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Given an indefinite binary quaternionic Hermitian form f with coefficients in
a maximal order of a definite quaternion algebra over Q, we give a precise
asymptotic equivalent to the number of nonequivalent representations, satisfying
some congruence properties, of the rational integers with absolute value at most
s by f , as s tends to +∞. We compute the volumes of hyperbolic 5-manifolds
constructed by quaternions using Eisenstein series. In the appendix, V. Emery
computes these volumes using Prasad’s general formula. We use hyperbolic
geometry in dimension 5 to describe the reduction theory of both definite and
indefinite binary quaternionic Hermitian forms.

1. Introduction

Following [Weyl 1940; 1942], we will call a Hermitian form over Hamilton’s real
quaternion algebra with anti-involution the conjugation a Hamiltonian form.

Since Gauss, the reduction theory of the integral binary quadratic forms and the
problem of representation of integers by them is quite completely understood. For
binary Hermitian forms, these subjects have been well studied, starting with Hermite,
Bianchi and especially Humbert, and much developed by Elstrodt, Grunewald and
Mennicke; see for instance [Elstrodt et al. 1998]. In the recent paper [Parkkonen and
Paulin 2011], we gave a precise asymptotic on the number of nonequivalent proper
representations of rational integers with absolute value at most s by a given integral
indefinite Hermitian form. Besides the general results on quadratic forms (see
for instance [Weyl 1940; Cassels 1978]) and some special work (see for instance
[Pronin 1967; Hashimoto and Ibukiyama 1980]), not much seemed to be precisely
known on these questions for binary Hamiltonian forms.

The work in the appendix is supported by the Swiss National Science Foundation, project number
PP00P2-128309/1.
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In this paper, we use hyperbolic geometry in dimension 5 to study the asymptotic
of the counting of representations of rational integers by integral binary Hamiltonian
forms and to give a geometric description of the reduction theory of such forms.
General formulas are known (by Siegel’s mass formula; see for instance [Eskin et al.
1991]), but it does not seem to be easy (or even doable) to deduce our asymptotic
formulas from them. There are numerous results on the counting of integer points
with bounded norm on quadrics (or homogeneous varieties); see for instance the
work of Duke, Eskin, McMullen, Oh, Rudnick, Sarnak and others. In this paper,
we count appropriate orbits of integer points on which a fixed integral binary
Hamiltonian form is constant, analogously to [Parkkonen and Paulin 2011].

Let H be Hamilton’s quaternion algebra over R, with x 7→ x its conjugation,
n : x 7→ xx its reduced norm and tr : x 7→ x + x its reduced trace. Let A be a
quaternion algebra over Q that is definite (A⊗Q R=H), with reduced discriminant
DA and class number h A. Let O be a maximal order in A, and let m be a (nonzero)
left fractional ideal of O, with reduced norm n(m); see Section 2 for definitions.

Let f : H×H→ R be a binary Hamiltonian form, with

f (u, v)= a n(u)+ tr(u b v)+ c n(v), (1)

that is integral over O (its coefficients satisfy a, c ∈ Z and b ∈ O) and indefinite (its
discriminant 1( f )= n(b)− ac is positive); see Section 4. We denote by SL2(O)

the group of invertible 2× 2 matrices with coefficients in O; see Section 3. The
group SU f (O) of automorphs of f consists of those elements g ∈ SL2(O) for which
f ◦g= f . Given an arithmetic group 0, such as SL2(O) or SU f (O), we will denote
by Covol(0) the volume of the quotient by 0 of its associated symmetric space
(assumed to be of noncompact type and normalized to have −1 as the maximum of
its sectional curvature).

For every s > 0, we consider the integer

ψ f,m(s)= Card SU f (O)\ {(u, v) ∈m×m : n(m)−1
| f (u, v)| ≤ s,Ou+Ov =m},

which is the number of nonequivalent m-primitive representations by f of rational
integers with absolute value at most s. The finiteness of ψ f,m(s) follows from
general results on orbits of algebraic groups defined over number fields [Borel and
Harish-Chandra 1962, Lemma 5.3].

Theorem 1. As s tends to +∞, we have the equivalence, with p ranging over
positive rational primes,

ψ f,m(s)∼
45 DA Covol(SU f (O))

2π2ζ(3)1( f )2
∏

p|DA
(p3− 1)

s4
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This result follows from the more general Theorem 13, which allows us in
particular to count representations satisfying given congruence properties (see the
end of Section 6).

Here is an example of our applications, concerning the asymptotic of the very
useful real scalar product (u, v) 7→ tr(u v) on H. See Section 6 for the proof and
for further applications. Let

Sp1(O)=

{
g ∈ SL2(O) :

tg
(

0 1
1 0

)
g =

(
0 1
1 0

)}
.

Corollary 2. As s tends to +∞, we have the equivalence

Card Sp1(O)\{(u, v)∈O×O : |tr(uv)|≤ s,Ou+Ov=O}∼
DA

48ζ(3)

∏
p|DA

p2
+ 1

p2+ p+ 1
s4.

To prove Theorem 1, applying a counting result of [Parkkonen and Paulin
2012] following from dynamical properties of the geodesic flow of real hyperbolic
manifolds, we first prove that

ψ f,m(s)∼
DA

∏
p|DA

(p− 1)Covol(SU f (O))

512π21( f )2 Covol(SL2(O))
s4.

The covolumes of the arithmetic groups SL2(O) and SU f (O) may be computed
using the very general formula of [Prasad 1989]; see [Emery 2009] for an excellent
exposition. Following the approach of [Rankin 1939a; 1939b; Selberg 1940], see
also [Langlands 1966; Sarnak 1983] and others, we compute Covol(SL2(O)) in the
main body of this paper (see Section 5) using Eisenstein series, whose analytic
properties in the quaternion setting have been studied in [Krafft and Osenberg 1990].
We initially proved the case h A = 1 of the following result, V. Emery proved the
general case using Prasad’s formula (see the appendix), and we afterwards managed
to push the Eisenstein series approach to get the general result. The two proofs are
completely different.

Theorem 3 (Emery; see the appendix). We have

Covol(SL2(O))=
ζ(3)

∏
p|DA

(p3
− 1)(p− 1)

11520
.

In the final section, we give a geometric reduction theory of binary Hamiltonian
forms using real hyperbolic geometry. The case of binary quadratic forms is well
known, from either the arithmetic, geometric or algorithmic viewpoint; see for
instance [Cassels 1978; Zagier 1981; Buchmann and Vollmer 2007]. We refer
for instance to [Elstrodt et al. 1998] for the reduction theory of binary Hermitian
forms. The case of binary Hamiltonian forms has been developed less; see for
instance [Pronin 1967; Hashimoto and Ibukiyama 1980; 1981; 1983] for results
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in the positive definite case. We construct a natural map 4 from the set Q(O,1)

of binary Hamiltonian forms that are integral over O and have a fixed discriminant
1∈Z−{0} to the set of points or totally geodesic hyperplanes of the 5-dimensional
real hyperbolic space H5

R. For FO a Ford fundamental domain for the action of
SL2(O) on H5

R, we say that f ∈Q(O,1) is reduced if4( f )meets FO. The finiteness
of the number of orbits of SL2(O) on Q(O,1), which can be deduced from general
results of Borel and Harish-Chandra, then follows in an explicit way from the
equivariance property of 4 and the following result proved in Section 7.

Theorem 4. There are only finitely many reduced integral binary Hamiltonian
forms with a fixed nonzero discriminant.

Answering the remark on page 257 of [Cassels 1978] that explicit sets of inequal-
ities implying the reduction property were essentially only known for quadratic
forms in dimension n ≤ 7, we give an explicit such set in dimension 8 at the end
of Section 7.

The knowledgeable reader may skip the background Sections 2 (except the new
Lemma 6), 3 and 4 on respectively definite quaternion algebras over Q, quaternionic
homographies and real hyperbolic geometry in dimension 5, and binary Hamiltonian
forms, though many references are made to them in the subsequent sections.

2. Background on definite quaternion algebras over Q

A quaternion algebra over a field F is a four-dimensional central simple algebra
over F . We refer for instance to [Vignéras 1980] for generalities on quaternion
algebras.

A real quaternion algebra is isomorphic either to M2(R) or to Hamilton’s quater-
nion algebra H over R, with basis elements 1, i, j, k as a R-vector space, with unit
element 1, satisfying i2

= j2
=−1 and i j=− j i= k. We define the conjugate of x=

x0+x1i+x2 j+x3k in H by x= x0−x1i−x2 j−x3k, its reduced trace by tr(x)= x+x ,
and its reduced norm by n(x)= xx = xx . Note that n(xy)= n(x) n(y), and n(x)≥ 0
with equality if and only if x = 0; hence H is a division algebra. Furthermore,
tr(x)= tr(x) and tr(xy)= tr(yx). For every matrix X=(xi, j )1≤i≤p,1≤ j≤q ∈Mp,q(H),
we denote by X∗ = (x j,i )1≤i≤q,1≤ j≤p ∈Mq,p(H) its adjoint matrix, which satisfies
(XY )∗ = Y ∗X∗. The matrix X is Hermitian if X = X∗.

Let A be a quaternion algebra over Q. We say that A is definite (or ramified
over R) if the real quaternion algebra A⊗Q R is isomorphic to H. In this paper,
whenever we consider a definite quaternion algebra A over Q, we will fix an
identification between A⊗Q R and H, so that A is a Q-subalgebra of H.

The reduced discriminant DA of A is the product of the primes p∈N such that the
quaternion algebra A⊗Q Qp over Qp is a division algebra, with [H×,H×]= n−1(1).
Two definite quaternion algebras over Q are isomorphic if and only if they have the
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same reduced discriminant, which can be any product of an odd number of primes;
see [Vignéras 1980, page 74].

A Z-lattice I in A is a finitely generated Z-module generating A as a Q-vector
space. The intersection of finitely many Z-lattices of A is again a Z-lattice. An order
in a quaternion algebra A over Q is a unitary subring O of A which is a Z-lattice.
In particular, A =QO. Each order of A is contained in a maximal order. The type
number tA ≥ 1 of A is the number of conjugacy (or equivalently isomorphism)
classes of maximal orders in A (see for instance [Vignéras 1980, page 152] for a
formula). For instance, tA = 1 if DA = 2, 3, 5, 7, 13 and tA = 2 if DA = 11, 17. If O

is a maximal order in A, then the ring O has 2, 4 or 6 invertible elements except that
|O×| = 24 when DA = 2, and |O×| = 12 when DA = 3. When DA = 2, 3, 5, 7, 13,
then (see [Eichler 1938, page 103])

|O×| =
24

DA−1
. (2)

Example 5 (See [Vignéras 1980, page 98]).

(1) The Q-vector space A = Q+Qi +Q j +Qk generated by 1, i, j, k in H is
Hamilton’s quaternion algebra over Q. It is the unique definite quaternion
algebra over Q (up to isomorphism) with discriminant DA = 2. The Hurwitz
order O= Z+Zi +Z j +Z(1+ i + j + k)/2 is maximal, and it is unique up
to conjugacy.

(2) Similarly, A =Q+Qi +Q
√

p j +Q
√

p k is the unique (up to isomorphism)
definite quaternion algebra over Q with discriminant DA = p for p= 3, 7, and
O= Z+Zi +Z(i +

√
p j)/2+Z(1+

√
p k)/2 is its unique (up to conjugacy)

maximal order.

(3) Similarly, A=Q+Q
√

2i+Q
√

p j+Q
√

2pk is the unique (up to isomorphism)
definite quaternion algebra over Q with discriminant DA = p for p = 5, 13,
and

O= Z+Z
1+
√

2i+
√

p j
2

+Z

√
p j
2
+Z

2+
√

2i+
√

2pk
2

is its unique (up to conjugacy) maximal order.

Let O be an order in A. The reduced norm n and the reduced trace tr take integral
values on O. The invertible elements of O are its elements of reduced norm 1. Since
x = tr(x)− x , any order is invariant under conjugation.

