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The system of representations of
the Weil–Deligne group associated

to an abelian variety
Rutger Noot

Fix a number field F ⊂ C, an abelian variety A/F and let G A be the Mum-
ford–Tate group of A/C. After replacing F by finite extension one can as-
sume that, for every prime number `, the action of the absolute Galois group
0F = Gal(F̄/F) on the étale cohomology group H1

t (A F̄ ,Q`) factors through
a morphism ρ` : 0F → G A(Q`). Let v be a valuation of F and write 0Fv for
the absolute Galois group of the completion Fv . For every ` with v(`) = 0,
the restriction of ρ` to 0Fv defines a representation ′WFv → G A/Ql of the Weil–
Deligne group.

It is conjectured that, for every `, this representation of ′WFv is defined over Q

as a representation with values in G A and that the system above, for variable `,
forms a compatible system of representations of ′WFv with values in G A. A
somewhat weaker version of this conjecture is proved for the valuations of F ,
where A has semistable reduction and for which ρ`(Frv) is neat.

Introduction

Let Fv be a finite extension of the field Qp (for some prime number p) and let X be
a proper and smooth variety over Fv . The Galois group 0Fv = Gal(F̄v/Fv) acts on
the étale cohomology groups Hi (X F̄v ,Q`) for each prime number ` and each i . It is
a major problem in arithmetic geometry to determine to what extent the properties
of these representations are independent of `. To obtain such independence results,
one has to consider the restrictions of the representations above to the Weil group
WFv of Fv. This is the subgroup formed by the elements of 0Fv , which induce an
integral power of the Frobenius automorphism on the residue field of Fv.

In what follows it will always be assumed that ` 6= p; the case where `= p will
be analysed in a later paper. Let us first assume that X has good reduction at v,
that is, that X extends to a proper and smooth scheme over the ring of integers of
Fv. This assumption implies that the inertia subgroup of 0Fv acts trivially on the

MSC2000: primary 11G10; secondary 14K15, 14F20.
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244 Rutger Noot

étale cohomology groups of X . Moreover, it follows from Deligne’s work [1974a]
on the Weil conjectures that the character of the representation of WFv on each
Hi (X F̄v ,Q`) has values in Q and is independent of ` 6= p. In view of the triviality
of the action of inertia, this amounts to a statement on the action of the subgroup of
0Fv generated by a Frobenius element. We will summarise this statement by saying
that the representations of WFv on the Hi (X F̄v ,Q`) (for fixed i and variable `) are
defined over Q and that they form a compatible system of representations of WFv .

If X only has potentially good reduction, the inertia group no longer acts trivially
but its action on a given étale cohomology group of X factors through a finite
quotient. It is still conjectured that the system of Hi (X F̄v ,Q`) (as always for fixed i
and variable `) forms a compatible system of representations of WFv which are
defined over Q, see for example [Serre 1994, 12.13?].

Serre actually states his conjecture in more generality because it applies to
motives instead of varieties. The category of (pure) motives can be seen as an
intermediate between varieties and their cohomology. It is a Q-linear tannakian
category, that is, an abelian category in which the morphisms between two objects
form a Q-vector space and which is equipped with “tensor products”. All reasonable
cohomology functors on the category of varieties factor through the category of
motives so that any motive has cohomology groups in the same way as varieties do.
We also refer to the cohomology groups of a motive M as the realisations of M .
There are different constructions of motives, depending on how the morphisms are
defined, but in any case the category of motives has more morphisms and hence
also more objects than the category of varieties.

In this paper we will consider the category of motives for absolute Hodge
cycles developed in [Deligne and Milne 1982] where the morphisms are defined by
absolute Hodge classes. This theory is particularly efficient for dealing with abelian
varieties because the motivic Galois group of an abelian variety A coincides with
its Mumford–Tate group, defined by the Hodge structure on H1

B(A/C,Q).
The motivic version of the conjecture can be stated in terms of motivic Galois

groups in the following way. In any good category of motives it is possible to
associate a motivic Galois group to any subcategory. This group is a linear proalge-
braic group over Q. Its defining property is the fact that any category of motives
is equivalent to the category of representations of its motivic Galois group. The
motivic Galois group G M of any object M is defined as the group associated to
the tannakian category generated by M and the Tate motive. The group G M is
related to the étale cohomology of M by the fact that, for each prime number `,
the `-adic Galois representation associated to M factors through G M(Q`). This
implies that the corresponding representations of the Weil group factor through
G M/Q`

. Serre’s `-independence conjecture for objects in the ⊗-category generated
by M is then equivalent to the statement that the representations WFv → G M/Q`
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of the Weil group form a compatible system defined over Q, with values in G M ;
see 2.3 for the precise definition.

For abelian varieties of CM type, the conjecture follows from the theory of
complex multiplication developed by Shimura and Taniyama [1961], which yields
a considerably more precise result. Indeed, let F ⊂ C be a number field, A/F
an abelian variety of CM type and G A the motivic Galois group of A. Serre
[1968] constructs a commutative algebraic group SF,m and a canonical system of
representations ϕ` : 0F → SF,m(Q`). By the theory of complex multiplication,
the system of `-adic representations associated to A is the image of the system
(ϕ`) by a Q-rational morphism SF,m→ G A. Moreover, Deligne [1982] gives an
explicit description of the motivic Galois group of the category of abelian varieties
potentially of CM type in terms of the Taniyama group.

More generally, if F ⊂ C is a number field, A/F an abelian variety and v a
valuation of F where A has good reduction, the `-independence conjecture was
proved in [Noot 2009], by a method and under additional hypotheses similar to
those of the present paper. The case where A has ordinary reduction at v has
been treated in [Noot 1995] by a completely different method. In the latter case, a
stronger statement can be proved and it turns out that there is an element in G A(Q)

that is conjugate to the `-adic image of Frobenius for all ` 6= p. As noted in the
introduction of [Noot 1995], this is not the case in general. The reader may consult
the introduction to [Noot 2009] for a more detailed discussion.

One may ask if these results can be generalised without any assumptions on
the reduction of X . Before discussing the properties of the Galois representations
provided by the étale cohomology groups of a variety X , consider any `-adic
representation ρ` of 0Fv for ` 6= p. By a theorem of Grothendieck (see [Serre and
Tate 1968, Appendix; Deligne 1973, §2, §8]), the action of a sufficiently small
open subgroup of the inertia group can be described using a single endomorphism
N`, the monodromy operator. The restriction of ρ` to the Weil group WFv can
then be encoded by giving N` together with a representation ρ ′` of WFv , which
is trivial on an open subgroup of the inertia group. We will refer to such a pair
(ρ ′`, N`) as a representation of the Weil–Deligne group ′WFv of Fv. Where the
p-adic étale cohomology is concerned, Fontaine’s theory associates a representation
of the Weil–Deligne group to any semistable p-adic representation as well, but we
will not go into the details here.

