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We study the groups Ui in the unit filtration of a finite abelian extension K of
Qp for an odd prime p. We determine explicit generators of the Ui as modules
over the Zp-group ring of Gal(K/Qp). We work in eigenspaces for powers of
the Teichmüller character, first at the level of the field of norms for the extension
of K by p-power roots of unity and then at the level of K .

1. Introduction

Fix an odd prime p and a finite unramified extension E of Qp. We use Fn to denote
the field obtained from E by adjoining to E the pnth roots of unity in an algebraic
closure of Qp. The i th unit group in the unit filtration of Fn will be denoted by Un,i .
The object of this paper is to describe generators of the groups Un,i as modules
over the Zp-group ring of Gn =Gal(Fn/Qp). We express these generators in terms
of generators of the pro-p completion Dn of F×n as a Galois module. In fact, one
consequence of our work is a rather elementary proof of an explicit presentation of
Dn as such a module, as was proven by Greither [1996] using Coleman theory.

Instead of working with all of Dn at once, we find it easier to work with certain
eigenspaces of it. For this and several other purposes, it will be useful to think of
the Galois group Gn as a direct product of cyclic subgroups

Gn =1×0n ×8,

where1×0n =Gal(Fn/E) with |1| = p−1 and |0n| = pn−1, and8 is isomorphic
to Gal(E/Qp). We then decompose Dn into a direct sum of p − 1 eigenspaces
for powers of the Teichmüller character ω : 1 → Z×p . For any integer r , the
ωr -eigenspace D(r)

n of Dn is the subgroup of elements upon which σ ∈1 acts by
left multiplication by ω(σ)r . This definition depends only on r modulo p−1, so we
fix r with 2≤r ≤ p. Note that D(r)

n is a module over the group ring An=Zp[0n×8].

Supported in part by an NSF Postdoctoral Research Fellowship, an NSERC Discovery Grant, the
Canada Research Chairs program and NSF award DMS-0901526.
MSC2010: 11SXX.
Keywords: Galois module structure, unit filtration, local field.

157

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2013.7-1
http://dx.doi.org/10.2140/ant.2013.7.157


158 Romyar Sharifi

In fact, as we shall see in Section 3.1, the An-module D(r)
n has a generating set with

just one element if r ≤ p−2, three elements if r = p−1, and two elements if r = p.
We will be interested in the An-module structure of the groups V (r)

n,i = D(r)
n ∩Un,i .

It turns out that

V (r)
n,i ) V (r)

n,i+1 = V (r)
n,i+2 = · · · = V (r)

n,i+p−1

for all i ≡ r mod p − 1 (see Lemma 2.1), so we will consider only such i and
set Vn,i = V (r)

n,i .
Our main results, Theorems 4.3.1 and 4.3.3, provide a small set of at most n+ 1

generators of Vn,i as an An-module and state that any proper generating subset of it
has cocardinality 1. The elements of this set are written down explicitly as An-linear
combinations of elements of the generators of D(r)

n . In Section 4.2, elements of a
special form are constructed so as to lie as deep in the unit filtration as possible.
In Section 4.3, these are refined to elements of the same form that instead lie just
deep enough to be in Vn,i , which are in turn the generators that we use.

It is convenient to work first in the field of norms F of Fontaine–Wintenberger for
the tower of extensions Fn of E . This is a field of characteristic p, the multiplicative
group of which is the inverse limit of the F×n . We prove analogues of all of the above-
mentioned results first at this infinite level, prior to applying them in descending
to the level of Fn . The fact that the pth power map is an automorphism of F×

simplifies some of the computations. Moreover, the structure of the eigenspaces of
the pro-p completion of F×, which we study in Section 3.1, is somewhat simpler
than that of the D(r)

n . We construct special elements in the eigenspaces of the groups
in the unit filtration in Section 3.2, refine them in Section 3.3, and prove generation
and a minimality result in Section 3.4.

We see a number of interesting potential applications for the results of this paper.
To mention just one, it appears to make possible the computation of the conductors
of all degree pn Kummer extensions of Fn in terms of the Kummer generator of
the extension. The problem of making this computation, which was approached by
the author in three much earlier papers, has until now seemed beyond close reach
in this sort of generality.

2. Preliminaries

We maintain the notation of the introduction and introduce some more. Recall from
[Wintenberger 1983] that the field of norms F for the extension F∞ =

⋃
n Fn of E

is a local field of characteristic p with multiplicative group

F× = lim
←−

F×n ,

the inverse limit being taken with respect to norm maps.
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Let ζ = (ζpn )n be a norm compatible sequence of p-power roots of unity, with
ζpn a primitive pnth root of unity in Fn . Then λ = 1− ζ = (1− ζpn )n is a prime
element of F .

For m ≥ n, let Nm,n : Fm→ Fn be the norm map. Recall that the addition on F
is given by

(α+β)n = lim
m→∞

Nm,n(αm +βm)

for α = (αn)n and β = (βn)n in F . We fix an isomorphism of the residue field
of E (and thereby each Fn) with Fq , with q the order of the residue field. Using
this, the field Fq is identified with a subfield of F via the map that takes ξ ∈ F×q to
(ξ̃ p−n

)n ∈ F×, where ξ̃ is the (q−1)st root of unity in E lifting ξ . The field F may
then be identified with the field of Laurent series Fq((λ)).

If F∞ is the union of the Fn , then G = Gal(F∞/Qp) acts as automorphisms
on the field F . As with Gn , we may decompose G = Gal(F∞/Qp) into a direct
product of procyclic subgroups

G =1×0×8,

where Gal(F∞/E)=1×0, the group1 has order p−1, the group 0 is isomorphic
to Zp, and 8 is isomorphic to Gal(E/Qp). Let γ denote the topological generator
of 0 such that γ (ζpn )= ζ

1+p
pn for all n.

The pro-p completion D of F× decomposes into a direct sum of eigenspaces for
the powers of the Teichmüller character ω on1. For an integer r , we let D(r)

= Dεr ,
where εr is the idempotent

εr =
1

p−1

∑
δ∈1

ω(δ)−rδ ∈ Zp[1].

For i ≥ 1, let Ui denote the i th group in the unit filtration of F . We then set

V (r)
i =Ui ∩ D(r) and (V (r)

i )′ = V (r)
i − V (r)

i+1.

The following is [Sharifi 2002, Lemma 2.3] (with Fn replaced by F).

Lemma 2.1. We have V (r)
i /V (r)

i+p−1
∼= Fq for every i ≥ 1, and (V (r)

i )′ 6= ∅ if and
only if i ≡ r mod p− 1.

From now on, we set Vi = V (r)
i and V ′i = (V

(r)
i )′ if i ≡ r mod p − 1. As a

consequence of Lemma 2.1, an element z ∈ Vi is determined modulo λi+p−1 by its
expansion

z ≡ 1+ ξλi mod λi+1 (2.1)

with ξ ∈ Fq .
The following is [Sharifi 2002, Lemma 2.4] (with Fn replaced by F).

Lemma 2.2. Let z ∈ V ′i . If p - i , then zγ−1
∈ V ′i+p−1. Otherwise, zγ−1

∈ Vi+2(p−1).
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We identify 3= Zp[[0]] with the power series ring Zp[[T ]] via the continuous,
Zp-linear isomorphism that takes γ − 1 to T , and we use additive notation to
describe the action of Zp[[T ]] on D. Ramification theory would already have told
us that T · Vi ⊆ Vi+p−1 for all i . On the other hand, explicit calculation will yield
the following two lemmas and proposition, which provide more precise information
on how powers of T move elements of Vi .

For ξ ∈ F×q , we let Vi (ξ) denote the set of z ∈ Vi for which z has an expansion of
the form in (2.1). We use [k] to denote the smallest nonnegative integer congruent
to k ∈ Z modulo p.

Lemma 2.3. Let z ∈ Vi (ξ) for some i . Then, for 0≤ j ≤ [i], we have

T j z ∈ Vi+ j (p−1)

(
[i]!

([i]− j)!
· ξ
)
.

Proof. Note that

λγ = 1− ζ 1+p
= 1− (1− λ)(1− λp)= λ+ λp

− λp+1. (2.2)

Using this, we see, for any i ≥ 1, that

(1+ ξλi )γ−1
≡ 1+ iξλi+p−1 1− λ

1+ ξλi mod λi+2p−2. (2.3)

Hence,
(1+ ξλi )γ−1

≡ 1+ iξλi+p−1 mod λi+p. (2.4)

Applying (2.4) recursively, we obtain the result. �

Lemma 2.4. Let z ∈ Vpi−p+1(ξ) for some i ≥ 2. If j is a nonnegative multiple of
p− 1, then T j+1z ∈ Vp(i+ j)(ξ).

Proof. Let us begin by proving slightly finer versions of (2.3) in two congruence
classes of exponents modulo p. For any t ≥ 1, we have

(1+ ξλpt)γ−1
=

1+ ξλpt(1+ λp(p−1)
− λp2

)t

1+ ξλpt ≡ 1 mod λp(t+p−1),

(1+ ξλpt+1)γ−1
= 1+ ξλpt+1

∑pt+1
m=1

(pt+1
m

)
(λp−1

− λp)m

1+ ξλpt+1

≡ 1+ ξ(λp(t+1)
− λp(t+1)+1) mod (λp(t+p−1)+1, λp(2t+1)+1),

the latter congruence following from the fact that p |
(pt+1

m

)
for 2 ≤ m < p. Via

some obvious inequalities, we conclude that

(1+ ξλpt)γ−1
≡ 1 mod λp(t+2), (2.5)

(1+ ξλpt+1)γ−1
≡ (1+ ξλp(t+1))(1− ξλp(t+1)+1) mod λp(t+2). (2.6)
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Let x = 1+ ξλpi−p+1. Recursively applying (2.5) and (2.6), we see that

x (γ−1)k+1
≡ (1+ (−1)kξλp(i+k))(1+ (−1)k+1ξλp(i+k)+1) mod λp(i+k+1),

for any positive integer k, as (2.4) implies that U γ−1
p(i+k) ⊆Up(i+k+1). The result now

follows by application of εi , since

z−1xεi ∈ Vpi , T j+1xεi ∈ Vp(i+ j)(ξ), and T j+1Vpi ⊂ Vp(i+ j+1)−1,

the latter by Lemma 2.2. �

Let us use {k} to denote the smallest nonnegative integer congruent to k ∈ Z

modulo p− 1. For i ≥ 1 with p - i , we define a monotonically increasing function
φ(i) : Z≥0→ Z by φ(i)(0)= i and

φ(i)(a)= pa+ (i − [i])+{[i] − a} for a ≥ 1. (2.7)

Proposition 2.5. Let z ∈ Vi (ξ) for some i ≥ 2 with p - i . Then, for j ≥ 1, we have

T j z ∈ Vφ(i)( j)

(
[i]!
{[i]− j}!

ξ
)
.

Proof. Lemma 2.3 implies that

T [i]−1z ∈ Vφ(i)([i]−1)([i]! · ξ),

and note that φ(i)([i]−1)≡ 1 mod p. Set k={[i]− j}. Since j+k−[i] is divisible
by p− 1, Lemma 2.4 then implies that

T j+kz ∈ Vφ(i)( j+k)([i]! · ξ). (2.8)

It follows from (2.7) that

φ(i)( j + k)− i = p( j + k− [i])+ (p− 1)[i],

and so, given (2.8), Lemma 2.2 forces T l z ∈ V ′
φ(i)(l) for all l ≤ j + k. In particular,

applying Lemma 2.3 with j replaced by k and z replaced by T j z, we see that for
(2.8) to hold, T j z must have the stated form. �

Remark 2.6. The obvious analogues of the results of this section all hold at the
level of Fn for n ≥ 2, with λ replaced by λn = 1− ζpn . In fact, Lemmas 2.1 and 2.2
were originally proven in that setting in [Sharifi 2002]. That the other results hold
breaks down to the fact that p is a unit times λpn−1(p−1)

n in Fn , which in particular
tells us that (2.2) can be replaced by λγn ≡ λn + λ

p
n − λ

p+1
n mod λp(p−1)+1

n .
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3. The infinite level

3.1. Structure of the eigenspaces. In this subsection, we fix choices of certain
elements that will be used throughout the paper. From now on, we let ξ denote
an element of Fq with Tr8 ξ = 1, the conjugates of which form a normal basis of
Fq over Fp. Let ϕ ∈8 denote the Frobenius element. Let N8 ∈ Zp[8] denote the
norm element. Let ζ = (ζpn )n be a norm-compatible system of primitive pnth roots
of unity as before.