The left order O`(I ) of a Z-lattice I is {x ∈ A : x I ⊂ I }; its right order Or (I ) is
{x ∈ A : I x ⊂ I }. A left fractional ideal of O is a Z-lattice of A whose left order
is O. A left ideal of O is a left fractional ideal of O contained in O. Right (fractional)
ideals are defined analogously. The inverse of a right fractional ideal m of O is
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m−1
={x ∈ A :mxm⊂m}. It is easy to check that for every u, v ∈O, if uv 6= 0, then

(uO+ vO)−1
= Ou−1

∩Ov−1. (3)

If O is maximal, then m−1 is a left fractional ideal of O and

Or (m
−1)= O`(m). (4)

This formula follows from [Vignéras 1980, Lemma 4.3(3), page 21], which says
that Or (m

−1) contains O`(m), since the maximality of O implies the maximality of
O`(m), by [ibid., Exercice 4.1, page 28].

Two left fractional ideals m and m′ of O are isomorphic as left O-modules if and
only if m′ =mc for some c ∈ A×. A (left) ideal class of O is an equivalence class
of left fractional ideals of O for this equivalence relation. We will denote by OI the
set of ideal classes of O, and by [m] the ideal class of a left fractional ideal m of
O. The class number h A of A is the number of ideal classes of a maximal order O

of A. It is finite and independent of the maximal order O; see for instance [ibid.,
pages 87–88]. See for instance [ibid., pages 152–155] for a formula for h A, and for
the fact that h A = 1 if and only if DA = 2, 3, 5, 7, 13. In particular DA is prime if
h A = 1.

The norm n(m) of a left (or right) ideal m of O is the greatest common divisor
of the norms of the nonzero elements of m. In particular, n(O)= 1. The norm of a
left (or right) fractional ideal m of O is n(cm)/n(c) for any c ∈ N−{0} such that
cm⊂ O.

Note that a Z-lattice 3 in A is a Z-lattice in the Euclidean vector space H (with
orthonormal basis (1, i, j, k)), and the volume Vol(3\H) is finite. If O is maximal,
we have (see for instance [Krafft and Osenberg 1990, Lemma 5.5])

Vol(O\H)=
DA

4
. (5)

The classical zeta function of A is

ζA(s)=
∑
a

1
n(a)2s ,

where the sum is over all left ideals a in a maximal order O of A. It is independent
of the choice of O, it is holomorphic on {s ∈ C : Re s > 1} and it satisfies by a
theorem of Hey, with ζ the usual Riemann zeta function,

ζA(s)= ζ(2s)ζ(2s− 1)
∏

p | DA

(1− p1−2s), (6)
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where as usual the index p is prime; see [Schoeneberg 1939, page 88; Vignéras
1980, page 64]. Let m be a left fractional ideal of a maximal order O in A. Define

ζ(m, s)= n(m)2s
∑

x∈m−{0}

1
n(x)2s ,

which is also holomorphic on Re s > 1 (and depends only on the ideal class of m),
and

ζ[m](s)=
∑ 1

n(a)2s

where the sum is over all left ideals a in O whose ideal class is [m]. The relations
we will use in Section 5 between these zeta functions are the following ones, where
Re s > 1. The first one is obvious; see for instance respectively [Deuring 1968,
page 134] and [Krafft and Osenberg 1990, page 436] for the other two:

ζA(s)=
∑
[a]∈OI

ζ[a](s) , (7)

∑
[a]∈OI

1
|Or (a)×|

=
1
24

∏
p|DA

(p− 1), (8)

ζ(m, s)= |Or (m)
×
| ζ[m](s). (9)

Note that when the class number h A of A is 1, the formula (9) becomes

ζ(O, s)= |O×| ζA(s). (10)

We end this section with the following lemma, which will be used in the proof
of Theorem 13.

Lemma 6. Let O be a maximal order in a definite quaternion algebra A over Q, let
z ∈ A−{0} and let 3= O∩ zO∩Oz ∩ zOz. Then 3 is a Z-sublattice of O such that

[O :3] n(Oz−1
+O)4 = 1.

Proof. This is a “prime by prime” type of proof, suggested by G. Chenevier.
As an intersection of four Z-lattices, 3 is a Z-lattice, contained in O. For every
(positive rational) prime p, let νp be the p-adic valuation on Qp; let us consider
the quaternion algebra Ap = A⊗Q Qp over Qp, whose reduced norm is denoted
by np : Ap→Qp; and for every Z-lattice L of A, let L p = L ⊗Z Zp. We embed
A in Ap as usual by x 7→ x ⊗ 1. We then have the following properties (see for
instance [Vignéras 1980, page 83-84]): L p is a Zp-lattice of Ap; the map L 7→ L p

commutes with the inclusion, the sum and the intersection; if L and L ′ are Z-lattices
with L ⊂ L ′, then

[L ′ : L] =
∏

p

[L ′p : L p] ;
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if L is a left fractional ideal of O, then L p is a left fractional ideal of Op, and

n(L)=
∏

p

pνp(np(L p)).

Hence in order to prove Lemma 6, we only have to prove that for every prime p, if
z ∈ A×p and 3p = Op ∩ zOp ∩Op z ∩ zOp z, we have

[Op :3p] = p−4νp(np(Opz−1
+Op)). (11)

We distinguish two cases.
First assume that p does not divide DA. Then we may assume that Ap=M2(Qp)

and Op = M2(Zp) (by the uniqueness up to conjugacy of maximal orders). By
Cartan’s decomposition of GL2(Qp) (see for instance [Bruhat and Tits 1972], or
consider the action of GL2(Qp) on its Bruhat–Tits tree as in [Serre 1977]), the
element z ∈ GL2(Qp) may be written

z = P
(

pa 0
0 pb

)
Q

with P, Q in the (good) maximal compact subgroup GL2(Zp) and a, b in Z. Since
GL2(Zp) preserves Op = M2(Zp) by left and right multiplication, preserves the
indices of Z-lattices, and contains only elements of reduced norm (that is, of
determinant) having valuation 0, we may assume that P = Q = id. We hence have,
by an easy matrix computation,

3p =

(
Zp ∩ pa Zp ∩ p2a Zp Zp ∩ pa Zp ∩ pb Zp ∩ pa+b Zp

Zp ∩ pa Zp ∩ pb Zp ∩ pa+b Zp Zp ∩ pb Zp ∩ p2b Zp

)
=

(
p2 max{a,0} Zp pmax{a,0}+max{b,0} Zp

pmax{a,0}+max{b,0} Zp p2 max{b,0} Zp

)
.

Similarly, we have

Op z−1
+Op =

(
p−a Zp +Zp p−b Zp +Zp

p−a Zp +Zp p−b Zp +Zp

)
=M2(Zp)

(
pmin{−a,0} 0

0 pmin{−b,0}

)
.

Therefore, since np(M2(Zp))= 1 and np = det on Ap =M2(Qp),

[Op :3p]

=
∣∣Zp/(p2 max{a,0} Zp)

∣∣ ∣∣Zp/(pmax{a,0}+max{b,0} Zp)
∣∣2 ∣∣Zp/(p2 max{b,0} Zp)

∣∣
= p4(max{a,0}+max{b,0})

= p−4(min{−a,0}+min{−b,0})
= p−4 νp(np(Opz−1

+Op)),

as wanted.
Now assume that p divides DA, so that Ap is a division algebra. Let ν = νp ◦np,

which, by for instance [Vignéras 1980, page 34], is a discrete valuation on Ap,
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whose valuation ring is Op. The left ideals of Op are two-sided ideals. Let π be
a uniformizer of Op. Note that the residual field Op/πOp has order p2, and that
np(Op)= 1 and np(π)= p. We have

3p = Opπ
2 max{ν(z), 0} and Opz−1

+Op = Opπ
min{ν(z−1),0}.

Hence [Op :3p] = p4 max{ν(z), 0} and νp(np(Op z−1
+Op))=−max{ν(z), 0}, which

is also as wanted. �

3. Background on Hamilton–Bianchi groups

The Dieudonné determinant (see [Dieudonné 1943; Aslaksen 1996]) Det is the group
morphism from the group GL2(H) of invertible 2× 2 matrices with coefficients in
H to R∗

+
, defined by(

Det
(

a b
c d

))2

= n(a d)+ n(b c)− tr(a c d b)

=


n(ad − aca−1b) if a 6= 0,
n(cb− cac−1d) if c 6= 0,
n(cb− db−1ab) if b 6= 0.

(12)

It is invariant under the adjoint map g 7→ g∗, by the properties of n and tr. We
will denote by SL2(H) the group of 2× 2 matrices with coefficients in H with
Dieudonné determinant 1, which equals the group of elements of (reduced) norm
1 in the central simple algebra M2(H) over R; see [Reiner 1975, Section 9a]. See
[Kellerhals 2003] for more information on SL2(H).

The group SL2(H) acts linearly on the left on the right H-module H×H. Let
P1

r (H)= (H×H−{0})/H× be the right projective line of H, identified as usual with
the Alexandrov compactification H∪ {∞} where [1 : 0] =∞ and [x : y] = xy−1 if
y 6= 0. The projective action of SL2(H) on P1

r (H), induced by its linear action on
H×H, is then the action by homographies on H∪ {∞} defined by

(
a b
c d

)
· z =


(az+ b)(cz+ d)−1 if z 6= ∞,−c−1d,
ac−1 if z =∞, c 6= 0,
∞ otherwise.

This action induces a faithful left action of PSL2(H)= SL2(H)/{± id} on H∪{∞}.
The group PSL2(H) is very useful for studying 5-dimensional real hyperbolic

geometry for the following reason. Let us endow H with its usual Euclidean
metric ds2

H (invariant under translations, with (1, i, j, k) orthonormal). We will
denote by x = (z, r) a generic point in H× ]0,+∞[, and by r : x 7→ r(x) the
second projection in this product. For the real hyperbolic space H5

R of dimension 5,
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we will use the upper halfspace model H × ]0,+∞[ with Riemannian metric
ds2(x)= (ds2

H(z)+ dr2)/r2 at the point x = (z, r), whose volume form is

d volH5
R
(x)=

d volH(z) dr
r5 . (13)

The space at infinity ∂∞H5
R is hence H∪ {∞}.

By the Poincaré extension procedure (see for instance [Parkkonen and Paulin
2010, Lemma 6.6]), the action of SL2(H) by homographies on ∂∞H5

R extends to a
left action on H5

R by(
a b
c d

)
· (z, r)=

(
(az+ b)(cz+ d)+ acr2

n(cz+ d)+ r2 n(c)
,

r
n(cz+ d)+ r2 n(c)

)
. (14)

In this way, the group PSL2(H) is identified with the group of orientation preserving
isometries of H5

R. Note that the isomorphism PSL2(H)' SO0(1, 5) is one of the
isomorphisms between connected simple real Lie groups of small dimensions in
E. Cartan’s classification.

Given an order O in a definite quaternion algebra A over Q, define the Hamilton–
Bianchi group as 0O= SL2(O)= SL2(H)∩M2(O). Note that since the norm n takes
integral values on O, and since the Dieudonné determinant is a group morphism, we
have GL2(O)= SL2(O). The Hamilton–Bianchi group 0O is a (nonuniform) arith-
metic lattice in the connected real Lie group SL2(H) (see for instance [Parkkonen
and Paulin 2010, page 1104] for details). In particular, the quotient real hyperbolic
orbifold 0O\H

5
R has finite volume. The action by homographies of 0O preserves

the right projective space P1
r (O)= A∪ {∞}, which is the set of fixed points of the

parabolic elements of 0O acting on H5
R ∪ ∂∞H5

R.

Remark 7. For every (u, v) in O×O−{(0, 0)}, consider the two left ideals of O

Iu,v = Ou+Ov and Ku,v =

{
Ou ∩Ov if uv 6= 0,
O otherwise.

