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The phase limit set of a variety
Mounir Nisse and Frank Sottile

A coamoeba is the image of a subvariety of a complex torus under the argument
map to the real torus. We describe the structure of the boundary of the coamoeba
of a variety, which we relate to its logarithmic limit set. Detailed examples of
lines in three-dimensional space illustrate and motivate these results.

1. Introduction

A coamoeba is the image of a subvariety of a complex torus under the argument
map to the real torus. Coamoebae are cousins to amoebae, which are images of
subvarieties under the coordinatewise logarithm map z 7→ log |z|. Amoebae were
introduced by Gelfand, Kapranov, and Zelevinsky [1994] and have subsequently
been widely studied [Kenyon et al. 2006; Mikhalkin 2000; Passare and Rullgård
2004; Purbhoo 2008]. Coamoebae were introduced by Passare in a talk in 2004,
and they appear to have many beautiful and interesting properties. For example,
coamoebae of A-discriminants in dimension 2 are unions of two nonconvex poly-
hedra [Nilsson and Passare 2010], and a hypersurface coamoeba has an associated
arrangement of codimension-1 tori contained in its closure [Nisse 2009].

Bergman [1971] introduced the logarithmic limit set L∞(X) of a subvariety X
of the torus as the set of limiting directions of points in its amoeba. Bieri and
Groves [1984] showed that L∞(X) is a rational polyhedral complex in the sphere.
Logarithmic limit sets are now called tropical algebraic varieties [Speyer and
Sturmfels 2004]. For a hypersurface V( f ), logarithmic limit set L∞(V( f )) consists
of the directions of nonmaximal cones in the outer normal fan of the Newton
polytope of f . We introduce a similar object for coamoebae and establish a structure
theorem for coamoebae similar to those of Bergman and of Bieri and Groves for
amoebae.

Let coA(X) be the coamoeba of a subvariety X of (C∗)n with ideal I . The phase
limit set P∞(X) of X is the set of accumulation points of arguments of sequences
in X with unbounded logarithm. For w ∈ Rn , the initial variety inwX ⊂ (C∗)n is
the variety of the initial ideal of I . The fundamental theorem of tropical geometry
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asserts that inwX 6= ∅ exactly when the direction of −w lies in L∞(X). We
establish its analog for coamoebae.

Theorem 1. The closure of coA is coA(X)∪P∞(X), and

P∞(X)=
⋃
w 6=0

coA(inwX).

Johansson [2013] used different methods to prove this when X is a complete
intersection.

The cone over the logarithmic limit set admits the structure of a rational polyhe-
dral fan 6 in which all weights w in the relative interior of a cone σ ∈6 give the
same initial scheme inwX . Thus, the union in Theorem 1 is finite and indexed by
the images of these cones σ in the logarithmic limit set of X . The logarithmic limit
set or tropical algebraic variety is a combinatorial shadow of X encoding many
properties of X . While the coamoeba of X is typically not purely combinatorial
(see the examples of lines in (C∗)3 in Section 3), the phase limit set does provide a
combinatorial skeleton and that we believe will be useful in the further study of
coamoebae.

We give definitions and background in Section 2 and detailed examples of lines
in three-dimensional space in Section 3. These examples are reminiscent of the
concrete descriptions of amoebae of lines in [Theobald 2002]. We prove Theorem 1
in Section 4.

2. Coamoebae, tropical varieties, and initial ideals

As a real algebraic group, the set T := C∗ of invertible complex numbers is
isomorphic to R × U under the map (r, θ) 7→ er+

√
−1θ . Here, U is the set of

complex numbers of norm 1 that may be identified with R/2πZ. The inverse map
is z 7→ (log |z|, arg(z)).

Let M be a free abelian group of finite rank and N =Hom(M,Z) its dual group.
We use 〈 · , · 〉 for the pairing between M and N . The group ring C[M] is the ring of
Laurent polynomials with exponents in M . It is the coordinate ring of a torus TN that
is identified with N ⊗Z T=Hom(M,T), the set of group homomorphisms M→ T.
There are natural maps Log : TN → RN = N ⊗Z R and arg : TN → UN = N ⊗Z U,
which are induced by the maps C∗ 3 z 7→ log |z| and z 7→ arg(z)∈U. Maps N→ N ′

of free abelian groups induce corresponding maps TN→TN ′ of tori and also of RN

and UN . If n is the rank of N , we may identify N with Zn , which identifies TN

with Tn , UN with Un , and RN with Rn .
The amoeba A(X) of a subvariety X ⊂ TN is its image under Log : TN → RN ,

and the coamoeba coA(X) of X is the image of X under arg : TN→UN . An amoeba
has a geometric-combinatorial structure at infinity encoded by the logarithmic limit



The phase limit set of a variety 341

set [Bergman 1971; Bieri and Groves 1984]. Coamoebae similarly have phase limit
sets that have a related combinatorial structure that we define and study in Section 4.

