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On the geometric realization of the inner
product and canonical basis

for quantum affine sln

Kevin McGerty

We give a geometric interpretation of the inner product on the modified quantum
group of ŝln . We also give some applications of this interpretation, including a
positivity result for the inner product, and a new geometric construction of the
canonical basis.

1. Introduction

Let U be a quantized universal enveloping algebra. The positive part U+ of U is
well known to possess a canonical basis [Lusztig 1990; Kashiwara 1991; Lusztig
1991]. In contrast, there is no natural basis for the algebra U itself. However
Lusztig [1992] has defined a variant of the quantized enveloping algebra known as
the modified quantum group. This algebra has essentially the same representation
theory, and can be given a canonical basis Ḃ which packages together natural bases
of the tensor product of a highest and lowest weight U-module (when such modules
exist), in the same way that the canonical basis B of U+ packages together natural
bases of highest weight representations. Just as for B (see [Grojnowski and Lusztig
1993; Kashiwara 1991]) it is possible to characterise this basis, up to sign, in terms
of an involution and an inner product.

In [Beilinson et al. 1990] the quantized enveloping algebra of gln was constructed
geometrically as a limit of certain convolution algebras. Subsequently Lusztig [1993,
Part 4, Notes 1; 1999], and independently Ginzburg and Vasserot [1993], observed
that this construction could be extended to the case of quantum affine sln . More
precisely, one can define a sequence of algebra AD , and maps ψD : AD→ AD−n ,
along with compatible maps φD from the modified quantum group U̇(ŝln) such
that the resulting map into the inverse limit of the system (AD, ψD)D∈N is injective
(in fact we will give a new proof of this injectivity statement in Section 7). One
of the main results of the present paper is a construction of the inner product on
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the modified quantum group U̇(ŝln) as a kind of limit of a natural family of inner
products on the algebras (AD)D∈N. We do this both in the context of function
on Fq-rational points and perverse sheaves, giving two proofs of the fact that our
construction yields the inner product on the modified quantum group — the first is
elementary, using explicit formulae for multiplication in AD,n,n , while the second,
although requiring more machinery, gives a more conceptual explanation in terms of
equivariant cohomology. As applications of these results we give a new construction
of the canonical basis of U̇ in this context (which was already shown in [Schiffmann
and Vasserot 2000] using crystal basis techniques), and a prove a positivity property
for the inner product of elements of Ḃ which is conjectured to hold for arbitrary
types.

2. Background

We begin by recalling the setup of [Lusztig 1999]. Fix a positive integer n. Let D
be a positive integer, ε an indeterminate, k a finite field with q elements and v a
square root of q . Given a free k[ε, ε−1

]-module V of rank D, a lattice in V is a free
k[ε]-submodule of V , of rank D. Let Fn denote the set of n-step periodic lattices
in V , that is, Fn consists of sequences of lattices L = (L i )i∈Z where L i−1 ⊂ L i ,
and L i−n = εL i for all i ∈ Z. We will also write Fn

D if we wish to emphasise the
rank of V . Throughout this paper, if X is a finite set, we will write |X | for the
cardinality of X .

The group G=Aut(V ) of automorphisms of V acts on Fn in the natural way. We
shall be interested in functions supported on Fn and its square which are invariant
with respect to the action of G (where G acts diagonally on Fn

×Fn). Thus we first
describe the orbits of G on these spaces. Let SD,n be the finite set of all a= (ai )i∈Z

such that

• ai ∈ N;

• ai = ai+n for all i ∈ Z;

• ai + ai+1+ · · ·+ ai+n−1 = D for all i ∈ Z.

For L ∈Fn , let |L| ∈SD,n be given by |L|i = dim(L i/L i−1). The G-orbits on Fn

are indexed by this graded dimension: for a ∈SD,n set Fa = {L ∈ Fn
: |L| = a};

then the Fa are precisely the G-orbits on Fn . The G-orbits on Fn
×Fn are indexed,

slightly more elaborately, by the set SD,n,n of matrices A = (ai, j )i, j∈Z such that

• ai, j ∈ N;

• ai, j = ai+n, j+n for all i, j ∈ Z;

• ai,∗+ ai+1,∗+ · · ·+ ai+n−1,∗ = D for any i ∈ Z;

• a∗, j + a∗, j+1+ · · ·+ a∗, j+n−1 = D for any j ∈ Z.
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Here
ai,∗ =

∑
j∈Z

ai, j and a∗, j =
∑
i∈Z

ai, j .

For A ∈SD,n,n set

r(A)= (ai,∗)i∈Z ∈SD,n and c(A)= (a∗, j ) j∈Z ∈SD,n.

For A ∈SD,n,n the corresponding G-orbit OA consists of pairs (L, L′) such that

ai, j = dim
( L i ∩ L ′j
(L i−1 ∩ L ′j )+ (L i ∩ L ′j−1)

)
,

thus L ∈ Fr(A) and L′ ∈ Fc(A).
Let AD;q be the space of integer-valued G-invariant functions on Fn

× Fn

supported on a finite number of orbits. If eA denotes the characteristic function
of an orbit OA, the set {eA : A ∈SD,n,n} is a basis of AD;q . The space AD;q has a
natural convolution product which gives it the structure of an associative algebra.
With respect to the basis of characteristic functions the structure constants are given
as follows. For A, B,C ∈SD,n,n , let ηC

A,B;q be the coefficient of eC in the product
eAeB . Then ηC

A,B;q is zero unless c(A) = r(B), r(A) = r(C) and c(B) = c(C).
Now suppose these conditions are satisfied and fix (L, L′′) ∈ OC . Then ηC

A,B;q is
the number of points in the set

{L′ ∈ Fc(A)) : (L, L′) ∈ OA, (L′, L′′) ∈ OB}.

Clearly this is independent of the choice of (L, L′′), and moreover it can be
shown that these structure constants are polynomial in q , allowing us to construct an
algebra AD,Z[t] over Z[t], which is a free Z[t]-module on a basis {eA : A ∈SD,n,n}

such that AD,Z[t]|t=q =AD,q . In fact we will use the algebra AD,A which is obtained
from AD,Z[t] by extending scalars to A = Z[v, v−1

] where v2
= t and the Q(v)-

algebra AD obtained by extending scalars to Q(v) (we will, by deliberate misuse,
treat v as both an indeterminate and a square root of q , depending on the context).
The algebra AD is sometimes known as the affine q-Schur algebra. In what follows
it will be more convenient to use a rescaled version of the basis {eA}A∈SD,n,n of
AD,A, with elements [A] = v−dA eA, where

dA =
∑
i≥k
j<l

1≤i≤n

ai j akl .

Note that if we define 9([A])= [At
], where (At)i j = a j i , then it is straightforward

to check that 9 is an algebra antiautomorphism (see [Lusztig 1999, Lemma 1.11]
for details), which we will sometimes call the transpose antiautomorphism.
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Next we introduce quantum groups. In order to do this we recall the notion of a
root datum from [Lusztig 1993].

Definition 2.1. A Cartan datum is a pair (I, · ) consisting of a finite set I and a
Z-valued symmetric bilinear pairing on the free abelian group Z[I ], such that

• i · i ∈ {2, 4, 6, . . . } and

• 2 i · j
i ·i
∈ {0,−1,−2, . . . }, for i 6= j .

A root datum of type (I, · ) is a pair Y, X of finitely generated free abelian groups
and a perfect pairing 〈 · , · 〉 : Y × X→ Z, together with embeddings I ⊂ X (i 7→ i)
and I ⊂ Y (i 7→ i ′) such that 〈i ′, j〉 = 2(i · j)/(i · i).

Given a root datum, we may define an associated quantum group U. Since it is
the only case we need, we will assume that our datum is symmetric and simply
laced so that i · i = 2 for each i ∈ I , and i · j ∈ {0,−1} if i 6= j . In this case, U is
generated as an algebra over Q(v) by symbols Ei , Fi , Kµ, i ∈ I , µ ∈ Y , subject to
the following relations.

(1) K0 = 1, Kµ1 Kµ2 = Kµ1+µ2 for µ1, µ2 ∈ Y .

(2) KµEi K−1
µ = v

〈µ,i ′〉Ei , KµFi K−1
µ = v

−〈µ,i ′〉Fi for all i ∈ I , µ ∈ Y .

(3) Ei F j − F j Ei = δi, j (Ki − K−1
i )/(v− v−1).

(4) Ei E j = E j Ei , Fi F j = F j Fi , for i, j ∈ I with i · j = 0.

(5) E2
i E j + (v+ v

−1)Ei E j Ei + E j E2
i = 0 for i, j ∈ I with i · j =−1.

(6) F2
i F j + (v+ v

−1)Fi F j Fi + F j F2
i = 0 for i, j ∈ I with i · j =−1.

Thus U is naturally X -graded, U=
⊕

ν∈X Uν . The subalgebras U+ and U− gener-
ated by the Ei s and Fi s respectively are isomorphic to each other, and indeed are
isomorphic to the Q(v)-algebra f generated by symbols {θi : i ∈ I } subject only to
the relation

θiθ j − θ jθi = 0 for i, j ∈ I with i · j = 0,

θ2
i θ j + (v+ v

−1)θiθ jθi + θ jθ
2
i = 0 for i, j ∈ I with i · j =−1.

Note that the algebra f depends only on the Cartan datum.
We also need to consider the modified quantum group U̇. This is defined by

U̇=
⊕
λ∈X

U1λ, U 1λ = U
/∑

µ∈Y

U(Kµ− v
〈µ,λ〉),

where the multiplicative structure is given in the natural way by the formulae

1λx = x1λ−ν for x ∈ Uν,

1λ1λ′ = δλ,λ′1λ.
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Let U̇A be the A-subalgebra of U̇ generated by {E (n)i 1λ, F (n)i 1λ : n ∈ Z≥0, λ ∈ X}.
It is known [Lusztig 1993] that U̇A is an A-form of U̇, and moreover it is a free
A-module.

To describe the connection between our convolution algebra and quantum groups,
we will need the following notation. For a ∈SD,n let ia ∈SD,n,n be the diagonal
matrix with (ia)i, j = δi, j ai . Let E i, j

∈ S1,n,n be the matrix with (E i, j )k,l equal
to 1 if k = i + sn and l = j + sn for some s ∈ Z, and to 0 otherwise. Let Sn be the
set of all b= (bi )i∈Z such that bi = bi+n for all i ∈ Z. Let Sn,n denote the set of
all matrices A = (ai, j ), i, j ∈ Z, with entries in Z such that

• ai, j ≥ 0 for all i 6= j ;

• ai, j = ai+n, j+n for all i, j ∈ Z;

• for any i ∈ Z the set { j ∈ Z : ai, j 6= 0} is finite;

• for any j ∈ Z the set {i ∈ Z : ai, j 6= 0} is finite.

