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Let n > 4. In this article, we will determine the asymptotic behavior of the size of
the set of integral points (a0 : · · · : an) on the hyperplane

∑n
i=0 X i = 0 in Pn such

that ai is squareful (an integer a is called squareful if the exponent of each prime
divisor of a is at least two) and |ai |6 B for each i ∈ {0, . . . , n}, when B goes to
infinity. For this, we will use the classical Hardy–Littlewood method. The result
obtained supports a possible generalization of the Batyrev–Manin program to
Fano orbifolds.

1. Introduction

The problem we consider can be related to a question Campana posed concerning
rational points on orbifolds. A good overview is given for example in [Abramovich
2009; Poonen 2006; Campana 2005]. Examining the orbifold (P1,1) with Q-
divisor 1= 1/2 · [0]+ 1/2 · [1]+ 1/2 · [∞], it is explained for example in [Poonen
2006] why it is reasonable to expect that the set

{(a1, a2, a3) ∈ Z3
: a1+ a2 = a3, a1, a2, a3 are squareful,

max{|a1|, |a2|, |a3|}6 B, gcd(a1, a2, a3)= 1}

will asymptotically behave as C · B1/2 as B tends to infinity.
Since this question turns out to be too difficult at the moment, we general-

ize to a higher-dimensional analogue (Pn−1,1), where now 1 is the Q-divisor
1 = 1/2 · [H0] + · · · + 1/2 · [Hn] with Hi the hyperplane defined by X i = 0 for
i ∈ {0, . . . , n − 1} and Hn defined by X0 + · · · + Xn−1 = 0. In analogy with
the one-dimensional case, a point P = (a0 : · · · : an−1) ∈ Pn−1(Q) (we assume
a0, . . . , an−1 ∈ Z and gcd(a0, . . . , an−1) = 1) will be called a rational point in
Campana’s sense on (Pn−1,1) if for every i ∈ {0, . . . , n} and every prime p
for which the reduction of P is contained in the reduction of Hi modulo p, we
have i p(P, Hi )> 2, where i p(P, Hi ) denotes the intersection number of P and Hi

above the prime p. These conditions will be satisfied if ai is squareful for every
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i ∈ {0, . . . , n− 1} and if
∑n−1

i=0 ai is also squareful. We denote the set of all such
rational points by (Pn−1,1)(Q). Using the height function

H(x0 : · · · : xn−1)=max
{
|x0|, . . . , |xn−1|,

∣∣∣∣n−1∑
i=0

xi

∣∣∣∣},
the set of points P ∈ (Pn−1,1)(Q) of bounded height is denoted (Pn−1,1)(Q)6B .

Defining the canonical divisor of the orbifold (Pn−1,1) as

K(Pn−1,1) = KPn−1 +1,

we have K(Pn−1,1) ∼ (−(n− 1)/2) · H in Pic(Pn−1)Q, where H is the hyperplane
class of Pn−1. Since the height function we use is associated to H , a very naïve gen-
eralization of Manin’s conjecture would predict that #(Pn−1,1)(Q)6B∼C·B(n−1)/2

for some constant C > 0, as B tends to infinity. Our main goal is to prove the
following theorem.

Theorem 1.1. For n > 4, there exists a δ > 0 so that

#(Pn−1,1)(Q)6B = C · B(n−1)/2
+ O(B(n−1)/2−δ)

for some constant C > 0.

In Section 5 we will give an explicit description of the constant C and examine
the distribution of rational points on the orbifold (Pn−1,1).

2. Description of the proof

Throughout the article, we will use the following notation.
We will denote the (n+ 1)-tuple (x0, . . . , xn) ∈ An+1 for any ring A by x . For

the nonzero integers we use the notation Z0, that is Z0 = Z \ {0}. If there exists a
constant C > 0 such that | f (x)|6 Cg(x) for real-valued functions f and g with
g only taking positive values, we write f (x)� g(x) or f (x) = O(g(x)). If C
depends on other parameters, this will be denoted explicitly when this dependence
is important for the computations. We will write f (x)∼ g(x) if f (x)/g(x) tends
to one if x goes to infinity. Also, we allow the small positive constant ε to take
different values at different points of the arguments. Finally, for any α ∈ R we will
write e(α)= exp(2π iα).

To prove Theorem 1.1, we first restrict ourselves to the set of points

(a0 : · · · : an−1) ∈ (P
n−1,1)(Q)

for which ai 6= 0 for each i ∈ {0, . . . , n − 1} and
∑n−1

i=0 ai 6= 0. We denote this
subset by (Pn−1,1)(Q)+. Also, (Pn−1,1)(Q)+6B indicates the intersection of
(Pn−1,1)(Q)+ with (Pn−1,1)(Q)6B .

By the definition of (Pn−1,1)(Q), we can identify (Pn−1,1)(Q)+6B with the
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set{
(a0 :. . .:an)∈H(Q) :ai ∈Z0, ai is squareful, gcd(a0, . . . , an)=1, max

06i6n
|ai |6 B

}
,

where H ⊂ Pn is the hyperplane defined by X0+ · · ·+ Xn = 0.
Since a squareful integer can be written uniquely (up to the sign of x) as x2 y3,

where y is squarefree, the latter set in turn corresponds to{
(x2

0 y3
0 : · · · : x

2
n y3

n) ∈ H(Q) : xi , yi ∈ Z0 and yi is squarefree,

gcd(x0 y0, . . . , xn yn)= 1, max
06i6n

|x2
i y3

i |6 B
}
. (1)

Definition. We define M(B) as the set{
(x, y) ∈ Z2n+2

0 :

n∑
i=0

x2
i y3

i = 0, gcd(x0 y0, . . . , xn yn)= 1,

max
06i6n

|x2
i y3

i |6 B,
n∏

i=0
µ2(|yi |)= 1

}
.

(Note that for any integer y ∈ Z, the condition µ2(|yi |)= 1 means that yi is square-
free.) Also, we denote by Ma,t(B) the set{

(x, y) ∈ Z2n+2
0 :

n∑
i=0

ai x2
i y3

i = t, max
06i6n

|ai x2
i y3

i |6 B,
n∏

i=0
µ′i (yi )= 1

}
,

where a0, . . . , an, t ∈ Z are fixed, gcd(a0, . . . , an)= 1 and
∏n

i=0 ai 6= 0. Here, µ′i
denotes an arbitrary function Z0→ {0, 1}, for each i ∈ {0, . . . , n}.

