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Galois module structure of
local unit groups

Romyar Sharifi

We study the groups U; in the unit filtration of a finite abelian extension K of
Q,, for an odd prime p. We determine explicit generators of the U; as modules
over the Z,-group ring of Gal(K /Q,). We work in eigenspaces for powers of
the Teichmiiller character, first at the level of the field of norms for the extension
of K by p-power roots of unity and then at the level of K.

1. Introduction

Fix an odd prime p and a finite unramified extension E of Q,. We use F, to denote
the field obtained from E by adjoining to E the p”th roots of unity in an algebraic
closure of Q. The ith unit group in the unit filtration of F,, will be denoted by U,, ;.
The object of this paper is to describe generators of the groups U, ; as modules
over the Z ,-group ring of G, = Gal(F,, /Q,). We express these generators in terms
of generators of the pro-p completion D, of F,* as a Galois module. In fact, one
consequence of our work is a rather elementary proof of an explicit presentation of
D, as such a module, as was proven by Greither [1996] using Coleman theory.

Instead of working with all of D,, at once, we find it easier to work with certain
eigenspaces of it. For this and several other purposes, it will be useful to think of
the Galois group G, as a direct product of cyclic subgroups

G, =AxTI,x®,

where A xI', =Gal(F,/E) with |A|=p—1and |I',| = p" ! and @ is isomorphic
to Gal(E/Q)). We then decompose D, into a direct sum of p — 1 eigenspaces
for powers of the Teichmiiller character @: A — Z7. For any integer r, the
" -eigenspace D" of D,, is the subgroup of elements upon which o € A acts by
left multiplication by w(o)". This definition depends only on » modulo p —1, so we
fix r with 2 <r < p. Note that D,(,r) is a module over the group ring A, =Z,[I";, x ®].
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In fact, as we shall see in Section 3.1, the A,-module D,(f) has a generating set with
just one element if r < p — 2, three elements if r = p — 1, and two elements if r = p.

We will be interested in the A,-module structure of the groups Vn(:.) = D,(f) NUp.,;.
It turns out that

(r) )y _yrn _ _y®
Vn,i 2 Vn,i-‘rl - Vn,i+2 - = Vn,i-i—p—l

for all i =r mod p — 1 (see Lemma 2.1), so we will consider only such i and
set V,; = Vn(’ri).

Our main results, Theorems 4.3.1 and 4.3.3, provide a small set of at most n + 1
generators of V, ; as an A,-module and state that any proper generating subset of it
has cocardinality 1. The elements of this set are written down explicitly as A, -linear
combinations of elements of the generators of D,g’). In Section 4.2, elements of a
special form are constructed so as to lie as deep in the unit filtration as possible.
In Section 4.3, these are refined to elements of the same form that instead lie just
deep enough to be in V,, ;, which are in turn the generators that we use.

It is convenient to work first in the field of norms F' of Fontaine—Wintenberger for
the tower of extensions F, of E. This is a field of characteristic p, the multiplicative
group of which is the inverse limit of the F,*. We prove analogues of all of the above-
mentioned results first at this infinite level, prior to applying them in descending
to the level of F,,. The fact that the pth power map is an automorphism of F*
simplifies some of the computations. Moreover, the structure of the eigenspaces of
the pro-p completion of F*, which we study in Section 3.1, is somewhat simpler
than that of the D,(f). We construct special elements in the eigenspaces of the groups
in the unit filtration in Section 3.2, refine them in Section 3.3, and prove generation
and a minimality result in Section 3.4.

We see a number of interesting potential applications for the results of this paper.
To mention just one, it appears to make possible the computation of the conductors
of all degree p" Kummer extensions of F,, in terms of the Kummer generator of
the extension. The problem of making this computation, which was approached by
the author in three much earlier papers, has until now seemed beyond close reach
in this sort of generality.

2. Preliminaries

We maintain the notation of the introduction and introduce some more. Recall from
[Wintenberger 1983] that the field of norms F for the extension Foo =, F, of E
is a local field of characteristic p with multiplicative group

F*=limF,
«—

the inverse limit being taken with respect to norm maps.
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Let ¢ = (£p7), be a norm compatible sequence of p-power roots of unity, with
{pr a primitive p"th root of unity in F,,. Then A =1—¢ = (1 —¢pn), is a prime
element of F.

For m > n, let Ny, ,,: F,, — F, be the norm map. Recall that the addition on F'
is given by

(@+B)y= lim Ny ,(am+ Bn)
m—00

for « = (o), and B = (B,), in F. We fix an isomorphism of the residue field
of E (and thereby each F;) with [, with g the order of the residue field. Using
tl}is, the field Fy is identified with a subfield of F' via the map that takes § € F to
(EP™"), € F*, where £ is the (¢ — 1)st root of unity in E lifting &. The field F may
then be identified with the field of Laurent series [, ((1)).

If Fy is the union of the F,, then G = Gal(F»/Q,) acts as automorphisms
on the field F. As with G,, we may decompose G = Gal(F,/Q),) into a direct
product of procyclic subgroups

G=AxIx®,

where Gal(Fo/E) = A x T, the group A has order p —1, the group I' is isomorphic
to Z,, and ® is isomorphic to Gal(E/Q,). Let y denote the topological generator
of I such that y (¢,n) = §;;H7 for all n.

The pro-p completion D of F* decomposes into a direct sum of eigenspaces for
the powers of the Teichmiiller character @ on A. For an integer r, we let D) = D*r,
where ¢, is the idempotent

1 _
o= gw(a) 8 e Z,[Al

For i > 1, let U; denote the ith group in the unit filtration of F. We then set

‘/l(r) — Ui N D(I’) and (‘/l(r))/ — ‘/l(r) _ ‘/1(4:)1

The following is [Sharifi 2002, Lemma 2.3] (with F;, replaced by F).

Lemma 2.1. We have Vi(r)/Vi(f_L_l =, foreveryi > 1, and (Vl.(r))’ # O if and
onlyifi=r mod p— 1.

From now on, we set V; = Vl.(r) and V/ = (Vi(r))/ ifi=rmodp—1. Asa
consequence of Lemma 2.1, an element z € V; is determined modulo A*7~! by its
expansion

z=1+&1 mod A't! 2.1)

with & € [,.
The following is [Sharifi 2002, Lemma 2.4] (with F, replaced by F).

Lemma 2.2. Letz e V. If p{i,thenz’ = e V!

~ -1
p—1- Otherwise, 2V~ € Viio(p—1)-
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We identify A = Z,[[I"]] with the power series ring Z,[[T || via the continuous,
Z ,-linear isomorphism that takes y — 1 to T, and we use additive notation to
describe the action of Z,[[T]] on D. Ramification theory would already have told
us that T - V; € V;,_ for all i. On the other hand, explicit calculation will yield
the following two lemmas and proposition, which provide more precise information
on how powers of T move elements of V;.

For ¢ € [F;, we let V; (&) denote the set of z € V; for which z has an expansion of
the form in (2.1). We use [k] to denote the smallest nonnegative integer congruent
to k € Z modulo p.

Lemma 2.3. Let z € V;(§) for some i. Then, for 0 < j <[i], we have

. Al
Pz e Vi ().
Proof. Note that

AN =1—¢"P=1—-1=0)A=A")=r+1P —2PT" (2.2)

Using this, we see, for any i > 1, that

. . 1—A .
-1 _ : +p—1 i+2p—2
(1+§)\,l)y = 1+l%‘)\,l P TSN mod XA p=e, (23)
Hence,
A+ X P =14igx TP~ mod AFFP. (2.4)
Applying (2.4) recursively, we obtain the result. (]

Lemma 2.4. Let z € Vi p41(§) for some i > 2. If j is a nonnegative multiple of
p—1,then T'1z € Vi jy ().

Proof. Let us begin by proving slightly finer versions of (2.3) in two congruence
classes of exponents modulo p. For any ¢ > 1, we have

14 EAP(1 4 AP(P=D — Py
14 EAP!
pt+1 (pr+1 -1
)\pt+l Zm:l (pm )()‘p _)Lp)m
1+§-)Lpt+1
=14+ WPUFTD ) pU+DFy mod (APEFP=DFL 5 pCGIHD+LY

A+ = = 1 mod APU+P~D),

(14+erPthyr=T=—14¢

the latter congruence following from the fact that p | (p tn;H) for 2 <m < p. Via
some obvious inequalities, we conclude that

A+ EAPH1 =1 mod AP0+, (2.5)
(1 +%-)\‘pl‘+1))/—] = (1 +é-)\‘p(l‘+]))(1 _s)\‘p(lﬂ-l)-}—l) mOd )\‘p(l‘+2)' (26)
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Let x = 1 + £API=P*! Recursively applying (2.5) and (2.6), we see that
x(y—1>k+1 =1+ (_l)kap(wk))(l + (_1)k+1§)\p(i+k)+1) mod kp(i+k+1)’

for any positive integer k, as (2.4) implies that U 1)7/(1_'~1H<) C Up(i+k+1)- The result now
follows by application of ¢;, since

X eV, T e Vi), and TV C Viayjin-t,

the latter by Lemma 2.2. (]

Let us use {k} to denote the smallest nonnegative integer congruent to k € Z
modulo p — 1. For i > 1 with p i, we define a monotonically increasing function
¢ : 79— Z by ¢ (0) =i and

¢“(a) = pa+ (i —[i]) +{[il —a} fora>1. 2.7)
Proposition 2.5. Let z € V;(§) for some i >2 with p {i. Then, for j > 1, we have

i [i]!
TJZ S V¢(i)(j)({[l,]—_j}!§>.
Proof. Lemma 2.3 implies that
Tz ¢ Voo qiz—1) (1! - 6),

and note that ¢ ([i]—1) =1 mod p. Set k = {[i]— j}. Since j +k —[i] is divisible
by p — 1, Lemma 2.4 then implies that

Tz € Vyor (o (i1 - 6). (2.8)
It follows from (2.7) that
oD +k) —i=p(+k—T[i)+(p—DIil,

and so, given (2.8), Lemma 2.2 forces T'z € Vq;(,-) (o foralll < j +k. In particular,
applying Lemma 2.3 with j replaced by k and z replaced by T/z, we see that for
(2.8) to hold, 77z must have the stated form. O

Remark 2.6. The obvious analogues of the results of this section all hold at the
level of F, for n > 2, with A replaced by A, = 1 — {pn. In fact, Lemmas 2.1 and 2.2
were originally proven in that setting in [Sharifi 2_(1)02]. That the other results hold
breaks down to the fact that p is a unit times A,’fn P=D4n F,, which in particular

tells us that (2.2) can be replaced by A = A, + AL — A2 mod 2P~ D+,
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3. The infinite level

3.1. Structure of the eigenspaces. In this subsection, we fix choices of certain
elements that will be used throughout the paper. From now on, we let & denote
an element of [, with Tre § = 1, the conjugates of which form a normal basis of
F, over [F,,. Let ¢ € ® denote the Frobenius element. Let Ng € Z,[®] denote the
norm element. Let { = ({yn), be a norm-compatible system of primitive p”th roots
of unity as before.

