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We first provide here a very short proof of a refinement of a theorem of Kodiyalam
and Cutkosky, Herzog and Trung on the regularity of powers of ideals. This result
implies a conjecture of Hà and generalizes a result of Eisenbud and Harris
concerning the case of ideals primary for the graded maximal ideal in a standard
graded algebra over a field. It also implies a new result on the regularities of
powers of ideal sheaves. We then compare the cohomology of the stalks and the
cohomology of the fibers of a projective morphism to the effect of comparing the
maximums over fibers and over stalks of the Castelnuovo–Mumford regularities
of a family of projective schemes.

1. Introduction

An important result of Kodiyalam and Cutkosky, Herzog and Trung states that the
Castelnuovo–Mumford regularity of the power I t of an ideal over a standard graded
algebra is eventually a linear function in t . The leading term of this function has
been determined by Kodiyalam in his proof.

This result was first obtained for standard graded algebras over a field, and later
extended by Trung and Wang to standard graded algebras over a Noetherian ring.

We first provide here a very short proof of a refinement of this result.

Theorem 1.1. Let A be a positively graded Noetherian algebra, M 6= 0 be a finitely
generated graded A-module, I be a graded A-ideal, and set

d :=min{µ | there exists p, (I≤µ)I p M = I p+1 M}.

Then
lim

t→∞
(end(H i

A+(I
t M))+ i − td) ∈ Z∪ {−∞}

exists for any i , and is at least equal to the initial degree of M for some i.
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The end of a graded module H is end(H) := sup{µ | Hµ 6= 0} if H 6= 0 and −∞
otherwise. Recall that for a graded A-module N , reg(N )=maxi {end(H i

A+(N ))+i}.
Very interesting examples showing hectic behavior of the value of

ai (t) := end(H i
A+(I

t))

as t varies were given in [Cutkosky 2000]. These examples point out that the
existence of the limit quoted above does not imply that all of the functions ai (t)
are eventually linear functions of t . It only implies that at least one of them is
eventually linear in t . For instance, in the examples given by Cutkosky, the limit in
the theorem is −∞ for all i 6= 0.

More recently, Eisenbud and Harris proved that in the case of a standard graded
algebra A over a field, for a graded ideal that is A+-primary and generated in a single
degree, the constant term in the linear function is the maximum of the regularity
of the fibers of the morphism defined by a set of minimal generators. In a recent
preprint, Huy Tài Hà [2011, 1.3] generalized this result by proving that if an ideal is
generated in a single degree d , a variant of the regularity (the a∗-invariant) satisfies
a∗(I t)= dt + a for t � 0, where a can be expressed in terms of the maximum of
the values of a∗ on the stalks of the projection π from the closure of the graph of
the map defined by the generators to its image. He conjectures that a similar result
holds for the regularity.

In Theorem 5.3 we prove this conjecture of Hà. More precisely, we show that
the limit in the theorem above is the maximum of the end degree of the i-th local
cohomology of the stalks of π , for ideals generated in a single degree. This holds
for graded ideals in a Noetherian positively graded algebra.

An interesting, and perhaps surprising, consequence of this result is the following
result on the limit of the regularity of saturation of powers, or equivalently of powers
of ideal sheaves, in a positively graded Noetherian algebra:

Corollary 1.2. Let I be a graded ideal generated in a single degree d. Then,

lim
t→∞

(reg((I t)sat)− dt)

exists and the following are equivalent:

(i) the limit is nonnegative,

(ii) the limit is not −∞,

(iii) the projection π from the closure of the graph of the function defined by minimal
generators of I to its image admits a fiber of positive dimension.

This can be applied to ideals generated in degree at most d , replacing I by I≥d .
It gives a simple geometric criterion for an ideal I generated in degree (at most)

d to satisfy reg((I t)sat)= dt + b for t � 0: This holds if and only if there exists a
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subvariety V of the closure of the graph that is contracted in its projection to the
closure of the image (that is, dim(π(V )) < dim V ). A very simple example is the
following. In a polynomial ring in n+ 1 variables, any graded ideal generated by
n forms of the same degree d satisfies reg((I t)sat)= dt + b for t � 0, with b ≥ 0.
The same result holds if a reduction of the ideal is generated by at most n elements
(in other words, if the analytic spread of I is at most n).

The result of Eisenbud and Harris is stated in terms of regularity of fibers. For
a finite morphism, there is no difference between the regularity of stalks and the
regularity of fibers. This follows from the following result that is likely part of
folklore, but that we didn’t find in several of the classical references in the field:

Lemma 1.3. Let (R,m, k) be a Noetherian local ring, S := R[X1, . . . , Xn] be a
polynomial ring over R with deg X i > 0 and M be a finitely generated graded
S-module. Set d := dim(M⊗R k). Then H i

S+(M) = 0 for i > d and the natural
graded map H d

S+(M)⊗R k→ H d
S+(M⊗R k) is an isomorphism.