It is conjectured that, applying the construction above to the system of Galois
representations provided by the Hi (X F̄v ,Q`), for fixed i and variable `, one obtains
a compatible system of representations of ′WFv which are defined over Q; see for
example [Fontaine 1994, 2.4.3, conjecture CWD] for a statement encompassing the
p-adic representation. The conjecture on the `-independence of the representa-
tion of the Weil–Deligne group hinges on the monodromy-weight conjecture; see
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[Illusie 1994, §3]. This elusive conjecture is somewhat more accessible under the
hypothesis that X has semistable reduction, a hypothesis which implies in particular
that the representations ρ ′` are trivial on the inertia subgroup of WFv . The action of
inertia on Hi (X F̄v ,Q`) is then determined by the monodromy operator N`. Even if
X has semistable reduction however, the monodromy-weight conjecture has so far
only been proved under far more restrictive hypotheses. Apart from the cases where
X is a curve or an abelian variety, the main achievement is due to [Rapoport and
Zink 1982], which treats the case where X has dimension 2. We refer to [Ochiai
1999; Ito 2004] and the work of Scholze for some recent and very recent progress
on the problems. It should finally be pointed out that the discussion above has an
analogue in equal characteristics, which has proved much more accessible; see for
example [Deligne 1980].

This paper aims to study the motivic version of Fontaine’s CWD conjecture.
Under some additional hypotheses, described below, we will prove the compatibility
conjecture for the system ′WFv→ G A/Q`

associated to an abelian variety A defined
over a number field F ⊂ C. Here v is a fixed valuation of F and ` runs through the
set of primes with v(`)= 0.

The hypotheses are twofold. First of all, we need to assume that the number
field F is sufficiently big. We do not only need to ensure that A has semistable
reduction, but also that the Mumford–Tate group G A is connected and even that
the Frobenius element at the given place of F is weakly neat; see Definition 3.5.
Secondly, in certain cases we will need to work in a group that is slightly larger than
the Mumford–Tate group; see Section 3.3. The Mumford–Tate group coincides with
the identity component of this larger group. Enlarging the group obviously weakens
the notion of conjugacy. The precise result is Theorem 3.6 and all definitions used
in the statement are given in Section 3.

The strategy of the proof is inspired by the previous paper [Noot 2009], which
treats the good reduction case. The idea is first to prove the statement for tractable
abelian varieties (called accomodantes [ibid.]). In Section 4, we recall the notion
of a tractable abelian variety as well as some related constructions stemming from
[ibid.]. Tractable abelian varieties have many endomorphisms and the theorem is
proved by combining more or less classical results concerning abelian varieties and
1-motives with the, equally classical, work of Springer and Steinberg on conjugacy
classes in linear algebraic groups. The necessary results on representations of the
Weil–Deligne group associated to a 1-motive follow from the theory sketched in
[Fontaine 1994] by adding the action of an endomorphism algebra throughout. We
make extensive use of [Raynaud 1994], which allows the reduction to the case
of strict 1-motives. This is discussed, together with the relevant prerequisites, in
Sections 1 and 2. Using the results of these sections, proof of the main theorem for
a tractable abelian variety is given in Sections 5 and 6.
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Once we have proved the main theorem for tractable abelian varieties, the general
case can be deduced using the theory, developed in [Noot 2006], of lifting Galois
representations along isogenies between the Mumford–Tate groups. This final step
of the proof is carried out in Section 7. In order to construct the liftings of the
Galois representations, one needs to extend the base field. At first, this leads to a
proof of the main theorem over an uncontrollable extension of the base field. The
results of Sections 1 and 2 are used again to deduce the theorem over the original
base field. The condition that the Frobenius element is weakly neat is essential in
this step.

In his thesis, Laskar [2011] generalises the results of this paper, as well as those
of [Noot 2009], to a larger class of varieties. He proves the main theorem of [ibid.]
for the absolute Hodge motive of any variety X with good reduction belonging
to the tannakian category generated by the motives of abelian varieties. Under
somewhat more restrictive conditions, Laskar also generalises the results of the
present paper, treating the case of curves, K 3 surfaces and a Fermat hypersurfaces
with semistable reduction.

Another direction for generalisation is the case of 1-motives. In this context, an
analogue of the theory of Mumford–Tate liftings remains to be developed. The
analogue of our results in the case where the base field is a function field in
characteristic p seems inaccessible with the techniques used in this paper. Indeed, it
would be necessary to develop a substitute for the theory of absolute Hodge motives
and, most importantly, the concept of Mumford–Tate liftings.

1. 1-motives with L-action

In this section, we indicate how the theory of 1-motives developed in [Raynaud
1994; Deligne 1974b, §10] works out for 1-motives with a given endomorphism
field. Most of the statements are easy generalisations of those given in [Fontaine
1994] for the case where L = Q. The results of this section will be applied to
the study of the monodromy of an abelian variety with a given endomorphism
algebra. Where these preliminary results are concerned, very little additional effort
is required to deal with the more general case of 1-motives.

We also review the construction of the Weil–Deligne group of a local field and
recall how to associate a representation of the Weil–Deligne group to a local Galois
representation.

1.1. Generalities on 1-motives. In all of this section, F is a finite extension of Qp

and `, `′ are prime numbers.
Let M be a 1-motive over F . By definition M is a complex u : Y → G where Y

is a K -group scheme which is locally isomorphic, in the étale topology, to Zr and
G is a semiabelian variety over K . In this complex, Y is placed in degree −1 and
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G in degree 0. The semiabelian variety G is an extension of an abelian variety A
of dimension g by a torus T of dimension r?. Let d = d(M)= r + r?+ 2g.

One defines the `-adic realisations of M following [Deligne 1974b, 10.1], taking
projective limits. This differs by a trivial manipulation from Raynaud’s definition
[1994, 3.1] where an inductive limit is used. To be precise, for an integer n, we
define Torsn(M) as the H−1 of the complex

Y → Y ⊕G(F̄)→ G(F̄),

x 7→ (−nx,−u(x)),

(x, y) 7→ u(x)− ny,

situated in degrees −2,−1, 0. Here and in what follows, F̄ is an algebraic closure
of F . For any ` we put

T`(M)= lim
←−

Tors`n (M) and V`(M)= T`(M)⊗Z` Q`.

Thus, T`(M) is a free Z`-module of rank d and V`(M) is a Q`-vector space of
dimension d. For each `, the absolute Galois group 0F = AutF (F̄)= Gal(F̄/F)
acts naturally on V`.

We fix a number field L ⊂ End0(M)= End(M)⊗Z Q. The endomorphism ring
End(M) can be interpreted either as the ring of endomorphisms of the complex
Y → G or as the ring of endomorphisms of its image in the derived category
Db(fppf); see [Raynaud 1994, 2.3]. The first interpretation of End(M) shows that
L acts on Y ⊗Q and that L embeds into End0(G). It follows (for example) from
[Milne 1986, 3.9] that any morphism of the torus T to an abelian variety is trivial.
This implies that we have an embedding L ⊂ End0(T ) so L also acts on Y ?⊗Q

where Y ? = Hom(T,Gm). Finally, by passing to the quotient A = G/T , we obtain
an embedding L ⊂ End0(A).

By functoriality, L acts on V` = V`(M), making it into an L ⊗Q Q`-module. To
ease notation, we will write L`= L⊗Q Q` from now on. The weight filtration of M
(see [Raynaud 1994, 2.2]) induces an increasing L`-linear filtration of V` such that
the nonzero components of the associated graded are

Gr−2(V`)∼= (Y ?)∨⊗Z Q`(1),

Gr−1(V`)∼= V`(A)= T`(A)⊗Z` Q`,

Gr0(V`)∼= Y ⊗Z Q`.