Thus we have SD,n,n ⊂Sn,n for all D. For i ∈ Z/nZ, let i ∈Sn be given by ik = 1
if k = i mod n, ik =−1 if k = i + 1 mod n, and ik = 0 otherwise. We write a∪i a′

if a = a′+ i . For such a, a′ set

aea′ = ia− E i,i
+ E i,i+1

∈Sn,n,

a′fa = ia′ − E i+1,i+1
+ E i+1,i

∈Sn,n.

Note that if a, a′ ∈SD,n then aea′, a′fa ∈SD,n,n . For i ∈ Z/nZ set

Ei (D)=
∑
[ aea′], Fi (D)=

∑
[ a′fa],

where the sum is taken over all a, a′ in SD,n such that a∪i a′. For a ∈Sn set

Ka(D)=
∑

b∈SD,n

va·b
[ib]

where a · b =
∑n

i=1 ai bi ∈ Z for any a, b ∈ Sn . If we let X = Y = Sn , and
I = Z/nZ, with the embedding of I ⊂ X = Y given by i 7→ i and pairing as given
above, we obtain a symmetric simply laced root datum. We call the quantum group
associated to it U(ĝln) (in fact this is the degenerate, or level zero, form of the affine
quantum group associated to ĝln). It can be shown [Lusztig 1999] that the elements
Ei (D), Fi (D), Ka(D) generate a subalgebra UD which is a quotient of the quantum
group U(ĝln), via the map that the notation suggests. In particular this gives the
algebra AD the structure of a U(ĝln)-module. Since Ei (D), Fi (D), Ka(D) all lie
in AD,A we similarly have an A-subalgebra UD,A. Note that the idea that one may
extend the construction of [Beilinson et al. 1990] to the affine context is mentioned
already in [Lusztig 1993, Notes on Part IV] and [Ginzburg and Vasserot 1993], but
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note that the surjectivity claimed in Theorem 9.2 of [Ginzburg and Vasserot 1993]
is false, as shown in [Lusztig 1999].

Similarly, letting b0 = (. . . , 1, 1, . . .) ∈ Sn , we have a root datum given by
X ′ = Sn/Zb0, Y ′ = {a ∈ Sn

: a · b0 = 0} with embeddings I ⊂ X ′, Y ′ induced
by the above embeddings into X and Y . This new root datum is associated to
(again the degenerate form of) the quantum group U(ŝln). We have an algebra
map φD : U̇(ŝln)→ AD given by E (n)i 1λ 7→ Ei (D)(n)[ia] where a ∈SD,n satisfies
a ≡ λ mod Zb0 if such an a exists, and E (n)i 1λ 7→ 0 otherwise, and similarly for
the F (n)i 1λ. Clearly φD restricts to a map between the integral forms U̇(ŝln)A and
AD,A. It can be readily checked, using a Vandermonde determinant argument, that
the image of φD is exactly UD (see [Lusztig 1999, Lemma 2.8]).

3. Inner product on UD

Definition 3.1. We define a bilinear form

( · , · )D : AD;q ×AD;q →Ql

by

( f, f̃ )D =
∑
L,L′

v
∑
|L|2i −

∑
|L′|2i f (L, L′) f̃ (L, L′), (3-1)

for f and f̃ in AD,q , where L runs over Fn and L′ runs over a set of representatives
for the G-orbits on Fn .

Let OA be a G-orbit on Fn
×Fn , and let

X L
A = {L

′
∈ Fn

: (L, L′) ∈ OA}.

It is easy to check that

2dA− 2dAt =

n∑
i=1

a2
i,∗−

n∑
j=1

a2
∗, j . (3-2)

Thus if A, A′ are in SD,n,n we find that

(eA, eA′)D = δA,A′qdA−dAt
|X L′

At |,

where L′ is any lattice in Fc(A). Thus the basis {eA : A ∈SD,n,n} is orthogonal for
our inner product, and hence ( · , · ) is nondegenerate. If {ηC

A,B;q} are the structure
constants of AD;q with respect to the basis {[A] : A ∈SD,n,n}, then we have

([A], [A′])D = δA,A′v
−dAt η

ic(A)
At ,A;q . (3-3)
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We therefore obtain an inner product on AD,A taking values in A by defining

([A], [A′])D = δA,A′v
−dAt η

ic(A)
At ,A ∈ Z[v, v−1

]. (3-4)

By extending scalars, we obtain a Q(v)-valued symmetric bilinear form on AD . We
now give some basic properties of this inner product:

Proposition 3.2. Let A ∈SD,n , and let f, f̃ ∈ AD . Then

([A] f, f̃ )D = v
dA−dAt ( f, [At

] f̃ ).

Proof. Clearly it suffices to establish this equation in the algebra AD;q . Since the
characteristic functions of G-orbits form a basis of AD;q , we may assume that
f = eB and f̃ = eC , moreover we may assume that

r(A)= r(C), c(A)= r(B), c(B)= c(C). (3-5)

as both sides are zero otherwise. It follows immediately that

[A] · eB = v
−dA eA · eB, vdA−dAt

[At
] · eC = v

dA−2dAt eAt · eC .

Hence, if (L̃, L′) ∈ OC is fixed,

([A] · eB,eC)D = qdC−dCt
|X L′

C t | · v
−dA

∣∣{L′′ : (L̃,L′′) ∈ OA, (L′′,L′) ∈ OB}
∣∣

= vα
∣∣{L,L′′ : (L,L′′) ∈ OA, (L′′,L′) ∈ OB, (L,L′) ∈ OC}

∣∣, (3-6)

where α = 2dC − 2dC t − dA. Similarly, if (L̃′′, L′) ∈ OB is fixed,

vdA−dAt (eB, [At
] · eC)D

= qdB−dBt
|X L′

B t | · v
dA−2dAt

∣∣{L : (L̃′′, L) ∈ OAt , (L, L′) ∈ OC}
∣∣

= vβ
∣∣{L, L′′ : (L′′, L) ∈ OAt , (L′′, L′) ∈ OB, (L, L′) ∈ OC}

∣∣, (3-7)

where β = 2dB − 2dB t + dA− 2dAt . But now considering the diagrams

L
A //

C   

L′′

B
��

L′

and
L

C   

L′′
At
oo

B
��

L′

it is clear that the last line of (3-6) is the same as the last line of (3-7) if α = β, that
is, if

2dC − 2dC t − dA = 2dB − 2dB t + dA− 2dAt (3-8)

But this follows directly from (3-2) and (3-5). �

We have the following easy consequence:
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Corollary 3.3. Let i ∈ Z, and let f, f̃ ∈ AD and c ∈Sn . Then

(1) (Ei ( f ), f̃ )D = ( f, vK i Fi ( f̃ ))D ,

(2) (Fi ( f ), f̃ )D = ( f, vK−i Ei ( f̃ ))D ,

(3) (Kc( f ), f̃ )D = ( f, Kc( f̃ ))D .

Proof. We may assume that f = eA and f̃ = eB . The third equation can then be
checked immediately from the formulas above. The second equation follows from
the symmetry of the inner product and the other two, so it only remains to prove
the first. We may assume that r(A)= r(B)− i and c(A)= c(B), as both sides are
zero otherwise. Set a = r(A), b= r(B). Now from the definitions we have

Ei (eA)= [bea] · eA, vK i Fi (eB)= v
1+i ·a
[afb] · eB .

Since bea = afb
t and dbea − dafb = 1+ i · a, the result now follows immediately

from the previous proposition. �

Remark 3.4. There is a unique algebra antiautomorphism ρ : U(ĝln)→ U(ĝln)

such that
ρ(Ei )= vK i Fi , ρ(Fi )= vK−i Ei ρ(Ki )= Ki

With this we may state the result of the previous corollary in the form

(u( f ), f̃ )D = ( f, ρ(u) f̃ )D for u ∈ U(ĝln) and f, f̃ ∈ AD. (3-9)

Note also that another natural choice1 of definition for an inner product on
AD,q would be given by taking the sum in (3-1) over a set of representative of the
Aut(V )-orbits on F in the first factor, and all lattices in the second (the opposite of
our choice). This inner product, which we denote by ( · , · )tD is obtained from the
one we use via the transpose antiautomorphism 9, that is,

( f, f̃ )tD = (9( f ),9( f̃ ))D,

and thus obeys “transposed” versions of the properties established in this section so
that

( f u, f̃ )tD = ( f, f̃ ρ̄(u))tD, u ∈ U(ĝln), f, f̃ ∈ AD, (3-10)

where ρ̄ is given by ρ̄(x)= ρ(x̄). The precise relation between ( · , · )D and ( · , · )tD
can be given as follows: if f, f̃ ∈ [ia]AD[ib] then

v
∑n

i=1 b2
i ([[b]]!)−1( f, f̃ )D = v

∑n
i=1 a2

i ([[a]]!)−1( f, f̃ )tD. (3-11)

where we define [[a]]! =
∏n

i=1
∏ai

j=1(1−v
−2 j ). In the finite type case of [Beilinson

et al. 1990] this follows easily from considering the orbits on the product of the

1It is clear that one needs to restrict one factor to run over representatives of the G-orbits to avoid
infinity sums — in the finite type case considered in [Beilinson et al. 1990] this issue doesn’t arise.



Inner product and canonical basis for quantum affine sln 1105

space of n-step flags with itself, while in the affine case it requires some more care.
Since we will not use this fact we do not include the details.

Lemma 3.5. (1) For A ∈SD,n,n , we have ([A], [A])D ∈ 1+ v−1Z[v−1
].

(2) For A, A′ ∈SD,n,n and A 6= A′, we have ([A], [A′])D = 0.

Proof. The second part of the statement is obvious. For the first, note that by
[Lusztig 1999, 4.3] the set X L′

At is an irreducible variety of dimension dAt . Since

([A], [A′])D = δA,A′q−dAt
|X L′

At |,

the Lang–Weil estimates [1954] then show that ([A], [A])D lies in 1+ v−1Z[v−1
],

as required. �

Remark 3.6. The results of this section are analogues of the results of [Lusztig
1999, §7]; however our inner product is not the same as that of [Lusztig 1999, 7.1],
and this makes the proofs somewhat simpler. Lusztig’s choice of inner product is
compatible with the left and right U-module structure, in the sense that Equations
(3-9) and (3-10) both hold. Although this is not quite proved in [Lusztig 1999] it
follows from our above discussion using (3-11). However, it does not produce the
inner product on U̇ in the way we need.

