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Grothendieck’s trace map for arithmetic
surfaces via residues and higher adèles

Matthew Morrow

We establish the reciprocity law along a vertical curve for residues of differential
forms on arithmetic surfaces, and describe Grothendieck’s trace map of the surface
as a sum of residues. Points at infinity are then incorporated into the theory and
the reciprocity law is extended to all curves on the surface. Applications to adelic
duality for the arithmetic surface are discussed.

1. Introduction

Grothendieck’s trace map for a smooth, projective curve over a finite field can be
expressed as a sum of residues over all closed points of the curve; see [Hartshorne
1977, III.7.14]. This result was generalised to algebraic surfaces by A. Parshin
[1976] using his theory of two-dimensional adèles and residues for two-dimensional
local fields. The theory for arbitrary-dimensional algebraic varieties is essentially
contained in A. Beilinson’s short paper [1980] on higher-dimensional adèles, with
considerable additional work by J. Lipman [1984], V. Lomadze [1981], D. Osipov
[1997], A. Yekutieli [1992], et al. In all these existing cases one restricts to varieties
over a field. The purpose of this paper (together with [Morrow 2010]) is to provide
the first extension of the theory to nonvarieties, namely to arithmetic surfaces, even
taking into account the points “at infinity”.

In the standard approach to Grothendieck duality of algebraic varieties using
residues, there are three key steps. Firstly one must define suitable local residue
maps, either on spaces of differential forms or on local cohomology groups (the
latter approach is followed by E. Kunz [2008] using Grothendieck’s residue symbol
[Hartshorne 1966, III.§9]). Secondly, the local residue maps are used to define
the dualising sheaf, and finally the local residue maps must be patched together
to define Grothendieck’s trace map on the cohomology of the dualising sheaf. In
[Morrow 2010], we carried out most of the first two steps for arithmetic surfaces,
as we now explain.

MSC2010: primary 14H25; secondary 14B15, 14F10.
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Section 2 provides a detailed summary of the required results from [Morrow
2010], while also establishing several continuity and vanishing results which are
required later. Briefly, given a two-dimensional local field F of characteristic zero
and a fixed local field K ≤ F , we introduced (see Section 2A) a relative residue
map

ResF :�
cts
F/K → K ,

where �cts
F/K is a suitable space of “continuous” relative differential forms. In the

case F ∼= K ((t)), this is the usual residue map; but if F is of mixed characteristic,
then this residue map is new (though versions of it appear in I. Fesenko’s two-
dimensional adelic analysis [2010, §27, Proposition] and in D. Osipov’s geometric
counterpart [1997, Definition 5] to this paper). Then the reciprocity law for two-
dimensional local rings was proved, justifying our definition of the relative residue
map for mixed characteristic fields. For example, suppose A is a characteristic zero,
two-dimensional, normal, complete local ring with finite residue field, and fix the
ring of integers of a local field OK ≤ A. To each height-one prime y ⊂ A, one
associates the two-dimensional local field Frac Ây and thus obtains a residue map
Resy :�

1
Frac A/K → K (see Section 2B). We showed∑

y

Resy ω = 0

for all ω ∈�1
Frac A/K . The main new result in Section 2 is Lemma 2.8, stating that

the residue map Resy is continuous with respect to the m-adic topology on A.
Geometrically, if π : X→ Spec OK is an arithmetic surface and one chooses a

closed point x ∈ X and an irreducible curve y ⊂ X passing through x , then one
obtains a residue map

Resx,y :�
1
K (X)/K → Kπ(x),

where Kπ(x) is the completion of K at the prime sitting under x (see Section 2D
for details). The established reciprocity law now takes the form∑

y : y3x

Resx,y ω = 0,

where one fixes ω ∈�1
K (X)/K and the summation is taken over all curves y passing

through a fixed point x .
As discussed, the second step in a residue-theoretic approach to Grothendieck

duality is a suitable description of the dualising sheaf. This was also given in
[Morrow 2010]: if π : X→ Spec OK is an arithmetic surface (the precise require-
ments are those given at the start of Section 3), then the dualising sheaf ωπ of π



Grothendieck’s trace map via residues and higher adèles 1505

can be described as follows:

ωπ (U )= {ω ∈�1
K (X)/K : Resx,y( f ω) ∈ ÔK ,π(x) for all x ∈ y ⊂U and f ∈ OX,y}

where x runs over all closed points of X inside U and y runs over all curves of U
containing x .

This paper treats the third step of the process. In order to patch the local residues
together to define the trace map on cohomology, one must, just as in the basic case
of a smooth, projective curve, establish certain reciprocity laws. For an arithmetic
surface, these take the form∑

y : y3x

Resx,y ω = 0,
∑

x : x∈y

Resx,y ω = 0.

In both cases one fixes ω ∈�1
K (X)/K , but the first summation is taken over all curves

passing through a fixed point x while the second summation is over all closed points
of a fixed vertical curve y. The first of these laws, namely reciprocity around a
point, has already been discussed, while Section 3 establishes the reciprocity law
along a vertical curve: the key idea of the proof is to reduce to the case when OK is
a complete discrete valuation ring and then combine the reciprocity law around a
point with the usual reciprocity law along the generic fibre.

Section 4 uses the Parshin–Beilinson higher adèles for coherent sheaves to express
Grothendieck’s trace map

trπ : H 1(X,ωπ )→ OK

as a sum of the residue maps (Resx,y)x,y . Indeed, the reciprocity laws imply that
our residue maps descend to cohomology: the argument is analogous to the case of
a smooth, projective curve, except we must work with adèles for two-dimensional
schemes rather than the more familiar adèles of a curve. Remark 4.11 explains the
basic framework of the theory in arbitrary dimensions.

Whereas the material discussed above is entirely scheme-theoretic, the final part
of the paper is the most important and interesting from an arithmetic perspective as
it incorporates archimedean points (points at infinity). It is natural to ask whether
there exists a reciprocity law for all curves on X , not merely the vertical ones, when
OK is the ring of integers of a number field. By compactifying Spec OK and X to
include archimedean points in Section 5, we indeed prove a reciprocity law for any
horizontal curve y on X . Owing to the nonexistence (at least naïvely) of Spec F1,
this takes the form ∏

x : x∈y

ψx,y(ω)= 1,

where ψx,y : �
1
K (X)/K → S1 are absolute residue maps (additive characters) and

ω lies in�1
K (X)/K . This provides detailed proofs of various claims made in [Fesenko
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2010, §27, §28] concerning the foundations of harmonic analysis and adelic duality
for arithmetic surfaces, and extends Parshin’s absolute reciprocity laws for algebraic
surfaces to the arithmetic case. Essentially this yields a framework which encodes
both arithmetic duality of K and Grothendieck duality of X→ S, and which would
be equivalent to Serre duality were X a geometric surface; a comparison of these
results with Arakelov theory has yet to be carried out but there is likely an interesting
connection.

Combined with [Morrow 2010], which should be seen as a companion to this
article and which contains a much more extensive introduction to the subject, these
results provide a theory of residues and explicit duality for arithmetic surfaces. The
analogous theory for an algebraic surface fibred smoothly over a curve is due to
Osipov [1997], who proved, using Parshin’s reciprocity laws for an algebraic surface,
the analogues of our reciprocity laws around a point and along a vertical curve, and
also showed that the sum of residues induces the trace map on cohomology.

Notation. When differential forms appear in this paper, they will be 1-forms, so
we write �A/R in place of �1

A/R to ease notation. Frac denotes the total ring of
fractions; that is, if R is a commutative ring then Frac R = S−1 R, where S is the
set of regular elements in R. The maximal ideal of a local ring A is usually denoted
mA; an exception to this rule is when A = OF is a discrete valuation ring with
fraction field F , in which case we prefer the notation pF .

When X is a scheme and n ≥ 0, we write Xn for the set of codimension-
n points of X . X0 denotes the closed points of X . Typically, X will be two-
dimensional, in which case we will often identify any y ∈ X1 with the corresponding
irreducible subscheme {y}; moreover, “x ∈ y” then more precisely means that x is
a codimension-1 point of {y}. “Curve” usually means “irreducible curve”. Given
z ∈ X , the maximal ideal of the local ring OX,z is written mX,z .

I ⊂1 A means that I is a height-one ideal of the ring A.

2. Relative residue maps in dimension two

In [Morrow 2010], a theory of residues on arithmetic surfaces was developed; we
repeat here the main definitions and properties, also verifying several new results
which will be required later.

2A. Two-dimensional local fields. Suppose first that F is a two-dimensional local
field (that is, a complete discrete valuation field whose residue field F is a local
field1) of characteristic zero, and that K ≤ F is a local field (this local field K will

1In this paper our local fields always have finite residue fields, though many of the calculations
continue to hold in the case of perfect residue fields.
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appear naturally in the geometric applications); write

�cts
F/K =�

sep
OF/OK

⊗OF F

(for a module over a local ring A, we write M sep
=M/

⋂
n≥0 mn

A M for the maximal
separated quotient of M). Let kF be the algebraic closure of K inside F ; this is a
finite extension of K and hence is also a local field.