Let r be an integer satisfying 2 <r < p. If 2 <r < p — 2, we simply fix an
element u, € V,(£). In the case that r = p — 1, generation of D"~ requires one
additional element 7 € D?~V a non-unit, chosen along with u,_; € V,_1(£) in
the lemma which follows. The case of r = p shall require more work, but we will
fix elements w € Vi(—§) and u, € V,(§) as in Proposition 3.1.3 below.

Lemma 3.1.1. There exist elements 1 € DP~Y and up—1 € Vpo_1(§) such that
7’ =mand V! = ugfl.
Proof. Set w = Af»-1, which satisfies 7¢ = 7 and 77! € Vy—1(1). Since every
unit is a norm in an unramified extension, there exists u/, | € D= guch that
(uinl)N<I> =77~ and such an element must lie in V,,_; (¢’) for some &’ € F, with
Tre &' = 1. Hilbert’s Theorem 90 tells us that £’ = & 4 (¢ — 1)n for some 7 € F,,.

LetzeV,_1(n),and set u,_; =u;_lzl_¢. g

In fact, one could have chosen u,_ € V,(§) arbitrarily and then taken 7 to
satisfy the relations, as can be seen using the results of the following section.

Lemma 3.1.2. There exist elements w € Vi(=§) and u, € V,(&§) with whe =¢
and u}’;_] =wr~ 17,

Proof. First, local class field theory yields the existence of an element w’ € D?)
with (w)N® = ¢. Since ¢ € V;(—1), we must have w’ € V;(—&’) for some &’ € F,
with Tre &' = 1. Since &’ =& + (¢ — 1)n for some 7 € F,, we choose any y € Vi(n),
and then w = w'y!™% € V;(=¢&) satisfies wV® = ¢ as well.

Next, note that (w?~!'~?)Ne =1, and so Hilbert’s Theorem 90 allows us to choose
an element u', € DP) with (u’p)‘/’_1 = w?”~ 177, A simple computation using (2.4)
tells us that w¥~!1=7 ¢ V,(§P — &), and therefore u;, € V,(€ +a) for some a € F),.
We may then choose z € V,(a) with z¥ = z and take u, = u;,z_l e V,(&). O

We need slightly finer information on the relationship between w and u ), inside
the unit filtration, as found in the following proposition.

Proposition 3.1.3. There exist elements w € Vi(—§) and u, € V,(§) with whe =¢
and ui_l = wY~17P such that the element y = ul,w”‘/f1 lies in Vo, _1(=§).
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Proof. For now, fix any choices of u#, and w as in Lemma 3.1.2. We must have
up=1+&17)"a with o € V5,_1 and w = (1 —£1)*' B with B € V,,. Note that

(14+EXP)¢" =14 (£ — £)A” mod A%P,

i, l—EQ+an) 1-2 2
(1 _%—)L)V - (1 _S}L)(l _gp)LP) =1+ (%’p —S I_EA>AP mod A“P.
We then have
_ —1— _
USWP 7 S8 et noa s, (3.1

(1+&rpyeT 1—&
We denote the quantity on the right side of (3.1.1) by 8. By Lemma 2.2, we have
BY~17P € V3,_5, from which it follows that «?~'07¢1 € V3,_,. On the other hand,
by Lemma 2.1, we have

yo = (LHEAD) (=AY B € Vs,

so in fact we have y*~167¢1 ¢ V3p—2. If we can show that 6°' € V,_1(§ —&7), we
will then have y € V5,1 (—§ +a) for some a € [,. As in the proof of Lemma 3.1.2,
we can then choose an element z € Va,_1(a) with z¥ = z and replace u, by u,z !
to obtain the result.

By Proposition 2.5, we see that to show that ¢! € V;,_1(§ —&7), it suffices to
show that &1V—D""" ¢ V2 (§7 —&). Since p> =1 mod p — 1, for this, it suffices
to show that

oD = 1 4 (&P —&)AP" mod AP

This is a simple consequence of Lemma 3.1.4, which follows. That is, in the
notation of said lemma, Fermat’s little theorem and the binomial theorem tell us
that d,,_; x = —1 for all positive integers k < p — 1. ([

Lemma 3.1.4. For each positive integer j < p — 1, one has
EA1—8). 11 =7 d k i+1 +1)p+1
14+ 222t =1+ (> djat (1 —&) JAUtDP mod AUFDPH,
1—&A el

where
k kN
dj =Y (=17 () )0 €F,
h=1

for positive integers k < j.

Proof. We make the expansion

01 E(1-§) p+1_p_1 k ptk 2
= +mx = [ [ +& 1 —&arr™) mod 2?".
k=1
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Since Usy_1 C Ugyp—1 for all s, as follows from (2.4), to compute 6=’ modulo
AUTDPHL it suffices to compute (1 + &5(1 — £)APT) =D modulo AU+DPHL,

Fix a positive integer k < p — 1. We claim that the coefficient of AUTD? in the
expansion of (1 + gk(1 — 5)Ap+k)(y_1)j as a power series in F,[[A]l is 0 if j <k
and £%(1 — &)d; i if j > k. As a consequence of (2.3), one sees that

A+EMY = (14X TP (A —1£AP) mod A'T2P~2 forany > p— 1.

Using this and the finer congruence (2.6) when possible, an induction yields that
the expansion in question is determined by

min(j,k) —_1)i—m
1 71 k _.k(j+l)p+k—;n) mod AU
k_ 9
m=0 (a;)€Pjkm (
where
Pixm={(a1,a2,...,aj_) €2/ |[k—m<ay<ar<-- < aj_, <k

if j > m and P; ; = {0}, and we consider the empty product to be 1. In particular,
the coefficient in question is indeed O for j < k and is & k(1 — &)cjk for j >k, where

j—k
cie=D"Fkt Y Ta

(@)ePj ik i=1

It remains to verify that c;  =d; ; for j > k.

Let D denote the differential operator x %

77 on [, [x]. By the binomial theorem,

we have
k
. k ) )
DI =)zt = YD )| = (=D
h=1 -

On the other hand, repeated application of the product formula for the derivative
yields

min(j,k)

j—h
DI((1=x)")]yz1 = (= DF Z G h), > [la-e=nt

(al)EPj h,h i=1
=(=Dcjx
for all j > k and hence the result. (]

In the next section, we will obtain the following very slight refinement of what
is essentially a result of [Greither 1996, Sections 2 and 3]; see also [Sharifi 2002,
Corollary 2.2].
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Theorem 3.1.5. For r < p — 2, the A-module D" is freely generated by any
uy € V. (&). The A-module DP~V has a presentation

_ N. _
DYV =(up |7 =, u,® =n"""),

for someu,_1€V,_1(§)andm € DP=V_ The A-module DP) has a presentation

) _ “1—p _ -1
DY) = (u,, w|w” p—uﬁ )

for some u, € V,(§) and w € V(=§) such that whe =¢.

3.2. Special elements. Fix r such that 2 < r < p, and define ¢: Z>¢9 — Z by
¢(a) = ¢ (a) fora > 1. Set
5= 0 if2<r<p-—1,
1 ifr=p.

For all a > 1, we have ¢ (a) = p(a+38)+{r — 8 —a}, so ¢ (a) is the smallest integer
that is at least p(a + §) and congruent to » modulo p — 1.

From now on, i will be used solely to denote a positive integer congruent to r
modulo p — 1. We will write « ~ 8 to denote that both « and $ lie in V; (&) for

some i and & € [qu. We use additive notation for the action of A = Z,[®][[T] on
D). We begin with the following useful lemma.

Lemma 3.2.1. Let j be a positive integer.

a. We have

. |
T’ u, V¢(j)<{r—[g—]—.j}!é>.

b. If j=r —8 mod (p — 1) so that T'u, ~ pz for some z € DT, then
T/uy — pz € Vo(jrip-1 (—=[r1'€) .

Proof. For r < p, part a is a direct consequence of Proposition 2.5 and the fact that
u, € V.(¢§). For r = p, Proposition 2.5 and the fact that ¢ »@P~D on positive
integers would tell us more directly that 7/y e Vs ])({ jil E)for j >1and y
as in Proposition 3.1.3. Note, however, that Tu, =Ty — pp~ 'Tw ~ Ty, since
pTw € V2. This is also the key point of part b. That is, we have

T(T/u, — pz) ~ T/ u,
as pTz € Vyy(jy and
¢+ =¢()+2(p—1) < pd()).

Since T/ u, € Vy(jy4+2(p—1)([r]' €), a final application of Proposition 2.5 tells us
that T/u, — pz had to be in the stated group. U



166 Romyar Sharifi

For a nonnegative integer m, let us define ¢, : Z>9— Z>o by ¢, = p" (¢p+1)—1.
We remark that

PPm = ¢ o (pm —93). 3.2.1)

From now on, we set p = pe~! for brevity of notation. We define special
elements in the unit filtration of D).

Theorem 3.2.2. Let m and j be nonnegative integers. Define

m
1 Ny M m—k -1 (j)—8
am,J—W({r_S_]}!p T _20 o Ur,

unless j =0 and r = p — 1, in which case we replace {r —§ — j}! with —1 in the
formula. Then o, j € Vg, (jy(§). Furthermore, (p"bT’ + c)u, & Vg, (j)+p—1 for all
beZ,[®]withb #0 mod p and c € T/ ' A.