If we identify C∗ with R2
\{(0, 0)}, then the map arg : C∗→U given by (a, b) 7→

(a, b)/
√

a2+ b2 is a real algebraic map. Thus, coamoebae, as they are the image
of a real algebraic subset of the real algebraic variety TN under the real algebraic
map arg, are semialgebraic subsets of UN [Basu et al. 2006]. It would be very
interesting to study them as semialgebraic sets; in particular, what are the equations
and inequalities satisfied by a coamoeba? When X is a Grassmannian, such a
description would generalize Richter-Gebert’s five-point condition for phirotopes
from rank 2 to arbitrary rank [Below et al. 2003].

Similarly, we may replace the map C∗ 3 z 7→ log |z| ∈ R in the definition of
amoebae by the map C∗ 3 z 7→ |z| ∈ R+ := {r ∈ R | r > 0} to obtain the algebraic
amoeba of X , which is a subset of R+N . The algebraic amoeba is a semialgebraic
subset of R+N , and we also ask for its description as a semialgebraic set.

Example 2. Let ` ⊂ T2 be defined by x + y + 1 = 0. The coamoeba coA(`) is
the set of points of U2 of the form (arg(x), π + arg(x + 1)) for x ∈ C \ {0,−1}.
If x is real, then these points are (±π, 0), (±π,±π), and (0,±π) if x lies in the
intervals (−∞,−1), (−1, 0), and (0,∞), respectively. For other values, consider
the picture below in the complex plane:

x x + 1

R0

arg(x + 1)��9arg(x) XXXz

For arg(x) 6∈ {0, π} fixed, π + arg(x+1) can take on any value strictly between
π + arg(x) (for w near∞) and 0 (for x near 0), and thus, coA(`) consists of the
three points (π, 0), (π, π), and (0, π) and the interiors of the two triangles displayed
below in the fundamental domain [−π, π]2 ⊂ R2 of U2. This should be understood
modulo 2π so that π =−π .

−π

0

π

−π 0 π

-
arg(x)

6

arg(y)= π + arg(x+1) (1)

The coamoeba is the complement of the region{
(α, β) ∈ [−π, π]2

∣∣ |α−β| ≤ π = arg(−1)
}
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together with the three images of real points (±π, 0), (±π,±π), and (0,±π).
Given a general line ax + by + c = 0 with a, b, c ∈ C∗, we may replace x

by cx ′/a and y by cy′/b to obtain the line x ′ + y′ + 1 = 0 with coamoeba (1).
This transformation rotates the coamoeba (1) by arg(a/c) horizontally and arg(b/c)
vertically.

Let f ∈ C[M] be a polynomial with support A⊂ M

f :=
∑
m∈A

cm · ξ
m, where cm ∈ C∗, (2)

and we write ξm for the element of C[M] corresponding to m ∈ M . Given w ∈RN ,
let w( f ) be the minimum of 〈m, w〉 for m ∈A. Then the initial form inw f of f
with respect to w ∈ RN is the polynomial inw f ∈ C[M] defined by

inw f :=
∑

〈m,w〉=w( f )

cm · ξ
m.

Given an ideal I ⊂ C[M] and w ∈ RN , the initial ideal with respect to w is

inw I := 〈inw f | f ∈ I 〉 ⊂ C[M].

Lastly, when I is the ideal of a subvariety X , the initial scheme inwX ⊂ TN is
defined by the initial ideal inw I .

The sphere SN := (RN \{0})/R+ is the set of directions in RN . Let π : RN \{0}→
SN be the projection. The logarithmic limit set L∞(X) of a subvariety X of TN is
the set of accumulation points in SN of sequences {π(Log(xn))}, where {xn} ⊂ X is
an unbounded set. A sequence {xn}⊂TN is unbounded if its sequence of logarithms
{Log(xn)} is unbounded.

A rational polyhedral cone σ ⊂ RN is the set of points w ∈ RN that satisfy
finitely many inequalities and equations of the form

〈m, w〉 ≥ 0 and 〈m′, w〉 = 0,

where m,m′ ∈ M . The dimension of σ is the dimension of its linear span, and faces
of σ are proper subsets of σ obtained by replacing some inequalities by equations.
The relative interior of σ consists of its points not lying in any face. Also, σ is
determined by σ ∩ N , which is a finitely generated subsemigroup of N .

A rational polyhedral fan 6 is a collection of rational polyhedral cones in RN

in which every two cones of 6 meet along a common face.

Theorem 3. The cone in RN over the negative −L∞(X) of the logarithmic limit
set of X is the set of w ∈ RN such that inwX 6= ∅. Equivalently, it is the set of
w ∈ RN such that for every f ∈ C[M] lying in the ideal I of X , inw f is not a
monomial. This cone over −L∞(X) admits the structure of a rational polyhedral
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fan 6 with the property that if u and w lie in the relative interior of a cone σ of 6,
then inu I = inw I .

It is important to take −L∞(X). This is correct as we use the tropical convention
of minimum, which is forced by our use of toric varieties to prove Theorem 1 in
Section 4.2.