If F has equal characteristic then any choice of a uniformiser t ∈ F induces a
unique kF -isomorphism F ∼= kF ((t)), and �sep

OF/OK
= OF dt . The relative residue

map, which does not depend on t , is the usual residue map which appears in the
theory of curves over a field (e.g., [Serre 1988, II.7]):

resF :�
cts
F/K → kF , f dt 7→ coeftt−1 f,

where the notation means that f is to be expanded as a series in powers of t and
the coefficient of t−1 is to be taken.

If F is a mixed characteristic two-dimensional local field then F/kF is an infinite
extension of complete discrete valuation fields, and F is called standard if and only
if e(F/kF )= 1. If F is standard then any choice of a first local parameter t ∈ OF

(that is, t̄ is a uniformiser in the local field F) induces a unique kF -isomorphism
F ∼= kF {{t}} (defined to be the completion of Frac(OkF [[t]]) at the discrete valuation
corresponding to the prime ideal pkF OkF [[t]]; see [Morrow 2010, Example 2.10]),
and �sep

OF/OK
= OF dt ⊕Tors�sep

OF/OK
; so we may define

resF :�
cts
F/K → kF , f dt 7→ − coeftt−1 f,

which was shown in [ibid., Proposition 2.19] not to depend on the choice of t . (The
notation again means that f is to be expanded as a series in powers in t , but this
time in the field kF {{t}}, and the coefficient of t−1 taken). If F is not necessarily
standard, then choose a subfield M ≤ F which is a standard two-dimensional local
field such that F/M is a finite extension, and which satisfies kM = kF . The relative
residue map in this case is defined by

resF = resM ◦TrF/M :�
cts
F/K → kF ,

which was shown in [ibid., Lemma 2.21] not to depend on M .
In both cases, it is also convenient to write ResF = TrkF/K ◦ resF :�

cts
F/K → K .

Also note that resF is kF -linear, and that therefore ResF is K -linear. The expected
functoriality result holds:

Lemma 2.1. Let L be a finite extension of K . Then �cts
L/K is naturally isomorphic

to �cts
F/K ⊗F L , so that there is a trace map TrL/F : �

cts
L/K → �cts

F/K . If ω ∈ �cts
L/K ,

then
ResF (TrL/F ω)= ResL ω in K .
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Proof. In the equal characteristic case this is classical; see, for example, [Serre
1988, II.12 Lemma 5]. For the mixed characteristic case, see [Morrow 2010,
Proposition 2.22]. �

Next we show a couple of results on the continuity of residues which, though
straightforward, will be frequently employed. Lemma 2.8 is a stronger, similar
result.

Lemma 2.2. Suppose that ω ∈ �cts
F/K is integral, that is, belongs to the image of

�
sep
OF/OK

. Then resF ω∈OkF and so ResF ω∈OK ; in fact, if F is equal characteristic,
then resF ω = 0.

Proof. In the equal characteristic or standard case this follows immediately from
the definitions. In the nonstandard, mixed characteristic case, one picks a standard
subfield M as above and uses a classical formula for the different of OF/OM to
show that the trace map �cts

F/K →�cts
M/K may be pulled back to �sep

OF/OK
→�

sep
OM/OK

,
from which the result follows. See [Morrow 2010, §2.3.4] for the details. �

Remark 2.3. It was also shown in [ibid., Corollary 2.23] that, when F has mixed
characteristic, the following diagram commutes:

�
sep
OF/OK

ResF //

��

OK

��
�F/K e(F/K )ResF

// K

The top horizontal arrow here makes sense by the previous lemma, and the lower
horizontal arrow is the ramification degree e(F/K ) times the residue map for the
local field F of finite characteristic, which contains the finite field K .

Corollary 2.4. Fix ω ∈�cts
F/K . Then

F→ K , f 7→ ResF ( f ω)

is continuous with respect to the discrete valuation topologies on F and K ; in fact,
if F is equal characteristic, then it is even continuous with respect to the discrete
topology on K .

Proof. After multiplying ω by a nonzero element of F , we may assume that ω
is integral in the sense of the previous lemma. If F is equal characteristic then
Ker( f 7→ resF ( f ω)) contains the open set OF , proving continuity with respect to
the discrete topology on K . Now assume F has mixed characteristic and let π be a
uniformiser of K ; since F/K is an extension of complete discrete valuation fields,
we may put e = e(F/K )= νF (π) > 0. Then the previous lemma implies

ResF (p
es
F ω)= ResF (π

sOFω)= π
s ResF (OFω)⊆ ps

K
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for all s ∈Z, proving continuity with respect to the discrete valuation topologies. �

2B. Two-dimensional complete rings. Let A be a two-dimensional, normal, com-
plete, local ring of characteristic zero, with a finite residue field of characteristic p;
set F = Frac A. Then there is a unique ring homomorphism Zp→ A and it is a
closed embedding; let OK be a finite extension of Zp inside A; that is, OK is the
ring of integers of K , which is a finite extension of Qp.

If y ⊂ A is a height-one prime (we often write y ⊂1 A), then Ây is a complete
discrete valuation ring; its field of fractions Fy := Frac Ây is a two-dimensional
local field containing K . Moreover, there is a natural isomorphism

�
sep
A/OK
⊗A Ây ∼=�

sep
Ây/K

(see [ibid., Lemma 3.8]); so we define Resy :�
sep
A/OK
⊗A F→K to be the composition

�
sep
A/OK
⊗A F −→�

sep
A/OK
⊗A Fy ∼=�

cts
Fy/K

ResFy
−−−→ K .

The definition of the residue maps is justified by the following reciprocity law:

Theorem 2.5. Let ω∈�sep
A/OK
⊗A F ; then for all but finitely many height-one primes

y ⊂ A the residue Resy ω is zero, and∑
y⊂1 A

Resy ω = 0.

Proof. See [ibid., Theorem 3.10]. �

As is often the case, the residue law was reduced to a special case by taking
advantage of functoriality:

Lemma 2.6. Suppose that C is a finite extension of A which is also normal; set
L = Frac C. Then for any ω ∈ �sep

C/OK
⊗C L and any height-one prime y ⊂ A, we

have

Resy(TrL/F ω)=
∑
Y |y

ResY ω,

where Y varies over the finitely many height-one primes of C which sit over y.

Proof. See [ibid., Theorem 3.9]. �

The proof of the reciprocity theorem also required certain results on the continuity
of the residues whose proofs were omitted in [ibid.]; we shall require similar such
results several times in this article and now is a convenient opportunity to establish
them:
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Lemma 2.7. Set B = OK [[t]], M = Frac B and let ω ∈�sep
B/OK
⊗B M ; then, for any

height-one prime y ⊂ B, the map

B→ K , f 7→ Resy f ω

is continuous with respect to the mB-adic topology on B and the discrete valuation
topology on K .

Proof. We first consider the case when y = ρB is generated by an irreducible
Weierstrass polynomial ρ(t) ∈ OK [t]. Let K ′ be a sufficiently large finite extension
of K such that ρ splits into linear factors in K ′; the decomposition has the form
ρ(t)=

∏d
i=1(t−λi ) with d=deg ρ and λi ∈pK ′ since h is a Weierstrass polynomial.

Put B ′ = OK ′[[t]] and M ′ = Frac B ′. According to functoriality of residues (the
previous lemma), we have

Resy TrM ′/M ω =

d∑
i=1

ResYi ω

for all ω ∈�sep
B ′/OK
⊗B ′ M ′, where Yi = (t − λi )B ′. Since multiplication by f ∈ B

commutes with the trace map, it is now enough to prove that

B ′→ K , f 7→ ResYi f ω

is continuous for all i and all ω ∈�sep
B ′/OK
⊗B ′ M ′. In other words, replacing K by

K ′ and B by B ′, we have reduced to the case when ρ(t) is a linear polynomial:
ρ(t) = t − λ, with λ ∈ pK . After another reduction, we will prove the continuity
claim in this case.

Let π be a uniformiser for K . It is well-known that �sep
B/OK
= B dt and that any

element of M can be written as a finite sum of terms of the form
πng
hr ,

with h ∈ OK [t] an irreducible Weierstrass polynomial, r > 0, n ∈ Z, and g ∈ B
(a proof was given in [Morrow 2010, Lemma 3.4]). By continuity of addition
K × K

+
−→ K and of the multiplication maps B ×g

−−→ B, K ×πn
−−→ K , it is enough to

treat the case ω= h−r dt , where h ∈ OK [t] is an irreducible Weierstrass polynomial.
Now return to y = ρB, ρ = t −λ. If h 6= ρ, then h−r dt ∈�sep

B/OK
⊗B By , and so

Resy(Bω) = 0 by Lemma 2.2, which is certainly enough. Else h = ρ, which we
now consider. To obtain more suggestive notation, we write ty := ρ(t)= t−λ; thus

ω = h−r dt = t−r
y dty .