For morphisms that are not finite or flat, the situation is more subtle — see
Proposition 6.3. We show that for families of projective schemes that are close to
being flat (if the Hilbert polynomial of any two fibers differ at most by a constant,
in the standard graded situation), the maximum of the regularities of stalks and the
maximum of the regularities of fibers agree. Also the maximum regularity of stalks
bounds above the one for fibers under a weaker hypothesis. Putting this together
provides a collection of results that covers the results obtained in [Eisenbud and
Harris 2010; Hà 2011]. See Theorem 6.11.

To simplify the statements, we introduce the notion of regularity over a scheme,
generalizing the usual notion of regularity with reference to a polynomial extension
of a ring. This is natural in our situation: The family of schemes given by the
closure of the graph over the parameter space given by the closure of the image of
our map, considered as a projective scheme, is a key ingredient of this study.

2. Notation and general setup

Let R be a commutative ring and S a polynomial ring over R in finitely many
variables.

If S is Z-graded, R ⊂ S0, and X1, . . . , Xn are the variables with positive degrees,
the Čech complex C•

(S+)(M) with

C0
(S+)(M)= M and Ci

(S+)(M)=
⊕

j1<···< ji

MX j1 ···X ji
for i > 0

is graded whenever M is a graded S-module.
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There is an isomorphism H i
(S+)(M)' H i (C•

(S+)(M)) for all i , which is graded if
M is. One then defines two invariants attached to such a graded S-module M :

ai (M) := sup{µ | H i
(S+)(M)µ 6= 0}

if H i
(S+)(M) 6= 0 and ai (M) := −∞ otherwise, and

b j (M) := sup{µ | TorS
j (M, S/(S+))µ 6= 0}

if TorS
j (M, S/(S+)) 6= 0 and b j (M) := −∞ otherwise. Notice that ai (M)=−∞

for i > n and b j (M)=−∞ for j > n. The Castelnuovo–Mumford regularity of a
graded S-module M is then defined as

reg(M) :=max
i
{ai (M)+ i} =max

j
{b j (M)− j}+ n− σ

where σ is the sum of the degrees of the variables with positive degrees. Other
options are possible, in particular when S is not standard graded (when σ 6= n).
Another related invariant is

a∗(M) :=max
i
{ai (M)} =max

j
{b j (M)}− σ.

The following classical result is usually stated for positive grading.

Theorem 2.1. Let S be a finitely generated Z-graded algebra over a Noetherian
ring R⊆ S0 and M be a finitely generated graded S-module. Assume S is generated
over R by elements of nonzero degree. Then, for any i ,

(i) ai (M) ∈ {−∞}∪Z,

(ii) the R-module H i
(S+)(M)µ is finitely generated for any µ ∈ Z.

Proof. S is an epimorphic image of a polynomial ring S′ over R by a graded
morphism. Considering M as an S′-module, one has H i

(S+)(M)' H i
(S′+)
(M) via the

natural induced map, so that we may replace S by S′ and assume that

S = R[Y1, . . . , Ym, X1, . . . , Xn]

with deg Yi ≤ −1 and deg X j ≥ 1 for all i and j . We recall that H i
(S+)(S) = 0 for

i < n and H n
(S+)(S)= (X1 · · · Xn)

−1 R[Y1, . . . , Ym, X−1
1 , . . . , X−1

n ], and notice that
H n
(S+)(S)µ is a finitely generated free R-module for any µ.
Let F• be a graded free S-resolution of M with Fi finitely generated. Both

spectral sequences associated to the double complex C•
(S+)F• degenerate at step 2

and provide graded isomorphisms

H i
(S+)(M)' Hn−i (H n

(S+)(F•)),
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which shows that H i
(S+)(M)µ is a subquotient of H n

(S+)(Fn−i )µ and hence a finitely
generated R-module that is zero in degrees greater than −n+ bn−i , where b j is the
highest degree of a basis element of F j over S. �

3. Regularity over a scheme

Local cohomology and the torsion functor commute with localization on the base R,
providing natural graded isomorphisms for a graded S-module M :

H i
(S⊗R Rp)+

(M ⊗R Rp)' H i
S+(M)⊗R Rp

and
TorS⊗R Rp

i (M ⊗R Rp, Rp)' TorS
i (M, R)⊗R Rp.

Hence ai (M)= supp∈Spec(R) ai (M⊗R Rp) and b j (M)= supp∈Spec(R) b j (M⊗R Rp).
It follows that the regularity is a local notion on R:

reg(M)= sup
p∈Spec(R)

reg(M ⊗R Rp).

These supremums are maximums whenever reg(M) < +∞, for instance if R is
Noetherian and M is finitely generated. The same holds for a∗(M).

In the following, this definition is extended in a natural way to the case where
the base is a scheme.

Definition 3.1. Let Y be a scheme, E be a locally free OY -module of finite rank,
and F be a graded sheaf of SymY (E)-modules. Then

ai (F) := sup
y∈Y

ai (F⊗OY OY,y) and reg(F) :=max
i
{ai (F)+ i}.

If E is free, SymY (E)= OY [X1, . . . , Xn], and the definition of regularity above
makes sense for nonstandard grading.