We write inσ I for the initial ideal defined by points in the relative interior
of a cone σ of 6. The fan structure 6 is not canonical for it depends upon an
identification M ∼

→ Zn . Moreover, it may be the case that σ 6= τ but inσ I = inτ I .
Bergman [1971] defined the logarithmic limit set of a subvariety of the torus TN ,

and Bieri and Groves [1984] showed it was a finite union of convex polyhedral
cones. The connection to initial ideals was made more explicit through work of
Kapranov [2006], and the form above is adapted from Speyer and Sturmfels [2004].
The logarithmic limit set of X is now called the tropical algebraic variety of X , and
this latter work led to the field of tropical geometry.

3. Lines in space

We consider coamoebae of lines in three-dimensional space. We will work in
the torus TP3 of P3, which is the quotient of T4 by the diagonal torus 1T and
similarly in UP3, the quotient of U4 by the diagonal 1U := {(θ, θ, θ, θ) | θ ∈ U}.
By coordinate lines and planes in UP3, we mean the images in UP3 of lines and
planes in U4 parallel to some coordinate plane.

Let ` be a line in P3 not lying in any coordinate plane, so ` has a parametrization

φ : P1
3 [s : t] 7→ [`0(s, t) : `1(s, t) : `2(s, t) : `3(s, t)], (3)

where `0, `1, `2, and `3 are nonzero linear forms that do not all vanish at the same
point. For i = 0, . . . , 3, let ζi ∈ P1 be the zero of `i . The configuration of these
zeroes determine the coamoeba of `∩TP3, which we will simply write as coA(`).

Suppose that two zeroes coincide; say ζ3 = ζ2. Then `3 = a`2 for some a ∈ C∗,
and so ` lies in the translated subtorus z3 = az2, and its coamoeba coA(`) lies in
the coordinate subspace of U3 defined by θ3= arg(a)+θ2. In fact, coA(`) is pulled
back from the coamoeba of the projection of ` to the θ3 = 0 plane. It follows that if
there are only two distinct roots among ζ0, . . . , ζ3, then coA(`) is a coordinate line
of U3. If three of the roots are distinct, then (up to a translation) the projection of
the coamoeba coA(`) to the θ3 = 0 plane looks like (1) so that coA(`) consists of
two triangles lying in a coordinate plane.

For each i = 0, . . . , 3, define a function depending upon a point [s : t] ∈ P1 and
θ ∈ U by

ϕi (s, t; θ) :=
{
θ if `i (s, t)= 0,
arg(`i (s, t)) otherwise.
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For each i = 0, . . . , 3, let hi be the image in UP3 of U under the map

θ 7→ [ϕ0(ζi , θ), ϕ1(ζi , θ), ϕ2(ζi , θ), ϕ3(ζi , θ)].

Lemma 4. For each i = 0, . . . , 3, hi is a coordinate line in UP3 that consists of
accumulation points of coA(`).

This follows from Theorem 1. For the main idea, note that arg ◦φ(ζi + εeθ
√
−1)

for θ ∈ U is a curve in UP3 whose Hausdorff distance to the line hi approaches 0
as ε→ 0. The phase limit set of ` is the union of these four lines.

Lemma 5. Suppose that the zeroes ζ0, ζ1, and ζ2 are distinct. Then

P1
\ {ζ0, ζ1, ζ2} 3 x 7→ arg(`0(x), `1(x), `2(x)) ∈ U3/1U = UP2

is constant along each arc of the circle in P1 through ζ0, ζ1, and ζ2.

Proof. After changing coordinates in P1 and translating in UP2 (rotating coordi-
nates), we may assume that these roots are∞, 0, and −1, and so the circle becomes
the real line. Choosing affine coordinates, we may assume that `0 = 1, `1 = x , and
`2 = x + 1 so that we are in the situation of Example 2. Then the statement of
the lemma is the computation there for x real in which we obtained the coordinate
points (π, 0), (π, π), and (0, π). �

Lemma 6. The phase limit lines h0, h1, h2, and h3 are disjoint if and only if the
roots ζ0, . . . , ζ3 do not all lie on a circle.

Proof. Suppose that two of the limit lines meet, say h0 and h1. Without loss of
generality, we suppose that we have chosen coordinates on U4 and P1 so that ζi ∈C

and `i (x)= x − ζi for i = 0, . . . , 3. Then there are points α, β, θ ∈ U such that

(ϕ0(ζ0, α), ϕ1(ζ0, α), ϕ2(ζ0, α), ϕ3(ζ0, α))

= (ϕ0(ζ1, β), ϕ1(ζ1, β), ϕ2(ζ1, β), ϕ3(ζ1, β))+ (θ, θ, θ, θ).

Comparing the last two components, we obtain

arg(ζ0− ζ2)= arg(ζ1− ζ2)+ θ and arg(ζ0− ζ3)= arg(ζ1− ζ3)+ θ,

and so the zeroes ζ0, . . . , ζ3 have the configuration below:

θ
θ

ζ3
ζ2

ζ0 ζ1
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But then ζ0, . . . , ζ3 are cocircular. Conversely, if ζ0, . . . , ζ3 lie on a circle C , then
by Lemma 5, the lines hi and h j meet only if ζi and ζ j are the endpoints of an arc
of C \ {ζ0, . . . , ζ3}. �

Lemma 7. If the roots ζ0, . . . , ζ3 do not all lie on a circle, then the map

arg ◦φ : P1
\ {ζ0, ζ1, ζ2, ζ3} → UP3

is an immersion.

