
Algebra &
Number
Theory

msp

Volume 6

2012
No. 8

Galois representations associated with unitary
groups over Q

Christopher Skinner



msp
ALGEBRA AND NUMBER THEORY 6:8 (2012)

dx.doi.org/10.2140/ant.2012.6.1697

Galois representations associated with
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Christopher Skinner

We show that a cuspidal automorphic representation π =
⊗

`≤∞ π` of a unitary
similitude group GU(a, b)/Q with archimedean component π∞ in a regular dis-
crete series has an associated (a+ b)-dimensional p-adic Galois representation
with Frobenius eigenvalues given by the local base change parameters for all
primes ` such that π` and GU(a, b) are unramified.

1. Introduction

In this paper we explain how results of Morel [2010] on the cohomology of the
noncompact Shimura varieties associated to unitary similitude groups over Q can
be combined with results of Shin [2011] on the cohomology of certain compact
Shimura varieties and with certain analytic results — most notably the stability of
the gamma factors arising from the doubling method for unitary groups [Lapid and
Rallis 2005; Brenner 2008] — to prove that a cuspidal automorphic representation
π of GU(a, b)/Q with archimedean component in a discrete series and regular (in a
sense made precise below) has an associated (a+ b)-dimensional p-adic Galois
representation with Frobenius eigenvalues given by the local base change parameters
for all primes ` such that π and GU(a, b) are unramified. Our motivation for this is
the use in [Skinner and Urban 2010] of these p-adic Galois representations in the
case (a, b)= (2, 2) to prove the Iwasawa–Greenberg main conjecture for a large
class of modular forms. The main results include Theorems A and B below, whose
proofs are intertwined.

Let K be an imaginary quadratic field of discriminant dK . Let n = a+ b be a
partition of a positive integer n as the sum of two nonnegative integers a and b.
Then

Ja,b :=

(
1a

−1b

)
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defines an Hermitian pairing on the space V := K n . Let G := GU(a, b)/Q denote
the unitary similitude group over Q of the Hermitian pair (V, Ja,b). The L-packets
of discrete series representations of G(R) are naturally indexed by the irreducible
algebraic representations of G/K (see Section 4.1). By a regular discrete series
representation of G(R) we will mean one belonging to an L-packet indexed by a
representation with regular highest weight.

Let H := ResK/Q(Gm × GLn). For any Q-algebra R, let (x, g) 7→ (x̄, ḡ) be
the involution of H(R) = (R ⊗ K )× × GLn(R ⊗ K ) induced by the nontrivial
automorphism of K , and let θ be the involution defined by θ((x, g))= (x̄, x̄ t ḡ−1).
Note that an irreducible admissible representation σ of H(AQ) is given by a pair
(ψ, τ) consisting of an admissible character ψ of A×K and an irreducible admissible
representation τ of GLn(AK ) and that σ = (ψ, τ) is θ-stable (that is, σ θ ∼= σ ) if
and only if τ∨ ∼= τ c and ψ = ψcχ c

τ , where χτ is the central character of τ and the
superscripts ‘∨’ and ‘c’ denote, respectively, the contragredient and composition
with the involution induced by the nontrivial automorphism of K . Let BC : LG→LH
be the base change morphism (see Section 2.3).

Theorem A (weak base change). Let π be an irreducible cuspidal representation
of G(AQ) and let χπ be its central character (a character of A×K ). Let 6(π) be the
finite set of primes ` such that either π` is ramified or `|dK . Suppose ab 6= 0 and π∞
is a regular discrete series belonging to an L-packet indexed by a representation ξ .
There exists an automorphic representation σ = (ψ, τ) of H(AQ) such that:

(a) σ θ ∼= σ , ψ = χ c
π and χτ = χ c

π/χπ .

(b) For a prime ` 6∈6(π), σ` is unramified, and ifψπ` :WQ`
→

LG is the Langlands
parameter of π` then

ψσ` := BC ◦ψπ` :WQ`
→

LH

is the Langlands parameter of σ`. In particular, for any idèle class character
χ of A×K there is equality of twisted standard L-functions

L6(π)(s, π ×χ)= L6(π)(s, τ ×χ).

(c) σ∞ has the same infinitesimal character as ξ ⊗ ξ θ .

There is a natural identification of G/K with Gm×GLn (see Section 2.2) and hence
of G(R⊗K ) with H(R), which then identifies ξ , and hence ξ θ , as a representation
of H(R). The (partial) standard L-function of π is as defined as in [Li 1992, §3].

Let K be an algebraic closure of K and let G K := Gal(K/K ). For each finite
place v of K let K v be an algebraic closure of Kv and fix an embedding K ↪→ K v .
The latter identifies G Kv

:= Gal(K v/Kv) with a decomposition group for v in G K

and hence the Weil group WKv
⊂ G Kv

with a subgroup of G K .
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Let p be a prime and Qp an algebraic closure of Qp. Let ι : C −→∼ Qp be an
isomorphism. Our conventions for Galois representations are geometric.

Theorem B (Galois representations). Let π be an irreducible cuspidal represen-
tation of G(AQ) and let χπ be its central character. Let 6(π) be the finite set
of primes ` such that either π` is ramified or `|dK . Suppose ab 6= 0 and π∞ is
a regular discrete series belonging to an L-packet indexed by the representation
ξ . Let σ = (ψ, τ) be as in Theorem A. There exists a continuous, semisimple
representation ρπ = ρπ,ι : G K → GLn(Qp) such that:

(a) ρc
π'ρ

∨
π ⊗ ρχ1+c

π
ε1−n .

(b) ρπ is unramified at all finite places not above primes in 6p(π) :=6(π)∪ {p},
and for such a place w

(ρπ |WKw
)ss
= ιRecw

(
τw⊗ψw| · |

(1−n)/2
w

)
.

In particular,

L6p(π)(s, ρπ )= L6p(π)

(
s+ 1−n

2
, τ ×ψ

)
.

(c) For v|p, ρπ |G Kv
is potentially semistable of Hodge–Tate-type ξ .

(d) If p 6∈6(π) then

(d) If p 6∈ 6(π) then for any v|p, ρπ |G Kv
is crystalline. Moreover, for any j in

HomQp-alg(Kv,Qp) the eigenvalues of the action of the [Kv :Qp]-th power of
the crystalline Frobenius on

Dcris(ρπ |G Kv
)⊗Qp⊗Qp Kv, j Qp

are the eigenvalues of the action of Frobenius on ιRecv
(
τv ⊗ψv| · |

(1−n)/2
v

)
.

For any irreducible admissible representation α of GLn(Kw), Recw(α) is the Weil–
Deligne representation over C associated by the local Langlands correspondence,
and ιRecw(α) is the representation over Qp obtained by change of scalars via ι.
For ρπ |G Kv

to be of Hodge–Tate type ξ means that the Hodge–Tate weights can be
read off from ξ in a prescribed way (see Section 4.4).