As a first step in the proof, we will use the classical Hardy–Littlewood circle
method to determine an expression for the cardinality of the set Ma,t(B). Notice
that in the definition of Ma,t(B), we replaced the function µ2( · ) in the definition
of M(B) with the more general function µ′i ( · ). We shall see that applying the
circle method is independent of this condition, but nevertheless necessary to de-
rive an asymptotic formula for #M(B) since squarefree conditions on multiples
of the yi will appear as we will explain below. We see that M(B) is a subset of
M(1,...,1),0(B) (if we take µ′i ( · ) to be µ2( · ) for each i), with the additional gcd
condition gcd(x0 y0, . . . , xn yn)= 1 on the solutions. We will take this gcd condition
into account using an adapted version of the Möbius inversion.

Identifying (Pn−1,1)(Q)+6B with (1), it readily follows that

#(Pn−1,1)(Q)+6B =
1

2n+2 #M(B),

which implies that an asymptotic formula for #M(B) induces an asymptotic for-
mula for #(Pn−1,1)(Q)+6B .

Finally, we will explain why this result suffices to prove Theorem 1.1.



1022 Karl Van Valckenborgh

3. Calculating #Ma,t(B)

Let us first fix the framework of the circle method.
Let T be R/Z. For 0<16 1 and P > 1 (we always suppose B > 1), we define

M(1, q, a) as the image in T of {α ∈ R : |α− a/q|< P1−2
} with a, q ∈ Z and

M(1)=
⋃

16a6q6P1
gcd(a,q)=1

M(1, q, a).

We call M(1) the union of the major arcs and T \M(1)=m(1) the union of the
minor arcs. We shall clarify the constraint on the constant 1 and the dependence
of P on B in Proposition 3.7 and Theorem 3.8.

The circle method calculates #Ma,t(B) by integrating an exponential sum over
T , namely

#Ma,t(B)=
∫

T

∑
16|ai x2

i y3
i |6B

i=0,...,n

( n∏
i=0

µ′i (yi )

)
e(α f (x, y)) dα, (2)

where f (x, y)=
n∑

i=0
ai x2

i y3
i − t . We will denote the integrand of (2) by E(α) and

will set
Si (α)=

∑
16|ai x2 y3|6B

µ′i (y)e(αai x2 y3).

Therefore,

E(α)= e(−αt)
n∏

i=0

Si (α).

As usual, the integral over M(1) will provide the main term while the integral
over m(1) will only contribute to the error term.

Major arcs. We refer to [Schmidt 1984, Section 5; Davenport 2005, Chapter 4] for
avoid conflict with theorems. (Many authors improperly cite a detailed description
of the circle method over the major arcs for the classical case of diagonal equations.
In order to apply this to

∫
M(1)

E(α) dα, we will first fix y and thus consider the
diagonal equation f (x, y) = fy(x) = 0; afterwards we will take the sum of the
obtained expression over all admitted y.

Since we fix y, we only look at xi satisfying 1/|ai y3
i |

1/2 6 |xi |6 (B/|ai y3
i |)

1/2.
Most of the time, it suffices to consider only positive xi ; we will denote the corre-
sponding interval for positive xi with Di , that is,

Di =
[
1/|ai y3

i |
1/2, B1/2/|ai y3

i |
1/2]. (3)
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We will also use the notation

Bai ,yi = B1/2/|ai y3
i |

1/2. (4)

Note that since we consider only y with 16 |y3
i |6 B, we have 16 Bai ,yi 6 B1/2

for each i ∈ {0, . . . , n}.
Because we first wish to examine the exponential sum E(α) (for α ∈M(1)) for

some y fixed, we denote this part of E(α) by

Ey(α)=
∑

1/|ai y3
i |

1/26|xi |6Bai ,yi
i=0,...,n

e(α fy(x)).

Furthermore, for every positive integer q and every integer a relatively prime to q ,
we define

σy

(a
q

)
= q−(n+1)

∑
z∈(Z/qZ)n+1

e
(a fy(z)

q

)
, (5)

and for every β ∈ R,

τy,B(β)=

∫
D0

· · ·

∫
Dn

e(β fy(x)) dx . (6)

Proposition 3.1. For α = a/q +β ∈M(1; q, a), we have

Ey(α)= 2n+1σy

(a
q

)
τy,B(β)+ O

(
q
∑n

i=0 |ai y3
i |

1/2∏n
i=0 |ai y3

i |
1/2

B(n+2)/2 P1−2
)

under the condition B P1−2 > 1 on P and 1.

Proof. Combining positive and negative signs of xi , we have

Ey(α)= 2n+1e(−αt)
n∏

i=0

∑
xi∈Di

e(αai x2
i y3

i ). (7)

For α = a/q +β, the inner sum over xi equals∑
16zi 6q

e
(

aai z2
i y3

i
q

) ∑
vi∈Z

qvi+zi∈Di

e(βai (qvi + zi )
2 y3

i ). (8)

Euler’s summation formula (in its simplest version) implies∑
X6qv+z6Y

e(ζ(qv+ z)2)= 1
q

∫ Y

X
e(ζη2) dη+ O

(
1+ Y

q
|ζ |qY

)
for any real numbers 0 6 X < Y , ζ ∈ R, q, z ∈ N. Taking Y = Bai ,yi , ζ = βai y3

i
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and recalling the definition of Di in (3), we can rewrite (8) as∑
16zi 6q

e
(aai z2

i y3
i

q

)(1
q

∫
Di

e(βai x2
i y3

i ) dxi + O(1+ |β|B)
)
.

We substitute these expressions successively back into (7) and obtain the desired
main term. Using the trivial upper bounds∣∣∣∑

xi∈Di

e(αai x2
i y3

i )

∣∣∣+ ∣∣∣1q ∑
16zi 6q

e
(aai z2

i y3
i

q

) ∫
Di

e(βai x2
i y3

i ) dxi

∣∣∣� Bai ,yi ,

we get the total error term O
(
q(1+ |β|B)max06i6n

∏
j 6=i Ba j ,y j

)
. Using (4) and

1+ |β|B� P1−2 B, we complete the proof. �

From this result, we can now derive an expression for the integral of Ey(α) over
M(1) by first integrating the expression for Ey(α) obtained in Proposition 3.1
over M(1; q, a) and then summing over all admitted a and q .