Let r be an integer satisfying 2 ≤ r ≤ p. If 2 ≤ r ≤ p− 2, we simply fix an
element ur ∈ Vr (ξ). In the case that r = p− 1, generation of D(p−1) requires one
additional element π ∈ D(p−1), a non-unit, chosen along with u p−1 ∈ Vp−1(ξ) in
the lemma which follows. The case of r = p shall require more work, but we will
fix elements w ∈ V1(−ξ) and u p ∈ Vp(ξ) as in Proposition 3.1.3 below.

Lemma 3.1.1. There exist elements π ∈ D(p−1) and u p−1 ∈ Vp−1(ξ) such that
πϕ = π and πγ−1

= uN8
p−1.

Proof. Set π = λεp−1 , which satisfies πϕ = π and πγ−1
∈ Vp−1(1). Since every

unit is a norm in an unramified extension, there exists u′p−1 ∈ D(p−1) such that
(u′p−1)

N8 = πγ−1, and such an element must lie in Vp−1(ξ
′) for some ξ ′ ∈ Fq with

Tr8 ξ ′ = 1. Hilbert’s Theorem 90 tells us that ξ ′ = ξ + (ϕ− 1)η for some η ∈ Fq .
Let z ∈ Vp−1(η), and set u p−1 = u′p−1z1−ϕ . �

In fact, one could have chosen u p−1 ∈ Vp(ξ) arbitrarily and then taken π to
satisfy the relations, as can be seen using the results of the following section.

Lemma 3.1.2. There exist elements w ∈ V1(−ξ) and u p ∈ Vp(ξ) with wN8 = ζ

and uϕ−1
p = wγ−1−p.

Proof. First, local class field theory yields the existence of an element w′ ∈ D(p)

with (w′)N8 = ζ . Since ζ ∈ V1(−1), we must have w′ ∈ V1(−ξ
′) for some ξ ′ ∈ Fq

with Tr8 ξ ′= 1. Since ξ ′= ξ+(ϕ−1)η for some η ∈ Fq , we choose any y ∈ V1(η),
and then w = w′y1−ϕ

∈ V1(−ξ) satisfies wN8 = ζ as well.
Next, note that (wγ−1−p)N8=1, and so Hilbert’s Theorem 90 allows us to choose

an element u′p ∈ D(p) with (u′p)
ϕ−1
= wγ−1−p. A simple computation using (2.4)

tells us that wγ−1−p
∈ Vp(ξ

p
− ξ), and therefore u′p ∈ Vp(ξ + a) for some a ∈ Fp.

We may then choose z ∈ Vp(a) with zϕ = z and take u p = u′pz−1
∈ Vp(ξ). �

We need slightly finer information on the relationship between w and u p inside
the unit filtration, as found in the following proposition.

Proposition 3.1.3. There exist elements w ∈ V1(−ξ) and u p ∈ Vp(ξ) with wN8 = ζ

and uϕ−1
p = wγ−1−p such that the element y = u pw

pϕ−1
lies in V2p−1(−ξ).
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Proof. For now, fix any choices of u p and w as in Lemma 3.1.2. We must have
u p = (1+ ξλp)ε1α with α ∈ V2p−1 and w = (1− ξλ)ε1β with β ∈ Vp. Note that

(1+ ξλp)ϕ−1
≡ 1+ (ξ p

− ξ)λp mod λ2p,

(1− ξλ)γ−1−p
=

1− ξ(λ+ ζλp)

(1− ξλ)(1− ξ pλp)
≡ 1+

(
ξ p
− ξ

1−λ
1−ξλ

)
λp mod λ2p.

We then have

(1− ξλ)γ−1−p

(1+ ξλp)ϕ−1 ≡ 1+
ξ(1− ξ)
1− ξλ

λp+1 mod λ2p. (3.1.1)

We denote the quantity on the right side of (3.1.1) by θ . By Lemma 2.2, we have
βγ−1−p

∈ V3p−2, from which it follows that αϕ−1θ−ε1 ∈ V3p−2. On the other hand,
by Lemma 2.1, we have

yα−1
= (1+ ξλp)ε1(1− ξλp)ε1β pϕ−1

∈ V3p−2,

so in fact we have yϕ−1θ−ε1 ∈ V3p−2. If we can show that θ ε1 ∈ V2p−1(ξ − ξ
p), we

will then have y ∈ V2p−1(−ξ+a) for some a ∈ Fp. As in the proof of Lemma 3.1.2,
we can then choose an element z ∈ V2p−1(a) with zϕ = z and replace u p by u pz−1

to obtain the result.
By Proposition 2.5, we see that to show that θ ε1 ∈ V2p−1(ξ − ξ

p), it suffices to
show that θ ε1(γ−1)p−1

∈ Vp2(ξ p
− ξ). Since p2

≡ 1 mod p− 1, for this, it suffices
to show that

θ (γ−1)p−1
≡ 1+ (ξ p

− ξ)λp2
mod λp2

+1.

This is a simple consequence of Lemma 3.1.4, which follows. That is, in the
notation of said lemma, Fermat’s little theorem and the binomial theorem tell us
that dp−1,k =−1 for all positive integers k ≤ p− 1. �

Lemma 3.1.4. For each positive integer j ≤ p− 1, one has(
1+

ξ(1− ξ)
1− ξλ

λp+1
)(γ−1) j

≡ 1+
( j∑

k=1

d j,kξ
k(1− ξ)

)
λ( j+1)p mod λ( j+1)p+1,

where

d j,k =

k∑
h=1

(−1) j+h
( k

h

)
h j
∈ Fp

for positive integers k ≤ j .

Proof. We make the expansion

θ = 1+
ξ(1− ξ)
1− ξλ

λp+1
≡

p−1∏
k=1

(1+ ξ k(1− ξ)λp+k) mod λ2p.
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Since U γ−1
s ⊆Us+p−1 for all s, as follows from (2.4), to compute θ (γ−1) j

modulo
λ( j+1)p+1, it suffices to compute (1+ ξ k(1− ξ)λp+k)(γ−1) j

modulo λ( j+1)p+1.
Fix a positive integer k ≤ p− 1. We claim that the coefficient of λ( j+1)p in the

expansion of (1+ ξ k(1− ξ)λp+k)(γ−1) j
as a power series in Fq [[λ]] is 0 if j < k

and ξ k(1− ξ)d j,k if j ≥ k. As a consequence of (2.3), one sees that

(1+ ξλt)γ−1
≡ (1+ tξλt+p−1)(1− tξλt+p) mod λt+2p−2 for any t ≥ p− 1.

Using this and the finer congruence (2.6) when possible, an induction yields that
the expansion in question is determined by

min( j,k)∏
m=0

∏
(ai )∈Pj,k,m

(
1+ξ k(1−ξ) k!

(k−m)!

j−m∏
i=1

ai ·λ
( j+1)p+k−m

)(−1) j−m

mod λ( j+1)p+k+1,

where

Pj,k,m = {(a1, a2, . . . , a j−m) ∈ Z j−m
| k−m ≤ a1 ≤ a2 ≤ · · · ≤ a j−m ≤ k}

if j >m and Pj,k, j = {0}, and we consider the empty product to be 1. In particular,
the coefficient in question is indeed 0 for j < k and is ξ k(1−ξ)c j,k for j ≥ k, where

c j,k = (−1) j−kk!
∑

(ai )∈Pj,k,k

j−k∏
i=1

ai .

It remains to verify that c j,k = d j,k for j ≥ k.
Let D denote the differential operator x d

dx on Fp[x]. By the binomial theorem,
we have

D j ((1− x)k)|x=1 =

k∑
h=1

(−1)h
( k

h

)
h j xh

∣∣∣
x=1
= (−1) j d j,k .

On the other hand, repeated application of the product formula for the derivative
yields

D j ((1− x)k)|x=1 = (−1)k
min( j,k)∑

h=1

k!
(k−h)!

∑
(ai )∈Pj,h,h

j−h∏
i=1

ai · (x − 1)k−h xh
∣∣∣
x=1

= (−1) j c j,k

for all j ≥ k and hence the result. �

In the next section, we will obtain the following very slight refinement of what
is essentially a result of [Greither 1996, Sections 2 and 3]; see also [Sharifi 2002,
Corollary 2.2].
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Theorem 3.1.5. For r ≤ p − 2, the A-module D(r) is freely generated by any
ur ∈ Vr (ξ). The A-module D(p−1) has a presentation

D(p−1)
= 〈π, u p−1 | π

ϕ
= π, uN8

p−1 = π
γ−1
〉,

for some u p−1 ∈ Vp−1(ξ) and π ∈ D(p−1). The A-module D(p) has a presentation

D(p)
= 〈u p, w | w

γ−1−p
= uϕ−1

p 〉,

for some u p ∈ Vp(ξ) and w ∈ V1(−ξ) such that wN8 = ζ .

3.2. Special elements. Fix r such that 2 ≤ r ≤ p, and define φ : Z≥0 → Z by
φ(a)= φ(r)(a) for a ≥ 1. Set

δ =

{
0 if 2≤ r ≤ p− 1,
1 if r = p.

For all a ≥ 1, we have φ(a)= p(a+δ)+{r−δ−a}, so φ(a) is the smallest integer
that is at least p(a+ δ) and congruent to r modulo p− 1.

From now on, i will be used solely to denote a positive integer congruent to r
modulo p− 1. We will write α ∼ β to denote that both α and β lie in Vi (ξ) for
some i and ξ ∈ F×q . We use additive notation for the action of A = Zp[8][[T ]] on
D(r). We begin with the following useful lemma.

Lemma 3.2.1. Let j be a positive integer.

a. We have
T j ur ∈ Vφ( j)

(
[r ]!

{r−δ− j}!
ξ
)
.

b. If j ≡ r − δ mod (p− 1) so that T j ur ∼ pz for some z ∈ D(r), then

T j ur − pz ∈ Vφ( j)+p−1 (−[r ]! ξ) .

Proof. For r < p, part a is a direct consequence of Proposition 2.5 and the fact that
ur ∈ Vr (ξ). For r = p, Proposition 2.5 and the fact that φ = φ(2p−1) on positive
integers would tell us more directly that T j y ∈ Vφ( j)(

1
{− j}! ξ) for j ≥ 1 and y

as in Proposition 3.1.3. Note, however, that T u p = T y − pϕ−1Tw ∼ T y, since
pTw ∈ Vp2 . This is also the key point of part b. That is, we have

T (T j ur − pz)∼ T j+1ur

as pT z ∈ Vpφ( j) and

φ( j + 1)≤ φ( j)+ 2(p− 1) < pφ( j).

Since T j+1ur ∈ Vφ( j)+2(p−1)([r ]! ξ), a final application of Proposition 2.5 tells us
that T j ur − pz had to be in the stated group. �
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For a nonnegative integer m, let us define φm : Z≥0→Z≥0 by φm= pm(φ+1)−1.
We remark that

pφm = φ ◦ (φm − δ). (3.2.1)

From now on, we set ρ = pϕ−1 for brevity of notation. We define special
elements in the unit filtration of D(r).

Theorem 3.2.2. Let m and j be nonnegative integers. Define

αm, j =
1
[r ]!