4. Inner product on U̇

In this section we will write U̇ to denote the modified quantum group U̇(ŝln)
associated to the root datum (X ′, Y ′) defined in Section 2. We wish to obtain an
inner product on U̇ using those on the family of algebras {UD}D∈N.

We begin with some technical lemmas. Given A ∈Sn,n let ai,≥s =
∑

j≥s ai, j ,
and ai,>s , ai,≤s , etc. similarly.

Lemma 4.1. (a) Let A ∈SD,n,n and a′ = r(A). If there is an a ∈SD,n such that
a∪i a′ (i.e., if a′i+1 > 0), then

[aea′][A] =
∑
s∈Z

ai+1,s≥1

vai,≥s−ai+1,>s

(
1− v−2(ai,s+1)

1− v−2

)
[A+E i,s

−E i+1,s
], (4-1)

where A = (ai, j ).

(b) Let A′ ∈SD,n,n and a = r(A′). If there is an a′ ∈SD,n such that a∪i a′ (i.e.,
if ai > 0), then

[a′fa][A′]=
∑
s∈Z

a′i,s≥1

va′i+1,≤s−a′i,<s

(
1− v−2(a′i+1,s+1)

1− v−2

)
[A′−E i,s

+E i+1,s
], (4-2)

where A′ = (a′i, j ).
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Proof. This follows by rescaling the statement of [Lusztig 1999, Proposition 3.5]. �

Let R be the subring of Q(v)[u] generated by {v j
: j ∈ Z} and by the elements

t∏
i=1

v−2(a−i)u2
− 1

v−2i − 1
for a ∈ Z, t ≥ 1.

For A∈Sn,n let p A be the matrix with (p A)i, j =ai, j+ pδi, j . We have the following
partial analogue of [Beilinson et al. 1990, 4.2].

Lemma 4.2. Let A1, A2, . . . , Ak be matrices of the form aea′ or afa′ , for a, a′ ∈Sn ,
and A any element of Sn,n . Then there exist matrices Z1, Z2, . . . , Zm ∈Sn,n , and
G1,G2, . . . ,Gm ∈R and an integer p0 ∈ Z such that

[p A1][p A2] . . . [p Ak][p A] =
m∑

i=1

Gi (v, v
−p)[p Zi ], (4-3)

for all p ≥ p0.

Proof. This follows using the same argument as in the proof of Proposition 4.2
in [Beilinson et al. 1990] (where a similar but stronger result is proved for the
finite-type case). One uses induction on k. When k = 1 the result follows from
the previous lemma, once we note that both ai,≥s − ai+1,>s and ai+1,≤s − ai,<s are
unchanged when A is replaced with A+ pI . �

Recall from Section 2 that there is a surjective homomorphism φD : U̇→ UD

which, for λ ∈ X , sends Ei 1λ 7→ Ei (D)[ia] and Fi 1λ 7→ Fi (D)[ia] if there is
an a in SD,n such that a = λ mod Zb0, otherwise both Ei 1λ, Fi 1λ are sent to
zero. Let f be the algebra defined in Section 2. Pick a monomial basis of f,
{ζi : i ∈ J } say. The triangular decomposition for U̇ [Lusztig 1992, 23.2.1] shows
that B = {ζ+i ζ

−

j 1λ : i, j ∈ J, λ ∈ X} is a basis of U̇, where + : f → U+, and
− : f → U− are the standard isomorphisms defined by θi 7→ Ei and θi 7→ Fi

respectively. Define a bilinear pairing 〈 · , · 〉D on U̇ via φD as follows:

〈x, y〉D = (φD(x), φD(y))D.

Proposition 4.3. Let k ∈ {0, 1, . . . , n− 1}, then if x, y ∈ U̇

〈x, y〉k+pn

converges in Q((v−1)), as p→∞, to an element of Q(v).

Proof. We may assume that x, y are elements of B. Then we need to show that

〈ζ+i1
ζ−j1 1λ, ζ+i2

ζ−j2 1µ〉k+pn, for i1, i2, j1, j2 ∈ J ; λ,µ ∈ X,
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converges as p→∞. Let ι : f→ f be the Q(v)-algebra antiautomorphism fixing
the generators θi , 1 ≤ i ≤ n. Using Corollary 3.3, it is easy to see that this inner
product differs from

〈1λ, ι(ζ j1)
+ι(ζi1)

−ζ+i2
ζ−j2 1µ〉k+pn (4-4)

by a power of v which is independent of p. But then the definition of the inner
product and Lemma 4.2 show that (4-4) may be written as G(v, v−p) for some
G ∈R. The result then follows immediately from the definition of R. �

Remark 4.4. The proof of the last proposition actually allows us to conclude that

(φD(ζ
+

i ζ
−

j 1λ), [p A])k+pn

converges to an element of Q(v), as p→∞, for any A ∈Sn,n . We will need this
in the next section.

Definition 4.5. We define

〈 · , · 〉 : U̇× U̇→Q(v),

a symmetric bilinear form on U̇ given by

〈x, y〉 =
n−1∑
k=0

lim
p→∞
〈x, y〉k+pn.

Remark 4.6. Although the inner products ( · , · )D satisfy only (3-9) and not (3-10),
the formula (3-11) which relates ( · , · )D and ( · , · )tD can be used to show that our
limiting inner product 〈 · , · 〉 satisfies the analogue of both equations, as indeed
Lusztig shows for his inner product on U̇ in [Lusztig 1993, Proposition 26.1.3].

5. Comparison of inner products

Lusztig has shown that the algebra U̇ has a natural inner product which characterised
by the following result. (Again, in this section U̇ denotes the modified quantum
group attached to the root datum (X ′, Y ′).)

Theorem 5.1 (Lusztig). There exists a unique Q(v) bilinear pairing

( · , · ) : U̇× U̇→Q(v)

such that

(1) (1λ1 x1λ2, 1µ1 y1µ2)= 0 for all x, y ∈ U̇ unless λ1 = µ1, λ2 = µ2;

(2) (ux, y)= (x, ρ(u)y) for all x, y ∈ U̇ and u ∈ U;

(3) (x−1λ, y−1λ)= (x, y) for all x, y ∈ f and λ ∈ X.
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Here (x, y) is the standard inner product on f (see [Lusztig 1993, 1.2.5]). The
resulting inner product is automatically symmetric.

Proof. See [Lusztig 1993, 26.1.2]. �

Theorem 5.2. The inner products 〈 · , · 〉 of Section 4 and ( · , · ) of Theorem 5.1
coincide.

The remainder of this section is devoted to a proof of this theorem. Property (1)
in Theorem 5.1 clearly holds for 〈 · , · 〉, as the representatives for elements of X in
SD,n are distinct when they exist. Property (2) follows from Corollary 3.3; thus it
only remains to verify (3).

Fix λ ∈ X . The algebra f is naturally graded: f=
⊕

ν∈NI fν . For ν ∈ Z[I ] with
ν =

∑
i∈I νi i , let tr(ν)=

∑
i∈I νi . If z is homogeneous we set |z| = ν, where z ∈ fν .

Thus for the third property we may assume that x, y ∈ f are homogeneous, i.e.,
x, y ∈ fν for some ν, and proceed by induction on N = tr(ν). If N = 0 then we are
reduced to the equation

〈1λ, 1λ〉 = 1,

which holds trivially. Now suppose that N > 0 and the result is known for x, y ∈ fν
when tr(ν) < N . If x, y are in fν and tr(ν)= N , then we may assume that they are
monomials, and y = θi z for some z ∈ fν−i . Thus we have

〈x−1λ, y−1λ〉 = 〈x−1λ, Fi z−1λ〉

= 〈vK−i Ei x−1λ, z−1λ〉,

using property (2) of the inner product (which we have already seen holds for both
( · , · ) and 〈 · , · 〉). Now using standard commutation formulas (see [Lusztig 1993,
3.1.6]) this becomes

〈vK−i x−Ei 1λ, z−1λ〉+
1

1− v−2 〈(ir(x)
−
− vK−iri (x)−K−i )1λ, z−1λ〉

where ir and ri are the twisted derivations defined in [Lusztig 1993, 1.2.13]. Tidying
this up we get

1
1− v−2 〈ir(x)

−1λ, z−1λ〉+
〈
v i ·|x |−i ·λ−1

(
x−Ei −

v−i ·λ

v−v−1 ri (x)−
)

1λ, z−1λ
〉

But ir(x), z ∈ fν−i , hence by induction we have 〈ir(x)1λ, z1λ〉 = (ir(x)−, z),
and by standard properties of the inner product ( · , · ) on f we know that

1
1− v−2 (ir(x), z)= (x, θi z);
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thus we are done by induction if we can show that for any x ∈ fν the element

u(x)=
(

x−Ei −
v−i ·λ

v− v−1 ri (x)−
)

1λ (5-1)

annihilates U−1λ. To see this we need some (rather technical) lemmas about
multiplication in AD .

Lemma 5.3. Let A ∈Sn,n be such that ar,s = 0 for r < s unless r = s−1 and r = i
mod n, when ar,r+1 ∈ {0, 1}; then the following hold for p sufficiently large.

(1) For j 6= i we have

F j [p A] =
m∑

k=1

gk(v)[p Zk]

where gk(v)∈A and Zk ∈Sn,n (1≤ k≤m) and moreover gk(v) is independent
both of p and {ar,s : r ≤ s}, and we have (Zk)r,s = ar,s for r < s.

(2) Fi [p A] =
∑
k=1

gk(v)[p Zk]

+ v1−i ·r(A)
(

1− v−2(ai+1,i+1+1+p)

1− v−2

)
[p(A+ E i+1,i+1

− E i,i+1)],

where gk(v)∈A is independent of p and {ar,s :r≤s}, and we have (Zk)r,s=ar,s

for r < s, and the final term occurs only if ai,i+1 = 1.

Proof. By Lemma 4.1, for any A ∈Sn,n and p large enough we have

F j [p A] =
∑

k:(p A) j,k≥1

va j+1,≤k−a j,<k

(
1− v−2(a j+1,k+pδ j+1,k+1)

1− v−2

)
[p A+ E j+1,k

− E j,k
].

We claim that in our case the coefficients are independent of p and of {ar,s : r ≤ s},
unless j ≡ i mod n. Indeed then (p A) j,k ≥ 1 implies that j ≥ k, and hence the
coefficient of [p A+ E j+1,k

− E j,k
] in the sum above is

va j+1,≤k−a j,<k

(
1− v−2(a j+1,k+1)

1− v−2

)
,

which evidently involves only entries ar,s of A with r > s, thus establishing the
first part of the lemma.