Proof. We work by induction, the case of m =0 being Lemma 3.2.1a, aside from the
case j =0, in which case it is simply the definition of u,. Assume we have proven
the first statement for m. Then pa,,, ; € V,4,.(j)(§7) and, using Lemma 3.2.1a and
(3.2.1), we have

T U, € Vg, (5 ([r116).

Lemma 3.2.1b then tells us that

1 N
U1, = pem,j — =T DU, € Vi (4 p-1(6).

[r]!
Now assume the second statement is true for m. (For m =0, this is a consequence
of the fact that the conjugates of & are [ ,-linearly independent.) Suppose that

a=(p"bT/ +c)u, e V/

withi > ¢y 41(j), beZ,[®1—pZ,[®]and c € T/ T A. We write ¢ = (pc’+T"v)u,
for some ¢/, v € A with v # 0 mod (p, T) and h > j + 1. By induction, we have

(pmbTJ +C/)I/lr ¢ V¢m(j)+p_1'
Since @u41(j) = ppm(j) +p—1and o € Vy, ., (j) by assumption, this forces
p(P"bT! 4 uy ~ =T vy,

which tells us by Lemma 3.2.1a that ¢ (h) < p¢,,(j). On the other hand, it follows
from Lemma 3.2.1b that o € Vag(h)+p71, which forces i = ¢,11(j). O

The second statement of Theorem 3.2.2 insures, in particular, that au, # O for
all nonzero a € A. We therefore have the following corollary.

Corollary 3.2.3. The A-submodule of D) generated by u, is free.
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In the exceptional case that r = p, we require additional elements. First, we
modify the function ¢,, for this . For nonnegative integers m and j, we set
#!.(j) = ¢ (j) unless r = p and j = p! — 1 for some / > 0, in which case we set

op,(p' = 1) =p" 4 pm 1 =g, (p' =)+ p"(p—1).

Theorem 3.2.4. Let [ and m be nonnegative integers. Define

m
B = (mep11 +mekT¢1,<1(P’1)1)up +pm+l+1w‘
k=1

Then B, € Vg (pi—1y(=§). Moreover, for any j > 0, we have
(P"bT! +cyup+dw ¢ Vi, (jy+p-1
forallb € Z,[®] — pZ,[®], c€ T/ A and d € Z,[P].

Proof. The proof is similar to that of Theorem 3.2.2. Since Lemma 3.2.1a and the
definition of w tell us that

TV u, e Vyui(§) and  p''w e Vi (<),

Lemma 3.2.1b yields Bo; = p'H'w + Tpl_lup € Vg ,—1(=§). For any m > 0,
we have

/ l_1y_
ﬂerl,l = ;O,Bm,l + T¢m(p D ]I/lp-

By induction and Lemma 3.2.1a, we have
/ I_1\_
Bt € Vg pi—1y(—€) and TP =07y, eV () ().

Since ¢, ., (p' = 1) = pgj,(p' = 1)+ p — 1, that 11 € Vgy | (i) (—§) is just
another application of Lemma 3.2.1b.

Let j >0, b €Z)[®]—pZ,[P], ce T/*1'A, and d € Z,[®]. First, suppose
that o = (bT/ +c)u, +dw € V/ for some i > ¢ (j). Note that (bT/ +-c)u, € Vd;(j)
by Lemma 3.2.1a, while dw € VI’,z for some / > 0. Since o € V%(j), we must have
p! > ¢(j). We then have « € ng(j) unless ¢ (j) = p'. This occurs if and only if
I>1and j = p'~! —1, in which case ¢p(J) = p! 4+ p — 1. For this to hold, we
must have (bT/ + c)u, ~ —dw. Lemma 3.2.1b then implies that o € Vi p1:80
i = ¢((j) in all cases.

Suppose now that @ = (p" 6T/ + c)u, + dw € V] for some i > ¢/, (j).
Rewrite ¢ as pc’ 4+ T"v for some & > j + 1 and ¢/, v € A with v % 0 mod (p, T).
If we are to have o € V,,, we may also write d = pd’ for some d’ € Z,[®]. By
induction, we have

(pmij +c/)up +d'w ¢ V¢;ﬂ(j)+p,1,
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and so in order that o € V¢,@1+1( j)» we must have
("1 + pcyu, +dw ~ —T"vu,

which tells us using Lemma 3.2.1a that ¢(h) < pé¢, (j). On the other hand,
Lemma 3.2.1b tells us that o € Vd/)(th_l, so we must have i = ¢, (/). O

Theorem 3.1.5 may now be proven as a consequence of the description of the
elements above and their place in the unit filtration.

Proof of Theorem 3.1.5. For r < p — 1, the union of the disjoint images of the
functions ¢,, is exactly the set of positive integers congruent to r modulo p — 1.
Therefore, Theorem 3.2.2 implies that there exists an element of the A-module
generated by u, in V;(§) for each i =r mod p — 1. In particular, u, therefore clearly
generates V, as an A-module, which equals D) for r < p — 2, and it is free by
Corollary 3.2.3. Every element of D’~1 may then be written in the form n”’u‘;_l
withm € Z, and a € A, and such an element can clearly only be trivial if m is, and
therefore a is as well. Noting that our choices of 7 and u,_; as in Lemma 3.1.1
satisfy the desired relations, the presentation for r = p — 1 is as stated.

For r = p, the union of {1} and the images of the functions ¢,, and ¢,, is the
set of positive integers that are congruent to 1 modulo p — 1. Theorem 3.2.2 and
Theorem 3.2.4 imply that there exists an element of the A-module generated by
up, and w in V;(§) for each i = 1 mod p — 1. Thus, this A-module is D@ Our
choices of u, and w satisfy the relations of Lemma 3.1.2, and it follows from the
second statement of Theorem 3.2.4 that if either ¢ € A or d € Z,[®] is nonzero,
then so is cu ), +dw. O

3.3. Refined elements. In this section, we provide refinements of the elements
constructed in Theorem 3.2.2 and Theorem 3.2.4. We maintain the notation of
Section 3.2. We begin by constructing certain one-sided inverses to the monotoni-
cally increasing functions ¢ and ¢,,.

For any nonnegative integer a and positive integer ¢, let us set

(a); = max(a+ {t —a},1).

Therefore, (a), is the smallest integer greater than or equal to ¢ and a and congruent
to t modulo p — 1. Define ¢: Z>¢9 — Z>o by

Vi@ =[]

except forr = p—1 and a < p — 1, in which case we set {(a) = 0. For m > 0,
define ¥, : Z>0 — Z>o by

s =v([421] 1)
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Note that ¥ = .

Lemma 3.3.1. We have {,,,(¢,(j)) = j for all nonnegative integers j. Moreover,
for all such j and positive integers a, we have ¢, (j) > a if and only if j > ¥, (a).

Proof. First, note that ¢ (j) is congruent to r modulo p — 1, so we have
. )+1 i+6 —5—j}+1 .
R e R R i R E

unless » > p — 1 and j = 0, but one checks immediately that ¥ (¢ (0)) =¥ () =0
if r > p—1 as well. It follows that we have

V() =0 ([ FHERED] 1) = v = .

Therefore, if ¢,,(j) > a, then j = ¥, (¢, (j)) = ¥ (a), since 1, is nondecreasing.

To finish the proof, we need only show that ¢,, ({,,(a)) > a, since ¢, is nonde-
creasing (in fact, strictly increasing). First, note that the definition of v is such that
Y(a)=v¥({a),). Fori =r mod p—1 withi # 1, p — 1, the value ¢ (1 (i)) is the
unique integer between p|(i +1)/p] and p|[(i +1)/p] + p — 2 that is congruent
to r mod p — 1. This implies that

(@), if (a)y #—1modp, ora<r=p—1,

P (WY(a) = { (3.3.1)

(a); + p—1 otherwise,

which is, in particular, at least a. By definition of ¢,, and ,,,, we then have
1
b (@) = p" @ Wn(@) + 1 =12 p"[CEL] ~1 =2 0

We actually need a version of Lemma 3.3.1 with ¢, replaced by ¢, and ¥,
replaced by an appropriate function v, : Z>o — Z>, which we now define. Set
Y, =VYpifr <p—1land, ifr = p,let

wm(a) -1 if pm-i-l-H +pm <a< pm+l+1 +pm+1 — 1 for some [ > 0,

Y (a) otherwise.

Wa)::

Note that ¥/, (a) = ¥ (a) — 1 for r = p if and only if du(pl—1) <a< qb;n(pl -1
for some / > 0, in which case ¥/, (@) = p’ — 1. One then easily checks the following:

Corollary 3.3.2. We have s, (¢,,(j)) = j for all nonnegative integers j. Moreover,

m

for all such j and positive integers a, we have ¢,,(j) > a if and only if j > ¥, (a).
For the rest of this section, we fix a positive integer i with i =r mod p — 1.

Remark 3.3.3. Lemma 3.3.1 and Theorem 3.2.2 tell us that each a,, y,, ;) lies in V;.
Corollary 3.3.2 and Theorem 3.2.4 tell us that each B, ; with ¢ (i) = pl — 1 lies
in V;. These elements have the form (p”"bT/ + c)u, +dw for j = ¥, (i), where
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b€ Z,[®]— pZy[®],c e T/ A, and d € Z[®], with d = 0 if r # p. The same

results also show that no such element with j < v, (i) can lie in V;.

For any m > 0, define 6,,: Z>1 — Z>0 by

o =([ %)

By Lemma 3.2.1a and Lemma 3.3.1, the value 6,,(i) for i =r mod p — 1 is the
minimal integer j such that p”' T/u, € V;. In particular, 6,,(i) > ¥, (i) for all i.

Lemma 3.3.4. For all positive integers m and k with k < m, we have
Gt (W (D)) =8 = O (D) — 1,
with equality if and only if
P G (W () < (33.2)

Moreover, we have (i) > 0,,(i) — 1, with equality if and only if the equivalent
conditions above hold for k = 1.