We first define

Iε,t,B(L)=
∫
|γ |<L

e(−γ t/B) dγ
∫
[B−1/2,1]n+1

e
(
γ

n∑
i=0

εi x ′2i
)

dx ′,

(where εi = sgn(ai yi )) and

Sy,a,t(L)=
∑
q6L

∑
0< a

q 61
gcd(a,q)=1

σy

(a
q

)
.

We have ∫
|β|<P1−2

τy,B(β) dβ = B(n−1)/2∏n
i=0 |ai y3

i |
1/2

Iε,t,B(B P1−2),

and therefore∫
M(1)

Ey(α) dα =
2n+1Sy,a,t(P1)Iε,t,B(B P1−2)∏n

i=0 |ai y3
i |

1/2
· B(n−1)/2

+O
(∑n

i=0 |ai y3
i |

1/2∏n
i=0 |ai y3

i |
1/2

B(n+2)/2 P51−4
)
. (9)

Note that the integral Iε,t,B(L) only depends on the signs of y and a and no longer
on their actual values.

Next, we make the coefficient of B(n−1)/2 in this expression independent of B.
We first focus on the factor Sy,a,t(P1).
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The singular series.

Lemma 3.2. We have∣∣∣σy

(a
q

)∣∣∣� q−(n+1)/2
·

n∏
i=0

gcd(ai y3
i , q)1/2.

Proof. Using elementary properties of generalized Gauss sums (see for example
[Berndt et al. 1998, Chapter 1]), we obtain for positive integers a and c that∣∣∣∣c−1∑

n=0

e
(an2

c

)∣∣∣∣� gcd(a, c)1/2
√

c.

Applying this to (5) implies the statement. �

Corollary 3.3. For n > 4, the series

Sy,a,t =

∞∑
q=1

∑
0<a/q61

gcd(a,q)=1

σy

(a
q

)
, (10)

called the singular series, converges absolutely. In particular, we have

Sy,a,t �

∏n
i=0 |ai y3

i |
1/2+ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2

(11)

and

Sy,a,t(P1)=Sy,a,t + O
( ∏n

i=0 |ai y3
i |

1/2+ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2
· P1(−n+3)/2

)
(12)

for any ε > 0.

Proof. From the previous lemma, we deduce that

Sy,a,t �

∞∑
q=1

q−(n−1)/2
n∏

i=0

gcd(ai y3
i , q)1/2

�

∑
di |ai y3

i
i=0,...,n

(d0 · · · dn)
1/2

∞∑
q=1

lcm(d0,...,dn)|q

q−(n−1)/2

�

∑
di |ai y3

i
i=0,...,n

(d0 · · · dn)
1/2

lcm(d0, . . . , dn)(n−1)/2

∞∑
q=1

q−(n−1)/2.
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Since n > 4, the latter expression converges and we get

Sy,a,t �
∑

di |ai y3
i

i=0,...,n

(d0 · · · dn)
1/2

lcm(d0, . . . , dn)(n−1)/2

�

∏n
i=0 |ai y3

i |
1/2+ε

lcm(a0 y3
0 , . . . , a0 y3

0)
1/2

for any ε > 0. Moreover, we obtain in the same way that∣∣Sy,a,t −Sy,a,t(P1)
∣∣6 ∑

q>P1
q−(n−1)/2

n∏
i=0

gcd(ai y3
i , q)1/2

�

∑
di |ai y3

i
06i6n

(d0 · · · dn)
1/2

lcm(d0, . . . , dn)(n−1)/2

∞∑
q>P1

lcm(d0,...,dn)|q

q−(n−1)/2

�

∏n
i=0 |ai y3

i |
1/2+ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2
· P1(−n+3)/2. �

Remark 3.4. One can prove (see for example [Davenport 2005, Lemmas 5.2-5.3])
for n > 4 that Sy,a,t can be written as an Euler product of p-adic densities

lim
l→∞

#{(x0, . . . , xn) ∈ (Z/plZ)n+1
:
∑n

i=0 ai y3
i x2

i ≡ t mod pl
}

pln .

The singular integral. Examining Iε,t,B(B P1−2) in (9), we have the following
proposition.

Proposition 3.5. For n > 3, we have

Iε,t,B(B P1−2)= Iε,t,B + O
(
B(1−n)/2 P (1−2)(1−n)/2) (13)

with

Iε,t,B =

∫
+∞

−∞

e(−γ t/B) dγ
∫
[B−1/2,1]n+1

e
(
γ

n∑
i=0

εi x2
i

)
dx

under the condition B P1−2 > 1.

Proof. As proved in [Davenport 2005, Proof of Theorem 4.1], we have∣∣∣∣∫ 1

B−1/2
e(γ εi x2

i ) dxi

∣∣∣∣�min{1, |γ |−1/2
},

and thus ∣∣∣∣∫
[B−1/2,1]n+1

e
(
γ

n∑
i=0

εi x2
i

)
dx
∣∣∣∣�min{1, |γ |−1/2

}
n+1. (14)
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This implies that the integral Iε,t,B converges, since∣∣Iε,t,B∣∣� ∫
+∞

−∞

min{1, |γ |−1/2
}

n+1dγ <+∞.

Also, ∣∣Iε,t,B(B P1−2)− Iε,t,B
∣∣� ∫

|γ |>B P1−2
|γ |−(n+1)/2dγ

� B(1−n)/2 P (1−2)(1−n)/2. �

Defining the singular integral as

Iε =

∫
+∞

−∞

dγ
∫
[0,1]n+1

e
(
γ

n∑
i=0

εi x2
i

)
dx, (15)

it follows from the last proof that this integral is also convergent.

Lemma 3.6. It holds that Iε,t,B→ Iε as B goes to infinity.

Proof. We have

∣∣Iε,t,B − Iε
∣∣6 ∫ +∞

−∞

∣∣(e(−γ t/B)− 1)
∣∣ dγ

∣∣∣∣∫
[B−1/2,1]n+1

e
(
γ

n∑
i=0

εi x2
i

)
dx
∣∣∣∣

+

∫
+∞

−∞

dγ
∣∣∣∣∫
([B−1/2,1]n+1)

c
e
(
γ

n∑
i=0

εi x2
i

)
dx
∣∣∣∣

= I1(B, t)+ I2(B),

where
(
[B−1/2, 1]n+1

)c denotes the complement of [B−1/2, 1]n+1 in the hypercube
[0, 1]n+1.