(
{r − δ− j}!ρm T j

−

m∑
k=1

ρm−k T φk−1( j)−δ
)

ur ,

unless j = 0 and r = p− 1, in which case we replace {r − δ− j}! with −1 in the
formula. Then αm, j ∈ Vφm( j)(ξ). Furthermore, (pmbT j

+ c)ur /∈ Vφm( j)+p−1 for all
b ∈ Zp[8] with b 6≡ 0 mod p and c ∈ T j+1 A.

Proof. We work by induction, the case of m= 0 being Lemma 3.2.1a, aside from the
case j = 0, in which case it is simply the definition of ur . Assume we have proven
the first statement for m. Then pαm, j ∈ Vpφm( j)(ξ

p) and, using Lemma 3.2.1a and
(3.2.1), we have

T φm( j)−δur ∈ Vpφm( j)
(
[r ]! ξ

)
.

Lemma 3.2.1b then tells us that

αm+1, j = ραm, j −
1
[r ]!

T φm( j)−δur ∈ Vpφm( j)+p−1(ξ).

Now assume the second statement is true for m. (For m= 0, this is a consequence
of the fact that the conjugates of ξ are Fp-linearly independent.) Suppose that

α = (pm+1bT j
+ c)ur ∈ V ′i

with i ≥φm+1( j), b∈Zp[8]−pZp[8] and c∈T j+1 A. We write c= (pc′+T hν)ur

for some c′, ν ∈ A with ν 6≡ 0 mod (p, T ) and h ≥ j + 1. By induction, we have

(pmbT j
+ c′)ur /∈ Vφm( j)+p−1.

Since φm+1( j)= pφm( j)+ p− 1 and α ∈ Vφm+1( j) by assumption, this forces

p(pmbT j
+ c′)ur ∼−T hνur ,

which tells us by Lemma 3.2.1a that φ(h)≤ pφm( j). On the other hand, it follows
from Lemma 3.2.1b that α ∈ V ′φ(h)+p−1, which forces i = φm+1( j). �

The second statement of Theorem 3.2.2 insures, in particular, that aur 6= 0 for
all nonzero a ∈ A. We therefore have the following corollary.

Corollary 3.2.3. The A-submodule of D(r) generated by ur is free.
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In the exceptional case that r = p, we require additional elements. First, we
modify the function φm for this r . For nonnegative integers m and j , we set
φ′m( j)= φm( j) unless r = p and j = pl

− 1 for some l ≥ 0, in which case we set

φ′m(p
l
− 1)= pm+l+1

+ pm+1
− 1= φm(pl

− 1)+ pm(p− 1).

Theorem 3.2.4. Let l and m be nonnegative integers. Define

βm,l =

(
ρm T pl

−1
+

m∑
k=1

ρm−k T φ′k−1(p
l
−1)−1

)
u p + ρ

m+l+1w.

Then βm,l ∈ Vφ′m(pl−1)(−ξ). Moreover, for any j ≥ 0, we have

(pmbT j
+ c)u p + dw /∈ Vφ′m( j)+p−1

for all b ∈ Zp[8] − pZp[8], c ∈ T j+1 A and d ∈ Zp[8].

Proof. The proof is similar to that of Theorem 3.2.2. Since Lemma 3.2.1a and the
definition of w tell us that

T pl
−1u p ∈ Vpl+1(ξ) and ρl+1w ∈ Vpl+1(−ξ),

Lemma 3.2.1b yields β0,l = ρ
l+1w+ T pl

−1u p ∈ Vpl+1+p−1(−ξ). For any m ≥ 0,
we have

βm+1,l = ρβm,l + T φ′m(p
l
−1)−1u p.

By induction and Lemma 3.2.1a, we have

ρβm,l ∈ Vpφ′m(pl−1)(−ξ) and T φ′m(p
l
−1)−1u p ∈ Vpφ′m(pl−1)(ξ).

Since φ′m+1(p
l
− 1)= pφ′m(p

l
− 1)+ p− 1, that βm+1,l ∈ Vφ′m+1(p

l−1)(−ξ) is just
another application of Lemma 3.2.1b.

Let j ≥ 0, b ∈ Zp[8] − pZp[8], c ∈ T j+1 A, and d ∈ Zp[8]. First, suppose
that α= (bT j

+c)u p+dw ∈ V ′i for some i ≥ φ′0( j). Note that (bT j
+c)u p ∈ V ′φ( j)

by Lemma 3.2.1a, while dw ∈ V ′pl for some l ≥ 0. Since α ∈ Vφ′0( j), we must have
pl
≥ φ( j). We then have α ∈ V ′φ( j) unless φ( j) = pl . This occurs if and only if

l ≥ 1 and j = pl−1
− 1, in which case φ′0( j) = pl

+ p− 1. For this to hold, we
must have (bT j

+ c)u p ∼−dw. Lemma 3.2.1b then implies that α ∈ V ′pl
+p−1, so

i = φ′0( j) in all cases.
Suppose now that α = (pm+1bT j

+ c)u p + dw ∈ V ′i for some i ≥ φ′m+1( j).
Rewrite c as pc′+ T hν for some h ≥ j + 1 and c′, ν ∈ A with ν 6≡ 0 mod (p, T ).
If we are to have α ∈ Vp, we may also write d = pd ′ for some d ′ ∈ Zp[8]. By
induction, we have

(pmbT j
+ c′)u p + d ′w /∈ Vφ′m( j)+p−1,
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and so in order that α ∈ Vφ′m+1( j), we must have

(pm+1bT j
+ pc′)u p + dw ∼−T hνu p,

which tells us using Lemma 3.2.1a that φ(h) ≤ pφ′m( j). On the other hand,
Lemma 3.2.1b tells us that α ∈ V ′φ(h)+p−1, so we must have i = φ′m+1( j). �

Theorem 3.1.5 may now be proven as a consequence of the description of the
elements above and their place in the unit filtration.

Proof of Theorem 3.1.5. For r ≤ p − 1, the union of the disjoint images of the
functions φm is exactly the set of positive integers congruent to r modulo p− 1.
Therefore, Theorem 3.2.2 implies that there exists an element of the A-module
generated by ur in Vi (ξ) for each i ≡ r mod p−1. In particular, ur therefore clearly
generates Vr as an A-module, which equals D(r) for r ≤ p− 2, and it is free by
Corollary 3.2.3. Every element of D(p−1) may then be written in the form πmua

p−1
with m ∈ Zp and a ∈ A, and such an element can clearly only be trivial if m is, and
therefore a is as well. Noting that our choices of π and u p−1 as in Lemma 3.1.1
satisfy the desired relations, the presentation for r = p− 1 is as stated.

For r = p, the union of {1} and the images of the functions φm and φ′m is the
set of positive integers that are congruent to 1 modulo p− 1. Theorem 3.2.2 and
Theorem 3.2.4 imply that there exists an element of the A-module generated by
u p and w in Vi (ξ) for each i ≡ 1 mod p− 1. Thus, this A-module is D(p). Our
choices of u p and w satisfy the relations of Lemma 3.1.2, and it follows from the
second statement of Theorem 3.2.4 that if either c ∈ A or d ∈ Zp[8] is nonzero,
then so is cu p + dw. �

3.3. Refined elements. In this section, we provide refinements of the elements
constructed in Theorem 3.2.2 and Theorem 3.2.4. We maintain the notation of
Section 3.2. We begin by constructing certain one-sided inverses to the monotoni-
cally increasing functions φ and φm .

For any nonnegative integer a and positive integer t , let us set

〈a〉t =max(a+{t − a}, t).

Therefore, 〈a〉t is the smallest integer greater than or equal to t and a and congruent
to t modulo p− 1. Define ψ : Z≥0→ Z≥0 by

ψ(a)=
⌊
〈a〉r+1

p

⌋
− δ

except for r = p− 1 and a ≤ p− 1, in which case we set ψ(a) = 0. For m ≥ 0,
define ψm : Z≥0→ Z≥0 by

ψm(a)= ψ
(⌈a+1

pm

⌉
− 1

)
.
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Note that ψ0 = ψ .

Lemma 3.3.1. We have ψm(φm( j))= j for all nonnegative integers j . Moreover,
for all such j and positive integers a, we have φm( j)≥ a if and only if j ≥ ψm(a).

Proof. First, note that φ( j) is congruent to r modulo p− 1, so we have

ψ(φ( j))=
⌊
φ( j)+1

p

⌋
− δ =

⌊ p( j+δ)+{r−δ− j}+1
p

⌋
− δ = j,

unless r ≥ p− 1 and j = 0, but one checks immediately that ψ(φ(0))= ψ(r)= 0
if r ≥ p− 1 as well. It follows that we have

ψm(φm( j))= ψ
(⌈ pm(φ( j)+1)

pm

⌉
− 1

)
= ψ(φ( j))= j.

Therefore, if φm( j)≥ a, then j =ψm(φm( j))≥ψm(a), since ψm is nondecreasing.
To finish the proof, we need only show that φm(ψm(a))≥ a, since φm is nonde-

creasing (in fact, strictly increasing). First, note that the definition of ψ is such that
ψ(a)= ψ(〈a〉r ). For i ≡ r mod p− 1 with i 6= 1, p− 1, the value φ(ψ(i)) is the
unique integer between pb(i + 1)/pc and pb(i + 1)/pc+ p− 2 that is congruent
to r mod p− 1. This implies that

φ(ψ(a))=
{
〈a〉r if 〈a〉r 6≡ −1 mod p, or a ≤ r = p− 1,
〈a〉r + p− 1 otherwise,

(3.3.1)

which is, in particular, at least a. By definition of φm and ψm , we then have

φm(ψm(a))= pm(φ(ψm(a))+ 1)− 1≥ pm
⌈a+1

pm

⌉
− 1≥ a. �

We actually need a version of Lemma 3.3.1 with φm replaced by φ′m and ψm

replaced by an appropriate function ψ ′m : Z≥0→ Z≥0, which we now define. Set
ψ ′m = ψm if r ≤ p− 1 and, if r = p, let

ψ ′m(a)=
{
ψm(a)− 1 if pm+l+1

+ pm
≤ a ≤ pm+l+1

+ pm+1
− 1 for some l ≥ 0,

ψm(a) otherwise.

Note that ψ ′m(a)=ψm(a)−1 for r = p if and only if φm(pl
−1) < a ≤ φ′m(p

l
−1)

for some l ≥ 0, in which case ψ ′m(a)= pl
−1. One then easily checks the following:

Corollary 3.3.2. We have ψ ′m(φ
′
m( j))= j for all nonnegative integers j . Moreover,

for all such j and positive integers a, we have φ′m( j)≥ a if and only if j ≥ ψ ′m(a).

For the rest of this section, we fix a positive integer i with i ≡ r mod p− 1.

Remark 3.3.3. Lemma 3.3.1 and Theorem 3.2.2 tell us that each αm,ψm(i) lies in Vi .
Corollary 3.3.2 and Theorem 3.2.4 tell us that each βm,l with ψ ′m(i)= pl

− 1 lies
in Vi . These elements have the form (pmbT j

+ c)ur + dw for j = ψ ′m(i), where
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b ∈ Zp[8] − pZp[8], c ∈ T j+1 A, and d ∈ Z[8], with d = 0 if r 6= p. The same
results also show that no such element with j <ψ ′m(i) can lie in Vi .

For any m ≥ 0, define θm : Z≥1→ Z≥0 by

θm(a)= ψ
(⌈
〈a〉r
pm

⌉)
.

By Lemma 3.2.1a and Lemma 3.3.1, the value θm(i) for i ≡ r mod p− 1 is the
minimal integer j such that pm T j ur ∈ Vi . In particular, θm(i)≥ ψm(i) for all i .