As the proof of Theorem A shows, there is a partition n=m1+· · ·+mr such that
the representation τ in Theorem A is of the form τ = τ1 � · · ·�τr with τi a cuspidal
automorphic representation of GLmi (AK ) such that τ c

i
∼= τ∨i and σi := τi⊗|·|

(mi−n)/2

is regular algebraic in the sense of [Clozel 1990]. Then the representation ρπ of
Theorem B is just ρψ ⊗

(⊕r
i=1 ρσi ,ι

)
, where ρσi ,ι is the mi -dimensional p-adic

Galois representation associated to σi (ρσi ,ι is obtained from [Shin 2011]).
The theory of pseudorepresentations in combination with congruences between

automorphic forms allows the weakening of some of the hypotheses of Theorem B —
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cases where ab= 0 or where ξ is not regular can be allowed. But we do not include
this here.

If Q is replaced by a totally real field of degree greater than one, then the analogs
of Theorems A and B are known, the weak base change having been proved by
Labesse [2011]. Furthermore, versions of these theorems have been proved by
Morel [2010], who proves Theorem A but with 6(π) replaced by an indeterminate
set of primes, and by Harris and Labesse [2004], who require additional conditions
at some finite primes. The work of Morel is the starting point of our proofs.

Our proofs of Theorems A and B proceed essentially as follows. By results
of Morel, an automorphic representation σ = (ψ, τ) of H(AQ) as in Theorem A
exists but with 6(π) replaced by an indeterminate set S ⊇ 6(π). Furthermore,
τ is a subquotient of an induced representation IndGLn

P

(⊗r
i=1 τi

)
with P ⊂ GLn

the standard parabolic associated with a partition n = m1 + · · · + mr and each
τi a discrete representation of GLmi (AQ) such that τ c

i
∼= τ∨i . By considering

absolute values of Satake parameters, it follows from the work of Mœglin and
Waldspurger characterizing the discrete series representations of GLmi (AQ) that
each τi is cuspidal, and a consideration of infinitesimal characters yields that
σi := τi ⊗ | · |

(ni−n)/2 is algebraic with the same infinitesimal character as a regular
irreducible representation of ResK/QGLmi . The regularity of ξ is used in both these
arguments. Then ρπ,ι := ρψ ⊗

(⊕r
i=1 ρσi ,ι

)
, with ρσi ,ι being the representation

deduced from the work of Shin, satisfies conclusions (a), (b), and (c) of Theorem B
with 6(π) replaced by S. It then remains to show that (b) of Theorem A also
holds for ` ∈ S but ` 6∈ 6(π), for then (b) and (d) of Theorem B follow from
the corresponding results for the ρσi ,ι. To obtain (b) of Theorem A for such an `
we first observe that the representation

∧a
ρπ,ι is unramified at the places w|`.

This is because Morel has essentially shown that this representation appears in
the intersection cohomology of a Shimura variety associated to π that has good
reduction at w|` (some argument is required to reduce to the nonendoscopic case);
this is another point at which the regularity of ξ is used. Then the local-global
compatibility satisfied by the ρσi ,ι implies that there is a finite order character
χ` of K×` such that each τi,w ⊗ χw is unramified, and hence a principal series
representation of GLmi (Kw) with Satake parameters all having the same absolute
values (again using regularity of ξ ). This information is then combined with that
coming from the γ -factors of the standard L-functions. Lapid and Rallis have
defined local γ -factors γ (s, πv ×χv) for the standard L-function of π such that

L S(s, π ×χ)=
∏

v∈S∪{∞}

γ (s, πv ×χv)× L S(1− s, π∨×χ−1),

and Brenner has proved stability for these γ -factors at nonarchimedean places.
Comparing this with the functional equation for L S(s, τ×χ) and choosing a global
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character χ with `-component χ` and with sufficiently ramified q-components χq

for ` 6= q ∈ S yields an equality between γ -factors for π and

τ : γ (s, π`×χ`)= γ (s, τ`×χ`).

Comparing the definitions of these gamma factors and exploiting some freedom in
the choice of χ` and χ then yields conclusion (b) of Theorem A.

After some preliminary remarks fixing notation for unitary and related groups in
Section 2, in Section 3 we give the analytic arguments involving L-functions and
γ -factors. In Section 4 we then recall the results of Morel and Shin and explain
how Theorems A and B follow.

2. Preliminaries

We adopt the following notation and conventions.

2.1. Galois groups and representations. Let Q be an algebraic closure of Q and
let K ⊂Q be an imaginary quadratic field of discriminant dK . For F =Q or K , let
G F :=Gal(Q/F). Let WF be a Weil group of F ; this comes with a homomorphism
to G F . For each place v of F fix an algebraic closure Fv of Fv and an embedding
Q ↪→ Fv . The latter identifies G Fv := Gal(Fv/Fv) with a decomposition group in
G F . Let WFv be the Weil group of Fv; for a finite place v, WFv is a subgroup of
G Fv and so is identified with a subgroup of G F . Fix a homomorphism WFv →WF

compatible with the fixed inclusion G Fv ⊂ G F . We denote the action on K of the
nontrivial automorphism in Gal(K/Q) by x 7→ x̄ . For simplicity, we also fix an
embedding K ↪→ C (equivalently, an isomorphism K∞ ∼= C).

Let p be fixed prime and ι : C
∼
→ Qp a fixed isomorphism. Our conventions for

p-adic Galois representations are geometric: L-functions of representations of G F

or G Fv are defined by taking characteristic polynomials of geometric Frobenius
elements.

For an algebraic Hecke character of A×F (so χ∞(x) = sgn(x)r x t if F =Q and
χ∞(x)= xr x̄ t if F = K , for some r, t ∈ Z) let

ρχ = ρχ,ι : G F →Q×p

be the p-adic Galois character such that L{p}(s, ρχ )= L{p}(s, χ). Then ε :G F→Z×p
is the p-adic character associated to the norm | · |F character of A×F ; this is the
p-adic cyclotomic character: for a geometric Frobenius frobv, v - p∞,

ε(frobv)= Norm(v)−1.

2.2. The groups: G, G0, H, and H0. Let n1, . . . , nk be positive integers and
n := n1+ · · ·+ nk . For each i = 1, . . . , k let ni = ai + bi be a partition of ni as a
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sum of two nonnegative integers. Let

Ji = Jai ,bi :=

(
1ai

−1bi

)
.

Then Ji defines a Hermitian pairing on K ni . Let

G = G(U (a1, b1)× · · ·×U (ak, bk))/Q

and let µ : G→ Gm be its similitude character. That is, for any Q-algebra R,

G(R)=
{

g = (g1, . . . , gk) ∈
k∏

i=1
GLni (R⊗ K ) : ∃λ ∈ R× such that gi J t

i ḡi = λJi

}
and µ(g)= λ. Here g 7→ ḡ is the involution of GLm(R⊗ K ) defined by the action
of the nontrivial automorphism of K . Let G0 :=U (a1, b1)×· · ·×U (ak, bk) be the
kernel of µ.