Proof. Let x ∈ P1
\ {ζ0, ζ1, ζ2, ζ3}, which we consider to be a real two-dimensional

manifold. After possibly reordering the roots, the circle C1 containing x , ζ0, and ζ1

meets the circle C2 containing x , ζ2, and ζ3 transversally at x . Under the derivative
of the map arg ◦φ, tangent vectors at x to C1 and C2 are taken to nonzero vectors
(0, 0, u1, v1) and (u2, v2, 0, 0) in the tangent space to U4. Furthermore, as the four
roots do not all lie on a circle, we cannot have both u1= v1 and u2= v2, and so this
derivative has full rank two at x as a map from P1

\ {ζ0, ζ1, ζ2, ζ3} → UP3, which
proves the lemma. �

By these lemmas, there is a fundamental difference between the coamoebae of
lines when the roots of the linear forms `i are cocircular and when they are not.
We examine each case in detail. First, choose coordinates so that ζ0 =∞. After
dehomogenizing and separately rescaling each affine coordinate (e.g., identifying
UP3 with U3 and applying phase shifts to each coordinate θ1, θ2, θ3 of U3), we may
assume that the map (3) parametrizing ` is

φ : C 3 x 7→ (x − ζ1, x − ζ2, x − ζ3) ∈ C3. (4)

Suppose first that the four roots are cocircular. As z0 =∞, the other three lie on
a real line in C, which we may assume is R. That is, if the four roots are cocircular,
then up to coordinate change, we may assume that the line ` is real and the affine
parametrization (4) is also real. For this reason, we will call such lines ` real lines.
We first study the boundary of coA(`). Suppose that x lies on a contour C in the
upper half plane as in Figure 1 that contains semicircles of radius ε centered at each
root and a semicircle of radius 1/ε centered at 0 but otherwise lies along the real

ζ1 ζ2 ζ3

R

C

Figure 1. Contour in upper half plane.
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axis for ε, a sufficiently small positive number. Then arg(φ(w)) ∈ U3 is constant
on the four segments of C lying along R with respective values

(π, π, π), (0, π, π), (0, 0, π), and (0, 0, 0), (5)

moving from left to right. On the semicircles around ζ1, ζ2, and ζ3, two of the
coordinates are essentially constant (but not quite equal to either 0 or π !) while the
third decreases from π to 0. Finally, on the large semicircle, the three coordinates
are nearly equal and increase from (0, 0, 0) to (π, π, π). The image arg(φ(C))
can be made as close as we please to the quadrilateral in U3 connecting the points
of (5) in cyclic order when ε is sufficiently small. Thus, the image of the upper
half plane under the map arg ◦φ is a relatively open membrane in U3 that spans the
quadrilateral. It lies within the convex hull of this quadrilateral, which is computed
using the affine structure induced from R3 by the quotient U3

= R3/(2πZ)3.
For this, observe that its projection in any of the four coordinate directions

parallel to its edges is one of the triangles of the coamoeba of the projected line in
CP2 of Example 2, and the convex hull of the quadrilateral is the intersection of
the four preimages of these triangles.

Because ` is real, the image of the lower half plane is isomorphic to the image
of the upper half plane under the map (θ1, θ2, θ3) 7→ (−θ1,−θ2,−θ3), and so the
coamoeba is symmetric in the origin of U3 and consists of two quadrilateral patches
that meet at their vertices. Here are two views of the coamoeba of the line where
the roots are∞, −1/2, 0, and 3/2:

Now suppose that the roots ζ0, . . . , ζ3 do not all lie on a circle. By Lemma 6, the
four phase limit lines h1, . . . , h3 are disjoint, and the map from ` to the coamoeba
is an immersion. Figure 2 shows two views of the coamoeba in a fundamental
domain of UP3 when the roots are∞, 1, ζ , and ζ 2, where ζ is a primitive third
root of infinity. This and other pictures of coamoebae of lines are animated on the
website [Nisse and Sottile 2010].
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Figure 2. Two views of the coamoeba of a symmetric line.

The projection of this coamoeba along a coordinate direction (parallel to one of
the phase limit lines hi ) gives a coamoeba of a line in TP2 as we saw in Example 2.
The line hi is mapped to the interior of one triangle, and the vertices of the triangles
are the images of line segments lying on the coamoeba. These three line segments
come from the three arcs of the circle through the three roots other than ζi , the root
corresponding to hi .

Proposition 8. The interior of the coamoeba of a general line in TP3 contains
twelve line segments in triples parallel to each of the four coordinate directions.

The symmetric coamoeba we show in Figure 2 has six additional line segments,
two each coming from the three longitudinal circles through a third root of unity
and 0 and∞. Two such segments are visible as pinch points in the leftmost view
in Figure 2. We ask, What is the maximal number of line segments on a coamoeba
of a line in TP3?