Proof. Let us check the case that r = p and ¥, (i) = p! — 1 for some [ > 0
separately. First, suppose that p"+t/+1 < < pm++1 4 pm+l 1n this case, we have
¥, (i) =6, (i) — 1. We also have

G (WD) =gy (p' = 1) = pH + pf — 1=y (P 4 p ) > 6,4 (),
with equality if and only if

P G ) = p T T T < (333

Moreover, in the case that p™H+!1 — pm+l L 2pm < j < pm+i+1] the values

¢, (¥, () and pm*k“qﬁ,/c_l(x/f,;l(i)) are the same as in the previous case, while
Om—ir () — 1 and i are smaller. So, we may assume from this point forward that r
and i are such that v/, (i) = ¥, (i) and ¢, _, (¥,,(i)) = ¢r—1 (¥, (i)) for all k.

We claim that p™ ¥ T 91 Wn@)+1=8y, lies in V; ,_; for all positive k < m and
that p’”_k Tay. y,, ) liesin V; 1,1 for all nonnegative k <m. Note that T, v, ) lies
in V; 4,1 as a consequence of Theorem 3.2.2. Suppose that oMk Toy y,, i) € Vigp-1
for some positive k < m. We then have

p" KT IOy~ [ 11" K Ty, i) € Vi pots

m—k—+1

which also forces p Tag-1,y, i) € Vitp—1, since

P Ty i = 0" K Ty, ) + Lk ti-s,

[r]!
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proving the claim. In particular, since p™ T« y,,i) € Vitp—1, we have
mewm(l)"rlur c Vi+p71

as well. The definition of 6,,_, (i) now yields the desired inequalities.
Now (3.3.2) holds for a given k if and only if p’”_k“ak_l,,pm(,-) ¢ V;. Since

[r]' pak—],l//m(i) ~ T(i)k—l(lpm(i))_(sur’

this occurs if and only if p” ¥ T#-1Wn()=dy ¢ V. and, therefore, if and only if

=1 (Y (1)) =8 < Op—1 (D) — 1,

which must then be an equality. Also, ¥, (i) < 6,,(i) if and only if p" g y,.i) ¢ Vi,
which holds by Lemma 3.2.1a if and only if p"¢ (¥, (i)) < i, the same condition
as (3.3.2) fork =1. O

From now on, we set i,, = |'p’;m'| for all m > 0.

Lemma 3.3.5. For any pair of positive integers m and k with k < m, we have
& (Y, () = 8 = 0k (i) — 1, with equality if and only if

(1) ipre #0mod p,orr=p—1andi, = p,

2) ipge=r+1modp—1,butnotr =p—1andi, =1, and

(3) i = —j mod p"*€ for some 0 < j < p"T1k,

where € =0 unless r = p and imy1 = p' + 1 for some | > 0, in which case we set
€ = 1. Moreover, we have V,, (i) > 0,,,(i) — 1, with equality if and only if the above
conditions hold with k = 1.

Proof. The case that r = p and ¥/, (i) = p! —1 for some [ > 0 follows from the proof
of Lemma 3.3.4, noting that if i,,, | = p’ + 1, then it is both nonzero modulo p and
congruent to p+ 1 modulo p — 1, and the third condition of the lemma holds exactly
when (3.3.3) does. On the other hand, for the remaining i with v, (i) = pl—1, we
have i,,41 = p', and the fact that the inequality is strict was shown in the proof of
Lemma 3.3.4. So, we again assume that r # p or i is such that v, (i) # p! —1 for
alll > 0.

By Lemma 3.3.4, it suffices to determine the precise conditions under which
(3.3.2) holds. Let us set a = (i + 1),,,. It follows from (3.3.1) that we have

p" (@)1 — p ! if p{{a)r41. (33.4)
pa) 41+ p"(p —1) — p" 1 otherwise, o

P 1 (Y (i) = {
unless r = p — 1 and (a),+] = p, in which case

P e (Y () = p" T = pr T
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Aside from this exceptional case, (3.3.4) implies that p cannot divide (a),+ if
(3.3.2) is to hold. Moreover, if (a),+1 > a, then again (3.3.2) cannot hold, so for it
to hold, we must havea=r+1 mod p—1,butnotr = p—1 and a = 1. Assuming
that these necessary conditions hold, the condition that

P G (Y (D) = pa = p" T <
is exactly that i = —j mod p™ with 0 < j < p"~*+1, 0

For m > 0, we will define new elements «,, ; of V; that involve fewer terms
and easier-to-compute exponents of powers of T than the expressions for a, v, i)
and B,,;. In preparation, set o (m, i) = Llogp (p™iy —1i)] for any m > 0 such that
p™ti. Note that 0 < o (m, i) <m — 1 when it is defined and o (m + 1, i) is defined
and greater than or equal to o (m, i) whenever o (m, i) is defined.

First, supposing either that r < p — 1 or that r = p and i, — 1 is not a power
of p, we set

Km.i = P T Dy, (3.3.5)

ifi,Zr+1mod p—1, p|i,, i <p™, or p|i,unlessr = p—1andi, = p, and

m—1
Km,i=<p'"T9m<i>—‘—am,,~ 3 ka9k<">—1)u, (3.3.6)

k=0 (m,i)

otherwise, where a,, ; denotes the least positive residue of ({r +1—8 —6,,(i In!
modulo p unless r = p —1 and 6,,(i) = 1, in which case we take a,, ; = —1. In the
remaining case that » = p and i, — 1 is a power of p, we set

m—1

Km.i = <me9);z(i)—1 + Z kaQk(i)—l)ur +pm+10g,,(im+1—1)+lw‘ (337)
k=0 (m+1,i)

For consistency, we let a,, ; = —1 for such m. Note that Lemma 3.3.5 tells us
that each «,, ; has the form (,o’”TWn(") + c)u, + dw for some ¢ € TVnO+1 A and
d € Z,[®], with d taken to be zero if r < p — 1.

We give two examples for p = 5 and particular values of i.

Example 3.3.6. Suppose that p =5, r =3, and i = 11899. Then we have

2380 476
ko =T"""uz, k1;=pT" " us,

2795 475 2379 319 2795
k2i= (T —pT""> =T )us, k3 = (T~ — p"T)us,

kai = p*Tus, ksi=(p" — p*T> = p’T)us.
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Example 3.3.7. Suppose that p =5, r =5, and i = 92729. Then we have

18545 3708 18544
ko,i =T us, ki =T =T ™ us,

2741 3147 2740 3708
2, =p° T us, k3= (T —p"T"™ —pT”"")us,

429 54 428 7
Kkai=p T us, ksi = T "+ p T )us+p'w,

6 7
Kei=p Us+p w.

Remark 3.3.8. It is not hard to see from the definition of o (m, i) that o (m, i) > k
for k < m if and only if p™~* {i;. Moreover, if for a given k there exists m > k such
that o (m, i) is less than k or not defined, then p | ix so kx; = pXT% Dy, unless
r=pandiyy; —1is apowerof porr=p—1andi; = p. The previous examples
illustrate some of this.

Let us show that the «,, ; are actually elements of V;. In the process, we see how
they compare to the elements ,;, y,, ;) and B, ; previously defined.

Proposition 3.3.9. The elements ky, ; lie in V; for all nonnegative integers m.

Proof. Suppose first that 7 # p or i does not satisfy i,, = p' + 1 for any / > 0 (and
omitting the case r = p — 1 and ¥, (i) = 0, for which one should take the fractions
in the following two equations to be 1). If v, (i) = 6,,(i), then we have

- [r]! "o i)
m,i = ; m(i)»
T r=é=yYm O} ’

and this lies in V; by the definition of 6,,(i). If ¥, (i) = 6,,,() — 1, we claim that

~ [I"]' o(m,i)
r—o—ymn "’

Kim,i Qm—o (m,i), Y (i) - (3.3.8)

To see this, note that

m—o (m,i)
Km.i = pa(m,i) (pma(m,i)Tzlfm(i) — Z pma(m,i)kTGmk(i)l>ur.
k=1
It follows from Lemma 3.3.5 that 6,1 (i) — 1 = ¢r—1 (¥, (i)) — & if and only if
p’"‘"‘Jrl > p™i,, — i, and therefore if kK <m — o (m, i), proving the claim. (Note
that we the reason we do not have actual equality in (3.3.8) is simply that we took
am.; to be an inverse to {r —§ — ¥, (i)}! modulo p, not in Z; .) Moreover, we
have by Theorem 3.2.2 that &, ; € V; with t = p® ™)@, iy (Y (i)). Since
p°mD < pmi. —i, Lemma 3.3.5 implies that

Om—om,i)y Wm (@) — 8 = O (m,iy—1(1),

and Lemma 3.3.4 then states that ¢t > i.
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Finally, if » = p and i,,41 = p' + 1 for some [ > 0, then Lemma 3.3.5 similarly
implies that i, ; = p° ™10 B, o ni14y. By Theorem 3.2.4, we have in this case
that k,, ; € V; with

1,i ! .
1= pa(m+ l)¢;n_a(m+1,i)(P -1 =i

the inequality again following from Lemmas 3.3.4 and 3.3.5. ([

3.4. Generating sets. In this subsection, we give explicit minimal generating sets
of all of the A-modules V; in terms of the elements «,, ; of the previous section.
We begin with generation. Recall that § € {0, 1} is 1 if and only if r = p.

Theorem 3.4.1. We let S; = {k,,; | 0 <m < s} for

= [og, (56 |

If 2 <r < p—1, then S; generates V; as an A-module, while if r = p, then
S; U{ploer Ol generates Vi as an A-module.

Proof. Lett = (i +1),,, — 1. In the case that 2 <r < p — 1, we have ¥, (i) = ¥ (¢)
and ¥ (¢) > 0 if and only if ’piml >r+1,orm < logp(%). The smallest m such
that 1, (i) = 0 is therefore s. If r = p, then ¥, (i) = ¥ (1) — €, where €, € {0, 1} is
1 if and only if p!T! +1 <t < p'*!' + p — 1 for some [ > 0. In particular, we have
Y (t) > € if and only if # > 2p, so the smallest m such that ¥, (i) = 0 is again s.