The action of 0F respects the weight filtration and commutes with the L`-action
so 0F acts L`-linearly on Gr•(V`). The isomorphisms above are L`-linear and
0F -equivariant. One has L` ∼=

⊕
λ Lλ, where λ runs through the primes of L lying
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over `. This decomposition gives rise to corresponding decompositions of each
L`-module occurring above as a direct sum of Lλ-modules of the same rank.

The next aim is to establish a common Q-structure V on the modules V`,
endowed with L-action and weight filtration. We first describe the associated
graded. For V 0

= Y ⊗Z Q, there is a system of canonical L`-linear isomorphisms
Gr0(V`)∼=V 0

⊗Q`. Next, put V−2
= (Y ?⊗ZQ)∨ and fix isomorphisms Q`(1)∼=Q`

for each `. This gives rise to a system of isomorphisms Gr−2(V`) ∼= V−2
⊗Q`,

depending only on the identifications Q`(1)∼=Q`.
We finally consider Gr−1. By the theorem of the primitive element, L =Q(α),

so it follows from [Mumford 1970, §19, Theorem 4] that there exists an L-vector
space V−1 endowed with L`-linear isomorphisms

Gr−1(V`)∼= V−1
⊗Q Q`

for every `; see [Noot 2006, proof of 6.13]. As a vector space is determined up to
isomorphism by its dimension, V−1 is unique up to L-linear isomorphisms and each
isomorphism Gr−1(V`)∼= V−1

⊗Q Q` is unique up to L`-linear automorphisms of
Gr−1(V`).

Define
V = V−2

⊕ V−1
⊕ V 0,

endowed with the natural L-action and the increasing filtration defined by the
grading. As L` is a semisimple algebra, V` is L`-isomorphic to its associated graded,
so the preceding discussion gives rise to a noncanonical L`-linear isomorphism
V` ∼= V ⊗Q Q` for every `. We proved the following lemma.

Lemma 1.2. There exists an L-vector space V endowed with an increasing filtration
and, for each `, an L`-linear isomorphism V` ∼= V ⊗Q Q` compatible with the
filtrations. In particular, each V` is a free L`-module whose rank is independent of
` and the weight filtration is a filtration by free L`-submodules of ranks independent
of `.

1.3. The group H. We fix an L-vector space V together with a system of isomor-
phisms as in the lemma. Let H = ResL/Q GL/L(V ) be the linear algebraic group
over Q of L-linear automorphisms of V and let h be its Lie algebra. This means
that h= glL(V ) is the Q-Lie algebra of L-linear endomorphisms of V . Obviously,
H acts on h through the adjoint representation. By means of the identifications
above, H/Q`

and h⊗Q Q` act on V`. This identifies H/Q`
with the group of L`-linear

automorphisms of V` and h⊗Q` with its Lie algebra. These identifications are
determined up to inner automorphisms for the groups and up to the adjoint action
of H/Q`

where the Lie algebras are concerned. Finally note that L = EndH (V ) and
that L` = EndH/Q` (V`).
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1.4. The monodromy operator. From now on we assume that the 1-motive M
is strict in the sense of [Raynaud 1994, Définition 4.2.3], which means that the
semiabelian variety G has potentially good reduction. In this case, [ibid., 4.3]
defines the geometric monodromy, a canonical additive map µ : Y ⊗ Y ? → Q.
Giving µ is equivalent to giving the induced map

N : V 0
= Y ⊗Q→ V−2

= (Y ?⊗Q)∨. (1.4∗)

By functoriality this map is L-linear, so we can interpret N as an element of the
Lie algebra hss

⊂ End(V ). As an endomorphism of V , it is nilpotent of echelon 2.
In what follows, the notation N will be reserved for this element of hss.

The map N defines a morphism Gr0(V`)→Gr−2(V`)(−1) and thus a morphism
N` : V`→ V`(−1). As N` is L`-linear, N` ∈ hss

⊗Q`(−1) for each `. Recall that
the identification V` ∼= V ⊗Q` depends on the identification Q`(1)∼=Q` fixed in
Section 1.1. Using the same identification, we identify hss

⊗Q`(−1) with hss
⊗Q`

and under these isomorphisms the images of N ⊗ 1 and N` in hss
⊗Q` coincide.

The discussion above only depends on the isomorphisms Gri (V`)∼= V i
⊗Q` for

i =−2, 0, which in turn depend only on the choice of an identification Q`(1)∼=Q`.
In what follows we may thus change the splitting of the weight filtration and the
identification Gr−1(V`) ∼= V−1

⊗Q` without affecting the properties above. We
have established the following proposition.

Proposition 1.5. Let notation and assumptions be as above, in particular the motive
M is assumed to be strict and N` : V`→ V`(−1) is the `-adic monodromy operator.
For each `, fix an identification of H/Q`

with the group of L`-linear automorphisms
of V` and an isomorphism Q`

∼=Q`(1). Using these identifications we consider N`
as an element of h⊗Q`.

• For every algebraically closed field �⊃Q` and every σ ∈ Aut(�), the image
of N` in (h⊗Q Q`)⊗Q`

� = h⊗� is conjugate to σ(N`) under the adjoint
action of H(�).

• If� is an algebraically closed field containing both Q` and Q`′ then the images
in h⊗� of N` and N`′ are H(�)-conjugate.

1.6. The action of inertia. The0F -action on each V` is L`-linear so the realisations
of M give rise to a system of representations

ρ` : 0F → H(Q`),

using the identifications from Section 1.1 and the group H from Section 1.3.
Following [Deligne 1973, §2] for the basic notation, we discuss the action of the

inertia group IF ⊂ 0F . Let v be the valuation of F with value group Z and let k be
the (finite) residue field. We will write v̄ for the valuation on F̄ extending v and
write k̄ for the residue field of F̄ .
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Let
Ẑ 6=p = lim

p-n
Z/nZ=

∏
6̀=p

Z`

be the p-primary part of Ẑ and let A6=p = Ẑ 6=p ⊗Z Q. The prime-to-p part of
Q/Z is A6=p/Ẑ 6=p = (Q/Z)6=p. For every n with p - n, we identify ( 1

n Z/Z)(1)
with the group of n-th roots of unity in k̄. This identifies (Q/Z)6=p(1) with the
multiplicative group k̄×. There is a natural morphism t : IF → Ẑ 6=p(1) such that
σ(x)x−1

= [t (σ )v̄(x)] for all σ ∈ IF and x ∈ F̄×. Here [t (σ )v̄(x)] is the image in
k̄× ∼= (Q/Z)6=p(1) of t (σ )v̄(x) ∈ A 6=p(1). For ` 6= p, we write t` : IF → Z`(1) for
the composite of t with the projection Ẑ6=p(1)→ Z`(1).

In the case where Y and G have good reduction, it follows from [Raynaud 1994,
Proposition 4.6.1] that if ` 6= p then for each σ ∈ IF one has

ρ`(σ )= exp(N`⊗ t`(σ )), (1.6∗)

where N` ∈ hss
⊗Q`(−1) is the `-adic monodromy operator defined in Section 1.4.