Lemma 3.3.4. For all positive integers m and k with k ≤ m, we have

φ′k−1(ψ
′

m(i))− δ ≥ θm−k(i)− 1,

with equality if and only if

pm−k+1φ′k−1(ψ
′

m(i)) < i. (3.3.2)

Moreover, we have ψ ′m(i) ≥ θm(i)− 1, with equality if and only if the equivalent
conditions above hold for k = 1.

Proof. Let us check the case that r = p and ψ ′m(i) = pl
− 1 for some l ≥ 0

separately. First, suppose that pm+l+1 < i < pm+l+1
+ pm+1. In this case, we have

ψ ′m(i)= θm(i)− 1. We also have

φ′k−1(ψ
′

m(i))= φ
′

k−1(p
l
− 1)= pk+l

+ pk
− 1= ψ(pk+l+1

+ pk+1)≥ θm−k(i),

with equality if and only if

pm−k+1φ′k−1(ψ
′

m(i))= pm+l+1
+ pm+1

− pm−k+1 < i. (3.3.3)

Moreover, in the case that pm+l+1
− pm+1

+ 2pm < i ≤ pm+l+1, the values
φ′k−1(ψ

′
m(i)) and pm−k+1φ′k−1(ψ

′
m(i)) are the same as in the previous case, while

θm−k(i)− 1 and i are smaller. So, we may assume from this point forward that r
and i are such that ψ ′m(i)= ψm(i) and φ′k−1(ψ

′
m(i))= φk−1(ψm(i)) for all k.

We claim that ρm−k T φk−1(ψm(i))+1−δur lies in Vi+p−1 for all positive k ≤ m and
that ρm−k Tαk,ψm(i) lies in Vi+p−1 for all nonnegative k≤m. Note that Tαm,ψm(i) lies
in Vi+p−1 as a consequence of Theorem 3.2.2. Suppose that ρm−k Tαk,ψm(i)∈Vi+p−1

for some positive k ≤ m. We then have

ρm−k T φk−1(ψm(i))+1−δur ∼−[r ]!ρm−k Tαk,ψm(i) ∈ Vi+p−1,

which also forces ρm−k+1Tαk−1,ψm(i) ∈ Vi+p−1, since

ρm−k+1Tαk−1,ψm(i) = ρ
m−k Tαk,ψm(i)+

1
[r ]!

ρm−k T φk−1(ψm(i))+1−δur ,
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proving the claim. In particular, since ρm Tα0,ψm(i) ∈ Vi+p−1, we have

ρm Tψm(i)+1ur ∈ Vi+p−1

as well. The definition of θm−k(i) now yields the desired inequalities.
Now (3.3.2) holds for a given k if and only if ρm−k+1αk−1,ψm(i) /∈ Vi . Since

[r ]! ραk−1,ψm(i) ∼ T φk−1(ψm(i))−δur ,

this occurs if and only if ρm−k T φk−1(ψm(i))−δur /∈ Vi and, therefore, if and only if

φk−1(ψm(i))− δ ≤ θm−k(i)− 1,

which must then be an equality. Also, ψm(i) < θm(i) if and only if ρmα0,ψm(i) /∈ Vi ,
which holds by Lemma 3.2.1a if and only if pmφ(ψm(i)) < i , the same condition
as (3.3.2) for k = 1. �

From now on, we set im = d
i

pm e for all m ≥ 0.

Lemma 3.3.5. For any pair of positive integers m and k with k ≤ m, we have
φ′k−1(ψ

′
m(i))− δ ≥ θm−k(i)− 1, with equality if and only if

(1) im+ε 6≡ 0 mod p, or r = p− 1 and im = p,

(2) im+ε ≡ r + 1 mod p− 1, but not r = p− 1 and im = 1, and

(3) i ≡− j mod pm+ε for some 0< j < pm+1−k ,

where ε = 0 unless r = p and im+1 = pl
+ 1 for some l ≥ 0, in which case we set

ε = 1. Moreover, we have ψ ′m(i)≥ θm(i)− 1, with equality if and only if the above
conditions hold with k = 1.

Proof. The case that r = p and ψ ′m(i)= pl
−1 for some l ≥ 0 follows from the proof

of Lemma 3.3.4, noting that if im+1 = pl
+1, then it is both nonzero modulo p and

congruent to p+1 modulo p−1, and the third condition of the lemma holds exactly
when (3.3.3) does. On the other hand, for the remaining i with ψ ′m(i)= pl

− 1, we
have im+1 = pl , and the fact that the inequality is strict was shown in the proof of
Lemma 3.3.4. So, we again assume that r 6= p or i is such that ψ ′m(i) 6= pl

− 1 for
all l ≥ 0.

By Lemma 3.3.4, it suffices to determine the precise conditions under which
(3.3.2) holds. Let us set a = (i + 1)m . It follows from (3.3.1) that we have

pm−k+1φk−1(ψm(i))=
{

pm
〈a〉r+1− pm−k+1 if p - 〈a〉r+1,

pm
〈a〉r+1+ pm(p− 1)− pm−k+1 otherwise,

(3.3.4)

unless r = p− 1 and 〈a〉r+1 = p, in which case

pm−k+1φk−1(ψm(i))= pm+1
− pm−k+1.
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Aside from this exceptional case, (3.3.4) implies that p cannot divide 〈a〉r+1 if
(3.3.2) is to hold. Moreover, if 〈a〉r+1 > a, then again (3.3.2) cannot hold, so for it
to hold, we must have a ≡ r+1 mod p−1, but not r = p−1 and a = 1. Assuming
that these necessary conditions hold, the condition that

pm−k+1φk−1(ψm(i))= pma− pm−k+1 < i

is exactly that i ≡− j mod pm with 0< j < pm−k+1. �

For m ≥ 0, we will define new elements κm,i of Vi that involve fewer terms
and easier-to-compute exponents of powers of T than the expressions for αm,ψm(i)

and βm,l . In preparation, set σ(m, i)= blogp(p
mim − i)c for any m ≥ 0 such that

pm - i . Note that 0≤ σ(m, i)≤m−1 when it is defined and σ(m+1, i) is defined
and greater than or equal to σ(m, i) whenever σ(m, i) is defined.

First, supposing either that r ≤ p− 1 or that r = p and im+1− 1 is not a power
of p, we set

κm,i = ρ
m T θm(i)ur (3.3.5)

if im 6≡ r+1 mod p−1, p | im , i < pm , or pm
| i , unless r = p−1 and im = p, and

κm,i =

(
ρm T θm(i)−1

− am,i

m−1∑
k=σ(m,i)

ρk T θk(i)−1
)

ur (3.3.6)

otherwise, where am,i denotes the least positive residue of ({r + 1− δ− θm(i)}!)−1

modulo p unless r = p−1 and θm(i)= 1, in which case we take am,i =−1. In the
remaining case that r = p and im+1− 1 is a power of p, we set

κm,i =

(
ρm T θm(i)−1

+

m−1∑
k=σ(m+1,i)

ρk T θk(i)−1
)

ur + ρ
m+logp(im+1−1)+1w. (3.3.7)

For consistency, we let am,i = −1 for such m. Note that Lemma 3.3.5 tells us
that each κm,i has the form (ρm Tψ ′m(i)+ c)ur + dw for some c ∈ Tψ ′m(i)+1 A and
d ∈ Zp[8], with d taken to be zero if r ≤ p− 1.

We give two examples for p = 5 and particular values of i .

Example 3.3.6. Suppose that p = 5, r = 3, and i = 11899. Then we have

κ0,i = T 2380u3, κ1,i = ρT 476u3,

κ2,i = (ρ
2T 95
− ρT 475

− T 2379)u3, κ3,i = (ρ
3T 19
− ρ2T 95)u3,

κ4,i = ρ
4T 4u3, κ5,i = (ρ

5
− ρ4T 3

− ρ3T 19)u3.
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Example 3.3.7. Suppose that p = 5, r = 5, and i = 92729. Then we have

κ0,i = T 18545u5, κ1,i = (ρT 3708
− T 18544)u5,

κ2,i = ρ
2T 741u5, κ3,i = (ρ

3T 147
− ρ2T 740

− ρT 3708)u5,

κ4,i = ρ
4T 29u5, κ5,i = (ρ

5T 4
+ ρ4T 28)u5+ ρ

7w,

κ6,i = ρ
6u5+ ρ

7w.

Remark 3.3.8. It is not hard to see from the definition of σ(m, i) that σ(m, i)≥ k
for k <m if and only if pm−k - ik . Moreover, if for a given k there exists m > k such
that σ(m, i) is less than k or not defined, then p | ik so κk,i = ρ

k T θk(i)ur unless
r = p and ik+1−1 is a power of p or r = p−1 and ik = p. The previous examples
illustrate some of this.

Let us show that the κm,i are actually elements of Vi . In the process, we see how
they compare to the elements αm,ψm(i) and βm,l previously defined.

Proposition 3.3.9. The elements κm,i lie in Vi for all nonnegative integers m.

Proof. Suppose first that r 6= p or i does not satisfy im = pl
+ 1 for any l ≥ 0 (and

omitting the case r = p− 1 and ψm(i)= 0, for which one should take the fractions
in the following two equations to be 1). If ψm(i)= θm(i), then we have

κm,i =
[r ]!

{r−δ−ψm(i)}!
ρmα0,ψm(i),

and this lies in Vi by the definition of θm(i). If ψm(i)= θm(i)− 1, we claim that

κm,i ∼
[r ]!

{r−δ−ψm(i)}!
ρσ(m,i)αm−σ(m,i),ψm(i). (3.3.8)

To see this, note that

κm,i = ρ
σ(m,i)

(
ρm−σ(m,i)Tψm(i)− am,i

m−σ(m,i)∑
k=1

ρm−σ(m,i)−k T θm−k(i)−1
)

ur .

It follows from Lemma 3.3.5 that θm−k(i)− 1 = φk−1(ψm(i))− δ if and only if
pm−k+1 > pmim − i , and therefore if k ≤ m − σ(m, i), proving the claim. (Note
that we the reason we do not have actual equality in (3.3.8) is simply that we took
am,i to be an inverse to {r − δ − ψm(i)}! modulo p, not in Z×p .) Moreover, we
have by Theorem 3.2.2 that κm,i ∈ Vt with t = pσ(m,i)φm−σ(m,i)(ψm(i)). Since
pσ(m,i) ≤ pmim − i , Lemma 3.3.5 implies that

φm−σ(m,i)(ψm(i))− δ ≥ θσ(m,i)−1(i),

and Lemma 3.3.4 then states that t ≥ i .
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Finally, if r = p and im+1 = pl
+ 1 for some l ≥ 0, then Lemma 3.3.5 similarly

implies that κm,i = ρ
σ(m+1,i)βm−σ(m+1,i),l . By Theorem 3.2.4, we have in this case

that κm,i ∈ Vt with

t = pσ(m+1,i)φ′m−σ(m+1,i)(p
l
− 1)≥ i,

the inequality again following from Lemmas 3.3.4 and 3.3.5. �

3.4. Generating sets. In this subsection, we give explicit minimal generating sets
of all of the A-modules Vi in terms of the elements κm,i of the previous section.
We begin with generation. Recall that δ ∈ {0, 1} is 1 if and only if r = p.

Theorem 3.4.1. We let Si = {κm,i | 0≤ m ≤ s} for

s =
⌈

logp

( i+1
r+1+δ(p−1)

)⌉
.

If 2 ≤ r ≤ p − 1, then Si generates Vi as an A-module, while if r = p, then
Si ∪ {pdlogp(i)ew} generates Vi as an A-module.