A closed subscheme Z of Proj(SymY (E)) corresponds to IZ , a unique graded
SymY (E)-ideal sheaf saturated with respect to SymY (E)+. We set

ai (Z) := sup
y∈Y

ai (OY,y[X0, . . . , Xn]/(IZ ⊗OY OY,y))

(notice that a0(Z)=−∞) and reg(Z) :=maxi {ai (Z)+ i}.

The following proposition is immediate from the definition and the corresponding
results over an affine scheme.

Proposition 3.2. Assume Y is Noetherian, E is a locally free coherent sheaf on Y
and F 6= 0 is a coherent graded sheaf of SymY (E)-modules. Then reg(F) ∈ Z. If
Z 6=∅ is a closed subscheme of Pn−1

Y , then reg(Z)≥ 0.
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4. First result on cohomology of powers

We now prove the first statement of our text on cohomology of powers of ideals. It
refines earlier results on the regularity of powers [Kodiyalam 2000; Cutkosky et al.
1999; Trung and Wang 2005]. The argument is based on Theorem 2.1 applied to a
Rees algebra and a lemma due to Kodiyalam.

Theorem 4.1. Let A be a positively graded Noetherian algebra, M 6= 0 be a finitely
generated graded A-module, I be a graded A-ideal, and set

d :=min{µ | there exists p, (I≤µ)I p M = I p+1 M}.

Then
lim

t→∞
(ai (I t M)+ i − td) ∈ Z∪ {−∞}

exists for any i , and is at least equal to indeg(M) for some i .

Proof. Set J := I≤d and write J = (g1, . . . , gs) with deg gi = d for 1≤ i ≤ m and
deg gi < d otherwise. Let

RJ :=
⊕
t≥0

J (d)t =
⊕
t≥0

J t(td) and RI :=
⊕
t≥0

I (d)t =
⊕
t≥0

I t(td),

and S0 := A0[T1, . . . , Tm], S := S0[Tm+1, . . . , Ts, X1, . . . , Xn], with deg(Ti ) :=

deg(gi )−d . Setting bideg(Ti ) := (deg(Ti ), 1) and bideg(X j ) := (deg(X j ), 0), one
has Jdeg(gi ) = (RJ )deg gi−d,1 and hence a bigraded onto map

S→RJ , Ti 7→ gi .

As MRI is finite over RJ according to the definition of d , the bigraded embedding
RJ →RI makes MRI a finitely generated bigraded S-module.

The equality of graded A-modules H i
(S+)(MRI )(∗,t)= H i

A+(MRI )(∗,t) shows that

H i
(S+)(MRI )(µ,t) = H i

A+((MRI )(∗,t))µ = H i
A+(M I t)µ+td .

By Theorem 2.1(i), ai (MRI ) <+∞ and the equalities above show

ai (M I t)≤ td + ai (MRI ),

and that equality holds for some t .
Furthermore, Theorem 2.1(ii) shows that Ki,µ := H i

(S+)(MRI )(µ,∗) is a finitely
generated graded S0-module (for the standard grading deg(Ti )= 1). It follows that
H i
(S+)(MRI )(µ,t) = 0 for t � 0 if and only if Ki,µ is annihilated by a power of

n := (T1, . . . , Tm). Hence

lim
t→+∞

(ai (M I t)− td)=−∞
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if Ki,µ is annihilated by a power of n for every µ≤ ai (MRI ), and otherwise

lim
t→+∞

(ai (M I t)− td)=max{µ | Ki,µ 6= H 0
n (Ki,µ)}.

As reg(M I t)≥ end(M I t/A+M I t), the last claim follows from the next lemma,
due to Kodiyalam. �

Lemma 4.2. With the hypotheses of Theorem 4.1,

end(M I t/A+M I t)≥ indeg(M)+ td for all t.

Proof. The proof goes along the same lines as in the proof of [Kodiyalam 2000,
Proposition 4]. The needed graded version of Nakayama’s lemma does apply. �

5. Cohomology of powers and cohomology of stalks

The following result is a more elaborated, and more technical, version of Theorem 4.1
that essentially follows from its proof. It implies a conjecture of Hà on the regularity
of powers of ideals, and refines the main result in [Hà 2011]. We will see later that,
combined with a result on the regularity of stalks and fibers of a morphism, it also
implies the result in [Eisenbud and Harris 2010].

Proposition 5.1. Let A be a positively graded Noetherian algebra, M be a finitely
generated graded A-module, I be a graded A-ideal and J ⊆ I be a graded ideal
such that J I p M = I p+1 M for some p.

Assume that the ideal J is generated by r forms f1, . . . , fr of respective degrees
d1= · · ·= dm > dm+1≥ · · ·≥ dr . Set d := d1, deg(Ti ) := deg( fi )−d , bideg(Ti ) :=

(deg(Ti ), 1) and bideg(a) := (deg(a), 0) for a ∈ A. Consider the natural bigraded
morphism of bigraded A0-algebras

S := A[T1, . . . , Tr ]
ψ
−→RI :=

⊕
t≥0

I (d)t =
⊕
t≥0

I t(dt),

sending Ti to fi , and the bigraded map of S-modules

M[T1, . . . , Tr ]
1M⊗Aψ
−−−−→ MRI :=

⊕
t≥0

M I t(dt).

