appropriate line bundle puts the
last nonzero subspace in the correct place in the filtration and does not change the
projectivization. Then, applying the computation for filtrations with 1-dimensional
subspaces (page 1013), we find that R(P(F)) is a polynomial ring in d+1 variables
over

R(BlS PF )[x1, . . . , x(d+1
2 )
, y1, . . . , y(d+1

2 )
]/
〈
1Hi − xi yi

∣∣ 1≤ i ≤
(d+1

2

)〉
,

where Hi runs over runs over all hyperplanes PF/FI with index sets I of size d− 1.
Now, S consists of all linear subspaces spanned by d + 1 points in general

position in PF ∼= Pd−1. As in Example 3.9, the blowup BlS PF is isomorphic to
the Deligne–Mumford moduli space M0,d+2.

Corollary 6.4. The projectivization of the pullback of the cotangent bundle on Pd

to the Losev–Manin moduli space Ld+1 is a Mori dream space if and only if M0,d+2

is a Mori dream space.
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M. Mustat,ă for useful discussions, as well as J. Tevelev, B. Totaro, and the referee
for helpful comments on an earlier draft of this paper.

References

[A’Campo-Neuen and Hausen 1999] A. A’Campo-Neuen and J. Hausen, “Quotients of toric va-
rieties by the action of a subtorus”, Tohoku Math. J. (2) 51:1 (1999), 1–12. MR 99m:14088
Zbl 0942.14028

[Brion 2007] M. Brion, “The total coordinate ring of a wonderful variety”, J. Algebra 313:1 (2007),
61–99. MR 2008d:14067 Zbl 1123.14024

[Castravet and Tevelev 2006] A.-M. Castravet and J. Tevelev, “Hilbert’s 14th problem and Cox
rings”, Compos. Math. 142:6 (2006), 1479–1498. MR 2007i:14044 Zbl 1117.14048

[Elizondo et al. 2004] E. J. Elizondo, K. Kurano, and K.-i. Watanabe, “The total coordinate ring of a
normal projective variety”, J. Algebra 276:2 (2004), 625–637. MR 2005b:14013 Zbl 1074.14006

[Fulton 1993] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Prince-
ton University Press, 1993. MR 94g:14028 Zbl 0813.14039

[González 2010] J. González, “Projectivized rank two toric vector bundles are Mori dream spaces”,
preprint, 2010. arXiv 1001.0838v1

[González 2011] J. González, Toric projective bundles, Ph.D. thesis, University of Michigan, Ann
Arbor, 2011, available at http://deepblue.lib.umich.edu/bitstream/2027.42/86463/1/jgonza_1.pdf.

http://dx.doi.org/10.2748/tmj/1178224848
http://dx.doi.org/10.2748/tmj/1178224848
http://www.ams.org/mathscinet-getitem?mr=99m:14088
http://www.zentralblatt-math.org/zmath/en/search/?an=0942.14028
http://dx.doi.org/10.1016/j.jalgebra.2006.12.022
http://www.ams.org/mathscinet-getitem?mr=2008d:14067
http://www.zentralblatt-math.org/zmath/en/search/?an=1123.14024
http://dx.doi.org/10.1112/S0010437X06002284
http://dx.doi.org/10.1112/S0010437X06002284
http://www.ams.org/mathscinet-getitem?mr=2007i:14044
http://www.zentralblatt-math.org/zmath/en/search/?an=1117.14048
http://dx.doi.org/10.1016/j.jalgebra.2003.07.007
http://dx.doi.org/10.1016/j.jalgebra.2003.07.007
http://www.ams.org/mathscinet-getitem?mr=2005b:14013
http://www.zentralblatt-math.org/zmath/en/search/?an=1074.14006
http://www.ams.org/mathscinet-getitem?mr=94g:14028
http://www.zentralblatt-math.org/zmath/en/search/?an=0813.14039
http://arxiv.org/abs/1001.0838v1
http://deepblue.lib.umich.edu/bitstream/2027.42/86463/1/jgonza_1.pdf


1016 José González, Milena Hering, Sam Payne and Hendrik Süß

[Hassett and Tschinkel 2004] B. Hassett and Y. Tschinkel, “Universal torsors and Cox rings”, pp.
149–173 in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), edited by
B. Poonen and Y. Tschinkel, Progr. Math. 226, Birkhäuser, Boston, MA, 2004. MR 2005a:14049
Zbl 1077.14046

[Hausen 2008] J. Hausen, “Cox rings and combinatorics, II”, Mosc. Math. J. 8:4 (2008), 711–757,
847. MR 2010b:14011 Zbl 1158.14010

[Hausen and Süß 2010] J. Hausen and H. Süß, “The Cox ring of an algebraic variety with torus
action”, Adv. Math. 225:2 (2010), 977–1012. MR 2011h:14007 Zbl 05777260
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