Proof. Let t = (i + 1)m − 1. In the case that 2≤ r ≤ p− 1, we have ψm(i)= ψ(t)
and ψ(t) > 0 if and only if i+1

pm > r + 1, or m < logp(
i+1
r+1). The smallest m such

that ψm(i)= 0 is therefore s. If r = p, then ψ ′m(i)=ψ(t)− εt , where εt ∈ {0, 1} is
1 if and only if pl+1

+ 1≤ t ≤ pl+1
+ p− 1 for some l ≥ 0. In particular, we have

ψ(t) > εt if and only if t ≥ 2p, so the smallest m such that ψ ′m(i)= 0 is again s.
It suffices to show that the images of our elements generate Vi/Vi+p−1. Suppose

that α= (ρkbT j
+c)ur+dw ∈ Vi for some nonnegative integers j, k, b ∈Zp[8]−

pZp[8], c ∈ T j+1 A, and d ∈ Zp[8] (with d = 0 if r 6= p). Let m = min(k, s).
Then j ≥ ψ ′m(i) by Theorems 3.2.2 and 3.2.4 and Corollary 3.3.2 (and the fact that
ψ ′s(i)= 0), and we set

α′ = α− ρk−mbT j−ψ ′m(i)κm,i ∈ Vi ∩ (A(T j+1ur , w)).

If r ≤ p− 1, we may repeat this process recursively until we obtain an element of
Vi+p−1. If r = p, either κm,i ∈ Au p or κm,i ∈ ρ

m+l+1w+ Au p for some l ≥ 0 with
i < pm+l+1

+ pm+1. Since (T, p)pm+l+1w ⊆ Vpm+l+2 , there exists an element

α′′ ∈ Vi ∩ (T j+1 Aur +Zp[8]w)

with α′′ − α′ ∈ Vi+p−1, and again we may repeat the process until we obtain an
element of Vi+p−1 plus an element of Vi ∩Zp[8]w = Zp[8]pdlogp(i)ew. �

Lemma 3.4.2. If m ≥ 1 is such that θm(i)≥ 1, then θm−1(i)≥ θm(i)+ 2.

Proof. First, suppose that θm(i)≥ 1, and note that im−1 ≥ p(im−1)+1. Therefore,

θm−1(i)≥ ψ(p(im − 1)+ 1)= im − 1+
⌊2+{r−im}

p

⌋
− δ. (3.4.1)
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On the other hand,
θm(i)=

⌊ im+1+{r−im}

p

⌋
− δ. (3.4.2)

In particular, θm(i)= 1 exactly when r + 1≤ im ≤ r + (δ+ 1)(p− 1). In this case,

θm−1(i)≥ r + 1− δ ≥ 3= θm(i)+ 2.

In general, (3.4.1) and (3.4.2) tell us that

θm−1(i)≥ im − 1− δ and
im

p
+ 1− δ ≥ θm(i),

and we have
im − 1− δ ≥

im

p
+ 3− δ

if and only if im ≥
4p

p−1 , which holds for im ≥ r + p unless im = 5, r = 2, and
p = 3, in which case θm−1(i)≥ 5 and θm(i)= 2. �

For each m ≥ 0, let us set εm(i) = θm(i) − ψ ′m(i), which lies in {0, 1} by
Lemma 3.3.4 and the remark before it. The following corollary is useful in under-
standing the form of our special elements.

Corollary 3.4.3. For every m ≥ 0, we have ψ ′m(i)≥ ψ
′

m+1(i), with equality if and
only if ψ ′m(i)= 0.

Proof. If θm+1(i)≥1, Lemma 3.4.2 and the fact that εk(i)∈{0, 1} for all k imply that
ψ ′m(i) > ψ

′

m+1(i). Otherwise, ψ ′m+1(i)= 0, and the inequality holds automatically,
with equality exactly if ψ ′m(i)= 0. �

We next show that the sets given in Theorem 3.4.1 are minimal unless r = p. It
is in the proof of this result that the refined elements κm,i first hold an advantage of
ease of use over the elements of Section 3.2.

Theorem 3.4.4. For r ≤ p−1, no proper subset of Si generates Vi as an A-module.
For r = p, every proper subset of Si∪{pdlogp(i)ew} that generates Vi as an A-module
must contain Si .

Proof. Assume first that 2≤ r ≤ p− 1. Suppose that
s∑

m=0

cmκm,i = 0, (3.4.3)

where cm ∈ A for m≤ s. We must show that no cm is a unit. We prove the somewhat
stronger claim that cm ∈ (p, T εm(i)+1) for each m.

Fix a nonnegative integer m ≤ s. If εm(i)= 0, then κm,i = ρ
m T θm(i)ur by (3.3.5).

If εm(i)= 1, then (3.3.6) tells us that

κm,i ≡ ρ
m T θm(i)−1ur mod AT θm(i)+1ur ,



176 Romyar Sharifi

noting Lemma 3.4.2. Set

Xm = {k ∈ Z | m < k ≤ s, εk(i)= 1, σ (k, i)≤ m}, (3.4.4)

which is actually a set of cardinality at most one, though we do not need this fact.
Let k ≤ s. If k ∈ Xm , then (3.3.6) and Lemma 3.4.2 together imply that

κk,i ≡−ak,iρ
m T θm(i)−1ur mod (pm+1, T θm(i)+1)ur ,

and if k /∈ Xm , they and (3.3.5) similarly imply that κk,i ∈ (pm+1, T θm(i)+1)ur . Thus,
(3.4.3) yields the congruence

cmρ
m Tψm(i) ≡

∑
k∈Xm

ckak,iρ
m T θm(i)−1 mod (pm+1, T θm(i)+1). (3.4.5)

If the claim holds for all k > m, then we have ck ∈ (p, T 2) for each k ∈ Xm , so
cm ∈ (p, T εm(i)+1), as desired.

If r = p, a completely analogous argument shows that at most pdlogp(i)ew is
unnecessary for generation, if one works modulo Aw = Zp[8]w+ A(ϕ − 1)u p

throughout. Here, one should replace Xm by

X ′m = {k ∈ Z | m < k ≤ s, εk(i)= 1, σ ′(k, i)≤ m}, (3.4.6)

where we set σ ′(k, i)= σ(k, i) unless ik+1 = pl
+ 1 for some l ≥ 0, in which case

we set σ ′(k, i)= σ(k+ 1, i). �

For the purpose of completeness, we also give the precise condition on i under
which no proper subset of Si ∪ {pdlogp(i)ew} generates Vi in the case that r = p.

Proposition 3.4.5. For r = p, the set Si generates Vi if and only if is = p+ 1.

Proof. To determine whether pdlogp(i)ew is or is not necessary, we work in distinct
ranges of i separately. Note that the definition of s forces 2ps < i < 2ps+1.

Case 1: 2ps < i ≤ ps+1. In this case, all of the elements κm,i lie in Au p, and
therefore ps+1w is necessary.

Case 2: ps+1 < i ≤ ps+1
+ ps
− ps−1. In this range, we have

κs,i = ρ
su p + ρ

s+1w and κs−1,i = ρ
s−1T p−1u p + ρ

s+1w.

Note that (T − p)κs,i = ρ
s(T − p)u p + ρ

s+1(ϕ− 1)u p = ρ
s(T − ρ)u p, so

ρs T u p ≡ ρ
s+1u p mod Aκs,i and ρsu p ≡−ρ

s+1w mod Aκs,i . (3.4.7)

Applying these to ρκs−1,i , we obtain

ρκs−1,i ≡ ρ
s+p−1u p + ρ

s+2w ≡ (−ρs+p
+ ρs+2)w mod Aκs,i ,

which in particular tells us that ps+2w ∈ A(κs−1,i , κs,i ).
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Case 3. ps+1
+ ps
− ps−1 < i ≤ ps+1

+ ps . In this range, we have

κs,i =ρ
su p+ρ

s+1w and κs−1,i =

(
ρs−1T p−1

+

s−2∑
k=σ(s,i)

ρk T θk(i)−1
)

u p+ρ
s+1w

with σ(s, i)≤ s− 2. Moreover, κm,i ∈ Aur for m ≤ s− 2.
Set νk,i = ρ

k T θk(i)ur for all nonnegative k. We note that νm,i ∈ A(κ0,i , . . . , κm,i )

for m ≤ s− 2: If κm,i 6= νm,i , which is to say εm(i)= 1, then

νm,i = T κm,i + am,i

m−1∑
k=σ(m,i)

νk,i .

Let j = θs−2(i)− p, and note that j ≥ p2
− 1≥ 2. Since

T jκs−1,i ≡ ρ
s−1T θs−2(i)−1u p + ρ

s+1T jw mod A(νσ(s,i),i , . . . , νs−2,i )

and ρk+1T θk(i)−1u p ∈ Aνk+1,i for all k with σ(s, i)≤ k ≤ s−3, we therefore have

(ρ−T j )κs−1,i≡ρ
s T p−1u p+ρ

s+1(ρ−T j )w mod A(νσ(s,i),i , . . . , νs−2,i ). (3.4.8)

Using (3.4.7) to reduce (3.4.8), we see that

(ρ− T j )κs−1,i ≡ ρ
s+2(1− ρ p−2

− ρ j−1)w mod A(νσ(s,i),i , . . . , νs−2,i , κs,i ),

which implies that ps+2w ∈ A(κ0,i , . . . , κs,i ).

Case 4: ps+1
+ ps < i < 2ps+1. In this case, all of the κm,i with m ≤ s− 1 lie in

AT pu p, and so for ps+2w to be unnecessary, there would have to exist c ∈ A such
that

cκs,i ≡ ps+2w mod AT 2u p. (3.4.9)

Note that cκs,i ≡ c(ρsu p+ρ
s+1w) mod AT 2u p, which forces c≡T 2c′ mod (ϕ−1)

for some c′ ∈ A. This means that

cκs,i ≡ c′ ps+3w mod A(u p, (ϕ− 1)w),

but ps+2w /∈ A(ps+3w, (ϕ− 1)w, u p), so (3.4.9) cannot hold. �

4. The finite level

4.1. Norms and eigenspace structure. In this section, we explore the consequences
of the results of Section 3 for unit groups of actual abelian local fields of character-
istic 0. Fix a positive integer n. Recall from the introduction that Fn is the field
obtained from E by adjoining the pnth roots of unity and that Un,t denotes the t th
unit group of Fn for t ≥ 1. As before, we set 0n = Gal(Fn/F1).
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For positive integers m≥ n, let Nm,n and Trm,n denote, respectively, the norm and
trace from Fm to Fn . We also let Nn denote the restriction map Nn : F×→ F×n on
norm compatible sequences. Recall that λn = Nn(λ)= 1− ζpn , where ζpn = Nn(ζ )

is a primitive pnth root of unity. We require a few preliminary lemmas.

Lemma 4.1.1. One has

Trn+1,n(λ
pk−ε
n+1 )≡ pλk−ε

n mod p3

for all k ≥ 1 and ε ∈ {0, 1}.

Proof. An easy calculation shows that

Trn+1,n(λ
t
n+1)= p

b
t
p c∑

j=0

( t
pj

)
(−ζpn ) j

for every t ≥ 0. The result follows since( pk−ε
pj

)
=

(k−ε
j

) p(k− j)∏
s=1
p-s

(
1+ pj

s

)
≡

(k−ε
j

)
mod p2 for any j ≥ 0. �

Let en = pn−1(p− 1) denote the ramification index of E . In applying Lemma
4.1.1, it is useful to make note of the fact that

p ≡−λen
n mod λpn

n . (4.1.1)

Lemma 4.1.2. For t ≥ 1 and any unit η in E , one has

Nn+1,n(1+ ηλt
n+1)

≡


1+ ηpλt

n mod λt+1
n if t < pn

− 1,
1+ (ηp

− η)λ
pn
−ε

n mod λpn
+1−ε

n if t = pn
− ε, ε ∈ {0, 1},

1− ηλen+k−ε
n mod λen+k+1−ε

n if t = pk− ε > pn, ε ∈ {0, 1}.

Moreover, we have

Nn+1,n(1+ ηλt
n+1)≡ 1 mod λen+bt/pc

n

for all t > pn .

Proof. The jump in the ramification filtration of Gal(Fn+1/Fn) occurs at pn
− 1.