Let B := A0[T1, . . . , Tm] and B ′ := B/ annB(ker(1M ⊗A ψ)).
Then,

lim
t→+∞

(ai (M I t)− td)= max
q∈Proj(B ′)

{ai (MRI ⊗B ′ B ′q)}.

Proof. First remark that in the proof of Theorem 4.1 we only need the equality
J I p M = I p+1 M for some p (as a consequence, for all p big enough). We have
shown there that

lim
t→+∞

(ai (M I t)− td)=−∞, (∗)



8 Marc Chardin

if and only if the finitely generated B-module H i
(S+)(MRI )(µ,∗) is supported in

V (T1, . . . , Tm) for any µ. As local cohomology commutes with flat base change
and elements in B have degree 0,

H i
(S+)(MRI )(µ,∗)⊗B ′ B ′q = H i

(S+)(MRI ⊗B ′ B ′q)(µ,∗);

hence (∗) holds if and only if H i
(S+)(MRI ⊗B ′ B ′q) = 0 for any q ∈ Proj(B ′). On

the other hand, if this does not hold, there exists µ0 the maximum value such that
H i
(S+)(MRI )(µ0,∗) is not supported in V (T1, . . . , Tm), and choosing q ∈ Proj(B ′)∩

Supp(H i
(S+)(MRI )(µ0,∗)) shows that both members in the asserted equality are equal

to µ0. �

Remark 5.2. In the proposition above, as well as in other places in this text, we
localize at homogeneous primes q ∈ Proj(C) for some standard graded algebra C ,
in other words, at graded prime ideals that do not contain C+. We may as well
replace these localizations by the degree zero part of the localization at such a
prime ideal, usually denoted by C(q): The multiplication by an element ` ∈ C1 \ q

induces an isomorphism (Cq)µ ' (Cq)µ+1 for any µ. Hence, for any C-module M ,
M ⊗C Cq = 0 if and only if M ⊗C C(q) = 0.

In the equal degree case, the following corollary, which we state in a more
geometric fashion, implies the conjecture of Hà [2011].

Theorem 5.3. Let A := A0[x0, . . . , xn] be a positively graded Noetherian algebra
and I be a graded A-ideal generated by m+1 forms of degree d. Set Y :=Spec(A0)

and X := Proj(A/I )⊂ Proj(A)⊆ P̃n
Y . Let φ : P̃n

Y \ X→ Pm
Y be the corresponding

rational map, W be the closure of the image of φ, and

0 ⊂ P̃n
W ⊆ P̃n

Pm
Y
= P̃n

Y ×Y Pm
Y

be the closure of the graph of φ. Let π : 0→W be the projection induced by the
natural map P̃n

Pm
Y
→ Pm

Y . Then

lim
t→+∞

(ai (I t)− dt)= ai (0).

Proof. Choose J := I and M := A in Proposition 5.1. The equality

lim
t→+∞

(ai (I t)− dt)= ai (0)

directly follows from the conclusion of Proposition 5.1 according the definition of
ai (0) for 0 ⊂ P̃n

W given in Definition 3.1. �
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6. Cohomology of stalks and cohomology of fibers

We will now compare the cohomology of stalks and of fibers of a projective
morphism, in order to compare their Castelnuovo–Mumford regularities. It will
need results on the support of Tor modules. These are likely part of folklore.
However, we include a proof as we did not find a reference that properly fits our
exact need.

Lemma 6.1. Let R→ S be a homomorphism of Noetherian rings, M be a finitely
generated S-module and N be a finitely generated R-module.

Then the S-modules TorR
q (M, N ) are finitely generated over S and

(i) SuppS(TorR
q (M, N ))⊆ SuppS(M⊗R N ) for any q,

(ii) if further (R,m) is local, S = R[X1, . . . , Xn], with deg X i > 0 and M is a
graded S-module, then SuppS(TorR

q (M, R/m))⊆ SuppS(TorR
1 (M, R/m)) for

any q ≥ 1.

Proof. First the modules TorR
q (M, N ) are finitely generated over S by [Bourbaki

1980, X §6 N◦4 Corollaire]. Second,

SuppS(M⊗R N )= SuppS(M)∩ϕ
−1(SuppR(N )),

where ϕ : Spec(S)→ Spec(R) is the natural map induced by R→ S, by [Bourbaki
1985, II §4 N◦4, Propositions 18 and 19], since M⊗R N =M⊗S (N ⊗R S). For
P ∈ Spec(S), set p := ϕ(P). Then TorR

q (M, N )P = TorRp
q (MP, Np) vanishes if

either MP = 0 or Np = 0.
For (ii), we can reduce to the case of a local morphism by localizing S and M

at m+ S+. In this local situation, TorR
1 (M, R/m)= 0 if and only if M is A-flat by

[André 1974, Lemme 58], which proves our claim by localization at primes P such
that ϕ(P)=m. �

Let R be a commutative ring, N be a R-module, S := R[X1, . . . , Xn] be a
positively graded polynomial ring over R and M be a graded S-module. For a
S-module M, we will denote by cdS+(M) the cohomological dimension of M with
respect to S+, which is the maximal index i such that H i

S+(M) 6= 0 (and −∞ if all
these local cohomology groups are 0). The following lemma is a natural way for
comparing cohomology of stalks to cohomology of fibers.

