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We provide sufficient conditions for the line bundle locus in a family of compact
moduli spaces of pure sheaves to be isomorphic to the Néron model. The result
applies to moduli spaces constructed by Eduardo Esteves and Carlos Simpson,
extending results of Busonero, Caporaso, Melo, Oda, Seshadri, and Viviani.

1. Introduction

1.1. Background. This paper relates two different approaches to extending fami-
lies of Jacobian varieties. Recall that if X0 is a smooth projective curve of genus g,
then the associated Jacobian variety is a g-dimensional smooth projective variety
J0 that can be described in two different ways: as the universal abelian variety
that contains X0 (the Albanese variety), and as the moduli space of degree 0 line
bundles on X0 (the Picard variety). If XU → U is a family of smooth, projective
curves, then the Jacobians of the fibers fit together to form a family JU → U . In
this paper, U will be an open subset of a smooth curve B (or, more generally, a
Dedekind scheme), and we will be interested in extending JU to a family over B.
Corresponding to the two different ways of describing the Jacobian (Albanese vs.
Picard) are two different approaches to extending the family JU →U .

Viewing the Jacobian as the Albanese variety, it is natural to try to extend
JU → U by extending it to a family of group varieties over B. Néron [1964]
showed that this can be done in a canonical way. He worked with an arbitrary
family of abelian varieties AU → U and proved that there is a unique B-smooth
group scheme N :=N(AU )→ B extending AU→U which is universal with respect
to a natural mapping property. This scheme is called the Néron model. Arithmetic
geometry has seen the use of the Néron model in a number of important results, e.g.,
[Mazur 1972; 1977; Mazur and Wiles 1984; Gross 1990]. The Néron model of a
Jacobian variety plays a particularly prominent role, and an alternative description
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of this scheme in terms of the relative Picard functor was given by Raynaud [1970].
We primarily work with Raynaud’s description, which is recalled in Section 2.

An alternative approach, suggested by viewing the Jacobian as the Picard variety,
is to extend JU → U as a family of moduli spaces of sheaves. This approach
was first proposed by Mayer and Mumford [1964]. Typically, one first extends
XU → U to a family of curves X → B and then extends JU to a family J̄ → B
with the property that the fiber over a point b ∈ B is a moduli space of sheaves on
Xb parametrizing certain line bundles, together with their degenerations. In this
paper, we show that the line bundle locus J in J̄ is canonically isomorphic to the
Néron model for some schemes J̄ constructed in the literature.

To state this more precisely, we need to specify which schemes J̄ we consider.
The problem of constructing such a family of moduli spaces has been studied by
many mathematicians, and they have constructed a number of different compact-
ifications; see for example [Ishida 1978; D’Souza 1979; Oda and Seshadri 1979;
Altman and Kleiman 1980; Caporaso 1994; Simpson 1994; Pandharipande 1996;
Jarvis 2000; Esteves 2001]. Many of the difficulties to performing such a construc-
tion arise from the fact that, when Xb is reducible, the degree 0 line bundles on a
fiber Xb do not form a bounded family.

For simplicity, assume the residue field k(b) is algebraically closed and Xb is
reduced with components labeled X1, . . . , Xn . Given a line bundle M of degree 0
on Xb, the sequence (deg(M|X1), . . . , deg(M|Xn )) is called the multidegree of M.
This sequence must sum to 0, but may otherwise be arbitrary, which implies un-
boundedness. A bounded family can be obtained by fixing the multidegree, and
typically the scheme J̄ is defined so that it parametrizes (possibly coarsely) line
bundles (and their degenerations) that satisfy a numerical condition on the multide-
gree. This paper focuses on constructions given by Simpson [1994] and by Esteves
[2001], which we now describe in more detail.

For the Simpson moduli space, the numerical condition imposed on line bundles
is slope semistabilty with respect to an auxiliary ample line bundle. This condition
arises from the method of construction: the moduli space is constructed using
geometric invariant theory (GIT), and slope stability corresponds to GIT stability.
In general, the Simpson moduli space is a coarse moduli space in the sense that
nonisomorphic sheaves may correspond to the same point of the space, but it con-
tains an open subscheme (the stable locus) that is a fine moduli space, and we will
work exclusively with this locus. Families of moduli spaces of semistable sheaves
have been constructed for arbitrary families of projective schemes, but we will only
be concerned with the case of families of curves.

The moduli spaces of Esteves parametrize sheaves that are σ -quasistable. Like
slope stability, σ -quasistabillity is a numerical conditions on the multidegree, but
it is defined in terms of an auxiliary vector bundle E and a section σ , rather than an
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ample line bundle. The moduli spaces are constructed for families over an arbitrary
locally noetherian base, but strong conditions are required of the fibers: They must
be geometrically reduced. The space is constructed as a closed subspace of a
(nonnoetherian, nonseparated) algebraic space that was constructed in [Altman and
Kleiman 1980]. For nodal curves, Melo and Viviani [2012] describe the relation
between the Esteves moduli spaces and the Simpson moduli spaces. However, here
we treat these moduli spaces separately.

For a discussion of the relation between these moduli spaces and other mod-
uli spaces constructed in the literature, the reader is directed to [Alexeev 2004;
Casalaina-Martin et al. 2011, Section 2]. The reader familiar with the work of
Caporaso is warned of one potential point of confusion. In [Caporaso 1994], the
compactified Jacobian associated to a stable curve X parametrizes pairs (Y, L)
consisting of a line bundle L on a nodal curve Y stably equivalent to X that satisfies
certain conditions. The line bundle locus J that we study corresponds to the locus
parametrizing pairs (Y, L) with X = Y .

1.2. Main result. The main result of this paper relates the line bundle locus in a
proper family of moduli spaces of sheaves to the Néron model of the Jacobian:

Theorem 1. Fix a Dedekind scheme B. Let f : X→ B be a family of geometrically
reduced curves with regular total space X and smooth generic fiber Xη. Let J ⊂ J̄
the locus of line bundles in one of the following moduli spaces:

• the Esteves compactified Jacobian J̄ σE ;

• the Simpson compactified Jacobian J̄ 0
L associated to an f -ample line bundle

L such that slope semistability coincides with slope stability.

Then J is the Néron model of its generic fiber.

Theorem 1 is the combination of Corollaries 4.2 and 4.5, which themselves are
consequences of Theorem 3.9. Theorem 3.9 is quite general, and we expect that
it applies to many other fine moduli spaces of sheaves (but not coarse ones). In
particular, Theorem 3.9 applies to families of curves with possibly nonreduced
fibers, though then general results asserting the existence of a suitable moduli space
are unknown (but see Section 4.3 for some simple examples).

The arithmetically inclined reader should note Theorem 1 and the results later
in this paper do not place any hypotheses on the base Dedekind scheme B. In
particular, we do not assume that the residue fields are perfect. This surprised the
author initially as there is a body of work (e.g., [Liu et al. 2004; Raynaud 1970])
showing that various pathologies can arise when k(b) fails to be perfect.

Theorem 1 has interesting consequences for both the Néron model and the
compactified Jacobian. One consequence of the theorem is that Néron models
of Jacobians can often be constructed over high-dimensional bases. The Néron
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model of an abelian variety is only defined over a (regular) 1-dimensional base B,
but no such dimensional hypotheses are needed to apply the existence results from
[Simpson 1994; Esteves 2001]. At the end of Section 4.3, we examine a family
J→P2 over the plane with the property that a dense, open subset of P2 is covered
by lines C such that the restriction JC of J is the Néron model of its generic fiber.
Surprisingly, while the Néron models fit into a 2-dimensional family, their group
structure does not.