Since |(e(−γ t/B)− 1)| = 2| sin(πγ t B−1)|6min{2, 2π |γ ||t |B−1
}, we obtain

the following for I1(B, t), recalling (14):

I1(B, t)�
∫
+∞

−∞

min{1, π |γ ||t |B−1
} ·min{1, |γ |−1/2

}
n+1dγ.

Splitting up the latter integral into three parts according to the appropriate range
of γ , we get I1(B, t)� |t |B−1 for B big enough.

For I2(B), one has ∣∣∣∣∫ 1

0
e(γ εi x2

i ) dxi

∣∣∣∣�min{1, |γ |−1/2
}

and ∣∣∣∣∫ B−1/2

0
e(γ εi x2

i ) dxi

∣∣∣∣�min{B−1/2, |γ |−1/2
}.
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Applying the exclusion-inclusion principle to I2(B) and observing the symmetric
form of the integrand, we get

I2(B)�
n+1∑
i=1

∫
+∞

−∞

min{B−1/2, |γ |−1/2
}
i
·min{1, |γ |−1/2

}
n+1−i dγ.

It follows that I2(B)� B−1/2. Hence,∣∣Iε,t,B − Iε
∣∣�t B−1/2 (16)

for B big enough, completing the proof. �

Note that from Proposition 3.5 and (16), one has

Iε,t,B(B P1−2)= Iε + O
(
B−1/2

+ B(1−n)/2 P (1−2)(1−n)/2). (17)

We now return to the integral of Ey(α) over the major arcs.

Proposition 3.7. For n > 4 and for any 1 with 0<1< 1/5, there exists a δ > 0
so that ∫

M(1)

Ey(α) dα =
2n+1Sy,a,tIε∏n

i=0 |ai y3
i |

1/2
· B(n−1)/2

+ Oy,a
(
B(n−1)/2−δ). (18)

Proof. Substituting (12) and (17) into formula (9), we get∫
M(1)

Ey(α) dα =
2n+1Sy,a,tIε∏n

i=0 |ai y3
i |

1/2
· B(n−1)/2

+ O
( ∏n

i=0 |ai y3
i |
ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2
· B(n−1)/2 P1(−n+3)/2

+
B(n−2)/2

+ P (1−2)(1−n)/2∏n
i=0 |ai y3

i |
1/2

+

∑n
i=0 |ai y3

i |
1/2∏n

i=0 |ai y3
i |

1/2
· B(n+2)/2 P51−4

)
. (19)

For this expression to be nontrivial, we have to determine P = P(B) and 1
properly (under the condition B P1−2>1) so that the error term is Oy,a(B(n−1)/2−δ)

for some δ > 0. Taking P = B1/2 and 0<1< 1/5 is satisfactory. �

We can now prove our estimate for the major arcs.

Theorem 3.8. For n > 4 and for any 1 with 0<1< 1/15, there exists a δ > 0 so
that ∫

M(1)

E(α) dα = Ca,t · B(n−1)/2
+ O

(
B(n−1)/2−δ),

where

Ca,t = 2n+1
∑

y∈Zn+1
0

( n∏
i=0

µ′i (yi )

)
Sy,a,tIε∏n

i=0 |ai y3
i |

1/2
,



Squareful numbers in hyperplanes 1029

with Sy,a,t and Iε as defined above.

Proof. We sum (19) over all admitted yi such that 16 |y3
i |6 B, i ∈ {0, . . . , n}, and

denote the sum of the coefficients of the main term by Ca,t(B).
We obtain, using (11),

Sy,a,t∏n
i=0 |ai y3

i |
1/2
�

∏n
i=0 |ai y3

i |
ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2

(20)

for any ε > 0. We have∑
max

06i6n
|y3

i |>B

∏n
i=0 |ai y3

i |
ε

lcm(a0 y3
0 , . . . , an y3

n)
1/2
�

∑
max

06i6n
|y3

i |>B

1
lcm(a0 y3

0 , . . . , an y3
n)

1/2−(n+1)ε

�

∑
max

06i6n
|y3

i |>B

1
lcm(y0, . . . , yn)3/2−3(n+1)ε

�

∑
N 3>B

#{(y0, . . . , yn) : lcm(y0, . . . , yn)= N }
N 3/2−3(n+1)ε

� B−1/6+(n+1)ε (21)

for any ε > 0. This allows us to replace Ca,t(B) by Ca,t .
We now turn to the error term in (19), summing over all admitted values of y

and putting P = B1/2 as before.
The first error term can be treated as the main term. The coefficients of the third

and fourth error terms will also converge without any extra conditions. Moreover,
the upper bound can be made independent of the ai . For the last error term however,
the coefficient will asymptotically contribute O(B1/3).

This means the extra condition

1
3
+

n+2
2
+

51−4
2

<
n−1

2
⇔1<

1
15

has to be satisfied for the error term to behave properly. �

Note that (20) and (21) also provides a uniform upper bound of Ca,t , that is,
Ca,t 6 C , independently of a and t .

Minor arcs. The goal of this section is to prove the following theorem.

Theorem 3.9. For n > 4, there exists a δ > 0 so that∫
m(1)

E(α) dα = O
(
B(n−1)/2−δ).
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To treat the integral over the minor arcs, we will not fix y but examine the whole
equation at once. Recall that

E(α)= e(−αt)
n∏

i=0

Si (α)= e(−αt)
n∏

i=0

∑
16|ai x2 y3|6B

µ′i (y)e(αai x2 y3).

Using Hölder’s inequality repeatedly, we get for n > 4,∣∣∣∣∫
m(1)

E(α) dα
∣∣∣∣6 sup

α∈m(1)
(|S0(α)| · · · |Sn−4(α)|) max

j=n−3,...,n

∫ 1

0
|S j (α)|

4dα. (22)

To obtain a good upper bound of this expression, we first examine
∫ 1

0 |S j (α)|
4dα.

Lemma 3.10. For any ε > 0, we have∫ 1

0
|S j (α)|

4dα�ε B1+ε.

Proof. From now on, we will concentrate on the part of the sum where the variables
are positive. This will suffice to prove the theorem because of the symmetry.