Let m ≥ 0; we claim that if n ≥ m+ r then Resy(m
n
Bω)⊆ pm

K . Since λ is divisible
by π , the maximal ideal of B is generated by π and ty: mB = 〈π, t〉 = 〈π, ty〉.
Therefore an arbitrary element of mn

B is a sum of terms of the form παtβy g, with
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g ∈ B, α, β ≥ 0, and α+ β ≥ n, and so it is enough to consider such an element.
Moreover, again since π divides λ, there is a unique continuous isomorphism

OK [[ty]] −→
∼ OK [[t]], ty 7→ t − λ,

and therefore g ∈ B may be written as g =
∑r−1

j=0 a j t
j
y + tr

y g1 with a j ∈ OK and
g1 ∈ B (we could extend this expansion to infinity, of course, but since we are
trying to prove continuity, it is better not to risk confusion between “formal series”
and “convergent series”). Then

Resy(π
αtβy gω)= πα Resy

(
tβ−r
y

r−1∑
j=0

a j t j
y dty

)
+πα Resy(tβy g1 dty). (†)

The second residue is zero by Lemma 2.2 again since tβy g1 ∈ B. If β ≥ r then the
first residue is zero for the same reason; but if β < r then it follows that α > m,
whence the first residue is παar−β−1 ∈ pαK ⊆ pm

K . So in any case, (†) belongs to pm
K ,

completing the proof of our claim and thereby showing the desired continuity result
for y = ρB.

Having treated the case of a prime y generated by a Weierstrass polynomial,
we must secondly consider y = πB. By exactly the same argument as above, we
may assume that ω = h−r dt , with h an irreducible Weierstrass polynomial. Then
My = K {{t}} and h−r

∈ By ; hence h−r may be written as a series

h−r
=

∑
j∈Z

a j t j
∈ OK {{t}}

where a j → 0 in OK as j →−∞. Let m ≥ 0 be fixed, and pick J > 2 such that
a j ∈ pm

K whenever j ≤−J . We claim that if n ≥ J −2+m then Resy(m
n
Bω)⊆ pm

K .
Since an arbitrary element of mn

B is a sum of terms of the form παtβg, with g ∈ B,
α, β≥0, and α+β≥n, it is enough it consider such an element; write g=

∑
∞

i=0 bi t i .
Then

Resy(π
αtβgω)= Resy(π

αtβgh−r dt)=−πα coeftt−1

(
tβ
∞∑

i=0

bi t i
∑
j∈Z

a j t j
)

=−πα
∞∑

i=0

bi a−i−β−1 ∈

{
pα+m

K if β ≥ J − 2
pαK in any case.

But α+β ≥ J−2+m and so if it is not the case that β ≥ J−2, then it follows that
α ≥m; so, regardless of which inequality holds, we obtain Resy(π

αtβgω) ∈ pm
K , as

required. �
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Now we extend the lemma to the general case of our two-dimensional, normal,
complete, local ring A. This result is a significant strengthening of Corollary 2.4,
since the mA-adic topology on A is considerably finer than the y-adic topology, for
any y ⊂1 A.

Lemma 2.8. Let ω ∈�sep
A/OK
⊗A F ; then, uniformly in y, the map

A→ K , f 7→ Resy f ω

is continuous with respect to the mA-adic topology on A and the discrete valuation
topology on K .

Proof. Firstly, it is enough to prove that the given map is continuous for any fixed
y; the uniformity result then follows from the fact that, for almost all y ⊂1 A, ω
belongs to �sep

Ay/OK
and y does not contain pK ; for such primes, Resy Aω = 0 by

Lemma 2.2.
By Cohen structure theory [1946] (the details of the argument are in [Morrow

2010, Lemma 3.3]), there is a subring B ≤ A containing OK which is isomorphic
to OK [[t]] and such that A is a finitely generated B-module; set M = Frac B. Write
ω = gω0 for some g ∈ F and ω0 ∈�

sep
B/OK
⊗B M .

Now we make some remarks on continuity of the trace map. TrF/M(Ag) is a
finitely generated B-module and so there exists g0∈M× such that TrF/M(Ag)⊆ Bg0.
Moreover, since A/B is a finite extension of local rings, one has ms

A ⊆ mB A for
some s > 0. Hence TrF/M(m

ns
A g)⊆mn

B g0 for all n ≥ 0, meaning that the restriction
of the trace map to Ag→ Bg0 is continuous with respect to the m-adic topologies
on each side. It immediately follows that

τ : A→ B, f 7→ TrF/M( f g)g−1
0

is both well defined and continuous.
Functoriality (Lemma 2.6) implies that for any y ⊂1 B,∑

Y |y

ResY f ω = Resy TrF/M( f ω)

for all f ∈ A, where Y varies over the finitely many height-one primes of A which
sit over y. The right side may be rewritten as

Resy(τ ( f ) g0ω0)

where g0ω0 ∈�
sep
B/OK
⊗B M ; according to the previous lemma, this is a continuous

function of f . In conclusion,

A→ K , f 7→
∑
Y |y

ResY f ω (†)
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is continuous, which we will now use to show that each map f 7→ ResY f ω is
individually continuous, thereby completing the proof. Fix m ≥ 0.

Let Y1, . . . , Yl be the height-one primes of A sitting over y, and let ν1, . . . , νl

denote the corresponding discrete valuations of F . If l = 1 then there is nothing
more to show, so assume l > 1. Since the map

FYi → K , f 7→ ResYi ( f ω)

is continuous with respect to the discrete valuation topologies on each side (Corollary
2.4), there exists S > 0 (which we may obviously assume is independent of i) such
that ResYi ( f ω)⊆ pm

K whenever νi ( f )≥ S. According to the approximation theorem
for discrete valuations, there exists an element e ∈ F which satisfies ν1(e− 1)≥ S
and νi (e)≥ S for i = 2, . . . , l. Now, since (†) remains continuous if we replace ω
by eω, there also exists J > 0 such that∑

Y |y

ResY ( f eω) ∈ pm
K whenever f ∈mJ

A.

So, if f ∈mJ
A then

ResY1( f ω)= ResY1( f (1− e)ω)−
l∑

i=2

ResYi ( f eω)+
l∑

i=1

ResYi ( f eω)

belongs to pm
K since ν1( f (1− e)) ≥ S and νi ( f e) ≥ S for i = 2, . . . , l. That is,

ResY1(m
J
Aω)⊆ pm

K , which proves the desired continuity result. �

Remark 2.9. Lemma 2.8 can be reformulated as saying that the residue map

ResFy :�
cts
Fy/K → K

is continuous with respect to the valuation topology on K and the vector space
topology on �cts

Fy/K , where Fy is equipped with its two-dimensional local field
topology [Madunts and Zhukov 1995].

Finally, regarding vanishing of the residue of a differential form:

Lemma 2.10. Suppose that ω ∈�sep
A/OK
⊗A F is integral, in the sense that it belongs

to the image of �sep
A/OK

, and let y ⊂1 A. Then Resy ω ∈ pK . If y does not contain p
or if y is the only height-one prime of A containing p, then Resy ω = 0.

Proof. If y does not contain p then Fy is equal characteristic and we have already
proved a stronger result in Lemma 2.2: Resy vanishes on the image of�sep

A/OK
⊗A Ay .

If instead y is the only height-one prime of A containing p, then the vanishing
claim follows from the reciprocity law and the previous case.

Finally, suppose y contains p but do not assume that it is the only height-one
prime to do so. Using functoriality of differential forms and Remark 2.3, we have a
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commutative diagram:

�
sep
A/OK

//

��

�
sep
OFy /OK

ResFy //

��

OK

��
�(A/y)/K // �F y/K

e(Fy/K )ResF y

// K

The residue map ResF y
on the characteristic p local field F y vanishes on integral

differential forms; since A/y belongs to the ring of integers of F y , it follows
immediately from the diagram that Resy ω ∈ pK . �

Example 2.11. This example will show that the previous lemma cannot be im-
proved. We consider the “simplest” A in which p splits. Set B = Zp[[T ]], with
field of fractions M , and let A = B[α] where α is a root of f (X)= X2

− T X − p,
with field of fractions F . Since f (X) does not have a root in B/T B = Zp, it does
not have a root in B, and so F/M is a degree two extension. Since A is a finitely
generated B-module, it is also a two-dimensional, complete local ring, and we leave
it to the reader to check that A is regular, hence normal.

In A, p completely splits as p = α(T −α), and therefore, setting y = αA, the
natural map Qp{{T }} = MpB→ Fy is an isomorphism. Indeed, f (X) splits in the
residue field BpB/pBpB = Fp((T )) into distinct factors and so Hensel’s lemma
implies that f (X) splits in B̂pB ; that is, α ∈ B̂pB ⊂ MpB .

One readily checks that α ≡−pT−1 mod p2 in B̂pB = Ây , which implies that
Resy(α dT ) ≡ −p mod p2. In particular, Resy(α dT ) 6= 0 even though α dT is
integral.