For any K -algebra R there is a natural isomorphism R⊗K −→∼ R× R, r⊗ x 7→
(r x, r x̄). Using this, we identify G/K with Gm ×

∏k
i=1 GLni :

g = (g′i , g′′i ) ∈ G(R)⊂
k∏

i=1

GLni (R⊗ K )=
k∏

i=1

GLni (R)×GLni (R)

is identified with (µ(g), (g′i )) ∈ R××
∏k

i=1 GLni (R). Then G0/K is identified with
the subgroup

∏k
i=1 GLni .

Let H := ResK/QG/K . Then H/K is identified with G/K ×G/K . The identifica-
tion of G/K with Gm ×

∏k
i=1 GLni identifies H with

ResK/QGm ×
k∏

i=1
ResK/QGLni .

Let θ be the involution of H defined by

θ(x, (gi ))= (x̄, (x̄ t ḡ−1
i )).

Let H0 := ResK/QG0. Note that θ also defines an involution (gi ) 7→ (t ḡ−1
i ) of H0.

An irreducible admissible representation of H(AQ) is given by a tuple (ψ, (τi )) with
ψ an admissible character of A×K and each τi an irreducible admissible representation
of GLni (AK ).

2.3. Dual groups and L-groups. The identification of G/K with Gm×
∏k

i=1 GLni

also identifies the dual group Ĝ with C××
∏k

i=1 GLni (C), with GQ acting through
the quotient Gal(K/Q) and the nontrivial automorphism c ∈ Gal(K/Q) acting by

c(x, (gi ))=

(
x

k∏
i=1

det gi , (8
−1t
ni

g−1
i 8ni )

)
,
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where 8m := (8m,i j ) = ((−1)i+1δi,m− j+1). Put LG := Ĝ o WQ. Similarly,
Ĝ0 =

∏k
i=1 GLni (C) with the same action of GQ; let LG0 := Ĝ0 o WQ. The

L-homomorphism corresponding to taking an irreducible admissible G0(AQ)-
constituent of an irreducible admissible G(AQ) representation is the projection

LG→ LG0, (x, (gi ))ow 7→ (gi )ow.

Since H/K = G/K ×G/K , Ĥ = Ĝ × Ĝ with the action of GQ again factoring
through Gal(K/Q) and with c(x, y)= (c(y), c(x)). Similarly, Ĥ0 = Ĝ0× Ĝ0 with
the same action of GQ. Put LH := Ĥ o WQ and LH0 := Ĥ0 o WQ. The diagonal
embedding Ĝ ↪→ Ĥ = Ĝ× Ĝ is GQ-equivariant; its extension to L-groups

BC : LG→ LH

is the base change map. Let BC : LG0→
LH0 be the similarly defined map.

3. L-functions and γ -factors

In this section we prove the key analytic ingredient of our proof of Theorems A
and B. We assume in the argument that G0 =U (a, b) (that is, k=1).

Let π be a cuspidal automorphic representation of G0(AQ). Let 6(π) be the
finite set of primes ` such that either π` is ramified or `|dK . By the principle of
functoriality for the L-group homomorphism BC : LG0→

LH0 it is expected — at
the very least — that there should be a weak base change of π to H0(AQ). That
is, there should exist an automorphic representation τ of H0(AQ) (equivalently, of
GLn(AK )) such that for ` 6∈ 6(π), the Langlands parameter ψτ` : WQ`

→
LH0 of

τ` is just BC ◦ψπ` , with ψπ` :WQ`
→

LG0 the Langlands parameter of π`. We say
that τ is a very weak base change of π if there is some set S ⊃6(π) such that this
relation between Langlands parameters holds for all ` 6∈ S.

Proposition 1. Let π be a cuspidal automorphic representation of G0(AQ). Assume
that there exists a very weak base change τ of π to H0(AQ). If τ is a tempered
principal series at every finite place ` 6∈6(π), then τ is a weak base change of π .

We deduce the conclusion of this proposition by comparing L-functions and
γ -factors. Let R := ResK/QGm . Then R̂ = C× × C× with GQ acting through
Gal(K/Q) and the nontrivial automorphism c of K acting as c(x1, x2)= (x2, x1).
Let L R := R̂ o WQ. Let ω be a Hecke character of AK . Then ω is an irreducible
admissible representation of R(AQ)=A×K ; we let ψω` :WQ`

→
L R be the Langlands

parameter associated with ω` :=
⊗

v|` ωv (coming from class field theory). The
L-groups of G0× R and H0× R are L(G0× R)= LG0×WQ

L R = (Ĝ0× R̂)o WQ

and L(H0× R)= LH0×WQ

L R = (Ĥ0× R̂)o WQ, with WQ acting on each factor.
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Let π and τ be as in the proposition. The unramified local L-factors L(s, π`×ω`)
of the standard L-function of π ×ω are the L-factors associated with the represen-
tation rst :

L(G0× R)→ GL2n(C),

rst ((g, (x1, x2))o 1)=

(
x1g

x28
−1t
n g−18n

)
rst (1 o c)=

(
1n

1n

)
.

If ` - dK and π` and ω` are unramified, then

L(s, π`×ω`)= det(1− `−srst(ψπ`(frob`), ψω`(frob`)))−1.

Similarly, the local unramified L-factors L(s, τ`×ω`) :=
∏
v|` L(s, τv ×ωv) are

the L-factors associated with the homomorphism r ′st :
L(H0× R)→ GL2n(C),

r ′st (((g1, g2), (x1, x2))o 1)=

(
x1g1

x28
−1t
n g−1

2 8n

)
r ′st (1 o c)=

(
1n

1n

)
.

In particular, rst = r ′st ◦ (BC× id), so L(s, π`×ω`)= L(s, τ`×ω`) if ` - dK and
π`, τ`, and ω` are unramified and ψτ` := BC ◦ψπ` (so for all ` 6∈ S).

Lemma 2. Suppose ` - dK and π` are τ` are unramified. If

L(s, π`×ω`)= L(s, τ`×ω`)

for all unramified ω`, then ψτ` = BC ◦ψπ` .

Proof. Let

ψπ`(frob`)= t o frob`, t = diag(t1, . . . , tn), and ψτ`(frob`)= (h, h)o frob`,

h = diag(h1, . . . , hn) (ψτ` must be of this form as τ c
`
∼= τ∨` ). Suppose first that `

does not split in K . As frob` = c in Gal(K/Q), the condition that L(s, π`×ω`)=
L(s, τ`×ω`) is just that ti/tn−i = hi/hn−i (after possibly reordering the hi ). That
is, t = zh for some z ∈ C×, and so (z, 1)ψτ`(frob`)(z−1, 1) = BC ◦ ψπ`(frob`).
Hence, ψτ` is equivalent to BC ◦ψπ` .