Lemma 6.2. There are two converging spectral sequences of graded S-modules
with the same abutment H• and with respective second terms

′

2 E p
q = H p

S+(TorR
q (M, N ))⇒ H p−q and ′′

2 E p
q = TorR

q (H
p
S+(M), N )⇒ H p−q .
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Let d := max{i | H i
S+(M⊗R N ) 6= 0}. If R is Noetherian, N is finitely generated

over R and M is finitely generated over S, then

H d
S+(M⊗R N )' H d

S+(M)⊗R N

and TorR
q (H

i
S+(M), N )= H i

S+(TorR
q (M, N ))= 0 for any q if i > d.

Proof. Let F• be a free R-resolution of N . Consider the double complex

C•S+(M⊗R F•)= C•S+(M)⊗R F•,

totalizing to T • with T i
=

⊕
p−q=i C

p
S+(M)⊗R Fq . It gives rise to two spectral

sequences abutting to the homology H• of T •.
One has first terms C

p
S+(TorR

q (M, N )) and second terms H p
S+(TorR

q (M, N )).
The other spectral sequence has first terms H p

S+(M)⊗R Fq and second terms
TorR

q (H
p
S+(M), N ). It provides the quoted spectral sequences.

Recall that if P is a finitely presented S-module, one has cdS+(P
′) ≤ cdS+(P)

whenever Supp(P ′)⊆ Supp(P). This is proved in [Divaani-Aazar et al. 2002, 2.2]
under the assumption that S is Noetherian and P ′ is finitely generated, which is
enough for our purpose.

By Lemma 6.1(i), Supp(TorR
q (M, N ))⊆Supp(M⊗R N ) for any q , which implies

that H i
S+(TorR

q (M, N ))= 0 for any q if i > d. It follows that H d
= H d

S+(M⊗R N )
and H i

= 0 for i > d .
On the other hand, choose i maximal such that H i

S+(M) ⊗R N 6= 0. Then
TorR

q (H
p
S+(M), N )= 0 for any q if p > i , because H p

S+(M)µ is a finitely generated
R-module for every µ, and hence H i

= H i
S+(M)⊗R N 6= 0 and H j

= 0 for j > i .
The conclusion follows. �

The following statement extends a classical result on the cohomology of fibers
in a flat family; see for instance [Hartshorne 1977, III 9.3]. The hypothesis on the
cohomological dimension of Tor modules that appears in (ii) will be connected
to the variation of the Hilbert polynomial of fibers in the corresponding family of
sheaves in Lemma 6.6; it is a weakening of the flatness condition for this family.

Proposition 6.3. Let (R,m, k) be a Noetherian local ring, S := R[X1, . . . , Xn] be
a polynomial ring over R, with deg X i > 0 for all i , and M be a finitely generated
graded S-module. Set M :=M⊗R k and d := dim M. Then one has the following:

(i) The natural graded map H d
S+(M) ⊗R k → H d

S+(M) is an isomorphism and
d =max{i | H i

S+(M) 6= 0}. In particular,

ad(M)= ad(M) ∈ Z.

(ii) For any integers µ and `, if cdS+(TorR
1 (M, k))≤ `+ 1 then

{H i
S+(M)µ = 0 for all i ≥ `} implies {H i

S+(M)µ = 0 for all i ≥ `},
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and both conditions are equivalent if cdS+(TorR
1 (M, k)) ≤ `. In particular,

reg(M)≤ reg(M) if cdS+(TorR
1 (M, k))≤1 and equality holds if depthS+(M)>0.

Proof. We consider the two spectral sequences in Lemma 6.2,

′

2 E p
q = H p

S+(TorR
q (M, k))⇒ H p−q and ′′

2 E p
q = TorR

q (H
p
S+(M), k)⇒ H p−q .

Let B := k[X1, . . . , Xn]. The module TorR
q (M, k) is a R[X1, . . . , Xn]-module of

finite type, annihilated by m and annS(M). Hence M is a graded B-module of finite
type and TorR

q (M, k) is a graded (B/ annB(M))-module of finite type, for any q.
Notice that d=cdS+(M)=cdB+(M). It follows that ′2 E p

q =0 if p>d , and ′2 Ed
0 6=0.

By Lemma 6.2, ′′2 E p
q = 0 for all q if p > d, in particular H p

S+(M)µ ⊗R k = 0
for any µ if p > d. Hence H p

S+(M)µ = 0 for any µ if p > d. In other words,
H p

S+(M)= 0 for any p > d .
The same lemma shows that H d

S+(M)= H d
S+(M)⊗R k, and finishes the proof of (i).

For (ii), let µ be an integer. We prove the result by descending induction on `
from the case `= d, which we already proved.