Theorem 1 also has interesting consequences for the moduli spaces of Esteves
and Simpson. Indeed, if f : X→ B is a family of curves satisfying the hypotheses
of the theorem, then both the Esteves Jacobians J σE and the Simpson Jacobians J 0

L

(for L as in the hypothesis) are independent of the particular polarizations, and
every such Simpson Jacobian is isomorphic to every Esteves Jacobian. This is not
immediate from the definitions. At the end of Section 4.1, we discuss this fact in
greater detail and pose a related question.

1.3. Past results. Certain cases of Theorem 1 were already known. In his (unpub-
lished) thesis, Simone Busonero [2008] established Theorem 1 for certain Esteves
Jacobians. A different proof using similar techniques that extends the result to
the Simpson moduli spaces is due to Melo and Viviani [2012, Theorem 3.1]. They
prove Theorem 1 when the fibers of f are nodal and X is regular. We do not discuss
the Caporaso universal compactified Jacobian here, but the relation between that
scheme and the Néron model was described by Caporaso [2008a; 2008b; 2012,
especially Theorem 2.9]. Earlier still, Oda and Seshadri related their φ-semistable
compactified Jacobians, also not discussed here, to Néron models [Oda and Se-
shadri 1979, Corollary 14.4]. In each of those papers, an important step in the
proof is a combinatorial argument establishing that, for example, the natural map
from the set of σ -quasistable multidegrees to the degree class group is a bijection.

The proof given here does not use any combinatorics, and the idea can be de-
scribed succinctly. Consider the special case where B := Spec(C[[t]]), which is
a strict henselian discrete valuation ring with algebraically closed residue field.
There is a natural map J → N to the Néron model coming from the univer-
sal property of N, and an application of Zariski’s main theorem shows that this
morphism is an open immersion. Thus the only issue is set-theoretic surjectiv-
ity. Because B is henselian, every point on the special fiber of N is the spe-
cialization of a section, so surjectivity is equivalent to the surjectivity of the map
J (C[[t]])→ J (Frac C[[t]]) that sends a section to its restriction to the generic fiber.
A given point p ∈ J (Frac C[[t]]) may be extended to a section σ ∈ J̄ (C[[t]]) of J̄
by the valuative criteria. As J̄ is a fine moduli space, σ corresponds to a family of
rank 1, torsion-free sheaves, which in fact must be a family of line bundles because
X is factorial. We may conclude that σ ∈ J (C[[t]]), yielding the result.
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1.4. Questions. It would be interesting to know when a Simpson Jacobian J 0
L sat-

isfying the hypotheses of Theorem 1 exists; that is, given a family f : X → B,
does there exist an ample line bundle L such that every L-slope semistable sheaf
of degree 0 is stable? We briefly survey the literature on this question at the end
of Section 4.2.

More generally, given a family f : X → B, it would be desirable to have a
description of the maximal subfunctors of the degree 0 relative Picard functor P0

representable by a separated B-scheme. We discuss this question in Section 4.3,
where we analyze the simple case of genus 1 curves.

1.5. Organization. We end this introduction with a few technical remarks about
the paper. The moduli spaces of sheaves that we consider are moduli spaces of pure
sheaves. On a curve, a coherent sheaf is pure if and only if it is Cohen–Macaulay.
This condition is also equivalent to the condition of being torsion-free in the sense
of elementary algebra when the curve is integral, and the term “torsion-free” is
sometimes used in place of “pure”.

The term “family of curves” only to refers to families with geometrically irre-
ducible generic fibers. This is done to avoid notational complications concerning
multidegrees. Families of curves are required to be proper, but not projective. A
family of curves over a Dedekind scheme can fail to be projective (e.g., [Altman
and Kleiman 1980, 8.10]), but projectivity is automatic if the local rings of the total
space are factorial, which is the main case of interest. (See Proposition 4.1.)

We prove the main results for families over a base scheme S that is the spectrum
of a strict henselian discrete valuation ring rather than a more general Dedekind
scheme. Doing so lets us make sectionwise arguments because a smooth family
of a henselian base admits many sections. Furthermore, this is not a real restric-
tion: Results over a general Dedekind base can be deduced by passing to the strict
henselization.

The body of the paper is organized as follows. In Section 2, we review Rayanud’s
construction of the maximal separated quotient. We then relate this scheme to a
general moduli space of line bundles satisfying some axioms in Section 3. Finally,
we describe some schemes that satisfy these axioms in the final section, Section 4.

Conventions

1.1. The symbol XT denotes the fiber product X ×S T .

1.2. The letter S denotes the spectrum of a strict henselian discrete valuation ring
with special point 0 and generic point η.

1.3. A curve over a field k is a proper k-scheme f0 : X0→ Spec(k) that is geomet-
rically connected and of pure dimension 1.
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1.4. If B is a scheme, then a family of curves over B is a proper, flat morphism f :
X→ B whose fibers are curves and whose geometric generic fibers are irreducible.

1.5. If f : Y → B is a finitely presented morphism, then we write Y sm
⊂ Y for the

smooth locus of f .

1.6. A coherent module I0 on a noetherian scheme X0 is rank 1 if the localization
of I0 at x is isomorphic to OX0,x for every generic point x .

1.7. A coherent module I0 on a noetherian scheme X0 is pure if the dimension of
Supp(I0) equals the dimension of Supp(J0) for every nonzero subsheaf J0 of I0.

1.8. If X0 → Spec(k) is proper, then the degree of a coherent OX0-module F is
defined by deg(F) := χ(F)−χ(OX ).

2. Raynaud’s maximal separated quotient

We begin by reviewing Raynaud’s construction of the Néron model of a Jacobian
and, more generally, the maximal separated quotient of the relative Picard func-
tor [Raynaud 1970]. Much of this material is also treated in [Bosch et al. 1990,
Chapter 9].

Let S be a strict henselian discrete valuation ring with generic point η and special
point 0. Given a family of curves f : X→ S, the relative Picard functor P of f is
defined to be the étale sheaf P : S-Sch→ Grp associated to the functor

T 7→ Pic(XT ). (2-1)

Here Pic(XT ) is the set of isomorphism classes of line bundles on XT . Rayanud
actually defines P to be the associated fppf sheaf, but then observes that this is the
same as the associated étale sheaf ([Raynaud 1970, 1.2]; see also [Kleiman 2005,
Remark 9.2.11]). The fibers of P are representable by group schemes locally of
finite type, and P itself is representable by an algebraic space if and only if f is co-
homologically flat [Raynaud 1970, Theorem 5.2]. Regardless of its representability
properties, P is locally finitely presented and formally S-smooth.