4. Structure of the phase limit set

The phase limit set P∞(X) of a complex subvariety X ⊂ TN is the set of all
accumulation points of sequences {arg(xn) | n ∈N} ⊂ UN , where {xn | n ∈N} ⊂ X
is an unbounded sequence. For w ∈ N , inwX ⊂ TN is the (possibly empty) initial
scheme of X , whose ideal is the initial ideal inw I , where I is the ideal of X . Our
main result, Theorem 1, is that the phase limit set of X is the union of the coamoebae
of all its initial schemes.

Remark 9. The union of Theorem 1 is finite. By Theorem 3, inwX is nonempty
only when w lies in the cone over the logarithmic set L∞(X), which can be given
the structure of a finite union of rational polyhedral cones such that any two points
in the relative interior of the same cone σ have the same initial scheme. If we write
inσ X for the initial scheme corresponding to a cone σ , the torus T〈σ 〉 ' (C

∗)dim σ
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acts on inσ X by translation (e.g., see Corollary 13). (Here, 〈σ 〉 ⊂ N is the span
of σ ∩N , a free abelian group of rank dim σ .) This implies coA(inσ X) is a union of
orbits of coA(T〈σ 〉)= U〈σ 〉 and thus that dim(coA(inσ X))≤ 2 dim(X)− dim(σ ).

This discussion implies the following proposition:

Proposition 10. Let X ⊂ TN be a subvariety, and suppose that TX ⊂ TN is the
largest subtorus acting on X. Then dim coA(X)≤min{dim TN , 2 dim X−dim TX }.

We prove Theorem 1 in the next two subsections.

4.1. Coamoebae of initial schemes. We review the standard dictionary relating
initial ideals to toric degenerations in the context of subvarieties of TN [Gelfand
et al. 1994, Chapter 6]. Let X ⊂ TN be a subvariety with ideal I ⊂ C[M]. We
study inw I and the initial schemes inwX = V(inw I ) ⊂ TN for w ∈ N . Since
in0 I = I so that in0 X = X , we may assume that w 6= 0. As N is the lattice of one-
parameter subgroups of TN , w corresponds to a one-parameter subgroup written
as C∗ 3 t 7→ tw ∈ TN . Define X⊂ C×TN by

X := {(t, x) ∈ C∗×TN | tw · x ∈ X}. (6)

The fiber of X over a point t ∈ C∗ is t−wX . Let X be the closure of X in C×TN ,
and set X0 to be the fiber of X over 0 ∈ C.

Proposition 11. X0 = inwX.

Proof. We first describe the ideal I of X. For m ∈ M , the element ξm
∈C[M] takes

the value t 〈m,w〉 ∈ C∗ on the element tw ∈ TN , and so if x ∈ TN , then ξm takes the
value t 〈m,w〉ξm(x)= t 〈m,w〉m(x) on twx . Given a polynomial f ∈C[M] of the form

f :=
∑
m∈A

cmξ
m for cm ∈ C∗,

define the polynomial f (t) ∈ C[t, t−1
][M] by

f (t) :=
∑
m∈A

cmt 〈m,w〉ξm. (7)

Then f (t)(x) = f (twx), so I is generated by the polynomials f (t) of (7) for
f ∈ I . A general element of I is a linear combination of translates ta f (t) of such
polynomials for a ∈ Z.

If we set w( f ) to be the minimal exponent of t occurring in f (t), then

inw f =
∑

〈m,w〉=w( f )

cmξ
m,

and
t−w( f ) f (t)= inw f +

∑
〈m,w〉>w( f )

t 〈m,w〉−w( f )cmξ
m.
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This shows that I∩C[t][M] is generated by polynomials t−w( f ) f (t), where f ∈ I .
Since inw f ∈C[M] and the remaining terms are divisible by t , we see that the ideal
of X0 is generated by {inw f | f ∈ I}, which completes the proof. �

We use Proposition 11 to prove one inclusion of Theorem 1, namely that

P∞(X)⊃
⋃

w∈N\{0}

coA(inwX). (8)

Fix 0 6= w ∈ N , and let X, X, and X0 = inwX be as in Proposition 11, and let
x0 ∈ X0. We show that arg(x0) ∈P∞(X). Since (0, x0) ∈ X, there is an irreducible
curve C ⊂X with (0, x0)∈C . The projection of C ⊂C∗×TN to C∗ is dominant, so
there exists a sequence {(tn, xn) | n ∈N} ⊂ C that converges to (0, x0) with each tn
real and positive. Then arg(x0) is the limit of the sequence {arg(xn)}.

For each n ∈ N, set yn := twn · xn ∈ X . Since tn is positive and real, every
component of twn is positive and real, and so arg(yn) = arg(xn). Thus, arg(x0) is
the limit of the sequence {arg(yn)}. Since xn converges to x0 and tn converges to 0,
the sequence {yn} ⊂ X is unbounded, which implies that arg(x0) lies in the phase
limit set of X . This proves (8).

4.2. Coamoebae and tropical compactifications. We finish the proof of Theorem 1
by establishing the other inclusion,

P∞(X)⊂
⋃

w∈N\{0}

coA(inwX).

Suppose that {xn | n ∈ N} ⊂ X is an unbounded sequence. To study the accumu-
lation points of the sequence {arg(xn) | n ∈ N}, we use a compactification of X
that is adapted to its inclusion in TN . Suitable compactifications are the tropical
compactifications of Tevelev [2007] for in these the boundary of X is composed of
initial schemes inwX of X in a manner we describe below.