Assume the results hold for `+ 1. Recall that, for any p, the maps

′

r d p−r
1−r :

′

r E p−r
1−r →

′

r E p
0 and ′′

r d p
0 :
′′

r E p
0 →

′′

r E p+1−r
−r

are the zero map for r ≥ 2 and r ≥ 1, respectively.
If H i

S+(M)µ= 0, for all i ≥ `, then ( ′′2 E p
q )µ= 0 for p≥ ` and all q . As ′′2 E p

q = 0
for q < 0, it follows that ( ′′2 E p

q )µ = 0 if p− q ≥ `.
If cdS+(TorR

1 (M, k))≤`+1 then ′2 E p
q =0 for p≥`+2 and q>0 by Lemma 6.1(ii),

in particular the map

( ′r d`0)µ : (
′

r E`0)µ→ ( ′r E`+r
r−1)µ

is the zero map for any r ≥ 2, and hence H `
S+(M)µ = (

′

2 E`0)µ = (
′
∞

E`0)µ = 0 as
claimed.

For the reverse implication, the hypothesis implies that ′2 E p
q = 0 if q ≥ 1 and

p ≥ `+ 1 by Lemma 6.1(ii). Hence ( ′2 E p
q )µ = 0 for p−q ≥ ` if H `

S+(M)µ = 0. By
induction hypothesis, H p

S+(M)µ⊗R k = 0 for p ≥ `+ 1. Hence

( ′2 E p
q )µ = TorR

q (H
p
S+(M)µ, k)= 0

for p ≥ `+ 1 and all q. It implies that H `
S+(M)µ⊗R k = ( ′′

∞
E`0)µ = 0, and proves

the claimed equivalence.
Finally, recall that H i

S+(M)= 0 for i < depthS+(M). �

Remark 6.4. Notice that reg(M)≤ reg(M) does not hold without the hypothesis
cdS+(TorR

1 (M, k)) ≤ 1. To see this, consider generic polynomials of some given
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degrees d1, . . . , dr :

Pi :=
∑
|α|=di

Ui,αXα
∈ k[Ui,α][X1, . . . , Xn],

with r ≤ n and a specialization map φ : k[Ui,α]→ k to the field k with kernel m. Set
R := k[Ui,α]m. As the Pi form a regular sequence in k[Ui,α][X1, . . . , Xn], they also
form one in S := R[X1, . . . , Xn] and show that M := S/(P1, . . . , Pr ) has regularity
d1+ · · ·+ dr − r . On the other hand, the regularity of

M = k[X1, . . . , Xn]/(φ(P1), . . . , φ(Pr )),

need not be bounded by d1+ · · ·+ dr − r .
For instance, with n = 4 and r = 3, take

φ(P1) := Xd−1
1 X2− Xd−1

3 X4, φ(P2) := Xd
2 and φ(P3) := Xd

4

(over any field). Then one has reg(M) = d2
− 2 for d ≥ 3 (see [Chardin 2007,

1.13.6]), which is bigger than reg(M)= 3d − 3, and cdS+(TorR
1 (M, k))= 2.

Remark 6.5. In the other direction, it may of course be that reg(M) > reg(M).
If for instance (R, π, k) is a DVR, one may take M := R[X ]/(πXd), so that
reg(M)= d − 1 and reg(M)= 0, with cdS+(TorR

1 (M, k))= 1.
More interesting is the example R :=Q[a, b], m := (a, b) and

M := SymR(m
3)= R[X1, . . . , X4]/(bX1− aX2, bX2− aX3, bX3− aX4).

Then for any morphism from R to a field k, reg(M⊗R k)= 0, while reg(M)= 1.
Similar examples arises from the symmetric algebra of other ideals that are not

generated by a proper sequence.

The characterization of flatness in terms of the constancy of the Hilbert polyno-
mial of fibers extends as follows.

Lemma 6.6. Let p be an integer. In the setting of Proposition 6.3, assume that R is
reduced and S is standard graded. Then the following are equivalent:

(i) dim(TorR
1 (M, k))≤ p.

(ii) The Hilbert polynomials of M⊗R k and M⊗R (Rp/pRp) differ at most by a
polynomial of degree < p, for any p ∈ Spec(R).

Proof. We induct on p. The result is standard when p = 0; see for instance
[Hartshorne 1977, III 9.9; Eisenbud 1995, Exercise 20.14].

Assume (i) and (ii) are equivalent for p−1≥ 0, for any Noetherian local reduced
ring, standard graded polynomial ring over it and graded module of finite type.

Set K := Rp/pRp, MK :=M⊗R K , B :=k[X1, . . . , Xn] and C :=K [X1, . . . , Xn].
Consider variables U1, . . . ,Un (of degree 0) and let ` :=U1 X1+ · · ·+Un Xn . By
the Dedekind–Mertens lemma,
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(a) ker(M[U ]
×`
−→M[U ](1))⊆ H 0

S+(M)[U ],

(b) ker(M[U ]
×`
−→ M[U ](1))⊆ H 0

B+(M)[U ],

(c) ker(MK [U ]
×`
−→ MK [U ](1))⊆ H 0

C+(MK )[U ], and

(d) ker(TorR
1 (M, k)[U ]

×`
−→ TorR

1 (M, k)[U ](1))⊆ H 0
B+(TorR

1 (M, k))[U ].