2C. Two-dimensional, finitely generated rings. Next suppose that OK is a Dedekind
domain of characteristic zero and with finite residue fields, and that B is a two-
dimensional, normal, local ring, which we assume is the localisation of a two-
dimensional, finitely generated OK -algebra. Set A = B̂mB and s =mB ∩OK . Then
A satisfies all the conditions introduced at the start of the previous subsection and
contains Os := ÔK ,s , which is the ring of integers of the local field Ks := Frac ÔK ,s .
Moreover, there is a natural identification �B/OK ⊗B A=�sep

A/Os
(see [Morrow 2010,

Lemma 3.11]). For each height-one prime y ⊂ B, we may therefore define

Resy :�Frac B/K → Ks

to be the composition

�Frac B/K // �Frac B/K ⊗Frac B Frac A ∼=�sep
A/Os
⊗A Frac A

∑
y′|y Resy′

// Ks,

where y′ varies over the finitely many primes of A, necessarily of height one, which
sit over y.
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The reciprocity law remains true in this setting:

Theorem 2.12 [Morrow 2010, Theorem 3.13]. Let ω ∈�Frac B/K ; then for all but
finitely many height-one primes y ⊂ B the residue Resy ω is zero, and∑

y⊂1 B

Resy ω = 0.

The following vanishing identity will be useful:

Lemma 2.13. Let y ⊂1 B and suppose that ω ∈�Frac B/K belongs to the image of
�By/OK . Then Resy ω ∈ Os . In fact, Resy ω = 0 in either of the following two cases:
if y is horizontal (that is, y ∩ OK = 0); or if y is the only height-one prime of B
which is vertical (that is, containing s) and ω is in the image of �A/OK .

Proof. The first claims follow from Lemma 2.2, since y being horizontal is equivalent
to the two-dimensional local fields Frac Ây′ , with y′ ⊂ A sitting over y, being
equicharacteristic. The second claim follows from the previous reciprocity law
since any prime is either vertical or horizontal. �

2D. Geometrisation. Continue to let OK be a Dedekind domain of characteristic
zero and with finite residue fields. Let X be a two-dimensional, normal scheme,
flat and of finite type over S = Spec OK , and let �X/S =�

1
X/S be the relative sheaf

of one forms. Let x ∈ X2 be a closed point sitting over a closed point s ∈ S0,
and let y ⊂ X be an irreducible curve containing x . Identify y with its local
equation (that is, corresponding prime ideal) y ⊂1OX,x and note that OX,x satisfies
all the conditions which B did in the previous subsection. Define the residue map
Resx,y :�K (X)/K → Ks (= Frac ÔK ,s) to be

Resy :�Frac OX,x/K −→ Ks .

The reciprocity law now states that, for any fixed ω ∈�K (X)/K ,∑
y⊂X
y3x

Resx,y ω = 0

in Ks , where the sum is taken over all curves in X which pass through x . For a few
more details, see [Morrow 2010, §4].

3. Reciprocity along vertical curves

As explained in the introduction, residues on a surface should satisfy two reciprocity
laws, one as we vary curves through a fixed point, and another as we vary points
along a fixed curve. The first was explained immediately above and now we will
prove the second.
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Let OK be a Dedekind domain of characteristic zero and with finite residue fields;
denote by K its field of fractions. Let X be an OK -curve; more precisely, X is a
normal scheme, proper and flat over S = Spec OK , whose generic fibre is a smooth,
geometrically connected curve.

The aim of this section is to establish the following reciprocity law for vertical
curves on X :

Theorem 3.1. Let ω ∈�K (X)/K , and let y ⊂ X be an irreducible component of a
special fibre Xs , where s ∈ S0. Then∑

x∈y

Resx,y ω = 0

in Ks , where the sum is taken over all closed points x of y.

Here, as usual, Os = ÔK ,s and Ks = Frac Os . The proof will consist of several
steps. We begin with a short proof of a standard adelic condition:

Lemma 3.2. Let y ⊂ X be an irreducible curve, let f ∈ OX,y , and let r ≥ 1. Then
f ∈ OX,x +mr

X,y for all but finitely many closed points x ∈ y.
The result also holds after completion: if f ∈ ÔX,y , then f ∈ OX,x +mr

X,yÔX,y

for almost all x.

Proof. Let U = Spec A be an open affine neighbourhood of (the generic point of) y,
let p⊂ A be the prime ideal defining y, and set P = A∩ prAp, B = A/P . If b ∈ B
is not a zero divisor, then B/bB is zero-dimensional and so has only finitely many
primes; hence only finitely many primes of B contain b. Set

f := f mod mr
X,y ∈ Ap/p

rAp = Frac B;

by what we have just proved, f belongs to Bq for all but finitely many primes
q⊂ B, that is f ∈ OX,x+mr

X,y for all but finitely many x ∈ y∩U . Since U contains
all but finitely many points of y, we have finished.

The complete version now follows from the identity

ÔX,y/m
r
X,yÔX,y = OX,y/m

r
X,y . �

The lemma lets us prove that the theorem makes sense:

Lemma 3.3. Let ω ∈ �K (X)/K , and let y ⊂ X be an irreducible component of a
special fibre Xs , where s ∈ S0. Then the sum

∑
x∈y Resx,y ω converges in the s-adic

valuation topology on Ks (we will see that only countably many terms are nonzero).
Moreover, the map

K (X)→ Ks, h 7→
∑
x∈y

Resx,y(hω)

is continuous with respect to the topology on K (X) induced by the discrete valuation
ν associated to y, and the s-adic valuation topology on Ks .
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Proof. For any point z ∈ X , let �z denote the image of �OX,z/OK inside �K (X)/K .
Let r ≥ 0.

Let π ∈ OK be a uniformiser at s, fix ω ∈ �K (X)/K and pick a ≥ 0 such that
πaω ∈ �y . Then it easily follows from the previous lemma that πaω lies in
�x +π

r�y for almost all closed points x ∈ y. But Lemma 2.13 implies that if x is
any closed point of y then Resx,y(�y)⊆ Os , and moreover that if x does not lie on
any other irreducible component of the fibre Xs then Resx,y(�x)= 0. We deduce
that

Resx,y π
aω ∈ πr Os

for almost all closed points x ∈ y. So Resx,y ω ∈ π
r−aOs for almost all x ∈ y; since

this holds for all r ≥ 0 we see that

∑
x∈y

Resx,y ω

converges and also that
∑

x∈y Resx,y ω ∈ π
−aOs .

If h ∈ K (X) satisfies ν(h) ≥ b for some b ∈ Z, then we may write h = πbu
for some u ∈ OX,y . This implies that πa−bhω ∈ �y and so, by what we have
just shown,

∑
x∈y Resx,y hω ∈ πb−aOs . This proves that h 7→

∑
x∈y Resx,y hω is

continuous. �

Remark 3.4. The analogous vertical reciprocity law in the geometric setting is
[Osipov 1997, Proposition 6], where Osipov gives an example to show that it really
is possible for the sum of residues along the points of y ⊂ Xs to contain infinitely
many nonzero terms.

We aim to reduce the vertical reciprocity law to the case of OK being a complete
discrete valuation ring by using several lemmas on the functoriality of residues.

Let s be a nonzero prime of OK , and set Os = ÔK ,s , Ks = Frac Os as usual.
Set X̂ = X ×OK Os and let p : X̂ → X be the natural map. Then p induces an
isomorphism of the special fibres X̂s ∼= Xs and, for any point x ∈ Xs , p induces
an isomorphism of the completed local rings ÔX,p(x) ∼= ÔX̂ ,x (see, e.g., [Liu 2002,
Lemma 8.3.49]). From the excellence of X it follows that OX̂ ,x is normal for all
x ∈ X̂s , and therefore X̂ is normal. So X̂ is a Os-curve, in the same sense as at the
start of the section.
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Lemma 3.5. Let y ⊂ X be an irreducible curve and suppose x is a closed point of
y over s. Then the following diagram commutes:

�K (X̂)/Ks ∑
y′|y Resx ′,y′

((
�K (X)/K

Resx,y

//

OO

Ks

where y′ varies over the irreducible curves of X̂ whose generic point sits over the
generic point of y, and x ′ is the unique closed point sitting over x (that is, p(x ′)= x).

Proof. This essentially follows straight from the original definitions of the residue
maps in sections 2C and 2D. Indeed, set B = OX,x and let y ⊂ B be the local
equation for y at x , so that

Resx,y =
∑

y′′⊂1 B̂
y′′|y

Resy′′ :�
sep
B̂/Os
⊗B̂ Frac B̂→ Ks,

where y′′ varies over the height-one primes of B̂ sitting over y.
But we remarked above that there is a natural Os-isomorphism ÔX̂ ,x ′

∼= B̂, and
this expression for the residues remains valid if B is replaced by OX̂ ,x ′ and y is
replaced by some y′ sitting over y. Therefore

Resx,y =
∑

y′′⊂1 B̂
y′′|y

Resy′′ =
∑

y′⊂1OX̂ ,x ′

y′|y

∑
y′′⊂1 B̂
y′′|y′

Resy′′ =
∑

y′⊂1OX̂ ,x ′

y′|y

Resy′ =
∑
y′|y

Resx ′,y′,

as required. �

Corollary 3.6. Let y ⊂ X be an irreducible component of the special fibre Xs and
let x be a closed point of y; let x ′ = p−1(x), y′ = p−1(y) be the corresponding
point and curve on X̂s ∼= Xs . Then the following diagram commutes:

�K (X̂)/Ks
Resx ′,y′

((
�K (X)/K

Resx,y

//

OO

Ks

Informally, this means that residues along the special fibre Xs may be computed
after completing OK .