It suffices to show that the images of our elements generate V;/V;4,_1. Suppose
that o = (pkaj +c)u, +dw € V; for some nonnegative integers j, k, b € Z,[P]—
pZy @), c € T'TA, and d € Z,[®] (withd = 0 if r # p). Let m = min(k, s).
Then j > v, (i) by Theorems 3.2.2 and 3.2.4 and Corollary 3.3.2 (and the fact that
Y. (i) =0), and we set

o =a—p"pTI VD, e VN (AT uy, w)).

If r < p— 1, we may repeat this process recursively until we obtain an element of
Vigp—1. If r = p, either ki ; € Aup, ot ki € o™ w + Au, for some [ > 0 with
i < p™HH 4 pmtL Since (T, p) p™ ' w C V,uiis2, there exists an element

o € Vi N(T/ T Au, +Z,[]w)

with «” —a’ € Viy,_1, and again we may repeat the process until we obtain an
element of V;y,_; plus an element of V; NZ,[®]w = Zp[¢]pr1°gp(i)1w. O

Lemma 3.4.2. [fm > 1 is such that 6,,(i) > 1, then 6,,_1(i) > 6,,(i{) + 2.
Proof. First, suppose that ,,(i) > 1, and note that i,,_; > p(i,, — 1) + 1. Therefore,

em_l(i)zw(p(z‘m—l)+1):im—1+LWJ—5. (3.4.1)
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On the other hand,

0, (i) = LWJ _s. (3.4.2)

In particular, 6,,(i) = 1 exactly when r +1 <i,, <r+ (6 + 1)(p — 1). In this case,

On—10)>r+1—-6>3=0,>0)+2.
In general, (3.4.1) and (3.4.2) tell us that

O () >im—1—8 and T 41—8>06,0),
P

and we have )
im—1—86>" 435
p

if and only if i, > %, which holds for i,, > r + p unless i,, =5, r =2, and
p =3, in which case 6,,_1(i) > 5 and 6,,(i) = 2. O

For each m > 0, let us set €, (i) = 6,,(i) — ¥,,(i), which lies in {0, 1} by
Lemma 3.3.4 and the remark before it. The following corollary is useful in under-
standing the form of our special elements.
Corollary 3.4.3. For every m > 0, we have v, (i) > ¥, ., (i), with equality if and
only if (i) = 0.
Proof. 1f 6,,41(i) > 1, Lemma 3.4.2 and the fact that €, (i) € {0, 1} for all £ imply that
V(@) >, ., (i). Otherwise, ¥, . (i) =0, and the inequality holds automatically,
with equality exactly if ¢, (i) = 0. O

We next show that the sets given in Theorem 3.4.1 are minimal unless r = p. It

is in the proof of this result that the refined elements «,, ; first hold an advantage of
ease of use over the elements of Section 3.2.

Theorem 3.4.4. Forr < p —1, no proper subset of S; generates V; as an A-module.
Forr = p, every proper subset of S; U{p"°& Ol w) that generates V; as an A-module
must contain S;.

Proof. Assume first that 2 <r < p — 1. Suppose that
N
> Cmkmi =0, (3.4.3)
m=0

where ¢, € A for m <s. We must show that no ¢, is a unit. We prove the somewhat
stronger claim that ¢, € (p, T*" O+1) for each m.

Fix a nonnegative integer m <s. If €,, (i) =0, then «, ; = P Ty, by (3.3.5).
If €,,(i) = 1, then (3.3.6) tells us that

K. = p" T D=1y, mod AT Oy, |
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noting Lemma 3.4.2. Set
Xm=tkeZ|m<k<s, @)=1, ok,i) <m}, 344

which is actually a set of cardinality at most one, though we do not need this fact.
Letk <s. If k € X, then (3.3.6) and Lemma 3.4.2 together imply that

ki = —agip" T D~ u, mod (p"+!, T Oy,

and if k ¢ X,,, they and (3.3.5) similarly imply that «; ; € (p"*+!, T%O+1)y, . Thus,
(3.4.3) yields the congruence

cnp" TV = 3" crar i p" T O~ mod (p*!, TO0OFY), (3.4.5)
keX,,

If the claim holds for all k¥ > m, then we have ¢; € (p, T2) for each k € X,,;, so
cm € (p, T DT as desired.

If r = p, a completely analogous argument shows that at most p°& @1y is
unnecessary for generation, if one works modulo Aw = Z,[®]w + A(¢ — Du,
throughout. Here, one should replace X,, by

X, =tkeZ|m<k<s,&@i)=1,0"(k,i) <m}, (3.4.6)
where we set o' (k, i) = o (k, i) unless iy, = pl + 1 for some / > 0, in which case
weseto'(k,i)=oc(k+1,10). O

For the purpose of completeness, we also give the precise condition on i under
which no proper subset of S; U {p°¢» 1y} generates V; in the case that r = p.

Proposition 3.4.5. Forr = p, the set S; generates V; if and only if iy = p + 1.

Proof. To determine whether p°2 @1y is or is not necessary, we work in distinct
ranges of i separately. Note that the definition of s forces 2p* <i < 2p**1.

Case 1: 2p* < i < p*T!l. In this case, all of the elements «,,; lie in Au,, and
therefore p**!w is necessary.

1

s+1+ps_ps— .

Case2: p'tl<i<p In this range, we have
Ki=pup+p T w and w1 =p TP U, + o w,
Note that (T — p)is.; = p*(T — p)up + p* (@ — Duy, = p°(T — p)u,, s0
pTu,= p”lup mod Ax,; and p'u, = —p**w mod Ak ;. (3.4.7)
Applying these to pk;_1 ;, we obtain
prs—1,i = p TP u, 4+ P = (=P + p* ) w mod Ay,

which in particular tells us that p*+*2w € A(ky_1., Ks.i).
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Case 3. p*t'+ p* — p*~! <i < p**t! + p*. In this range, we have
s—2
Ks,i=psup+ps+1w and  Ky_1;= (,OSlTpl—l- Z /OkTek(l)l)up—f—,Ole
k=0 (s,i)

with o (s, i) < s — 2. Moreover, k;, ; € Au, form <s —2.
Set v, = p*T% Dy, for all nonnegative k. We note that v, ; € A(ko,;, . .., Km.i)
form <s —2: If ki # Vim.i, which is to say €,,(i) = 1, then

m—1

Vi = Ty i + Qi E Vk,i

k=0 (m,i)
Let j = 6;_»(i) — p, and note that j > p> — 1 > 2. Since
Tikg 1= ps_lTG"*Z(")_lup + 0T/ w mod AW (s,i)iis -+ s Vs—2.0)
and pk“ Tgk(i)_lup € Avyyy,; for all k with o (s, i) <k < s — 3, we therefore have
(o—T)ks—1,;=p T up+p T (o—T7 )w mod A(s(siyis - - - s Vs—2.1). (3.4.8)

Using (3.4.7) to reduce (3.4.8), we see that

(0 —THis—1i=p" (1= pP 7 = p/"Hw mod Ao .iy.ir - - - Vs—2.is K5.i)s
which implies that p**?w € A(ko;, ..., Ks.i).
Case 4: p**1 4+ p* <i <2p**!. In this case, all of the k,, ; with m <s — 1 lie in
AT"?u,, and so for p* 2w to be unnecessary, there would have to exist ¢ € A such
that

cksi = p* 2w mod AT?u,. (3.4.9)

Note that cx; ; = c(psup+,os+l w) mod ATzup, which forces ¢ = T?¢’ mod (¢p—1)
for some ¢’ € A. This means that

CKy = ¢ p*Hw mod Aup, (¢ — Hw),

but p* 2w ¢ A(p*w, (¢ — DHw, u,), so (3.4.9) cannot hold. O

4. The finite level

4.1. Norms and eigenspace structure. In this section, we explore the consequences
of the results of Section 3 for unit groups of actual abelian local fields of character-
istic 0. Fix a positive integer n. Recall from the introduction that F), is the field
obtained from E by adjoining the p”th roots of unity and that U,, ; denotes the rth
unit group of F, for t > 1. As before, we set I', = Gal(F},/ F}).
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For positive integers m > n, let N, , and Tr,, , denote, respectively, the norm and
trace from F,, to F,. We also let N, denote the restriction map N,: F* — F. on
norm compatible sequences. Recall that A,, = N,(A) =1 — {,n, where ¢, = N, ()
is a primitive p"th root of unity. We require a few preliminary lemmas.

Lemma 4.1.1. One has
k— -
Trn+1,n()&5+1€) = pkﬁ ¢ mod p?
forallk > 1and e € {0, 1}.
Proof. An easy calculation shows that
t
L)

Trn+l,n()‘-2+1) =p Z(;j>(_§p")j
j=0

for every ¢ > 0. The result follows since

(1”‘_6)— k_e)p(lﬁj)(ij)—(k_e) dp? f i>0. O
»j _< i [l & )={"; )modp” foranyj=0.
pls

Let e, = p"~'(p — 1) denote the ramification index of E. In applying Lemma
4.1.1, it is useful to make note of the fact that

p=—1 mod A" 4.1.1)
Lemma 4.1.2. Fort > 1 and any unit n in E, one has
1vn+1,n(1 + 77)\;[1+1)
1+ 7Pl mod ALF! ift <p"—1,

=11+ @7 =l " mod Al T ifr=p"—e e (0,1},
1 — nA& 7€ mod pGr e ri—e ift = pk—e> p", € €{0,1}.

Moreover, we have
Npg1a(1+nAl, ) =1 mod A& tl/7]
forallt > p".

Proof. The jump in the ramification filtration of Gal(F, 1/ F,) occurs at p" — 1.
By [Serre 1979, Lemmas V.4 and V.5], we have

Nusta(L+nh, ) =140 T, (0, ) + 172, mod pentl20/p),
Trys1,0(A,4 1) =0 mod A& TL/P),

The result is then a corollary of Lemma 4.1.1, upon applying (4.1.1). (]
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Let D, be the pro-p completion of F,*, and let D" = D¢ for any r € Z. As
before, we fix r with 2 <r < p, and i will always denote a positive integer with
i=rmodp—1.LetV,; =U,=U,;N D" for any such i. These V, ; are all
modules over A, = Z,[I", x ®]. As in Lemma 2.1, we have isomorphisms

Vn,i/Vn,i+p—1 - [Fq

that send 1 + xA, for some x in the valuation ring of F, to the element X of [, that
is identified with the image of x in the residue field of F, under the isomorphism
fixed in Section 2. We may then set Vn/,l. = Vi — Vit p—1 and define V,, ; (n) for
n € F)* as the set of elements 14 x2;, with ¥ = 7.