For an arbitrary strict 1-motive, the equality above holds for all σ in a sufficiently
small open subgroup of IF . We finally note that (1.6∗) characterises the operator
N` as a map N` : V`→ V`(−1). This will play an important role in Section 2.2, in
particular in the formula (2.2∗).

1.7. Characteristic polynomials. Write q = |k| and let ϕ be the arithmetic Frobe-
nius automorphism ϕ : x 7→ xq of k̄ over k. The Weil group of F is the subgroup
of 0F consisting of the elements ψ inducing an integral power of ϕα(ψ) of ϕ. The
map α : WF→Z thus defined is a group homomorphism and its kernel is the inertia
group IF ⊂ 0F . We endow the Weil group with the topology determined by the
condition that IF ⊂WF is an open subgroup carrying the topology inherited from
its topology as a Galois group.

For a 1-motive M/F with L-action as before, k =−2,−1 or 0 and ψ ∈WF , let

P (k)L`,ψ ∈ L`[T ]

be the characteristic polynomial of ρ`(ψ) acting as an L`-linear endomorphism on
the free L`-module Grk(V`). Let PL`,ψ be the characteristic polynomial of ρ`(ψ)
acting L`-linearly on V`. Obviously, one has

PL`,ψ =

0∏
k=−2

P (k)L`,ψ .

Proposition 1.8. Let notation and hypotheses be as above; in particular M is
assumed to be strict. Let ` run though the primes different from p. Then for each
k = −2,−1, 0 and any ψ ∈ WF , we have P (k)L`,ψ ∈ L[T ]. For fixed k and ψ , the
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polynomial P (k)L`,ψ is independent of ` and all its complex roots have absolute value
q−α(ψ)k/2. The polynomial PL`,ψ belongs to L[T ] and is independent of `.

Proof. It is sufficient to prove the statements concerning the P (k)L`,ψ . For k =−2, 0,
these follow from the 0F -equivariant isomorphisms Gr−2(V`) ∼= (Y ?)∨ ⊗Q`(1)
and Gr0(V`) ∼= Y ⊗Q` and the fact that 0F acts on Y and on Y ? through finite
quotients.

For k = −1 we have Gr−1(V`) ∼= V`A, where A is an abelian variety with
L ⊂ End0(A). The statement about the absolute values of the roots of P (−1)

L`,ψ
therefore follows from the corollary to Theorem 3 in [Serre and Tate 1968]; see
also [Raynaud 1994, 4.7.4]. Under the assumption that A has good reduction and
that ψ is a Frobenius element, a proof of the claims that P (−1)

L`,ψ ∈ L[T ] and that
this polynomial is independent of ` is sketched in [Noot 2009, 2.1]. Taking into
account [Serre and Tate 1968, Theorem 2], the argument remains valid when A
only has potentially good reduction and ψ ∈ IF . For the case where ψ reduces to a
nontrivial power of the Frobenius element, one replaces the use of [Serre and Tate
1968, Theorem 2] by the corollary to Theorem 3 in the same paper. �

1.9. Remark. The action of any ψ ∈WF on Grk(V`) is semisimple for any k. For
k =−2, 0 this results from the fact that 0F acts on Gr0(V`) and on Gr−2(V`)(−1)
through a finite quotient. For k =−1 it follows from the fact that Gr−1(V`)∼= V`A,
where A is an abelian variety over F with potentially good reduction. Combining
this statement with the Proposition 1.8, it follows that each ψ ∈WF with α(ψ) 6= 0
acts semisimply on V`.

1.10. Frobenius weights. As before, M is a strict 1-motive over F with L-action.
We fix an arithmetic Frobenius element 8 ∈ 0F , that is, a lifting of the Frobenius
automorphism ϕ of k̄; see Section 1.7. The operator N` : V`→ V`(−1) defined in
Section 1.4 is 0F -equivariant, which implies that Ad(ρ`(8))(N`)= q N`.

As noted in Section 1.9, the image ρ`(8) is semisimple and by Proposition 1.8
its eigenvalues are algebraic integers and, for any eigenvalue, all complex absolute
values coincide and are equal to q, q1/2 or 1. For k = −2,−1, 0, let V k

` ⊗Q`

be the sum of the eigenspaces associated to the eigenvalues with absolute value
q−k/2. This defines a splitting V` = V−2

` ⊕ V−1
` ⊕ V 0

` of the weight filtration. The
Frobenius weight cocharacter w` : Gm/Q`

→ H/Q`
is the morphism making Gm/Q`

act on V k
` through the (k + 1)-st power map. The reader should take note of the

shift in filtration, which is introduced to simplify matters later on. Through the
adjoint representation, w`(t) acts on the line in hss

⊗Q`(−1) generated by N` as
multiplication by t−2.

If M/F is any, not necessarily strict, 1-motive with L-action, then the complex
absolute values of any eigenvalue of ρ`(8) are still equal to q, q1/2 or 1. This
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follows from the existence [Raynaud 1994, 4.2.2] of a strict 1-motive M ′ with
L-action endowed with a system of canonical isomorphisms V`(M)∼= V`(M ′). The
Frobenius weight cocharacter w` of M can therefore be defined exactly as before.
It corresponds to the cocharacter associated to M ′ by transport via the isomorphism
V`(M)∼= V`(M ′) above. In general, w` does not split the weight filtration.

Finally note that, for M strict, the identification V` ∼= V ⊗Q` can be modified,
without affecting its previously established properties, to ensure that the grading on
V` defined by the Frobenius weights corresponds to the grading on V .

2. The representations of the Weil–Deligne group associated to a 1-motive

2.1. The Weil–Deligne group. In addition to the conventions in Section 1.1, we
will from now on assume that `, `′ 6= p. As in Section 1.7, WF is the Weil group
of F . We briefly summarise some of the notions introduced in [Deligne 1973, §8];
see also [Fontaine 1994].

Letting ψ ∈WF operate on the additive group Ga/Q as multiplication by qα(ψ),
one defines an action of the constant topological group scheme WF on Ga/Q. The
Weil–Deligne group of F is the semidirect product

′WF =WF nGa

defined by this action, viewed as a group scheme over Q.
Fix an identification Q`

∼= Q`(1) as in Section 1.1, an arithmetic Frobenius
element 8 ∈WF as in Section 1.10 and consider the map t` from Section 1.6 as a
morphism

IF →Q`(1)∼=Q` = Ga(Q`).

We define a system of `-adic representations of WF with values in ′WF (Q`) by

ψ 7→
(
ψ, t`(8−α(ψ)ψ)

)
∈ (WF nGa) (Q`).

For a field E of characteristic 0 and a linear algebraic group G/E over E , giving
an algebraic representation (′WF )/E → G/E is equivalent to giving a pair (ρ ′, N )
where ρ ′ : WF → G/E(E) is a linear representation that is trivial on some open
subgroup of IF and N ∈ Lie(G/E) is a nilpotent element satisfying the condition
that

Ad(ρ ′(ψ))N = qα(ψ)N (2.1∗)

for all ψ ∈WF . The representation of (′WF )/E corresponding to the pair (ρ ′, N ) is
given by (ψ, x) 7→ ρ ′(ψ) exp(N x).