By [Serre 1979, Lemmas V.4 and V.5], we have

Nn+1,n(1+ ηλt
n+1)≡ 1+ η Trn+1,n(λ

t
n+1)+ η

pλt
n mod λen+b2t/pc

n ,

Trn+1,n(λ
t
n+1)≡ 0 mod λen+bt/pc

n .

The result is then a corollary of Lemma 4.1.1, upon applying (4.1.1). �
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Let Dn be the pro-p completion of F×n , and let D(r)
n = Dεr

n for any r ∈ Z. As
before, we fix r with 2 ≤ r ≤ p, and i will always denote a positive integer with
i ≡ r mod p− 1. Let Vn,i = U εr

n,i = Un,i ∩ D(r)
n for any such i . These Vn,i are all

modules over An = Zp[0n ×8]. As in Lemma 2.1, we have isomorphisms

Vn,i/Vn,i+p−1 −→
∼ Fq

that send 1+ xλi
n for some x in the valuation ring of Fn to the element x̄ of Fq that

is identified with the image of x in the residue field of Fn under the isomorphism
fixed in Section 2. We may then set V ′n,i = Vn,i − Vn,i+p−1 and define Vn,i (η) for
η ∈ F×q as the set of elements 1+ xλi

n with x̄ = η.
We have the following consequence of Lemma 4.1.2.

Lemma 4.1.3. For any t≥−1, we have Nn+1,n(Vn+1,pn+t)⊆Vn,pn+t−(p−1)b(t+1)/pc,
with equality for t ≥ 0.

Proof. Note that Lemma 4.1.2 yields Nn+1,n(Un+1,pn+pk−ε) = Un,pn+k−ε for all
k ≥ 0 and ε ∈ {0, 1} with k ≥ ε, since every element in Un,pn+k−ε can be written as
a product of elements of the form 1+ηtλ

pn
+t

n with t ≥ k−ε and ηt ∈ Fq . (For k = 0
and ε =−1, it tells us just that any element of Un+1,pn−1 has a norm in Un,pn−1.)

Note that

U εr
n,pn+k−ε = Vn,pn+k−ε+{r−k+ε−1} and U εr

n+1,pn+pk−ε = Vn,pn+pk−ε+{r−k+ε−1}.

For any t ≥ 0, we may write t = pk− ε+{r − k+ ε− 1} for some k, ε, and r , and
we have

t − (p− 1)
⌊ t+1

p

⌋
= k− ε+{r − k+ ε− 1} �.

The next corollary is almost immediate from Lemmas 4.1.2 and 4.1.3, so we
leave it to the reader.

Corollary 4.1.4. For any unit η in E , one has

Nn+1,n(Vn+1,i (η))⊆


Vn,i (η

p) if i < pn
− 1,

Vn,i (η
p
− η) if i = pn

− 1,
Vn,pn+k−1(−η) if i = pn

+ pk− 1 for some k > 0,

with equality if r 6= p− 1 or i > pn .

As for the p-power map, we have a well-known and easy-to-prove fact:

Lemma 4.1.5. Suppose that i > pn−1. Then the pth power map induces an isomor-
phism Vn,i −→

∼ Vn,i+en , and we have Vn,i (η)
p
= Vn,i+en (−η) for all η ∈ F×q .

Next, we discuss the restriction map from the field of norms to the finite level.
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Proposition 4.1.6. The map Nn induces maps Nn : D(r)
→ D(r)

n that are surjections
for r 6= p−1 and which have procyclic cokernel for r = p−1. For η ∈ F×q , we have

Nn(Vi (η))⊆


Vn,i (η

p−n
) if i ≤ pn

− 2,
Vn,pn−1(η

p−n
− ηp−n−1

) if i = pn
− 1,

Vn,pn+k−1(−η
p−n−1

) if i = pn
+ pk− 1 for some 0< k < en.

Moreover, we have induced maps Vi/Vi+1→ Vn,i/Vn,i+1 for all i < pn , and these
are isomorphisms for i 6= pn

− 1. For i ≤ pn , we have Vn,i = NnVi if r 6= p− 1,
and Vn,i/NnVi is procyclic if r = p− 1.

Proof. That the cokernel of Nn is trivial if r 6= p−1 and procyclic if r = p−1 follows
easily from local class field theory, but it is also a consequence of the argument that
follows. The first jump in the ramification filtration of Gal(F∞/Fn+1) is at pn+1

−1.
In particular, for t less than this value, repeated application of Lemma 4.1.2 tells us

Nn+1(1+ ηλt)= lim
m→∞

Nm,n+1(1+ ηp−m
λt

m)≡ 1+ ηp−n−1
λt

n+1 mod λt+1
n+1.

Moreover, repeated application of Corollary 4.1.4 followed by two applications
of Lemma 4.1.3 tells us that Nn(Vpn+1−1+{r})⊆ Vn,pn+en−1+{r}. An application of
Corollary 4.1.4 then yields the stated containments.

Since ηp−n
and −ηp−n−1

run through all elements of Fq as η ∈ Fq varies, we
obtain Vn,i = NnVi +Vn,i+p−1 for all i ≤ pn but pn

− 1. Noting Lemma 4.1.5, this
implies

Vn,i+ken = NnVpk i + Vn,i+ken+p−1

for pn−1 < i ≤ pn with i 6= pn
− 1 and k ≥ 0. Note that every element of every

Vn,i may be written as an infinite product over j ≥ 0 of one element from each
of a fixed set of representatives of the Vn,i+ j (p−1)/Vn,i+( j+1)(p−1). Thus, we have
NnVi = Vn,i so long as r 6= p− 1.

If r = p− 1, we can choose an element zn of Vn,pn−1(ξ) that is not a norm. By
the formula proven above for Nn(1+ ηλpn

−1) modulo λpn

n , we have

Vn,pn+ken−1 = NnVpk(pn−1)+ Vn,pn+ken+p−2+〈z pk

n 〉

for k= 0, and then for all k≥ 0 by taking powers. Therefore, Vn,i/NnVi is generated
by zn for all i < pn with i ≡ 0 mod p− 1. �

The following structural result is again essentially found in [Greither 1996],
without the stated congruences. Here, we derive it from more basic principles.

Theorem 4.1.7. For r ≤ p − 2, the An-module D(r)
n is freely generated as an

An-module by an element un,r ∈ Vn,r (ξ). The An-module D(p−1)
n has a presentation

D(p−1)
n = 〈πn, un,p−1, vn | π

ϕ
n = πn, π

γ−1
n = uN8

n,p−1, v
γ
n = vn, uN0n

n,p−1 = v
1−ϕ
n 〉,
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where v = vϕ
2−n

n ≡ 1+ pξ mod p2 is independent of n and un,p−1 ∈ Vn,p−1(ξ) for
n ≥ 2, while u1,p−1 ∈ Vn,p−1(ξ − ξ

p−1
). The An-module D(p)

n has a presentation

D(p)
n = 〈un,p, wn | w

γ−1−p
n = uϕ−1

n,p 〉

with un,p ∈ Vn,p(ξ) and wn ∈ Vn,1(−ξ) such that wN8
n = ζpn .

Proof. We set un,r = (Nnur )
ϕn

, πn = Nnπ , and wn = (Nnw)
ϕn

with ur , π , and
w as in Theorem 3.1.5. It follows from the surjectivity of Nn for r 6= p − 1 in
Proposition 4.1.6 that the element un,r generates D(r)

n for r ≤ p − 2, while the
elements wn and un,r generate D(p)

n . By Hilbert’s Theorem 90, the kernel of Nn

consists exactly of elements of the form αγ
pn−1
−1 with α ∈ D, and therefore it

follows that D(r)
n is free of rank 1 on un,r over An for r ≤ p − 2 and that D(p)

n

has the stated presentation. (That u1,p ∈ V1,p(ξ) requires a simple check using
Propositions 3.1.3 and 4.1.6.)

The elements πn and un,p−1 automatically satisfy the first two relations in the
desired presentation of D(p−1)

n . In particular,

uN0n×8
n,p−1 = π

(γ−1)N0n
n = 1,

so Hilbert’s Theorem 90 tells us that uN0n
n,p−1 = v

1−ϕ
n for some vn in the pro-p

completion of E×. By Proposition 4.1.6, we have

uN0n
n,p−1 ≡ 1+ (ξ pn−1

− ξ pn−2
)λ

p−1
1 mod λp

1 .

Noting (4.1.1), we may in fact choose vn ≡ 1+ pϕn−2(ξ) mod p2 with v = vϕ
2−n

n

independent of n.
Hilbert’s Theorem 90 and Theorem 3.1.5 tell us that the An-module generated by

un,p−1 is isomorphic to An/(N0n×8). By Proposition 4.1.6, the cokernel of Nn on
D(p−1) is isomorphic to Zp. We claim that the image of v topologically generates
this cokernel. If this is the case, then clearly D(p−1)

n is generated by πn , un,p−1,
and v, and any solution with b, d ∈ Zp and c ∈ An to πb

n uc
n,p−1v

d
= 1 must satisfy

b = d = 0 and c ∈ Zp N0n×8.
It remains only to demonstrate the claim. Suppose by way of contradiction

that there exists a ∈ An such that x = vua
n,p−1 is a pth power in D(p−1)

n . This
implies that xγ−1

= ua(γ−1)
n,p−1 is a pth power in the An-module generated by un,p−1.

It follows that a(γ − 1) ∈ An(p, N0n×8), which forces a(γ − 1) ≡ 0 mod p, so
a ∈ An(p, N0n ). It then suffices to show that

vubN0n
n,p−1 = v

1+bϕn−2(1−ϕ)

is not a pth power in Fn for any b ∈ Zp[8]. If it were for some b, then vN8 and
hence 1+ p would be a pth power in Fn as well, but this is clearly not the case. �
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4.2. Special elements. We assume for the rest of the paper that n ≥ 2, the case
that n = 1 being slightly exceptional but also completely straightforward. In this
subsection, we construct special elements in the groups in the unit filtration of F×n .
Aside from the case that r = p − 1, these arise as restrictions of the elements
introduced in Section 3.2.

Note that Zp[0n] ∼= Zp[T ]/( fn), where fn = (T + 1)pn−1
− 1. Of course, we

can then speak of the action of T on an element of D(r)
n . Once again reverting to

additive notation, the following is now an immediate corollary of Theorem 3.2.2
and Proposition 4.1.6.

Proposition 4.2.1. Let m and j be nonnegative integers with φm( j)< pn
−1. Define

αn,m, j =
1
[r ]!

(
{r − δ− j}! ρm T j

−

m∑
k=1

ρm−k T φk−1( j)−δ
)

un,r ,

unless j = 0 and r = p− 1, in which case we replace {r − δ− j}! with −1 in the
formula. Then αn,m, j ∈ Vn,φm( j)(ξ). Furthermore, (pmbT j

+ c)un,r /∈ Vn,φm( j)+p−1

for all b ∈ Zp[8] − pZp[8] and c ∈ T j+1 An .

For nonnegative m ≤ n−2, define φ′n,m : Z≥0→Z≥0 by φ′n,m( j)= φ′m( j) unless
r = p− 1 and j = en−m−1, in which case we set

φ′n,m(en−m−1)= en + pm+1
− 1= φm(en−m−1)+ pm(p− 1).

For nonnegative k, define ϑ2,k = 1+ϕ−1
+· · ·+ϕ−k and ϑ j,k = 1 for j > 2. Note

that ϑ2,k ∈ pZp[8] if and only if k ≡−1 mod p|8|.
By Theorem 4.1.7, every element of Vn,p−1 may be written as cun,p−1+dv with

c ∈ An and d ∈ Zp, and this representation is unique up to the choice of c modulo
N0n×8. For a, b∈ D(r)

n , we again write a∼ b if a, b∈Vn,i (η) for some i and η∈F×q .