Let
SY (α)=

∑
Y<y62Y

µ′j (y)
∑

16x6Ba j ,y

e(αa j x2 y3)

be the contribution to S j (α) for Y < y 6 2Y . Using Cauchy’s inequality, it follows
that∫ 1

0
|SY (α)|

4dα� Y
∫ 1

0
|SY (α)|

2
∑

Y<y62Y

µ′j (y)
∣∣∣∣ ∑
16x6Ba j ,y

e(αa j x2 y3)

∣∣∣∣2dα

� Y
∑

Y<y1,y2,y362Y

∑
16x16Ba j ,y1
16x26Ba j ,y2

16x3,x46Ba j ,y3

∫ 1

0
e(αa j G(x, y)) dα

6 Y · #Z(Y, B),

with G(x, y)= y3
3(x

2
4−x2

3)+x2
1 y3

1−x2
2 y3

2 and Z(Y, B)={(x, y)∈Z7
0 : y

3
3(x

2
3−x2

4)=

x2
1 y3

1 − x2
2 y3

2 , 16 xi < BY , Y < y j 6 2Y }, where BY = (B/Y 3)1/2.
If we make a distinction between solutions (x, y) ∈ Z7

0 of G(x, y)= 0 for which
x2

1 y3
1 − x2

2 y3
2 = 0 or not, it follows that both sets contain O(Y−1

· B1+ε) solutions.
Hence, we conclude that #Z(Y, B)�ε Y−1

· B1+ε, and thus∫ 1

0
|SY (α)|

4dα�ε B1+ε.
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Summing over all intervals (Y, 2Y ] with Y = 2k
� B1/3 and applying Cauchy’s

inequality twice on |S j (α)|
4
= |

∑
Y=2k�B1/3 SY (α)|

4, we get∫ 1

0
|S j (α)|

4dα� B3ε′
∑

Y=2k�B1/3

∫ 1

0
|SY (α)|

4dα� B3ε′
∑

Y=2k�B1/3

B1+ε
= B1+ε′′,

which completes the proof. �

Remark 3.11. Recalling the expression for #Ma,t(B) in (2) and putting n = 3,
a = (1, 1, 1, 1), t = 0 and µ′i ( · ) = µ

2( · ) for each i , this lemma implies that the
equation n1 + n2 = n3 + n4, where ni is squareful and 1 6 |ni | 6 B for each
i ∈ {1, 2, 3, 4}, has O(B1+ε) solutions.

In order to handle the first part of (22), namely supα∈m(1)(|S0(α)| · · · |Sn−4(α)|),
we will prove the following proposition.

Proposition 3.12. Let α ∈m(1). Then there exists a δ > 0 such that

|Si (α)| � B1/2−δ.

Proof. Let ψ > 0. We may henceforth assume that |ai |6 Bψ , since otherwise the
trivial upper bound yields

|Si (α)|6
∞∑

y=1

√
B

ai y3 � B(1−ψ)/2,

which is satisfactory. Similarly, we may assume that y 6 Bψ in Si (α). Thus, we
have

|Si (α)| � B(1−ψ)/2+
∑

y6Bψ
µ′i (y)

∣∣Ty(α)
∣∣,

with, if we set X =
√

B/(|ai |y3),

Ty(α)=
∑
x6X

e(αai y3x2).

Since |ai |y3x2 6 B, in particular X > B1/2−2ψ . Using the usual squaring and
differencing approach (see for example [Davenport 2005, Chapter 3]), we obtain∣∣Ty(α)

∣∣2 6 ∑
|h|6X

∣∣∣∣ ∑
x

x,x+h6X

e(2αai y3hx)
∣∣∣∣

�

∑
|h|6X

min{X, ‖2αai y3h‖−1
} � X + Bε ·

∑
y6Y

min{X, ‖αy‖−1
},

where Y = 2|ai |y3 X and ‖a‖ =min{|β| ∈ R : β ≡ a mod 1} for any real number a.
In order to estimate the sum over y, we will use the following lemma.
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Lemma 3.13 (Separation lemma). Let P, Q > 1 be reals, α ∈ T and a, q ∈ Z with
gcd(a, q)= 1 and |α− a/q|< q−2. Then∑

x6P

min
{ P Q

x
, ‖αx‖−1

}
� P Q

(
q−1
+ Q−1

+ q(P Q)−1) log(2q P).

Proof. A full proof is given in [Vaughan 1997, Lemma 2.2]. �

Choosing P = Y and Q = X , Lemma 3.13 implies∣∣Ty(α)
∣∣2� X + XY Bε

(1
q
+

1
X
+

q
XY

)
� XY B2ε

(1
q
+

1
X
+

q
XY

)
� B1+2ε

(1
q
+ B2ψ−1/2

)
+ q B2ε,

since X 6 Y and XY = 2|ai |y3 X2
= 2B. Hence,

|Si (α)| � B1/2−2ψ
+ B1/2+ε+ψ

( 1
√

q
+ Bψ−1/4

)
+
√

q Bε+ψ . (23)

According to Dirichlet, we can find a, q ∈ Z with gcd(a, q)= 1 and q 6 B(2−1)/4

such that |αq−a|< 1/B(2−1)/4= B(1−2)/4. (Note we also have |α−a/q|< 1/q2.)
Furthermore, it is necessary that q > B1/2: otherwise, we would have α ∈M(1).
With these boundaries for q in (23), a suitable small choice for ψ in terms of 1
leads to the statement. �

We are now able to prove Theorem 3.9.

Proof of Theorem 3.9. Combining Proposition 3.12 and Lemma 3.10 in (22), we
obtain ∣∣∣∣∫

m(1)
E(α) dα

∣∣∣∣� B(1/2−δ)(n−3)
· B1+ε6 B(n−1)/2−δ+ε < B(n−1)/2

for any 0< ε < δ. �

4. Towards the main problem

Combining the previous results, we are able to prove the following theorem.

Theorem 4.1. For n > 4, there exists a δ > 0 so that

#Ma,t(B)= Ca,t · B(n−1)/2
+ O

(
B(n−1)/2−δ),

with the constant Ca,t described in Theorem 3.8.

Proof. This follows directly from Theorem 3.8, Theorem 3.9 and (2). �
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Remark 4.2. Note that the error term is independent of a and t and recall we
also proved Ca,t can be bounded uniformly independent of a and t . This implies
that #Ma,t(B) 6 C · B(n−1)/2 for some constant C > 0. Indeed, when B < 1,
Ma,t(B)=∅, and for B > 1, it follows from Theorem 4.1 that

#Ma,t(B)6 C ′ · B(n−1)/2
+C ′′ · B(n−1)/2−δ 6 C · B(n−1)/2,

where C = 2 max{C ′,C ′′}.