2.2. ′WF and `-adic Galois representations. Let H/Q`
be a Q`-linear algebraic

group and ρ` : WF → H/Q`
(Q`) a continuous representation. By Grothendieck’s
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`-adic monodromy theorem (see [Deligne 1973, 8.2]), there exists a nilpotent
element N ′` ∈ h

ss(−1)= Lie(H/Q`
)ss(−1) such that

ρ`(ψ)= exp(N ′`t`(ψ)) (2.2∗)

for all ψ in a sufficiently small open subgroup of IF ; see (1.6∗). One can therefore
associate to ρ` a representation (ρ ′`, N ′`) of ′WF with values in H/Q`

as follows.
Using the identification Q`

∼= Q`(1) to interpret N ′` as an element of hss, one
defines

ρ ′`(ψ)= ρ`(ψ) exp
(
−N ′`t`(8

−α(ψ)ψ)
)
.

Composing the corresponding algebraic representation of ′WF with the natural
representation WF →

′WF (Q`) defined above, one recovers ρ`.
According to [Deligne 1973, 8.11], the geometric conjugacy class of (ρ ′`, N ′`) is

independent of the choices of 8 and of the identification Q`
∼=Q`(1) made in this

construction.

2.3. Compatible systems of representations of ′WF . Let H be a reductive alge-
braic group over Q. For a fixed `, we say that a representation ′WF/Q`

→ HQ`
is

defined over Q (as a representation with values in H ) if for every algebraically
closed field �⊃Q`, the base extension ′WF/�→ H/� is conjugate under H(�)
to all its images under AutQ(�). In terms of the pair (ρ ′`, N ′`), let

ρ ′`⊗Q`
� : WF → H/�(�)

be the extension of scalars and let N ′`⊗Q`
1 ∈ (h⊗Q Q`)⊗Q`

� = h⊗� be the
image of N ′`. Then the condition above is equivalent to the condition that for every
σ ∈ AutQ(�) there is an element g ∈ H(�) such that

σ(ρ ′`⊗Q`
�)= g(ρ ′`⊗Q`

�)g−1 and σ(N ′`⊗Q`
1)=Ad(g)(N ′`⊗Q`

1). (2.3∗)

We say that a family of representations ′WF/Q`
→ H/Q`

is a compatible system
of representations of ′WF (with values in H ) if for every pair (`, `′) and every
algebraically closed field � containing Q` and Q`′ , the base extensions to � of
the `-adic and `′-adic representations of ′WF are H(�)-conjugate. In terms of the
pairs (ρ ′`, N ′`) and (ρ ′`′, N ′`′), this means that there is a g ∈ H(�) such that

ρ ′`⊗Q`
�=g(ρ ′`′⊗Q`′

�)g−1 and N ′`⊗Q`
1=Ad(g)(N ′`′⊗Q`′

1)∈h⊗�. (2.3†)

The action of H(�) by conjugation factors through H(�)→ H ad(�) so H(�)-
conjugacy may be replaced by H ad(�)-conjugacy everywhere.

2.4. Application to 1-motives. We apply the discussion above to the system of
`-adic representations V`(M) associated to a 1-motive M with L action. Let M
be as in Section 1.1 and, as was the case from Section 1.4 onward, continue to
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assume M to be strict. The numbers r = rank(Y ), r? = dim(T ) and g = dim(A)
are as in Section 1.1 and we fix an L-vector space V and a system of identifications
V` ∼= V ⊗Q` as in Lemma 1.2. Let the algebraic group H = ResL/Q GL/L(V )
be as in Section 1.3. For every `, the group H/Q`

identifies with the group of
L` = L⊗Q`-linear endomorphisms of V`. The action of 0F on V`(M) is L`-linear,
so it provides us with an `-adic representation of ′WF with values in H/Q`

, that is, a
system of pairs (ρ ′`, N ′`), where N ′` ∈ h⊗Q` = Lie(H)⊗Q` and ρ ′` : WF → H/Q`

.

Lemma 2.5. Let M/F be any 1-motive with L action. The Frobenius weight
cocharacter w` commutes with the representation ρ ′`.

Proof. By construction, ρ`(8)= ρ ′`(8) and the same equality holds for all powers
of 8. In the construction of the Frobenius weight cocharacter, one may replace the
Frobenius element8, and hence q , by any strictly positive power without modifying
w`. This means that it is sufficient to prove that there is a strictly positive power
8n such that ρ ′`(8

n) lies in the centre of the image of ρ ′`. This is obvious since
ρ ′` factors through an extension of the group generated by 8 by a finite quotient
of IF . �

Proposition 2.6. Assume that we are in the situation of Section 2.4, so in particular
M is strict. Each `-adic representation

′WF/Q`
→ H/Q`

is defined over Q and these representations form a compatible system of representa-
tions of ′WF with values in H.

Proof. We first show that each representation is defined over Q.
The operator N ′` is determined by the fact that it satisfies (2.2∗) for all ψ in

a sufficiently small open subgroup of the inertia group IF . The equality (1.6∗)
implies that the monodromy operator N` has the same property so we conclude that
N ′` = N`.

It follows from Proposition 1.5 that for every � ⊃ Q` and σ ∈ Aut(�) as in
Section 2.3, N` ∈ h⊗Q` is H(�)-conjugate to σ(N`). Let g ∈ H(�) be such that
σ(N`) = Ad(g)(N`). It is sufficient to show that ρ ′`⊗� and g−1σ(ρ ′`⊗�)g are
conjugate under the stabiliser of N` in H(�). By elementary representation theory
(see [Deligne 1973, Proposition 8.9]), it suffices to show that the representation ρ ′`
is semisimple and that, for every ψ ∈WF , the L`-linear characteristic polynomials
of ρ ′`(ψ) and of g−1σ(ρ ′`⊗�)g acting on each Grmon

i (V`) coincide. In fact, it is
sufficient to prove that the traces coincide. Here Grmon

i (V`) is the associated graded
of V` for the monodromy filtration defined by N`.

We first treat the semisimplicity. The restriction ρ ′`|IF is semisimple because
it factors through a finite quotient of IF . As the action of WF on each Gri (V`)
is semisimple, the semisimplicity of ρ ′` results from Section 1.9 applied to any
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ψ ∈WF with α(ψ) 6= 0 and the fact that WF is an extension of the group generated
by the Frobenius element to 8 by the inertia group IF .

To establish the putative equality of the characteristic polynomials we will prove
that the L`-linear characteristic polynomials of the ρ ′`(ψ) acting on the Grmon

i (V`)
lie in L[T ]. By Proposition 1.8 the corresponding statement is true for the action
of WF on the Gri (V`), the associated graded for the weight filtration. We finish the
argument by passing to the graded for the monodromy filtration.

This is accomplished by considering the filtration

W mon
−2 V` = im(N`)⊂W−2V` ⊂W−1V` ⊂W mon

−1 V` = ker(N`)⊂W0V` = V`.