By Theorem 3, the cone over the logarithmic limit set L∞(X) of X is the support
of a rational polyhedral fan 6 whose cones σ have the property that all initial
ideals inw I coincide for w in the relative interior of σ .

Recall the construction of the toric variety Y6 associated with a fan 6 [Fulton
1993; Gelfand et al. 1994, Chapter 6]. For σ ∈6, set

σ∨ := {m ∈ M | 〈m, w〉 ≥ 0 for all w ∈ σ },

σ⊥ := {m ∈ M | 〈m, w〉 = 0 for all w ∈ σ }.

Set Vσ := spec C[σ∨] and Oσ := spec C[σ⊥], which is naturally isomorphic to
TN/T〈σ 〉, where 〈σ 〉⊂ N is the subgroup generated by σ∩N . The map m 7→m⊗m
determines a comodule map C[σ∨] → C[σ∨]⊗C[M], which induces the action of
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the torus TN on Vσ . Its orbits correspond to faces of the cone σ , and the smallest orbit
Oσ corresponds to σ itself. The inclusion σ⊥ ⊂ σ∨ is split by the semigroup map

σ∨ 3 m 7→
{

m if m ∈ σ⊥,
0 if m 6∈ σ⊥,

(9)

which induces a map C[M]� C[σ⊥], and thus, we have the TN -equivariant split
inclusion

Oσ ↪−→ Vσ
πσ
−−� Oσ . (10)

On orbits Oτ in Vσ , the map πσ is simply the quotient by T〈σ 〉.
If σ, τ ∈6 with σ ⊂ τ , then σ∨⊃ τ∨, so C[σ∨] ⊃C[τ∨], and so Vσ ⊂ Vτ . Since

the quotient fields of C[σ∨] and C[M] coincide, these are inclusions of open sets,
and these varieties Vσ for σ ∈6 glue together along these natural inclusions to give
the toric variety Y6 . The torus TN acts on Y6 with an orbit Oσ for each cone σ of 6.

Since V0 = TN , Y6 contains TN as a dense subset, and thus X is a (nonclosed)
subvariety. Let X be the closure of X in Y6 . As the fan 6 is supported on the
cone over L∞(X), X will be a tropical compactification of X , and X is complete
[Tevelev 2007, Proposition 2.3]. To understand the points of X \ X , we study the
intersection X ∩ Vσ , which is defined by I ∩ C[σ∨], as well as the intersection
X ∩Oσ , which is defined in C[σ⊥] by the image I (σ ) of I ∩C[σ∨] under the map
C[σ∨]� C[σ⊥] induced by (10).

Lemma 12. The initial ideal inσ I ⊂ C[M] of I is generated by I (σ ) under the
inclusion C[σ⊥] ↪→ C[M].

Proof. Let f ∈ I . Since σ is a cone in 6, we have that inσ f = inw f for all w in
the relative interior of σ . Thus, for w ∈ σ , the function m 7→ 〈m, w〉 on exponents
of monomials of f is minimized on (a superset of) the support of inσ f , and if w
lies in the relative interior of σ , then the minimizing set is the support of inσ f .
Multiplying f if necessary by ξ−m, where m is some monomial of inσ f , we may
assume that for every w ∈ σ , the linear function m 7→ 〈m, w〉 is nonnegative on the
support of f so that f ∈ C[σ∨], and the function is zero on the support of inσ f .
Furthermore, if w lies in the relative interior of σ , then it vanishes exactly on the
support of inσ f . Thus, inσ f ∈ C[σ⊥], which completes the proof. �

Since Oσ = TN/T〈σ 〉, Lemma 12 has the following geometric counterpart:

Corollary 13. By translation with inσ X/T〈σ 〉 = X ∩Oσ , T〈σ 〉 acts (freely) on inσ X.

Proof of Theorem 1. Let θ ∈ P∞(X) be a point in the phase limit set of X . Then
there exists an unbounded sequence {xn | n ∈ N} ⊂ X with

lim
n→∞

arg(xn)= θ.
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Since X is compact, the sequence {xn | n ∈N} has an accumulation point x in X . As
the sequence is unbounded, x 6∈ O0, and so x ∈ X \ X . Thus, x is a point of X ∩Oσ
for some cone σ 6= 0 of 6. Replacing {xn} by a subsequence, we may assume
that limn xn = x .