Inside of P, we may consider the functor E : S-Sch→ Grp that is defined to
be the scheme-theoretic closure of the identity section. This is the fppf subsheaf
of P generated by the elements g ∈ P(T ), where T → S is flat and gη ∈ P(Tη) is
the identity element. When P is a scheme, this coincides with the usual notion of
closure. The representability properties of E are similar to those of P: The fibers of
E are group schemes locally of finite type, and E is representable by an algebraic
space precisely when f is cohomologically flat [Raynaud 1970, Proposition 5.2].
When representable, E → S is an étale S-group space; in general, the generic
fiber of E is the trivial group scheme, and the special fiber is a group scheme of
dimension equal to h0(OX0)− h0(OXη).
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When E is not the trivial S-group scheme, P does not satisfy the valuative cri-
teria of separatedness. We can, however, form the maximal separated quotient
Q : S-Sch→ Grp of P. By definition, this is the fppf quotient sheaf Q := P /E.
The maximal separated quotient Q is always representable by a scheme that is
S-smooth, separated, and locally of finite type [Raynaud 1970, Theorem 4.1.1,
Proposition 8.0.1]. Rather than working directly with Q, we shall primarily work
with the slightly smaller subfunctor Qτ

: S-Sch→ Grp, which we now define.
Suppose generally that B is a scheme and G : S-Sch→Grp is a B-group functor

whose fibers are representable by group schemes locally of finite type. For every
point b ∈ B, we may form the identity component Go

b ⊂ Gb and the component
group Gb/Go

b. The subgroup functor Gτ
⊂G is defined to the subfunctor whose T -

valued points are elements g∈G(T )with the property that, for every t ∈T mapping
to b ∈ B, the element gt ∈ Gb(k(t)) maps to a torsion element of Gb/Go

b(k(t)). If
we instead require that gt maps to the identity element, then we obtain the subgroup
functor Go

⊂G. Let us examine these constructions when B equals S and G equals
P or Q.

The functors Po and Pτ coincide, and this common functor is the étale sheaf
associated to the assignment sending T to the set of isomorphism classes of line
bundles on XT that fiberwise have multidegree 0. From this description, it is easy
to see that Po

= Pτ ⊂ P is an open subfunctor. Another open subfunctor of P is the
subfunctor parametrizing line bundles on XT with fiberwise degree 0, which we
denote by P0. It is typographically difficult to distinguish between P0 and Po, but
we will not make use of Po in this paper, so this should not cause confusion.

The functors Qo and Qτ are different in general. They are, however, both open
subfunctors of Q [Grothendieck 1966b, Theorem 1.1(i.i), Corollary 1.7]. In partic-
ular, they are both representable by smooth and separated S-group schemes that are
locally of finite type. In fact, both schemes are of finite type over S as their fibers
are easily seen to have a finite number of connected components. The condition that
Qτ
⊂Q is a closed subscheme is important, but slightly subtle. A characterization

of this condition is given by [Raynaud 1970, Proposition 8.1.2(iii)]; one sufficient
(but not necessary) condition for Qτ

⊂ Q to be closed is that the local rings of X
are factorial.

The factoriality condition is also almost sufficient to ensure that Qτ is the Néron
model of its generic fiber. Suppose that the generic fiber of f is smooth, so the
generic fiber of Qτ

→ S is an abelian variety, and thus it makes sense to speak of the
Néron model N := N(Qτ

η). By the universal property, there is a unique morphism
Qτ
→N that is the identity on the generic fiber. Theorem 8.1.4 of [Raynaud 1970]

states that if the local rings of X are factorial, then Qτ
→ N is an isomorphism in

the cases that k(0) is perfect and that a certain invariant δ is coprime to the residual
characteristic.
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The proof uses the characterization of the Néron model in terms of the weak
Néron mapping property. Recall that a S-scheme Y → S is said to be a weak
Néron model of its generic fiber if the natural map Y (S)→ Y (η) is bijective. If
G→ S is a finite type S-group scheme whose generic fiber is an abelian variety,
then G is the Néron model of its generic fiber if and only if it satisfies the weak
Néron mapping property [Bosch et al. 1990, Section 7.1, Theorem 1].

3. The main theorem

Here we derive the main results for families over a strict henselian discrete val-
uation ring S with generic point η and special point 0. Specifically, we provide
sufficient conditions for the maximal separated quotient Qτ of the Picard functor
to be the Néron model and we relate Qτ to a fine moduli space of line bundles that
satisfies certain axioms. These moduli spaces are, by definition, subfunctors of a
(large) functor that we now define.

Definition 3.1. If T is a S-scheme, then we define Sheaf(XT ) to be the set of
isomorphism classes of OT -flat, finitely presented OXT -modules I on XT that are
fiberwise pure, rank 1, and of degree 0.

The functor Sh=ShX/S : S-Sch→Sets is defined to be the étale sheaf associated
to the functor

T 7→ Sheaf(XT ). (3-1)

There is a tautological transformation P0
→ Sh that realizes P0 as a subfunctor

of Sh.

Lemma 3.2. The subfunctor P0
⊂ Sh is open.

Proof. Given a S-scheme T and a morphism g :T→Sh, we must show that T×ShP0

is representable by a scheme and that T ×Sh P0
→ T is an open immersion. Thus,

let g be given.
By definition, there exists an étale surjection p : T ′ → T and a sheaf I′ ∈

Sheaf(XT ′) that represents g ◦ p : T ′→ Sh. Consider the subset U ′ ⊂ T ′ of points
t ∈ T ′ with the property that the restriction of I to the fiber X t is a line bundle. This
locus is open by [Altman and Kleiman 1980, Lemma 5.12(a)], and one may easily
show that U ′ represents T ′×Sh P0. A descent argument establishes the analogous
property for the image U of U ′ under T ′→ T . This completes the proof. �

A remark about topologies: We work with the étale sheaf associated to (3-1),
but one could instead work with the associated fppf sheaf. When f is projective,
it is a theorem of Altman and Kleiman [1980, Theorem 7.4] that the subfunctor of
Sh parametrizing simple sheaves can be represented by a quasiseparated, locally
finitely presented S-algebraic space, and hence is an fppf sheaf. We do not know
if Sh is an fppf sheaf in general. Here Sh is just used as a tool for keeping track of
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representable functors, and certainly any representable subfunctor of Sh is an fppf
sheaf.

One reason for working with the étale topology instead of the fppf topology is
that it makes the following fact easy to prove.

Fact 3.3. The natural map Sheaf(X)→ Sh(S) is surjective.

Proof. Let g ∈ Sh(S) be given. By definition, there is an étale morphism S′→ S
and an element I′ ∈ Sheaf(X S′) that maps to gS′ ∈ Sh(S′). But S is strict henselian,
so S′→ S may be taken to be an isomorphism S→ S [Grothendieck 1967, Propo-
sition 18.8.1(c)], in which case the result is obvious. �

The following two facts about separably closed fields are standard, but they will
be used so frequently that it is convenient to record them.

Fact 3.4. If k(0) is a separably closed field and f0 : Y0→ Spec(k(0)) is smooth of
relative dimension n, then the closed points of Y0 with residue field k(0) are dense.

Proof. This is [Bosch et al. 1990, Corollary 13]. The scheme Y0 can be covered
by affine opens U0 that admit an étale morphism p : U0 → An

k(0). Certainly, the
closed points with residue field k(0) are dense in the image of p. If v0 ∈ An

k(0) is
one such point, then p−1(v0) is a finite, étale k(0)-algebra, and hence a disjoint
union of closed points defined over k(0). Density follows. �

Fact 3.4 is typically used in conjunction with the following fact to assert that a
smooth morphism has many sections.

Fact 3.5. Let Y→ S be a smooth morphism over strict henselian discrete valuation
ring. Then Y (S)→ Y (k(0)) is surjective.

Proof. This is [Grothendieck 1967, Corollary 17.17.3], or [Bosch et al. 1990,
Proposition 14]. If U and X ′ are as in the statement of the former, then we
must have U = S and X ′ → U may be taken to be an isomorphism (again, by
[Grothendieck 1967, Proposition 18.8.1(c)]). �

We now prove the main results of the paper.