Suppose that ` splits in K . Let ψω`(frob`) = (α, β)o frob`. As frob` = 1 in
Gal(K/Q), the equality L(s, π`×ω`)= L(s, τ`×ω`) means that

diag(αt, β8−1
n t−18n) ∈ GL2n(C) and diag(αh, β8−1

n h−18n) ∈ GL2n(C)

are equivalent. As α and β can be arbitrary, it follows that t and h are equivalent,
so BC ◦ψπ` is equivalent to ψτ` . �

Let S ⊃6(π) be any finite set of primes such that ψτ` = BC ◦ψπ` for all ` 6∈ S.
The (partial) standard L-functions L S(s, π × ω) and L S(s, τ × ω), given by the
Euler products

L S(s, π ×ω)=
∏̀
6∈S

L(s, πs ×ω`) and L S(s, τ ×ω)=
∏̀
6∈S

L(s, τ`×ω`)



Galois representations associated with unitary groups over Q 1705

for Re(s)� 0, satisfy

L S(s, π ×ω)= L S(s, τ ×ω).

The doubling method of Piatetski-Shapiro and Rallis provides an integral representa-
tion of L S(s, π×ω) as well as local γ -factors at all places; see [Gelbart et al. 1987,
Part A] and especially [Lapid and Rallis 2005]. In particular, for each place v of Q,
Lapid and Rallis have defined local γ -factors γ (s, πv ×ωv) := γv(s, πv ×ωv, ψv),
ψv being the standard additive character of Kv and proved that the local γ -factors
γ (s, πv ×ωv) are compatible with parabolic induction and are as expected in the
unramified cases. The functional equation for L S(s, π ×ω) is then

L S(s, π ×ω)=
∏

v∈S∪{∞}

γ (s, πv ×ωv)× L S(1− s, π∨×ω−1).

Comparing this with the usual functional equation for the standard GLn L-function
L S(s, τ ×ω) we find that∏

v∈S∪{∞}

γ (s, πv ×ωv)=
∏

v∈S∪{∞}

∏
w|v

γ (s, τw×ωw), (3.1)

where w is a place of K and γ (s, τw ×ωw) is the γ -factor defined by Godement
and Jacquet (again using the standard additive characters). For a place v of Q, set

γ (s, τv ×ωv) :=
∏
w|v

γ (s, τw×ωw).

We exploit stability of γ -factors. This says that if π1 and π2 are two irreducible
admissible representations of G0(Q`), then for χ a sufficiently ramified character of
K×` , γ (s, π1×χ)=γ (s, π2×χ). This has been proved by Brenner [2008]. Stability
is also known for the Godement–Jacquet γ -factors for GLn . Taking π1 = π` and
π2 to be an unramified tempered principal series, we see that if ω` is sufficiently
ramified then

γ (s, π`×ω`)= γ (s, π2×ω`)= γ (s, τ2×ω`)= γ (s, τ`×ω`), (3.2)

where τ2 is the representation of H0(Q`)= GLn(K`) having Langlands parameter
equal to the composition with BC of the parameter of π2; τ2 is also an unramified
tempered principal series. The first and last equalities in (3.2) come from stability,
and the middle comes from [Lapid and Rallis 2005, Theorem 4]: part 1 of this
theorem, together with the hypothesis that π2 is a principal series, reduces the
equality to the minimal cases — the anisotropic cases, which are part 7 of the
theorem, and the isotropic cases, which are part 8 — plus the analog of part 2 for
the Godement–Jacquet γ -factors (compatibility with parabolic induction).

It is easy to see that given any finite set of primes S′ it is possible to find a set
S′′ ⊃ S∪ S′ and a finite order Hecke character ω of A×K such that ω` is arbitrary for
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all ` ∈ S′, and ω` is sufficiently ramified at all primes ` ∈ S′′− S′ and unramified
at all primes not in S′′. Taking S′ = ∅, we deduce from (3.1) and (3.2) that
γ (s, π∞×ω∞)= γ (s, τ∞×ω∞). Taking S′ = {`}, any prime `, we then deduce
from (3.1) and (3.2) that

γ (s, π`×ω`)= γ (s, τ`×ω`) (3.3)

always.
Suppose now that ` 6∈6(π). By hypothesis, τv is a tempered principal series for

v|`. Suppose first that ` is inert in K . Then τ` ∼= π(µ1, . . . , µn) with |µi (x)| = 1
for all x ∈ K×` . Fix j between 1 and n and choose ω` so that µ jω` is unramified.
Let I ⊂ {1, . . . , n} be the set of indices such that µiω` is unramified. Then

γ (s, τ`×ω`)=
∏
i∈I

1−µiω`(`)`
−2s

1−µ−1
i ω−1

` (`)`
2s−2
×

∏
i 6∈I

γ (s, µiω`).

Asµiω` is ramified for i 6∈ I , γ (s, µiω`) is holomorphic with no zeros. Furthermore,
the temperedness of τ` ensures that there is no cancellation between the numerators
and denominators of the factors coming from the i ∈ I . Therefore, γ (s, τ`×ω`)
has |I | ≥ 1 poles. However, if ω` is ramified, then, since π` is unramified, it
follows from combining parts 1, 7, and 8 of [Lapid and Rallis 2005, Theorem 4]
that γ (s, π` × ω`) is holomorphic. So it must be that ω` — and hence µ j — is
unramified. But j was arbitrary, so each µi is unramified: τ` is an unramified
principal series. Therefore, by (3.3),

L(1−s, π∨` )
L(s, π`)

= γ (s, π`)= γ (s, τ`)=
L(1−s, τ∨` )

L(s, τ`)

(for the first equality, see part 3 of [Lapid and Rallis 2005, Thm. 4]). As τ` is
tempered, the zeros of the right-hand side are those of L(s, τ`)−1, while those
of the left-hand side are a priori a subset of those of L(s, π`)−1. This means
that L(s, τ`)/L(s, π`) is holomorphic. But each of L(s, τ`)−1 and L(s, π`)−1 is a
polynomial of degree n in `−2s with constant term 1, and so they must be equal.
That is, L(s, π`) = L(s, τ`). Since an unramified ω` equals | · |t` for some t ∈ C,
it follows that L(s, π`⊗ω`)= L(s+ t, π`)= L(s+ t, τ`)= L(s, τ`⊗ω`), which
implies — by Lemma 2 — that ψτ` = BC ◦ψπ` .

Suppose that `= vv̄ splits in K . Viewing Q` as a K -algebra via the embedding
that induces v, G0(Q`) is identified with GLn(Kv) = GLn(Q`) and π` with a
representation πv of GLn(Q`). Let πv̄ = π∨v . Then

γ (s, πv ×ωv)γ (s, πv̄ ×ωv̄)= γ (s, π`×ω`)

= γ (s, τ`×ω`)= γ (s, τv ×ωv)γ (s, τv̄ ×ωv̄).
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The first equality follows from part 8 of [Lapid and Rallis 2005, Theorem 4]. By
choosing ω` so that ωv̄ is sufficiently ramified but ωv is unramified, γ (s, πv̄ ×ωv̄)
and γ (s, τv̄ ×ωv̄) can be assumed to be holomorphic with no zeros. Arguing as in
the nonsplit case then yields that τv is unramified and L(s, τv)= L(s, πv) (recall
that τv and τv̄ are assumed to be principal series and tempered). Reversing the
role of ωv and ωv̄ then yields that τv̄ is unramified and L(s, τv̄) = L(s, πv̄). As
L(s, π`) = L(s, πv)L(s, πv̄), it follows that L(s, π`⊗ω`) = L(s, τ`⊗ω`) for all
unramified ω`, which — by Lemma 2 again — implies that ψτ` = BC ◦ψπ` . This
completes the proof of Proposition 1.