The map 0O\P
1
r (O)→ (OI× OI) that associates to the orbit of [u : v] in P1

r (O)

under 0O the couple of ideal classes ([Iu,v], [Ku,v]) is a bijection. To see this,
let `u,v : O× O→ O be the morphism of left O-modules defined by (o1, o2) 7→

o1u+ o2v. The map w 7→ (wu−1,−wv−1) is an isomorphism of left O-modules
from Ou ∩Ov to the kernel of `u,v if uv 6= 0. The result then follows for instance
from [Krafft and Osenberg 1990, Satz 2.1, 2.2], which says that the map [u : v] 7→
([im `u,v], [ker `u,v]) induces a bijection from 0O\P

1
r (O) into OI× OI.

In particular, the number of cusps of 0O (or the number of ends of 0O\H
5
R) is

the square of the class number h A of A.
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4. Background on binary Hamiltonian forms

With V the right H-module H×H, a binary Hamiltonian form f : V → R is a
map X 7→ φ(X, X) where φ : V × V → H is a Hermitian form on V with the
conjugation as the anti-involution of the ring H. That is, φ(Xλ, Y ) = λφ(X, Y ),
φ(X + X ′, Y ) = φ(X, Y )+ φ(X ′, Y ), φ(Y, X) = φ(X, Y ) for X, X ′, Y ∈ V and
λ ∈ H. Our convention of sesquilinearity on the left is the opposite of Bourbaki’s
unfortunate one in [Bourbaki 1959]. Equivalently, a binary Hamiltonian form f is
a map H×H→ R with

f (u, v)= a n(u)+ tr(ubv)+ c n(v),

whose coefficients a = a( f ) and c = c( f ) are real, and b = b( f ) lies in H. Note
that f ((u, v)λ)= n(λ) f (u, v). The matrix M( f ) of f is the Hermitian matrix(

a b
b c

)
,

so that

f (u, v)=
(

u
v

)∗ (
a b
b c

)(
u
v

)
.

The discriminant of f is

1=1( f )= n(b)− ac.

Note that the sign convention of the discriminant varies in the references. An easy
computation shows that the Dieudonné determinant of M( f ) is equal to |1|. If
a 6= 0, then

f (u, v)= a
(

n
(

u+ bv
a

)
−
1

a2 n(v)
)
. (15)

Hence the form f is indefinite (that is, f takes both positive and negative values)
if and only if 1 is positive, and 1 is then equal to the Dieudonné determinant of
M( f ). By (15), the form f is positive definite (that is, f (x) ≥ 0 with equality if
and only if x = 0) if and only if a > 0 and 1< 0.

The linear action on the left on H×H of the group SL2(H) induces an action
on the right on the set of binary Hermitian forms f by precomposition, that is, by
f 7→ f ◦ g for every g ∈ SL2(H). The matrix of f ◦ g is M( f ◦ g) = g∗M( f )g.
Since the Dieudonné determinant is a group morphism, invariant under the adjoint
map (and since f ◦g is indefinite if and only if f is), we have, for every g ∈SL2(H),

1( f ◦ g)=1( f ). (16)

Given an order O in a definite quaternion algebra over Q, a binary Hamiltonian
form f is integral over O if its coefficients belong to O. Note that such a form f
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takes integral values on O× O. The lattice 0O = SL2(O) of SL2(H) preserves the
set of indefinite binary Hamiltonian forms f that are integral over O. The stabilizer
in 0O of such a form f is its group of automorphs

SU f (O)= {g ∈ 0O : f ◦ g = f }.

For every indefinite binary Hamiltonian form f , with a = a( f ), b = b( f ) and
1=1( f ), let

C∞( f )= {[u : v] ∈ P1
r (H) : f (u, v)= 0},

C( f )= {(z, r) ∈ H×]0,+∞[ : f (z, 1)+ a r2
= 0}.

In P1
r (H) = H ∪ {∞}, the set C∞( f ) is the 3-sphere of center −b/a and radius

√
1/|a| if a 6= 0, and it is the union of {∞} with the real hyperplane

{z ∈ H : tr(zb)+ c = 0}

of H otherwise. The map f 7→ C∞( f ) induces a bijection between the set of
indefinite binary Hamiltonian forms up to multiplication by a nonzero real factor
and the set of 3-spheres and real hyperplanes in H∪ {∞}. The action of SL2(H)

by homographies on H∪ {∞} preserves this set of 3-spheres and real hyperplanes,
and the map f 7→ C∞( f ) is (anti)equivariant for the two actions of SL2(H), in the
sense that, for every g ∈ SL2(H),

C∞( f ◦ g)= g−1 C∞( f ). (17)

Given a finite index subgroup G of SL2(O), an integral binary Hamiltonian form
f is called G-reciprocal if there exists an element g in G such that f ◦g=− f . We
define RG( f )= 2 if f is G-reciprocal, and RG( f )= 1 otherwise. The values of f
are positive on one of the two components of P1

r (H)−C∞( f ) and negative on the
other. As the signs are switched by precomposition by an element g as above, the
G-reciprocity of the form f is equivalent to saying that there exists an element of G
preserving C∞( f ) and exchanging the two complementary components of C∞( f ).

5. Using Eisenstein series to compute hyperbolic volumes

Let O be a maximal order in a definite quaternion algebra A over Q.
In this section, we compute Vol(PSL2(O)\H

5
R) using a method which goes back,

in dimension 2, to Rankin and Selberg’s method [Rankin 1939b; Selberg 1940] of
integrating Eisenstein series on fundamental domains and “unfolding”, generalized
by [Langlands 1966] to the lattice of Z-points of any connected split semisimple
algebraic group over Q. We follow the approach of [Sarnak 1983, pages 261–262]
in dimension 3. See the appendix for a completely different proof of the same result
by V. Emery.
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Theorem 8. Let O be a maximal order in a definite quaternion algebra A over Q

with discriminant DA. Then

Vol(PSL2(O)\H
5
R)=

ζ(3)
∏

p|DA
(p3
− 1)(p− 1)

11520
.

Proof. It is well known (see for instance [Parkkonen and Paulin 2010, Section 6.3,
Example (3)]) that there exists G, a connected semisimple linear algebraic group
over Q, such that G(R) = SL2(H), G(Q) = SL2(A) and G(Z) = SL2(O). Let
P be the parabolic subgroup of G, defined over Q, such that P(R) is the upper
triangular subgroup of SL2(H). By Borel’s finiteness theorem [Borel 1966], the set
SL2(O)\SL2(A)/P(Q) is finite, and we will fix a subset R in SL2(A) which is a
system of representatives of this set of double cosets.

Let 0 = SL2(O). For every α ∈R, let 0α = P(R)∩ (α−10α) and let 0′α be its
subgroup of unipotent elements. The group α0αα−1 is the stabilizer of the parabolic
fixed point α∞ in 0. The action of 0α on H∪ {∞} by homographies preserves∞
and is cocompact on H. If

α−1
=

(
a b
c d

)
and α =

(
ã b̃
c̃ d̃

)
,

let uα = cO+dO, which is a right fractional ideal of O, and vα = Oã+Oc̃, which is
a left fractional ideal of O.

For every α ∈R, the Eisenstein series of the arithmetic group 0 for the cusp at
infinity α∞ is the map Eα : H5

R×]4,+∞[→ R defined by

Eα(x, s)=
∑

γ∈(α0αα−1)\0

r(α−1γ x)s .

The summation does not depend on the choice of representatives of the left cosets
in (α0αα−1)\0 since 0α preserves∞ and the Euclidean height r . The Eisenstein
series of O is (for x = (z, r) ∈ H5

R and s ∈ C with Re s > 4)

Ê(x, s)=
∑

(c, d)∈O×O−{0}

( r
n(cz+ d)+ r2 n(c)

)s
.

The next result concatenates results proven in [Krafft and Osenberg 1990].

Theorem 9 (Krafft and Osenberg). (i) The Eisenstein series Eα(x, s) for α ∈R

and Ê(x, s) converge absolutely and uniformly on compact subsets of {s ∈ C :

Res > 4}, uniformly on compact subsets of x ∈ H5
R. They are invariant by the

action of 0 on the first variable.
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(ii) The map s 7→ Ê(x, s) admits a meromorphic extension to C, having only one
pole, which is at s = 4 and is simple with residue

Ress=4 Ê(x, s)= 8π4

3 DA
2 . (18)

Furthermore, if c(α, s)= n(uα)sζ(u−1
α , s/2) for every α ∈R, then

Ê(x, s)=
∑
α∈R

c(α, s)Eα(x, s). (19)

(iii) For every α, β ∈R, there exists a map s 7→ϕα,β(s) with (s−4)ϕα,β(s) bounded
for s > 4 near s = 4, and a measurable map (x, s) 7→ 8α,β(x, s) such that
(s−4)8α,β(x, s) is bounded by an integrable (for the hyperbolic volume) map,
independent on s > 4 near s = 4, on x ∈ K ×[ε,+∞[ where K is a compact
subset of H and ε > 0, such that

Eα(βx, s)= δα,β r s
+ϕα,β(s)r4−s

+8α,β(x, s),

with δα,β = 1 if α = β and δα,β = 0 otherwise.

Proof. We are using Langlands’ convention for the Eisenstein series; hence with
0′α the subgroup of unipotent elements of 0α , our Eisenstein series Eα is obtained
from the one used in [Krafft and Osenberg 1990] by replacing α by α−1 and by
multiplying by 1/[0α : 0′α].

The part of claim (i) concerning the series Eα(x, s) for α ∈ R is [Krafft and
Osenberg 1990, Satz 3.2]. The rest follows from [ibid., Satz 4.2] with M = O.
The claim (ii) follows from [ibid., Korollar 5.6(a)] with M = O, recalling that the
reduced discriminant of any maximal order of A is equal to the reduced discriminant
of A. The formula (19) follows from [ibid., Satz 4.3], recalling the above changes
between our Eα and the one in [ibid.]. The claim (iii) follows from [ibid., Satz 3.3],
again replacing β by β−1, and using the second equation in [Magnus et al. 1966,
page 85] to control the modified Bessel function. �

By a fundamental domain for a smooth action of a countable group G on a
smooth manifold N , we mean a subset F of N such that F has negligible boundary,
the interiors of the subsets gF for g ∈ G are pairwise disjoint, and

N =
⋃
g∈G

gF.

Here is a construction of a fundamental domain F for 0 acting on H5
R that will

be useful in this section (and is valid for any discrete subgroup of isometries of
Hn

R with finite covolume which is not cocompact). Let P be the set of parabolic
fixed points of 0. By the structure of the cusp neighborhoods, there exists a family
(Hp)p∈P of pairwise disjoint closed horoballs in H5

R, equivariant under 0 (that is,



On the arithmetic and geometry of binary Hamiltonian forms 89

γHp =Hγ p for every γ ∈ 0), with Hp centered at p. The cut locus of the cusps
6 is the piecewise hyperbolic polyhedral complex in H5

R consisting of the set of
points outside the union of these horoballs that are equidistant to at least two of
these horoballs (it is independent of the choice of this family when there is only one
orbit of parabolic fixed points). Each connected component of the complement of
6 contains one and only one of these horoballs, is at bounded Hausdorff distance
of it, is invariant under the stabilizer in 0 of its point at infinity, and is precisely
invariant under the action of 0. Recall that a subset A of a set endowed with an
action of a group G is said to be precisely invariant under this group if for every
g ∈ G, if g A∩ A is nonempty, then g A = A.