Proof. The unique irreducible curve of X̂ sitting over y is y′, so this follows from
the previous lemma. �
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Corollary 3.7. If the vertical reciprocity law holds for X̂/Os (for all s ∈ S0), then it
holds for X/OK .

Proof. This immediately follows from the previous corollary. �

In the remainder of the section (except Remark 3.9), we replace X by X̂ and OK

by Os , so that the base is a now a complete, discrete valuation ring (of characteristic
zero, with finite residue field, with field of fractions K being a local field).

The horizontal curves on X are all of the form {z} for a uniquely determined
closed point z of the generic fibre Xη. Moreover, because our base ring is now
complete, {z} meets the special fibre Xs at a unique point r(z), which is necessarily
closed and is called the reduction of z.

Lemma 3.8. For any ω ∈�K (X)/K =�K (Xη)/K ,

Resr(z),{z} ω = Resz ω,

where the left residue is the two-dimensional residue on X associated to the point
and curve r(z) ∈ {z}, and the right residue is the usual residue for the K -curve Xη
at its closed point z.

Proof. This is a small exercise in chasing the definitions of the residue maps. Set
B = OX,r(z) and let p be the local equation for {z} at r(z). For any n ≥ 0, B/pn is a
finite OK -algebra, hence is complete. This implies that

B̂/pB̂ = B/p,

whence p′ = pB̂ is prime in B̂, and also that

B̂p′/p
′n B̂p′ = Bp/p

n Bp.

Therefore ̂̂Bp′ = lim
←−

n
B̂p′/p

′n B̂p′ = lim
←−

n
Bp/p

n Bp = B̂p = ÔXη,z.

Then F := Frac ̂̂Bp′ is the two-dimensional local field used to define the residue
at the flag r(z) ∈ {z}; it has equal characteristic, and we have just shown it is
equal to Frac OXη,z . But the residue map on a two-dimensional local field of equal
characteristic was exactly defined to be the familiar residue map for a curve. �

Remark 3.9. If OK is not necessarily a complete, discrete valuation ring, as at
the start of the section, then the above lemma remains valid when reformulated as
follows: Let z be a closed point of the generic fibre, and Xs a special fibre. For any
ω ∈�K (X)/K =�K (Xη)/K , ∑

x∈{z}∩Xs

Resx,{z} ω = Resz ω
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where the left is the sum of two-dimensional residues on X associated to the flags
x ∈ {z} where x runs over the finitely many points in {z}∩ Xs , and the right residue
is the usual residue at the closed point z on the curve Xη. This may easily be
deduced from the previous lemma using Lemma 5.1 below.

Proof of Theorem 3.1. We may now prove the vertical reciprocity law. Let

y1(= y), y2, . . . , yl

be the irreducible components of the fibre Xs .
Firstly, combining the usual reciprocity law for the curve Xη with the previous

lemma yields ∑
z∈(Xη)0

Resr(z),{z} ω = 0,

where the sum is taken over closed points of the generic fibre and only finitely
many terms of the summation are nonzero. Since {z}, for z ∈ (Xη)0, are all the
irreducible horizontal curves of X , we may rewrite this as∑

x∈X0

( ∑
Y⊂X horiz.

Y3x

Resx,Y ω

)
= 0.

Moreover, according to the reciprocity law around a point from Section 2D, if
x ∈ X0 is a closed point then ∑

Y⊂X
Y3x

Resx,Y ω = 0,

where only finitely many terms in the summation are nonzero. We deduce that∑
x∈X0

( ∑
Y⊂X vert.

Y3x

Resx,Y ω

)
= 0,

where the sum is now taken over the irreducible vertical curves in X . That is,

l∑
i=1

∑
x∈yi

Resx,yi ω = 0, (†)

where the rearrangement of the double summation is justified by Lemma 3.3, which
says that each internal sum of (†) converges in K .

If Xs is irreducible, this is exactly the sum over the closed points of y1 =

y and we have finished. Else we must proceed by a “weighting” argument as
in Lemma 2.8. Let ν1, . . . , νl be the discrete valuations on K (X) associated to
y1, . . . , yl respectively. For m > 0, pick fm ∈ K (X) such that ν1( fm − 1)≥ m and
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νi ( fm)≥ m for i = 2, . . . , l; this exists because the (νi )i are inequivalent discrete
valuations. Replacing ω by fmω in (†) yields

l∑
i=1

∑
x∈yi

Resx,yi fmω = 0.

Letting m→∞ and applying the continuity part of Lemma 3.3 yields

l∑
i=1

∑
x∈yi

Resx,yi fmω = 0−→
∑
x∈y1

Resx,y1 ω as m −→∞.

This completes the proof of Theorem 3.1. �

4. Trace map via residues on higher adèles

We are now ready to adelically construct Grothendieck’s trace map

H 1(X,ω)→ OK

as a sum of our residues, where π : X → Spec OK is an arithmetic surface and
ω=ωπ is its relative dualising sheaf. The key idea is to use the reciprocity laws
to show that sums of residues descend to cohomology.

Remark 4.1. Passing from local constructions to global or cohomological objects
is always the purpose of reciprocity laws. Compare with the reciprocity law around
a point in K. Kato and S. Saito’s [1983, §4] two-dimensional class field theory.
Sadly, using reciprocity laws for the reciprocity map of two-dimensional local
class field theory to construct two-dimensional global class field theory has not
been written down in detail anywhere, but a sketch of how it should work in the
geometric case was given by Parshin [1978]. More details, which are also valid in
the arithmetic case, can be found in [Fesenko 2010, Chapter 2].

4A. Adèles of a curve. We begin with a quick reminder of adèles for curves. Let
X be a one-dimensional, Noetherian, integral scheme with generic point η; we will
be interested in both the case when X is smooth over a field and when X is the
spectrum of the ring of integers of a number field. If E is a coherent sheaf on X ,
then the adelic resolution of E is the following flasque resolution:

0→ E→ iη(Eη)⊕
∏

x∈X0

ix(Êx)→
∏′

x∈X0

ix(Êx ⊗OX,x K (X))→ 0.

Here iη(Eη) is the constant Eη sheaf on X , Êx is the mX,x -adic completion of Ex

and ix(Êx) is the corresponding skyscraper sheaf at x , and the “restricted product”
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term
∏
′ is the sheaf whose sections on an open set U ⊆ X are∏′

x∈U0

Êx⊗OX,x K (X)=
{
( fx) ∈

∏
x∈U0

Êx ⊗OX,x K (X) : fx is in the image of Êx for
all but finitely many x ∈U0

}
.

The Zariski cohomology of E is therefore exactly the cohomology of the adelic
complex A(X, E):

0→ Eη⊕
∏

x∈X0

Êx →
∏′

x∈X0

Êx ⊗OX,x K (X)→ 0

(g, ( fx)) 7→ (g− fx)

These observations remain valid if we do not bother completing E at each point x ,
leading to the rational adelic complex a(X, E) (classically called repartitions, see
for example [Serre 1988, II.5]):

0→ Eη⊕
∏

x∈X0

Ex →
∏′

x∈X0

Eη→ 0

whose cohomology also equals the Zariski cohomology of E .

Remark 4.2. The reader who is about to encounter adelic spaces for surfaces for
the first time may find it useful to see the following equality for the curve X :∏
′

x∈X0

Eη

:= {( fx) ∈
∏

x∈X0

Eη : fx is in the image of Ex for all but finitely many x ∈ X0}

= {( fx) ∈
∏

x∈X0

Eη : ∃ a coherent submodule M ⊆ iη(Eη) such that fx ∈ Mx

for all x ∈ X0}

4B. Rational adelic spaces for surfaces. The theory of adèles for curves was
generalised to algebraic surfaces by Parshin (see [Parshin 1976], for example)
and then to arbitrary Noetherian schemes by Beilinson [1980]. The main source
of proofs is A. Huber’s paper [1991]. We will describe the rational (that is, no
completions are involved) adelic spaces, defined in [Huber 1991, §5.2], associated
to a coherent sheaf E on a surface X . More precisely, X is any two-dimensional,
Noetherian, integral scheme, with generic point η and function field F = K (X).
The quasicoherent sheaf which is constantly F will be denoted F .

Remark 4.3. We choose to use the rational, rather than completed, adelic spaces
to construct the trace map only for the sake of simplicity of notation. There is
no substantial difficulty in extending the material of this section to the completed
adèles, which becomes essential for the dualities discussed in Remark 5.6.
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Adelic groups 0, 1, and 2. The first rational adelic groups are defined as follows:

a(0)= F, a(1)=
∏

y∈X1

OX,y, a(2)=
∏

x∈X2

OX,x .