Proposition 3.6. Let f : X → S be a family of curves and J ⊂ P0 a subfunctor
such that the generic fibers Jη=P0

η coincide. Assume J is represented by a smooth,
finitely presented S-scheme.

If J is S-separated, then J → Q is an open immersion. Furthermore, the im-
age is contained in Qτ provided Qτ

⊂ Q is closed (e.g., the local rings of X are
factorial).
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Proof. This is an application of Zariski’s main theorem. We begin by showing that
the induced map J→Q is injective on closed points. It is enough to verify this after
extending base S so that k(0) is algebraically closed. Thus, we will temporarily
assume k := k(0) is algebraically closed and work with k-valued points instead of
closed points. Given q ∈ Q(k), there is nothing to show when the fiber over q is
empty. If nonempty, pick p ∈ J (k)mapping to q . We may invoke Fact 3.5 to assert
that there exists a section σ ∈ J (S) with σ(0)= p.

The fiber of P→Q over q is the set of elements of the form p+e with e ∈ E(k)
or, equivalently, the elements of (σ +E)(k) [Raynaud 1970, Corollary 4.1.2]. Re-
stricting to J , we see that the fiber of q under J →Q is the set of k-valued points
of (σ + E) ∩ J . But (σ + E) ∩ J is the scheme-theoretic closure of σ in J (by
[Grothendieck 1965, 2.8.5]), which is just the image of σ by separatedness. In
particular, the preimage of q under J → Q must be the singleton set {p}. This
proves that the map is injective on closed points. We now return to the case
where S is a henselian discrete valuation ring (so k(0) is no longer assumed to
be algebraically closed).

It follows that the set-theoretic fibers of J→Q are finite sets. Indeed, if Z ⊂ J
is the locus of points x ∈ J with the property that x lies in a positive dimensional
fiber, then Z is closed by Chevalley’s theorem [Grothendieck 1965, 13.1.3]. Fur-
thermore, Z is contained in the special fiber J0 and contains no closed points. This
is only possible if Z is the empty scheme. In other words, the set-theoretic fibers
of J → Q are 0-dimensional, and hence finite (by [Grothendieck 1964, 14.1.9]).

It follows immediately from Zariski’s main theorem [Grothendieck 1961, 4.4.9]
that J → Q is an open immersion. This proves the first part of the theorem. To
complete the proof, observe that flatness implies that the generic fiber of Jη is dense
in J [Grothendieck 1965, 2.8.5]. In particular, J is contained in the closure of Jη
in Q. The generic fiber of J coincides with the generic fiber of Qτ , so the closure
of this common scheme is contained in Qτ when Qτ

⊂Q is closed. This completes
the proof. �

Remark 3.7. In Proposition 3.6, we do not assume that J ⊂ P0 is an open sub-
functor, but this condition holds in most cases of interest. When open, J is auto-
matically formally smooth and locally of finite presentation. Thus, the key hypo-
thesis in the proposition is that J is represented by a S-separated scheme. A similar
remark holds for Theorem 3.9; there the key hypotheses are that J̄ satisfies the
valuative criteria of properness and that J is representable. Indeed, we do not even
need to assume that J̄ is representable.

Under stronger assumptions, we can actually show that the natural map J→Qτ

is an isomorphism. The essential point is to prove that J satisfies the weak Néron
mapping property. When J can be embedded in a S-proper moduli space J̄ , this
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property holds provided that the local rings of X are factorial. The content of this
claim is that a line bundle on the generic fiber can specialize only to a line bundle
on the special fiber. By localizing, the claim is equivalent to the following lemma,
which is based on a proof from [Altman and Kleiman 1979, p. 27 after Step XII].

Lemma 3.8. Suppose that (R, π) is a discrete valuation ring and R→ O a local,
flat algebra extension with O noetherian. Let M be a R-flat, finite O-module with
the property that M[π−1

] is free of rank 1 and M/πM is a rank 1, pure module. If
O is factorial, then M is free of rank 1.

Proof. We can certainly assume O is not the zero ring. To ease notation, we write
M := M/πM and O := O/πO. It is enough to prove that M is isomorphic to a
height 1 ideal. Indeed, such an ideal is principal by the factoriality assumption.

We argue by first showing that M is isomorphic to an ideal of O. Let p̄1, . . . , p̄n

be the minimal primes of O and p1, . . . , pn the corresponding primes of O. We have
assumed that the stalk M ⊗ k(p̄i ) is 1-dimensional. This stalk coincides with the
stalk M ⊗ k(pi ), so we can conclude that the localization Mpi is free of rank 1 for
i = 1, . . . , n.

We can also conclude that the same holds for the localizations of the dual module
M∨ :=Hom(M,O). An application of the prime avoidance lemma shows that there
exists an element φ ∈ M∨ that maps to a generator of M∨pi

for all i . We will show
that φ : M → O realizes M as a R-flat family of ideals (i.e., φ is injective with
R-flat cokernel).

It is enough to show that the reduction φ̄ : M → O is injective. An element of
the kernel of this map is also in the kernel of the composition

M→
⊕

M p̄i →
⊕

Op̄i .

The kernel of the leftmost map is a submodule whose support does not contain any
of the primes p̄i , and thus must be zero by pureness. Furthermore, the rightmost
map is an isomorphism by construction. This proves injectivity.

Consider the ideal I [π−1
] given by the image of φ[π−1

] : M[π−1
] → O[π−1

].
This is a principal ideal, and hence is either the unit ideal or an ideal of height at
most 1 (Hauptidealsatz!). By flatness, the same is true of the image I of φ. In fact,
I cannot be a height zero ideal: The only such prime is the zero ideal, which does
not satisfy the hypotheses. Thus, I is either the unit ideal or a height 1 ideal. In
either case, I must be principal, and the proof is complete. �

We record the factorial condition as a hypothesis.

Hypothesis 1. We say a family of curves f : X → B over a Dedekind scheme
satisfies Hypothesis 1 if the generic fiber Xη is smooth and the local rings of X S

are factorial for every strict henselization S→ B.
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Hypothesis 1 is satisfied when X is regular and Xη is smooth. We now prove
the main theorem of this paper.

Theorem 3.9. Let f : X→ S be a family of curves and J̄ a subfunctor of Sh such
that the generic fibers J̄η = Shη coincide. Assume the line bundle locus J ⊂ J̄ is
represented by a smooth and finitely presented S-scheme.

If J̄ satisfies the valuative criteria of properness and f satisfies Hypothesis 1,
then Qτ is the Néron model and

J ⊂ Qτ
= N

is an open subscheme that contains all the k(0)-valued points of Qτ . Furthermore,

J = Qτ
= N

provided one of the following conditions hold:

(1) k(0) is algebraically closed;

(2) J is stabilized by the identity component Qo.

Proof. By Proposition 3.6, the natural map J → Q is an open immersion with
image contained in Qτ . Using this fact, we can prove that Qτ is the Néron model
of its generic fiber. Indeed, it is enough to prove that Qτ satisfies the weak Néron
mapping property. The open subscheme J ⊂ Qτ , in fact, already satisfies this
property. Let ση ∈ Qτ (η) = J (η) be given. By properness, we can extend ση to
a section σ ∈ J̄ (S), and this element can be represented by a family I of pure,
rank 1 sheaves (by Fact 3.3). But every such family is a family of line bundles
(Lemma 3.8), and hence σ lies in J (S) ⊂ J̄ (S). In other words, J satisfies the
weak Néron mapping property.

