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Group actions of prime order
on local normal rings

Franz Kiràly and Werner Lütkebohmert

Let B be a Noetherian normal local ring and G ⊂ Aut(B) be a cyclic group of
local automorphisms of prime order. Let A be the subring of G-invariants of B
and assume that A is Noetherian. We prove that B is a monogenous A-algebra if
and only if the augmentation ideal of B is principal. If in particular B is regular,
we prove that A is regular if the augmentation ideal of B is principal.

An important class of singularities is built by the famous Hirzebruch–Jung
singularities. They arise by dividing out a finite cyclic group action on a smooth
surface. Their resolution is well understood and has nice arithmetic properties
related to continued fractions; see [Hirzebruch 1953; Jung 1908].

One can also look at such group actions from a purely algebraic point of view. So
let B be a regular local ring and G a finite cyclic group of order n acting faithfully
on B by local automorphisms. In the tame case, that is, the order of G is prime to
the characteristic of the residue field k of B, there is a central result of J. P. Serre
[1968] saying that the action is given by multiplying a suitable system of parameters
(y1, . . . , yd) by roots of unity yi 7→ ζ ni · yi for i = 1, . . . , d , where ζ is a primitive
n-th root of unity. Moreover, the ring of invariants A := BG is regular if and only
if ni ≡ 0 mod n for d − 1 of the parameters. The latter is equivalent to the fact that
rk((σ − id)|T )≤ 1 for the action of σ ∈ G on the tangent space T :=mB/m

2
B . For

more details see [Bourbaki 1981, Chapter 5, ex. 7].
Only very little is known in the case of a wild group action, that is, when

gcd(n, char k) > 1. In this paper we will restrict ourselves to the case of p-cyclic
group actions, that is, where n = p is a prime number. We will present a sufficient
condition for the ring of invariants A to be regular. Our result is also valid in the
tame case, that is, where n is a prime different from char k. As the method of Serre
depends on an intrinsic formula for writing down the action explicitly, we provide
also an explicit formula for presenting B as a free A-module if our condition is
fulfilled.
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The interest in our problem arises from investigating the relationship between
the regular and the stable R-model of a smooth projective curve X K over the field
of fractions K of a discrete valuation ring R. In general, the curve X K admits a
stable model X ′ over a finite Galois extension R ↪→ R′. Then the Galois group
G =G(R′/R) acts on X ′. Our result provides a means to construct a regular model
over R by starting from the stable model X ′. As a special case, we discuss in
Section 4 the situation where X K has good reduction after a Galois p-extension
R ↪→ R′. In this case there is a criterion for when the quotient of the smooth model
is regular. We intend to work out more general situations in a further article.

1. The main result

In this paper we will study only local actions of a cyclic group G of prime order p
on a normal local ring B. We fix a generator σ of G and obtain the augmentation
map

I := Iσ := σ − id : B→ B, b 7→ σ(b)− b.

We introduce the B-ideal

IG := (I (b); b ∈ B)⊂ B

which is generated by the image I (B). This ideal is called augmentation ideal. If
this ideal is generated by an element I (y), we call y an augmentation generator.
Note that this ideal does not depend on the chosen generator σ of G. Moreover, if
y is an augmentation generator with respect to a generator σ of G, then y is also
an augmentation generator for any other generator of G. Since B is local, the ideal
IG is generated by an augmentation generator if IG is principal. Namely, IG/mB IG

is a vector space over the residue field kB = B/mB of B of dimension 1. So it is
generated by the residue class of I (y) for some y ∈ B, and hence, by Nakayama’s
lemma, IG is generated by I (y).

Definition 1. An action of a group G on a regular local ring B by local automor-
phisms is called a pseudoreflection if there exists a system of parameters (y1, . . . , yd)

of B such that y2, . . . , yd are invariant under G.

Theorem 2. Let B be a normal local ring with residue field kB := B/mB . Let p be
a prime number and G a p-cyclic group of local automorphisms of B. Let IG be the
augmentation ideal. Let A be the ring of G-invariants of B. Consider the following
conditions:

(a) IG := B · I (B) is principal.

(b) B is a monogenous A-algebra.

(c) B is a free A-module.
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Then the following implications are true:

(a)⇐⇒ (b)H⇒ (c).

Assume, in addition, that B is regular. Consider the following conditions:

(d) A is regular.