Going back to M(B) (see definition on page 1021), we will now prove the
following theorem.

Theorem 4.3. For n > 4, there exists an explicit constant D and a δ > 0 such that

#M(B)= D · B(n−1)/2
+ O

(
B(n−1)/2−δ)

as B goes to infinity.

(The definition of the constant D is given in Lemma 4.5; in the next section, we
will give some indications about the interpretation of D.)

The only problem still left in proving Theorem 4.3 is to understand how we can
tackle the additional gcd condition gcd(x0 y0, . . . , xn yn)= 1 on the solutions. Note
that the Möbius inversion at hand leads to divisibility conditions on both xi and yi

which have to be handled with care.
Let e= (e0, . . . , en)∈Nn+1

0 and f = ( f0, . . . , fn)∈Nn+1
0 , where fi is squarefree

for each i ∈ {0, . . . , n}.

Definition. We denote the set{
(x, y)∈Z2n+2

0

n∑
i=0

x2
i y3

i =0, max
06i6n

|x2
i y3

i |6 B, ei |xi , fi |yi and
n∏

i=0

µ2(|yi |)=1
}

by N(e, f )(B).

Demanding that solutions in N(1,1)(B) satisfy gcd(x0 y0, . . . , xn yn)= 1 means
we wish to leave out those solutions of N(1,1)(B) for which there exists a prime p
and a subset I ⊂ {0, . . . , n} such that p|xi if i ∈ I and p|yi if i /∈ I (or i ∈ I c, where
I c denotes the complement of I in {0, . . . , n}) in order to get to M(B). Defining
for a prime p and subsets I, J ⊂ {0, . . . , n} the couple (ep,I , f p,J ) by ep,I

i = p

for i ∈ I and ep,I
i = 1 otherwise and analogously for f p,J , it hence follows that

M(B)= N(1,1)(B) \
⋃
(p,I )

N(ep,I , f p,I c
)(B). (24)

Notice that in this last union only a finite number of sets are nonempty since for a
prime p >

√
B, we get N(ep,I , f p,I c

)(B)=∅.
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Definition. Let S be a finite set of couples (p, I ). We can associate to S a couple
(e, f ) as follows: defining for each prime p the index sets Ip =∪(p,I )∈S I and Jp =

∪(p,I )∈S I c, the associated couple is given by ei =
∏
{p|i∈Ip}

p and fi =
∏
{p|i∈Jp}

p.
We then define

µ(e, f )=
∑
n>0

(−1)n #
{
sets S of cardinality n with associated couple (e, f )

}
.

Observing (24) together with this definition, we have

#M(B)=
∞∑

e=1

∑
(e, f )∈N2n+2

e=gcd(ei fi , i=0,...,n)

µ(e, f ) · #N(e, f )(B). (25)

The following lemma collects some properties of µ.

Lemma 4.4. There exists a function µ̃ : Z2n+2
→ Z such that

(i) µ(e, f ) =
∏

p µ̃(vp(e), vp( f )), where vp(e) = (vp(e0), . . . , vp(en)) (and
analogously for vp( f )),

(ii) µ̃(m, n)= 0 if mi = ni = 0 and (m, n) 6= (0, 0) or if mi > 1 for some i ,

(iii)
∑

I∪J={0,...,n} |µ̃(I, J )|6 22n+1
, where, for subsets I, J ⊂ {0, . . . , n}, µ̃(I, J )

denotes µ̃(m I
0, . . . ,m I

n,m′0
J
, . . . ,m′n

J
) with m I

i = 1 if i ∈ I and m I
i = 0

otherwise and mi
′ J
= 1 if i ∈ J and m′i

J
= 0 otherwise.

Proof. (i) and (ii) follow directly from the definition of µ immediately above. From
the same definition, it follows, if I ∪ J = {0, . . . , n}, and denoting by T a finite set
of subsets I ⊂ {0, . . . , n}, that

µ̃(I, J )=
∑

m

(−1)m #
{
sets T of cardinality m

such that I = ∪K∈T K and J = ∪K∈T K c}.
If we sum over all possible I and J such that I ∪ J = {0, . . . , n}, we get (iii). �

Consider now N(e, f )(B) for a couple (e, f ) for which µ(e, f ) 6= 0 and

gcd(ei fi , i = 0, . . . , n)= e,

i.e., a subset with nontrivial contribution to #M(B) (recall (25)). Since #N(e, f )(B)=
#Me2 f 3,0(B), choosing µ′i (yi )= µ

2( fi |yi |) (where e2 f 3
= (e2

0 f 3
0 , . . . , e2

n f 3
n )), we

know by Theorem 4.1 that

#N(e, f )(B)= Ce2 f 3,0 · B
(n−1)/2

+ O(B(n−1)/2−δ).
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Since e divides ei fi , we can write e2
i f 3

i = vi e2 for some vi ∈ N for each i in
{0, . . . , n}. Making the substitutions x ′i = xi/ei and y′i = yi/ fi , we see that N(e, f )(B)
corresponds to the set{
(x ′, y′)∈Z2n+2

0 :

n∑
i=0

vi x ′i
2 y′i

3
=0, max

06i6n
|vi x ′i

2 y′i
3
|6 B

e2 and
n∏

i=0

µ2( fi |y′i |)=1
}
,

where we eliminated e2 in the equation, and hence #N(e, f )(B) = #Mv,0(B/e2).
Letting B go to infinity, this implies that the main terms in the asymptotic formulas
of #Ne, f (B) and #Mv,0(B/e2) are equal, and in particular that

#N(e, f )(B)−Ce2 f 3,0 · B
(n−1)/2

= O
( B(n−1)/2−δ

en−1−2δ

)
. (26)

Notice we also obtain (recall Remark 4.2) that

#N(e, f )(B)6 C · B(n−1)/2

en−1 and Ce2 f 3,0 6
C

en−1 . (27)

From these results, we can now prove:

Lemma 4.5. The series D =
∞∑

e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e

µ(e, f ) ·Ce2 f 3,0 converges.