We have the following consequence of Lemma 4.1.2.

Lemma4.1.3. Foranyt>—1,we have Ny 1, (Vi1 pr41) € Vo, prvi—(p—D)La+1)/pJ»
with equality for t > 0.

Proof. Note that Lemma 4.1.2 yields Ny, 1, (Ups1,pr4 pk—e) = Up, pri—e for all
k>0 and € € {0, 1} with k > €, since every element in U, pn;,— can be written as
a product of elements of the form 1+ Al * with ¢ >k—eandn, €lf,. (Fork=0

and € = —1, it tells us just that any element of U, 1, has anorm in U, ,n_1.)
Note that
& &

Uy pnsi—e = Vnprak—err—kve—1y  and Uy o o= Vi pig ph—et (r—k+e—1)-

For any ¢ > 0, we may write t = pk — € +{r —k +¢€ — 1} for some %, €, and r, and

we have
t+1

4
The next corollary is almost immediate from Lemmas 4.1.2 and 4.1.3, so we
leave it to the reader.

t—(p—l)L J:k—e+{r—k+e—1} 0.

Corollary 4.1.4. For any unit n in E, one has

Not1n(Vapr,im) S Vi P =) ifi=p" =1,
Vo, prak—1(=n) ifi = p" + pk —1 for some k > 0,

with equality ifr # p —1ori > p".
As for the p-power map, we have a well-known and easy-to-prove fact:

Lemma 4.1.5. Suppose that i > p"~'. Then the pth power map induces an isomor-
phism V, ;i = V, ite,, and we have V,, j(n)? = Vy iye,(—n) for all n € I]:;.

Next, we discuss the restriction map from the field of norms to the finite level.
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Proposition 4.1.6. The map N, induces maps N,,: D" — D,S’) that are surjections
forr # p—1 and which have procyclic cokernel forr = p — 1. For n € F*, we have

Vi(n?™) ifi <p"—2,
NaViD) S Voo " =™y ifi=pt—1,

—n—1

Vo, prak—1(=nP ") ifi = p" + pk— 1 forsome 0 <k <e,.
Moreover, we have induced maps V;/ Viz1 — Vy.i/ Va.iv1 foralli < p", and these
are isomorphisms fori # p" — 1. Fori < p", we have V,; = N,)V; ifr #p —1,
and V, ; | N,,V; is procyclic ifr = p — 1.

Proof. That the cokernel of N,, is trivial if r #= p—1 and procyclic if r = p—1 follows
easily from local class field theory, but it is also a consequence of the argument that
follows. The first jump in the ramification filtration of Gal(Fs./F, 1 1) is at p"+t1 —1.
In particular, for ¢ less than this value, repeated application of Lemma 4.1.2 tells us

—n

-y t+1
Mgt mod A

Ny (149A) = im Ny, (1497 "2y =1477 Y
m—0Q

Moreover, repeated application of Corollary 4.1.4 followed by two applications
of Lemma 4.1.3 tells us that Nn(Vpn+1_1+{,}) C Vi, pte,—1+{r})- An application of
Corollary 4.1.4 then yields the stated containments.

Since n?" and —n? "' run through all elements of F, as n € F, varies, we
obtain V,, ; = N,V; + V, iy p—1 foralli < p” but p" — 1. Noting Lemma 4.1.5, this
implies

Viitke, = NnVpki + Viitke,+p—1

for p"~! <i < p" withi # p" — 1 and k > 0. Note that every element of every

Vp,i may be written as an infinite product over j > 0 of one element from each
of a fixed set of representatives of the V,, i1 j(p—1)/ Va,i+(j+1)(p—1)- Thus, we have
N,Vi=V,isolongasr #p—1.

If r = p — 1, we can choose an element z,, of V, ,»_1(§) that is not a norm. By
the formula proven above for N, (1 + nk”"‘l) modulo A}, we have

k
Vn,p"—i—ken—l =N, Vpk(pnfl) + Vn,p”+ken+p—2 + (Z,I; )

for k =0, and then for all k£ > 0 by taking powers. Therefore, V,, ; /N, V; is generated
by z, forall i < p” withi =0 mod p — 1. ([

The following structural result is again essentially found in [Greither 1996],
without the stated congruences. Here, we derive it from more basic principles.

Theorem 4.1.7. For r < p — 2, the A,-module D is freely generated as an
Ap-module by an element u,, , € V, (§). The A,-module D,(,p_l) has a presentation

(r-1 _ _ —1 _  No _ Nr, _ . 1-
an - (nn,un,p—l, vn | ny(f _n—nan;}l’ _un’p_la v;: - vn’un’;_l _vn ¢>,
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2—n
where v =v) =1+ p& mod p? is mdependent ofnandu, p_1 €V, p,—1(§) for
n>2,whileuy ,1 €V, p_1(§ — EP ) The A,-module D(p) has a presentation

1- 1
D = (up p, wy | w) =77 =uf )

with uy, , € Vy (&) and wy, € V. 1(—€) such that w® = ¢ .

Proof. We set u, , = (Nyu)?", m, = Ny, and w, = (N,w)?" with u,, 7, and
w as in Theorem 3.1.5. It follows from the surjectivity of N, for r # p — 1 in
Proposition 4.1.6 that the element u,, , generates D( " for r < p — 2, while the
elements w, and u, , generate D(p ) By Hllbert s Theorem 90, the kernel of N,
consists exactly of elements of the form «?” ~! with @ € D, and therefore it
follows that D,(f) is free of rank 1 on u, , over A, for r < p —2 and that D,ﬁ” )
has the stated presentation. (That u; , € V| ,(§) requires a simple check using
Propositions 3.1.3 and 4.1.6.)

The elements 7, and u, ,_ automatically satisfy the first two relations in the
desired presentation of D,sp U In particular,

Nryxe _ _(y—DNr, _
n,p—1 — TTn =1,

so Hilbert’s Theorem 90 tells us that u p | = 1 ¢ for some v, in the pro-p

completion of E*. By Proposition 4.1.6, we have

Nl—-n n—1 n—2

" =1+ E" =& )20 mod Al

Noting (4.1.1), we may in fact choose v, =1+ pe"2(£) mod p? with v = v,‘fH

independent of n.

Hilbert’s Theorem 90 and Theorem 3.1.5 tell us that the A,-module generated by
Up,p—1 is isomorphic to A, /(Nr,x). By Proposition 4.1.6, the cokernel of N, on
DY is isomorphic to Z,,. We claim that the i image of v topologically generates
this cokernel. If this is the case, then clearly D(p D 1s generated by 7, Un p—1,
and v, and any solution with b,d € Z, and c € A, to n? 1vd = 1 must satisfy
b=d=0andceZ Nl",,x@-

It remains only to demonstrate the claim. Suppose by way of contradiction
that there exists a € A, such that x = vuj np—1 is a pth power in D,(zp_l). This
implies that x¥~! = ua(; }) is a pth power in the A,-module generated by u, ,_.
It follows that a(y — 1) € A,(p, Nr,x®), which forces a(y — 1) = 0 mod p, so
a € A,(p, Nr,). It then suffices to show that

nnp

bNr, ol 2(1—¢)

vun’p_l =

is not a pth power in F, for any b € Z,[®]. If it were for some b, then vVe and
hence 1+ p would be a pth power in F), as well, but this is clearly not the case. [
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4.2. Special elements. We assume for the rest of the paper that n > 2, the case
that n = 1 being slightly exceptional but also completely straightforward. In this
subsection, we construct special elements in the groups in the unit filtration of F,*.
Aside from the case that r = p — 1, these arise as restrictions of the elements
introduced in Section 3.2.

Note that Z,[T",] = Z,[T1/(fu), where f, = (T + 1)1”"_l — 1. Of course, we
can then speak of the action of T on an element of D,S”. Once again reverting to
additive notation, the following is now an immediate corollary of Theorem 3.2.2
and Proposition 4.1.6.

Proposition 4.2.1. Let m and j be nonnegative integers with ¢,,,(j) < p" —1. Define

m
1 . i _ N
Qn.m,j = W({r — 48— J}' IOmT] - me kT¢k71(]) (S)un,r,
k=1

unless j =0 and r = p — 1, in which case we replace {r —§ — j}! with —1 in the
formula. Then oty 1, j € Vi g,.(j)(§). Furthermore, (p"bT! +)u,, ¢ Vi, m()+p—1
forall b € Z,[®]— pZ,[®land c € T/ A,.

/ .

For nonnegative m <n —2, define ¢, ,: Z~0 — Z>o by ¢, ,,(j) = ¢,,(j) unless
r=p—1and j =e,_,,_1, in which case we set

Dpm(€n-m—1) =en+p" ' —1=¢u(en—m1)+p"(p—1).

For nonnegative k, define %4 =1+¢ ' +..-+¢ % and ;= 1 for j > 2. Note
that 9, x € pZ,[®] if and only if k = —1 mod p|®P|.

By Theorem 4.1.7, every element of V, ,_| may be written as cu,_ ,_1+dv with
c€ A, and d € Z,, and this representation is unique up to the choice of ¢ modulo
Nr,xe. Fora,be D,(f), we again writea ~b ifa,b eV, ;(n) for somei and n € I]:qx.

Theorem 4.2.2. Let m < n — 2 be a nonnegative integer, and define

m
m—k n—m-+k—2 —1)+ k_]
Wp.m = E 1% ﬁnfm,k TP (p=D+p Up,p—1 — V.
k=0

Then we have wy m € V,, o, 1 prt1_1(§). Furthermore, if j > 0 with ¢, (j) < p", then
(mejb =+ C)un,p_l +dv §§ V¢;Lm(j)+p_1
forallb € Z,[®] — pZ,[®),ce T''A,,and d € Z,,.