(e) G acts as a pseudoreflection.

Then the condition (c) is equivalent to (d). Moreover if , in addition, the canonical
map kA −→

∼ kB is an isomorphism, then condition (a) is equivalent to condition (e).

We start the proof of the theorem with several preparations.

Remark 3. For b1, b2, b ∈ B, the following relations are true:

(i) I (b1 · b2)= I (b1) · σ(b2)+ b1 · I (b2).

(ii) I (bn)=

( n∑
i=1

σ(b)i−1bn−i
)
· I (b).

(iii) I
(b1

b2

)
=

I (b1)b2− b1 I (b2)

b2σ(b2)
if b2 6= 0.

Proof. (i) follows by a direct calculation and (ii) by induction from (i).
As for (iii), the formula (i) holds for elements in the field of fractions as well.

Therefore,

I (b1)= I
(b1

b2
b2

)
= I

(b1

b2

)
σ(b2)+

b1

b2
I (b2),

and the formula follows. �

To prove that (a) implies (b) we need a technical lemma.

Lemma 4. Let y ∈ B be an augmentation generator. Then set, inductively,

y(0)i := yi for i = 0, . . . , p− 1,

y(1)i := I (y(0)i )/I (y(0)1 ) for i = 1, . . . , p− 1,

y(n+1)
i := I (y(n)i )/I (y(n)n+1) for i = n+ 1, . . . , p− 1.

Then

y(n)i =
∑

0≤k1≤···≤ki−n≤n

i−n∏
j=1

σ k j (y) for i = n, . . . , p− 1,

and in particular,

y(n)n = 1, y(n)n+1 =

n+1∑
j=1

σ j−1(y), I (y(n)n+1)= σ
n+1(y)− y.

Furthermore, y(n)n+1 is again an augmentation generator for n = 0, . . . , p− 2.
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Proof. We proceed by induction on n. For n = 0 the formulas are obviously correct.
For the convenience of the reader we also display the formulas for n = 1. Due to
Remark 3 one has

y(1)i =
I (y(0)i )

I (y(0)1 )
=

I (yi )

I (y)
=

i∑
j=1

σ(y) j−1 yi− j
=

∑
0≤k1≤···≤ki−1≤1

i−1∏
ν=1

σ kν (y),

since the last sum can be viewed as a sum over an index j where i− j is the number
of kν equal to 0. In particular, the formulas are correct for y(1)1 and y(1)2 . Moreover

I (y(1)2 )= I (σ (y)+ y)= σ 2(y)− y.

Since σ 2 is generator of G for 2< p, the element y(1)2 is an augmentation generator
as well.

Now assume that the formulas are correct for n. Since y(n)n+1 is an augmentation
generator, I (y(n)n+1) divides I (y(n)i ) for i = n + 1, . . . , p − 1. Then it remains to
show, upon substituting the expressions from the lemma for y(n)i and y(n+1)

i , that

I (y(n)i )= (σ n+1(y)− y) · y(n+1)
i for i = n+ 1, . . . , p− 1.

For the left hand side one computes

LHS= I
( ∑

0≤k1≤···≤ki−n≤n

i−n∏
j=1

σ k j (y)
)
=

∑
0≤k1≤···≤ki−n≤n

I
( i−n∏

j=1

σ k j (y)
)

=

∑
0≤k1≤···≤ki−n≤n

( i−n∏
j=1

σ k j+1(y)−
i−n∏
j=1

σ k j (y)
)

=

∑
1≤k1≤···≤ki−n≤n+1

i−n∏
j=1

σ k j (y)−
∑

0≤k1≤···≤ki−n≤n

i−n∏
j=1

σ k j (y).

Now all terms occurring in both sums cancel. These are the terms with ki−n ≤ n in
the first sum and 1≤ k1 in the second sum.
For the right hand side one computes

RHS= (σ n+1(y)− y) ·
∑

0≤k1≤···≤ki−n−1≤n+1

i−n−1∏
j=1

σ k j (y)

=

∑
0≤k1≤···≤ki−n=n+1

i−n∏
j=1

σ k j (y)−
∑

0=k1≤···≤ki−n≤n+1

i−n∏
j=1

σ k j (y).
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Both sides are seen to be equal. In particular we have

y(n+1)
n+1 = 1,

y(n+1)
n+2 =

∑
0≤k1≤n+1

1∏
j=1

σ k1(y)=
n+2∑
j=1

σ j−1(y),

I (y(n+1)
n+2 )= σ

n+2(y)− y.