Theorem 4.2.2. Let m ≤ n− 2 be a nonnegative integer, and define

ωn,m =

m∑
k=0

ρm−k ϑn−m,k T pn−m+k−2(p−1)+pk
−1 un,p−1− v.

Then we have ωn,m ∈ Vn,en+pm+1−1(ξ). Furthermore, if j ≥ 0 with φm( j) < pn , then

(pm T j b+ c)un,p−1+ dv /∈ Vφ′n,m( j)+p−1

for all b ∈ Zp[8] − pZp[8], c ∈ T j+1 An , and d ∈ Zp.

Proof. Let l be a nonnegative integer with l ≤ m. We define

ωn,m,l =

l∑
k=0

ρm−kϑn−m,k T pn−m+k−2(p−1)+pk
−1un,p−1− v. (4.2.1)
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We claim not only that ωn,m = ωn,m,m ∈ Vn,en+pm+1−1(ξ), but that, for l < m,

ωn,m,l ∈

{
Vn,en+pm+1−pm−l (ϑn−m,l+1ξ) if p - ϑn−m,l+1,

Vn,en+pm+1−pm−l−1(ξ) if p |ϑn−m,l+1.

We note, to begin with, that ωn,m,l ∈ Vn,en+p−1, since Lemma 3.2.1a implies

ωn,m,l + v ∼ ρ
m T en−m−1un,p−1 ∈ Vn,en (−ξ).

For a given i , we take Vn,i (0) to mean Vn,i+p−1 in what follows.
If p - ϑn−m,l , then Lemmas 3.2.1a and 4.1.5 imply that

Tωn,m,l ∼ ρ
m−lϑn−m,l T pn−m+l−2(p−1)+pl

un,p−1

if l < m, m = 0, or m < n− 2, and we have

Tωn,m,l ∈

{
Vn,en+pm+1+pm−l (p−2)(−ξ) if m < n− 2 or m = 0,
Vn,pn+pm−l−1(p−2)(ϑ2,lϕ

−1ξ) if l < m = n− 2.
(4.2.2)

On the other hand, if p |ϑn−m,l , then we have Tωn,m,l ∼ Tωn,m,l−1, so we can still
apply (4.2.2). Moreover, since ϑ2,n−3ϕ

−1
−ϑ2,n−2 =−1 for n ≥ 3, we have

Tωn,n−2 ∼ ρϑ2,n−3T pn−3
un,p−1+ϑ2,n−2T pn−2

un,p−1 ∈ Vn,pn+p−2(−ξ).

We prove our claim by induction on m. In the case that m = 0, we have that
Tωn,0 ∈ Vn,en+2p−2(−ξ) by (4.2.2), and we have seen that ωn,0 ∈ Vn,en+p−1, so
Proposition 2.5 forces ωn,0 ∈ Vn,en+p−1(ξ). For m ≥ 1, that ωn,m ∈ Vn,en+pm+1−1
follows from the claim for l = m− 1 and the fact that

ωn,m −ωn,m,m−1 = ϑn−m,m T en−1+pm
−1un,p−1

is an element of Vn,en+pm+1−p(−ϑn−m,mξ). Since Tωn,m ∈ Vn,en+pm+1+p−2(−ξ),
an application of Proposition 2.5 would then yield that ωn,m ∈ Vn,en+pm+1−1(ξ).
So, to perform the inductive step for l < m, we assume that either p - ϑn−m,l+1 or
l = m− 1, since otherwise ωn,m,l ∼ ωn,m,l+1 and l + 1< m.

By Lemma 4.1.5 and induction, we have
Nn,n−1(ωn,m,l)

= pωn−1,m−1,l ∈

{
Vn−1,2en−1+pm−pm−l−1(−ϑn−m,l+1ξ) if l < m− 1,
Vn−1,2en−1+pm−pm−l−1(−ξ) if l = m− 1.

(4.2.3)

Let i be such that ωn,m,l ∈ V ′n,i , and set t = en+ pm+1
− pm−l . By Lemma 4.1.3, we

have both that i≤ t+p−1 and that there exists x ∈V ′n,t with Nn,n−1(x)= pωn−1,m−1,l .
Hilbert’s Theorem 90 implies that x −ωn,m,l ∈ An fn−1un,p−1. Note that

p fn−1un,p−1 ∼ pT pn−2
un,p−1 ∈ Vn,pn+p−2,

while ωn,m,l /∈ Vn,pn+p−2. It follows that

x ∼ ωn,m,l + bT gun,p−1, (4.2.4)
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for some b ∈ An with b /∈ (p, T ) and g ≥ pn−2. Since bT g+1un,p−1 ∈ V ′n,φ(g+1) by
Lemma 3.2.1a and both T x and Tωn,m,l lie in Vn,t+p−1, the latter by (4.2.2), we
have φ(g+ 1) > t and hence φ(g)≥ t . Therefore, we have bT gun,p−1 ∈ Vn,t , and
(4.2.4) now forces i ≥ t , which means that i ∈ {t, t + p− 1}.

If l < n − 3, then Lemma 2.2 forces i = t in order for (4.2.2) to hold. If
l = n− 3 and i = t + p− 1, then Proposition 2.5 and (4.2.2) force ωn,n−2,n−3 to be
in Vn,pn−1(−ϑ2,n−3ϕ

−1ξ). By Corollary 4.1.4, this implies that

Nn,n−1(ωn,n−2,n−3) ∈ Vn−1,2en−1+pn−2−1(ϑ2,n−3ϕ
−1ξ),

and then (4.2.3) tells us that p | ϑ2,n−2 and ωn,n−2,n−3 ∈ Vn,pn−1(ξ).
If i = t , then Lemma 3.2.1a implies that

ωn,m,l ∼−dT en−1+pm
−pm−l−1

un,p−1 (4.2.5)

for some d ∈ Zp[8] − pZp[8]. Set

z = ωn,m,l + dT en−1+pm
−pm−l−1

un,p−1 ∈ Vn,t+p−1.

By (4.2.2) and Lemma 3.2.1a, we have T z ∈ Vn,t+2(p−1)(−d ′ξ), where d ′ = d if
l < n−3 and d ′= d−ϑ2,n−3ϕ

−1 if l = n−3. We therefore have z ∈ Vn,t+p−1(d ′ξ),
and then

Nn,n−1(z) ∈ Vn−1,2en−1+pm−pm−l−1(−d ′ξ)

by Corollary 4.1.4. On the other hand, we have

Nn,n−1(T en−1+pm
−pm−l−1

un,p−1)= ϕT en−1+pm
−pm−l−1

un−1,p−1 ∈ Vn−1,t ,

so we have Nn,n−1(z) ∼ Nn,n−1(ωn,m,l). By (4.2.3), we then have d = ϑn−m,l+1.
If p |ϑn−m,l+1, then l = n− 3 by assumption, and this contradicts our assumption
on i and implies the claim for ωn,n−2,n−3. Otherwise, we have already shown that
i = t , and (4.2.5) and Lemma 3.2.1a yield the claim.

Suppose now that j ≥ 0, b ∈Zp[8]− pZp[8], c ∈ T j+1 An , and d ∈Zp are such
that φm( j) < pn and

ω = (pmbT j
+ c)un,p−1+ dv ∈ V ′n,i

for some i ≥ φ′n,m( j). We suppose that φm( j)≥ en , as the result otherwise reduces
to Proposition 4.2.1. For m = 0, if (bT j

+ c)un,p−1 6∼ −dv, then i = en or
i=φ( j)≤φ′n,0( j). Otherwise, we must have j=en−1, and since Tω∼bT j+1un,p−1,
the argument of Lemma 3.2.1b tells us that i = en + p− 1.

For m ≥ 1, we rewrite c as pc′+ T hν for some h ≥ j + 1 and c′, ν ∈ An with
ν /∈ (p, T ). Note that φ′n,m( j)= pφ′n−1,m−1( j)+ p− 1. By induction, we have

(pm−1bT j
+ c′)ϕun−1,p−1+ dv /∈ Vn−1,φ′n−1,m−1( j)+p−1.
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The pth power of this element is the norm from Fn of

ω′ = ω− T hνun,p−1 = (pmbT j
+ pc′)un,p−1+ dv,

and ω′ /∈ Vn,φ′n,m( j)+p−1 by Lemma 4.1.3. If ω′ ∈ Vn,φ′n,m( j), then the fact that φ′n,m( j)
is −1 modulo p and therefore not a value of φ implies that ω′ 6∼ −T hνun,p−1, so
we have i = φ′n,m( j).

So, assume that ω′ /∈ Vn,φ′n,m( j). Then ω′∼−T hνun,p−1, and Lemma 3.2.1a im-
plies that φ(h) < φ′n,m( j)≤ i . If ω /∈ Vn,φ(h+1), then we must have

i = φ(h)+ p− 1= φ′n,m( j).

So, we assume moreover that ω ∈ Vn,φ(h+1), in which case Tω′ ∼−T h+1νun,p−1.
Since Tω′ is a power of p, either φ(h + 1) is divisible by p and less than pn ,
or φ(h + 1) > pn . In the former case, unless φ(h + 2) > pn , we would have
T 2ω′ ∈ Vn,φ(h+1)+p(p−1) and then T 2ω∈ V ′n,φ(h+2), contradicting ω∈ Vn,φ(h+1). We
therefore have φ(h+2) > pn in both cases, so Tω′ ∈ Vn,pn−p. By Proposition 4.2.1
and the fact that φm(pn−m−1) > pn , this forces j = pn−m−1

−1. If m < n−2, then

pn
− p ≤ φ(h)+ p− 1≤ φ′n,m( j)= φm( j)= pn

− pm+1
+ pm

− 1,

which is a contradiction. We therefore have m = n− 2 and j = p− 1, so

pn
− 1= φ′n,n−2(p− 1) > φn−2(p− 1),

which, noting Proposition 4.2.1, implies that p - d and then, noting Theorem 4.1.7,
that ω /∈ pD(p−1)

n . In particular, ω /∈ Vn,pn+p−2, so i = pn
− 1. �

Remark 4.2.3. Note that φn−1(0) = pn
− 1 < pn as well, but in this case, the

element uN0n×8
n,p−1 = 1 has the form (pn−1b+ c)un,p−1 with b ∈ Zp[8] − pZp[8]

and c ∈ T A.

For r = p, the following is a consequence of Theorem 3.2.4 and Proposition 4.1.6.

Proposition 4.2.4. Let m and l be nonnegative integers with φm(pl
− 1)≤ pn . Let

βn,m,l =

(
ρm T pl

−1
+

m∑
k=1

ρm−k T φ′k−1(p
l
−1)−1

)
un,p + ρ

m+l+1wn.

Then βn,m,l ∈ Vn,φ′m(pl−1)(−ξ) unless l = n−1 and m = 0, in which case βn,0,n−1 ∈

Vn,pn (ξ p−1
). Furthermore, for any j ≥ 0 with φm( j)≤ pn , we have

(pmbT j
+ c)un,p + dwn /∈ Vn,min(φ′m( j)+p−1,pn+p−1)

for all b ∈ Zp[8] − pZp[8], c ∈ T j+1 An and d ∈ Zp[8].
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4.3. Generating sets. In this final subsection, we turn to the task of finding small
generating sets for the groups Vn,i as An-modules. First, we define the refined
elements that will be used in forming these sets.

Suppose that i ≤ pn and

0≤ m ≤
⌈

logp

( i+1
r+1+δ(p−1)

)⌉
.

Aside from the case that r = p−1 and pm < i−en< pm+1, we set κn,m,i =ϕ
n Nnκm,i ,

which can be written down explicitly as in the formulas (3.3.5), (3.3.6), and (3.3.7),
but now with ur replaced by un,r and w replaced by wn . By Propositions 3.3.9,
4.1.6 and 4.2.4, we have κn,m,i ∈ Vn,i .

