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On the invariant theory
for tame tilted algebras

Calin Chindris

We show that a tilted algebra A is tame if and only if for each generic root d
of A and each indecomposable irreducible component C of mod(A, d), the field
of rational invariants k(C)GL(d) is isomorphic to k or k(x). Next, we show that
the tame tilted algebras are precisely those tilted algebras A with the property
that for each generic root d of A and each indecomposable irreducible com-
ponent C ⊆ mod(A, d), the moduli space M(C)ss

θ is either a point or just P1

whenever θ is an integral weight for which C s
θ 6= ∅. We furthermore show

that the tameness of a tilted algebra is equivalent to the moduli space M(C)ss
θ

being smooth for each generic root d of A, each indecomposable irreducible
component C ⊆ mod(A, d), and each integral weight θ for which C s

θ 6= ∅. As
a consequence of this latter description, we show that the smoothness of the
various moduli spaces of modules for a strongly simply connected algebra A
implies the tameness of A.

Along the way, we explain how moduli spaces of modules for finite-dimen-
sional algebras behave with respect to tilting functors, and to theta-stable de-
compositions.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of character-
istic zero. All algebras (associative and with identity) are assumed to be finite-
dimensional over k, and all modules are assumed to be finite-dimensional left
modules.

One of the fundamental problems in the representation theory of algebras is that
of classifying the indecomposable modules. Based on the complexity of the inde-
composable modules, one distinguishes the class of tame algebras and that of wild
algebras. According to the remarkable Tame-Wild Dichotomy Theorem of Drozd
[1979], these two classes of algebras are disjoint and they cover the whole class of
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algebras. Since the representation theory of a wild algebra is at least as complicated
as that of a free algebra in two variables, and since the latter theory is known to be
undecidable, one can hope to meaningfully classify the indecomposable modules
only for tame algebras. For more precise definitions, see [Simson and Skowroński
2007, Chapter XIX] and the reference therein.

An interesting task in the representation theory of algebras is to study the ge-
ometry of affine varieties of modules of fixed dimension vectors and the actions
of the corresponding products of general linear groups associated to a given finite-
dimensional algebra A over k. In particular, it would be interesting to find char-
acterizations of prominent classes of tame algebras via geometric properties of
their module varieties. This research direction has attracted much attention during
the last two decades; see for example [Bobiński 2008; Bobiński and Skowroński
1999a; 1999b; 2002; Geiss and Schröer 2003; Riedtmann 2004; Riedtmann and
Zwara 2004; 2008; Skowroński and Weyman 2000].

In this paper, we seek for characterizations of tame algebras in terms of invariant
theory. A first result in this direction was obtained by Skowroński and Weyman
[2000, Theorem 1], who showed that a finite-dimensional algebra of global dimen-
sion one is tame if and only if all of its algebras of semiinvariants are complete
intersections. Unfortunately, this result does not extend to algebras of higher global
dimension (not even of global dimension two), as shown by Kraśkiewicz [2001].
As was suggested by Weyman, in order to characterize the tameness of an algebra
via invariant theory, one should impose geometric conditions on the various moduli
spaces of semistable modules rather than on the entire algebras of semiinvariants.

In [Chindris 2011], the author has found a description of the tameness of path
algebras and of canonical algebras in terms of the invariant theory of the algebras
in question; see also [Domokos 2011]. In this paper, we continue this line of
inquiry for the class of tilted algebras. Recall that a tilted algebra is an algebra of
the form EndH (T ), where H is a connected finite-dimensional hereditary algebra
and T is a multiplicity-free tilting H -module, that is, Ext1H (T, T ) = 0 and T is
the direct sum of n pairwise nonisomorphic indecomposable modules with n the
rank of the Grothendieck group K0(H) of H . It has been proved by Kerner [1989,
Theorem 6.2] that a tilted algebra A is tame if and only if its Tits quadratic form
qA is weakly nonnegative (takes nonnegative values on nonnegative vectors).

Theorem 1.1. Let A be a tilted algebra. Then the following conditions are equiv-
alent:

(1) A is tame;

(2) for each generic root d of A and each indecomposable irreducible component
C of mod(A, d), we have k(C)GL(d)

' k or k(x);
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(3) for each generic root d of A and each indecomposable irreducible component
C ⊆mod(A, d), the moduli space M(C)ss

θ is either a point or P1 whenever θ
is an integral weight of A for which C s

θ 6=∅;

(4) for each generic root d of A and each indecomposable irreducible component
C ⊆mod(A, d), the moduli space M(C)ss

θ is smooth whenever θ is an integral
weight of A for which C s

θ 6=∅.

Following [Skowroński 1993], a triangular algebra A is called strongly simply
connected if the first Hochschild cohomology space HH1(C) of any convex sub-
category C of A vanishes. It has been recently proved by Brüstle, de la Peña, and
Skowroński [Brüstle et al. 2011, Main Theorem] that a strongly simply connected
algebra A is tame if and only if its Tits form qA is weakly nonnegative. As a con-
sequence of Theorem 1.1 and another tameness criterion from [ibid., Corollary 1],
we derive the following sufficient geometric criterion for the tameness of a strongly
simply connected algebra:

Proposition 1.2. Let A be a strongly simply connected algebra. Assume for each
generic root d of A, each indecomposable irreducible component C ⊆mod(A, d),
and each integral weight θ for which C s

θ 6= ∅, that M(C)ss
θ is a smooth variety.

Then, A is a tame algebra.

We would like to point out that the equivalence of (1) and (3) in Theorem 1.1
settles in the affirmative a conjecture of Weyman for the class of tilted algebras,
while Proposition 1.2 proves one implication of Weyman’s conjecture for the class
of strongly simply connected algebras (for more details, see Remark 4).

Our next theorem, which is key in proving Theorem 1.1 and Proposition 1.2,
identifies integral weights of an algebra for which the corresponding moduli spaces
of semistable modules are preserved under titling. Our next theorem generalizes
[Domokos and Lenzing 2000, Theorem 6.3 ] to arbitrary bound quiver algebras.
(The details of our notation can be found in Section 3B.)

Theorem 1.3. Let A = k Q/I be a bound quiver algebra, T a basic tilting A-
module, and θ an integral weight of A that is well positioned with respect to T . Let
F be either the functor HomA(T, ), in case there are nonzero θ -semistable tor-
sion A-modules, or the functor Ext1A(T, ), in case there are nonzero θ -semistable
torsion-free A-modules. Denote the algebra EndA(T )op by B and let u : K0(A)→
K0(B) be the isometry induced by the tilting module T . Then,

(a) the functor F defines an equivalence of categories between mod(A)ss
θ and

mod(B)ss
θ ′ , where θ ′ = |θ ◦ u−1

|; and

(b) the bijective map f :M(A, d)ss
θ →M(B, d ′)ss

θ ′ induced by F is an isomorphism
of algebraic varieties, where d is a θ -semistable dimension vector of A and
d ′ = u(d).
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In particular, this theorem allows us to transfer much of the geometry of A over
to that of B; see for example Proposition 4.1.