So y(n+1)
n+2 is an augmentation generator for n+ 2< p, since σ n+2 generates G.

This concludes the technical part. �

Proposition 5. Assume that the augmentation ideal IG is principal and let y ∈ B
be an augmentation generator. Then B decomposes into the direct sum

B = A · y0
⊕ A · y1

⊕ · · ·⊕ A · y p−1.

Proof. Since I (y) 6= 0, the element y generates the field of fractions Q(B) over
Q(A). Therefore

Q(B)= Q(A) · y0
⊕ Q(A) · y1

⊕ · · ·⊕ Q(A) · y p−1.

Then it suffices to show the following claim:
Let a, a0, . . . , ap−1 ∈ A. Assume that a divides

b = a0 · y0
+ a1 · y1

+ · · ·+ ap−1 · y p−1.

Then a divides a0, a1, . . . , ap−1.
If b= a ·β, then I (b)= a · I (β). Since I (β)=β1 · I (y), we get I (b)= aβ1 · I (y).

So we see that a divides I (b)/I (y) ∈ B. Using the notation of Lemma 4, set

b(0) := b = a0 · y0
+ a1 · y1

+ · · ·+ ap−1 · y p−1

b(1) := I (b(0))
I (y)

= a1+ a2
I (y2)

I (y)
+ · · ·+ ap−1

I (y p−1)

I (y)

= a1 · y
(1)
1 + a2 · y

(1)
2 + · · ·+ ap−1 · y

(1)
p−1

b(n) := I (b(n−1))

I (y(n−1)
n )

= an · y
(n)
n + an+1 · y

(n)
n+1+ · · ·+ ap−1 · y

(n)
p−1.

Due to the observation above, by induction a divides b(0), b(1), . . . , b(p−1), since
y(n)n+1 is an augmentation generator for n = 1, . . . , p− 2. So we obtain

a
∣∣ b(p−1)

= ap−1 · y
(p−1)
p−1 = ap−1.
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Now proceeding downwards, one obtains

a
∣∣ b(p−2)

= ap−2+ ap−1 · y
(p−2)
p−1 , hence a

∣∣ ap−2,

a
∣∣ b(n) = an + an+1 · y

(n)
n+1+ · · ·+ ap−1 · y

(n)
p−1, hence a

∣∣ an

for n = p− 1, p− 2, . . . , 0. �

Proof of the first part of Theorem 2. (a)=⇒ (b): This follows from Proposition 5.
(b)=⇒ (a): If B = A[y] is monogenous, then IG = B · I (y) is principal.
(b)=⇒ (c) is clear. Namely, if B = A[y], the minimal polynomial of y over the

field of fraction is of degree p and the coefficients of this polynomial belong to A.
Then B has y0, y1, . . . , y p−1 as an A-basis. �

Next we do some preparations for proving the second part of the theorem where
B is assumed to be regular.

Proposition 6. Keep the assumption of the second part of Theorem 2, namely that
B is regular and that the canonical morphism kA −→

∼ kB is an isomorphism. Let
(y1, . . . , yd) be a generating system of the maximal ideal mB . Then the following
assertions are true:

(i) IG = B · I (y1)+ · · ·+ B · I (yd).

(ii) If the ideal IG = B · I (B) is principal, then there exists an index i ∈ {1, . . . , d}
with IG = B · I (yi ).

Proof. (i) Recall that A= BG denotes the ring of invariants. Due to the assumption,
we have B = A+mB , and hence, I (B)= I (mB). Furthermore, we have

mB =m2
B +

d∑
i=1

A · yi .

Since I is A-linear, we get

I (mB)= I (m2
B)+

d∑
i=1

A · I (yi ).

Due to Remark 3, one knows I (m2
B)⊂mB · I (mB). So, one obtains

I (mB)⊂mB · I (mB)+

d∑
i=1

B · I (yi ).