For the second part, if j ≡ i mod n then we get the same conclusion except when
k = j + 1, if a j, j+1 = 1 in which case a j+1,≤ j+1 = a j+1,∗ and a j,< j+1 = a j,∗− 1
by our assumptions, so that the term a j+1,≤k − a j,<k = 1− i · r(A), and this yields
the final term in second part, as required. �
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Fix λ ∈ X ′. Then
∑n

i=1 λi = k mod n for a well-defined k ∈ {0, 1, . . . n − 1}.
If D = k + pn, then there is a unique a ∈ X which is a representative of λ ∈ X ′

satisfying
∑n

i=1 ai = D (that is, a ∈SD,n).

Lemma 5.4. Let
∑n

j=1 λ j = k mod n, where k ∈ {0, 1, . . . , n − 1}, and suppose
that D = k+ pn for some p. Then if x is a monomial in the generators {θi : i ∈ I }
we have, for sufficiently large p,

φD(x−Ei 1λ)=
m1∑

k=1

ak(v)[p Bk] +

m2∑
k=1

(bk(v)+ v
−2pck(v))[p Hk],

φD(x−1λ)=
m1∑

k=1

ak(v)[p Bk + E i+1,i+1
− E i,i+1

]

(5-2)

for some Bk, Hk ∈Sn,n independent of p, where (Bk)r,s = (Hk)r,s = 0 for r < s un-
less r = i mod n when (Bk)i,i+1 = 1, and the coefficients ak, bk, ck are independent
of p, with ak ∈A and bk, ck ∈ (v− v

−1)−1A. Moreover, we have

v−i ·λ

v− v−1φD(ri (x)−1λ)=
m2∑

k=1

bk(v)[p Hk]

Proof. We use induction on N = tr(|x |). If N = 0 then the result is clear, since
we have φD(Ei 1λ)= [ia+ E i,i+1

− E i+1,i+1
] and φE(1λ)= [ia] (thus in this case

we have m1 = 1 and m2 = 0). Now suppose the result is known for all y with
tr(|y|) < N . We may write x = θ j z where tr(|z|)= N − 1.

By induction, we have

φD(x Ei 1λ)= F jφD(zEi 1λ)

= F j
( m′1∑

k=1

a′k(v)[p B ′k] +
m′2∑

k=1

(b′k(v)+ v
−2pc′k(v))[p H ′k]

)
,

with a′k, b′k, c′k, B ′k, H ′k as in the statement of the lemma (for x = z). Now applying
Lemma 5.3 to each of these terms, we find that

φD(x Ei 1λ)=
m1∑

k=1

ak(v)[pBk]+δi, jv
1−i ·r(B ′k)

(
1−v−2((B ′k)i+1,i+1+1+p)

1−v−2

)
a′k(v)[pB ′k+E i+1,i+1

−E i,i+1
]

+

m′′2∑
k=1

(bk(v)+ v
−2pck)[p Hk], (5-3)

where (Bk)r,s =0 if r < s unless r = i mod n and s= r+1, and similarly (Hk)r,s =0
if r < s. Thus the first formula of the lemma is established by induction once we
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note that when i ≡ j mod n we may write

v1−i ·r(B ′k)
(

1− v−2((B ′k)i+1,i+1+1+p)

1− v−2

)
a′k(v)[p B ′k + E i+1,i+1

− E i,i+1
]

=
v−i ·r(B ′k)

v− v−1

(
1− v−2pv−2((B ′k)i+1,i+1+1)a′k(v)[p B ′k + E i+1,i+1

− E i,i+1
]

= (bm′′2+k + v
−2pcm′′2+k)[Hm′′2+k],

where the last line defines bm′′2+k , cm′′2+k and Hm′′2+k , and by induction bm′′2+k, cm′′2+k

lie in (v− v−1)−1A, since a′k(v) ∈A. Setting m2 = m′′2 + δi, j m1 the first formula
is therefore established.

To show the second formula, we again use induction so that we have

φD(x−1λ)= F j .

m′1∑
k=1

a′k(v)[p B ′k + E i+1,i+1
− E i,i+1

]

Now by Lemma 5.3 (in particular the independence of the coefficients from the
values of {ar,s : r ≤ s} in all but the final term of the second formula) this is equal to

m1∑
k=1

ak(v)[p Bk + E i+1,i+1
− E i,i+1

],

as required. Finally, to see the “moreover” part of the lemma, note that by definition
we have(

v−i ·λ

v− v−1

)
φD(ri (x)−1λ)=

(
v−i ·λ

v− v−1

)
φD(ri (θ j z)−1λ)

=

(
v−i ·λ

v− v−1

)(
δi, jv

i ·|z|φD(z−1λ)+ F j (φD(ri (z)−1λ)
)
.

Comparing this with (5-3), we note that r(B ′k)= a+ i − |z|, hence 1− i · r(B ′k)=
i · (|z| − λ)− 1, so that

v1−i ·r(B ′k)
(

1− v−2((B ′k)i+1,i+1+p+1)

1− v−2

)
=

(
v i ·(|z|−λ)

v− v−1

)
(1− v−2pv−2((B ′k)i+1,i+1+1)).

Hence the result follow once again by induction. �

Having established these technical lemmas, it is now straightforward to complete
the proof of Theorem 5.2.

Definition 5.5. Let

A−D = span{[A] : ar,s = 0 for all r < s}
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and let πD : AD → A−D be the orthogonal projection; thus its kernel is spanned
by the elements [A] such that ar,s > 0 for some r, s ∈ Z with r < s. Note that
Lemma 5.3 shows that φD(x−1λ) ∈A−D for any x ∈ f. Let sD : f→A−D be given by

x 7→ πD(φD(x−Ei 1λ))

and define rD : f→ A−D by setting

x 7→
v−i ·λ

v− v−1φD(ri (x)−1λ).

Corollary 5.6. Let x ∈ f.

sD(x)− rD(x)=
v−2p

v− v−1

( m∑
k=1

ck(v)[p Zk]

)
for some Zk ∈Sn,n and ck ∈A, independent of p. Hence the element u(x) of (5-1)
is orthogonal to U−1λ.

Proof. Let y ∈ f be a monomial. Then we have

(u, y−1λ)= lim
p→∞
〈u, y−1λ〉k+pn,

and by definition

〈u, y−1λ〉k+pn = (sk+pn(x)− rk+pn(x), φk+pn(y−1λ))k+pn. (5-4)

By Lemma 5.4.

sk+pn(x)− rk+pn(x)= v−2p
( m∑

j=1

c j (v)[p Z j ]

)
, Z j ∈Sn,n,

and by Remark 4.4, we know that ([p Z j ], φk+pn(y−1λ))k+pn converges in Q((v−1))

as p→∞. Thus the right-hand side of (5-4) tends to zero as required. �

6. Geometric interpretation

Recall from [Lusztig 1999, §4] that AD possesses a canonical basis BD consisting
of elements {A}, A ∈ SD,n,n . To define these elements we must assume k is
algebraically closed (either the algebraic closure of Fq , in which case we must use
sheaves in the étale topology, or C in which case we use the analytic topology). Fix
A ∈SD,n , and L ∈ Fr(A).

The space Fn can be given the structure of an ind-scheme such that each set X L
A

(see Section 3) lies naturally in a projective algebraic variety. This follows from
the fact that if we fix i0, j0 ∈ Z, then the subsets

F
p
b,L = {L

′
∈ Fb : ε

p L i0 ⊂ L ′j0 ⊂ ε
−p L i0}
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(for p = 1, 2, . . . ) are naturally projective algebraic varieties each embedded in
the next, and for any fixed A ∈SD,n,n there is a p0 ∈ Z such that X L

A is a locally
closed subset of F

p
b,L for all p ≥ p0. Thus its closure X L

A is naturally a projective
algebraic variety. Let IL

A (or sometimes for convenience just IA) denote the simple
perverse sheaf on X L

A whose restriction to X L
A is C[dA]. Let Hs(IL

A) be the s-th
cohomology sheaf of IL

A. For A1 ∈SD,n,n such that X L
A1
⊂ X L

A we write A1 ≤ A,
and set

5A1,A =
∑
s∈Z

dim(H
s−dA1
y (IL

A))v
s
∈ Z[v−1

],

where H
s−dA1
y (IL

A) is the stalk of Hs−dA1 (IL
A) at a point y ∈ X L

A1
(since AL is

constructible with respect to the stratification of X L
A given by {X L

A1
: A1 < A}, this

is independent of the choice of y). We let

{A} =
∑

A1;A1≤A

5A1,A[A1].

The next result is an immediate consequence of the definitions and Lemma 3.5.
(It is the analogue for our inner product of [Lusztig 1999, Lemma 7.5]).

Lemma 6.1. Let A, A′ ∈SD,n,n . Then

({A}, {A′})D ∈ δA,A′ + v
−1Z[v−1

]. �

The algebra AD may be viewed as a convolution algebra of (equivariant) com-
plexes on Fn . One must be slightly careful here since one cannot (at least straight-
forwardly) consider convolution on Fn

×Fn as the “complexes” one would then
have to consider would have infinite-dimensional support. However, [Lusztig 1999,
4.2] gives one way in which this difficulty can be avoided: given A, B ∈SD,n,n we
may consider the set

Z =
{
(L′, L′′) ∈ Fb×Fc : L′ ∈ X L

A, L′′ ∈ X L′
B
}
.

As with X L
A we see that Z is naturally a projective variety and the projection π

to the second factor gives a proper map Z → Fc. The group G L ⊂ Aut(V ) of
automorphisms stabilising L acts on Fb through a quotient which is naturally
an algebraic group, and thus it makes sense to speak of G L-equivariant perverse
sheaves on Fb and Z . If I denotes the middle extension of the constant sheaf on
the smooth locus of Z , then I has a canonical G L-equivariant structure, and so by
the decomposition theorem its push-forward along π is a direct sum of (shifted)
perverse sheaves of the form IC , (C ∈SD,n,n). We denote this push-forward by
IA ∗ IB . If KD,n,n denotes the free A-module on the set [IL

A] of isomorphism
classes of the sheaves IL

A (as L runs over a set of Aut(V )-orbit representatives
on F) then the convolution ∗ gives KD,n,n an associative A-algebra structure, which
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is shown in [Lusztig 1999, 4.4] to be isomorphic to AD,A via the map 2 given
by 2([IA]) = {A}. Moreover, Lusztig has shown that the submodule K D,n,n of
KD,n,n spanned by the elements {[IA] : A ∈ S

ap
D,n,n} is precisely the preimage

under 2 of the subalgebra UD,A, where S
ap
D,n,n is the subset of SD,n,n consisting

of those matrices A ∈SD,n,n for which, given any p ∈ Z\{0}, there is a k ∈ Z with
ak,k+p = 0.