For every β ∈ R, let Dβ be a compact fundamental domain for the action
of 0β on H, let F̃β be the closure of the component of the complement of 6
containing Hβ∞, and define Fβ = F̃β ∩ β(Dβ × ]0,+∞[). Then Fβ is a closed
fundamental domain for the action of β0ββ−1 on F̃β , and there exists a continuous
map σ ′β : Dβ→ ]0,+∞[, which hence has a positive lower bound, such that

β−1Fβ = {(z, r) ∈ H5
R : z ∈ Dβ, r ≥ σ ′β(z)}. (20)

Now define
F=

⋃
β∈R

Fβ . (21)

Since R is a system of representatives of the cusps, F is a fundamental domain of
0 acting on H5

R.
Note that, for every α ∈R, there exists a continuous map σα : Dα→ [0,+∞[

(hence with a finite upper bound), with only finitely many zeros, such that, since
α−1F is a fundamental domain for the action of α−10α on H5

R,⋃
γ∈(α−10α−0α)

γα−1F= 0α{(z, r) ∈ H5
R : z ∈ Dα, r < σα(z)}. (22)

For every α ∈R, let

bα(s)=
∫

F

(
Eα(x, s)− r(α−1x)s

)
d volH5

R
(x).

When s > 4, we have

bα(s)

=

∫
F

( ∑
γ∈(α0αα−1)\0

r(α−1γ x)s − r(α−1x)s
)

d volH5
R
(x)

=

∫
F

∑
γ∈

0α\(α
−10α−0α)

r(γ α−1x)s d volH5
R
(x)=

∑
γ∈

0α\(α
−10α−0α)

∫
F

r(γ α−1x)s d volH5
R
(x)
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=

∑
γ∈

0α\(α
−10α−0α)

∫
γα−1F

r(x)s d volH5
R
(x)=

∫
⋃
γ∈0α\(α−10α−0α)

γα−1F
r(x)s d volH5

R
(x)

=

∫
z∈Dα

∫ σα(z)

0
r s−5 dr dz =

∫
z∈Dα

σα(z)s−4

s− 4
dz,

using for the succession of equations, respectively, the definition of Eα , the change
of variables α−1γα→ γ , Fubini’s theorem for positive functions, the invariance of
the volume under the isometric change of variables γα−1x→ x , the σ -additivity
property, and the equations (22) and (13) and the invariance of the Euclidean height
function r under 0α.

For any α ∈R, the map σαs−4 converges pointwise, as s→ 4+, to the map on
Dα with value 0 at the finitely many points where σα vanishes, and with value
1 otherwise. Since Dα is compact and σαs−4 is uniformly bounded from above,
Lebesgue’s dominated convergence theorem gives

lim
s→4+

(s− 4)bα(s)= Vol(Dα)= Vol(0α\H).

Therefore by using (19), the map

s 7→ b(s)=
∫

F

(
Ê(x, s)−

∑
α∈R

c(α, s)r(α−1x)s
)

d volH5
R
(x)=

∑
α∈R

c(α, s)bα(s)

satisfies
lim

s→4+
(s− 4)b(s)=

∑
α∈R

c(α, 4)Vol(0α\H), (23)

since s 7→ c(α, s) is holomorphic for Re s > 2.
On the other hand, let us prove that we may permute the limit as s→ 4+ and the

integral defining (s− 4)b(s). Using the equations (19) and (21), and an isometric,
hence volume-preserving, change of variable, we have

b(s)=
∑
α,β∈R

c(α, s)
∫

Fβ

(
Eα(x, s)− r(α−1x)s

)
d volH5

R
(x)

=

∑
α,β∈R

c(α, s)
∫
β−1Fβ

(
Eα(βx, s)− r(α−1βx)s

)
d volH5

R
(x).

If x ∈ β−1Fβ , then r(x) is bounded from below by a positive constant by the
construction of Fβ ; hence r(x)4−s is bounded from above for every s ≥ 4. If
α 6= β and x ∈ β−1Fβ , then r(α−1βx)s is bounded from above for every s ≥ 0,
since α−1Fβ is bounded in H×R by construction. Hence since β−1Fβ has finite
hyperbolic volume, by Theorem 9(iii) separating the case α = β and the case
α 6= β, by Lebesgue’s dominated convergence theorem, we may permute the
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limit as s→ 4+ and the integral on β−1Fβ for the hyperbolic volume applied to
(s− 4)

(
Eα(βx, s)− r(α−1βx)s

)
. By a finite summation, we may indeed permute

the limit as s→ 4+ and the integral defining (s− 4)b(s).
Therefore, by (18),

lim
s→4+

(s− 4)b(s)= 8π4

3DA
2 Vol(PSL2(O)\H

5
R). (24)

Finally, since for every ρ ∈ A−{0} the element

γρ =

(
ρ −1
1 0

)
of SL2(A) maps∞ to ρ, the element α ∈ R may be chosen to be either id or γρ
for some ρ ∈ A. In the first case, uα = O and 0′α acts on H as the Z-lattice O, so
that, by (5), since the subgroup {± id} of 0α is the kernel of its action on H,

n(uα)4 Vol(0α\H)=
2 Vol(O\H)
[0α : 0′α]

=
DA

2[0α : 0′α]
.

In the second case,

α−1
=

(
0 1
−1 ρ

)
,

so that uα=Oρ+O and 0′α acts on H as the Z-lattice3=O∩ρ−1O∩Oρ−1
∩ρ−1Oρ−1

as we shall see in Lemma 15. By Lemma 6 applied with z = ρ−1 and by (5), we
hence have

n(uα)4 Vol(0α\H)= n(uα)4[O :3]
2 Vol(O\H)
[0α : 0′α]

=
DA

2[0α : 0′α]
.

Therefore, by the definition of c(α, s),∑
α∈R

c(α, 4)Vol(0α\H)=
DA

2

∑
α∈R

ζ(u−1
α , 2)

[0α : 0′α]
. (25)

Combining the equations (23), (24) and (25), we have

Vol(PSL2(O)\H
5
R)=

3DA
3

16π4

∑
α∈R

ζ(u−1
α , 2)

[0α : 0′α]
. (26)

Lemma 10. (1) For every α ∈R, we have [0α : 0′α] = |Or (u
−1
α )
×
||Or (vα)

×
|.

(2) The map from R to OI× OI defined by α 7→ ([vα], [u
−1
α ]) is a bijection.

Proof. (1) Let

0+α =
{
γ ∈ 0α : (0 1)γ = (0 1)

}
and 0−α =

{
γ ∈ 0α : γ

( 1
0

)
=
( 1

0

)}
,
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which are normal subgroups of 0α , whose union generates 0α . By the top of page
434 in [Krafft and Osenberg 1990] (keeping in mind that our α is the inverse of the
α in [ibid.]), we have [0+α :0

′
α]= |Or (vα)

×
|. Similarly, [0−α :0

′
α]= |O`(uα)

×
|. Note

that 0′α is a normal subgroup of 0−α , 0
+
α and 0α, such that 0−α ∩0

+
α = 0

′
α. Hence

the product map from 0−α ×0
+
α to 0′α induces a bijection from (0−α /0

′
α)×(0

′
α\0

+
α )

to 0α/0′α, since 0α/0′α is abelian. In particular, [0α : 0′α] = |O`(uα)
×
||Or (vα)

×
|.

Using (4), the result follows.
(2) Since these matrices act transitively on A by homographies, we may assume

that every α ∈R either is the identity element id, or has the form(
ρα −1
1 0

)
for some ρα ∈ A×. Then α−1 is either id or(

0 1
−1 ρα

)
.

Hence, uα = O+ραO and vα = Oρα+O, unless α = id, in which case uα = vα = O.
Since SL2(A) acts (on the left) transitively by homographies on P1

r (O)with stabilizer
of [1 : 0] equal to P(Q), the map from R to 0O\P

1
r (O) defined by α 7→0Oα[1 : 0] is

a bijection. Note that α[1 : 0] = [ρα : 1] if α 6= id. Using the notation of Remark 7,
if α 6= id, we have vα = Iρα,1 and

[Kρα,1] = [Oρα ∩O] = [O∩Oρ−1
α ] = [u

−1
α ]

by (3). The second assertion of this lemma then follows from Remark 7. �

Now, using respectively (9), Lemma 10(1), Lemma 10(2), the separation of
variables and (7), (8), and (6) since ζ(4)= π4/90, we have

∑
α∈R

ζ(u−1
α , 2)

[0α : 0′α]
=

∑
α∈R

|Or (u
−1
α )
×
|ζ
[u−1
α ]
(2)

[0α : 0′α]
=

∑
α∈R

ζ
[u−1
α ]
(2)

|Or (vα)×|

=

∑
([I ],[J ])∈OI×OI

ζ[J ](2)
|Or (I )×|

= ζA(2)
∑
[I ] ∈ OI

1
|Or (I )×|

=
ζA(2)

24

∏
p|DA

(p− 1)=
ζ(3)π4∏

p|DA
(1− p−3)(p− 1)

2160
. (27)

Theorem 8 follows from the equations (26) and (27). �

Corollary 11. Let A be a definite quaternion algebra over Q with reduced dis-
criminant DA and class number 1, and let O be a maximal order in A. Then the
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hyperbolic volume of PSL2(O)\H
5
R is equal to

Vol(PSL2(O)\H
5
R)=

(D3
A− 1)(DA− 1)ζ(3)

11520
.

This is an immediate consequence of Theorem 8. But here is a proof directly from
(26) that avoids using the technical Lemma 10 and the technical computation (27).

Proof. Since the number of cusps of SL2(O) is the square of the class number h A of
A (see Remark 7), the set R has only one element, and we may choose R= {id}.

By definition of the Dieudonné determinant and since every element of O× has
norm 1, the stabilizer 0∞ of∞ in SL2(O) is

0∞ =

{(
a b
0 d

)
: a, d ∈ O×, b ∈ O

}
.

The index in 0∞ of its unipotent subgroup is hence |O×|2. By the equations (10)
and (6), Corollary 11 follows from (26), ζ(4)= π4/90, |O×| = 24/(DA− 1) as
seen in (2), and since DA is prime when h A = 1. �

Example 12. Let A be Hamilton’s quaternion algebra over Q, which satisfies
DA= 2 and h A= 1. Let O be Hurwitz’s maximal order in A. Applying Corollary 11,
we get

Vol(PSL2(O)\H
5
R)=

7ζ(3)
11520

,

exactly four times the minimal volume of a cusped hyperbolic 5-orbifold, as we
should because the Hurwitz modular group PSL2(O) is a subgroup of index 4 in
the group of the minimal volume cusped hyperbolic orbifold of dimension 5; see
[Hild 2007, page 209; Johnson and Weiss 1999, page 186].

6. Representing integers by binary Hamiltonian forms

Let A be a definite quaternion algebra over Q, and let O be a maximal order in A.
Let us introduce the general counting function we will study. For every indefinite

integral binary Hamiltonian form f over O, for every finite index subgroup G of
SL2(O), for every x, y in O not both zero, and for every s > 0, let

ψ f,G,x,y(s)= Card SU f (O)∩G\
{
(u, v) ∈ G(x, y) : n(Ox +Oy)−1

| f (u, v)| ≤ s
}
.

The counting function ψ f,G,x,y depends (besides on f,G) only on the G-orbit of
[x : y] in P1

r (O).
Here is the notation for the statement of our main result which follows. Given

(x, y) ∈ O× O, let 0O,x,y and Gx,y be the stabilizers of (x, y) for the left linear
actions of 0O=SL2(O) and G, respectively, and let uxy−1 be the right fractional ideal
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O if y = 0 and O+ xy−1O otherwise. Let ιG = 1 if − id ∈ G, and ιG = 2 otherwise.
Note that the image of SU f (O)∩G in PSL2(H) is again an arithmetic group.

Theorem 13. Let f be an integral indefinite binary Hamiltonian form of discrimi-
nant 1( f ) over a maximal order O of a definite quaternion algebra A over Q. Let
x and y be elements in O not both zero, and let G be a finite index subgroup of
0O = SL2(O). Then, as s tends to +∞, we have the equivalence

ψ f,G,x,y(s)∼
540 ιG[0O,x,y : Gx,y]Covol(SU f (O)∩G)

π2ζ(3)|O`(uxy−1)×|1( f )2[0O : G]
∏

p|DA
(p3− 1)(1− p−1)

s4.