Since B is local, Nakayama’s lemma yields

IG = B · I (B)= B · I (mB)=

d∑
i=1

B · I (yi ).
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(ii) Since IG is principal, IG/mB IG is generated by one of the I (yi ), and hence,
again by Nakayama’s lemma, IG = B · I (yi ) for a suitable i ∈ {1, . . . , d}. �

Proof of the second part of Theorem 2. (c)=⇒ (d) follows from [Matsumura 1980,
Theorem 51]. Namely, B is noetherian due to the definition of a regular ring. Since
A→ B is faithfully flat, A is noetherian. Then one can apply [loc. cit.].

(d)=⇒ (c) follows from [Serre 1965, IV, Prop. 22].
(a) =⇒ (e): We assume that the canonical map kA → kB of the residue fields

is an isomorphism. If IG is principal, one can choose an augmentation generator
y ∈mB that is part of a system of parameters (y, y2, . . . , yd) due to Proposition 6.
Due to Proposition 5, we know that B decomposes into the direct sum

B = A · y0
⊕ A · y1

⊕ · · ·⊕ A · y p−1.

Now we can represent

y j =

p−1∑
i=0

ai, j · yi for j = 2, . . . , d.

Then, set

ỹ j := y j −

p−1∑
i=1

ai, j yi
= a0, j ∈ A∩mB =mA for j = 2, . . . , d.

So (y, ỹ2, . . . , ỹd) is a system of parameters of B as well. Thus G acts by a
pseudoreflection.

(e)=⇒ (a): If G is a pseudoreflection, IG is generated by I (y) due to Proposition 6,
where y, x2, . . . , x p is a system of parameters with xi ∈ mA for i = 2, . . . , p if
kA = kB . �

2. An example

If kA→ kB is not an isomorphism, the implication (e)=⇒ (a) is false:

Example 7. Let k be a field of positive characteristic p and look at the polynomial
ring R := k[Z , Y, X1, X2] over k. We define a p-cyclic action of G = 〈σ 〉 on R by

σ |k := idk, σ (Z)= Z + X1, σ (Y )= Y + X2, σ (X i )= X i for i = 1, 2.

This is a well-defined action of order p, since p · X i = 0 for i = 1, 2, and it leaves
the ideal I := (Y, X1, X2) invariant. Furthermore, for any g ∈ k[Z ]−{0} the image
is given by σ(g)= g+ I (g) with I (g) ∈ X1 · k[Z , X1].

Then consider the polynomial ring S :=k(Z)[Y, X1, X2] over the field of fractions
k(Z) of the polynomial ring k[Z ]. Then S has the maximal ideal m= (Y, X1, X2).
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Then set B := Sm = k(Z)[Y, X1, X2](Y,X1,X2). We can regard all these rings as
subrings of the field of fractions of R:

R ⊂ S ⊂ B ⊂ k(Z , Y, X1, X2).

Clearly, σ acts on R, and hence it induces an action on its field of fractions; denote
this action by σ as well. Then we claim that the restriction of σ to B induces
an action on B by local automorphisms. For this, it suffices to show that for
any g ∈ R − I the image σ(g) does not belong to I. The latter is true, since
σ(g) = g+ I (g) with I (g) ∈ I. The augmentation ideal IG = B · X1+ B · X2 is
not principal although G acts through a pseudoreflection.

3. A conjecture

Remark 8. In the tame case p 6= char(kB), the converse (d)=⇒ (a) is also true due
to the theorem of Serre, as explained in the introduction.

In the case of a wild group action, that is, p = char(kB), it is not known whether
the converse is true, but we conjecture it.

Conjecture 9. Let B be a regular local ring and let G be a p-cyclic group acting
on B by local automorphisms. Then the following conditions are conjectured to be
equivalent:

(1) IG is principal.

(2) A := BG is regular.

The implication (1)=⇒ (2) was shown in Theorem 2. Of course the converse is
true if dim A ≤ 1. In higher dimension, the converse (2)=⇒ (1) is uncertain, but it
holds for small primes p ≤ 3 as we explain now. Since A is regular, the ring B is a
free A-module of rank p; see [Serre 1965, IV, Proposition 22]. So,

B/Bmn
A is a free A/mn

A-module of rank p for any n ∈ N. (∗)

In the case p = 2, the rank of mB/BmA is 0 or 1. In the first case, kB is an
extension of degree [kB : kA] = 2 over kA and mB = BmA. So there exists an
element β ∈ B such that B/BmA is generated by the residue classes of 1 and β.
Due to Nakayama’s lemma, B = A[β] is monogenous, and hence, IG is principal.
In the second case, where kA → kB is an isomorphism, there exists an element
β ∈mB such that mB = Bβ + BmA. Then G acts as a pseudoreflection, and hence,
IG is principal.