The isomorphism Gr0(V`) ∼= V 0
⊗Q` is 0F -equivariant and the action of 0F on

V 0
⊗Q` comes from its L-linear action on V 0. Similarly, the action of 0F on

Gr−2(V`)∼= V−2
⊗Q`(1) comes from its L-linear action on V−2 and the cyclotomic

action on Q`(1). Finally, N` comes from the L-linear map N : V 0
→ V−2 so by

(2.1∗), the kernel of N in V 0 and the image of N in V−2 are WF -invariant L-linear
subspaces. The representation induced by ρ ′` on each of the spaces

Grmon
−2 V` = im(N`)⊂ Gr−2 V`, W−2V`/ im(N`)∼= Gr−2 V`/Grmon

−2 V`,

ker(N`)/W−1V` ⊂ Gr0 V`, and Grmon
0 V` = V`/ ker(N`),

therefore, is a base extension of a representation of WF on an L-vector space.
This proves the claim for Grmon

−2 V` and Grmon
0 V`. For Grmon

−1 V` the claim follows
similarly by considering the graded for the filtration

W−2V`/ im(N`)⊂W−1V`/ im(N`)⊂ ker(N`)/ im(N`)= Grmon
−1 V`.

The fact that the representations ′WF/Q`
→ H/Q`

form a compatible system is
proved by an analogous argument. One now has to prove that, for i =−2,−1, 0
and for each ψ ∈ WF , the L`-linear characteristic polynomials of ρ ′`(ψ) acting
on Grmon

i (V`) are independent of `. Again by Proposition 1.8, this is true for the
characteristic polynomials on the Gri (V`). The ` independence of the characteristic
polynomials on the Grmon

i (V`) follows from this by considering the combined
filtration and adapting the argument above. �

Corollary 2.7. Let M be any 1-motive over F with L-action. Then for each `,
the `-adic realisation V`(M) is a free L`-module. For ` 6= p, the representations
′WF/Q`

→ H/Q`
are defined over Q and form a compatible system of representations

of ′WF with values in H.

Proof. By Lemma 1.2, each V`(M) is a free L`-module. This implies that H/Q`
iden-

tifies with the group of L`-linear endomorphisms of V`(M) and that any two such
identifications differ by an inner automorphism of H/Q`

. It is therefore sufficient to
prove the second statement for one system of such identifications.
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By [Raynaud 1994, 4.2.2] there are a strict 1-motive M ′ over F and a system of
canonical isomorphisms V`(M)∼= V`(M ′) (for every `). Using these identifications
and the remark above, the corollary follows from Proposition 2.6. �

Corollary 2.8. With the notation and hypotheses of Corollary 2.7, ker(ρ ′`)⊂WF is
independent of `.

3. Application to abelian varieties and statement of the main theorem

We turn our attention to an abelian variety A over a number field F ⊂ C. If
F is sufficiently big, each `-adic representation associated to A factors through
ρ` : 0F → G A(Q`), where G A is the Mumford–Tate group of A/C. For a fixed
valuation v of F , the construction sketched in Section 2.2 gives rise to a system
of `-adic representations ′WFv/Q`

→ G A/Q`
of the Weil–Deligne group of Fv . It is

hoped that these representations are defined over Q and that they form a compatible
system of representations with values in G A.

The statement of the main theorem is somewhat weaker; loosely speaking,
it states that, after a finite extension of F , the representations of ′WFv form a
compatible system when G A is replaced by a larger group of which G A is the
identity component. As the construction will show, only certain factors of Gder of
type D are affected by this modification. In order to formulate the precise statement
we need a number of constructions from the previous paper [Noot 2009].

3.1. Notation. From now on, F ⊂C is a number field and A/F an abelian variety.
Let F̄ be the algebraic closure of F in C and 0F = Gal(F̄/F) the absolute Galois
group. We fix a valuation v̄ of F̄ and let v be its restriction to F . Let p be the
residue characteristic of v and Fv the completion of F at v. It is a finite extension
of Qp. Let `, `′ 6= p prime numbers.

3.2. Abelian varieties. Betti cohomology defines a fibre functor HB = H1
B on the

category of absolute Hodge motives generated by the motive of A and the Tate
motive Q(1). The Mumford–Tate G A of A is the group of ⊗-automorphisms
of this fibre functor; see [Noot 2009, 1.2] for a more detailed explanation. We
will assume throughout that G A is connected, this condition holds after replacing
F by a finite extension and it implies that G A is the smallest linear algebraic
Q-group such that the Hodge structure on H1

B(A(C),Q) is defined by a morphism
S = ResC/R Gm→ G A/R; see [ibid., 1.2]. Let gA be the Lie algebra of G A.

For every `, the fibre functor Hét,` defined by the `-adic étale cohomology is
canonically isomorphic to HB⊗Q`. The representation of 0F on the `-adic étale
cohomology makes 0F act on the functor Hét,` and this gives rise to a morphism

ρ` : 0F → G A(Q`).
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Let 8v an arithmetic Frobenius element, belonging to the decomposition group
0Fv
∼= Dv̄ ⊂ 0F . This gives rise to local data as in Section 2.1. We consider the

restriction of the ρ` to the Weil group Wv = WFv . As explained in Section 2.2,
it defines a representation of the Weil–Deligne group ′Wv =

′WFv , that is, a pair
(ρ ′`, N ′`) with ρ ′` : Wv→ G A(Q`) and N ′` ∈ g

ss
A ⊗Q`. By Corollary 2.8, there is an

open subgroup J of the inertia group Iv̄ such that each ρ ′` is trivial on J .
To apply the results above on 1-motives, it is convenient to work with Tate

modules instead of étale cohomology groups. The `-adic Galois representation
V`A = T`A ⊗Z` Q` is dual to H1

ét(A/F̄ ,Q`). Identification of the fibre functor
defined by V` to the dual of the one defined by Hét,` endows V` with the structure of
a representation of G A/Q`

. The action of 0F on V`A is given by the same morphism
ρ` : 0F → G A(Q`) as before. The corresponding representation (ρ ′`, N ′`) of the
Weil–Deligne group ′WFv is also unchanged.

3.3. The group G\ ad. In [Noot 2009, 1.5] one finds the construction of a group
Aut′(G)/Q of automorphisms of G A/Q. In this paper we will write G\ ad for this
“natural extension” of Gad. We briefly sketch its construction.

The derived group Gder
A/Q is the almost direct product of almost simple subgroups

Gi ⊂ G A/Q, for i in some index set I . Let J ⊂ I be the set of indices i such that
Gi ∼= SO(2ki )/Q for some ki ≥ 4 and for each i ∈ J put G ′i = O(2ki ) ⊃ Gi . We
define

G\ ad
=

∏
i∈J

G ′ ad
i ×

∏
i∈I\J

Gad
i ⊃ Gad

A/Q
.

As this group operates trivially on the centre of Gder
A/Q, we can define an action of

G\ ad on G A/Q extending the adjoint action on Gder
A/Q and with G\ ad acting trivially

on the centre of G A/Q. Through the adjoint representation, the group G\ ad also acts
on the Lie algebra g⊗Q.

3.4. Compatible systems revisited. We introduce a variant of the notion, introduced
in Section 2.3, of a compatible system defined over Q of representations of ′WFv
with values in G A. This time we allow conjugation by the group G\ ad so the
condition is weaker than G-conjugacy if Gder

A/Q has factors of the form SO(2k).
Let v, ′Wv and 8v be as in Sections 3.1 and 3.2. For a fixed `, let (ρ ′`, N ′`) define

a representation of ′Wv/Q`
with values in G A/Q`

. We say that this representation
is defined over Q modulo G\ ad

A if, for every algebraically closed field �⊃Q` and
every σ ∈ AutQ(�), there is a g ∈ G\ ad

A (�) such that

σ(ρ ′`⊗Q`
�)= g(ρ ′`⊗Q`

�)g−1 and σ(N ′`⊗Q`
1)= Ad(g)(N ′`⊗Q`

1).