Proof. Let us first recall a geometric result from [Parkkonen and Paulin 2012] that
will be used to prove this theorem.

Let n ≥ 2 and let Hn
R be the upper halfspace model of the real hyperbolic space

of dimension n, with (constant) sectional curvature −1. Let F be a finite covolume
discrete group of isometries of Hn

R. Let 1≤ k ≤ n−1 and let C be a real hyperbolic
subspace of dimension k of Hn

R, whose stabilizer FC in F has finite covolume. Let
H be a horoball in Hn

R, which is precisely invariant under F , with stabilizer FH.
For every α, β ∈ F , denote by δα,β the common perpendicular geodesic arc

between αC and the horosphere β∂H if it exists, and let `(δα,β) be its length,
counted positively if δα,β exits βH at its endpoint on β∂H, and negatively otherwise.
Also define the multiplicity of δα,β as m(α, β)= 1/Card(α FCα

−1
∩β FHβ

−1). Its
denominator is finite, if the boundary at infinity of αC does not contain the point at
infinity of βH, since then the subgroup α FCα

−1
∩β FHβ

−1 that preserves both βH

and αC consists of elliptic elements. By convention, `(δα,β)=−∞ and m(α, β)=0
if the boundary at infinity of αC contains the point at infinity of βH. In particular,
there are only finitely many elements [g] ∈ FC\F/FH such that m(g−1, id) is
different from 1, or equivalently such that g−1 FCg ∩ FH 6= {1}. For every t ≥ 0,
define N(t) = NF,C,H(t) as the number, counted with multiplicity, of the orbits
under F in the set of the common perpendicular arcs δα,β for α, β ∈ F with length
at most t :

N(t)= NF,C,H(t)=
∑

(α,β)∈F\((F/FC)×(F/FH))
`(δα,β )≤t

m(α, β).

For every m ∈ N, denoting by Sm the unit sphere of the Euclidean space Rm+1

endowed with its induced Riemannian metric, we have the following result:

Theorem 14 [Parkkonen and Paulin 2012, Corollary 4.9]. As t→+∞, we have

N(t)∼
Vol(Sn−k−1)Vol(FH\H)Vol(FC\C)

Vol(Sn−1)Vol(F\Hn
R)

e(n−1)t .
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Now, let A,O, f,G, x and y be as in the statement of Theorem 13. We write f
as in (1), and denote its discriminant by 1. In order to apply Theorem 14, we first
define the various objects n, k, F , H, and C that appear in its statement.

Let n = 5 and k = 4, so that Vol(Sn−1)= 8π2/3 and Vol(Sn−k−1)= 2. We use
the description of H5

R given in Section 3.
For any subgroup S of SL2(H), we denote by S its image in PSL2(H), except

that the image of SU f (O) is denoted by PSU f (O). We will apply Theorem 14 to
F = G.

Note that Vol(G \H5
R)= [0O : G]Vol(0O \H5

R) and [0O : G] = (1/ιG)[0O : G]
by the definition of ιG . Thus, using Theorem 8 (or Theorem A.1), we have

Vol(G\H5
R)=

1
ιG
[0O : G]Vol(0O \H5

R)=
1
ιG
[0O : G]Covol(0O)

=
ζ(3)[0O : G]

11520 ιG

∏
p|DA

(p3
− 1)(p− 1). (28)

The point ρ = xy−1
∈ A ∪ {∞} ⊂ ∂∞H5

R is a parabolic fixed point of 0O and
hence of G. Let τ ∈ ]0, 1] and H be the horoball in H5

R centered at ρ, with Euclidean
height τ if y 6= 0, and consisting of the points of Euclidean height at least 1/τ
otherwise. Assume that τ is small enough so that H is precisely invariant under 0O

and hence under G. Such a τ exists, as seen in the construction of the fundamental
domain in Section 5. The stabilizer 0O,ρ in 0O of the point at infinity ρ is equal to
the stabilizer (0O)H of the horoball H.

Remark. If ρ =∞ and G = 0O, we may take τ = 1 by [Kellerhals 2003, Propo-
sition 5]. Then by an easy hyperbolic geometry computation, since the index in
(0O )H of the subgroup of translations by elements of O is |O

×
|
2

2 , and by using (5),
we have

Vol((0O)H\H)=
1
4 Vol((0O)H\∂H)=

1
2|O×|2

Vol(O\H)=
DA

8|O×|2
.

The following lemma will allow us to generalize this formula.

Lemma 15. Let 3′O,ρ= O ∩ ρ−1O ∩ Oρ−1
∩ ρ−1Oρ−1 if x, y 6= 0, and 3′O,ρ= O

otherwise. Then 3′O,ρ is a Z-lattice in H and we have

Vol(GH\H)=
τ 4
[(0O)H : GH]

4|O`(uρ)×| [(0O )H : 0O,x,y]
Vol(3′O,ρ\H). (29)

Proof. If y = 0, let γρ = id; otherwise let

γρ =

(
ρ −1
1 0

)
∈ SL2(H).
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Note that γ−1
ρ maps ρ to∞ and H to the horoball H∞ consisting of the points in

H5
R with Euclidean height at least 1/τ .
Let

γ =

(
a b
c d

)
and γ ′ =

(
1 b′

0 1

)
be in SL2(H). If y = 0, we have γ−1

ρ γ γρ = γ
′ if and only if a = 1, b = b′, c = 0,

d= 1. If y 6= 0, by an easy computation, we have γ−1
ρ γ γρ = γ

′ (that is, γ γρ = γργ ′)
if and only if

c =−b′, a = 1− ρb′, d = 1+ b′ρ, b = ρb′ρ. (30)

In particular, if x, y 6= 0, if γ ∈ SL2(O) and γ ′ = γ−1
ρ γ γρ ∈ SL2(A) is unipotent

upper triangular, then these equations imply respectively that b′ belongs to O,
ρ−1O, Oρ−1 and ρ−1Oρ−1; therefore b′ ∈ 3′O,ρ . If x = 0 or y = 0, we also have
b′ ∈ O=3′O,ρ

Conversely, if b′ ∈ 3′O,ρ , then define a, b, c, d by the equations (30) if y 6= 0,
and by a = 1, b = b′, c = 0, d = 1 otherwise, so that a, b, c, d ∈ O. Let

γ =

(
a b
c d

)
.

If y 6= 0, note that if c = 0, then γ = id and otherwise cb− cac−1d =−1, so that
γ ∈ SL2(O) by (12). If y 6= 0, the equations (30) imply that γ−1

ρ γ γρ is a unipotent
upper triangular element of SL2(O), and this is also the case if y = 0.

The abelian group 3′O,ρ is a Z-lattice in H, as an intersection of at most four
Z-lattices in A. Since an isometry preserves the volume for the first equality, by
an easy hyperbolic volume computation for the second one, and by the previous
computation of the unipotent upper triangular subgroup 0′γρ of γ−1

ρ 0O,x,yγρ for the
last one, we have

Vol(0O,x,y\H)= Vol((γ−1
ρ 0O,x,yγρ)\H∞)=

1
4 Vol((γ−1

ρ 0O,x,yγρ)\∂H∞)

=
τ 4

4
Vol
(
(γ−1
ρ 0O,x,yγρ)\H

)
=

τ 4

4[γ−1
ρ 0O,x,yγρ : 0′γρ ]

Vol(3′O,ρ\H).

With the notation of the proof of Lemma 10(1), we have [γ−1
ρ 0O,x,yγρ : 0

′
γρ
] =

|O`(uρ)
×
|. Since covering arguments yield

Vol(GH\H)= [(0O)H : GH]Vol
(
(0O)H\H

)
=
[(0O)H : GH]

[(0O)H : 0O,x,y]
Vol(0O,x,y\H),

the result follows. �
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Let us resume the proof of Theorem 13. Let C= C( f ), which is indeed a real
hyperbolic hyperplane in H5

R, whose set of points at infinity is C∞( f ) (hence∞ is
a point at infinity of C( f ) if and only if the first coefficient a = a( f ) of f is 0).
Note that C is invariant under the group SU f (O) by (17) (this equation implies that
C( f ◦g)= g−1C( f ) for every g ∈ SL2(O)). The arithmetic group SU f (O) acts with
finite covolume on C( f ), its finite subgroup {± id} acting trivially. By definition,

Covol(SU f (O)∩G)= Vol
(

PSU f (O)∩G\C( f )
)
.

Note that Covol(SU f (O)∩G) depends only on the G-orbit of f , by (17) and since
SU f ◦g(O) = g−1 SU f (O)g for every g ∈ SL2(O). By its definition, RG( f ) is the
index of the subgroup PSU f (O)∩G in GC; hence

Vol(GC\C)=
1

RG( f )
Covol(SU f (O)∩G). (31)

The last step of the proof of Theorem 13 consists in relating the two counting
functions ψ f,G,x,y and NG,C,H, in order to apply Theorem 14.

For every g ∈ SL2(H), let us compute the hyperbolic length of the common
perpendicular geodesic arc δg−1,id between the real hyperbolic hyperplane g−1C

and the horoball H, assuming that they do not meet. We use the notation γρ,H∞
introduced in the proof of Lemma 15. Since γ−1

ρ sends the horoball H to the
horoball H∞, it sends the common perpendicular geodesic arc between g−1C and
H to the (vertical) common perpendicular geodesic arc between γ−1

ρ g−1C and H∞.
Let r be the Euclidean radius of the 3-sphere C∞( f ◦ g ◦ γρ), which is the image
by γ−1

ρ of the boundary at infinity of g−1C by (17). Denoting by a( f ◦ g ◦ γρ) the
coefficient of n(u) in f ◦ g ◦ γρ(u, v), we have, by (16),

r =

√
1( f ◦ g ◦ γρ)
|a( f ◦ g ◦ γρ)|

=

√
1

| f ◦ g ◦ γρ(1, 0)|

=

√
1

| f ◦ g(ρ, 1)|
=

n(y)
√
1

| f ◦ g(x, y)|
,

if y 6= 0 and r = (n(x)
√
1)/| f ◦ g(x, y)| otherwise. An immediate computation

gives

`(δg−1,id)= `(γ
−1
ρ δg−1,id)= ln 1

τ
− ln r = ln

| f ◦ g(x, y)|

τ n(y)
√
1
, (32)

if y 6= 0 and

`(δg−1,id)= ln
| f ◦ g(x, y)|

τ n(x)
√
1

otherwise. With the conventions that we have taken, these formulas are also valid
if g−1C and H meet.
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Recall that there are only finitely many elements [g] ∈ GC\G/GH such that
g−1GC g ∩ GH is different from {1} or such that the multiplicity m(g−1, id) is
different from 1. If y 6= 0, using (32) for the third line below, [Parkkonen and Paulin
2011, Lemma 7] for the fourth one, and Theorem 14 applied to F = G for the sixth
one, we hence have, as s tends to +∞,

ψ f,G,x,y(s)

= Card
{
[g] ∈ (SU f (O)∩G)\G/Gx,y : n(Ox +Oy)−1

| f ◦ g(x, y)| ≤ s
}

= Card
{
[g] ∈ (PSU f (O)∩G)\G/Gx,y : `(δg−1,id)≤ ln

s n(Ox +Oy)

τ n(y)
√
1

}
∼ RG( f )[GH : Gx,y]Card

{
[g] ∈ GC\G/GH : `(δg−1,id)≤ ln

s n(Oρ+O)

τ
√
1

}
∼ RG( f )[GH : Gx,y]NG,C,H

(
ln

s n(Oρ+O)

τ
√
1

)
∼ RG( f )[GH : Gx,y]

6 Vol(GH\H)Vol(GC\C)

8π2 Vol(G\Hn
R)

(s n(Oρ+O)

τ
√
1

)4
.