More generally, if E is a coherent sheaf on X , then we define

a(0, E)= Eη, a(1, E)=
∏

y∈X1

Ey, a(2, E)=
∏

x∈X2

Ex .

Adelic group 01. Next we have the 01 adelic group:

a(01)
=
{
( fy) ∈

∏
y∈X1

F : ∃ a coherent submodule M ⊆ F such that fy ∈ My for all y
}

= lim
−→

M⊆F

a(1,M)

where the limit is taken over all coherent submodules M of the constant sheaf F .
This ring is commonly denoted using restricted product notation: a(01)=

∏
′

y∈X1 F .
Again more generally, if E is an arbitrary coherent sheaf, we put

a(01, E)
=
{
( fy) ∈

∏
y∈X1

Eη : ∃ a coherent submodule M ⊆ Eη such that fy ∈ My for all y
}

= lim
−→

M⊆Eη

a(1,M),

where the limit is taken over all coherent submodules M of the constant sheaf
associated to Eη.

Adelic group 02. Next,

a(02)
=
{
( fx) ∈

∏
x∈X2

F : ∃ a coherent submodule M ⊆ F such that fx ∈ Mx for all x
}

= lim
−→

M⊆F

a(2,M),

where the limit is taken over all coherent submodules M of F . This ring is commonly
denoted

∏
′

x∈X2 F . We leave it to the reader to write down the definition of a(02, E),
for E an arbitrary coherent sheaf.

Adelic group 12.

Remark 4.4. We first require some notation. If z ∈ X is any point and N is a OX,z

module, then we write
[N ]z = jz∗(Ñ ),
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where jz : Spec OX,z ↪→ X is the natural morphism and Ñ is the quasicoherent sheaf
on Spec OX,z induced by N . For example, F = [OX,η]η.

We may now introduce

a(12)=
∏

y∈X1

ay(12),

where

ay(12)=
{
( fx) ∈

∏
x∈y

OX,y : ∃ a coherent submodule M ⊆ [OX,y]y such that
fx ∈ Mx for all x ∈ y

}
= lim
−→

M⊆[OX,y ]y

a(2,M),

where the limit is taken over all coherent submodules M of [OX,y]y . Recall our
convention that if y ∈ X1 then “x ∈ y” means that x is a codimension-one point of
the closure of y; more precisely, x ∈ X2

∩ {y}.
We again leave it to the reader to write down the definition of a(12, E) for an

arbitrary coherent sheaf E (just replace OX,y by Ey everywhere in the construction).
This is a convenient place to make one observation concerning an adelic condition

which holds for a(12, E):

Lemma 4.5. Let E be a coherent sheaf on X , fix y ∈ X1, r ≥ 0, and let ( fx)x∈y ∈

ay(12, E); then fx ∈ Ex +mr
X,y Ey for all but finitely many x ∈ y.

Proof. There is a coherent submodule M ⊆ [Ey]y such that fx ∈ Mx for all x ∈ y.
Let U = Spec A be an affine open neighbourhood of (the generic point of) y, and let
p⊂ A be the prime ideal defining y. Then M(U ) is a finitely generated A-submodule
of Ep and therefore M(U ) ⊆ f E for some f ∈ Ap. For any r ≥ 0, the argument
of Lemma 3.2 shows that f ∈ Am+ prAp for all but finitely many of the maximal
ideals m of A containing p; for such maximal ideals we have Mm ⊆ Em+ pr Ep.
Since U contains all but finitely many of the points of {y}, this is enough. �

Adelic group 012. Finally,

a(012)= lim
−→

M⊆F

a(12,M)⊆
∏

y∈X1

∏
x∈y

F.

(and we similarly define a(012, E) for any coherent E by taking the limit over
coherent submodules M of the constant sheaf Eη).
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Simplicial structure and cohomology. Consider the following homomorphisms of
rings:

F

vv ((∏
y∈X1 F //

∏
y∈X1

∏
x∈y F

∏
x∈X2 Foo

∏
y∈X1 OX,y //

88

∏
y∈X1

∏
x∈y OX,y

OO

∏
x∈X2 OX,xoo

ff

where the three ascending arrows are the obvious inclusions and the remaining
arrows are diagonal embeddings. These homomorphisms restrict to the rational
adelic groups just defined to give a commutative diagram of ring homomorphisms:

a(0)
∂0

01

yy

∂0
02

%%
a(01)

∂01
012 // a(012) a(02)

∂02
012oo

a(1)
∂1

12

//

∂1
01

99

a(12)

∂12
012

OO

a(2)
∂2

12

oo

∂2
02

ee

(and similarly with any coherent sheaf E in place of OX ). For example, to see
that ∂1

12 is well defined, once must check that if f ∈ OX,y then there is a coherent
submodule M of [OX,y]y such that fx ∈ Mx for all x ∈ y; but f may be viewed as
a global section of [OX,y]y and therefore M := OX f ⊆ [OX,y]y suffices.

We reach the analogue for X of the rational adelic complex which we saw for a
curve in Section 4A above:

Theorem 4.6. Let E be a coherent sheaf on X ; then the Zariski cohomology of E
is equal to the cohomology of the complex

0−→ a(0, E)⊕ a(1, E)⊕ a(2, E)

−→ a(01, E)⊕ a(02, E)⊕ a(12, E)−→ a(012, E)−→ 0,

where the nontrivial arrows are given respectively by

( f0, f1, f2) 7→ (∂0
01 f0− ∂

1
01 f1, ∂

2
02 f2− ∂

0
02 f0, ∂

1
12 f1− ∂

2
12 f2),

(g01, g02, g12) 7→ ∂01
012g01+ ∂

02
012g02+ ∂

12
012g12.

(This is the total complex associated to the simplicial group given above.)

Proof. This is due to Parshin [1976]; the general case of higher-dimensional X is
due to Beilinson [1980] and Huber [1991]. �
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4C. Construction of the trace map. Let OK be a Dedekind domain of characteristic
zero with finite residue fields; its field of fractions is K . Let π : X→ S = Spec OK

be an OK -curve as at the start of Section 3. According to the main result of [Morrow
2010], the relative dualising sheaf ω of π is explicitly given by, for open U ⊆ X ,

ω(U )={ω∈�K (X)/K :Resx,y( f ω)∈ ÔK ,π(x) for all x ∈ y⊂U and f ∈OX,y} (†)

where x runs over all closed points of X inside U and y runs over all curves of U
containing x .

As previously, closed points of S are denoted s, and we put Os = ÔK ,s and
Ks = Frac Os .

Proposition 4.7. If ω = (ωx,y)x∈y ∈ a(012,ω) and s ∈ S0, then

Ress(ω) :=
∑
x,y

x∈y∩Xs

Resx,y ωx,y (‡)

converges in Ks , where the sum is taken over all points x and curves y in X for
which x ∈ y ∩ Xs . Moreover, Ress(ω) ∈ Os for all but finitely many s ∈ S0.

If ω ∈ ∂12
012a(12,ω) then all terms of the sum, hence also Ress(ω), belong to Os .

Proof. Let E be a coherent submodule of the constant sheaf ωη = ωK (X)/K such
that ω ∈ a(12, E); then E and ω are equal at the generic point (replacing E by
E +ω, if necessary), hence on an open set, and therefore Ey = ωy for all but
finitely many y ∈ X1. We call the remaining finitely many y bad.

If y is a horizontal curve which is not bad and x ∈ y, then ωx,y ∈ Ey = ωy

and so Resx,y ωx,y = 0 (indeed, if π ∈ OK ,s is a uniformiser at s then π−1
∈ OX,y

and so the definition of ω implies that π−m Resx,y ωx,y ∈ Os for all m ≥ 0; this is
only possible if Resx,y ωx,y = 0). Therefore, only finitely many horizontal curves
contribute to the summation in (‡); so it is enough to prove that if y is an irreducible
component of Xs then ∑

x∈y

Resx,y ωx,y

converges. This is straightforward, using Lemma 4.5 and arguing exactly as in
Lemma 3.3, and completes the proof that Ress(ω) is well defined.

Secondly, for any curve y, each of ωy and Ey are (nonzero) finitely generated
OX,y submodules of �K (X)/K , and therefore there exists r ≥ 0 such that mr

X,y Ey ⊆

ωy ; clearly we may pick r so that this inclusion holds for all bad y. Then Lemma 4.5
tells us that for all but finitely many x in any bad curve y, we have

Ey ⊆ Ex +mr
X,y Ey ⊆ Ex +ωy .

Next, if y1, y2 are two horizontal curves, then y1 and y2 will have a common point
of intersection on a vertical curve Y for only finitely many Y (for else y1∩ y2 would
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be infinite). It follows that there is an open set U ⊆ X consisting of fibres such that
any x ∈U satisfies one of the following conditions:

(i) x sits on no bad curve, or

(ii) x sits on exactly one bad curve y; y is horizontal and Ey ⊆ Ex +ωy .