Remark 6.2. Note also that this isomorphism yields the existence of an A-antilinear
involution on AD,A which fixes the basis elements {A}, (A∈SD,n,n), by transporting
via 2 the action of the Verdier duality functor. We will write this involution as
x 7→ x̄ . Since it fixes the generators Ei (D), Fi (D), Ka it preserves the subalgebra
UD,A and is compatible with the bar involution on U̇ (see [Lusztig 1999, 4.13] for
more details). Moreover, Lusztig [Lusztig 1999, Proposition 4.12] shows that the
antiautomorphism 9 corresponds to the map on KD,n,n which sends [IA] to [IAt ].

We wish to give an interpretation of the inner product of Section 3 in the context
of the algebra KD,n,n . Suppose that A, B ∈SD,n,n . We want to describe ({A}, {B}).
We may assume that r(A)= r(B)= a and c(A)= c(B)= b. Let L′ ∈Fb. Let IL′

At

and IL′
B t denote the simple perverse sheaves on X L′

At and X L′
B t respectively. Then

define
〈IA,IB〉

D
=

∑
i∈Z

dim(H i
c (Fa,IL′

At ⊗IL′
B t ))v

i . (6-1)

(Here as usual ⊗ denotes the derived tensor product.) Clearly 〈 · , · 〉D extends to an
inner product on the whole of AD (viewed as an algebra of equivariant complexes on
Fn). We want to show that it is the same as the inner product ( · , · )D of Section 3, at
least on the subalgebra UD . We start by showing that 〈 · , · 〉D satisfies the properties
of Corollary 3.3.

Lemma 6.3. Let A, B,C ∈SD,n,n , and suppose that OA is a closed orbit. Then

〈IA ∗IB,IC〉
D
= vdA−dAt

〈IB,IAt ∗IC〉
D.

Proof. Both sides are obviously zero unless r(A)= r(C)= a, c(A)= r(B)= b and
c(B)= c(C)= c; thus we assume these equalities from now on. Pick L0

∈Fc, and
pick a subset Y = F

p
b,L0 of Fb large enough that Y is a smooth projective variety

containing X L0
B t . Let

Z A = {(L, L′) ∈ OA : L′ ∈ Y },

We have maps p1 : Z A → Fa and p2 : Z → Y , the first and second projections
respectively. The map p1 is clearly proper (as the fibre is X L

A ∩ Y ) and the map
p2 is smooth with fibre dimension dAt . It follows that the complex I used in the
definition of IA ∗IB is the pull-back p∗2(IB t )[dAt ], and hence we have

(IA ∗IB)
t
= (p1)! p∗2(IB t )[dAt ],
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and thus in particular

(IA ∗IB)
t
⊗IC t = (p1)! p∗2(IB t )[dAt ]⊗IC t

= (p1)!(p∗2(IB t )⊗ p∗1(IC t )[dAt ]),
(6-2)

where we use the projection formula in the second equality.
On the other hand, to compute the product IAt ∗IC we may similarly pick a

smooth projective variety W ⊂ Fa which contains X L0

C t , and consider the variety

Z At = {(L, L′) ∈ OA : L ∈W }.

As above there are projection maps p1, p2, and the product is given by

(IAt ∗IC)
t
= (p2)! p∗1(IC t )[dA].

so that
IB t ⊗ (IAt ∗IC)

t
= IB t ⊗ (p2)! p∗1(IC t )[dAt ]

= (p2)!(p∗2(IB t )⊗ p∗1(IC t ))[dA]

where we again use the projection formula. Now since tensor product is local, we
may restrict to Z A ∩ Z At , and then it is clear that both inner products are given by
the compactly supported cohomologies of p∗2(IB t )⊗ p∗1(IC t ) up to shift, with the
difference in shifts being dA− dAt as required. �

Lemma 6.4. Let A, B ∈SD,n,n , and c ∈Sn . Then

(1) 〈Ei {A}, {B}〉D = 〈{A}, vK i Fi {B}〉D ,

(2) 〈Fi {A}, {B}〉D = 〈{A}, vK−i Ei {B}〉D ,

(3) 〈Kc{A}, {B}〉D = 〈{A}, Kc{B}〉D .

Proof. This follows from the previous lemma exactly as in the proof of Corollary 3.3,
since the varieties X L

a+i ea
are closed. �

The algebra UD is spanned by elements of the form T1T2 . . . TN [ia] where Ts is
either Ei or Fi for some i . Thus, by Corollary 3.3, in order to show that the inner
products ( )D and 〈 · , · 〉D coincide via the isomorphism the previous lemma shows
we need only check that

〈T1T2 . . . TN [ia], [ia]〉
D
= (T1T2 . . . TN [ia], [ia])D

But this will follow if we can show that

〈{A}, [ia]〉
D
= ({A}, [ia])D

for all A ∈ SD,n,n , as {{A} : A ∈ SD,n,n} is a basis of AD. The simple perverse
sheaf corresponding to {ia} = [ia] is just the skyscraper sheaf at the point L′; hence
this last equality follows from directly from the definitions. We have therefore
shown the following result.
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Proposition 6.5. On the algebra UD the inner products 〈 · , · 〉D and ( · , · )D coin-
cide. �

Remark 6.6. It can be shown that the algebra AD is generated by the elements {A}
for which X L

A is closed, and so the above argument adapts to show that the inner
products in fact agree on the whole of AD , but we will not need this. Henceforth
we will use the notation ( · , · )D when referring to the inner product on AD in either
of its incarnations.

We now give a second proof of the agreement of the limit of the inner products
on UD with Lusztig’s inner product on U̇. Recall that Theorem 5.1 characterises the
inner product by three properties, the first two of which are evident for our limiting
inner product. The difficulty then is establishing the third property, which relates the
inner product on U̇ to that on f. We give a proof of this property, which while less
elementary than the proof in Section 5 is more conceptual. In the remainder of this
section we will assume that our base field k is the field of complex numbers C, and
work with sheaves in the analytic topology. We thus briefly review some basics of the
equivariant derived category, following the approach of [Bernstein and Lunts 1994].

We first need to recall the geometric construction of the algebra f and its inner
product (at least in the case of the cyclic quiver). Let Q be the cyclic quiver
1→ 2→ · · · → n → 1. A representation of Q is a Z/nZ-graded vector space
W =

⊕
i∈Z/nZ Wi equipped with linear maps yi : Wi → Wi+1 (where i ∈ Z/nZ).

The space of such representations is denoted EW . Such a representation is nilpotent
if there is an N > 0 such that all compositions of yi s of length greater than N are
equal to zero, and we write Enil

W for the subvariety of nilpotent representations. The
group GW =

∏
i∈Z/nZ GL(Vi ) acts on Enil

W with finitely many orbits. The algebra
f associated to the Cartan datum of affine type ŝln is then given as a convolution
algebra of semisimple perverse sheaves which are GW -equivariant and are supported
on Enil

V ; thus, since the stabiliser of a nilpotent representation is connected, the
simple objects are labelled by the GW -orbits on Enil

W , that is, by the isomorphism
classes of nilpotent representations.

Given a pair (t,m) ∈ Z×Z≥0 we have a representation Vt,m of the cyclic quiver
with basis {e j : t ≤ j ≤ t + p− 1} where e j has degree j mod n, and et → et+1→

· · · et+p−1→ 0. The representations Vt,p are a complete set of representatives for
the isomorphism classes of indecomposable nilpotent representations of the cyclic
quiver; thus, since any nilpotent representation is a direct sum of indecomposables,
we can record the isomorphism class of any such representation by a tableau
(µt,p)t,p∈Z where the entryµt,p records the multiplicity of Vt,m in the representation.
We therefore have a natural parametrisation of the canonical basis B by tableaux
(µt,p)t∈Z,p∈N, where µt,p ∈ N and µt,p = µt−n,p for all t ∈ Z and for fixed t only
finitely many of the µt.p are nonzero.
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If dim(Wi )= νi , (i ∈ Z/nZ), the orbits of GW on Enil
W correspond to the isomor-

phism classes of nilpotent representations of dimension ν hence they are labelled
by the set 6ν consisting of those tableaux (µt,p) for which∑

t,p
t≤k<t+p

µt,p = νk,

and so this same set indexes the ν-homogeneous part of f.
The inner product on f is defined in [Lusztig 1993, §12.2]. Let A1, A2 be GW -

equivariant simple perverse sheaves on Enil
W . Note that the definition there is simply

an explicit calculation of

(A1, A2)=
∑
j∈Z

dim(H j
G,c(A1⊗ A2))v

− j . (6-3)

where H∗G,c denotes equivariant cohomology with compact supports (see below for
more details).

Definition 6.7. Let X be a variety with a G-action (or more compactly, a G-variety).
A resolution of X is a map p : P→ X where P is smooth G-variety on which G
acts freely (so that P = P/G is a smooth variety also). Let π : P → P denote
the quotient map. The category Db

G(X, P) consists of triples (F,G, φ) where F

is an object in Db(P) and G is an object in Db(X) and φ : π∗(F)→ p∗(G) is an
isomorphism.

We will also need to recall the notion of an n-acyclic map.

Definition 6.8. A map f : Y → X is said to be n-acyclic if it has the following
properties:

(i) For any sheaf F on Y the adjunction morphism B→ R0 f∗ f ∗(B) is an iso-
morphism, and Ri f∗ f ∗(F)= 0 for 0< i ≤ n.

(ii) For any base change X̃ → X the induced map f̃ : Ỹ = Y ×X X̃ → X̃ has
property (i).

If we write τ≤n for the truncation functor on the derived category Db(Y ), the first
condition may be rewritten as saying that the adjunction map F→ τ≤n R f∗ f ∗(F)
in Db(Y ) is an isomorphism for any sheaf F (thought of as an complex in Db(Y )
concentrated in degree 0).

For sufficiently acyclic resolutions P (i.e., resolutions p : P → X with p an
n-acyclic map for n large), the cohomologies of objects in the category Db

G(X, P)
can be used to calculate the cohomologies in Db

G(X) as indeed Bernstein and Lunts
take a limit of resolution of X to obtain their definition of the equivariant derived
category. The construction in [Lusztig 1993, §12.2] gives an explicit construction
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of a collection of G-resolutions of a variety which can be made arbitrarily highly
connected (and hence his definition is the same as that of (6-3)) however for our
comparison result we need a more flexible context.