It is natural to ask if the description of the fields of rational invariants and of
the moduli spaces in Theorem 1.1 can be extended to irreducible components that
are not necessarily indecomposable. To answer this question, we rely on two gen-
eral reduction results. The first such result has been recently proved in [Chindris
2011, Proposition 4.7] and allows one to compute fields of rational invariants on
irreducible components by reducing the considerations to the case where the irre-
ducible components involved are indecomposable. For the second general reduc-
tion result, the starting point is Derksen and Weyman’s notion [2011] of θ -stable
decomposition of representation spaces for quivers without oriented cycles. Here,
we first extend their notion to irreducible components of module varieties, and then
explain how to extend [Derksen and Weyman 2011, Theorem 3.20] to arbitrary
bound quiver algebras:

Theorem 1.4. Let A = k Q/I be a bound quiver algebra and let C ⊆ mod(A, d)
be a θ -well-behaved irreducible component, where θ is an integral weight of A.
Let

C = m1 ·C1u · · ·umn ·Cn

be the θ -stable decomposition of C , where Ci ⊆ mod(A, di ) with 1 ≤ i ≤ n are
θ -stable irreducible components, and di 6= d j for all 1≤ i 6= j ≤ n. Assume that

(1) C contains the image of X :=Cm1
1 ×· · ·×Cmn

n through the natural (diagonal)
embedding V :=mod(Q, d1)

m1 × · · ·×mod(Q, dn)
mn ↪→mod(Q, d); and

(2) C is a normal variety.

Then M(C)ss
θ
∼= Sm1(M(C1)

ss
θ )× · · ·× Smn (M(Cn)

ss
θ ).

Note that this reduction result allows us to “break” a moduli space of modules
into smaller ones that are typically easier to handle; see Section 3C.

Recall that a quasitilted algebra is a basic and connected finite-dimensional al-
gebra of the form EndH(T )op, where H is a hereditary category and T ∈ H is a
tilting object. In [Happel et al. 1996, Theorem 2.3], Happel, Reiten, and Smalø
proved that an algebra A is quasitilted if and only if A is of global dimension at
most two and every indecomposable finite-dimensional A-module X has projective
dimension or injective dimension at most one. It was shown by Skowroński [1998,
Theorem A] that a quasitilted algebra A is tame if and only if its Tits form qA is
weakly nonnegative.

Using our results described above, we can prove this:

Proposition 1.5. Let A = k Q/I be a tame quasitilted algebra, d a dimension
vector of A, and C an irreducible component of mod(A, d).
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(1) The field of rational invariants satisfies k(C)GL(d)
' k(x1, . . . , xN ), where N

is the sum of the multiplicities of the isotropic imaginary roots that occur in
the generic decomposition of d in C.

(2) If d is an isotropic root of A, then the moduli spaces M(C)ss
θ for θ ∈ ZQ0 are

products of projective spaces.

Our proof of Proposition 1.5(1) provides another approach to proving [Domokos
and Lenzing 2002, Corollary 7.4].

The layout of this paper is as follows. In Section 2, we recall some background
material on irreducible components of module varieties and their rational invari-
ants. In Section 3, we first review King’s construction of moduli spaces of modules
for algebras, and then prove Theorem 1.3 in Section 3B. In Section 3C, we first
explain how to extend Derksen and Weyman’s notion [2011] of θ -stable decompo-
sition to quivers with relations, and then prove Theorem 1.4. We prove Theorem 1.1
and Proposition 1.5 in Section 4.

2. Background on module varieties

Let Q= (Q0, Q1, t, h) be a finite quiver with vertex set Q0 and arrow set Q1. The
two functions t, h : Q1→ Q0 assign to each arrow a ∈ Q1 its tail ta and head ha,
respectively.

A representation V of Q over k is a collection (V (i), V (a))i∈Q0,a∈Q1 of finite-
dimensional k-vector spaces V (i), i ∈ Q0, and k-linear maps

V (a) ∈ Homk(V (ta), V (ha)) for a ∈ Q1.

The dimension vector of a representation V of Q is the function dim V : Q0→ Z

defined by (dim V )(i) = dimk V (i) for i ∈ Q0. Let Si be the one-dimensional
representation of Q at vertex i ∈ Q0, and let us denote by ei its dimension vector.
By a dimension vector of Q, we simply mean a function d ∈ Z

Q0
≥0.

Given two representations V and W of Q, we define a morphism ϕ : V → W
to be a collection (ϕ(i))i∈Q0 of k-linear maps with ϕ(i) ∈ Homk(V (i),W (i)) for
each i ∈ Q0, and such that ϕ(ha)V (a)= W (a)ϕ(ta) for each a ∈ Q1. We denote
by HomQ(V,W ) the k-vector space of all morphisms from V to W . Let V and
W be two representations of Q. We say that V is a subrepresentation of W if
V (i) is a subspace of W (i) for each i ∈ Q0 and V (a) is the restriction of W (a) to
V (ta) for each a ∈ Q1. In this way, we obtain the abelian category rep(Q) of all
representations of Q.

Given a quiver Q, its path algebra k Q has a k-basis consisting of all paths
(including the trivial ones), and the multiplication in k Q is given by concatenation
of paths. It is easy to see that any k Q-module defines a representation of Q, and
vice-versa. Furthermore, the category mod(k Q) of k Q-modules is equivalent to
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the category rep(Q). In what follows, we identify mod(k Q) and rep(Q), and use
the same notation for a module and the corresponding representation.

A two-sided ideal I of k Q is said to be admissible if there exists an integer L≥2
such that RL

Q ⊆ I ⊆ R2
Q . Here, RQ denotes the two-sided ideal of k Q generated

by all arrows of Q.
If I is an admissible ideal of K Q, the pair (Q, I ) is called a bound quiver

and the quotient algebra k Q/I is called the bound quiver algebra of (Q, I ). Any
admissible ideal is generated by finitely many admissible relations, and any bound
quiver algebra is finite-dimensional and basic. Moreover, a bound quiver algebra
k Q/I is connected if and only if (the underlying graph of) Q is connected; see for
example [Assem et al. 2006].

It is well known that any basic algebra A is isomorphic to the bound quiver
algebra of a bound quiver (Q A, I ), where Q A is the Gabriel quiver of A; see
[Assem et al. 2006]. (Note that the ideal of relations I is not uniquely determined
by A.) We say that A is a triangular algebra if its Gabriel quiver has no oriented
cycles.