The weak Néron mapping property of J also implies that the image of J contains
all the k(0)-valued points of Qτ . Indeed, every k(0)-valued point of Qτ is the
specialization of a section by Fact 3.5. If k(0) is algebraically closed, then we
have shown that J contains every k(0)-valued point of Qτ , hence every closed
point. Thus, J = Qτ , and there is nothing more to show.

Let us now turn our attention to the case where k(0) is only separably closed,
but J is stabilized by Qo. Our goal is to show J = Qτ , and to show this, we pass
to the special fiber J0→ Qτ

0 and argue with points. Let x be a k̄(0)-valued point
of Qτ , where k̄(0) is the algebraic closure of the residue field. By density (Fact 3.4),
there exists a k̄(0)-valued point y in the image of J0 → Qτ

0 that lies in the same
connected component as x . We have x = y + (x − y), which expresses x as the
sum of a point of Qo

0 and a point of J0. The point x must lie in J0 by assumption.
This shows that the image of J contains all of Qτ , completing the proof. �
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Remark 3.10. The hypothesis that J is stabilized by the identity component Qo

is perhaps unexpected, but it is often satisfied in practice. The moduli space J̄ is
typically constructed by imposing numerical conditions on the multidegree of a
sheaf, and the multidegree is invariant under the action of Qo (because the action
is given by tensoring with a multidegree 0 line bundle).

In the next section, we will show that certain moduli spaces constructed in the
literature satisfy the hypotheses of Theorem 3.9. There are, however, families of
curves f : X → S with factorial local rings OX,x such that there does not exist a
S-scheme J̄ satisfying the conditions of the theorem. Indeed, the family f : X→ S
in [Raynaud 1970, Example 9.2.3] is a family of genus 1 curves such that the local
rings of X are factorial (even regular), but the natural map Qτ

→ N is not an
isomorphism. In particular, no J̄ satisfying the hypotheses of Theorem 3.9 can
exist.

4. Applications

Here we apply Theorem 3.9 to some families of moduli spaces from the literature
and then deduce consequences. The two moduli spaces that we are interested in
are the Esteves moduli space of quasistable sheaves (Section 4.1) and the Simpson
moduli space of slope stable sheaves (Section 4.2). In Section 4.3, we discuss the
special case of families of genus 1 curves, where suitable moduli spaces can be
constructed explicitly.

The moduli spaces we study are associated to a relatively projective family of
curves. We are primarily interested in families over a Dedekind scheme with lo-
cally factorial total space, in which case projectivity is automatic. This fact is a
consequence of the generalized Chevalley Conjecture when the Dedekind scheme
is defined over a field, but we do not know a reference. For completeness, we
prove:

Proposition 4.1. Let f : X→ B be a family of curves over a Dedekind scheme. If
the local rings of X are factorial, then f is projective.

Proof. This proof was explained to the author by Steven Kleiman. Fix a closed
point b0 ∈ B. Given any component F ⊂ Xb0 , I claim that we can find a line bundle
L on X that has nonnegative degree on every component of every fiber and strictly
positive degree on F .

Pick a closed point x ∈ F and an open affine neighborhood U ⊂ X of that point.
By the prime avoidance lemma, we can find a regular function r ∈ H 0(U,OX ) that
does not vanish on any component of Xb0 but does vanish at x . Pick a component
D of the closure of {r =0}⊂U in X . Then D is a Cartier divisor (by the factoriality
assumption) that does not contain any component of any fiber Xb (by construction).
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Furthermore, D has nontrivial intersection with F . The associated line bundle
L := OX (D) has the desired positivity property.

Now construct one such line bundle for every irreducible component F of Xb0

and define M to be their tensor product. The line bundle M is nef on every fiber
and ample on Xb0 . Ampleness is an open condition, so M is in fact ample on all but
finitely many fibers of f . After repeating the construction for each such fiber and
forming the tensor product, we have constructed a f -relatively ample line bundle
on X . This completes the proof. �

We now turn our attention to the moduli spaces.

4.1. Esteves Jacobians. We first discuss the Esteves moduli space of quasistable
sheaves. This moduli space fits very naturally into the framework of the previous
section.

Suppose B be a locally noetherian scheme and f : X→ B a projective family of
curves whose fibers are geometrically reduced. Quasistability is defined in terms
of a section σ : B→ X sm and a vector bundle E on X with fiberwise integral slope
deg(Eb)/ rank(Eb), which we assume is constant as a function of b ∈ B. Given
σ and E, σ -quasistability is a numerical condition on the multidegree of a rank 1,
torsion-free sheaf of degree

d(E)= d := −χ(OXb)− deg(Eb)/ rank(Eb).

For the definitions (which we will not use), we direct the reader to [Esteves 2001,
p. 3051] (for a single sheaf) and [ibid., p. 3054] (for a family). The basic existence
theorem is [ibid., Theorem A on p. 3047], which is proved in [ibid., Section 4]).
It states that if SheafσE : S-Sch→ Sets is the functor defined by setting SheafσE(T )
equal to the set of isomorphism classes of OT -flat, finitely presented OXT -modules
that are fiberwise σ -quasistable, then there is a B-proper algebraic space J̄ σE → B
of finite type that represents the étale sheaf associated to SheafσE.

Strictly speaking, our definition differs from the one given in [ibid.] in two ways.
First, Esteves does not work with isomorphism classes of sheaves but rather with
equivalence classes under the relation given by identifying two sheaves I1 and
I2 on XT when I1 is isomorphic to I2 ⊗ f ∗(L) for some line bundle L on T .
Zariski locally on T , the sheaves I1 and I2 are isomorphic, and it follows that the
étale sheaf associated to SheafσE is canonically isomorphic to the sheaf considered
by Esteves. Second, Esteves only defines his functor as a functor from locally
noetherian schemes to sets. However, the functor SheafσE and its associated étale
sheaf are easily seen to be locally finitely presented. It follows that J̄ σE represents
the étale sheaf associated to SheafσE, rather than just the restriction of this sheaf to
locally noetherian schemes.
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If f satisfies stronger conditions, then the space J̄ σE is actually a scheme. This
is the content of [Esteves 2001, Theorem B, p. 3048], proved on [ibid., p. 3086].
The theorem states that if there exist sections σ1, . . . , σn : B→ X sm of f with the
property that every irreducible component of a fiber Xb is geometrically integral
and contains one of the points σ1(b), . . . , σn(b), then J̄ σE is a scheme.

In the special case where B = S is a strict henselian discrete valuation ring with
generic point η and special point 0, the hypotheses of Theorem B are automatically
satisfied. Indeed, the locus of k(0)-valued points is dense in the smooth locus X sm

0
(Fact 3.4), which in turn is dense in X0 as X0 is geometrically reduced. We may
conclude that the irreducible components of X0 are geometrically integral. Finally,
every k(0)-valued point of X0 extends to a section σ : S → X (Fact 3.5), so the
hypotheses of Theorem B are certainly satisfied.

We call J̄ σE the Esteves compactified Jacobian. Inside of the Esteves compact-
ified Jacobian, we can consider the open subscheme parametrizing line bundles.
This scheme is called the Esteves Jacobian and denoted by J σE . While the scheme
J̄ σE parametrizes sheaves, it is not naturally a subfunctor of Sh because it does not
parametrize degree 0 sheaves. We can, however, define a natural transformation
J̄ σE → Sh by the rule

I 7→ I(−d · σ)

Both Proposition 3.6 and Theorem 3.9 apply to J̄ σE .