Because the map πσ of (10) is continuous and is the identity on Oσ , we have that
{πσ (xn)} converges to πσ (x)= x , and thus,

πσ (θ)= πσ
(

lim
n→∞

arg(xn)
)
= arg

(
lim

n→∞
πσ (xn)

)
= arg(x) ∈ coA(X ∩Oσ ). (11)

Corollary 13 implies that coA(X ∩ Oσ ) = coA(inσ X)/Uσ as U〈σ 〉 = arg(T〈σ 〉).
Recall that on O0, πσ is the quotient by T〈σ 〉. Thus, we conclude from (11) that
θ ∈ coA(inσ X), which completes the proof of Theorem 1 as inσ X = inwX for
any w in the relative interior of σ . �

Example 14. In [Nisse 2009], the closure of a hypersurface coamoeba coA(V( f ))
for f ∈C[M] was shown to contain a finite collection of codual hyperplanes. These
are translates of codimension-1 subtori Uσ for σ a cone in the normal fan of the
Newton polytope of f corresponding to an edge. By Theorem 1, these translated
tori are that part of the phase limit set of X corresponding to the cones σ dual to the
edges, specifically coA(inσ X). Since σ has dimension n−1, the torus Tσ acts with
finitely many orbits on inσ X , which is therefore a union of finitely many translates
of Tσ . Thus, coA(inσ X) is a union of finitely many translates of Uσ .

The logarithmic limit set L∞(C) of a curve C ⊂ TN is a finite collection of
points in SN . Each point gives a ray in the cone over L∞(C), and the components
of P∞(C) corresponding to a ray σ are finitely many translations of the dimension-1
subtorus Uσ of UN , which we referred to as lines in Section 3. These were the lines
lying in the boundaries of the coamoebae coA(`) of the lines ` in T2 and T3.

References

[Basu et al. 2006] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in real algebraic geometry, 2nd
ed., Algorithms and Computation in Mathematics 10, Springer, Berlin, 2006. MR 2007b:14125
Zbl 1102.14041

[Below et al. 2003] A. Below, V. Krummeck, and J. Richter-Gebert, “Complex matroids phirotopes
and their realizations in rank 2”, pp. 203–233 in Discrete and computational geometry, edited by B.
Aronov et al., Algorithms Combin. 25, Springer, Berlin, 2003. MR 2005d:05041 Zbl 1077.52521

[Bergman 1971] G. M. Bergman, “The logarithmic limit-set of an algebraic variety”, Trans. Amer.
Math. Soc. 157 (1971), 459–469. MR 43 #6209 Zbl 0197.17102

[Bieri and Groves 1984] R. Bieri and J. R. J. Groves, “The geometry of the set of characters induced
by valuations”, J. Reine Angew. Math. 347 (1984), 168–195. MR 86c:14001 Zbl 0526.13003

[Einsiedler et al. 2006] M. Einsiedler, M. Kapranov, and D. Lind, “Non-Archimedean amoebas and
tropical varieties”, J. Reine Angew. Math. 601 (2006), 139–157. MR 2007k:14038 Zbl 1115.14051

[Fulton 1993] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Prince-
ton University Press, 1993. MR 94g:14028 Zbl 0813.14039

http://msp.org/idx/mr/2007b:14125
http://msp.org/idx/zbl/1102.14041
http://dx.doi.org/10.1007/978-3-642-55566-4_9
http://dx.doi.org/10.1007/978-3-642-55566-4_9
http://msp.org/idx/mr/2005d:05041
http://msp.org/idx/zbl/1077.52521
http://dx.doi.org/10.2307/1995858
http://msp.org/idx/mr/43:6209
http://msp.org/idx/zbl/0197.17102
http://msp.org/idx/mr/86c:14001
http://msp.org/idx/zbl/0526.13003
http://dx.doi.org/10.1515/CRELLE.2006.097
http://dx.doi.org/10.1515/CRELLE.2006.097
http://msp.org/idx/mr/2007k:14038
http://msp.org/idx/zbl/1115.14051
http://msp.org/idx/mr/94g:14028
http://msp.org/idx/zbl/0813.14039


352 Mounir Nisse and Frank Sottile

[Gelfand et al. 1994] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants,
and multidimensional determinants, Birkhäuser, Boston, MA, 1994. MR 95e:14045 Zbl 0827.14036

[Johansson 2013] P. Johansson, “The argument cycle and the coamoeba”, Complex Variables and
Elliptic Equations 58:3 (2013), 373–384.

[Kenyon et al. 2006] R. Kenyon, A. Okounkov, and S. Sheffield, “Dimers and amoebae”, Ann. of
Math. (2) 163:3 (2006), 1019–1056. MR 2007f:60014 Zbl 1154.82007

[Mikhalkin 2000] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of
Math. (2) 151:1 (2000), 309–326. MR 2001c:14083 Zbl 1073.14555

[Nilsson and Passare 2010] L. Nilsson and M. Passare, “Discriminant coamoebas in dimension two”,
J. Commut. Algebra 2:4 (2010), 447–471. MR 2011k:14033 Zbl 1237.14062

[Nisse 2009] M. Nisse, “Geometric and combinatorial structure of hypersurface coamoebas”, preprint,
2009. arXiv 0906.2729

[Nisse and Sottile 2010] M. Nisse and F. Sottile, “Coamoebae of lines in 3-space”, website, 2010,
available at http://www.math.tamu.edu/~sottile/research/stories/coAmoeba/.