Fix a bound quiver (Q, I ) and let A = k Q/I be its bound quiver algebra. We
denote by ei the primitive idempotent corresponding to the vertex i ∈ Q0. A repre-
sentation M of a A (or (Q, I )) is just a representation M of Q such that M(r)= 0
for all r ∈ I . The category mod(A) of finite-dimensional left A-modules is equiva-
lent to the category rep(A) of representations of A. As before, we identify mod(A)
and rep(A), and make no distinction between A-modules and representations of A.

Assume from now on that A has finite global dimension; this happens, for ex-
ample, when Q has no oriented cycles. The Ringel form of A is the bilinear form
〈 · , · 〉A : Z

Q0 ×ZQ0 → Z defined by

〈d, e〉A =
∑
l≥0

(−1)l
∑

i, j∈Q0

dimk ExtlA(Si , S j )d(i)e( j).

Note that if M is a d-dimensional A-module and N is an e-dimensional A-module,
then

〈d, e〉A =
∑
l≥0

(−1)l dimk ExtlA(M, N ).

The quadratic form induced by 〈 · , · 〉A is denoted by χA.
The Tits form of A is the integral quadratic form qA : Z

Q0 → Z defined by

qA(d) :=
∑
i∈Q0

d2(i)−
∑

i, j∈Q0

dimk Ext1A(Si , S j )d(i)d( j)

+

∑
i, j∈Q0

dimk Ext2A(Si , S j )d(i)d( j).
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If A is triangular, then r(i, j) := |R ∩ e j 〈R〉ei | is precisely dimk Ext2A(Si , S j ),
for all i, j ∈ Q0, as shown by Bongartz [1983]. So, in the triangular case, we can
write

qA(d)=
∑
i∈Q0

d2(i)−
∑

a∈Q1

d(ta)d(ha)+
∑

i, j∈Q0

r(i, j)d(i)d( j).

2A. The generic decomposition for irreducible components. Let d be a dimen-
sion vector of A (or equivalently, of Q). The variety of d-dimensional A-modules
is the affine variety

mod(A, d)=
{

M ∈
∏

a∈Q1

Matd(ha)×d(ta)(k)
∣∣ M(r)= 0 for all r ∈ I

}
.

It is clear that mod(A, d) is a GL(d)-invariant closed subset of the affine space
mod(Q, d) :=

∏
a∈Q1

Matd(ha)×d(ta)(k). Note that mod(A, d) does not have to be
irreducible. We call mod(A, d) the module variety of d-dimensional A-modules.
We also denote by ind(A, d) the (possibly empty) constructible subset of all inde-
composable modules in mod(A, d).

Let C be an irreducible component of mod(A, d). We say that C is indecom-
posable if C has a nonempty open subset of indecomposable modules. We call
C a Schur irreducible component if C contains a Schur A-module. (Recall that
a Schur A-module is just an A-module M such that EndA(M) ' k.) Note that a
Schur irreducible component is always indecomposable. The converse is always
true for path algebras of quivers without oriented cycles. Finally, we say that d is
a generic root of A if mod(A, d) has an indecomposable irreducible component.

Let us consider a decomposition d= d1+· · ·+d t , where di ∈Z
Q0
≥0 for 1≤ i ≤ t .

If Ci is a GL(di )-invariant subset of mod(A, di ) for 1 ≤ i ≤ t , we denote by
C1 ⊕ · · · ⊕ Ct the constructible subset of mod(A, d) consisting of all modules
isomorphic to direct sums of the form

⊕t
i=1 X i with X i ∈ Ci for all 1≤ i ≤ t .

As shown by de la Peña [1991, Section 1.3] and Crawley-Boevey and Schröer
[2002, Theorem 1.1], if C is an irreducible component of mod(A, d), then there
are unique generic roots d1, . . . , d t of A such that d = d1+ · · ·+ d t and

C = C1⊕ · · ·⊕Ct

for some indecomposable irreducible components Ci of mod(A, di ) for 1≤ i ≤ t .
Also, the indecomposable irreducible components Ci for 1 ≤ i ≤ t are uniquely
determined by this property. We call d = d1⊕· · ·⊕ d t the generic decomposition
of d in C , and C = C1⊕ · · ·⊕Ct the generic decomposition of C .

Recall that for an irreducible component C ⊆ mod(A, d), the field of rational
GL(d)-invariants on C is

k(C)GL(d)
= {φ ∈ k(C) | g ·φ = φ for all g ∈ GL(d)}.



200 Calin Chindris

In what follows, if R is an integral domain, we denote its field of fractions
by Quot(R). Moreover, if K/k is a field extension and m is a positive integer,
we define Sm(K/k) to be the field (Quot(K⊗m))Sm , which is in fact the same as
Quot((K⊗m)Sm ), since Sm is a finite group.

Proposition 2.1 [Chindris 2011, Proposition 4.7]. Assume that the generic decom-
position of C is of the form

C = C⊕m1
1 ⊕ · · ·⊕C⊕mn

n ,

where Ci ⊆mod(A, di ) for 1≤ i ≤ n are indecomposable irreducible components,
m1, . . . ,mn are positive integers, and di 6= d j for all 1≤ i 6= j ≤ n. Then

k(C)GL(d)
' Quot

( n⊗
i=1

Smi (k(Ci )
GL(di )/k)

)
.

In the next section, we present a homological method for studying fields of
rational invariants on indecomposable irreducible components in module varieties.

2B. Exceptional sequences and rational invariants. Recall that a sequence E =

(E1, . . . , Et) of A-modules is called an orthogonal exceptional sequence if the
following conditions are satisfied:

(1) Ei is an exceptional A-module, that is, EndA(Ei ) = k and ExtlA(Ei , Ei ) = 0
for all l ≥ 1 and 1≤ i ≤ t .

(2) ExtlA(Ei , E j )= 0 for all l ≥ 0 and 1≤ i < j ≤ t .

(3) HomA(E j , Ei )= 0 for all 1≤ i < j ≤ t .

Given an orthogonal exceptional sequence E, consider the full subcategory filtE
of mod(A)whose objects M have a finite filtration 0=M0⊆M1⊆· · ·⊆Ms=M of
submodules such that each factor M j/M j−1 is isomorphic to one of the E1, . . . , Et .
For a dimension vector d of A, we define

filtE(d)= {M ∈mod(A, d) | M is isomorphic to a module in filtE}.