Let R′ := R(U ) be obtained from R[U ] by inverting all polynomials whose coeffi-
cient ideal is the unit ideal, and denote by N ′ the extension of scalars from R to R′

for the module N . Recall that R(U ) is local reduced with maximal ideal mR(U ),
residue field k ′ = k(U ) and that K ′ = K (U )— see for instance [Nagata 1962, page
17]. As the zero local cohomology modules above vanish in high degrees, (b)
and (c) show that M′/`M′ satisfies condition (ii) of the lemma for p− 1, R′ and
R′[X1, . . . , Xn]. Now (a) and (d) provide an exact sequence for µ� 0:

0−→TorR
1 (M

′, k ′)µ−1
×`
−→ TorR′

1 (M
′, k ′)µ−→TorR′

1 (M
′/`M′, k ′)µ−→0,

which shows in particular that

dim TorR′
1 (M

′/`M′, k ′)= dim TorR′
1 (M

′, k ′)− 1= dim TorR
1 (M, k)− 1,

if dim TorR
1 (M, k) is positive, and proves our claim by induction. �

Remark 6.7. If the grading is not standard, a quasipolynomial is attached to any
finitely generated graded module, and in Lemma 6.6 property (ii) should be replaced
by the following:

(ii) The difference between the quasipolynomials of M⊗R k and M⊗R (Rp/pRp)

is a quasipolynomial of degree < p for any p ∈ Spec(R).

The degree of a quasipolynomial is the highest degree of the polynomials that
define it. The proof of [Hartshorne 1977, III 9.9] extends to this case when p = 0,
and our proof extends after a slight modification: in the proof that (ii) implies (i),
one should take ` := U1 Xw/w1

1 + · · · +Un Xw/wn
n , where wi := deg(X i ) and w :=

lcm(w1, . . . , wn).

The local statement of Lemma 6.6 implies a global statement, by comparing
Hilbert functions at generic points of the components and at closed points. We state
it below in a ring theoretic form.

Proposition 6.8. Let p be an integer, R be a reduced commutative ring, S be a
Noetherian positively graded polynomial ring over R and M be a finitely generated
graded S-module. Then the following are equivalent:

(i) H i
S+(TorR

1 (M, R/m))= 0 for all i > p and m maximal in Spec(R).
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(ii) For any two ideals p⊂ q in Spec(R), the quasipolynomials of M⊗R R/p and
M⊗R R/q differ by a quasipolynomial of degree < p.

(iii) Over a connected component of Spec(R), the quasipolynomials of two fibers
differ by a quasipolynomial of degree < p.

In parallel to the definition of the regularity over a scheme, we define the fiber-
regularity freg as the maximum over the fibers of their regularity.

Definition 6.9. In the setting of Definition 3.1,

ãi (F) := sup
y∈Y

ai (F⊗OY k(y)), freg(F) :=max
i
{ãi (F)+ i},

and freg(Z) :=maxi≥1{ãi (SymY (E)/IZ )+ i}.

Notice that freg(F) is finite if Y is covered by finitely many affine charts and F

is coherent. This holds since the regularity of a graded module over a polynomial
ring over a field is bounded in terms of the number of generators and the degrees
of generators and relations; see for instance [Chardin et al. 2008, 3.5].

We now return to the problem of studying the ending degree of local cohomologies
of powers of a graded ideal I in a positively graded Noetherian algebra A.

From the comparison of cohomology of stalks and cohomology of fibers, we get
from Theorem 5.3 the following result. As in Theorem 5.3 we use geometric lan-
guage and do not introduce a graded module (or a sheaf) to make the exposition more
simple. In case a more general statement is needed, it can be easily derived by using
Proposition 5.1 in place of Theorem 5.3. The six statements are not independent,
but each of them answers a question that is quite natural to ask. Notice that (iv) is
essentially equivalent to one of the main results of Eisenbud and Harris [2010, 2.2].

Remark 6.10. It follows from Theorem 5.3 that the dimension of any fiber of the
projection π of the graph to its image (see Theorem 5.3 or below for the precise
definition of π) is bounded above by the cohomological dimension of A/I with
respect to A+.

Theorem 6.11. Let A := A0[x0, . . . , xn] be a positively graded Noetherian algebra
and I be a graded A-ideal generated by m+1 forms of degree d. Set Y :=Spec(A0)

and X := Proj(A/I )⊂ Proj(A)⊆ P̃n
Y . Let φ : P̃n

Y \ X→ Pm
Y be the corresponding

rational map, W be the closure of the image of φ, and

0 ⊂ P̃n
W ⊆ P̃n

Pm
Y
= P̃n

Y ×Y Pm
Y

be the closure of the graph of φ. Let π : 0→W be the projection induced by the
natural map P̃n

Pm
Y
→ Pm

Y . Then we have the following:

(i) limt→+∞(reg((I t)sat)− dt)=maxi≥2{ai (0)+ i}.
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(ii) If π admits a fiber Z ⊆ P̃n
SpecK of dimension i − 1, then

lim
t→∞

(ai (I t)+ i − td)≥ ai (Z)+ i = ãi (Z)+ i ≥ 0.