Proof. Substituting (27) into the definition of D and using the properties of µ in
Lemma 4.4, we get

|D| �
∞∑

e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e

|µ(e, f )|
en−1

6
∏

p

2∑
k=0

∑
(vp(e),vp( f ))∈N2n+2

mini {vp(ei )+vp( fi )}=k

|µp(vp(e), vp( f ))|
pk(n−1) 6

∏
p

(
1+ 2 22n+1

pn−1

)
,

which converges since n > 4. �

Proof of Theorem 4.3. From the definition of D and (26), it follows that

∣∣#M(B)− D · B(n−1)/2∣∣� ∞∑
e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e

∣∣µ(e, f )
∣∣ · B(n−1)/2−δ

e(n−1)−2δ .

Following the same reasoning as in Lemma 4.5, we then get∣∣#M(B)− D · B(n−1)/2∣∣� B(n−1)/2−δ
·

∏
p

(
1+ 2 22n+1

pn−1−2δ

)
,
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where the product converges for δ > 0 small enough since n > 4. This proves the
theorem. �

5. Rational points on the orbifold (Pn−1, 1)

We can now prove our main theorem.

Theorem 5.1. For n > 4, there exists a δ > 0 such that

#(Pn−1,1)(Q)6B = C · B(n−1)/2
+ O

(
B(n−1)/2−δ).

Here,

C = 1
2n+1

∞∑
e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e

µ(e, f )
∑

y∈Zn+1
0 /{±1}

fi yi squarefree

2n+1Sy,e2 f 3,0Iε∏n
i=0(e

2
i f 3

i |y
3
i |)

1/2
,

with Sy,a,t , Iε and the function µ as defined before. (By y ∈ Zn+1
0 /{±1}, we denote

the (n+ 1)-tuples (y0, . . . , yn) ∈ Zn+1
0 , defined up to sign as an (n+ 1)-tuple.)

Proof. The connection between (Pn−1,1)(Q)+6B and the set M(B) given by (1),
together with Theorem 4.3, implies that the theorem holds for #(Pn−1,1)(Q)+6B . It
remains to prove that, for n > 4, the set of points (a0 : · · · : an) ∈ (P

n−1,1)(Q)6B

with at least one zero coordinate (whose cardinality is � #(Pn−2,1)(Q)6B), is
asymptotically negligible compared to (Pn−1,1)(Q)+6B .

We will verify this for n = 4; by induction, the statement follows for n > 4.
As mentioned in Remark 3.11, it follows from Lemma 3.10 that

#(P2,1)(Q)+6B � B1+ε.

Combining this with the trivial upper bound #(P1,1)(Q)6B � B, we obtain

#(P2,1)(Q)6B � B1+ε < B3/2

for ε > 0 sufficiently small. �

Description of the constant. An alternative description of (Pn−1,1)(Q)+6B can
be obtained as follows. Consider y ∈ Zn+1

0 /{±1} with each yi squarefree. For
such y, let Q y denote the smooth quadric defined by the homogeneous polynomial
Fy(x)= y3

0 X2
0 + . . .+ y3

n X2
n ∈ Z[X0, . . . , Xn]. Furthermore, define the morphism

πy : Q y → H
(x0 : · · · : xn) 7→ (y3

0 x2
0 : · · · : y

3
n x2

n).
(28)

We will consider points (x0 : · · · : xn) ∈ Q y(Q) with xi ∈ Z such that
∏n

i=0 xi 6= 0
and gcd(x0 y0, . . . , xn yn)= 1. We denote this subset of Q y(Q) by Q y(Q)

+. This
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set is mapped into (Pn−1,1)(Q)+ by πy and, keeping in mind (1), we have

(Pn−1,1)(Q)+ =
∐

y∈Zn+1
0 /{±1}

yi squarefree

πy(Q y(Q)
+). (29)

This implies

#(Pn−1,1)(Q)+6B=
1

2n+1

∑
y∈Zn+1

0 /{±1}
yi squarefree

#
{
(x0 : · · · : xn)∈Q y(Q)

+
: max

06i6n
|x2

i y3
i |6 B

}
.

For a fixed y, an asymptotic expression for each of the latter sets using the
classical circle method is known (see [Davenport 2005, Chapter 8]) and a Möbius
inversion for the gcd condition gcd(x0 y0, . . . , xn yn)=1.

Moreover, from Lemma 4.5, it follows that we can change the order of summa-
tion for e and y in the constant C from Theorem 5.1 and thus, defining

CQ y =

∞∑
e=1

∑
(e, f )∈N2n+2

gcd(ei fi , i=0,...,n)=e
fi |yi

µ(e, f )
2n+1Sy,e2,0Jε∏n

i=0(ei |yi |
3/2)

, (30)

we have, for n > 4,

#(Pn−1,1)(Q)6B ∼

(
1

2n+1

∑
y∈Zn+1

0 /{±1}
yi squarefree

CQ y

)
· B(n−1)/2

as B goes to infinity.
This constant CQ y can be given a more geometrical interpretation using the

adelic space Q y(AQ) of the quadric Q y , as explained in [Peyre 1995, §5]. Here,
it has been shown that the refined version of the Manin conjecture is compatible
with the circle method for smooth quadrics in Pn

Q
and moreover, that rational points

on smooth quadrics are equidistributed. Considering the Tamagawa measure ωHy

(corresponding to the height function Hy defined as Hy(P) = max06i6n |x2
i y3

i |

where P = (x0 : · · · : xn) ∈ Q y(Q)) on Qy(AQ), the equidistribution of the rational
points on Q y implies that for every good open subset W (that is, an open subset
W for which ωHy (∂W )= 0, where ∂W =W \W ) of Q y(AQ), we have

#
{

P ∈ Q y(Q)
+
∩W | Hy(P)6 B

}
#
{

P ∈ Q y(Q)+ | Hy(P)6 B
} →

ωHy (W )

ωHy (Q y(AQ))

as B goes to infinity. We refer to [Peyre 1995] for more details on this matter. This
implies we can obtain a description of the constant CQ y in terms of the measure ωHy



1038 Karl Van Valckenborgh

of a certain subset of the adelic space Q y(AQ) of the quadric Q y . More precisely,
it follows that

CQ y = ωHy (Q y(AQ)
†)/(n− 1),

where Q y(AQ)
† denotes the good open subset of Q y(AQ) defined by the gcd con-

dition gcd(x0 y0, . . . , xn yn) = 1 we imposed on Q y(Q). (Note that imposing the
open condition

∏n
i=0 xi 6= 0 does not change the measure.) We obtain the following

corollary.