Note that U contains all but finitely many of the fibres Xs , for s ∈ S0, and to prove
our second claim it is enough to show that for any closed point x on a fibre Xs

belonging to U , and curve y passing through x , one has Resx,y ωx,y ∈ Os . There
are two cases to consider:

(i) y is not bad. Then ωx,y ∈ Ey =ωy , whence Resx,y ωx,y ∈ Os by (†).

(ii) y is bad. Then y is horizontal by construction of U and so Resx,y ωy = 0 (as
argued in the previous paragraph); therefore condition (ii) on U implies that
Resx,y ωx,y = Resx,y ζ for some ζ ∈ Ex . If Y is any curve through x apart
from y then ζ ∈ Ex ⊆ EY =ωY and so (†) now implies that Resx,Y ζ ∈ Os .
But the reciprocity law about a point from Section 2D shows that

Resx,y ζ =−
∑

Y

Resx,Y ζ,

where the sum is taken over all curves Y passing through x apart from y;
therefore Resx,y ζ ∈ Os .

This completes the proof that Ress ω belongs to Os for all but finitely many s ∈ S0.
Finally, if ω is in the image of the boundary map ∂12

012 then ωx,y ∈ωy for all
flags x ∈ y; so (†) implies that Resx,y ωx,y ∈ Os . This proves the final claim. �

Let

AS =
∏′

s∈S0

Ks =

{
(as) ∈

∏
s∈S0

Ks : as ∈ Os for all but finitely many s
}

and

AS(0)=
∏
s∈S0

Os

be the rings of (finite) adèles and integral adèles of K respectively (we will incor-
porate archimedean information in the final section). The adelic complex for S, as
discussed in Section 4A, is

0−→ K ⊕AS(0)−→ AS −→ 0

(λ, (as)) 7→ (λ− as)

Corollary 4.8. The map

Res : a(012,ω)→ AS, ω 7→ (Ress(ω))s∈S0
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is well defined, and restricts to Res ◦∂12
012 : a(12,ω)→ AS(0).

Proof. This is exactly the content of the previous proposition. �

Define a map

Res′ : a(01,ω)⊕ a(02,ω)⊕ a(12,ω)→ K ⊕AS(0)

(ω′, ω′′, ω) 7→

(∑
z∈Xη

Resz ω
′

z,Res(∂12
012ω)

)
where the first sum is taken over closed points z of Xη or, equivalently, horizontal
curves in X , and Resz denotes the usual residue for Xη as a smooth curve over K
(note that this makes sense as ωη = �K (Xη)/K ). In the remainder of the paper, z
will always denote a closed point of Xη.

The key application of the reciprocity laws is to deduce that taking sums of
residues induces a morphism of adelic complexes:

Proposition 4.9. The following maps give a homomorphism of adelic complexes
from X to S:

0 // a(0,ω)⊕a(1,ω)⊕a(2,ω) //

��

a(01,ω)⊕a(02,ω)⊕a(12,ω) //

Res′

��

a(012,ω) //

Res

��

0

0 // K⊕AS(0) // AS // 0

Proof. Commutativity of the first square is equivalent to the following results:

(i) If ω ∈ a(0,ω)=�K (X)/K then
∑

z∈Xη Resz ω = 0.

(ii) If ω = (ωy)y∈X1 ∈ a(1,ω) then
∑

z∈Xη Resz ωz = 0 and Res(∂12
012∂

1
12ω)= 0.

(iii) If ω ∈ a(2,ω) then Res(∂12
012∂

2
12ω)= 0.

(i) is the usual reciprocity law for the curve Xη/K . The first vanishing claim in
(ii) holds since ωz ∈ωz =�Xη/K ,z and the residue of a differential form on Xη at
a point where it is regular is zero. For the second vanishing claim in (ii), note that
if s ∈ S0 then

Ress(∂
01
012∂

1
01ω)=

∑
y⊆Xs

∑
x∈y

Resx,y ωy +
∑

horiz. y

∑
x∈Xs∩y

Resx,y ωy,

where we have split the summation (‡) (of Proposition 4.7) depending on whether y
is an irreducible component of Xs or is horizontal. But the first double summation
is zero, according to the reciprocity law along a vertical curve (Theorem 3.1), while
every term in the second double summation is zero since they are residues along
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horizontal curves y of forms in ωy (see the second paragraph of the previous proof).
We will return to (iii) in a moment.

Commutativity of the second square is almost automatic since Res′ was obtained
by restricting Res to a(01,ω) and a(12,ω); it remains only to check that if
ω ∈ a(02,ω) then Res ∂02

012ω = 0. This follows immediately from the reciprocity
law around a point from Section 2D. This also establishes (iii), since if ω ∈ a(2,ω)
then ∂12

012∂
2
12ω = ∂

02
012∂

2
02ω ∈ ∂

02
012a(02,ω). �

Noting that H 0 of the adelic complex for S is simply OK and that H 1 of the
adelic complex for X is H 1(X,ω) (by Theorem 4.6), the proposition implies that
there is an induced map

Res : H 1(X,ω)→ OK .

Our construction would be irrelevant without the final theorem:

Theorem 4.10. Res is equal to Grothendieck’s trace map trπ .

Proof. There is a natural morphism from the rational adelic complex of X for
the coherent sheaf ω to the rational adelic complex of Xη for the coherent sheaf
�Xη/K :

0 // a(0,ω)⊕a(1,ω)⊕a(2,ω) //

(ω0,ω1,ω2) 7→(ω0,p1(ω1))

��

a(01,ω)⊕a(02,ω)⊕a(12,ω) //

(ω01,ω02,ω12) 7→p01(ω01)

��

a(012,ω) //

��

0

0 // �K (X)/K⊕
∏

z∈Xη
�Xη/K ,z //

∏
′

z∈Xη
�K (X)/K // 0

This is given by the identity a(0,ω)=�K (X)/K , the projection

a(1,ω)=
∏

y∈X1

ωy =
∏

z∈Xη

�Xη/K ,z ×
∏

y∈X1

vertical

ωy
p1
�

∏
z∈Xη

�Xη/K ,z,

and the restriction of the projection∏
y∈X1

ωη =

∏
z∈Xη

�K (X)/K×
∏

y∈X1

vertical

�K (X)/K �
∏

z∈Xη

�K (X)/K

to the adelic spaces a(01,ω)
p01
�
∏
′

z∈Xη �K (X)/K .
By the functoriality of adèles, the resulting map H∗(X,ω)→ H∗(Xη, �Xη/K )

is the natural map on cohomology induced by the restriction ω|Xη =�Xη/K . Using
this, we will now show that

H 1(X,ω) //

Res
��

H 1(Xη, �Xη/K )

tr
��

OK // K

(∗)
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commutes, where the right vertical arrow is the trace map for the K -curve Xη.
Indeed, from the definition of Res′ above, the following diagram certainly commutes:

Ker〈a(01,ω)⊕a(02,ω)⊕a(12,ω)→ a(012,ω)〉

Res′

��

(ω01,ω02,ω12) 7→ p01(ω01) //
∏
′

z∈Xη
�K (X)/K

(ωz) 7→
∑

z∈Xη
Reszωz

��
Ker〈K⊕AS(0)→ AS〉 = OK // K

Passing to cohomology groups, we deduce that

H 1(X,ω) //

Res

��

H 1(Xη, �Xη/K ) = Coker
〈
�K (X)/K ⊕

∏
z∈Xη

�Xη/K ,z→
∏
′

z∈Xη
�K (X)/K

〉
(ωz) 7→

∑
z∈Xη

Resz ωz

��
OK // K

commutes; but the vertical map on the right is the trace map for Xη, by the familiar
result (which we are generalising!) that the trace map of a smooth projective curve
is represented by the sum of residues. This completes the proof that (∗) commutes.

Finally, the diagram (∗) also commutes if Res is replaced by trπ , since trace
maps commute with localisation of the base ring. Therefore Res= trπ . �

Remark 4.11. Before complicating matters by incorporating archimedean data,
this is a convenient opportunity to explain how the previous material should fit into
a general framework.

A flag of points on a scheme X is a sequence of points ξ = (x0, . . . , xn) such
that xi−1 ∈ {xi } for i = 1, . . . , n. By a process of successive completions and
localisations, the flag ξ yields a ring Fξ . More generally, to any quasicoherent sheaf
E , one obtains a module Eξ over Fξ ; for details, see [Huber 1991, §3.2].

Now let f : X → Y be a morphism of S-schemes, where S is a Noetherian
scheme (perhaps Cohen–Macaulay), and notice that we may push forward any flag
from X to Y ,

f∗(ξ) := ( f (x0), . . . , f (xn)),

resulting in an inclusion of rings F f∗(ξ) ⊆ Fξ . Let ωX , ωY denote the dualising
sheaves of X , Y over S. If f is proper (and probably Cohen–Macaulay) of fibre
dimension d , then we expect there to exist a residue map

Resξ :ωX,ξ →ωY, f∗(ξ)

which is the trace map when f is a finite morphism and which is transitive when
given another proper, CM morphism Y→ Z . Globally, taking sums of these residue
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maps will induce a morphism of degree −d on the adelic complexes

ResX/Y : A(X,ωX )→ A(Y,ωY ).