We will be especially interested in short orthogonal exceptional sequences. As
a first step in proving the rationality of fields of rational invariants for A, we will
use the following direct consequence of the reduction theorem [Chindris 2011,
Theorem 1.2]:

Proposition 2.2. Let d be a generic root of A and let C ⊆ mod(A, d) be an
indecomposable irreducible component. Assume that there exists an orthogonal
exceptional sequence E= (E1, E2) of A-modules such that d = dim E1+dim E2,
filtE(d)∩C 6= ∅, and dim Ext2A(E2, E1) = 0. Then k(C)GL(d)

' k(x1, . . . , xn−1)

where n = dimk Ext1A(E2, E1).
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Proof. The triangular algebra AE that arises from the (minimal) A∞-algebra struc-
ture of the Yoneda algebra Ext•A(E1⊕E2, E1⊕E2) is precisely the path algebra of
the generalized Kronecker quiver, Kn , with two vertices and n arrows, all pointing
in the same direction. It now follows from [Chindris 2011, Theorem 1.2] that
k(C)GL(d)

' k(mod(Kn, (1, 1)))GL((1,1))
' k(x1, x2, . . . xn−1). �

3. Moduli spaces of modules

Let A=k Q/I be a bound quiver algebra and let d∈Z
Q0
≥0 be a dimension vector of A.

We denote GL(d)/T1 by PGL(d), where T1 = {(λ Idd(i))i∈Q0 | λ ∈ k∗} ≤ GL(d).
Note that there is a well-defined action of PGL(d) on mod(A, d) since T1 acts
trivially on mod(A, d).

We always identify K0(A) with the lattice ZQ0 , which, in turn, we identify with
HomZ(K0(A),Z) via θ(d) =

∑
i∈Q0

θ(i)d(i) for all θ ∈ ZQ0 and d ∈ ZQ0 . Note
that when A is triangular, any integral weight θ ∈ ZQ0 can be written as 〈d, · 〉A for
a unique vector d ∈ ZQ0 . Similarly, θ can be written as 〈 · , e〉A for a unique vector
e ∈ ZQ0 .

Note that any θ ∈ ZQ0 defines a rational character χθ : GL(d)→ k∗ by

χθ
(
(g(i))i∈Q0

)
=

∏
i∈Q0

(det g(i))θ(i).

In this way, we can identify ZQ0 with the group X?(GL(d)) of rational characters
of GL(d), assuming that d is a sincere dimension vector. In general, we have only
the natural epimorphism ZQ0 → X∗(GL(d)).

Now, let θ ∈ ZQ0 be an integral weight of A. Following King [1994], an
A-module M is said to be θ -semistable if θ(dim M)= 0 and θ(dim M ′)≤ 0 for all
submodules M ′ ≤ M . We say that M is θ -stable if M is nonzero, θ(dim M) = 0,
and θ(dim M ′)< 0 for all submodules {0} 6=M ′<M . Now, consider the (possibly
empty) open subsets

mod(A, d)ss
θ = {M ∈mod(A, d) | M is θ -semistable}

and
mod(A, d)sθ = {M ∈mod(A, d) | M is θ -stable}

of d-dimensional θ (-semi)-stable A-modules.
The weight space of semiinvariants on mod(A, d) of weight nθ ∈ ZQ0 , where

n ∈ Z≥0, is

SI(A, d)nθ := { f ∈ k[mod(A, d)] | g · f = (nθ)(g) f for all g ∈ GL(d)}.
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Using methods from GIT, King [1994] showed that the projective variety

M(A, d)ss
θ := Proj

(⊕
n≥0

SI(A, d)nθ
)

is a GIT-quotient of mod(A, d)ss
θ by the action of PGL(d). We say that d is a

θ -semistable dimension vector if mod(A, d)ss
θ 6=∅.

For an irreducible component C ⊆ mod(A, d), we similarly define C ss
θ ,C s

θ ,
SI(C)nθ , and M(C)ss

θ .

3A. Families of A-modules. Let us denote by mod(A)ss
θ the full subcategory of

mod(A) consisting of the θ -semistable modules. It is easy to see that mod(A)ss
θ

is a full exact abelian subcategory of mod(A) that is closed under extensions and
whose simple objects are precisely the θ -stable modules. Moreover, mod(A)ss

θ is
Artinian and Noetherian, and hence every θ -semistable A-module has a Jordan–
Hölder filtration in mod(A)ss

θ .
Two θ -semistable A-modules are said to be S-equivalent if they have the same

composition factors in mod(A)ss
θ . It was proved in [King 1994, Proposition 4.2]

that the points of M(A, d)ss
θ are in one-to-one correspondence with the S-equi-

valence classes of d-dimensional θ -semistable A-modules.
We now recall the definition of a family of A-modules over a variety that was

introduced in this context by King [1994]. Let Z be a (reduced) variety and let
(Vz)z∈Z be a collection of A-modules parametrized by Z . Following the presen-
tation in [Domokos and Lenzing 2000, Section 6], we call (Vz)z∈Z a family of
A-modules if the following two conditions are satisfied:

(i) (Vz)z∈Z is an algebraic vector bundle over Z ; in particular, the vector spaces
Vz for z ∈ Z have the same dimension.

(ii) For each a ∈ A, the map z→ a ·IdVz (z ∈ Z) is a section of the endomorphism
bundle (Endk(Vz))z∈Z ; in other words, the A-module structure on Vz varies
algebraically with z ∈ Z .

King showed that M(A, d)ss
θ is a coarse moduli space for families of d-dimen-

sional θ -semistable A-modules; see [King 1994, Proposition 5.2]. This essentially
says that if (Vz)z∈Z is a family of d-dimensional θ -semistable A-modules and φ is
the (unique) set-theoretic map Z →M(A, d)ss

θ that sends each z ∈ Z to the point
representing the S-equivalence class of Vz , then φ is a morphism of varieties.

Lemma 3.1. Let A and B be two bound quiver algebras, T an A-B-bimodule, Z
a variety, and n a positive integer.

(1) Let (Vz)z∈Z be a family of A-modules parametrized by Z. Assume that for
each 0≤ l ≤ n, there exists an integer ml such that dimk ExtlA(T, Vz)=ml for
all z ∈ Z. Then (ExtnA(T, Vz))z∈Z is a family of B-modules.
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(2) Let (Wz)z∈Z be a family of B-modules parametrized by Z. Assume that for
each 0 ≤ l ≤ n, there exists an integer tl such that dimk Torl

B(T,Wz) = tl for
all z ∈ Z. Then (Torn

B(T,Wz))z∈Z is a family of A-modules.

Remark 1. For n = 1, this lemma was proved by Domokos and Lenzing [2000,
Lemma 6.3]. Here, we explain how to prove the general case by working with
Hochschild complexes.

Proof. In what follows, for a given integer l ≥ 0, we write Al and Bl for

A⊗k · · · ⊗k A︸ ︷︷ ︸
l

and B⊗k · · · ⊗k B︸ ︷︷ ︸
l

.