We replace the three volumes in the computation above by their expressions given
in the equations (28), (29) and (31). We simplify the obtained expression using the
following two remarks. Firstly,

[GH : Gx,y]
[(0O)H : GH]

[(0O)H : 0O,x,y]
=
[(0O)H : Gx,y]

[(0O)H : 0O,x,y]
= [0O,x,y : Gx,y] = [0O,x,y : Gx,y].

Secondly, we claim that

Vol(3′O,ρ\H) n(Oρ+O)4 =
DA

4
. (33)

If x = 0, then 3′O,ρ = O; hence this claim is true, by (5) and since n(O) = 1.
Otherwise, claim (33) follows from Lemma 6 with z = ρ−1, since, by the definition
of 3′O,ρ ,

Vol(3′O,ρ\H) n(Oρ+O)4=Vol(3\H) n(Oz−1
+O)4=Vol(O\H)[O :3] n(Oz−1

+O)4,

and by (5).
This concludes the proof of Theorem 13 if y 6= 0. The case y = 0 is similar to

the case x = 0. �

Let us give a few corollaries of Theorem 13. The first one below follows by
taking G = SL2(O) in Theorem 13.

Corollary 16. Let f be an integral indefinite binary Hamiltonian form of discrim-
inant 1( f ) over a maximal order O of a definite quaternion algebra A over Q.
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Let x and y be elements in O not both zero. Then, as s tends to +∞, we have the
equivalence

ψ f,SL2(O),x,y(s)∼
540 Covol(SU f (O))

π2ζ(3)|O`(uxy−1)×|1( f )2
∏

p|DA
(p3− 1)(1− p−1)

s4.

Remark 17. Recall that by Remark 7, the map from SL2(O)\P
1
r (O) to OI×OI that

associates, to the orbit of [u : v] in P1
r (O) under SL2(O), the couple of ideal classes

([Iu,v], [Ku,v]) is a bijection. The counting function ψ f,SL2(O),x,y hence depends
only on ([Ix,y], [Kx,y]).

Given two left fractional ideals m and m′ of O, let ψ f,m,m′(s) be the cardinality
of the set

SU f (O)
∖ {
(u, v) ∈m×m :

| f (u, v)|
n(m)

≤ s, Iu,v =m, [Ku,v] = [m
′
]

}
.

Note that this counting function depends only on the ideal classes of m and m′.

Corollary 18. Let f be an integral indefinite binary Hamiltonian form of discrimi-
nant 1( f ) over a maximal order O of a definite quaternion algebra A over Q. Let
m and m′ be two left fractional ideals in O. Then as s tends to +∞, we have the
equivalence

ψ f,m,m′(s)∼
540 Covol(SU f (O))

π2ζ(3)|Or (m′)×|1( f )2
∏

p|DA
(p3− 1)(1− p−1)

s4.

Proof. By Remark 17, we have

ψ f,m,m′ = ψ f,SL2(O),x,y,

where (x, y) is any nonzero element of O×O such that [Ix,y]=[m] and [Kx,y]=[m
′
].

By the equations (4) and (3), if xy 6= 0, we have

|O`(uxy−1)×| = |Or (uxy−1
−1)×| = |Or (O∩Oyx−1)×| = |Or (Kx,y)

×
|.

The first and last terms are also equal if xy = 0. Hence the result follows from
Corollary 16. �

Remark 19. With ψ f,m the counting function defined in the introduction, we have

ψ f,m =
∑
[m′]∈OI

ψ f,m,m′ . (34)

Therefore, since ∑
[m′]∈OI

1
|Or (m′)×|

=
1
24

∏
p|DA

(p− 1)

by (8), Theorem 1 in the introduction follows from Corollary 18.
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We say u, v ∈ O×O are relatively prime if one of the following equivalent (by
Remark 17) conditions is satisfied:

(i) There exists g ∈ SL2(O) such that g(1, 0)= (u, v).

(ii) There exists u′, v′ ∈ O such that n(uv′)+ n(u′v)− tr(uvv′u′)= 1.

(iii) The O-modules Iu,v and Ku,v are isomorphic (as O-modules) to O.

We denote by PO the set of couples of relatively prime elements of O.

Corollary 20. Let f be an integral indefinite binary Hamiltonian form over a
maximal order O in a definite quaternion algebra A over Q, and let G be a finite
index subgroup of 0O = SL2(O). Then, as s tends to +∞, we have the equivalence

Card SU f (O)∩G\
{
(u, v) ∈ PO : | f (u, v)| ≤ s

}
∼

540 ιG[0O,1,0 : G1,0] Covol(SU f (O)∩G)
π2ζ(3)|O×|1( f )2[0O : G]

∏
d|DA

(p3− 1)(1− p−1)
s4.

Proof. This follows from Theorem 13 by taking x = 1 and y = 0. �

Proof of Corollary 2 from the introduction. Consider the integral indefinite binary
Hamiltonian form f over O defined by f (u, v)= tr(u v), with matrix

M( f )=
(

0 1
1 0

)
and discriminant 1( f )= 1. Its group of automorphs is

Sp1(O)=

{
g ∈ SL2(O) : g∗

(
0 1
1 0

)
g =

(
0 1
1 0

)}
,

which is an arithmetic lattice in the symplectic group over the quaternions Sp1(H).
We have

C( f )= {(z, r) ∈ H×]0,+∞[ : tr(z)= 0}.

The hyperbolic volume of the quotient of {(z, r) ∈ H×]0,+∞[ : tr(z)= 0} by
Sp1(O) has been computed as the main result of [Breulmann and Helmke 1996],
yielding

Covol(Sp1(O))=
π2

1080

∏
p|DA

(p2
+ 1)(p− 1),

where p ranges over the primes dividing DA.
Corollary 2 in the introduction then follows from Theorem 1 with m= O. �

Remark 21. Theorem 13 and its Corollary 20 allow the asymptotic study of the
counting of representations satisfying congruence properties. For instance, let I

be a (nonzero) two-sided ideal in an order O in a definite quaternion algebra A
over Q. Let 0I be the kernel of the map SL2(O)→GL2(O/I) of reduction modulo
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I of the coefficients, and 0I,0 the preimage of the upper triangular subgroup by
this map. Then applying Corollary 20 with G = 0I and G = 0I,0 respectively,
we get an asymptotic equivalence as s→+∞ of the number of relatively prime
representations (u, v) of integers with absolute value at most s by a given integral
binary Hamiltonian form, satisfying the additional congruence properties

{u ≡ 1 mod I, v ≡ 0 mod I} or {v ≡ 0 mod I}.

To give an even more precise result, the computation of the indices of 0I and 0I,0

in SL2(O) would be needed.

7. Geometric reduction theory of binary Hamiltonian forms

Let O be a (not necessarily maximal) order in a definite quaternion algebra A over Q.
Let Q be the 6-dimensional real vector space of binary Hamiltonian forms, Q+

the open cone of positive definite ones, Q± the open cone of indefinite ones, Q(O)

the discrete subset of the ones that are integral over O, and

Q+(O)= Q+ ∩Q(O), Q±(O)= Q± ∩Q(O).

For every 1 ∈ Z−{0}, let Q(1)= { f ∈ Q :1( f )=1}, Q(O,1)= Q(1)∩Q(O)

and
Q+(O,1)= Q(1)∩Q+(O), Q±(O,1)= Q(1)∩Q±(O).

The group R∗
+

acts on Q+ by multiplication; we will denote by [ f ] the orbit of
f and by Q+ the quotient space Q+/R∗

+
. Similarly, the group R∗ acts on Q± by

multiplication; we will denote by [ f ] the orbit of f and by Q± the quotient space
Q±/R∗. The right action of SL2(H) on Q preserves Q(1), Q+ and Q±, commuting
with the actions of R∗

+
and R∗ on these last two spaces. The subgroup SL2(O)

preserves Q(O), Q+(O), Q±(O), Q+(O,1), Q±(O,1).
Let C(H5

R) be the space of totally geodesic hyperplanes of H5
R, with the Hausdorff

distance on compact subsets.

Proposition 22. (1) The map 8 : Q+→ H5
R defined by

[ f ] 7→
(
−

b( f )
a( f )

,

√
−1( f )
a( f )

)
is a homeomorphism, which is (anti)equivariant for the actions of SL2(H): For
every g ∈ SL2(H), we have 8([ f ◦ g])= g−18([ f ]).

(2) The map9 :Q±→C(H5
R) defined by [ f ] 7→C( f ) is a homeomorphism, which

is (anti)equivariant for the actions of SL2(H): For every g ∈ SL2(H), we have
9([ f ◦ g])= g−19([ f ]).
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Note that 8([ f ]) may be geometrically understood as the pair of the center and
the imaginary radius of the imaginary sphere with equation f (z, 1)= 0, that is,

n
(

z+
b( f )
a( f )

)
=−

(√
−1( f )
a( f )

)2
.

Proof. (1) Since a = a( f ) > 0 and 1 = 1( f ) < 0 when f is a positive definite
binary Hamiltonian form, the map 8 is well-defined and continuous. Since the
orbit by R∗

+
of a positive definite binary Hamiltonian form has a unique element f

such that a( f )= 1, and since c( f ) then is equal to n(b( f ))−1, the map 8 is a
bijection with continuous inverse (z, r) 7→ [ fz,r ] where

fz,r : (u, v) 7→ n(u)− tr(uzv)+ (n(z)+ r2) n(v).

To prove the equivariance property of 8, we could use (14) and the formula for
the inverse of an element of SL2(O) given for instance in [Kellerhals 2003], but the
computations are quite technical and even longer than below. Hence we prefer to
use the following lemma to decompose the computations.

Lemma 23. The group (even the monoid) SL2(H) is generated by the elements(
0 −1
1 0

)
and

(
1 β

0 1

)
with β ∈ H.

This is a consequence of a general fact about connected semisimple real Lie
groups and their root groups, but the proof is short (and is one way to prove that
the Dieudonné determinant of (

α β

γ δ

)
is n(γβ − γαγ−1δ) if γ 6= 0).

Proof. This follows from the following facts, where α, β, γ, δ ∈ H. If α 6= 0, then(
α β

0 δ

)
=

(
α 0
0 δ

)(
1 α−1β

0 1

)
, and(

α 0
0 α−1

)
=

(
1 −α
0 1

)(
0 −1
1 0

)(
1 −α−1

0 1

)(
0 −1
1 0

)(
1 −α
0 1

)(
0 −1
1 0

)
.

If n(αδ)= 1, there exist u, v ∈ H× such that αδ = uvu−1v−1, and(
α 0
0 δ

)
=

(
u 0
0 u−1

)(
v 0
0 v−1

)(
(vu)−1 0

0 vu

)(
δ−1 0
0 δ

)
.

If γ 6= 0, then(
α β

γ δ

)
=

(
1 αγ−1

0 1

)(
0 −1
1 0

)(
γ 0
0 −β +αγ−1δ

)(
1 γ−1δ

0 1

)
. �
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Now, to prove the equivariance property, one only has to prove it for the elements
of the generating set of SL2(H) given in the above lemma. Given f ∈ Q+, let

M =
(

a b
b c

)
be the matrix of f and 1=1( f ). Note that the matrix of f ◦ g is g∗Mg.

If

g =
(

1 β

0 1

)
,

we have a( f ◦ g)= a and b( f ◦ g)= aβ + b. Since

g−1
·

(
−

b
a
,

√
−1

a

)
=

(
−

b
a
−β,

√
−1

a

)
=

(
−

b( f ◦g)
a( f ◦g)

,

√
−1( f ◦g)
a( f ◦g)

)
by (16), the result follows in this case.

If

g =
(

0 −1
1 0

)
,

then a( f ◦ g)= c and b( f ◦ g)=−b. By (14), for every (z, h) ∈ H5
R, we have

g−1
· (z, r)=

(
−z

n(z)+r2 ,
r

n(z)+r2

)
.