Corollary 5.2. For n > 4, we have

#(Pn−1,1)(Q)6B ∼

( 1
2n+1

∑
y∈Zn+1

0 /{±1}
yi squarefree

CQ y

)
· B(n−1)/2 (31)

as B goes to infinity, where CQ y = ωHy (Q y(AQ)
†)/(n− 1).

The adelic space of the orbifold (Pn−1, 1). In order to define the adelic space of
the orbifold properly, we first have to explain how we can translate the definition
of “squarefulness” to the different completions of Q.

At each finite place v = p, a p-adic integer a ∈ Zp is squareful if vp(a) 6= 1.
Due to the structure of Q×p , this means that we can write a squareful p-adic integer
a uniquely as x2 y3 with x ∈ Z×p and y ∈ Z squarefree.

On the other hand, any real number a ∈ R can be written as (±1)3x2 and ought
to be considered as squareful.

Since we identified (Pn−1,1)(Q) with {(u0 : · · · : un) ∈ H(Q) : ui squareful}
(recall H ⊂ Pn is the hyperplane defined by X0+· · ·+ Xn = 0), we have, for each
v ∈ Val(Q), that

(Pn−1,1)(Qv)={(u0 : · · · : un)∈ H(Qv) : ui squareful}

= {(x2
0,v y3

0 : · · · : x
2
n,v y3

n)∈ H(Qv) : y ∈Zn+1
0 /{±1}, yi squarefree}.

This implies, recalling the definition of πy in (28),

(Pn−1,1)(Qv)=
⋃

y∈Zn+1
0 /{±1}

yi squarefree

πy(Q y(Qv)
†), (32)

where for a finite place v = p, Q y(Qp)
† is the open subset of Q y(Qp) defined by

the condition min06i6n(vp(xi,p yi ))= 0, and where Q y(R)
†
= Q y(R).

Note that the union considered is not disjoint, but that the image for different
y and y′ either coincides or is disjoint. Hence, it follows that, at each place
v ∈ Val(Q), (Pn−1,1)(Qv) can be described as a finite disjoint union of sets
πy(Q y(Qv)

†) for specified y ∈ Zn+1
0 /{±1}.
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Definition. We define the adelic space (Pn−1,1)(AQ) as

(Pn−1,1)(AQ)=
∏

v∈Val(Q)

(Pn−1,1)(Qv).

Remark 5.3. One may prove that (Pn−1,1)(Q) is dense in (Pn−1,1)(AQ). This
follows from the fact that weak approximation holds for smooth quadrics.

Distribution of rational points on (Pn−1, 1). We can now consider the probabil-
ity measure

µ
(Pn−1,1)
H6B =

1
#(Pn−1,1)(Q)6B

∑
P∈(Pn−1,1)(Q)

H(P)6B

δP (33)

on (Pn−1,1)(AQ). Here, we will investigate the convergence of µ(P
n−1,1)

H6B to a
specific measure on the adelic space of the orbifold, which we have yet to define,
when B goes to infinity. Keeping in mind the description of (Pn−1,1)(AQ) we
gave above, we can define this measure in the following natural way.

Definition. We define the measure ω(Pn−1,1) on (Pn−1,1)(AQ) as

ω(Pn−1,1)(U )=
∑

y∈Zn+1
0 /{±1}

yi squarefree

ωHy (π
−1
y (U )), (34)

where U is an open subset of (Pn−1,1)(AQ) (which is equipped with the subspace
topology coming from H(AQ)) and πy : Q y(AQ)

†
→ (Pn−1,1)(AQ). (Note that

the morphisms πy introduced in (28) define continuous maps πy : Q y(AQ) →

H(AQ) which map Q y(AQ)
† into (Pn−1,1)(AQ).)

Remark 5.4. From this definition of the measure ω(Pn−1,1), it follows that its sup-
port consists of the (disjoint) union of

πy(Q y(AQ)
†) (35)

for all y ∈ Zn+1
0 /{±1} with yi squarefree for each i ∈ {0, . . . , n}. This is a proper

subset of (Pn−1,1)(AQ).

In order to say something about the convergence of µ(P
n−1,1)

H6B , we first define
elementary open subsets of (Pn−1,1)(AQ).

An elementary open subset W of H(AQ) can be defined as

W =
∏

v∈Val(Q)

Wv,

such that Wv ⊂ H(Qv) is defined at finitely many finite places as Wp = red−1
M (X p),

where X p ⊂ H(Z/pM Z) and redM : H(Qp)→ H(Z/pM Z); Wp = H(Qp) for
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any other finite place. Furthermore, at the infinite place v =∞, we require W∞ =⋂
i, j (λi, j xi < x j )⊂ H(R) fixing one of the coordinates xi to one. Here, λi, j ∈R>0

depending on i and j .
To construct elementary open subsets on (Pn−1,1)(AQ), we can take the inter-

section with elementary open subsets of H(AQ).
We will now prove the following theorem.

Theorem 5.5. For every elementary open subset U of (Pn−1,1)(AQ), we have

µ
(Pn−1,1)
H6B (U )→

ω(Pn−1,1)(U )
ω(Pn−1,1)((P

n−1,1)(AQ))

as B goes to infinity.

Proof. Straightforward calculations show that for each admitted y, the inverse
image π−1

y (U ) of an elementary open subset U of (Pn−1,1)(AQ) defines a good

open subset of Q y(AQ)
†.

Now let U be an elementary open subset of (Pn−1,1)(AQ). Recalling (33), the
partition of (Pn−1,1)(Q)+ in (29), and Theorem 5.1, we get

µ
(Pn−1,1)
H6B (U )=

#
{
(u0 : · · · : un) ∈ (P

n−1,1)(Q)∩U :max06i6n |ui |6 B
}

#(Pn−1,1)(Q)6B

∼

∑
y #
{
(x0 : · · · : xn) ∈ Q y(Q)

+
∩π−1

y (U ) :max06i6n |y3
i x2

i |6 B
}∑

y #
{
(x0 : · · · : xn) ∈ Q y(Q)+ :max06i6n |y3

i x2
i |6 B

} .

(Here, we used the abbreviated notation
∑

y to sum over all admitted y ∈ Zn+1
0 .)

Combining the fact that rational points on smooth quadrics are equidistributed,
the definition of the measure in (34), and Theorem 5.1 enables us to complete the
proof. �
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