(1) For each z ∈ Z , we consider the Hochschild complex

K ∗z : 0→Homk(T, Vz)
d0

z
−→Homk(A⊗k T, Vz)

d1
z
−→Homk(A2

⊗k T, Vz)−→· · · ,

where

dl
z(φl)(a1⊗ · · ·⊗ al+1⊗ t)

= a1φl(a2⊗ · · ·⊗ al+1⊗ t)+
l∑

i=1

(−1)iφl
(
a1⊗ · · ·⊗ (ai ai+1)⊗ · · ·⊗ t

)
+ (−1)l+1φl

(
a1⊗ · · ·⊗ al ⊗ (al+1t)

)
.

As k is a commutative field, we know that H l(K ∗z ) ' ExtlA(T, Vz) for all l ≥ 0;
see, for example, [Weibel 1994, Theorem 8.7.10 and Lemma 9.1.9].

It is now easy to see that (dl
z)z∈Z is a morphism of vector bundles for each integer

l≥0. Also, for each 0≤ l≤n, the maps dl
z for z ∈ Z , have constant rank, and hence

the kernel and the image of (dl
z)z∈Z are subbundles of (Homk(Al

⊗k T, Vz))z∈Z and
(Homk(Al+1

⊗k T, Vz))z∈Z , respectively [Le Potier 1997, Proposition 1.7.2]. Since
these subbundles are clearly families of B-modules, (ExtnA(T, Vz))z∈Z is indeed a
family of B-modules.

(2) For this part, we work with the homology of the following complex (see for
example [Weibel 1994, Section 8.7.1]):

K ∗z : 0←− T ⊗k Wz
(d0)z
←− T ⊗k B⊗k Wz

(d1)z
←− T ⊗k B2

⊗k Wz←− · · · .

As before, the differentials of this complex give rise to morphisms of vector
bundles whose kernels and images are families of A-modules. From this, one
immediately derives the desired claim. �
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3B. Moduli spaces and tilting. We now explain how moduli spaces of semistable
A-modules behave under tilting. This was already discussed by Domokos and
Lenzing [2000] in the context of moduli spaces of modules over canonical algebras.

Let T be a basic tilting A-module and denote EndA(T )op by B. The torsion pairs
(T(T ),F(T )) in mod(A) induced by T and (X(T ),Y(T )) in mod(B) induced by
D(T ) := Homk(T, k) are

• T(AT )= {M ∈mod(A) | Ext1A(T,M)= 0};

• F(AT )= {M ∈mod(A) | HomA(T,M)= 0};

• X(TB)= {N ∈mod(B) | HomB(N , D(T ))= 0}

= {N ∈mod(B) | T ⊗B N = 0}; and

• Y(TB)= {N ∈mod(B) | Ext1B(N , D(T ))= 0}

= {N ∈mod(B) | Tor1
B(T, N )= 0}

.

The Brenner–Butler tilting theorem (see for example [Assem et al. 2006]) tells
us that the tilting functor HomA(T, ) :mod(A)→mod(B) induces an equivalence
of categories between T(T ) and Y(T ) with quasiinverse T ⊗B . Furthermore, the
functor Ext1A(T, ) : mod(B) → mod(A) induces an equivalence of categories
between F(T ) and X(T ) with quasiinverse T or B

1 (T, ).
We also have the isometry u : K0(A)→ K0(B) defined by

u(dim M)= dim HomA(T,M)−dim Ext1A(T,M)

for any A-module M .

Definition 3.2. We say an integral weight θ ∈HomZ(K0(A),Z) is well-positioned
with respect to T if either

(1) there are nonzero θ -semistable A-modules, mod(A)ss
θ ⊆ T(T ), and

θ(dim M) < 0

for all nonzero modules M in F(T ); or

(2) there are nonzero θ -semistable A-modules, mod(A)ss
θ ⊆ F(T ), and

θ(dim M) > 0

for all nonzero modules M in T(T ).

Let θ be an integral weight of A that is well positioned with respect to T . We
define |θ ◦ u−1

| to be θ ◦ u−1 if condition (1) above is satisfied; if condition (2) is
satisfied, |θ ◦ u−1

| is defined to be −θ ◦ u−1.
Now we are ready to prove Theorem 1.3:
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Proof of Theorem 1.3. (a) Case 1: mod(A)ss
θ ⊆ T(T ) and θ(dim M) < 0 for all

nonzero modules M in F(T ). In this case, θ ′ = θ ◦ u−1 and F = HomA(T, ).
Let M be a θ -semistable A-module. We show that N = F(M) is θ ′-semistable.

As M is a θ -semistable module lying in T(T ), we deduce that θ ′(dim N )=0. Now,
let N ′ be a submodule of N and let M ′ ∈T(T ) be such that F(M ′)' N ′. In partic-
ular, we get that θ ′(dim N ′)= θ ′(u(dim M ′)= θ(dim M ′). If φ ∈ HomA(M ′,M)
is the morphism corresponding to the inclusion N ′ ↪→ N , then ker(φ) ∈ F(T ) as
F is left exact. Using our assumption on θ , it is now clear that θ ′(dim N ′) ≤ 0.
This shows that N is θ ′-semistable.

Now, let Ñ be a θ ′-semistable B-module. First, we claim that Ñ ∈Y(T ). Indeed,
let us consider the canonical sequence of Ñ with respect to (X(T ),Y(T )):

0→ Ext1A(T,Tor1
B(T, Ñ ))−→ Ñ −→ HomA(T, T ⊗B Ñ )→ 0.

If Ñ ′ denotes the B-module Ext1A(T,Tor1
B(T, Ñ )), then

dim Ñ ′ =−u(dim Tor1
B(T, Ñ )),

and so θ ′(dim Ñ ′)=−θ(dim Tor1
B(T, Ñ )). Using again our assumption on θ , we

have that θ ′(dim Ñ ′) is strictly positive unless Tor1
B(T, Ñ ) = {0}. But since Ñ

is θ ′-semistable, we must have Tor1
B(T, Ñ ) = {0}, and hence Ñ ' F(M̃), where

M̃ := T ⊗B Ñ ∈ T(T ).
Next, we show that M̃ is θ -semistable. It is clear that θ(dim M̃) = 0. Now,

let M̃ ′ be a submodule of M̃ and note that coker F(π) ∈ X(T ), where π : M̃ →
M̃/M̃ ′ is the canonical projection. So, there exists an A-module M̃ ′′ in F(T )
such that dim coker(F(π)) = dim Ext1A(T, M̃ ′′) = −u(dim M̃ ′′). In particular,
we get that θ ′(dim coker F(π)) = −θ(dim M̃ ′′) ≥ 0, and from this we see that
θ ′(dim F(M̃/M̃ ′)) ≥ 0. But since θ ′(dim F(M̃/M̃ ′)) = θ(dim M̃/M̃ ′), we con-
clude that θ(dim M̃ ′)≤ 0. This proves part (a) in Case 1.