Corollary 4.2. Fix a Dedekind scheme B. Let f : X→ B be a projective family of
geometrically reduced curves. Let σ : B→ X sm be a section and E a vector bundle
on X with fiberwise integral slope.

Then the natural map J σE → Q is an open immersion.
Assume further that f satisfies Hypothesis 1. Then J σE =Qτ , and this scheme is

the Néron model.

Proof. By localizing, we can assume that B = S is a strict henselian discrete
valuation ring, in which case we are reduced to proving that the hypotheses of
Proposition 3.6 and Theorem 3.9 hold. The scheme J σE is easily seen to be for-
mally S-smooth. Indeed, σ -quasistability is a condition on fibers, so the formal
smoothness of P0 implies the formal smoothness of J σE . The remaining hypotheses
of Proposition 3.6 are explicitly assumed, so we can deduce the first part of the
theorem. To complete the proof, it is enough to show that J σE is stabilized by Qo.
But the action of Qo on J σE is given by the tensor product against a multidegree 0
line bundle, so this action preserves multidegree and hence σ -quasistability. �

Corollary 4.2 implies that J σE is a scheme with (unique) B-group scheme struc-
ture that extends the group scheme structure of the generic fiber. It is not immediate
from the definition that J σE admits such structure, and Example 4.9 shows that the
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group structure is special to the case of families over a 1-dimensional base. The
result also implies uniqueness results for the Esteves Jacobian; if σ ′ : B → X sm

is a second section and E′ a second vector bundle on X , then J σ
′

E′ is canonically
isomorphic to J σE . In the next section, we will define the Simpson stable Jacobian
J 0

L(X), and this scheme is also isomorphic to J σE provided every slope semistable
sheaf is stable. It would be interesting to know if these isomorphisms extend to
the compactifications. Important results along these lines can be found in [Melo
and Viviani 2012; Esteves 2009], but many basic question remain unanswered.
Currently, there is no example of a curve X0 → Spec(k) such that two Esteves
compactified Jacobians associated to X0 are nonisomorphic.

4.2. Simpson Jacobians. The hypotheses to Proposition 3.6 and Theorem 3.9 are
satisfied by certain moduli spaces of stable sheaves, which we call Simpson Ja-
cobians. Here we recall Simpson’s construction, along with later work of Langer
and Maruyama, and then apply results from Section 3. We restrict our attention
to families of reduced curves (but see Remark 4.4, and the discussion preceding
Example 4.9).

We work over a scheme B that is finitely generated over a universally Japanese
ring R (e.g., R=C, Fp,Z, . . . ). Let f : X→ B a family of curves with f -relatively
ample line bundle L, and assume the Euler–Poincaré characteristics χ(OXb) and
χ(Lb) are constant as functions of the base B. Set Pd equal to the polynomial

Pd(t) := deg(Lb) · t + d +χ, (4-1)

where χ is the Euler–Poincaré characteristic of a fiber of f and deg(Lb) is the
degree of the restriction of L to a fiber. This is the Hilbert polynomial of a degree
d line bundle.

Given this data, Simpson constructed an associated moduli space in the case
that R = C. The Simpson moduli space M(OX , Pd) parametrizes slope semistable
sheaves with Hilbert polynomial Pd . (See [Simpson 1994, pp. 54–56] for the
definition of semistability). To be precise, define M](OX , Pd) to be the functor
whose T -valued points are isomorphism classes of OT -flat, finitely presented OXT -
modules whose fibers are L-slope semistable sheaves with Hilbert polynomial Pd .
The main existence result [Simpson 1994, Theorem 1.21] asserts that there is a
projective scheme M(OX , Pd) that corepresents M](OX , Pd). Inside of M(OX , Pd),
we may consider the open subscheme Mst(OX , Pd) parametrizing L-slope stable
sheaves. The stable locus is a fine moduli space: Its C-valued points are in natu-
ral bijection with the isomorphism classes of L-slope stable sheaves with Hilbert
polynomial Pd , and étale locally on Mst(OX , Pd), the product X ×B Mst(OX , Pd)

admits a universal family of sheaves. The reader may check that these conditions
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are equivalent to the condition that Mst(OX , Pd) represents the étale sheaf asso-
ciated the functor parametrizing stable sheaves. While Simpson only considers
the case R = C, later work of Langer [2004a, Theorem 4.1; 2004b, Theorem 0.2]
and Maruyama [1996] extends these results to the case where R is an arbitrary
universally Japanese ring.

Let us now specialize to the case where B is a Dedekind scheme. When f has
reducible fibers, Mst(OX , Pd) may contain points corresponding to sheaves that
are not rank 1; see [López-Martín 2005, Example 2.2]. This is potentially a major
source of confusion: The term “rank” is used in a different way in [Simpson 1994],
and the sheaves parametrized by Mst(OX , Pd) are rank 1 in Simpson’s sense but
not necessary in the sense used here.

We avoid these sheaves. Define the Simpson stable Jacobian J d
L of degree d to

be the locus of stable line bundles in Mst(OX , Pd) (which is an open subscheme
by [Altman and Kleiman 1980, Lemma 5.12(a)]). We define the Simpson stable
compactified Jacobian J̄ d

L to be the subset of the stable locus Mst(OX , Pd) that
corresponds to pure, rank 1 sheaves. (Warning: The compactified Jacobian is a
B-proper scheme when every semistable pure sheaf with Hilbert polynomial Pd is
stable but not in general!)

When the fibers of X → B are geometrically reduced, a minor modification
of the proof of [Pandharipande 1996, Lemma 8.1.1] shows that the subset J̄ d

L ⊂

Mst(OX , Pd) is closed and open, and hence has a natural scheme structure:

Lemma 4.3. Assume the fibers of f : X→ B are geometrically reduced. Then the
subset J̄ d

L is closed and open in Mst(OX , Pd).

Proof. The main point to prove is that a 1-parameter family of line bundles cannot
specialize to a pure sheaf that fails to have rank 1, and this is shown by examining
the leading term of the Hilbert polynomial. To begin, we may cover Mst(OX , Pd) by
étale morphisms M→Mst(OX , Pd) with the property that a universal family Iuni.

on M×B X exists. It is enough to verify the claim after passing from Mst(OX , Pd)

to an arbitrary such scheme, and so for the remainder of the proof we work with
M in place of Mst(OX , Pd). We will also abuse notation by denoting the pullback
of J̄ d

L under M→Mst(OX , Pd) by the same symbol J̄ d
L.

We first need to check that J̄ d
L ⊂ M is constructible, so that we can make use

of the valuative criteria. Given m ∈ M mapping to b ∈ B, the condition that the
fiber Im is rank 1 is just the condition that the restriction of Im to X sm

b is a line
bundle. Constructibility thus follows from [Grothendieck 1966a, 9.4.7] applied to
M×B X sm

→M.
To finish, it is enough to prove that J̄ d

L is closed under specialization and gen-
eralization. Thus, we pass from M to a discrete valuation ring T mapping to M. If
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I is the sheaf on XT given by the pullback of the universal family, then we need
to show that the generic fiber of Iη is rank 1 if and only if the special fiber I0 is.