To compare the inner products on f and UD we need to relate the geometry of
periodic lattices to the cyclic quiver. The description of the relation we need goes
back to [Lusztig 1990, §11], and is also used in [Ginzburg and Vasserot 1993].
Here we follow the presentation of [Lusztig 1999]. Suppose that L is a fixed lattice,
and a ∈Sn is such that dim(Vi )= ai (where on the left-hand side of this equality i
is understood to be taken modulo n). Consider the following spaces:

• XL
a,ν =

{
L′ ∈ Fa : L ′i ⊆ L i and dim(L i/L ′i )= νi for all i ∈ Z

}
.

• X̃L
a,ν =

{
(L′, (φi )i∈Z : L′ ∈ XL

a,ν and φi : L i/L ′i → Vi is an isomorphism
}
.

• Ua ⊂ Enil
W consists of those representations with label (µt,p) such that

µt,1+µt,2+ · · · ≤ at for all t ∈ Z.

Both XL
a,ν and X̃L

a,ν can be given a natural structure of algebraic variety (with
XL

a,ν projective), in the same fashion as for X A
L above, and the variety Ua is an open

subset of Enil
W (see [Lusztig 1999, Lemma 5.8]). We then have the correspondence

XL
a,ν X̃L

a,ν
αoo β // Ua,

where the map α is given by (L, φ) 7→ L, while the map β is given by sending
(L, φ) to the element (yi ) ∈ Enil

V where yi given by the composition

Vi
φ−1

i // L i/L ′i // L i+1/L ′i+1
φi+1 // Vi+1 ,

with the middle map induced by the inclusion L i ⊆ L i+1 (the point (yi )i∈Z/nZ is
automatically nilpotent as a representation of Q by the periodicity of the flags
L, L′). The map α is clearly a principal GW -bundle, while the map β is smooth
with connected fibres of dimension

∑
1≤i≤n aiνi (see [Lusztig 1999, Lemma 5.11]).

Notice that if a has ai large enough for all i , then we have Enil
W =Ua. In what

follows we will always assume that this is the case. Moreover, the groups G L (that
is, the group of automorphisms of V which preserve the lattice L) and GW act
naturally on X̃L

a,b, making the maps α and β equivariant (for the actions of G L on
Xa,L and GW on Enil

W ). Thus since X̃L
a,ν is free GW -space (using the map α) it is a

resolution of Enil
W .

Now Lusztig has shown in [Lusztig 1999, §5] that if b is an element of the
canonical basis which corresponds to the simple perverse sheaf P on Enil

W with
associated GW -orbit corresponding to the tableau (µt,p) then φD(b)[ia] ∈ AD,n,n

is the element {B} where bi,i+ j = µi, j and bi i = ai −
∑

p>0 µi,p, and bi j = 0 if
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i > j . Moreover, we have
α∗(IB)∼= β

∗(P)

Picking an isomorphism θ (which is unique up to a scalar since A is simple)
we therefore obtain an element P̃ = (α∗(IB), P, θ) of Db

G(E
nil
W , X̃L

a,ν). Thus if
b1, b2 are elements of Bν with associated tableau (µt,p) and (ρt,p), and P1, P2 the
corresponding perverse sheaves on Enil

W , and B1 and B2 are the associated elements
of S−D,n,n then we may choose elements P̃k = (IBk , Pk, θk) (where k = 1, 2) in the
category Db

G(E
nil
W , X̃L

a,ν) such that

(IA,IB)D =
∑
j∈Z

H j
c (P̃1⊗ P̃2)v

− j ,

where H j
c (P̃1⊗ P̃2) denotes the cohomology with compact supports of the object

P̃1⊗ P̃2 in the category Db
G(E

nil
W , X̃L

a,ν). It follows that if we consider a′ = a+ pb0

instead of a for larger and larger p, this inner product will converge to (b1, b2)

provided the resolutions X̃L
a′,ν become more and more highly connected as the

a′i →∞. Thus the compatibility of the inner products is reduced to showing that
the maps β : X̃ L

a,ν→ Enil
W is k-connected where k→∞ as min{ai }→∞. The rest

of this section will be devoted to a proof of this result.
We wish to use a general lemma which gives a criterion for a map to be n-acyclic.

Since we cannot find a precise reference for what we need, we sketch the result,
though it is presumably well-known to the experts. The statement is a version of the
Vietoris–Begle theorem proved in [Kashiwara and Schapira 1994, Proposition 2.7.8].

Lemma 6.9. Suppose we have a map f : Y → X which has k-connected fibres,
and that we may exhaust Y =

⋃
n Yn , by closed subsets Yn such that Yn ⊂ Int(Yn+1)

and the restriction of f to Yn is proper with k-connected fibres for all n, then
τ≤k R f∗ ◦ f ∗ ∼= id.

Proof. In fact the reference [Kashiwara and Schapira 1994, Proposition 2.7.8] more
is proved under the assumption that the fibres of f are contractible, but the weaker
statement that we need is precisely what follows from the proof given there. The
key point is that in the case where f is proper, one may use proper base change to
conclude the vanishing of the functors R f j

∗ f ∗ in the appropriate range from the
k-connectedness of the fibres. The extension to the noncompact case then follows
via the Mittag-Leffler condition. �

Since the hypotheses of Lemma 6.9 are preserved by base change, it yields a
criterion for a map to be n-acyclic. We now use the above lemma to show that β is
a k-acyclic map for k =min0≤i≤n−1{(ai − νi )}.

Lemma 6.10. The fibres of β : X̃L
a,ν→Ua are k-connected for k=2 min

1≤i≤n
{(ai − νi )}.



1120 Kevin McGerty

pt

Proof. First note that we may view X = X̃L
a,ν as the set

{(ϕi )i∈Z : ϕi : L i/ker(ϕi−1)→Wi },

where ϕi is surjective, ker(ϕi ) is a lattice, and ϕi−n = εϕiε
−1. The corresponding

pair (L′, (φi )) is given by L′= (ker(ϕi ))i∈Z with the isomorphisms φi : L i/L ′i→Wi

induced by the surjections ϕi .
Now suppose that y = (yi )i∈Z/nZ ∈ Enil

W is a nilpotent representation of the cyclic
quiver, and that (ϕi )i∈Z is in the fibre of y. Considering the diagram

0 // ker(ϕi+1) // L i+1
ϕi+1 // Wi+1 // 0

0 // ker(ϕi ) //

OO

L i
ϕi //

OO

Wi+1

yi

OO

// 0

we see that the restriction of ϕi+1 is determined on L i as it is given by yi ◦ ϕi

there. Thus given ϕi , the collection of ϕi+1s which induce yi is given by choosing
a surjection π : L i+1/L i → Wi+1/im(yi ), and then picking a lift of the pair of
maps (π, yi ◦ϕi ) to a map ϕi+1 : L i/ker(ϕi )→Wi+1 (since any such lift will be a
surjective map). Thus the space of such choices is homotopy equivalent to the space
of surjections from L i+1/L i to Wi+1/im(yi ). This is a complex Stiefel manifold,
and hence 2(ai − νi + rank(yi )) connected.

Thus if we set k = 2 min1≤i≤n{(ai − νi )} we may view β−1(y) as an iterated
sequence of fibre bundles over the space B of surjections {ϕ0 : L0→ W0} where
in each case the fibres are at least k-connected. Thus by the standard long exact
sequence β−1(y) will be k-connected provided we can show that B is. Now B is
the space of surjective linear maps from L0 to W0 which intertwine the action of ε
with the composition θ = yn yn−1 yn−2 . . . y0 :W0→W0 (note that since the action
of ε is nilpotent, this shows the representation y must be also) and the following
lemma shows that in fact B is at least 2(D− ν0)≥ 2(a0− ν0) connected, so we are
done. �

Lemma 6.11. Let (U, θ) be a finite-dimensional vector space U equipped with
nilpotent endomorphism θ of Jordan type λ, and let L be a free C[ε]-module of rank
D. Viewing U as a C[ε]-module via ε 7→ θ , the space of C[ε]-module surjections
ϕ : L → U is d-connected, where d = 2(D − `(λ)) and `(λ) is the length of the
partition λ.

Proof. A k[ε]-module map ϕ : L → U is surjective if and only if the induced
k-linear map ϕ̄ : L/ε(L)→ U/θ(U ) is surjective. Moreover, since the space of
surjections from L/ε(L) to U/θ(U ) is a complex Stiefel manifold of k-frames in a
D dimensional space, it is 2(D− `(λ))-connected.
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Now suppose that ψ is a C-linear map from L/ε(L)→U/θ(U ). Let K denotes
the D-dimensional C-vector space spanned by a set of C[ε]-generators of L , say
{e1, . . . , eD}. A k[ε]-module map ϕ : L→U with ϕ̄ =ψ is completely determined
by its restriction to K , and the induced map ϕ′ : K → U is given by a choice of
lifts for the vectors {ψ(ei )} in U (where by abuse of notation we denote by ψ the
composition of L→ L/ε(L)→U/θ(U )), and hence the space of such surjections
is clearly a vector bundle over the Stiefel manifold of surjections from L/εL to
U/θ(U ) which proves the lemma. �

Proposition 6.12. The map β : X̃L
a,ν→ Enil

W is k-connected.

Proof. To show β is a k-connected map we wish to apply Lemma 6.9. By
Lemma 6.10 we know that the fibres of β are k-connected, and hence we must
show that we can filter X̃L

a,ν by subvarieties {Yi }i∈N such that β|Yi is proper while
ensuring that the fibres remain k-connected. To do this we simply note that the
topology of the fibres of β all come from Stiefel manifolds, and these deformation
retract on to the compact Stiefel manifolds. Moreover the retraction can be done
via the Gram–Schmidt process, once we endow our vector spaces with a Hermitian
inner product.

More precisely, we may equip V with an Hermitian inner product (here we will
assume that k = C, as in the rest of this section) so that ε is a unitary map (e.g.,
take a C[ε]-basis {e1, e2, . . . eD} of L0 and define the Hermitian product 〈 · , · 〉D by
setting

〈εle j , ε
mek〉 = δ j,kδl,m, (l,m ∈ Z, 1≤ j, k ≤ D),

Similarly we may equip the {Wi } with Hermitian inner products. Then we have a
norm function N on X̃L

a,ν given by

N(L, (φi ))=max0≤i≤n−1{sup{‖φi (u)‖ : u ∈ L i/L ′i , ‖u‖ = 1}.

where the norm on L i/L ′i is induced from that on V via the canonical isomorphism
(L ′i )

⊥ ∼= L i/L ′i . Now we may set Yi = {(L, (φi )) : i−1
≤ N(L, (φi )) ≤ i}. Since

the map α from X̃L
a,ν to XL

a,ν is a principal GW -bundle over a projective variety, and
the norm condition defining Yi clearly cuts out a compact subset of the fibres of α,
it follows that Yi is compact, and so in particular β|Yi is proper. Thus it remains to
check that the fibres of β|Yi are still k-connected.