Case 2: mod(A)ss
θ ⊆F(T ) and θ(dim M)> 0 for all nonzero modules M in T(T ).

In this case, θ ′=−θ ◦u−1 and F =Ext1A(T, ). The proof in this case is essentially
dual to the one above; one simply uses the existence of long exact sequences in
(co)homology along with the fact that the projective dimension of T is at most one.

(b) For this part, we follow closely the arguments in [Domokos and Lenzing 2000,
Section 6]. First, let us consider the canonical family (VM)M∈mod(A,d)ss

θ
of d-

dimensional θ -semistable A-modules. By this we simply mean the trivial vector
bundle mod(A, d)ss

θ ×V , where V =
⊕

i∈Q0
kd(i) and, for each M ∈mod(A, d)ss

θ ,
V is equipped with the A-module structure corresponding to M . Now, it fol-
lows from part (a) that for each M ∈ mod(A, d)ss

θ , F(VM) is a d ′-dimensional
θ ′-semistable B-module. Consequently, we can apply Lemma 3.1 to conclude
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that (F(VM))M∈mod(A,d)ss
θ

is actually a family of d ′-dimensional θ ′-semistable B-
modules. Hence, we get the morphism of varieties φ :mod(A, d)ss

θ →M(B, d ′)ss
θ ′

that sends M ∈ mod(A, d)ss
θ to the point of M(B, d ′)ss

θ ′ corresponding to the S-
equivalence class of F(VM). It is clear that φ is a PGL(d)-invariant morphism.
From the universal property of the GIT-quotient M(A, d)ss

θ , we obtain the mor-
phism of algebraic varieties f : M(A, d)ss

θ → M(B, d ′)θ ′ for which f ◦ π = φ,
where π : mod(A, d)ss

θ → M(A, d)ss
θ is the quotient morphism. To construct the

inverse morphism of f , one follows the same arguments as above, with the functor
F replaced by its quasiinverse. �

3C. The theta-stable decomposition for irreducible components. Derksen and
Weyman [2011] introduced the notion of θ -stable decomposition for spaces of
representations of quivers without relations. In this section, we explain how to
extend [Derksen and Weyman 2011, Theorem 3.20] to quivers with relations.

Let A = k Q/I be a bound quiver algebra, d ∈ Z
Q0
≥0 a dimension vector of A,

C ⊆ mod(A, d) an irreducible component, and θ ∈ ZQ0 an integral weight of A.
We say that C is a θ (-semi)-stable irreducible component if C contains a θ (-semi)-
stable A-module. A θ -semistable irreducible component C ⊆ mod(A, d) is said
to be θ -well-behaved if mod(A, d ′) has a unique θ -stable irreducible component
whenever d ′ is the dimension vector of a factor of a Jordan–Hölder filtration in
mod(A)ss

θ of a generic A-module in C .

Example 3.3. If A is a tame quasitilted algebra, then any θ -semistable irreducible
component is θ -well-behaved. This is because for any generic root d of A, as shown
by Bobiński and Skowroński [1999b], mod(A, d) has a unique indecomposable
irreducible component.

Let C be a θ -well-behaved irreducible component of mod(A, d). We say that

C = C1u · · ·uCl

is the θ -stable decomposition of C if

• the Ci ⊆mod(A, di ) for 1≤ i ≤ l are θ -stable irreducible components; and

• the generic A-module M in C has a finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆

Ml = M of submodules such that each factor M j/M j−1 for 1 ≤ j ≤ l is
isomorphic to a θ -stable module in one of the C1, . . . ,Cl , and the sequence
(dim M1/M0, . . . ,dim M/Ml−1) is the same as (d1, . . . , dl) up to permuta-
tion.

To prove the existence and uniqueness of the θ -stable decomposition of C ,
first note that the irreducible variety C ss

θ is a disjoint union of sets of the form
F(Ci )1≤i≤l , where each F(Ci )1≤i≤l consists of those modules M ∈ C that have a
finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Ml = M of submodules with each factor
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M j/M j−1 isomorphic to a θ -stable module in one of the Ci for 1 ≤ i ≤ l. (Note
that the θ -well-behavedness of C is used to ensure that the union above is indeed
disjoint.) Next, it is not difficult to show that each F(Ci )1≤i≤l is constructible; see
for example [Crawley-Boevey and Schröer 2002, Section 3]. Hence, there is a
unique (up to permutation) sequence (Ci )1≤i≤l of θ -stable irreducible components
for which F(Ci )1≤i≤l contains an open and dense subset of C ss

θ (or C).

Remark 2. Let us mention that the notion of θ -stable decomposition of a dimen-
sion vector in an irreducible component of a module variety was introduced in
[Chindris 2011, Section 6.2]. It serves as a useful tool for finding convenient
orthogonal exceptional sequences. But in order to understand how weight spaces
of semiinvariants behave with respect to such a decomposition, one also needs to
be able to keep track of the various θ -stable irreducible components that arise in
the decomposition in question. This issue is now addressed in the notion above of
θ -stable decomposition of a well-behaved irreducible component.

Next, we recall the following useful fact from invariant theory. Let G and G1

be linearly reductive groups with G1 ≤ G, let V be a finite-dimensional rational
representation of G, and let V1 be a vector subspace of V invariant under the action
of G1. The G1-equivariant inclusion τ : V1 ↪→ V descends to a morphism

ψ : V1//G1→ V//G

such that ψ ◦ π1 = π ◦ τ , where π : V � V//G and π1 : V1 � V1//G1 are the
categorical affine quotient morphisms. We denote the image of the zero vector of V
through the two quotient morphisms by the same symbol 0. Consider the Hilbert’s
nullcones NG(V ) := π−1(0) and NG1(V1) := π

−1
1 (0).

Lemma 3.4. Keep the same notation as above. If ψ−1(0)= {0}, then ψ is a finite
morphism.

Proof. Let I be the ideal of K [V ] generated by all homogeneous G-invariants of
positive degree. By choosing homogeneous invariants f1, . . . , fn ∈ K [V ]G such
that I = ( f1, . . . , fn), Hilbert proved that K [V ]G=K [ f1, . . . , fn]; see for example
[Derksen and Kemper 2002, Theorem 2.2.10].

Now, if m denotes the ideal of K [V ]G generated by f1, . . . fn , then the zero set
of m in V//G is precisely {0}. From this fact and the assumption thatψ−1(0)={0},
we immediately deduce that the zero set of ψ∗( f1), . . . , ψ

∗( fn) in V1 is precisely
the nullcone NG1(V1). Hence, K [V1]

G1 is a finite module over

K [ψ∗( f1), . . . , ψ
∗( fn)];

see for example [Derksen and Kemper 2002, Lemma 2.4.5]. The proof follows. �
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With the right definition of θ -stable decomposition, the proof of Theorem 1.4
is essentially the same as that of [Derksen and Weyman 2011, Theorem 3.20].
Nonetheless, we provide below a detailed proof for completeness. In what follows,
if C ′ is a θ -stable irreducible component that occurs in the θ -stable decomposition
of C with multiplicity m, we denote C ′uC ′u · · ·uC ′︸ ︷︷ ︸

m

by m ·C ′.