To prove this, we turn our attention to the Hilbert polynomial Pd of a fiber of I .
This polynomial is defined so that the leading term is deg(Lb), and we can express
this number in terms of components of a fiber of XT → T as follows. If x is
generic point of the special fiber X0, then we define degx(L0) to be the degree of
the restriction of L0 to the irreducible component corresponding to x . (Give the
component the reduced subscheme structure.) For any generic point y of Xη, we
define degy(Lη) in the analogous manner. If x1, . . . , xn are all the generic points
of X0 and y1, . . . , ym all the generic points of Xη, then we have

deg(Lb)= degx1
(L0)+ · · ·+ degxn

(L0)

= degy1
(Lη)+ · · ·+ degym

(Lη)

by, say, [Altman and Kleiman 1979, 2.5.1]. The terms degxi
(L0) and degy j

(Lη) in
the equation above are each strictly positive as L is relatively ample.

We can also express deg(Lb) in terms of the generic rank of a fiber of I . Using
[Altman and Kleiman 1979, 2.5.1] again, we have

deg(Lb)= degx1
(L0) · `x1(I0)+ · · ·+ degxn

(L0) · `xn (I0)

= degy1
(Lη) · `y1(Iη)+ · · ·+ degym

(Lη) · `ym (Iη).

Here `xi (I0) denotes the length of the localization of I0 at xi and similarly for
`y j (Iη). The fibers of XT→ T are reduced, so such a length is equal to the minimal
number of generators. In particular, these numbers are upper semicontinuous. In
other words, if y j specializes to xi , then we have `y j (Iη)≤ `xi (I0) (by Nakayama’s
lemma).

The desired result now follows. Suppose first that I0 is rank 1. Then we have
`yi (Iη)≤1 for all i by semicontinuity. If some inequality was strict, say `y1(Iη)=0,
then we would have

deg(Lb)= degy1
(Lη)+ degy2

(Lη)+ · · ·+ degym
(Lη)

> degy2
(Lη)+ · · ·+ degym

(Lη)

≥ degy1
(Lη) · `y1(Iη)+ · · ·+ degym

(Lη) · `ym (Iη)

= deg(Lb).

This is absurd! Thus, we must have `yi (Iη)= 1 for all yi and Iη is rank 1. Similar
reasoning shows that if Iη is rank 1, then I0 is rank 1. �

Remark 4.4. The hypothesis that the fibers of f are geometrically reduced is nec-
essary. Indeed, the moduli space Mst(OX , Pd) was described in [Chen and Kass
2011] in the case that X is a nonreduced curve whose reduced subscheme Xred
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is smooth and whose nilradical N is square-zero (i.e., X is a ribbon). Using that
description it is easy to produce examples where J̄ d

L ⊂Mst(OX , Pd) is not closed
(e.g., take d equal to 0, X to have even genus, and Xred to have genus 1). The
points of the complement in the closure correspond to stable rank 2 vector bundles
on Xred.

We now apply Proposition 3.6 and Theorem 3.9 to the Simpson Jacobians.

Corollary 4.5. Fix a Dedekind scheme B that is finitely generated over a univer-
sally Japanese ring. Let f : X → B be a family of geometrically reduced curves.
Let L be f -relatively ample line bundle.

Then the natural map J 0
L(X)→ Qτ is an open immersion. Assume further that

both of the following conditions hold:

• Every L-slope semistable rank 1, torsion free sheaf of degree 0 is L-slope
stable.

• f satisfies Hypothesis 1.

Then J 0
L(X)= Qτ , and this scheme is the Néron model.

Proof. The local existence of a universal family [Simpson 1994, Theorem 2.1(4)]
implies that there is a natural transformation J̄L(X)→ Sh with the property that
JL(X) is the preimage of P0

⊂ Sh. Furthermore, the slope stability condition is
a fiberwise condition, so a modification of the argument given in Corollary 4.2
completes the proof. �

Remark 4.6. A minor generalization of Corollary 4.5 can be obtained by allowing
for moduli spaces of degree d lines bundles, with d 6= 0. If we are given a line
bundle M on X with fiberwise degree d , then there is an associated map J d

L(X)→Q
that extends the map on the generic fiber given by tensoring with M−1. With only
notational changes the previous corollary generalizes to a statement about this map.

Corollary 4.5 is, of course, only of interest when there exists an L such that
L-slope stability coincides with L-slope semistability. Thus, we ask, When does
such an L exist? A comprehensive discussion of this question would require a
digression on stability conditions, so we limit ourselves to reviewing known results
about a single curve X0 over an algebraically closed field. When X0 is integral,
the stability condition is vacuous, so every ample L0 has the desired property.
If X0 is reducible of genus g 6= 1 with only nodes as singularities, then Melo and
Viviani have proven the existence of a suitable L0 [2012, Proposition 6.4]. Stability
conditions on reduced, genus 1 curves were analyzed by López-Martín [2005]. She
exhibits curves X0 with the property that there is no L0 such that every L0-slope
semistable, pure, rank 1 sheaf degree 0 is stable, but a suitable L0 always exists
if one considers sheaves of fixed degree d 6= 0. Finally, stability conditions for a
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ribbon were analyzed in [Chen and Kass 2011]. On a ribbon, the stability condition
is independent of L0, and for rational ribbons, slope stability coincides with slope
semistability precisely when the genus g is even. It would be desirable to have a
general result asserting (non)existence of a suitable L0.

4.3. Genus 1 curves. The Néron model of the Jacobian of a genus 1 curve can
be quite complicated (see for example [Liu et al. 2004]), but these complications
do not arise if the family admits a section. Suppose B is a Dedekind scheme and
f : X → B is a family of curves such that the total space X is regular and the
generic fiber Xη is smooth. If σ : B→ X sm is a section contained in the smooth
locus, then there is a canonical identification of the smooth locus X sm with the
Néron model N of the Jacobian of Xη. Here we examine how this fact fits into the
preceding framework.

Definition 4.7. Let f : X → B be a family of genus 1 curves over a Dedekind
scheme and σ : B → X sm a section contained in the smooth locus. We define a
sheaf Iuni. on X ×B X by the formula

Iuni. := I1(π
∗

1 (σ )+π
∗

2 (σ )). (4-2)

Here I1 is the ideal sheaf of the diagonal, and π1, π2 : X ×B X → X are the
projection maps.

The sheaf Iuni. determines a transformation X→ Sh that realizes X as a moduli
space of sheaves over itself. Proposition 3.6 and Theorem 3.9 apply to this moduli
space.

Corollary 4.8. Fix a Dedekind scheme B. Let f : X → B be a family of genus 1
curves. Let σ : B→ X sm be a section.

Then the natural map X sm
→ Q is an open immersion.

Assume further that f satisfies Hypothesis 1. Then X sm
= Qτ , and this scheme

is the Néron model.

Let us consider the special case where B is a discrete valuation ring, X is a
minimal regular surface, and the residue field k(0) is algebraically closed. The
possibilities for the special fiber X0 are given by the Kodaria–Néron classification
([Kodaira 1960; Néron 1964]; see [Silverman 1994, pp. 353–354] for a recent
exposition). The reduced curves appearing in the classification are the reduction
types In , II, III, and IV. In these cases, one may show that the induced morphism
X→ Sh identifies X with the Esteves compactified Jacobian J̄ σO .