4. σ and ρπ

In this section, k is arbitrary.

4.1. Algebraic representations and discrete series for G(R). Let T ⊂ G be the
subgroup of diagonal elements. Then T/K is identified with the diagonal subgroup

G1+n
m = G1+n1+···+nk

m ⊂ Gm ×
k∏

i=1
GLni ,

and the character group X (T ) is identified with Z1+n: to c= (c0, c1, . . . , ck)∈Z1+n ,
ci ∈ Zni , corresponds the character

(t0, (diag(ti,1, . . . , ti,ni )) 7→ tc0
0

n∏
i=1

ni∏
j=1

tci, j
i, j .

We take the dominant characters to be those that are dominant with respect to the
upper-triangular Borel B; this is equivalent to ci,1 ≥ ci,2 ≥ · · · ≥ ci,ni . Regular
dominant characters are those where the inequalities are strict. The (regular)
irreducible algebraic representations of G/K are indexed by the (regular) dominant
characters in X (T ): to the representation ξ corresponds its highest weight with
respect to the pair (T, B).

The L-packets of discrete series representations of G(R) are indexed by equiv-
alence classes of elliptic Langlands parameters ψ :WR→

LG. The restriction to
WC = C× of such a ψ is equivalent to a representation of the form

z 7→ ((z/z̄)p0, (diag((z/z̄)pi,1, . . . , (z/z̄)pi,ri )))o z

with p0 ∈ Z and pi, j ∈ (ni − 1)/2 + Z; the ordering can be chosen so that
pi,1 > · · · > pi,ri . Let ci, j := pi, j − (ni − 2i + 1)/2. Then ci,1 ≥ · · · ≥ ci,ri ,
and c= (c0, c1, . . . , ck), c0 := p0 and ci := (ci,1, . . . , ci,ri ), is a dominant character
of X (T ) and so corresponds to an irreducible algebraic representation ξ of G/K of
highest weight c. This gives a parametrization of the discrete series L-packets by
the irreducible algebraic representations of G/K ; we denote the L-packet indexed
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by ξ by 5d(ξ). By a regular discrete series we will mean one belonging to an
L-packet 5d(ξ) with ξ having regular highest weight.

4.2. σ . Suppose ai bi 6= 0 for all i . Let π be a cuspidal automorphic representation
of G(AQ) with π∞ ∈5d(ξ) for some regular algebraic representation ξ of G/K .
Let χπ be the character of the scalar torus ResK/QGm ⊂ G determined by π (an
algebraic Hecke character of A×K ). Let 6(π) be the finite set comprising the primes
` such that either π` is ramified or `|dK . Let c ∈ X (T ) be the (regular) highest
weight of ξ . Put i(c) := (c′0,−c′1, . . . ,−c′k), where if ci = (ci,1, . . . , ci,ni ) then
c′i := (ci,ni , . . . , ci,1) and c′0 := c0 +

∑k
i=1

∑ni
j=1 ci, j . Then i(c) is also a regular

dominant character in X (T ).
The weight of an irreducible algebraic representation of G/K is the integer m

such that the action of the central torus Gm ⊂ G is given by x 7→ xm ; the weight of
the representation ξ with highest weight c ∈ X (T ) is c0+ c′0.

It follows from the proofs of Corollary 8.5.3 and Lemma 8.5.6 in [Morel 2010] —
see especially the top paragraph on page 156 there — that there exist partitions
ni = mi,1+ · · ·+mi,ri with each mi, j > 0, irreducible automorphic representations
τi, j of GLmi, j (AK ), and a finite set of primes S ⊃ 6(π) satisfying the following
conditions:

• τi, j is discrete.

• τ c
i, j = τ

∨

i, j .

• For ` 6∈ S and v|`, each τi, j,v is unramified.

• Let ` 6∈ S, v|`, and let τi,v be the unramified irreducible subquotient of
IndGLniPi

(⊗
j τi, j,v

)
and σ` the irreducible representation of H(Q`) defined

by the tuple
(⊗

v|` χ
c
π ,
(⊗

v|` τi,v
))

. If ψπ` is the Langlands parameter of π`,
then BC ◦ψ` is the Langlands parameter of σ`.

• The infinitesimal character of τi := Ind
GLni
Pi

(⊗
j τi, j

)
is the same as that of the

absolutely irreducible algebraic character of ResK/QGLmi, j of highest weight
(ci ,−c′i ); χ

c
π (z)= zc0 z̄c′0 .

Here, Pi ⊂ GLni is the standard parabolic associated with the partition ni =

mi,1+ · · ·+mi,ri .
Recall that the infinitesimal character of an admissible representation of GLm(C)

is an element of a∨m,C modulo the action of the Weyl group W (glm,C, am,C), where
glm := Lie(GLm(C)) and am := Lie(Am(C)) with Am := Gm

m ⊂ GLm the diagonal
torus. Identifying C⊗R C with C×C via z⊗w 7→ (zw, z̄w) and C= Lie(C×) (in
the usual way, so the exponential map is z 7→ ez) identifies am,C with Cm

×Cm , and
hence a∨m,C :=HomC(am,C,C)=Cm

×Cm (using the dual basis); W (glm,C), a
∨

m,C)

is then identified with Sm×Sm . An absolutely irreducible algebraic representation



Galois representations associated with unitary groups over Q 1709

of ResK/QGLm corresponds to its highest weight with respect to

(ResK/Q Am,ResK/Q Bm),

Bm ⊂ GLm being the upper-triangular Borel; this is an element of

X (ResK/Q Am)= X (Am)× X (Am)

(the identification being via ResK/Q Am/K = Am × Am) given by a pair of dom-
inant characters of X (Am) = Zm (the last identification is the usual one: c =
(c1, . . . , cm) ∈ Zm corresponds to the character diag(t1, . . . , tm) 7→ tc1

1 · · · t
cm
m ;

dominant characters satisfy c1 ≥ · · · ≥ cm , and regular dominant characters are
those where the inequalities are strict). The infinitesimal character of the irre-
ducible representation of highest weight (c1, c2) is (c1, c2)+ ρGLm ∈ a∨m,C, where
ρGLm := ((m− 1)/2, (m− 3)/2, . . . , (3−m)/2, (1−m)/2) is half the sum of the
usual positive roots in glm .