Proof. Let [ be a nonnegative integer with [ < m. We define

1
—k n—m+k—2 —)+ k_l
Wy m,l = me ﬁn—m,kTp (p=Dtp Up,p—1 — V. 4.2.1)
k=0
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We claim not only that w, ,, = ©Wp m.m € Vn,en+pm+|_1(§), but that, for [ < m,

Vn,en-{-pm“—pm*’ (ﬁn—m,l+l‘§) ifp)fﬁn—m,l—i—l,
Vi ent i — pm—i-1 &) if plP—m.it1-
We note, to begin with, that w, ;1 € Vi e,+p—1, since Lemma 3.2.1a implies

Wy m,l € {

Wym,l TV~ /OmTen_m_] Up,p—1 € Vn,en (_‘i:)

For a given i, we take V,, ;(0) to mean V,, ;4,1 in what follows.
If p{9Y,—m,, then Lemmas 3.2.1a and 4.1.5 imply that

m—1 n—m-+1—2 —1)+ 1
Twn,m,l ~p ﬁnfm,l T? (p=D+p Un,p—1

ifl <m,m=0,orm <n—2, and we have

Tanm; € {Vn,e,,+pm+l+pm1(p—2>(—2 ifm<n—20rm=0. ",
Vo, prgpr-t=1(p—2) (D297 &) ifl <m=n—-2.
On the other hand, if p | ¥,_,, ;, then we have Tw, ;.1 ~ T Wy m.1—1, SO We can still

apply (4.2.2). Moreover, since 192,,,,3<p_1 — U p—2 =—1 forn > 3, we have
n—3 n—2
Twy 2~ )0192,}1—3Tp Up,p—1+ Z?Z,n—ZTp Up,p—1 € Vn,p"+p—2(_é)-

We prove our claim by induction on m. In the case that m = 0, we have that
Twpo € Vye,+2p—2(—§) by (4.2.2), and we have seen that w, 0 € V;, ¢,4p—1, SO
Proposition 2.5 forces w, 0 € Vi e,+p—1(§). For m > 1, that w, ,, € Visentprti—1
follows from the claim for / = m — 1 and the fact that

_ e_1+p"—1
Wn.m — Onmm—1 = 19n—m,mT n=1TP Un,p—1

is an element of V, ., \ m+1_, (= Fn—m m&). Since Twpm € Vy ¢ 4 pmtiq p—2(—E),
an application of Proposition 2.5 would then yield that w, ,, € V, ¢, 4 pm+1-1(8).
So, to perform the inductive step for [ < m, we assume that either p t 9, ;41 Or
I =m — 1, since otherwise wy, | ~ Wy w141 and [ +1 < m.

By Lemma 4.1.5 and induction, we have
Nn,n—l(a)n,m,l)
V126, 14pn—pr-t-1 (=On—m+1§) il <m—1,
Vi—1,2¢, 1+ pm—pn-1-1(—§) ifl =m—1.
Let i be such that w, , ; € Vn/’l., andsetr =e¢, +p’"+1 — pm_l. By Lemma 4.1.3, we
have both that i <¢+ p—1 and that there exists x € V,:’t with N, ,—1(x) = pwn—1.m—11-
Hilbert’s Theorem 90 implies that x — w, n; € Ay fu—1tn, p—1. Note that

= pWn—1,m-1, € { 4.2.3)

n—2
pfn—lun,p—l ~ pr Up,p—1 € Vn,p”—i—p—Za
while wy n,; & Vi, pryp—2. It follows that

X~ wpmi+ ngun,pfh (424)
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for some b € A, with b ¢ (p, T) and g > p"~2. Since bT4u, ,_1 € Vn/,q&(g-‘rl) by
Lemma 3.2.1a and both Tx and T wy, ;,; lie in V,, ;1 ,_1, the latter by (4.2.2), we
have ¢ (g +1) > t and hence ¢ (g) > ¢. Therefore, we have bT%u, ,—1 € V,;, and
(4.2.4) now forces i > t, which means that i € {r,t+ p — 1}.

If ] < n— 3, then Lemma 2.2 forces i = ¢ in order for (4.2.2) to hold. If
l=n—-3andi=t+4 p—1, then Proposition 2.5 and (4.2.2) force w, ,—2.,—3 to be

in Vn,pn_l(—ﬁz’n_gq)_lé). By Corollary 4.1.4, this implies that

-1
Nun—1(@nn—2n-3) € Vo126, 14 pr-2-1(D2n-3¢" ),

and then (4.2.3) tells us that p | ¥ ,—2 and W, 42,13 € Vi, pr—1(8).
If i =¢, then Lemma 3.2.1a implies that

m m—I—1

~—dT PPy, (4.2.5)

Wn,m,l

for some d € Z,[®] — pZ,[P]. Set

m—Il—1

en_14+p"—
Z = Wnp,m,l +dTe-1TP Tk Up p—1 € Vn,t+p—l-

By (4.2.2) and Lemma 3.2.1a, we have Tz € V,, ;42(p—1)(—d'§), where d' = d if
l<n—3andd =d— 192,,,_3g0_1 if [ =n — 3. We therefore have z € Vn,,ﬂ,_l(d/é),
and then

n,n—l I’l—l,2€n,1+ m__ ym—I—1— ls)
N, () eV, i pm-i-1(—d

by Corollary 4.1.4. On the other hand, we have

Nn,n—l(T€n71+pm_pm7[71un,p—l) = ¢T€’171+pm_pm7171un—l,p—l S Vn—l,t,
so we have N, ,—1(2) ~ Ny p—1(@Wn.m.1). By (4.2.3), we then have d = &,_p, 141.
If p|¥n—m.1+1, then I =n — 3 by assumption, and this contradicts our assumption
on i and implies the claim for w, ,_2 ,—3. Otherwise, we have already shown that
i =t,and (4.2.5) and Lemma 3.2.1a yield the claim.

Suppose now that j >0, b € Z,[®]— pZ,[®],c € T/ T A,, and d € Z,, are such
that ¢,,(j) < p" and

w=(p"bT’ +c)uy p—1 +dv e v,

for some i > ¢;, ,,(j). We suppose that ¢,,,(j) > ey, as the result otherwise reduces
to Proposition 4.2.1. For m = 0, if (bT/ + Cup,p—1 7 —dv, theni = e, or
i=¢(j)< ¢;’0(j). Otherwise, we must have j =e,_1, and since Ta)Nij“u,,,p_],
the argument of Lemma 3.2.1b tells us thati = e, + p — 1.

For m > 1, we rewrite ¢ as pc’ + T"v for some 4 > j+ 1 and ¢/, v € A, with
v ¢ (p, T). Note that ¢, ,,(j) = p¢,,_; ,,_1(j) + p — 1. By induction, we have

(P"'bT7 + ) pup_1 po1 +dv ¢ V1.6, 1 1 (D+p—1-
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The pth power of this element is the norm from F, of
o =w—T"vu, ,—1 = (p"bT’ + pcu, p—1 +dv,

and ' & V,, ¢

n,m

(j)+p—1 by Lemma 4.1.3. If " € V;, ¢ (), then the fact that ¢;, ,, (/)
is —1 modulo p and therefore not a value of ¢ implies that @' % —T"vu,, p—1, SO
we have i = ¢, , (/).

So, assume that w'¢ V,, ¢/ ;). Then o ~ —Thvun’p_l, and Lemma 3.2.1a im-
plies that ¢ (h) < ¢, ,,(j) < i If o ¢ Vu.sn+1), then we must have

i=¢ph)+p—1=¢,,0).

So, we assume moreover that € V, 41+1), in which case Tw' ~ —Th“vun’p_l.
Since Tw' is a power of p, either ¢ (h + 1) is divisible by p and less than p",
or ¢(h + 1) > p". In the former case, unless ¢ (h + 2) > p", we would have
T?w' € Vug(ht1)+p(p—1) and then T?w € V., snt2) contradicting € Vy ¢ 41y We
therefore have ¢ (h+2) > p” in both cases, so T’ € V,, ,»_,. By Proposition 4.2.1
and the fact that ¢,,(p""~!) > p", this forces j = p" "' — 1. If m <n —2, then

pr—p<¢M+p—1=¢, ,()=¢u()=p"—p"+p" -1,
which is a contradiction. We therefore have m =n—2and j =p —1, so
pr=1=¢,, 2(p—1>¢2(p—1),

which, noting Proposition 4.2.1, implies that p { d and then, noting Theorem 4.1.7,
that w ¢ pD,(,p_l). In particular, w ¢ V,, pnqp_2,50i = p" — 1. ([

Remark 4.2.3. Note that ¢,_1(0) = p" — 1 < p" as well, but in this case, the
element urjx;"ff = 1 has the form (p"~'b + ¢)uy, p—1 with b € Z,[®] — pZ,[P]
and c e TA.

For r = p, the following is a consequence of Theorem 3.2.4 and Proposition 4.1.6.
Proposition 4.2.4. Let m and | be nonnegative integers with ¢,,(p' — 1) < p™. Let

m
I IV
,Bn,m,l = (mep 1+ E ,Om kT¢k—1(p D l)un’p+pm+l+lwn'
k=1

Then Bpm,1 € Vi g (pi—1)(—§) unless | =n —1 and m =0, in which case By 0,n—1 €
Vi, pr (51’_1). Furthermore, for any j > 0 with ¢,,(j) < p", we have

(pmij +C)un,p +dw, ¢ Vn,min(¢’ (H+p—1,p"+p—1)

m

forallb € Z,[®] — pZ,[®], c€ T/T'A, and d € Z,[D].



186 Romyar Sharifi

4.3. Generating sets. In this final subsection, we turn to the task of finding small
generating sets for the groups V,; as A,-modules. First, we define the refined
elements that will be used in forming these sets.

Suppose that i < p” and

i+1 )—‘
0=m= Pogl’(r+1+5(p—1) '

Aside from the case thatr = p—1 and p™ <i—e, < p’"“, we set Ky m.i =" Npkm i,
which can be written down explicitly as in the formulas (3.3.5), (3.3.6), and (3.3.7),
but now with u, replaced by u, , and w replaced by w,. By Propositions 3.3.9,
4.1.6 and 4.2.4, we have ky, j.i € Vi i.