We say that a system of representations (ρ ′`, N ′`) of ′Wv/Q`
is a compatible

system of representations of ′Wv modulo G\ ad
A if for every pair (`, `′) and every
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algebraically closed field �⊃Q`,Q`′ , there is a g ∈ G\ ad
A (�) such that

ρ ′`⊗Q`
�= g(ρ ′`′ ⊗Q`′

�)g−1 and N ′`⊗Q`
1= Ad(g)(N ′`′ ⊗Q`′

1) ∈ g⊗�.

Definition 3.5. Let � be an algebraically closed field, G a linear algebraic group
over a subfield of � and V a representation of G. A semisimple g ∈ G(�) is neat
if the Zariski closure of the subgroup of G(�) generated by g is connected. A
semisimple element g ∈ G(�) is weakly neat (with respect to V ) if 1 is the only
root of unity among the quotients λµ−1 of eigenvalues λ and µ of g.

For weak neatness, we will suppress the reference to V if it is clear which
representation is being considered. For elements of the Mumford–Tate group of an
abelian variety, we always consider the representation defined by the Tate module.
A neat element is weakly neat with respect to any representation.

Theorem 3.6. Assume that A has semistable reduction at v and that, for some `,
the image ρ ′`(8v) is weakly neat. Then the representations (ρ ′`, N ′`) of ′Wv cor-
responding to A are defined over Q modulo the action G\ ad

A . For ` 6= p, these
representations form a compatible system of representations of ′Wv modulo the
action of G\ ad

A .

3.7. Remarks.

3.7.1. The condition that A has semistable reduction at v implies that ρ ′` is trivial
on Iv̄. In particular, the condition that ρ ′`(8v) is weakly neat does not depend on
the choice of the Frobenius element 8v. Also note that ρ ′`(8v)= ρ`(8v) so that
the condition can also be checked on ρ`(8v). By the main theorem, or in a more
elementary fashion by Proposition 1.8, the condition that ρ ′`(8v) is weakly neat is
independent of `.

3.7.2. In general, A only has potentially semistable reduction at v. In this case,
ρ ′`|Iv̄ has finite image so, for σ ∈ Iv̄ , all eigenvalues of ρ ′`(σ ) are roots of unity. The
elements of ρ ′`(Iv̄) are not neat and the methods of this paper do not seem to permit
one to prove that the ρ ′` form a compatible system in this case. As the monodromy
operators are unchanged by a finite base extension, one may reduce to the case of
stable reduction to prove that the N ′` do form a compatible system defined over Q.

3.7.3. To check the condition of weak neatness, one has to determine the charac-
teristic polynomial of ρ`(8v) for at least one `, which is not always feasible in
practice. However, the condition always holds for a power of 8v, that is, after
replacing F by a finite extension F ′ and v by a valuation of F ′ lying over v. Also
note that if, for some ` 6= p, the elements of ρ`(0F ) are congruent to 1 modulo `
(or congruent to 1 modulo 4 if `= 2), then ρ`(8v) is necessarily weakly neat.

On the other hand, it is easy to construct abelian varieties, even with good
reduction, that do not satisfy the condition of weak neatness. For this, one may
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choose a pa-Weil number α having two conjugates differing by a nontrivial root
of unity. There exists an abelian variety A0 over a finite field of characteristic p
such that the characteristic polynomial of Frobenius is a power of the minimum
polynomial of α. Any lifting of A0 over a number field provides a counterexample
to the neatness condition of the theorem.

3.7.4. If the abelian variety A has good reduction at v then the monodromy N ′` is
trivial and the theorem reduces to the main result, [Noot 2009, Théorème 1.8].

3.7.5. We finally refer to [ibid., Remark 1.9(4)] for a note on the density of the set
of places v of good reduction where ρ`(8v) is weakly neat. Density statements of
this type are not useful in the present context as the number of places where A does
not have good reduction is finite.

3.8. G A, monodromy and Frobenius weights. As pointed out in Section 3.2, the
system (ρ`) is determined by the Galois representations on the Tate modules of A.
From now on, we systematically adopt this point of view.

In the proof of Corollary 2.7, we applied [Raynaud 1994, 4.2] to the motive
M in order to reduce to a strict motive M ′. Applying the same argument to the
abelian variety Av = A/Fv , one again obtains a strict 1-motive M ′/Fv endowed
with a system of canonical 0Fv -equivariant isomorphisms

V`(Av)= T`(Av)⊗Z` Q`
∼= V`(M ′).

Let M ′ = [Y →G], let Y ? be the character group of the toric part of G and write
r and r? for the ranks of Y and Y ?. Let g be the dimension of the quotient of G by
its maximal torus.

In Section 1.10 we defined the Frobenius weight cocharacter of a local Galois
representation associated to a 1-motive. Applying this construction to the restrictions
ρ`|Dv

we obtain the Frobenius weight cocharacter

w` : Gm→ GL(V`(A)).

Lemma 3.9. Under the conditions above we have r = r? and the monodromy
operator N : Y ⊗Q→ Y ?⊗Q associated to M ′ is an isomorphism. For each `, the
map N ′` defines an isomorphism from the t-eigenspace of w` acting on V`(A) onto
the t−1-eigenspace.

Proof. The arguments used in [Raynaud 1994, 4.2] show that Y =3, where 3 is
the Z-module in the diagram (**) of [loc. cit.], so r is equal to the rank of 3. This
reference also implies that r? is equal to the rank of 3, so r = r?. Still by [ibid.,
4.2], the intersection of 3 with the rigid analytic generic fibre of G is trivial. With
the notation of [ibid., 4.3], this means that for any y ∈ Y , there exists y? ∈ Y ? with
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µo(y⊗ y?)> 0. It follows that N induces an isomorphism Y⊗Q∼= Y ?⊗Q. All this
is classical; see for example [Grothendieck et al. 1972, Exposé IX, Théorème 10.4].

The monodromy filtration on V`(M ′) coincides with the weight filtration so the
last statement immediately follows from the previous ones. �

Lemma 3.10. The Frobenius weight cocharacter w` factors through G A/Q`
. In

fact, this cocharacter factors through a torus Tv ⊂ G A/Q`
containing ρ`(8v).

Proof. The Mumford–Tate group G A contains the group Gm/Q of scalar multiplica-
tions of H1

B(A(C),Q). Let w′` = t ·w`, let T ′v ⊂ G A/Q`
be the identity component

of the Zariski closure of the subgroup of G A/Q`
generated by ρ`(8v) and put

Tv = Gm T ′v . We will prove that w` factors through Tv by showing that w′` factors
through T ′v .

The last statement follows from the argument used in [Serre 2000], §4 of the
first letter. The proof comes down to the fact that the eigenvalues of w′`(t) satisfy
all the multiplicative relations satisfied by the archimedean absolute values of the
eigenvalues of ρ`(8v). �

4. Generalities on tractable abelian varieties

4.1. Tractable abelian varieties. The notion of “variété abélienne accommodante”
was introduced in [Noot 2009, 2.3]; in this paper we call such a variety a tractable
abelian variety. Let us recall the relevant ideas.