[Passare and Rullgård 2004] M. Passare and H. Rullgård, “Amoebas, Monge–Ampère measures, and
triangulations of the Newton polytope”, Duke Math. J. 121:3 (2004), 481–507. MR 2005a:32005
Zbl 1043.32001

[Purbhoo 2008] K. Purbhoo, “A Nullstellensatz for amoebas”, Duke Math. J. 141:3 (2008), 407–445.
MR 2009b:14114 Zbl 1233.14036

[Speyer and Sturmfels 2004] D. Speyer and B. Sturmfels, “The tropical Grassmannian”, Adv. Geom.
4:3 (2004), 389–411. MR 2005d:14089 Zbl 1065.14071

[Tevelev 2007] J. Tevelev, “Compactifications of subvarieties of tori”, Amer. J. Math. 129:4 (2007),
1087–1104. MR 2008f:14068 Zbl 1154.14039

[Theobald 2002] T. Theobald, “Computing amoebas”, Experiment. Math. 11:4 (2002), 513–526.
MR 2004b:14100 Zbl 1100.14048

Communicated by Bernd Sturmfels
Received 2011-06-07 Revised 2012-02-14 Accepted 2012-03-16

nisse@math.tamu.edu Department of Mathematics, Texas A&M University,
College Station, TX 77843, United States
http://www.math.tamu.edu/~nisse/

sottile@math.tamu.edu Department of Mathematics, Texas A&M University,
College Station, TX 77843, United States
http://www.math.tamu.edu/~sottile/

mathematical sciences publishers msp

http://dx.doi.org/10.1007/978-0-8176-4771-1
http://dx.doi.org/10.1007/978-0-8176-4771-1
http://msp.org/idx/mr/95e:14045
http://msp.org/idx/zbl/0827.14036
http://dx.doi.org/10.1080/17476933.2011.592581
http://dx.doi.org/10.4007/annals.2006.163.1019
http://msp.org/idx/mr/2007f:60014
http://msp.org/idx/zbl/1154.82007
http://dx.doi.org/10.2307/121119
http://msp.org/idx/mr/2001c:14083
http://msp.org/idx/zbl/1073.14555
http://dx.doi.org/10.1216/JCA-2010-2-4-447
http://msp.org/idx/mr/2011k:14033
http://msp.org/idx/zbl/1237.14062
http://msp.org/idx/arx/0906.2729
http://www.math.tamu.edu/~sottile/research/stories/coAmoeba/
http://dx.doi.org/10.1215/S0012-7094-04-12134-7
http://dx.doi.org/10.1215/S0012-7094-04-12134-7
http://msp.org/idx/mr/2005a:32005
http://msp.org/idx/zbl/1043.32001
http://dx.doi.org/10.1215/00127094-2007-001
http://msp.org/idx/mr/2009b:14114
http://msp.org/idx/zbl/1233.14036
http://dx.doi.org/10.1515/advg.2004.023
http://msp.org/idx/mr/2005d:14089
http://msp.org/idx/zbl/1065.14071
http://dx.doi.org/10.1353/ajm.2007.0029
http://msp.org/idx/mr/2008f:14068
http://msp.org/idx/zbl/1154.14039
http://dx.doi.org/10.1080/10586458.2002.10504703
http://msp.org/idx/mr/2004b:14100
http://msp.org/idx/zbl/1100.14048
mailto:nisse@math.tamu.edu
http://www.math.tamu.edu/~nisse/
mailto:sottile@math.tamu.edu
http://www.math.tamu.edu/~sottile/
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Ehud Hrushovski Hebrew University, Israel

Craig Huneke University of Virginia, USA

Mikhail Kapranov Yale University, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Victor Reiner University of Minnesota, USA

Karl Rubin University of California, Irvine, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2013 is US $200/year for the electronic version, and $350/year (+$40, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 7 No. 2 2013

243The system of representations of the Weil–Deligne group associated to an abelian variety
RUTGER NOOT

283Fourier–Jacobi coefficients of Eisenstein series on unitary groups
BEI ZHANG

339The phase limit set of a variety
MOUNIR NISSE and FRANK SOTTILE

353Base change behavior of the relative canonical sheaf related to higher dimensional
moduli

ZSOLT PATAKFALVI

379Two ways to degenerate the Jacobian are the same
JESSE LEO KASS

405Arithmetic motivic Poincaré series of toric varieties
HELENA COBO PABLOS and PEDRO DANIEL GONZÁLEZ PÉREZ

431Maximal ideals and representations of twisted forms of algebras
MICHAEL LAU and ARTURO PIANZOLA

449Higher Chow groups of varieties with group action
AMALENDU KRISHNA

A
lgebra

&
N

um
ber

Theory
2013

Vol.7,
N

o.2

http://dx.doi.org/10.2140/ant.2013.7.243
http://dx.doi.org/10.2140/ant.2013.7.283
http://dx.doi.org/10.2140/ant.2013.7.353
http://dx.doi.org/10.2140/ant.2013.7.353
http://dx.doi.org/10.2140/ant.2013.7.379
http://dx.doi.org/10.2140/ant.2013.7.405
http://dx.doi.org/10.2140/ant.2013.7.431
http://dx.doi.org/10.2140/ant.2013.7.449

	1. Introduction
	2. Coamoebae, tropical varieties, and initial ideals
	3. Lines in space
	4. Structure of the phase limit set
	4.1. Coamoebae of initial schemes
	4.2. Coamoebae and tropical compactifications

	References
	
	