Therefore, since 1= n(b)− ac,

g−1
·

(
−

b
a
,

√
−1

a

)
=

(
−(− b

a )
n(b)
a2 +

−1
a2

,

√
−1
a
c
a

)
=

(
−

b( f ◦ g)
a( f ◦ g)

,

√
−1( f ◦ g)
a( f ◦ g)

)
.

The equivariance property of 8 follows.
(2) We have already seen that 9 is a bijection. Its equivariance property follows

from (17). Let a = a( f ), b = b( f ), c = c( f ) and 1=1( f ). Since

C( f )=
{
{(z, r) ∈ H5

R : n(az+ b)+ a2r2
=1} if a 6= 0,

{(z, r) ∈ H5
R : tr(zb)+ c = 0} otherwise,

the map 9 is clearly a homeomorphism. �

In order to define a geometric notion of reduced binary Hamiltonian form, much
less is needed than an actual fundamental domain for the group SL2(O) acting
on H5

R. Though it might increase the number of reduced elements, this will make
the verification that a given binary form is reduced much easier (see the end of this
section). Indeed, due to the higher dimension, the number of inequalities is much
larger than the one for SL2(Z) or for SL2(OK ), where OK is the ring of integers of
an imaginary quadratic number field K ; see for instance [Zagier 1981; Buchmann
and Vollmer 2007; Elstrodt et al. 1998].
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For n ≥ 2, let us denote by ‖z‖ the usual Euclidean norm on Rn−1. Consider
the upper halfspace model of the real hyperbolic n-space Hn

R, whose underlying
manifold is Rn−1

×]0,+∞[, so that ∂∞Hn
R = Rn−1

∪ {∞}. A weak fundamental
domain for the action of a finite covolume discrete subgroup 0 of isometries of Hn

R

is a subset F of Hn
R such that

(i)
⋃

g∈0 gF= Hn
R,

(ii) there exists a compact subset K in Rn−1 such that F is contained in K×]0,+∞[,

(iii) there exist κ, ε > 0 and a finite set Z of parabolic fixed points of 0 such that
F= {(z, r) ∈F : r ≥ ε}∪ (

⋃
s∈Z Es), where Es ⊂ {(z, r) ∈F : ‖z− s‖ ≤ κr2

}.

Note that a weak fundamental domain for a finite index subgroup of 0 is a weak
fundamental domain for 0.

When ∞ is a parabolic fixed point of 0, an example of a weak fundamental
domain is any Ford fundamental domain of 0, whose definition we now recall.

Given any isometry g of Hn
R such that g∞ 6=∞, the isometric sphere of g is the

(n−2)-sphere Sg of Rn−1 that consists of the points at which the tangent map of
g is a Euclidean isometry. We then define S+g as the set of points in Hn

R that are
in the closure of the unbounded component of the complement of the hyperbolic
hyperplane whose boundary is Sg. For instance, if

g =
(
α β

γ δ

)
∈ SL2(H),

then g∞ 6=∞ if and only if γ 6= 0 and its isometric sphere is then

Sg = {z ∈H : n(γ z+ δ)= 1}, so that S+g = {(z, r) ∈H5
R : n(γ z+ δ)+r2

≥ 1}.

Recall that since 0 has finite covolume, every parabolic fixed point ξ of 0 is
bounded, that is, the quotient of ∂∞Hn

R−{ξ} by the stabilizer of ξ in 0 is compact.
Let D∞ be a compact fundamental domain for the action of the stabilizer of∞ in
0 on Rn−1. Then the Ford fundamental domain F0 of 0 associated to D∞ is

F0 =

( ⋂
g∈0

g∞6=∞

S+g
)
∩
(
D∞×]0,+∞[

)
.

It is well known (see for instance [Beardon 1983, page 239]) that F0 is a fundamental
domain for 0 acting on Hn

R (in particular, F0 satisfies condition (i) of a weak
fundamental domain) and that the set of points at infinity of

⋂
g∈0,g∞6=∞ S+g is a

locally finite set of parabolic fixed points in ∂∞Hn
R. Furthermore, since parabolic

fixed points are bounded and have a precisely invariant horoball centered at them,
and since the tangency of a circle and its tangent is quadratic, the condition (iii)
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is satisfied for every ε small enough, and κ large enough. Note that F0 satisfies
condition (ii) with K = D∞.

Let us fix a weak fundamental domain F for the action of SL2(O) on H5
R. A

positive definite form f ∈ Q+(O) is reduced if 8([ f ]) ∈ F and an indefinite form
f ∈ Q±(O) is reduced if 9([ f ]) ∩F 6= 0. We say that a negative definite form
f ∈ −Q+(O) is reduced if − f is reduced. The notion of being reduced does
depend on the choice of a weak fundamental domain, which allows us to choose it
appropriately when computing examples. Recall that Q(1) is equal to Q±(1) if
1> 0 and to Q+(1)∪−Q+(1) if 1< 0.

Theorem 24. For every 1 ∈ Z−{0}, the number of reduced elements of Q(O,1)

is finite.

This is a restatement of Theorem 4 in the introduction.

Proof. Note that the Euclidean norm on H is ‖z‖ = n(z)1/2.
Let us first prove that the number of reduced elements of Q+(O,1) is finite.
For every f ∈ Q+(O,1), let a = a( f ) > 0, b = b( f ) and c = c( f ). We have

n(b)− ac =1 < 0; hence c is determined by a and b. The form f is reduced if
and only if

8([ f ])=
(
−

b
a
,

√
−1

a

)
∈ F.

By the condition (ii) and since K is compact, ‖b/a‖ is bounded. Hence, if we have
an upper bound on a, by the discreteness of O, the elements a and b may take only
finitely many values, and so does c, therefore the result follows.

Let κ, ε, Z be as in the condition (iii). If
√
−1/a ≥ ε, then a is bounded from

above, and we are done. Otherwise, by condition (iii), there exists s in the finite set
Z such that 8([ f ]) ∈ Es . In particular,∥∥∥−b

a
− s

∥∥∥≤ κ(√−1
a

)2
.

Since the set of parabolic elements of SL2(O) is A∪ {∞}, we may write s = u/v
with u ∈ O and v ∈ N−{0}. The inequality above becomes

a‖bv+ au‖ ≤ κ|1|v.

The element bv+au ∈ O either is equal to 0 or has reduced norm, hence Euclidean
norm, at least 1. In the second case, we have an upper bound on a, as wanted. In
the first case, we have b/a =−u/v, that is b =−au/v. Hence

1v2
= (n(b)− ac)v2

= a(a n(u)− cv2).

Since a n(u)− cv2
∈ Z, the integer a divides the nonzero integer 1v2; hence a is

bounded, as wanted.
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Let us now prove that the number of reduced elements of Q±(O,1) is finite,
which concludes the proof of Theorem 24.

We have 1 > 0. With K a compact subset as in the condition (ii), let δ =
supx∈K ‖x‖. Let f ∈Q±(O,1) be reduced, and fix (z, r)∈C( f )∩F. Let a= a( f ),
b = b( f ) and c = c( f ).

Assume first that a = 0. Then n(b)=1; hence b takes only finitely many values,
by the discreteness of O. Recalling that C( f )= {(z, r) ∈ H5

R : tr(zb)+ c = 0}, we
have by the Cauchy–Schwarz inequality

|c| = |tr(zb)| ≤ 2‖z‖‖b‖ ≤ 2δ
√
1.

Again by discreteness, c takes only finitely many values, and the result follows.
Assume that a 6= 0, and up to replacing f by − f (which is reduced if f is), that

a > 0. We have n(b)− ac =1, hence c is determined by a and b. Recalling that
C( f )= {(z, r) ∈H5

R : n(az+ b)+ a2r2
=1}, we have by the triangular inequality∥∥∥b

a

∥∥∥≤ ∥∥∥z+ b
a

∥∥∥+‖z‖ ≤ √1+ δ.
Hence as in the positive definite case, if we have an upper bound on a, the result
follows.

Let κ, ε, Z be as in the condition (iii). Note that r ≤
√
1/a. Hence if r ≥ ε, then

we have an upper bound a ≤
√
1/ε, as wanted. Therefore, we may assume that

(z, r) belongs to C( f )∩Es for some s ∈ Z . In particular,∥∥∥z+ b
a

∥∥∥=√1
a2 − r2 and ‖z− s‖ ≤ κr2.

First assume that ‖(b/a)+s‖≥
√
1/a. Then by the inverse triangular inequality

κr2
≥ ‖s− z‖ ≥

∥∥∥b
a
+ s

∥∥∥− ∥∥∥z+ b
a

∥∥∥≥ √1
a
−

√
1

a2 − r2 ≥
r2

2
√
1/a

.

Therefore, we have an upper bound a ≤ 2 κ
√
1, as wanted.

Now assume that ‖(b/a)+s‖<
√
1/a. Write s=u/v with u ∈O and v ∈N−{0}.

We have n(au+ bv) < 1v2. The element w = au+ bv, belonging to O and having
reduced norm at most 1v2, can take only finitely many values. The positive integer
v21− n(w) is equal to

v2(n(b)− ac)− n(au+ bv)=− tr(aubv)− n(au)− v2ac

=−a(tr(ubv)+ a n(u)+ v2c).

Since tr(u b v)+a n(u)+v2c∈Z by the properties of the reduced norm, the reduced
trace and the conjugate of elements of O, this implies that the integer a divides the
nonzero integer v21− n(w); hence a is bounded, as wanted.
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This concludes the proof of Theorem 24. �

Corollary 25. For every 1 ∈ Z−{0}, the number of orbits of SL2(O) in Q(O,1),
hence in Q+(O,1) and in Q±(O,1), is finite.

Proof. This immediately follows from Theorem 24, by the equivariance properties
in Proposition 22 and the assumption (i) on a weak fundamental domain (that was
not used in the proof of Theorem 24). �

Example 26. Let A be Hamilton’s quaternion algebra over Q. Let O be Hurwitz’s
maximal order in A, and let O′=Z+Zi+Z j+Zk be the order of Lipschitz integral
quaternions.

We identify H and R4 by the R-linear map sending (1, i, j, k) to the canonical
basis of R4. Let V ⊂ O′ denote the set of vertices of the 4-dimensional unit cube
[0, 1]4. We claim that the set

F= {(z, r) ∈ H5
R : z ∈ [0, 1]4, n(z− s)+ r2

≥ 1 for all s ∈ V }

is a weak fundamental domain for SL2(O
′), and hence for SL2(O). For every s ∈ V ,

the 3-sphere in H with equation n(z− s)= 1 is the isometric sphere of(
0 −1
1 s

)
∈ SL2(O

′).

Since the diameter of the cube [0, 1]4 is 2, the closed balls bounded by these spheres
cover [0, 1]4. This unit cube is a fundamental polytope of the subgroup of unipotent
elements of SL2(O

′) fixing∞. Thus, F contains a Ford fundamental domain of
SL2(O

′), which implies property (i) of a weak fundamental domain. Property (ii)
(with K the unit cube) is valid by the definition of F. Property (iii) follows from the
fact that the only point at infinity of F besides∞ is the center point (1+i+ j+k)/2
of the unit cube, which is the only point of this cube which does not belong to one
of the open balls whose boundary is one of the isometric spheres used to define F.
Note that (1+ i + j + k)/2 ∈ A is a parabolic fixed point of SL2(O

′).
Recall that a positive definite Hamiltonian form f ∈ Q+(O,1) with coefficients

a = a( f ), b = b( f ) = b1 + b2i + b3 j + b4k and c = c( f ) is reduced (for this
choice of weak fundamental domain) if (−b/a,

√
−1/a) ∈F. A straightforward

manipulation of the defining inequalities of F shows that f ∈ Q+(O,1) is reduced
if and only if its coefficients satisfy the following set of 25 inequalities

a > 0, 0≤−b` ≤ a, a
(

a− c− 2
∑
m∈P

bm

)
≤ Card(P) (35)

for all ` ∈ {1, 2, 3, 4} and for all subsets P ⊂ {1, 2, 3, 4}. Theorem 24 implies that
there are only a finite number of forms in Q+(O,1) whose coefficients satisfy the
inequalities (35).
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Similarly, an indefinite Hamiltonian form f ∈ Q±(O,1) with a( f ) = a > 0,
b( f )= b1+b2i+b3 j+b4k and c( f )= c is reduced, that is, C( f ) meets F, if and
only if the following system of 16 linear inequalities and one quadratic inequality
in four real variables X1, X2, X3, X4 has a solution in the unit cube [0, 1]4:

4∑
`=1

2X`
b`
a
+ X`2

≤−
c
a
,

4∑
`=1

2X`
b`
a
+

∑
m∈P

2Xm ≤−1− c
a
+Card(P),

for all subsets P ⊂ {1, 2, 3, 4}.