Proof of Theorem 1.4. Without loss of generality, we assume that θ is indivisible,
the induced character χθ ∈ X∗(GL(d)) is not trivial, and Q is connected.

We view V as a vector subspace of mod(Q, d) and denote by G the stabilizer
of V⊆mod(Q, d) in Gθ . It easy to see that G is isomorphic to the intersection of
Gθ with

(Sm1 nGL(d1)
m1)× · · ·× (Smn nGL(dn)

mn ).

(Here, Sm denotes the symmetric group on m elements.) Let

ψ : V//G→mod(Q, d)//Gθ

be the morphism induced by the G-equivariant inclusion τ : V ↪→ mod(Q, d).
Since X embeds G-equivariantly into C , ψ descends to a morphism

ψ̃ : X//G→ C//Gθ

such that ψ̃ ◦πX = πC ◦ τ |X , where πX : X→ X//G and πC :C→C//Gθ are the
categorical quotient morphisms. Note that

K [C//Gθ ] =

⊕
m≥0

SI(C)mθ , and K [X//G] =
⊕
m≥0

n⊗
i=1

Smi (SI(Ci )mθ ),

and moreover, the pullback map ψ̃∗ respects the gradings of the coordinate rings
above. In what follows we show that ψ̃∗ is an isomorphism.

Note that if M ∈V, then M is G-semistable, meaning that 0 ∈ G M if and only
if the direct summands of M are θ -semistable. This implies that ψ−1(0) = {0},
and so ψ is a finite morphism by Lemma 3.4. But since ψ̃ is the restriction of ψ
to X//G, we can immediately see that ψ̃ is a finite morphism too.

Next, let M ∈ C ss
θ be a module that has a filtration of the form

0= M0 ⊆ M1 ⊆ · · · ⊆ Ml = M,

where the factors Mi/Mi−1 for 1≤ i ≤ l are θ -stable and the sequence

(dim M1, . . . ,dim M/Ml−1)

is the same as (dm1
1 , . . . , dmn

n ) up to permutation. Here, l := m1+ · · ·+mn . Now,
let M̃ ∈ X be a module isomorphic to

⊕l
i=1 Mi/Mi−1. Then, we have

ψ̃(πX (M̃))= πC(M),
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and hence ψ̃ is dominant. Denote by X0 the nonempty open subset

(C s
1,θ )

m1 × · · ·× (C s
n,θ )

mn

of X , and note that any point of X0 has its Gθ -orbit closed in C . This implies that
πC is injective on X0, and so the morphism ψ̃ is injective on πX (X0); in particular,
ψ̃ is injective on an open and dense subset of X//G. It is now clear that ψ̃ has to
be a birational morphism.

Finally, we know from geometric invariant theory that the affine quotient variety
C//Gθ is normal, since C is assumed to be a normal variety. It now follows that
ψ̃ is an isomorphism, and this finishes the proof. �

Remark 3. Keep the same assumptions as in Theorem 1.4. If we further assume
that A is tame, then for each 1≤ i ≤ n, the moduli space M(Ci )

ss
θ is of dimension

dim Ci − dim GL(di )+ 1≤ 1. More precisely, M(Ci )
ss
θ is a curve if, for example,

qA(di )= 0; see [de la Peña 1991, Proposition 1.2].
Hence, the “building blocks” M(C1)

ss
θ , . . . ,M(Cn)

ss
θ that make up the moduli

space M(C)ss
θ are either points or projective curves in the tame case.

4. Tilted algebras

Recall that a quasitilted algebra is a basic and connected finite-dimensional algebra
of the form EndH(T )op, where H is a hereditary category and T ∈ H is a tilting
object.

4A. Singular moduli spaces of modules for wild tilted algebras. Let

B = EndA(T )op

be a wild tilted algebra, where A = k Q with Q a wild connected quiver and T is
a basic tilting A-module. Our goal here is to show that B has a singular moduli
space of modules. We achieve this by reducing the considerations to the case of
wild hereditary algebras via Theorem 1.3.

Proposition 4.1. If B is a wild tilted algebra, then there exist a generic root d
of B, an indecomposable irreducible component C of mod(B, d), and an integral
weight θ of B such that C s

θ 6=∅ and the moduli space M(C)ss
θ is singular.

Proof. First of all, we know from the main results in [Kerner 1989; 1997] and
[Strauss 1991] that any wild tilted algebra contains a convex subcategory that is
wild concealed (the titling module involved is either preprojective or preinjective).
Consequently, we can assume that B = EndA(T )op, where A = k Q with Q a con-
nected wild quiver and T is a basic preprojective tilting A-module. (The case when
T is preinjective is dual.) Then, we know that the indecomposable A-modules in
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F(T ) are all preprojective and any regular or preinjective A-module belongs to
T(T ); see for example [Assem et al. 2006].

To construct a weight θ with the desired properties, we begin by choosing a
regular A-module X0 with the property that all τm

A X for m ≥ 0 are sincere regular
Schur A-modules and dim X0 is an imaginary, nonisotropic root of A; see [Kerner
1996, Proposition 10.2]. Denote the dimension vector of X0 by d0 and let θ0 be
the weight 〈d0, · 〉A − 〈 · , d0〉A. Then nd0 is θ0-stable for all integers n ∈ Z>0 by
[Schofield 1992, Theorem 6.1] and [Derksen and Weyman 2011, Proposition 3.16].

Next, we show that θ0 is well positioned with respect to T , which is equivalent to
showing that θ0(dim M) < 0 for every preprojective A-module M . Assume to the
contrary that there exists a preprojective A-module M such that 〈dim X,dim M〉≥
〈dim M,dim X〉. But this is equivalent to

− dimk Ext1A(X,M)≥ dimk HomA(M, X),

and so dimk Ext1A(X,M) = 0. Writing M = τ−m
A Pi for uniquely determined

m ∈ Z≥0 and i ∈ Q0, we get that τm+1
A X (i) = {0}, which contradicts that τm+1

A X
is sincere. So, we conclude that θ0 is well positioned with respect to T .