The patching together of the local residue maps to induce a morphism of complexes
is equivalent to a collection of reciprocity laws being satisfied. In turn, this induces
maps on the cohomology

H∗(X,ωX )= H∗(A(X,ωX ))−→ H∗−d(A(Y,ωY ))= H∗−d(Y,ωY ),

which will be nothing other than Grothendieck’s trace map.
When S is a field this framework more or less follows from [Lomadze 1981] and

[Yekutieli 1992], though it has not been written down carefully. This article and
the author’s previous [Morrow 2010] focus on the case where Y = S = Spec OK

and X is a surface.
The fully general case requires a rather careful development of relative residue

maps in arbitrary dimensions, and becomes a technically difficult exercise quite
quickly. The Hochschild homology-theoretic description of residue maps [Hübl
1989; Lipman 1987] may be the key to a smoother approach.

5. Archimedean reciprocity along horizontal curves

We continue to study an OK -curve X in the sense introduced at the start of Section 3,
but we now assume that K is a number field and OK its ring of integers (with generic
point η). If∞ is an infinite place of K then we write X∞ = X ×OK K∞ where K∞
is the completion of K at∞; so X∞ is a smooth projective curve over R or C.

The natural morphism

X∞ = X ×OK K∞
ρ
−→Xη = X ×OK K

can send a closed point to the generic point; but there are only finitely many points
over any closed point. Indeed, let z ∈ Xη be a closed point; then the fibre over z is

X∞×Xη k(z)= (K∞×K Xη)×Xη k(z)= Spec(K∞⊗K k(z)),

which is a finite reduced scheme.
If y is a horizontal curve on X then y = {z} for a unique closed point z ∈ Xη.

We say that a closed point x ∈ X∞ sits on y if and only if ρ(x)= z. Hence there
are only finitely many points on X∞ which sit on y, and we will allow ourselves to
denote this set of points by y∩ X∞. Such points are the primes of K∞⊗K k(z) and
therefore correspond to the infinite places of the number field k(z) extending the
place∞ on K . Note that each x ∈ X∞ sits on at most one horizontal curve, which
may seem strange at first.
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In this situation, we define the archimedean residue map Resx,y :�K (X)/K→ K∞
to be

�K (X)/K −→�K (X∞)/K∞
Resx
−−→ K∞,

where Resx is the usual one-dimensional residue map associated to the closed point
x on the smooth curve X∞ over K∞.

The following easy lemma was used in Remark 3.9; since we need it again, let’s
state it accurately:

Lemma 5.1. Let C be a smooth, geometrically connected curve over a field K of
characteristic zero, let L be an arbitrary extension of K , and let z be a closed point
of C.

(i) Let x ∈ CL be a closed point sitting over z; then the following diagram
commutes:

�K (CL )/L
resx // k(x)

�K (C)/K
resz //

OO

k(z)

OO

(Notation: resx is the residue map�K (C)/K→k(x), and Resx=Trk(x)/K ◦ resx ;
similarly for other points.)

(ii) With x now varying over all the closed points of CL sitting over z, the following
diagram commutes:

�K (CL )/L

∑
x |z Resx

// L

�K (C)/K
Resz //

OO

K

OO

Proof. If t ∈ K (C) is a local parameter at z then it is also a local parameter at x , and
the characteristic zero assumption implies that there are compatible isomorphisms
K (CL)x ∼= k(x)((t)), K (C)z ∼= k(z)((t)); the first claim easily follows. Secondly
k(z)⊗K L ∼=

⊕
x |z k(x), so that Trk(z)/K =

∑
x |z Trk(x)/L ; hence, for ω ∈�K (C)/K ,

part (i) lets us use the usual argument:∑
x |z

Resx(ω)=
∑
x |z

Trk(x)/L resx(ω)=
∑
x |z

Trk(x)/L resz(ω)

= Trk(z)/K resz(ω)= Resz(ω) �

We obtain an analogue of Remark 3.9:
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Corollary 5.2. Returning to the notation before the lemma, if∞ and y = {z} are
fixed, and ω ∈�K (X)/K , then∑

x∈y∩X∞

Resx,y ω = Resz ω.

Proof. Apply the previous lemma with C = Xη and L = K∞. �

Write S = Spec OK ∪ {∞’s} for the “compactification” of S = Spec OK by the
infinite places (in fact, the notation s ∈ S will always mean that s is a place of K ,
never the generic point of S) and let

AS =
∏′

s∈S

Ks = AS ×
∏
∞

K∞

be the usual ring of adèles of the number field K . Let

ψ =⊗s∈S ψs : AS→ S1 (= the circle group2)

be a continuous additive character which is trivial on the global elements K ⊂ AS
[Tate 1967, Lemma 4.1.5].

Note that, if y is a horizontal curve on X , then even with our definition of points
at infinity, it does not make sense to consider a reciprocity law

“
∑
x∈y

Resx,y ω = 0”

since the residues appearing live in different local fields. This problem is fixed by
using the “absolute base” S1:

Definition 5.3. Let y be a curve on X and x ∈ y a closed point sitting over s ∈ S
(this includes the possibility that y is horizontal and s is an infinite place). Define
the absolute residue map

ψx,y :�K (X)/K → S1

to be the composition

�K (X)/K
Resx,y
−−−→ Ks

ψs
−→ S1.

We may now establish the reciprocity law on X along any curve, including the
horizontal ones:

Theorem 5.4. Let y be a curve on X and ω ∈ �K (X)/K . Then for all but finitely
many closed points x ∈ y the absolute residue ψx,y(ω) is 1, and∏

x∈y

ψx,y(ω)= 1 in S1.

2We never consider the set of codimension-one points of S = Spec OK , so this shouldn’t cause
confusion.
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Proof. First consider the case that y is an irreducible component of a special fibre
Xs (here s ∈ S0). Then Kerψs is an open subgroup of Ks , and so the proof of
Lemma 3.3 shows that Resx,y ω ∈ Kerψs for all but finitely many x ∈ y. Also,∏

x∈y

ψx,y(ω)= ψs

(∑
x∈y

Resx,y(ω)

)
,

which is ψs(0) = 1 according to the reciprocity law along the vertical curve y
(Theorem 3.1).

Secondly suppose that y = {z} is a horizontal curve; here z is a closed point of
Xη. The proof of Proposition 4.7 shows that Resx,y ω ∈ Oπ(x) for all but finitely
many x ∈ y (here x is a genuine schematic point on X ); since Kerψs contains Os

for all but finitely many s ∈ S0, it follows that ψx,y(ω)= 1 for all but finitely many
x ∈ y. It also follows that

f :=
( ∑

x∈y∩Xs

Resx,y ω

)
s∈S

belongs to AS , and clearly∏
x∈y

ψx,y(ω)=
∏
s∈S

ψs

( ∑
x∈y∩Xs

Resx,y ω

)
= ψ( f ).

But Remark 3.9 (for s ∈ S0) and the previous corollary (for s infinite) imply that f
is the global adèle Resz ω ∈ K . As ψ was chosen to be trivial on global elements,
the proof is complete. �

Remark 5.5. The reciprocity law around a point x ∈ X2 stated in Section 2D
obviously implies that the absolute residue maps satisfy a similar law:∏

y⊂X :y3x

ψx,y(ω)= 1.

Therefore we have absolute reciprocity laws for all points and for all curves,
which are analogues for an arithmetic surface of the reciprocity laws established by
Parshin [1976] for an algebraic surface.

Remark 5.6. Let Fx,y be the finite product of two-dimensional local fields attached
to a flag x ∈ y; that is, Fx,y = Frac Âp, where A = ÔX,x , p= yOX,x , and y ⊂ OX,x

also denotes the local equation for y at x ; so Fx,y =
∏

y′|y Fx,y′ where y′ varies
over the finitely many height-one primes of A over y, and Fx,y′ = Frac Ây′ .

By the local construction of the residue maps we see that ψx,y is really the
composition
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�K (X)/K −→�K (X)/K ⊗K (X) Fx,y =
⊕
y′|y

�cts
Fx,y′/Ks

∑
y′ |y ResFx,y′
−−−−−−−→ Ks

ψs
−→ S1

(s ∈ S0 is the point under x as usual), and each ψs ◦ ResFx,y′
: Fx,y′ → S1 is

a continuous (with respect to the two-dimensional topology; see Remark 2.9)
character on the two-dimensional local field Fx,y′ . This character will induce self-
duality of the topological group Fx,y′ , which in turn will induce various dualities
on the (complete) adelic groups; for some results in this direction, see [Fesenko
2010, §27, §28].

Remark 5.7. Taking S = Spec Z, it would be very satisfying to have an extension
of the framework discussed in Remark 4.11 to include archimedean points. The
main existing problem is the lack at present of a good enough theory of adèles in
arbitrary dimensions which includes the points at infinity. The author is currently
trying to develop such a theory and hopes that this will allow the dualities discussed
in the previous remark to be stated more precisely and in greater generality (in all
dimensions and including points at infinity).
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