Appendix: The hyperbolic covolume of SL2(O), by Vincent Emery

Let A be a definite quaternion algebra over Q, with reduced discriminant DA, and
let O be a maximal order in A; see for instance [Vignéras 1980] and Section 2
for definitions and properties. Given a quaternion algebra A′ over a field k, let
SL2(A′) = SL1(M2(A′)) be the group of elements of the central simple 2 × 2
matrix algebra M2(A′) having reduced norm 1. For any subring O′ of A′, let
SL2(O

′)= SL2(A′)∩M2(O
′) and PSL2(O

′)= SL2(O
′)/{± id}. Fixing an identifica-

tion between A⊗Q R and Hamilton’s real quaternion algebra H turns SL2(O) into an
arithmetic lattice in SL2(H). Hence SL2(O) acts by isometries with finite covolume
on the real hyperbolic space H5

R; see for instance Section 3 for generalities.
In this appendix, the following result is proved using Prasad’s volume formula in

[Prasad 1989]. See the main body of this paper for a proof using Eisenstein series.

Theorem A.1. The hyperbolic covolume of SL2(O) is

Covol(SL2(O))=
ζ(3)

11520

∏
p|DA

(p3
− 1)(p− 1),

where p ranges over the prime integers.

Proof. Let P be the set of positive primes in Z. For every p ∈P, let Op = O⊗Z Zp,
which is a maximal order in the quaternion algebra Ap = A⊗Q Qp over Qp; see
for instance [Vignéras 1980, page 84].

We refer for instance to [Tits 1966] for the classification of the semisimple
connected algebraic groups over Q. Let G be the (affine) algebraic group over Q,
having as its group of K -points, for each characteristic zero field K , the group

G(K )= SL2(A⊗Q K )= SL1(M2(A⊗Q K )).

The group G is absolutely (quasi)simple and simply connected. Indeed, the C-
algebra A⊗Q C is isomorphic to M2(C) and thus the complex Lie group G(C) is
isomorphic to SL1(M4(C)) = SL4(C) (note that we are using the reduced norm
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and not the norm). Furthermore, G is an inner form of the split algebraic group
G= SL4 over Q. The (absolute) rank of G and the exponents of G are given by

r = 3 and m1 = 1, m2 = 2, m3 = 3; (A1)

see for instance [Prasad 1989, page 96]. We consider the Z-form of G such that
G(Z)= SL2(O) and G(Zp)= SL2(Op) for every p ∈P; see for instance [Parkkonen
and Paulin 2010, page 382] for details.

Let IG,Qp be the Bruhat–Tits building of G over Qp; see for instance [Tits 1979]
for the necessary background on Bruhat–Tits theory. Recall that a subgroup of
G(Qp) is parahoric if it is the stabilizer of a simplex of IG,Qp ; a coherent family of
parahoric subgroups of G is a family (Yp)p∈P, where Yp is a parahoric subgroup
of G(Qp) and Yp =G(Zp) for p big enough. The principal lattice associated with
this family is the subgroup G(Q)∩

∏
pYp of G(Q) (diagonally contained in the

group G(A f )=
∏
′

p G(Qp) of finite adèles of G, where as usual
∏
′ indicates the

restricted product).
For every p ∈P, recall that by the definition of the discriminant DA of A, if p

does not divide DA, then the algebra Ap is isomorphic to M2(Qp), and otherwise Ap

is a d2-dimensional central division algebra with center Qp with d=2. Furthermore,
for the discrete valuation ν = νp ◦n, where νp is the discrete valuation of Qp and n
the reduced norm on Ap, the maximal order Op is equal to the valuation ring of ν;
see for instance [Vignéras 1980, page 34].

First assume that p does not divide DA. Then G is isomorphic to G = SL4

over Qp. The vertices of the building IG,Qp are the homothety classes of Zp-lattices
in Qp

4. In particular SL2(Op)=SL4(Zp) is the stabilizer of the class of the standard
Zp-lattice Zp

4 and hence is parahoric.
Now assume that p divides DA. Then G(Qp) = SLm(Ap) with m = 2 and

G(Qp) has local type dAmd−1 =
2A3 in Tits’ classification [1979, Section 4.4]. The

corresponding local index is shown below:

s

2 2

s

Local index of type 2A3.

The building IG,Qp is a tree (see for instance [Serre 1977] for the construction
of the Bruhat–Tits tree of SL2(K ) even when K is a noncommutative division
algebra endowed with a discrete valuation). Its vertices are the homothety classes of
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Op-lattices in the right Ap-vector space Ap
2. In particular SL2(Op) is the stabilizer

of the class of the standard Op-lattice Op
2, hence is parahoric.

Therefore, by definition, the family (SL2(Op))p∈P is a coherent family of (maxi-
mal) parahoric subgroups of G, and SL2(O)=G(Z)=G(Q)∩

∏
p∈P G(Zp) is its

associated principal lattice.
For every p ∈P, let M p (respectively Mp) be the maximal reductive quotient,

defined over the residual field Fp = Zp/pZp, of the identity component of the
reduction modulo p of the smooth affine group scheme over Zp associated with
the vertex of IG,Qp (respectively IG,Qp ) stabilized by the parahoric subgroup
SL2(Op) (respectively SL4(Zp)); see for instance [Tits 1979, Section 3.5]. Note
that M p = Mp if p does not divide DA, and that for every p ∈ P the algebraic
group Mp is isomorphic to SL4 over Fp. In particular Mp(Fp)= SL4(Fp) and thus,
for every p ∈ P, the orders of finite groups of Lie type being listed for example in
[Ono 1966, Table 1], we have

dim Mp = 15 and |Mp(Fp)| = p6(p2
− 1)(p3

− 1)(p4
− 1). (A2)

If p divides DA, by applying the theory in [Tits 1979, §3.5.2] on the local index
2A3, we see that the semisimple part M ss

p of M p (given as the commutator algebraic
group [M p,M p]) is of type 2(A1× A1) and the radical R(M p) of M p must be a
one-dimensional nonsplit torus over Fp. In particular |R(M p)(Fp)| = p+ 1 and
M ss

p (Fp) has the same order as SL2(Fp2), that is, p2(p4
− 1). Since the radical

R(M p) is central in M p and the intersection R(M p)∩M ss
p is finite (see [Springer

1998, Proposition 7.3.1]), the product map

M ss
p × R(M p)→ M p, (x, y) 7→ xy

is an isogeny (defined over Fp) and using Lang’s isogeny theorem (see for example
[Platonov and Rapinchuk 1994, Proposition 6.3, page 290]), we obtain the order of
M p(Fp) as the product |M ss

p (Fp)| · |R(M p)(Fp)|.
Alternatively, the order of M p(Fp) can be deduced from the concrete structure

of M p given in [Bruhat and Tits 1984]. Namely, it follows from [ibid., Proposition
3.11 and Section 5.5] that M p(Fp) corresponds to the group of elements of reduced
norm 1 in the Fp-algebra M2(Fp2) (where Fp2 appears as the residue field of the
division algebra Ap; see [Vignéras 1980, page 35]). The reduced norm (over Fp)
of an element g ∈ M2(Fp2) is NF2

p|Fp(det(g)), where NFp2 |Fp is the norm of the
extension Fp2 |Fp. Thus M p(Fp) is the kernel of the surjective homomorphism
GL2(Fp2)→ F×p defined by g 7→ det(g)p+1.

Therefore, from any of the two arguments above, we obtain that for every p ∈P

dividing DA,

dim M p = 7 and |M p(Fp)| = p2(p4
− 1)(p+ 1). (A3)



On the arithmetic and geometry of binary Hamiltonian forms 111

Let µ be the Haar measure on G(R)= SL2(H) normalized as in [Prasad 1989].
That is, if w is the top degree exterior form on the real Lie algebra of G(R) whose
associated invariant differential form on G(R) defines the measure µ and if Gu(R)

is a compact real form of G(C), then the complexification wC of w on the complex
Lie algebra of G(C)=Gu(C) defines a top degree exterior form wu on the real Lie
algebra of Gu(R), whose associated invariant differential form on Gu(R) defines a
measure µu , and we require that µu(Gu(R))= 1.

Let µ′ be the Haar measure on PSL2(H) = SO0(1, 5) that disintegrates by the
fibration SO0(1, 5) → SO0(1, 5)/SO(5) = H5

R with measures on the fibers of
total mass one 1 and measure on the base the Riemannian measure d volH5

R
of the

Riemannian metric of constant sectional curvature −1. Let µ̃′ be the Haar measure
on SL2(H) such that the tangent map at the identity of the double cover of real Lie
groups SL2(H)→ PSL2(R) preserves the top degree exterior forms defining the
Haar measures. In particular, since − id belongs to SL2(O),

Covol(SL2(O))= Vol(PSL2(O)\H
5
R)

= µ′(PSL2(O)\PSL2(H))= µ̃
′(SL2(O)\SL2(H)). (A4)

Similarly, with S5 the 5-sphere endowed with its standard Riemannian metric
of constant sectional curvature +1, let µ′u be the Haar measure on SO(6) that
disintegrates by the fibration SO(6)→ SO(6)/SO(5)= S5 with measures on the
fibers of total mass one 1 and measure on the base the Riemannian measure. In
particular, µ′u(SO(6))= Vol(S5). Recall that

Vol(Sn)=
2πm

(m−1)!
if n = 2m− 1≥ 3.

It is well known (see for instance [Helgason 1978]) that the duality G/K 7→ Gu/K
between irreducible symmetric spaces of noncompact type endowed with a left
invariant Riemannian metric and the ones of compact type, where Gu is a compact
form of the complexification of G, sends H5

R to S5, and hence µ′ to µ′u .
The maximal compact subgroup SU(4) of SL4(C) is a covering of degree 2 of

SO(6), which is the compact real form corresponding to SO0(1, 5). Hence we have
(as first proved in [Emery 2009, Section 13.3])

µ̃′ = 2 Vol(S5)µ= 2π3µ. (A5)

By Prasad’s volume formula [Prasad 1989, Theorem 3.7] (where with the notation
of this theorem, `= k=Q (hence Dk = D`= 1), S= V∞={∞} and the Tamagawa
number τQ(G) is 1), we have, since Mp = M p if p does not divide DA and by (A1)
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for the second equality,

µ(SL2(O)\SL2(H))=

r∏
i=1

(mi )!

(2π)mi+1

∏
p∈P

p(dim M p+dim Mp)/2

|M p(Fp)|

=
12
(2π)9

∏
p∈P

pdim Mp

|Mp(Fp)|

∏
p|DA

|Mp(Fp)|

|M p(Fp)|
p(dim M p−dim Mp)/2. (A6)

Using Euler’s product formula ζ(s)=
∏

p∈P 1/(1− p−s) for Riemann’s zeta func-
tion, we have by (A2), since ζ(2)= π2/6 and ζ(4)= π4/90,

∏
p∈P

pdim Mp

|Mp(Fp)|
= ζ(2)ζ(3)ζ(4)=

π6ζ(3)
540

. (A7)

Using the equations (A4), (A5), (A6), (A7), (A2) and (A3), the result follows. �
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