Let u : K0(A)→ K0(B) be the isometry induced by T and let θ = θ0 ◦ u−1.
We claim that C :=mod(B, d)ss

θ is an irreducible component of mod(B, d), where
d := u(nd0) and n ∈Z>0. Indeed, it follows from the proof of Theorem 1.3(a) that
the θ -semistable B-modules all lie in Y(T ), and hence their projective dimension is
at most one, as A is hereditary. Consequently, the subset modP(B, d) of mod(B, d)
consisting of all modules of projective dimension at most one is nonempty, and this
implies that modP(B, d) is an irreducible open subset of mod(B, d); see [Barot and
Schröer 2001, Proposition 3.1]. This immediately implies our claim. Furthermore,
as nd0 is θ0-stable, we deduce from the proof of Theorem 1.3(a) that d is θ -stable,
that is, C s

θ 6=∅.
Using Theorem 1.3(b) again, we get that M(C)ss

θ ' M(A, nd0)
ss
θ0

, which is
known to be singular for n = 3; see for example [Domokos 2011]. �

Proof of Proposition 1.2. Assuming to the contrary that A is wild, it follows from
[Brüstle et al. 2011, Corollary 1] that A contains a convex hypercritical algebra
B. Then Proposition 4.1 provides us with a singular moduli space of B-modules,
which contradicts our assumption on the moduli spaces of modules for A. �

Remark 4. In [Brüstle et al. 2011], Brüstle, de la Peña, and Skowroński proved
that for a tame strongly simply connected algebra A, the convex hull of any in-
decomposable A-module inside A is a tame tilted algebra, or a coil algebra, or a
D-algebra; see [Brüstle et al. 2011, Corollary 5]. Hence, to prove the analogue
of Theorem 1.1 for strongly simply connected algebras, which was conjectured
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to hold true by Weyman, it remains to study the geometry of modules over coil
algebras and D-algebras. We plan to address these issues in future work.

4B. Rational and GIT quotient varieties of modules for tame quasitilted alge-
bras. In what follows, we review some important facts about the geometry of
modules over quasitilted algebras, which are due to Bobiński and Skowroński.

By a root of a quasitilted algebra A, we simply mean the dimension vector of
an indecomposable A-module. We say that a root d of A is real if qA(d)= 1. We
call a root d of A isotropic if qA(d)= 0. If d is an isotropic generic root of A, we
call the indecomposable irreducible components of mod(A, d) isotropic, too.

Now, we can state the following important result; see [Bobiński and Skowroński
1999b, Corollaries 3 and 2.5 and Proposition 2.3].

Theorem 4.2. Let A be a tame quasitilted algebra and let d be a generic root of
A. Then d is a Schur root with qA(d) ∈ {0, 1}. More precisely:

(1) If qA(d) = 1, there exists a unique, up to isomorphism, d-dimensional inde-
composable A-module M that is, in fact, exceptional; if this is the case, then
GL(d)M is the unique indecomposable irreducible component of mod(A, d).

(2) If qA(d) = 0, the support of d is a tame concealed or a tubular convex sub-
category of A. Furthermore, mod(A, d) is a normal variety.

Proposition 4.3 [Chindris 2011]. Let A be a tame concealed or a tubular algebra,
and d an isotropic Schur root of A. Then there exists a short orthogonal exceptional
sequence E = (E1, E2) with dimk Ext1A(E2, E1) = 2 and Ext2A(E2, E1) = 0, and
such that the generic module M in mod(A, d) fits into a short exact sequence of
the form

0−→ E1 −→ M −→ E2 −→ 0.

Remark 5. This proposition has been proved for tame canonical algebras in [Chin-
dris 2011, Proposition 6.7], but the exact same arguments work for arbitrary tame
concealed algebras and for tubular algebras; see for example [Chindris 2012].

Proposition 4.4. Let A be a quasitilted algebra.

(1) The following conditions are equivalent:

(a) A is tame;
(b) for each generic root d of A and each indecomposable irreducible com-

ponent C of mod(A, d), either k(C)GL(d)
' k or k(x).

(2) Assume A is tame and let d be an isotropic root of A. Then M(mod(A, d))ss
θ

is a product of projective spaces for every integral weight θ of A.

Proof. (1) The implication (b) =⇒ (a) has been already proved in [Chindris 2011,
Proposition 4.6].
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Now, let us assume that A is tame and let d be a generic root of A. We know from
Theorem 4.2 that d is a Schur root and mod(A, d) has a unique indecomposable
irreducible component; call it C .

If qA(d)= 1, then k(C)GL(d)
' k since C is just the closure of the GL(d)-orbit

of the d-dimensional exceptional A-module.
It remains to look into the case when d is an isotropic Schur root of A. In

this case, we simply use Proposition 4.3 and Proposition 2.2 to conclude that
k(C)GL(d)

' k(x).

(2) We know that mod(A, d) is normal by Corollary 3 in [Bobiński and Skowroński
1999b]. Now, let θ be an integral weight for which M(A, d)ss

θ 6= ∅, and note that
mod(A, d) is θ -well-behaved by Theorem 4.2. Let C1, . . . ,Cn be the pairwise
distinct isotropic indecomposable irreducible components that occur in the θ -stable
decomposition of mod(A, d), and denote by m1, . . . ,mn their multiplicities. It now
follows from Theorem 1.4 that

M(A, d)ss
θ
∼=

n∏
i=1

Smi (M(Ci )
ss
θ ).

But, for each 1 ≤ i ≤ n, M(Ci )
ss
θ is a projective curve that is, first, normal, as

Ci is normal by Theorem 4.2(2) and, second, rational, as proved in part (1). So,
M(Ci )

ss
θ ' P1 for all 1≤ i ≤ n, and hence M(A, d)ss

θ
∼=
∏n

i=1 Pmi . �

Remark 6. Let A be a tame quasitilted algebra, d a root of A, C ⊆mod(A, d) an
irreducible component, and θ an integral weight of A such that C s

θ 6=∅. Then the
proposition above tells us that M(C)ss

θ is either a point or just P1.

Proof of Theorem 1.1. The implications (1) =⇒ (2) =⇒ (3) =⇒ (4) were proved in
Proposition 4.4. The implication (4) =⇒ (1) follows from Proposition 4.1. �

Proof of Proposition 1.5. We know from Theorem 1.1 that if C is an indecom-
posable irreducible component of mod(A, d), then Sm(k(C)GL(d)) is isomorphic
to either k, in case d is a real Schur root, or k(t1, . . . , tm), in case d is isotropic.
The proof now follows from Proposition 2.1 and Proposition 4.4. �

Remark 7. In view of [Happel 2001], to prove the implication (4) =⇒ (1) of
Theorem 1.1 for quasitilted algebras, one possible path is to prove first the analogue
of Theorem 1.3 for tilting complexes, and then that of Proposition 4.1 for wild
canonical algebras. We plan to explore this approach in a sequel to this work.
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over tame algebras”, J. Algebra 215:2 (1999), 603–643. MR 2000f:16017 Zbl 0965.16009
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