As ξ is regular, if the weight of ξ is zero (that is, c0+c′0= 0) then by [Morel 2010,
Theorem 7.3.1], the Satake parameters of π`, ` 6∈ S, all have absolute value 1. The
same is then true of the Satake parameters of τi, j,v for any v|` asψσ`=BC◦ψπ` . For
ξ having general weight m ∈ Z, let π ′ and ξ ′ be the twists of π and ξ , respectively,
by the character µ(·)−m ; then ξ ′ is regular of weight 0 and π ′

∞
∈ 5d(ξ

′). The
representations of the GLni (AK ) associated to π ′ as above are the same as those
associated to π : this can be seen by the relation between Langlands parameters at
` 6∈ S. The case of general weight then follows immediately from that of weight
zero. Therefore, we also have that

• for ` 6∈ S, v|`, the Satake parameters of τi, j,v all have absolute value 1 - τi, j,v

is tempered; furthermore, τi,v = Ind
GLni
Pi

(⊗
j τi, j,v

)
and is a tempered principal

series.

Lemma 3. Each τi, j is cuspidal, and σi, j := τi, j ⊗ | · |
(mi, j−ni )/2 is algebraic and

has the same infinitesimal character as a regular absolutely irreducible algebraic
representation ξi, j of ResK/QGLmi, j .

Here σi, j being algebraic automorphic representation of GLmi, j (AK ) is as in
[Clozel 1990, 1.2.3]: the infinitesimal character bi, j ∈ a∨mi, j ,C

= Cmi, j ×Cmi, j of
σi,∞ satisfies bi, j + (1−mi, j )/2 ∈ Zmi, j ×Zmi, j .

Proof. As τi, j is discrete, by the main results of [Mœglin and Waldspurger 1989]
there is a factorization mi, j = si, jri, j and an irreducible cuspidal automorphic
representation αi, j of GLsi, j (AK ) such that τi, j is the unique irreducible quotient of

Ind
GLmi, j
Pi, j

βi, j βi, j = (αi, j ⊗ | · |
(1−ri, j )/2)⊗ · · ·⊗ (αi, j ⊗ | · |

(ri, j−1)/2),
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where Pi, j ⊂ GLmi, j is the standard parabolic associated with the partition mi, j =

si, j + · · · + si, j (ri, j summands). Since for all but finitely many v the Satake
parameters of τi, j,v all have the same absolute value, it must then be that ri, j = 1,
and so τi, j = αi, j is cuspidal.1

Let ai, j ∈ a∨mi, j ,C
be the infinitesimal character of τi, j,∞. Then the infinitesimal

character of τi,∞ is ai := (ai,1, . . . , ai,ri ) ∈ a∨ni ,C
. In particular, there exist L ′, L ′′ ⊂

{1, . . . , ni } of cardinality m = mi, j such that a = ai, j = (a′, a′′) ∈ Cm
×Cm with

a′ and a′′ equal to (ci,`+ (ni − 2`+ 1)/2)`∈L ′ and (−ci,`+ (2`− ni + 1)/2)`∈L ′′ ,
respectively. Suppose L ′ = {`′1, . . . , `

′
m} with `′1 < `′2 < · · · < `′m and L ′′ =

{`′′1, . . . , `
′′
m} with `′′1 > `

′′

2 > · · ·> `
′′
m . Then the infinitesimal character b = bi, j of

σi, j is given by b = a+ (m− ni )/2= (d ′, d ′′)+ ρGLm , where

d ′ = (ci,`′k + k− `′k)1≤k≤m and d ′′ = (−ci,`′′k + `
′′

k − ni + k)1≤k≤m .

As ρGLm + (1−m)/2 ∈ Zm , it follows that b+ (1−m)/2 ∈ Zm
× Zm , so σi, j is

algebraic. Also,

ci,`′k + k− `′k − ci,`′k+1
− k− 1+ `′k+1 = ci,`′k − ci,`′k+1

− 1+ `′k+1− `
′

k ≥ 1

−ci,`′′k +`
′′

k−ni +k+ci,`′′k+1
−`′′k+1+ni −k−1= ci,`′′k+1

−ci,`′′k +`
′′

k−`
′′

k+1−1≥ 1,

so d ′ and d ′′ are both regular and dominant. Therefore,

d := (d ′, d ′′) ∈ X (Am)× X (Am)

corresponds to a regular absolutely irreducible algebraic representation ξi, j of
ResK/QGLm with infinitesimal character d + ρGLm = b. �

Corollary 4. The cuspidal representations τi, j are tempered at all finite places.
Furthermore, each τi is irreducible and tempered at all finite places.

Proof. Choose an algebraic Hecke character χ of A×K such that χχ c
= | · |

ni−mi, j .
Then σi, j ⊗χ is a conjugate self-dual algebraic cuspidal representation with infini-
tesimal character that of a regular absolutely irreducible algebraic representation of
ResK/QGLmi, j . Therefore, σi, j ⊗χ is tempered at all finite places by [Shin 2011,
Corollary 1.3]. The claims about τi, j and τi follow easily from this. �

Put
ψ := χ c

π and σ := (ψ, (τi )). (4.4)

Then σ is identified with an irreducible automorphic representation of H(AQ). This
is a very weak base change of π in the sense that the Langlands parameter ψσ` of
σ` is BC ◦ψπ` for all ` 6∈ S, ψπ` being the Langlands parameter of π`.

1This can also be seen by considering infinitesimal characters.



Galois representations associated with unitary groups over Q 1711

Remark 5. Suppose k = 1. Let π0 be an irreducible automorphic constituent of
the restriction of π to G0(AQ). Then τ = τ1 is a very weak base change of π0 to
H0(AQ) that is tempered at all finite places. By Proposition 1, to complete the proof
of Theorem A it suffices to show that τv is a principal series for all v|`, ` 6∈6(π).
This is done in the following by analyzing certain Galois representations associated
with τ .

4.3. ρπ . Let ρ : G K → GLm(Qp) be a continuous representation. Let ξ be an
absolutely irreducible algebraic representation of ResK/QGLm with highest weight
(c1, c2) ∈ X (Am)× X (Am)= Zm

×Zm . Let v|p be a place of K . Recall that ρv :=
ρ|GQv

being Hodge–Tate means that the graded (Qp⊗Qp Kv)-module DHT,v(ρv) :=

(ρv ⊗ BHT,v)
G Kv , BHT,v :=

⊕
t∈Z K̂ v(t), is a free (Qp⊗Qp Kv)-module of rank m.

By ρv being of Hodge–Tate type ξ we mean that for any j ∈ HomQp-alg(Kv,Qp),
the graded Qp-module DHT(ρv)⊗Qp⊗Qp Kv, j Qp is nonzero in degrees i − 1− c1,i ,
i = 1, ..,m, if the restriction of j to K is the fixed embedding K ↪→Qp ∼= C and
otherwise is nonzero in degrees i − 1− c2,i , i = 1, . . . ,m.

Let σi, j be as in Lemma 3. From [Shin 2011] we conclude that there exist
representations ρi, j = ρσi, j ,ι : G K → GLmi, j (Qp) such that

• ρi, j is continuous and semisimple,

• for v - p, WD(ρi, j |G Kv
)Fr−ss

= ιRecv
(
σi, j,v ⊗ | · |

(1−mi, j )/2
v

)
,

• ρc
i, j
∼= ρ∨i, j ⊗ ε

1−ni ,

• for each v|p, ρi, j |G Kv
is potentially semistable of Hodge–Tate type ξi, j ,

• for v|p, if σi, j,v is unramified then ρi, j |G Kv
is crystalline and the eigenvalues

of the [Kv :Qp]-th power of the crystalline Frobenius on

Dcris(ρi, j |G Kv
)⊗Qp⊗Qp K 0

v ,λ
Qp, any λ ∈ HomQp-alg(K 0

v ,Qp),

are the Frobenius eigenvalues of ιRecv
(
σi, j,v⊗| · |

(1−mi, j )/2)
v

)
, where K 0

v ⊂ Kv

is the maximal absolutely unramified extension.

