Vol. 6, No. 5, 2012

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11, 1 issue

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Fields of moduli of three-point $G$-covers with cyclic $p$-Sylow, I

Andrew Obus

Vol. 6 (2012), No. 5, 833–883
Abstract

We examine in detail the stable reduction of G-Galois covers of the projective line over a complete discrete valuation field of mixed characteristic (0,p), where G has a cyclic p-Sylow subgroup of order pn. If G is further assumed to be p-solvable (that is, G has no nonabelian simple composition factors with order divisible by p), we obtain the following consequence: Suppose f : Y 1 is a three-point G-Galois cover defined over . Then the n-th higher ramification groups above p for the upper numbering for the extension K vanish, where K is the field of moduli of f. This extends work of Beckmann and Wewers. Additionally, we completely describe the stable model of a general three-point pn-cover, where p > 2.

Keywords
Field of moduli, stable reduction, Galois cover
Mathematical Subject Classification 2000
Primary: 14H30
Secondary: 14G20, 14G25, 14H25, 11G20, 11S20
Milestones
Received: 9 December 2009
Revised: 22 September 2011
Accepted: 4 November 2011
Published: 31 July 2012
Authors
Andrew Obus
Columbia University
Department of Mathematics
MC4403
2990 Broadway
New York, NY 10027
United States