(iii) Let δ be the maximal dimension of a fiber of π . Then,

aδ+1(I t)− td = aδ+1(0)= ãδ+1(0) for all t � 0.

(iv) If π is finite, for instance if X =∅, then

reg(I t)= a1(I t)+ 1= freg(0)+ td for all t � 0

and limt→∞(ai (I t)− td)=−∞ for i 6= 1.

(v) If π has fibers of dimension at most one, for instance if the canonical map
X→ Y is finite, then

reg(I t)− td = reg(0)≥ freg(0) for all t � 0,

and limt→∞(ai (I t)− td)=−∞ for i ≥ 2.
If furthermore A is standard graded and reduced, π has fibers of dimension

one, all of same degree, then freg(0)= reg(0),

lim
t→∞

(a1(I t)− td)≥ ã1(0)

and equality holds if reg(I t)= a1(I t)+ 1 for t � 0.

(vi) If A is reduced and, for every connected component T of W , the Hilbert
quasipolynomials of fibers of π over any two points in Spec(T ) differ by a
periodic function, then

reg(I t)= freg(0)+ td for all µ� 0.

Proof. Part (i) is a direct corollary of Theorem 5.3. Statements (ii), (iii) and (iv)
follow from Theorem 5.3 and Proposition 6.3(i).

Statements (v) and (vi) follow from Theorem 5.3, Proposition 6.3(ii) — notice
that depthS+(RI )≥ 1 — and the equivalence of (i) and (iii) in Proposition 6.8 applied
on the affine charts covering π(0). �

Remark 6.12. Cutkosky, Ein and Lazarsfeld proved in [Cutkosky et al. 2001]
that the limit s(I ) := limt→∞ reg((I t)sat)/t exists and is equal to the inverse of a
Seshadri constant, when A0 is a field and A is standard graded.

Using the existence of c such that reg(M I t)≤ dt+c for all t when I is generated
in degree at most d and M is finitely generated, one can easily derive the existence
of this limit in our more general setting. Indeed, let

rp := reg((I p)sat) and dp :=min{µ | (I p)sat
= ((I p)sat

≤µ)
sat
}.
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One has dp+q ≤ dp + dq ; hence s := limp→∞(dp/p) exists. For any p there exists
cp such that

reg(((I p)sat
≤dp
)t I q)≤ tdp + cp for all t ≥ 1 and 0≤ q < p.

The inequalities dpt+q ≤ rpt+q ≤ tdp + cp show that limp→∞(rp/p)= s and that
dp ≥ ps for all p.

The same argument applies to any graded ideal J such that Proj(A/J )→ Y is
finite (that is, cdA+(A/J )≤ 1). Setting r J

p := reg(I p
:A J∞)≤ reg(I p) and defining

d J
p similarly to the above,

d J
p :=min{µ | ((I p

: J∞)≤µ) : J∞ = I p
: J∞},

the limits of r J
p /p and d J

p /p exist and are equal. For example, if X is a scheme
with isolated nonlocally complete intersection points, then limp→∞ reg(I (p)/p)
exists, where I (p) denotes the p-th symbolic power of I .

On the other hand, when A/J has cohomological dimension 2 it may be that
reg(I : J∞) > reg(I ) for J an embedded prime of I . This shows that the argument
above is not directly applicable for symbolic powers in general. It however implies
that s J

:= limp→∞(d J
p /p) exists for any J and is equal to limp→∞(ρ

J
p/p), where

ρ J
p :=min{reg(K ) | K ⊆ (I p

: J∞), K : J∞ = I p
: J∞}.

Remark 6.13. If I is generated in degree at most d, Theorem 6.11 implies that
s(I ) < d if and only if the morphism π corresponding to the ideal (Id) is finite.
More precisely, by Remark 6.12, π is finite if and only if Proj(A/I t) is defined by
equations of degree < dt for some t , and if not, reg((I t)sat)− td is a nonnegative
constant for t � 0.

This has been remarked in [Niu 2013], using the definition of s(I ) as (the inverse
of) a Seshadri constant.

Theorem 6.11 also has a consequence on the dimension of the fibers. Assume
for simplicity that A0 is a field. Set X := Proj(A/I ), with I generated in degree at
most d and let 0≤ i ≤ dim X .

Part (ii) in Theorem 6.11 then shows that the morphism π associated to (Id) has
no fiber of dimension greater than i if there exists p ≥ 1 and an ideal K , generated
in degree less than pd, such that Proj(A/I p) and Proj(A/K ) coincide locally at
each point x ∈ Pn of dimension at least i . Indeed if this happens, then

H j
A+(A/I ps)' H j

A+(A/K s) for all j > i, s ≥ 1,

and therefore there exists cp such that a j (I ps)≤ (pd−1)s+ cp for all s and j ≥ i ,
showing that limt→∞(a j (I t)− td)=−∞ for j ≥ i .
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