In the case p = 3 we claim that BmA 6⊂m2
B .

If we assume the contrary BmA ⊂m2
B , then these ideals coincide; BmA =m2

B .
Namely, the rank of B/BmA as A/mA-module is 3 and the rank of B/m2

B is at least
3 due to d := dim B ≥ 2, so BmA =m2

B . Therefore the length of B/Bm2
A = B/m4

B
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is 3 times the length of A/m2
A, which is 3 · (dim A+1). On the other hand the rank

of B/m4
B is equal to

(1+ dimmB/m
2
B)+ dimm2

B/m
3
B + dimm3

B/m
4
B =

3∑
n=0

(d+n−1
d−1

)
,

which is larger than (1+ dimmA/m
2
A)+ (1+ dimmA/m

2
A)+ (1+ dimmA/m

2
A),

since for d ≥ 2 both(d+1
d−1

)
=
(d + 1)d

2
≥ 1+ d = 1+ dimmA/m

2
A

and (d+3−1
d−1

)
=
(d + 2)(d + 1)d

2 · 3
> 1+ d

hold. Here we used the formula for the number λn,d of monomials T m1
1 · · · T

md
d in

d variables of degree n = m1+ · · ·+md :

λn,d =

(d+n−1
d−1

)
.

So, using only the condition (∗) and proceeding by induction on dim(A), we see that
there exists a system of parameters α1, . . . , αd of A such that α2, . . . , αd is part of
a system of parameters of B. In the case where kA→ kB is an isomorphism, G acts
as a pseudoreflection, and hence IG is principal. If kA→ kB is not an isomorphism,
then we must have mB = BmA; otherwise the rank of B/mB is at least 4. Since
[kB : kA] ≤ 3, the field extension kA→ kB is monogenous, and hence A→ B is
monogenous due to the lemma of Nakayama.

4. Relationship between the regular and the stable model
of a smooth curve

As explained in the introduction, our incentive to study the invariant rings under a
p-cyclic group action stems from the study of the relationship between the regular
and the stable model of a smooth projective curve over the field of fractions K
of a discrete valuation ring R. So let R ↪→ R′ be a Galois extension of discrete
valuation rings of prime order p and let π and π ′ be uniformizers of R and of R′,
respectively. Denote by K ′ the field of fractions of R′ and let k and k ′ be the residue
fields of R and R′, respectively. Assume that k = k ′ is algebraically closed and that
char(k)= p. Let G be the Galois group of R′ over R.

In the tame case, the action can always be diagonalized and the invariant rings
have the well-known Hirzebruch–Jung singularities. The tame case of higher
dimension is also settled in [Edixhoven 1992, Proposition 3.5]. If the action of G
is wild, this is in general not the case and the situation becomes quite capricious.
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For example, consider an elliptic curve E over K having good reduction over K ′,
and let X ′ be the corresponding proper smooth R′-model of E⊗K K ′. Then G acts
naturally on X ′, and hence one can consider the quotient Y = X ′/G, which is a
normal proper flat R-model of E . Assume that E has reduction of Kodaira type
I ∗0 over K ; see [Silverman 1986, Theorem 15.2]. Curves of this type exist, since
elliptic curves with Kodaira type I ∗0 have integer j-invariant and thus potentially
good reduction. Moreover, that a wild extension might be needed can be checked
via Tate’s algorithm [1975]. Let X be the minimal regular R-model of E . Then X
happens to be a minimal blowing-up of Y and, in general, Y has singularities that
are not of Hirzebruch–Jung type, since the special fiber of X contains components
having three neighbors.

Our result now provides a tool to study the correspondence between X and the
singularities of Y by looking at the group action G on X ′ and on R′-models Z ′,
which are obtained by blowing-up G-invariant centers of X ′. On these models,
one can study the augmentation ideal and thereby obtain statements about which
components have to occur in a desingularization of Y and in the regular model X ,
respectively. Since this analysis is beyond the scope of this article, we intend to
explain this in greater detail in a further paper.

In the following we will look at Conjecture 9 in the case of relative curves.