Here WD(ρi, j |G Kv
)Fr−ss is the Frobenius semisimple Weil–Deligne representation

associated to the ρi, j |G Kv
.

The existence of ρi, j follows from [Shin 2011, Theorem 1.2]: As in the proof
of Corollary 4, choose an algebraic Hecke character χ of AK such that σi, j ⊗χ is
conjugate self-dual; such a character can be chosen to be unramified at any given
finite set of finite places. Then [ibid., Theorem 1.2] applies to σi, j ⊗ χ and we
set ρi, j := Rp,ι(σ

∨

i, j ⊗χ
−1)⊗ ρ∨χ,ι in Shin’s notation (the contragredients are here

because of the normalization of the local Langlands correspondence in [Shin 2011]).
By varying the set of primes at which χ is unramified we obtain the compatibility
with the local Langlands correspondence at all v - p. A comparison between the
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eigenvalues of the [Kv :Qp]th-power of the crystalline Frobenius eigenvalues and
the Frobenius eigenvalues of the Weil–Deligne representation is not stated explicitly
in [ibid.] but can be obtained by appealing to the comparison theorem in [Katz
and Messing 1974]: the arguments in [Shin 2011, §7] and especially [Taylor and
Yoshida 2007, §2] explain that there is a solvable CM-extension L/K in which
all places of K above p split and such that BCL/K (σ

∨

i, j ⊗χ
−1) is cuspidal and an

algebraic Hecke character ψ of A×L unramified at all primes above p such that some
multiple of the p-adic GL -representation Rp,ι(BCL/K (σ

∨

i, j ⊗ χ
−1))⊗ ρψ,ι is cut

out by correspondences acting on the cohomology with constant coefficients of a
self-product of the universal abelian variety over a compact Shimura variety (with
good reduction at v if σi, j,v ⊗χv is unramified). Here BCL/K (·) denotes the base
change lift to GLn(AL).

Put
ρi :=

⊕ri
j=1 ρi, j , i = 1, . . . , k,

and
ρπ := ρψ ⊗

(⊕k
i=1 ρi

)
. (4.5)

Remark 6. Suppose k = 1. Then ρπ satisfies the conclusions of Theorem B, but
with S replacing 6(π) and with the additional condition that p 6∈ S for part (d); the
definition of ρπ being of “Hodge–Tate type ξ” is given after Theorem 10 below.

Proposition 7. For v|`, ` 6∈6(π), the representations τi, j,v and τi,v are tempered
principal series.

Our proof of this proposition will come from an understanding of the ramification
at v|`, ` 6∈6p(π), of the representation

rπ := ρψ ⊗
k⊗

i=1

∧aiρi .

First, we explain what it means for π to be an endoscopic lift. This means that
each ni has a partition ni = n+i + n−i as a sum of nonnegative integers with some
n+j n−j 6= 0 and such that

∑k
i=1 n−i is even, and that there is a cuspidal automorphic

representation γ of G ′(AQ), with

G ′ := G(U (a+1 , b+1 )×U (a−1 , b−1 )× · · ·×U (a+k , b+k )×U (a−k , b−k ))

and

(a±i , b±i )=
(⌊n±i +1

2

⌋
,
⌈n±i −1

2

⌉)
,

such that γ is unramified at each prime ` 6∈ 6(π), and for each ` 6∈ 6(π) the
Langlands parameter ψπ` of π` is the composition of the Langlands parameter ψγ`
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of γ` with the endoscopic L-group homomorphism

End : LG ′→ LG,

is defined as follows (see also [Morel 2010, Proposition 2.3.2]. Let εK/Q:WQ→{±1}
be the nontrivial quadratic character factoring through Gal(K/Q); by class field
theory this determines a quadratic character ωK/Q : A

×/Q×→ {±1}. Fix a finite-
order Hecke character ωK of A×K such that ωK |A× = ωK/Q and let µ :WK → C×

be the character corresponding via class field theory. Let c ∈ WQ be a lift of the
nontrivial automorphism of K . Define ϕ :WQ→

LG by

ϕ(c)=

(
1,

((
8n+i

(−1)n
+

i 8n−i

)
8−1

ni

))
o c,

ϕ(w)=

(
1,

((
µn−i (w)In+i

µ−n+i (w)In−i

)))
ow, w ∈WK .

The endoscopic map is then

End((λ, (g+i , g−i ))ow)=
(
λ,

(
g+i

g−i

))
ϕ(w).

Here ((λ, (g+i , g−i )) ∈ Ĝ ′ = C××
∏k

i=1 GLn+i
(C)×GLn−i

(C).

Lemma 8. Either π is an endoscopic lift of some γ with γ∞ a regular discrete
series or the representation rπ is unramified at all v|`, ` 6∈6p(π).

Proof. By [Morel 2010, Theorem 7.2.2] (see also the proof of [ibid., Theorem 7.3.1]),
either π is an endoscopic lift of some γ with γ∞ a regular discrete series indexed
by a representation with the same weight as ξ (see [ibid., Lem. 7.3.4]) or (some
multiple of) r∨π occurs2 in the middle degree intersection cohomology of a Shimura
variety associated with G, ξ , and π . By [Lan 2008], this Shimura variety is known
to have good reduction at all v|`, ` 6∈6p(π), so the representation rπ is unramified
at such v. �

Proof of Proposition 7. Let v|`, ` 6∈6(π). Suppose π is the endoscopic lift of some
γ with γ∞ a regular discrete series. Let σ ′ = (ψ ′, (τ+i , τ

−

i )) be the very weak base
change of γ as in Section 4.2 (so τ±i is an irreducible automorphic representation
of GLn±i

(AK )). From the definition of π being an endoscopic lift of γ , it follows
that

τi = (τ
+

i ⊗ω
−n−i
K )� (τ−i ⊗ω

n+i
K )

2Theorem 7.2.2 of [Morel 2010] only applies to the case k = 1 as stated, but it is asserted at the
start of [ibid., 7.2] that the results and proofs “would work the same way” for general k. Indeed, the
result for the case k > 1 is stated and used in the proof of [ibid., Theorem 7.3.1].
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(as τ±i is tempered by Corollary 4). We may therefore reduce to the case where π
is not endoscopic, and hence, by Lemma 8, to the case where rπ is unramified at v.

Suppose that rπ is unramified at v. Consider the isogeny

G1 := GL1×
k∏

i=1

ri∏
j=1

GLmi, j→ G2 := GL1⊗
k⊗

i=1
GL(ni

ai

),
(λ, (gi, j )) 7→ λ⊗

k⊗
i=1

∧ai (diag(gi,1, . . . , gi,ri )).