To do this we may use the Gram–Schmidt process to iteratively deform the
linear maps in the fibres in the same manner as we checked k-connectedness via
a sequence of fibre bundles. In the case of the choice of the surjection L0→W0

which defines L ′0 and φ0, note that we need only apply Gram–Schmidt to the frame
defining the map from K to W0/θ(W0), where K = spanC{e1, . . . , eD}. �

We can now complete the geometric proof of the equality of our inner product
with that in [Lusztig 1993].
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Theorem 6.13. The inner products 〈 · , · 〉 and ( · , · ) on U̇ coincide.

Proof. As discussed above, it is enough to know that the varieties X̃L
a+pb0,ν

become more and more connected as p tends to infinity. Since the value of
k = min0≤i≤n−1{(ai + p − νi )} clearly tends to infinity as p does (where a is
the representative of λ ∈ X ′ lying in SD,n) the equality of the inner products
follows. �

7. A construction of the canonical basis of U̇(ŝln)

Lusztig [2000] defined homomorphisms

ψD : AD→ AD−n,

which are characterised, at least on UD , by the conditions

• ψD(Ei (D))= Ei (D− n),

• ψD(Fi (D))= Fi (D− n),

• ψD(Ka(D))= va·b0 Ka(D− n),

where b0 has all entries equal to 1. It follows that if we work with the root datum
(X ′, Y ′), i.e., with ŝln , then the maps ψD and φD : U̇→AD,n,n are compatible, that
is ψD+n ◦φD+n = φD .

Let Û= lim
←−

DAD , where the limit is taken over the projective system given by
the maps (ψD)D∈N described above. Since the maps φD are compatible with this
system, there is a unique map φ : U̇→ Û, which factors each of the maps φD

through the canonical map Û→ AD . Theorem 5.2 allows us to give an alternative
proof of the following injectivity result which is due to Lusztig [2000].

Proposition 7.1. The homomorphism φ is injective.

Proof. We first note that the inner product on U̇ is nondegenerate. While this is not
explicitly stated in the book [Lusztig 1993], it follows easily from the results there.
For example, one may use the results of §26.2 and the nondegeneracy of the inner
product defined in §19.1 which is established in Lemma 19.1.4 (all references in
this sentence are to sections of [Lusztig 1993]). Now suppose that u is in the kernel
of φ. Then for every D we have φD(u)= 0, and hence by Theorem 5.2 we see that
u is in the radical of the inner product on U̇, and hence it follows that u = 0. �

The modified quantum group U̇ is equipped with a canonical basis Ḃ which
generalises the canonical basis of U−. We now show that the compatibility of the
inner products can be used to give an essentially self-contained construction of this
basis. Let A=Q(v)∩Q[[v−1

]] and let B± be defined by

B± = {b ∈ U̇A : (b, b) ∈ 1+ v−1A, b̄ = b}.
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We show that this set is a signed basis of U̇. (We will also be able to choose a basis
within this set.)

Remark 7.2. Lusztig [1993] showed that Ḃ is “almost orthonormal” for the inner
product, from which one can also deduce the (weaker) nondegeneracy statement
used in the proof of Proposition 7.1. We prefer the argument given above since
we wish to give a geometric construction of the canonical basis which does not
presuppose its existence.

We begin by showing that B± is closely related to the bases BD of the alge-
bras AD .

Proposition 7.3. Let b ∈ B±. Then there exists λ such that b ∈ U̇1λ. If k is the
residue of

∑n
i=1 λi mod n then there is a p0 > 0 such that for all p > p0 we have

φk+pn(b) ∈ ±BD. Conversely, if b ∈ U̇1λ has φD(b) ∈ ±Bk+pn for all p > p1

(some p1 ∈ N) then b ∈ B±.

Proof. Suppose that b ∈ B±. Then since the inner product U̇ is obtained as a limit
from the inner products on AD , we see that for large p we have (in the notation of
Section 4)

n−1∑
l=0

〈b, b〉l+pn = 1 mod v−1Z[v−1
].

Now for each l, (0 ≤ l ≤ n − 1) set xl+pn = φl+pn(b). It is clear that xl+pn is
bar-invariant (for the bar involution on Al+pn , see Remark 6.2), and lies in Al+pn,A.
Thus we may write xl+pn =

∑
i∈I ai {Ai } for some ai ∈ A and Ai ∈ S

ap
l+pn,n,n ,

where āi = ai . Now suppose that ai ∈ v
mZ[v−1

] for all i ∈ I , and m is minimal with
this property. Then, using the “almost orthonormality” property that ({Ai }, {A j }) ∈

δi, j+v
−1Z[v−1

] (see Lemma 6.1), we see that if J ⊂ I denotes the subset consisting
of those i with ai = civ

m
+ · · · , where ci 6= 0, then

(xl+pn, xl+pn)l+pn =

(∑
i∈J

c2
i

)
v2m
+ lower order terms.

In particular, since (xl+pn, xl+pn) ∈ Z[v−1
] we must have m = 0. But then since

xl+pn is bar-invariant, we must have ai ∈ Z for each i ∈ I . Now since

n−1∑
k=1

(xk+pn, xk+pn) ∈ 1+ v−1Z[v−1
],

it follows that in fact there is a k ∈ {0, 1, . . . , n− 1} such that xl+pn = 0 for l 6= k
and xk+pn = ±{A} for some A ∈ Sk+pn,n,n . Indeed the same argument shows
that the signed basis ±BD is characterised by the properties that its elements are
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bar-invariant, integral, and almost orthonormal. Note also that if λ= c(A) mod Zb0

it is then easy to see that b = b1λ as claimed in the statement of the lemma.
The converse is easier, since we know that U̇ injects into the inverse limit of the

AD , so that if φD(b) ∈AD,A for all D ≡ k mod n, then b ∈ U̇A, and bar invariance
and the condition on (b, b) is also evident. �

To extract a basis from B± we need to recall some results of Lusztig. For this we
need some definitions. Let S−D,n,n, be the set of all B ∈SD,n,n such that bi j = 0
for i > j . Let S+D,n,n be the set of all B ∈SD,n,n such that bi j = 0 for all i < j .
Given A ∈SD,n,n we may define A+ and A− in S+D,n,n and S−D,n,n respectively by

a−i j = ai j if i < j, a−i j = 0 if i > j, a−i i =
∑

j∈Z,i≥ j

ai j ,

a+i j = ai j if i > j, a+i j = 0 if i > j, a−i i =
∑

k∈Z,k≤i

aki .

Lemma 7.4. Let A ∈SD,n,n .

(1) If A ∈S±D,n,n then ψD({A})= {A− I }.

(2) For any A ∈SD,n,n we have

{A−}{A+} = {A}+
∑
A′<A

cA,A′{A′},

where cA,A′ ∈ Z[v, v−1
].

(3) For any A ∈SD,n,n we have

ψD({A})= {A− I }+
∑
A′<A

eA,A′{A′− I },

where {A− I } is interpreted as 0 if A− I does not lie in SD,n,n , and likewise
for {A′− I }.

Proof. In [Lusztig 2000, §3.7] the elements of A ∈S±D,n,n are related to perverse
sheaves on quiver varieties attached to the cyclic quiver, giving a geometric inter-
pretation of part of the map from U̇ to AD,n,n (see also Section 6 and [Lusztig 1999,
§5] for more details). From this and the compatibility of the maps φD and ψD,
part (1) readily follows. Part (2) is [Lusztig 1999, Proposition 4.11]. The last part
follows by induction on the partial order < using parts (1) and (2) together with
the fact that (A− I )± = A±− I . �

Definition 7.5. Next we note that the partial order ≤ has a combinatorial cousin �
which we can make more explicit: Given A, B ∈Sn,n say A� B if for all i < j ∈Z

we have ∑
r≤i;s≥ j

ar,s ≤
∑

r≤i;s≥ j

br,s,
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and for any i > j we have ∑
r≥i;s≤ j

ar,s ≤
∑

r≥i;s≤ j

br,s .

It is easy to check that if A, B ∈SD,n,n and A ≤ B then A � B (see for example
[Beilinson et al. 1990, Lemma 3.6] and [Lusztig 1999, §1.6]). Also, if we write
p A= A+ pI , then it is clear that A� B if and only if p A� p B. Moreover, crucially
in what follows, given A ∈Sn,n the set

{B ∈Sn,n
: B � A, r(B)= r(A), c(B)= c(A)}

is finite.

We now resolve the ambiguity of signs in the definition of B± and extract a basis
from the signed basis B±.

Corollary 7.6. Let

B=
{
b ∈ B± : φD(b) ∈BD ∪ {0} for all D� 0

}
.

Then B± = B t (−B). Moreover, if φk+pn(b) = {Ak+pn}, where Ak+pn ∈ SD,n,n

for all p > p0 say, then Ak+(p+1)n = Ak+pn + I .

Proof. It is only necessary to show that B is well-defined. Suppose b ∈ B±. The
previous proposition shows that if b= b1λ, and k =

∑n
i=1 λi , then for large enough

p, say p ≥ p0, we have φk+pn(b) ∈ ±Bk+pn , and moreover φD(b) = 0 if D is
not congruent to k modulo n. Thus we have φk+pn(b) = εk+pn{Ak+pn} where
εk+pn ∈ {±1} and Ak+pn ∈ Sk+pn,n,n for all p ≥ p0. But now by part (3) of
Lemma 7.4 we have

ψk+(p+1)n({Ak+(p+1)n})= {Ak+(p+1)n − I }+
∑

B�Ak+pn

eB{B}, (eB ∈A),

whereas ψk+(p+1)n(φk+(p+1)n(b))= φk+pn(b)= εk+pn{Ak+pn}. Comparing these
two expressions we conclude that εk+(p+1)n= εk+pn and {Ak+(p+1)n}= {Ak+pn}+ I
as claimed. �

Corollary 7.7. The set B is almost orthonormal, that is

(b1, b2) ∈ δb1,b2 + v
−1Z[[v−1

]].

Thus the set B is linearly independent.