Proposition 10. Keep the situation of above. Let Y be an affine smooth relative
curve over R′ such that its closed fiber Y ⊗R′ k ′ is irreducible. Assume that G acts
on Y → Spec(R′) equivariantly. Let B := OY (Y ) be the coordinate ring of Y . Then
the following assertions are equivalent:

(1) The augmentation ideal IG is locally principal.

(2) The ring A := BG of invariants is regular and A/p is regular where p= A∩Bπ ′.

Proof. (1) =⇒ (2). It follows from Theorem 2 that A is regular. It remains to
show that the special fiber is regular. For showing this, it is enough to prove it
after the π-adic completion, since the group action extends to the completion,
taking invariants commutes with completion, and regularity of A/p can be checked
after π-adic completion. So we may assume that B is the coordinate ring of the
associated formal completion of Y with respect to its special fiber. So set

P := Bπ ′ and p := A∩P.

Then we obtain a finite extension of discrete valuation rings Ap ↪→ BP. Namely,
the localization with respect to A− p yields a finite flat extension Ap ↪→ Bp. Since
P is the unique prime ideal of B lying above p, so Bp is a local Dedekind ring, and
hence we get Bp = BP. Since A is regular, and hence locally factorial, the ideal
p is locally principal. The extended ideal Bp is locally principal and a power of
P and, hence, globally a power of P, that is, Pe

= Bp. The degree of the residue
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extension is denoted by f := [Q(B/P) : Q(A/p)]. Moreover we have p = e · f .
In the case f = p and e = 1 we have P= Bp. Since A ↪→ B is faithfully flat, so
A/p→ B/P is faithfully flat as well. Then, due to [Matsumura 1980, Theorem
51], the ring A/p is regular.

In the case f = 1, e = p, the ideal p contains the uniformizer π of R. Since
pB =Pp due to e= p and P= Bπ ′ as Y is smooth over S, we obtain by faithfully
flat descent p= Aπ . Therefore A⊗R k is reduced and hence geometrically reduced.
Then A is the set of all G-invariant functions f on Y that are bounded by 1 and
also B consists of all functions on Y that are bounded by 1; see [Bosch et al. 1984,
6.4.3/4]. Moreover, it follows from [loc. cit.] that A⊗R R′ coincides with B. Thus
we see that A⊗R k = A⊗R R′⊗R′ k ′ = B⊗R′ k ′ is regular.
(2) =⇒ (1). For the converse implication, A is regular. Since B is regular as

well, the extension A→ B is faithfully flat; see [Serre 1965, IV, Proposition 22].
As above, we have the finite extension of discrete valuation rings Ap ↪→ BP and its
associated numbers e and f . In the case, f = 1 and e = p the finite ring extension
A/p→ B/P is birational, and hence an isomorphism as A/p is regular. So any local
parameter of A/p gives rise to a local parameter of B/P. Therefore, any maximal
ideal of B is generated by a G-invariant element and π ′. Therefore, IG = B · I (π ′)
is principal.

Now consider the case f = p and e= 1. Since A is regular, the ideal p is locally
principal. So we may assume that p = Aα is principal. Due to e = 1, we obtain
P = Bα. Since B/P is regular, any maximal ideal of B is generated by α and
a lifting of a local parameter of B/P. Therefore, IG is locally principal as it is
generated by the I (β), where β is a lifting of the local parameter β of B/P. �

Conjecture 11. In the case of an affine arithmetic surface, that is, Y is regular
with irreducible special fiber, one conjectures that the following conditions are
equivalent, where P ⊂ B is the prime ideal whose locus is the special fiber and
p := A∩P:

(1) IG is locally principal and B/P is regular.

(2) A is regular and A/p is regular.

The proof of the last proposition tells us that the implication (1)=⇒ (2) is true
in the case f = p and e= 1. In the case f = 1 and e= p, we used the fact that the
formation of the ring of 1-bounded functions is compatible with base change; this
is true when the multiplicity is 1. But it is not clear if one only knows that both
models A and B have the same multiplicity in the special fiber over their base rings.

The implication (2)=⇒ (1) is true in the case f = 1 and e = p, as seen by the
same arguments as given in Proposition 10. But the case f = p and e = 1, is
uncertain, although in this case the multiplicity behaves well.
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