The kernel of this isogeny is central. As rπ is the composition of

ρ := ρψ ⊕
k⊕

i=1
ρi : G K → G1(Qp)

with this isogeny, it then follows that since rπ is unramified at v, the image of inertia
at v under ρ is contained in the center of G1(Qp), and so the image of inertia at
v under each ρi, j is central. So some finite-order twist of each ρi, j is unramified
at v, which — by compatibility of ρi, j with the local Langlands correspondence —
implies that a finite-order twist of each σi, j,v , and hence of each τi, j,v , is unramified.
By Corollary 4, τi, j,v is also tempered. It follows that each τi, j,v is a tempered
principal series, so each τi,v must also be a tempered principal series. �

4.4. The main results. We can now state our main results, of which Theorems A
and B are special cases, and complete their proofs.

Theorem 9. Let π be an irreducible cuspidal representation of G(AQ) and let χπ
be the character of the scalar torus ResK/QGm ⊂ G determined by π (a character
of A×K ). Let 6(π) be the finite set of primes ` such that either π` is ramified or `|dK .
Suppose ai bi 6= 0, i = 1, . . . , k, and π∞ is a regular discrete series belonging to
an L-packet 5d(ξ). There exists an automorphic representation σ = (ψ, (τi )) of
H(AQ) such that:

(a) σ θ ∼= σ ; ψ = χ c
π .

(b) For a prime ` 6∈6(π), σ` is unramified, and ifψπ` :WQ`
→

LG is the Langlands
parameter of π` then

ψσ` := BC ◦ψπ` :WQ`
→

LH

is the Langlands parameter of σ`.

(c) σ∞ has the same infinitesimal character as ξ ⊗ ξ θ .

Proof. Let σ = (ψ, (τi )) be as in (4.4). Then part (a) holds. Furthermore, there
exists a finite set of primes S⊃6(π) such that part (b) holds with S replacing6(π).

Let π0 ⊂ π be an irreducible automorphic representation of G0(AQ). Then π0 is
given by a tuple (π0,i )1≤i≤k with π0,i an automorphic representation of U (ai , bi ).
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For ` 6∈6(π), each π0,i,` is unramified and the Langlands parameter ψπ0,i,` of π0,i,`

is given by composing ψπ` :WQ`
→

LG with the projection

LG→ LG0→
LU (ai , bi )= GLni (C)o WQ.

From part (b) holding for ` 6∈ S it then follows that for such ` the Langlands
parameter of τi,` is BC◦ψπ0,i,` ; that is, τi is a very weak base change of π0,i . But by
Proposition 7, τi,v is a tempered principal series for each v|`, ` 6∈6(π), so it follows
from Proposition 1 that τi is a weak base change of π0,i . That (b) holds is then im-
mediate from the relation between the Langlands parameters of π` and of the π0,i,`.

To see that part (c) holds, we first recall that the infinitesimal character of an
admissible representation of H(R) is an element of s∨

C
up to action of the Weyl group

W (hC, sC), where h := Lie(H(R)) and s := Lie(S(R)) with S := ResK/QT/K ⊂ G
the group of diagonal matrices. Then S/K = T/K × T/K and X (S)= X (T )× X (T ).
The irreducible algebraic representations of H/K correspond to pairs of dominant
characters of X (T )— the highest weight of the representation with respect to S
and the upper-triangular Borel. In particular, the representation ξ ⊗ ξ θ corresponds
to (c, i(c)) and has infinitesimal character (c, i(c))+ρH , where ρH := (0, (ρGLni

)).
On the other hand, S(R)= C××

∏k
i=1 Ani so

s∨C = C2
⊕ a∨n1,C

⊕ · · ·⊕ a∨n j ,C
= C1+n

×C1+n,

and the infinitesimal character of σ∞ is (c0, c′0)
⊕k

i=1(infinitesimal character of τi ).
Since the infinitesimal character of τi is (ci ,−c′i )+ρGLni

, the infinitesimal character
of σ∞ is ((c0, (ci + ρGLni

)), (c′0, (−c′i + ρGLni
)))= (c, i(c))+ ρH . �

Theorem 10. Let π be an irreducible cuspidal representation of G(AQ) and let χπ
be the character of the scalar torus ResK/QGm ⊂ G determined by π (a character
of A×K /K×). Let 6(π) be the finite set of primes ` such that either π` is ramified
or `|dK . Suppose ai bi 6= 0, i = 1, . . . , k, and π∞ is a regular discrete series
belonging to an L-packet5d(ξ). Let σ = (ψ, (τi )) be as in Theorem 9. There exists
a continuous, semisimple representation

ρπ = ρπ,ι : G K → GLn(Qp)

such that:

(1) ρπ is unramified at all finite places not above primes in 6p(π) :=6(π)∪ {p},
and for such a place w

(ρπ |WKw
)ss
=
⊕k

i=1 ιRecw
(
τi,w⊗ψw| · |

(1−ni )/2
w

)
.

(b) For v|p, ρπ |G Kv
is potentially semistable of Hodge–Tate-type ξ .
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(c) If p 6∈6(π) then for any v|p, ρπ |G Kv
is crystalline; for any

j ∈ HomQp-alg(Kv,Qp)

the eigenvalues of the action of the [Kv : Qp]-th power of the crystalline
Frobenius on

Dcris(ρπ |G Kv
)⊗Qp⊗Qp Kv, j Qp

are the eigenvalues of the action of Frobenius on

k⊕
i=1
ιRecv

(
τi,v ⊗ψv| · |

(1−ni )/2
v

)
.

Let c = (c0, c1, . . . , ck) ∈ X (T ) be the highest weight of ξ . By ρπ |G Kv
being of

Hodge–Tate type ξ , we mean that ρπ is of Hodge–Tate type (c0+ c, c′0+ c′).

Proof. If we take ρπ to be as in (4.5), then (a) is immediate from Theorem 9(b) and
the definition of ρπ as being the twist by ρψ of the sum of the ρi, j . From the proof
of Lemma 3, the character ξi, j has highest weights

(ci,`′t + t − `′t ,−ci,`′′t + `
′′

t − ni + t)1≤t≤mi, j ,

and so for v|p,
DHT,v(ρi, j )⊗Qp⊗Qp Kv,ζ

Qp

is nonzero in degrees `′t − 1− ci,`′t if ζ ∈ HomQp-alg(Kv,Qp) induces the fixed
embedding K ↪→Qp ∼= C, and otherwise is nonzero in degrees ni − `

′′
t − 1+ ci,`′′t .

That ρπ |G Kv
is of Hodge–Tate type ξ then follows from this and the fact that

ψ∞(z) = zc0 z̄c′0 and so ρψ is of Hodge–Tate type (c0, c′0). That ρπ |G Kv
, v|p, is

potentially semistable and even crystalline with the prescribed Frobenius eigenvalues
if v|p follows from the corresponding facts for ρψ and the ρi, j . �

Theorems A and B are just the special cases where k = 1.
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