Proof. Let b1, b2 ∈ B. Take λ ∈ X ′ so that b1 = b11λ. Then either b21λ = 0, in
which case the corollary holds trivially, or b2 = b21λ. In that case, we see from
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Corollary 7.6 that we may find a p0 ∈N and A, B ∈Sn,n so that φp0+pn(b)= {p A}
and φp0+pn(b2)= {p B} for all p ≥ 0. But then it follows from Lemma 6.1 that

({p A}, {p B}) ∈ δA,B + v
−1Z[[v−1

]].

for all p, and hence taking the limit we obtain the same result for b1, b2. To see that
this implies the linear independence of the set B, consider a dependence involving
the minimal number of elements of B:

k∑
j=1

p j b j = 0,

where by clearing denominators if necessary we may assume that pk ∈ Z[v, v−1
]

(and by minimality they are all nonzero) and bk ∈ B. We may moreover assume,
multiplying through by an appropriate power of v, that pi = ni +v

−1Z[v−1
], where

ni ∈ Z, and, reordering if necessary, that n1 6= 0. Pick D large enough so that

n−1∑
l=0

(φD(br ), φD(bs))D+l = (br , bs) mod v−1Z[[v−1
]] for 1≤ r, s ≤ k.

and moreover that for each j we have φD(b j )= {B j } for some B j ∈SD,n,n . Then

0=
( k∑

r=1

pr br ,

k∑
s=1

psbs

)
=

∑
1≤r,s≤k

pr ps(br , bs)

≡

∑
1≤r,s≤k

pr ps({Br }, {Bs})D mod v−1Z[v−1
]

≡

∑
1≤r≤k

n2
r mod v−1Z[v−1

],

which is a contradiction, since n1 6= 0. �

We now show that if A∈Sn,n then for large enough p there is a unique b∈B such
that φD(b)= {p A} (where D =

∑
i∈[1,n], j∈Z ai j + pn), and hence by Corollary 7.6

it will also follows that for large enough p we have ψD({p A})= {p−1 A}. We need
to recall the relation between the canonical basis B of U− and BD. Recall from
Section 6 that the representation theory of the cyclic quiver allows us to parametrise
B by tableaux (µt,p)t∈Z,p∈N, where µt,p ∈ N and µt,p = µt−n,p for all t ∈ Z and
for fixed t only finitely many of the µt.p are nonzero. The ν-graded part Bν is then
indexed by 6ν .

The correspondence described in Section 6 gives a bijection between those (µt,p)

in 6ν satisfying
µi,1+µi,2+ · · · ≤ ai for all i,
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and the orbits in corresponding to matrices B ∈ S−D,n,n with r(B) = a. (Note
that if the integers ai are sufficiently positive, this gives an injection from Bν
into S−D,n,n .) Using the same correspondence, composed with the transpose map
9, we obtain a similar correspondence between (appropriate subsets of) Bν and
elements of S+D,n,n . These can be combined to give a correspondence between the
set of triples T= {(b1, b2, λ) : b1, b2 ∈ B, λ ∈ X} and elements of Sn,n as follows:
the elements b1, b2 corresponds to tableau (µt,p) and (ρt,p) say, and we define
A = A(b1, b2, λ) ∈ Sn,n by setting

ai j =


µi, j−i if i < j,
ρ j,i− j if i > j,
λi −

∑
t≥1
µi,t −

∑
s≥1

ρi if i = j.

We will write bA for the element b+1 1λb−2 ∈ U̇, and DbA for its image under φD . It
follows from the [Lusztig 1999, §5] and [Lusztig 1999, Proposition 4.11] that if∑n

i=1 λi = D and the entries of A(b1, b2, λ) are all nonnegative, then

DbA = {p A}+
∑

B≺p A

eB,p A{B} (7-1)

Proposition 7.8. Let A ∈Sn,n . For large enough p we have

ψD({p A})= {p−1 A}

Proof. Via the bijection described above between T and Sn,n , we may find a subset
Ta of T such that {A(b1, b2, a)} is a basis of AD[ia] as (b1, b2, a) runs over the set
Ta. Then the elements DbA are clearly also a basis of AD[ia] since they are related
to the elements {A} by an upper triangular matrix, and moreover they satisfy

(1) DbA = DbA,

(2) DbA ∈ UD,A.

As in the proof of Proposition 7.3, the basis {{A} : A ∈SD,n,n} is characterised up
to sign by the properties of being bar-invariant, integral (that is, contained in UD,A),
and being almost orthonormal, so that

({A}, {B})D ∈ δA,B + v
−1Z[v−1

].

(In fact, Proposition 7.3 shows that less than this characterises ±BD).
We now show that one can obtain {A} from DbA by a Gram–Schmidt style

process. Indeed if A is minimal for the ordering �, then clearly {A} = bA. Thus
we consider the following claim:
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• For each A ∈Sn,n , there is a p0 ∈ Z such that for all p > p0 we have

{p A} = DbA+
∑
A′<A

dA′,A DbA′ .

where dA′,A ∈A do not depend on p, and D = pn+
∑

i, j :1≤i≤n ai j .

The proof of the proposition now follows immediately since ψD(DbA)=D−n bA.
We show this by induction on �: if A is minimal, then (7-1) implies that bA = {A},
and we are done. Thus suppose that the result is known for all B ≺ A, and let I be
the (finite) set

{B ∈Sn,n
: B � A, r(A)= r(B), c(A)= c(B)}.

Now for x in the span of {{B} : B ∈ I }, set N (x)=max{ν(x, {B})D : B ∈ I, B 6= A},
where for f ∈ A we let ν( f ) denote the highest power of v occurring in f . Let
N = N (bA), and suppose that N ≥ 0. Let J denotes the subset of I for which
ν(bA, {B})= N , so that if B ∈ J we have

(bA, {B})D = cBv
N
+ lower order terms (cB ∈ Z).

Now ({B}, {B})D ∈ 1+ v−1Z[v−1
], so we may recursively solve for

aB ∈ v
−N Z[v] ∩Z[v−1

]

such that aB .({B}, {B})D ∈ 1+ v−N−1Z[v−1
]. It follows immediately that we may

find eB ∈A such that ēB = eB and eB = cBv
N aB mod v−1Z[v−1

]. Then we set

b′A = bA−
∑
B∈J

eB{B}.

It follows from the almost orthonormality of the {B} that (b′A, {B})D ∈ v
N−1Z[v−1

],
and b′A is again bar-invariant, lies in UD,A, and satisfies N (b′A) < N . We may
thus iterate this construction to obtain an element b′′A which has N (b′′A) ≤ −1, is
bar-invariant, and lies in UD,A. But then we claim that we must have b′′A = {A}.
Indeed we know from (7-1) that we can write

b′′A = {A}+
∑
B≺A

fB{B}

for some fB ∈A with f̄B = fB . If it is not the case that fB = 0 for all B, then there
is some B with ν( fB)≥ 0 maximal, whence we see that ν(b′′A, {B})D ≥ 0 which is
a contradiction. Thus b′′A = {A} as required.

Now examining the above process, we see that it uses only the values of
(bA, {B})D down to order to v−N (bA)Z[v−1

], and by induction we see that these, for
large enough p are determined by the values of (bA, bB)D , down to some possibly
lower order (determined by the coefficients dB,C ). Since the values of (bA, bB)D

converge in Z((v−1)) we see that we may find a large enough p0 so that {p A} is
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a linear combination of {φD(bA′) : A′ � A} with coefficients independent of p as
required. �

We can now show that the set B is a basis of U̇.

Theorem 7.9. B is a basis of U̇.

Proof. Notice first that given any b ∈ B, Proposition 7.3 implies that φD(b) ∈
BD∪{0} for large enough D, and is nonzero provided D has a fixed residue modulo
n. By Corollary 7.7 we know that the elements of B are linearly independent, so we
need only show that they span U̇. To do this it is enough to show that the element
b+1 b−2 1λ for b1, b2 ∈B and λ ∈ X lie in the span of B, since they form a basis for U̇.
But the claim in the proof of Proposition 7.8 shows that we may find an element of
B which is a linear combination of such basis elements with leading coefficient 1,
so that the matrix relating the two sets is invertible and B indeed spans U̇. �

Remark 7.10. The results of [Lusztig 1993, §26.3] then show that B= Ḃ, and thus
the results of this section give a new proof of the conjecture made in [Lusztig 1999,
§9.3], which was originally proved by Schiffmann and Vasserot [2000]. Our goal
here was to construct the canonical basis purely within the context of the inverse
system UD; thus, unlike Schiffmann and Vasserot, we do not need to assume the
existence of Ḃ, nor use any properties of crystal bases. It should be noted however
that by using results of Kashiwara on global crystal bases, those authors have
obtained a more precise result (also conjectured in [2000]) saying that the maps φD

are all compatible with the canonical basis; i.e., if b ∈ Ḃ then φD(b) ∈BD ∪ {0},
and moreover the kernel of φD is spanned by a subset of Ḃ. The results of this
section show that this theorem would also follow if we could show that the maps
ψD are compatible with the bases BD and BD−n , a question which can be phrased
purely geometrically (in terms of perverse sheaves). Note that it is not true that the
maps ψD send BD to BD−n ∪ {0}, as was pointed out already in [Lusztig 2000,
1.12]. It is possible to give a construction of the maps ψD in the context of perverse
sheaves on the ind-varieties Fa, (i.e., to show that there exists a functor on the
derived category that preserves perverse sheaves (up to shift) and induces ψD on
the Grothendieck group which moreover is compatible with the “convolution” on
KD,n,n), but it is not immediately clear why this functor preserves simple objects.

8. A positivity result

We may combine Theorem 5.2 and Proposition 6.5 to prove a positivity result for
the inner product of two elements of Ḃ. This has been conjectured by Lusztig for
all types.

Theorem 8.1. Let b1, b2 ∈ Ḃ. Then

(b1, b2) ∈ N[[v−1
]] ∩Q(v).
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Proof. We may assume that there is a λ ∈ X such that b11λ = b1, and b21λ = b2.
Let k ∈ {0, 1, . . . , n− 1} be such that

∑n
j=1 λ j = k mod n. Then

(b1, b2)= lim
p→∞

(φk+pn(b1), φk+pn(b2))k+pn

By Proposition 7.3 we know that for all large enough D we have φD(b1), φD(b2)

are in BD , hence it is clear from (6-1) that

(φk+pn(b1), φk+pn(b2))k+pn ∈ N[v, v−1
].

However, it follows also from Lemma 6.1 that the left-hand side is in fact in N[v−1
]

(this can also be seen directly, using the definition of intersection cohomology
sheaves). Hence (b1, b2) is the limit of elements of N[v−1

], and the statement
follows. �

Remark 8.2. All the results of this paper have analogues for the nonaffine case,
which can be proved in exactly the same way. The module V is replaced by a
D-dimensional vector space over k, and the space Fn of n-step periodic lattices
should be replaced by the space of n-step flags in that vector space. In this case
the algebra corresponding to UD is actually equal to the algebra analogous to AD ,
hence the results are sometimes more straightforward.
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