Ifr=p—1and p™ <i—e, < p™*!, then we set Ky m.i = @p.m.m—o (m+1.iy With
®y.m, forl > 0 defined as in (4.2.1). Then «,, ,,.; € V; by the claim in the proof of
Theorem 4.2.2. Moreover, we have

m
Kn,m,i = Z pkﬁn—m,m—kTek(i)_lun,p—l -V, (431)
k=0 (m+1,i)
since 6, (i) = p" " 2(p -1+ p"Fifk>om+1,i0).
Our next result is the analogue of Theorem 3.4.1 at the finite level.

Theorem 4.3.1. Let i1 be the smallest nonnegative integer for which i < e, + p".
Let

i—upe,+1 >‘|
r+1+8(p—1)/ 1
If2 <r < p—2, then the A,-module V, ; is generated by S, ;. If r = p — 1, itis
generated by S, ; U {p*v} ifi < (u+ 1)e, and S,; otherwise, and if r = p, it is
generated by S, ; U {ptHT1ogpi=renly, 1

Sni ={P"knmi—pe, |0 <m <s}, where s = [logp<

Proof. Suppose first thati < p". If r # p—1, then V,, ; = N, V; by Proposition 4.1.6.
For such i, the generation then follows immediately from Theorem 3.4.1.

Similarly, if r = p—1, then v € V,, ., (—&) generates the cokernel of N,,. If i <e,,
then S, ; U {v} generates V, ; by a similar argument to that given in Theorem 3.4.1
(or by Proposition 4.1.6 and Theorem 3.4.1 itself). If e, <i < p”, then similarly
Sn.i U {pv} generates V, ;, but we now claim that pv is in the A,-submodule
generated by S, ;. To see this, suppose that m <n—2 is such that p” <i—e, < p"*1!.
Note that A, S, ; contains v, x; = p*T% Dy, , | foreach 0 <k <n—1. (If kpx
is not this element, one can multiply it by 7 and subtract off multiples of the v, j ;
for h < k to reduce it to this form.) Noting (4.3.1), we have

m
2 : i)— i)—1
PV = —PKn m,i + ﬁnfm,mfkTek(l) Ore1 ) Vn k+1,i S AnSn,i-
k=0 (m+1,i)
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In the case of arbitrary r and i, Lemma 4.1.5 tells us that V,,; = p*V,, ;_ ., , and
we again have the desired generation. ([

Remark 4.3.2. Fori < p”, the integer s in Theorem 4.3.1 is unique such that i lies in
the half-open interval [(r +1)p*~!, (r +1)p*) if r < p— 1 and [2p*, 2p**) if r = p.
Since S, ; has s + 1 elements, the generating set S,/l’ ; provided in Theorem 4.3.1
has at most n + 1 elements. Since S, ; = p”S, ;. the latter statement holds for
all i. In fact, for i > p"~!, the set S,/Li has either n or n + 1 elements, depending
for each r on which of two ranges i lies in modulo e,,.

Finally, we prove a slightly weaker minimality statement than Theorem 3.4.4,
since in the finite case there are many values of i for which the analogous statement
to Theorem 3.4.4 is simply not true, so longasr < p — 1.

Theorem 4.3.3. Every generating subset of the generating set for V,, ; of Theorem
4.3.1 is of cocardinality at most one.

Proof. We maintain the notation of Theorem 4.3.1. By Lemma 4.1.5, the p*th
power map defines an isomorphism V;_,., = V;, and S,,; = p*S,i—pe,. We
therefore assume that i < p” for the rest of the proof. Note that we have

O (i) < p" k! (4.3.2)
forall0 <k <n—1, and we have 6,(i) = 0.

Case r < p—2. In this case, N, induces an isomorphism D" /f, D) = D,(,r), SO
Proposition 4.1.6 tells us that V,, ; = V;/(V; N an(’ )). In other words, a subset Y,
of S, ; will generate V,, ; if and only if the subset Y of S; lifting it has the property
that Y U{ f,u,} generates V; + f,,D(’).

Recall that

n—1

n—1
fn= Zka””ikil mod (p"~'T?, p"72T?P, L T,
k=0

Noting (4.3.2), we have
fu=p TP mod (pmt!, T OH) 4.3.3)
foreachO <m <s. Letusset =(p,T,¢—1) and I,, = (p, THtem@) ¢ —1) for
the remainder of the proof.
The analogue of (3.4.3) in our current setting is

> Cokm.i = bftty (4.3.4)

m=0
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for some ¢,, € A and b € A. Given a solution to (4.3.4), we claim that there exist
qr € Z,, for k < s, independent of the solution, such that

cr = qrbT*D mod I, (4.3.5)

Of course, only those «, x; for k such that p 1 gx and €;(i) = O can possibly be
Ajy-linear combinations of the others. If k is such a value and we suppose that
cr = 0, then these congruences force b € I and therefore c,, € I for every other
m < s, proving the result.

We turn to the proof of the claim. In our current setting, (3.4.5) becomes

cap™ =0 mod (p"*!, T)
for m =n (if s = n, since 6,(i) = 0) and

emp" TV = Z cxag.ip" T O~ pppm TP mod (p+!, T Oy (4.3.6)
keXy,

form <n—1, with X,,, as in (3.4.4). In the case that s = n, the claim for k = n is then
immediate. Moreover, supposing that we know the claim for k withm +1 <k <,
the congruence (4.3.6) implies that

Cn = Z qrag ;bT® +5T7"" D mod I,
keX,,

upon application of (4.3.5) for k € X,,. As €,(i) < p" "' —,,(i) by (4.3.2), we
have the claim for k = m as well.

We remark that if 6,, (i) < p"~"~! for all m <n—1, which is to say thati < p"~!r,
then we obtain recursively that p | g, for all m <s. In other words, S, ; has no
proper generating subset for such i. This is useful in the following case.

Case r = p. In the case r = p, we have 6,,(i) < p" ! forall m <n — 1 and all
i < p" (since 6 = 1), and the analogous argument working modulo Aw and using
the set X, of (3.4.6) shows that any subset of S, ; U { plog, 1y, 1 that generates
Vi must contain S,, ;.

Case r = p — 1. Finally, we consider the more subtle case that »r = p — 1. In this
case, s <n — 1. Recall from Theorem 4.1.7 that

fol/fn fol = Anun,pfl = An/(Nan<1>)

and A,v = Z,v + Z,[®]|Nr,u,, ,—1. Note that Nr, lifts to T_lfn in A. As in
(4.3.3), we have

m—1 m+1 TGm(i)-H)

T f=p"T""" ~' mod (p
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forO<m <n-—2and
T fu=p" '(1—1T) mod (p", T?). (4.3.7)

Range i < e,: In this range, every k, ,, ; lies in A,u,, so v is in particular necessary
to generate V, ;. We also have 6,_1({) =0 and 6,,(i) < e,_p—1 forallm <n —2.
Consider the following analogue of (3.4.3):

N

> Cmkimi =bT ™ fuup_y. (4.3.8)

m=0
As before, we claim that there exist g, € Z,, for k < s, independent of the solution
to (4.3.8), such that (4.3.5) holds, from which the result follows in this range.
The analogue of (3.4.5) for m < s in the current setting is
e p" TV @
= Z cragip" T O~ L ppm TP "' =1 mod (pmtt, T Ty (4.3.9)
keX,,

If s=n—1, we then obtain ¢,_; =b mod I. If s > n — 2, we have
Cphon = pr_l_Giz—Z(i)+€iz—2(i) mod Iniz,

and hence the claim for k =n — 2. For m <n — 3, we have 6,,(i) < p”_’"_1 -2,
and assuming the claim for m 4+ 1 < k <5, we see recursively using (4.3.9) that

Cn = Z qkak’ibTe”’(") mod I,,,.
kEXm

Range e, <i < p". Inthisrange, s =n—1, 6,1() =1, and 6,_,(i) = p. Let
| <n — 2 be such that pl <i—e; < pl“, SO Ky 1.; 1s the lone element of S, ; that
does not lie in A,u,, ,—1. Thus, if we were to have

n—1
Z den,m,i =0 (4310)
m=0

for some d,, € A,, then we would have to have d; € A,,(T, ¢ — 1) in order that
dikn i € Anun,p_p Let

1
K= Z o7 On g1 T Oy
j=o(+1,i)
so that Tk, ; = (p”NnKl/’i. Let K’/n’i =k, form <n—1withm # .
Now (4.3.10) implies that
n—1
> ek =T futtpy mod Alp — Dty 4.3.11)

m=0
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for some b € A and where ¢, € A reduces to d,,, for m # [ and ¢; € A is such that
T ¢; reduces to d; modulo A, (¢ — 1). Similarly to before, we claim that there exist
gm € Z,, for m < n — 2, independent of the solution to (4.3.11), such that (4.3.5)
holds, and that b € [ if and only if ¢,—; € I. From this, it follows that a solution to
(4.3.11) with ¢; = 0 for some k has ¢, € I for every otherm <n — 1.

Note that €;(i) =0, and let 7, be ¥,_; ;—, if 0 +1, i) <m <[ and 0 otherwise.
Equations (4.3.7) and (4.3.11) yield

o1 =b(1—4T) mod (p, T?, ¢ — 1), (4.3.12)

and, for arbitrary m <n — 2, we have

e TVn®

= Z g T O g o, T D 4 pTP" ™" =1 mod (p, TOOF! 1), (4.3.13)
keXy,

For m = n — 2, note that (4.3.12), (4.3.13), and a,_; ; = —1 imply that
ena T2 =p — ¢, = 16T mod (p, T?, ¢ — 1), (4.3.14)

o (4.3.5) holds with g, = % For m with o (n — 1,1) <m <n — 3 (which exists
only if I =n —2), we have X,, = {n — 1} and 6,,(i) = p" ™!, and we obtain from
(4.3.13) and (4.3.14) that

CmT]—Em(i) =—Cy_1 — Cn72TmT +b
=1(1—2,_mw—2)bT mod (p, T? ¢ — 1), (4.3.15)

50 (4.3.5) holds with g,, = —3(n —m —2). Form < o(n — 1,i), we have
0, (i) < p"~"~! and (4.3.13) and (4.3.14) yield recursively that

cn= Y qragibTw D — g, T 4 pT?"" " 1= ® mod 1,
keXm

verifying (4.3.5) for k = m. ([
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