In every remaining case (reduction type I∗n , II∗, III∗, or IV∗) the morphism X→
Sh is not a special case of the fine moduli spaces discussed in the previous two
sections. Indeed, the special fiber X0 is nonreduced, so the Esteves Jacobian of X
is not defined. In Section 4.2, we reviewed Simpson’s moduli space Mst(OX , Pd) of
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stable sheaves, but the image of X→Sh cannot be described as a closed subscheme
of that space. The reason is that slope stable sheaves are simple, but some fibers
of Iuni. are not simple. Specifically, if p0 ∈ X0 lies on the intersection of two
components, then the fiber of Iuni of p0 fails to be simple. This can be seen
as follows. This fiber is the sheaf Ip0(+σ(0)), where Ip0 is the ideal of p0. If
ν : X ′0→ X0 is the blow-up of X0 at p0, then one may show that H 0(X ′0,OX ′0) is
canonically isomorphic to the endomorphism ring of Ip0(+σ(0)). An inspection
of the Kodaria–Néron table shows that X ′0 is disconnected, so H 0(X ′0,OX ′0) does
not equal k(0) and Ip0(+σ(0)) is not simple.

Corollary 4.8 provides a partial answer to a question posed in the introduction:
What are the maximal subfunctors J of P0 represented by a separated B-scheme?
When X is, say, regular, a strong result one could hope for is that there is always a
subfunctor J̄ of Sh satisfying the hypotheses of Theorem 3.9. The line bundle locus
J ⊂ J̄ in such a functor has the property that J→Qτ is an isomorphism, and hence
J is maximal. Corollary 4.8 shows that such a J̄ exists when f : X→ S is a family
of genus 1 curves that f admits a section. Similarly, the Esteves compactified
Jacobian represents a suitable subfunctor when f has geometrically reduced fibers
and admits a section. In general, however, the hope is too optimistic: Raynaud’s
family, mentioned at the end of Section 3, has that property that no such J̄ can
exist.

The question of describing maximal subfunctors J is most interesting when f
has nonreduced fibers. The slope stable line bundles form a subfunctor J ⊂P0 rep-
resented by a S-separated scheme, but our discussion of genus 1 families together
with Remark 4.4 suggest that we should consider other methods for constructing
a suitable J when f has nonreduced fibers.

In a different direction, one nice property of the moduli spaces described by
Corollary 4.8 is that their geometry is very simple. We use these spaces to provide
an example showing that a family J → B of Esteves Jacobians over a regular
2-dimensional base may not have group scheme structure.

Example 4.9 (Néron models in 2-dimensional families). We will construct a 2-
dimensional family f : X→ B of plane cubics and an associated Esteves Jacobian
J → B with the property that the group law on the locus JU → U parametriz-
ing nonsingular cubics does not extend over all of B. Furthermore, the family is
constructed so that a dense open subset of B is covered by nonsingular curves C
with the property that the restriction XC of X to C is regular, so JC is the Néron
model of its generic fiber (and in particular admits group scheme structure that
extends the group scheme structure over C ∩U ). Thus, the Néron models fit into
a 2-dimensional family, but their group scheme structure does not.

The idea is as follows. The family we construct has a reducible element Xb0→

b0 with the property that, for every nonsingular curve C ⊂ B passing through b0
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such that XC is regular, the restriction of the Esteves Jacobian JC is the Néron
model of its generic fiber. The fiber Jb0 inherits a group law from this Néron
model, and we show explicitly that this group law depends on the particular choice
of C . But, if the group law on JU extended to J , then all the different group laws
on Jb0 coming from the different curves C would be the restriction of one common
group law on J , which is absurd. We now construct the family.

We work over an algebraically closed field k. The family X→ B will be a net of
plane cubics. Let X0⊂P2

k be a reducible plane cubics that is the union of a smooth
quadric Q0 and a line L0 that meet in two distinct points. (See Figure 1.) Fix two
general points p1, p2 ∈ L0(k) on the line and one general point q1 ∈ Q0(k) on the
quadric. Say that F ∈H 0(P2

k,O(3)) is an equation for X0 and G, H ∈H 0(P2
k,O(3))

are two general cubic equations that vanish on all of the points p1, p2, q1. We will
work with the net V := 〈F,G, H〉 ⊂ H 0(P2

k,O(3)) and the associated family of
curves

X := {(p, [r, s, t]) : r · F(p)+ s ·G(p)+ t · H(p)= 0}

⊂ P2
k ×P2

k .

(4-3)

There are two obvious morphisms e, f : X→P2
k given by the two projections. If we

set B :=P2
k equal to the plane, then the second morphism f : X→ B realizes X as a

family of genus 1 curves with X0= f −1(b0), where b0 := [1, 0, 0]. Corresponding
to the points p1, p2, q1 ∈ X0(k) are three section σ1, σ2, τ1 : B→ X sm, which lie
in the smooth locus by the generality assumption.

q1

p1p2
pC

L0 Q0

Figure 1. The pencil XC .
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Another application of the generality assumption shows that the fibers of f
are reduced, so we can form the Esteves Jacobian J := J σ1

E , where E = OX . The
quasistability condition on a line bundle L0 on X0 is the condition that the bidegree
(deg(LL0), deg(LQ0)) equals (0, 0) or (1,−1). Now we assume J→ B is a group
scheme and derive a contradiction.

Suppose that we are given a general line C ⊂ B in the plane that contains b0.
Such a line corresponds to a 2-dimensional linear subspace of the form W :=
〈F,GC〉 ⊂ V for some GC ∈ V . Invoking generality again, the base locus

{p ∈ P2
k : F(p)= GC(p)= 0} (4-4)

consists of 9 distinct points. The first projection map e : X → P2
k realizes XC as

the blow-up of the plane at these points, so XC is regular, and thus JC is the Néron
model of its generic fiber. We now study the group of sections of JC → C .

The base locus (4-4) includes the points p1, p2, q1. In addition to the points
p1, p2, a unique third point of the base locus must lie on the line L0. Let us label
that point pC and write σC : C→ XC for the corresponding section.

Now consider the following line bundles on XC :

L1 := O(σ1− τ1), LC := O(σC − τ1),

L2 := O(σ2− τ1), M := O(1)⊗O(−3 · τ1).

These lines bundles are all σ1-quasistable. If we let g1, g2, gC , h ∈ JC(C) respec-
tively correspond to L1,L2,LC ,M, then I claim we have

g1+ g2+ gC = h. (4-5)

Indeed, it is enough to verify the claim after passing to the generic fiber of JC→C ,
where the equation is just the statement that the points p1, p2, pC all lie on a line
(the line L0). Now suppose that J → P2

k admits a group law extending the group
law of the generic fiber. Then the specialization of (4-5) to Jb0 holds for all C si-
multaneously. In particular, the isomorphism class of the line bundle OXb0

(pC−q1)

is independent of the particular line C ⊂P2
k chosen. But this is absurd: For distinct

general lines C1,C2, the points pC1 and pC2 (and hence the associated line bundles)
are distinct! This completes our discussion of this example.

This example is particularly interesting in light of [Oda and Seshadri 1979].
The authors of that paper consider the case of a family of nodal curves f : X→ B
over a suitable Dedekind scheme with the property that X is regular. Let Jη be
the Jacobian of the generic fiber. Given a closed point 0 ∈ B, they prove that the
special fiber N0 of the Néron model of Jη depends only on the curve X0 and not
the particular family f [ibid., Corollary 14.4]. This result must be interpreted with
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care: In our example, the group law depends on a particular choice of family, but
any two such group laws define isomorphic group schemes.
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