If r = p−1 and pm < i− en < pm+1, then we set κn,m,i = ωn,m,m−σ(m+1,i) with
ωn,m,l for l ≥ 0 defined as in (4.2.1). Then κn,m,i ∈ Vi by the claim in the proof of
Theorem 4.2.2. Moreover, we have

κn,m,i =

m∑
k=σ(m+1,i)

ρkϑn−m,m−k T θk(i)−1un,p−1− v, (4.3.1)

since θk(i)= pn−k−2(p− 1)+ pm−k if k ≥ σ(m+ 1, i).
Our next result is the analogue of Theorem 3.4.1 at the finite level.

Theorem 4.3.1. Let µ be the smallest nonnegative integer for which i ≤ µen + pn .
Let

Sn,i = {pµκn,m,i−µen | 0≤ m ≤ s}, where s =
⌈

logp

( i−µen+1
r+1+δ(p−1)

)⌉
.

If 2 ≤ r ≤ p− 2, then the An-module Vn,i is generated by Sn,i . If r = p− 1, it is
generated by Sn,i ∪ {pµv} if i ≤ (µ+ 1)en and Sn,i otherwise, and if r = p, it is
generated by Sn,i ∪ {pµ+dlogp(i−µen)ewn}.

Proof. Suppose first that i ≤ pn . If r 6= p−1, then Vn,i = NnVi by Proposition 4.1.6.
For such i , the generation then follows immediately from Theorem 3.4.1.

Similarly, if r = p−1, then v ∈ Vn,en (−ξ) generates the cokernel of Nn . If i ≤ en ,
then Sn,i ∪ {v} generates Vn,i by a similar argument to that given in Theorem 3.4.1
(or by Proposition 4.1.6 and Theorem 3.4.1 itself). If en < i < pn , then similarly
Sn,i ∪ {pv} generates Vn,i , but we now claim that pv is in the An-submodule
generated by Sn,i . To see this, suppose that m≤n−2 is such that pm< i−en< pm+1.
Note that An Sn,i contains νn,k,i = ρ

k T θk(i)un,p−1 for each 0≤ k ≤ n− 1. (If κn,k,i

is not this element, one can multiply it by T and subtract off multiples of the νn,h,i

for h < k to reduce it to this form.) Noting (4.3.1), we have

ρv =−ρκn,m,i +

m∑
k=σ(m+1,i)

ϑn−m,m−k T θk(i)−θk+1(i)−1νn,k+1,i ∈ An Sn,i .
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In the case of arbitrary r and i , Lemma 4.1.5 tells us that Vn,i = pµVn,i−µen , and
we again have the desired generation. �

Remark 4.3.2. For i≤ pn , the integer s in Theorem 4.3.1 is unique such that i lies in
the half-open interval [(r+1)ps−1, (r+1)ps) if r ≤ p−1 and [2ps, 2ps+1) if r = p.
Since Sn,i has s + 1 elements, the generating set S′n,i provided in Theorem 4.3.1
has at most n+ 1 elements. Since S′n,i = pµS′n,i−µen

, the latter statement holds for
all i . In fact, for i > pn−1, the set S′n,i has either n or n+ 1 elements, depending
for each r on which of two ranges i lies in modulo en .

Finally, we prove a slightly weaker minimality statement than Theorem 3.4.4,
since in the finite case there are many values of i for which the analogous statement
to Theorem 3.4.4 is simply not true, so long as r ≤ p− 1.

Theorem 4.3.3. Every generating subset of the generating set for Vn,i of Theorem
4.3.1 is of cocardinality at most one.

Proof. We maintain the notation of Theorem 4.3.1. By Lemma 4.1.5, the pµth
power map defines an isomorphism Vi−µen −→

∼ Vi , and Sn,i = pµSn,i−µen . We
therefore assume that i ≤ pn for the rest of the proof. Note that we have

θk(i)≤ pn−k−1 (4.3.2)

for all 0≤ k ≤ n− 1, and we have θn(i)= 0.

Case r ≤ p−2. In this case, Nn induces an isomorphism D(r)/ fn D(r)
−→∼ D(r)

n , so
Proposition 4.1.6 tells us that Vn,i ∼= Vi/(Vi ∩ fn D(r)). In other words, a subset Yn

of Sn,i will generate Vn,i if and only if the subset Y of Si lifting it has the property
that Y ∪ { fnur } generates Vi + fn D(r).

Recall that

fn ≡

n−1∑
k=0

pk T pn−k−1
mod (pn−1T 2, pn−2T 2p, . . . , T 2pn−1

).

Noting (4.3.2), we have

fn ≡ pm T pn−m−1
mod (pm+1, T θm(i)+1) (4.3.3)

for each 0≤ m ≤ s. Let us set I = (p, T, ϕ− 1) and Im = (p, T 1+εm(i), ϕ− 1) for
the remainder of the proof.

The analogue of (3.4.3) in our current setting is
s∑

m=0

cmκm,i = b fnur (4.3.4)
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for some cm ∈ A and b ∈ A. Given a solution to (4.3.4), we claim that there exist
qk ∈ Zp for k ≤ s, independent of the solution, such that

ck ≡ qkbT εk(i) mod Ik . (4.3.5)

Of course, only those κn,k,i for k such that p - qk and εk(i) = 0 can possibly be
An-linear combinations of the others. If k is such a value and we suppose that
ck = 0, then these congruences force b ∈ I and therefore cm ∈ I for every other
m ≤ s, proving the result.

We turn to the proof of the claim. In our current setting, (3.4.5) becomes

cnρ
n
≡ 0 mod (pn+1, T )

for m = n (if s = n, since θn(i)= 0) and

cmρ
m Tψm(i)≡

∑
k∈Xm

ckak,iρ
m T θm(i)−1

+bpm T pn−m−1
mod (pm+1, T θm(i)+1) (4.3.6)

for m≤n−1, with Xm as in (3.4.4). In the case that s=n, the claim for k=n is then
immediate. Moreover, supposing that we know the claim for k with m+ 1≤ k ≤ s,
the congruence (4.3.6) implies that

cm ≡
∑

k∈Xm

qkak,i bT εm(i)+ bT pn−m−1
−ψm(i) mod Im

upon application of (4.3.5) for k ∈ Xm . As εm(i)≤ pn−m−1
−ψm(i) by (4.3.2), we

have the claim for k = m as well.
We remark that if θm(i)< pn−m−1 for all m≤n−1, which is to say that i ≤ pn−1r ,

then we obtain recursively that p | qm for all m ≤ s. In other words, Sn,i has no
proper generating subset for such i . This is useful in the following case.

Case r = p. In the case r = p, we have θm(i) < pn−m−1 for all m ≤ n− 1 and all
i ≤ pn (since δ = 1), and the analogous argument working modulo Aw and using
the set X ′m of (3.4.6) shows that any subset of Sn,i ∪ {pdlogp(i)ewn} that generates
Vn,i must contain Sn,i .

Case r = p− 1. Finally, we consider the more subtle case that r = p− 1. In this
case, s ≤ n− 1. Recall from Theorem 4.1.7 that

Vp−1/ fnVp−1 ∼= Anun,p−1 ∼= An/(N0n×8)

and Anv = Zpv + Zp[8]N0n un,p−1. Note that N0n lifts to T−1 fn in A. As in
(4.3.3), we have

T−1 fn ≡ pm T pn−m−1
−1 mod (pm+1, T θm(i)+1)
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for 0≤ m ≤ n− 2 and

T−1 fn ≡ pn−1(1− 1
2 T ) mod (pn, T 2). (4.3.7)

Range i ≤ en: In this range, every κn,m,i lies in Anur , so v is in particular necessary
to generate Vn,i . We also have θn−1(i)= 0 and θm(i)≤ en−m−1 for all m ≤ n− 2.
Consider the following analogue of (3.4.3):

s∑
m=0

cmκm,i = bT−1 fnu p−1. (4.3.8)

As before, we claim that there exist qk ∈ Zp for k ≤ s, independent of the solution
to (4.3.8), such that (4.3.5) holds, from which the result follows in this range.

The analogue of (3.4.5) for m ≤ s in the current setting is

cmρ
m Tψm(i)

≡

∑
k∈Xm

ckak,iρ
m T θm(i)−1

+ bpm T pn−m−1
−1 mod (pm+1, T θm(i)+1). (4.3.9)

If s = n− 1, we then obtain cn−1 ≡ b mod I . If s ≥ n− 2, we have

cn−2 ≡ bT p−1−θn−2(i)+εn−2(i) mod In−2,

and hence the claim for k = n− 2. For m ≤ n− 3, we have θm(i) ≤ pn−m−1
− 2,

and assuming the claim for m+ 1≤ k ≤ s, we see recursively using (4.3.9) that

cm ≡
∑

k∈Xm

qkak,i bT εm(i) mod Im .

Range en < i < pn . In this range, s = n− 1, θn−1(i) = 1, and θn−2(i) = p. Let
l ≤ n− 2 be such that pl < i − en < pl+1, so κn,l,i is the lone element of Sn,i that
does not lie in Anun,p−1. Thus, if we were to have

n−1∑
m=0

dmκn,m,i = 0 (4.3.10)

for some dm ∈ An , then we would have to have dl ∈ An(T, ϕ − 1) in order that
dlκn,l,i ∈ Anun,p−1. Let

κ ′l,i =

l∑
j=σ(l+1,i)

ρ jϑn−l,l− j T θ j (i)u p−1

so that T κn,l,i = ϕ
n Nnκ

′

l,i . Let κ ′m,i = κm,i for m ≤ n− 1 with m 6= l.
Now (4.3.10) implies that

n−1∑
m=0

cmκ
′

m,i ≡ bT−1 fnu p−1 mod A(ϕ− 1)u p−1 (4.3.11)
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for some b ∈ A and where cm ∈ A reduces to dm for m 6= l and cl ∈ A is such that
T cl reduces to dl modulo An(ϕ− 1). Similarly to before, we claim that there exist
qm ∈ Zp for m ≤ n− 2, independent of the solution to (4.3.11), such that (4.3.5)
holds, and that b ∈ I if and only if cn−1 ∈ I . From this, it follows that a solution to
(4.3.11) with ck = 0 for some k has cm ∈ I for every other m ≤ n− 1.

Note that εl(i)= 0, and let τm be ϑn−l,l−m if σ(l+1, i)≤m < l and 0 otherwise.
Equations (4.3.7) and (4.3.11) yield

cn−1 ≡ b(1− 1
2 T ) mod (p, T 2, ϕ− 1), (4.3.12)

and, for arbitrary m ≤ n− 2, we have

cm Tψm(i)

≡

∑
k∈Xm

ckak,i T θm(i)−1
−τmcl T θm(i)+bT pn−m−1

−1 mod (p, T θm(i)+1, ϕ−1). (4.3.13)

For m = n− 2, note that (4.3.12), (4.3.13), and an−1,i =−1 imply that

cn−2T 1−εn−2(i) ≡ b− cn−1 ≡
1
2 bT mod (p, T 2, ϕ− 1), (4.3.14)

so (4.3.5) holds with qn−2 =
1
2 . For m with σ(n− 1, i)≤ m ≤ n− 3 (which exists

only if l = n−2), we have Xm = {n−1} and θm(i)= pn−m−1, and we obtain from
(4.3.13) and (4.3.14) that

cm T 1−εm(i) ≡−cn−1− cn−2τm T + b

≡
1
2(1−ϑ2,n−m−2)bT mod (p, T 2, ϕ− 1), (4.3.15)

so (4.3.5) holds with qm = −
1
2(n − m − 2). For m < σ(n − 1, i), we have

θm(i) < pn−m−1, and (4.3.13) and (4.3.14) yield recursively that

cm ≡
∑

k∈Xm

qkak,i bT εm(i)− qlτmbT εm(i)+ bT pn−m−1
−1−ψm(i) mod Im,

verifying (4.3.5) for k = m. �
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