First of all, we define the notion of an admissible representation of a reductive
group. Heuristically, the admissible representations are the representations encoun-
tered when studying Shimura data of abelian type that admit an embedding into the
Siegel Shimura datum. We refer to [Deligne 1979, 1.3] for this classification. To
be precise, let K be a field of characteristic 0 and let � ⊃ K be an algebraically
closed extension. Assume that Gs is a linear algebraic group over K such that Gs

/�

is almost simple of type A, B, C or D. Let V s be a faithful K -linear representation
of Gs . We say that V s is an admissible representation of Gs in the following cases:

• Gs
/� is of type An and V s

⊗K � is a multiple of the direct sum of the rep-
resentations of highest weights $1 and $n if n ≥ 2 and a multiple of the
representation of highest weight $1 if n = 1.

• Gs
/� is of type Bn and V s

⊗K � is a multiple of the representation of highest
weight $n .

• Gs
/� is of type Cn and V s

⊗K � is a multiple of the representation of highest
weight $1.

• Gs
/� is of type Dn and V s

⊗K � is a multiple of the representation of highest
weight $1.
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• Gs
/� is of type Dn and V s

⊗K � is a multiple of the direct sum of the repre-
sentations of highest weights $n−1 and $n .

In the first three cases, we will say that the pair (Gs, V s) is of type An , Bn or Cn , in
the last two cases we say that (Gs, V s) is of type DH

n or of type DR
n , respectively.

Returning to abelian varieties, we let A be an abelian variety over C and write
V = H1

B(A(C),Q). We say that A is strictly tractable if

• there exists a totally real number field K and an almost simple linear algebraic
group Gs over K such that Gder

A = ResK/Q Gs ;

• as a representation of Gder
A , the cohomology group V is the restriction of scalars

of an admissible representation V s of Gs ;

• if (Gs, V s) is of type DR
n then every character space in V ⊗Q for the action

of the centre of G A/Q is an admissible representation of a factor of Gder
A/Q; and

• the conditions above do not hold for any proper abelian subvariety of A.

The type of a strictly tractable abelian variety is the type of the pair (Gs, V s).
We will say that A is tractable if A is isogenous to a product

∏m
i=1 Ai of strictly

tractable abelian varieties Ai and Gder
A
∼=
∏m

i=1 Gder
Ai

. If F ⊂ C is a subfield, an
abelian variety A/F is (strictly) tractable if A/C is and if G A is connected.

4.2. Remark. The concept of tractability is an auxiliary notion used in the proof
of the main theorem. It does not seem to be of independent interest, though it is
conceivable that the method of the present paper can be used in other contexts.

Heuristically, the fact that an abelian variety A is strictly tractable means that the
representation of Gder

A on V =H1
B(A(C),Q) decomposes over Q as a direct sum of

irreducible representations of the almost simple factors of Gder
A/Q. In particular, any

abelian variety A/C of dimension g with Gder
A = Sp2g is tractable. This means that,

in the moduli space of g-dimensional abelian varieties, the points corresponding to
nontractable varieties belong to a countable union of closed subvarieties and thus
the general abelian variety is tractable.

If the simple factors of V ⊗Q, as a representation of Gder
A/Q, are tensor products

of irreducible representations of the almost simple factors Gder
A/Q, then A is not

tractable. The simplest such example was given by Mumford [1969]. The generic
members of the families constructed there are not tractable.

More generally, any simple abelian variety A/C, with L = End0(A), whose
Mumford–Tate group coincides with the group of L-linear symplectic similitudes
of H1

B(A(C),Q) is tractable. The converse is not true, as can be seen for example in
the case where the Mumford–Tate group is of type Dn . Nevertheless, being tractable
still means that the endomorphism algebra is big compared to the Mumford–Tate
group. This is the key to the proof of the main theorem for tractable abelian varieties.
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By definition, abelian varieties of CM type are not tractable. As pointed out
in the introduction, the system of `-adic representations associated to an abelian
variety of CM type is described by the theory of complex multiplication and the
main theorem is true in the CM case.

4.3. The algebra L ⊂ End0(A). In the proof of the main Theorem 3.6, we will
adapt the ideas used in [Noot 2009]. We will in particular make use of the algebra
L ⊂ End(A)⊗Q constructed in the beginning of the proof of [ibid., Théorème 2.4].
For this construction, first decompose V ⊗Q =

⊕n
i=1Vi , where the Vi are the

isotypic components of the representation of G A/Q on V ⊗Q. In other words, each
Vi is a multiple of an irreducible representation of G A/Q and HomG A/Q(Vi , V j )= 0
for i 6= j . This decomposition defines a subalgebra Qn

⊂EndG A/Q(V ⊗Q), with the
i-th factor Q acting on the factor Vi by scalar multiplication. Taking 0Q-invariants,
this inclusion descends to

L ⊂ EndG A/Q(V ⊗Q)= End0(A/C)= End0(A),

where L is a finite, semisimple, commutative Q-algebra. The last equality follows
from the fact that G A is connected and is justified in [Noot 2009, proof of 2.4].

There is a canonical isomorphism L ⊗Q ∼=
∏
ι : L→Q Q; in fact L is defined

as the algebra of 0Q-invariants in the product on the right hand side. The direct
factors of V ⊗Q are indexed by the morphisms ι : L → Q, with the ι-factor of∏
ι Q acting on Vι by scalar multiplications and acting trivially on the other Vκ .

The decomposition of L ⊗Q thus gives rise to a decomposition V ⊗Q =
∏
ι Vι.

There is a similar decomposition V ⊗�=
∏
ι Vι for any algebraically closed field

� of characteristic 0, with the product taken over all morphisms ι : L→�.

Lemma 4.4. Assume that A/C is a strictly tractable abelian variety. Unless A is
of type DR

n , the algebra above L ⊂ End(A)⊗Q is a field. If A/C of type DR
n then

the algebra L is either a field or it is isomorphic to L ′× L ′ for a field L ′.

Proof. As L is a semisimple algebra, it decomposes as a product of fields. This
decomposition gives rise to a corresponding decomposition of A and unless the
pair (Gs, V s) associated to A is of type An or DR

n , each factor still satisfies the first
three conditions of the definition of a strictly tractable abelian variety. If there is
more than one factor, this violates the minimality condition.

If the pair (Gs, V s) associated to A is of type An , then the argument used in
[Noot 2006, 5.1] shows that the complex conjugation acts on the Dynkin diagram
of Gs by the main involution. This implies that a direct factor of V ⊗Q, which is a
representation of highest weight $1 of some factor of Gder

A/Q belongs to the same
0Q-orbit as the representation of highest weight $n of the same factor. It follows
that for any decomposition of A as above, each factor still satisfies the first three
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conditions of the definition. The minimality condition again implies that there is
only one factor.

If (Gs, V s) is of type DR
n , then a direct factor L ′ of L may define a factor A′

of A such that the associated pair (Gs, V s) is a half spin representation. In that
case, A has a factor A′′ for which (Gs, V ′s) is the other half spin representation.
By minimality, one must have A ∼ A′⊕ A′′. In this case, the set of vertices $n−1

and the set of vertices $n of the Dynkin diagram of Gder
A form two separate orbits

for the 0Q action. Since these orbits are isomorphic as 0Q-sets, it follows that
L = L ′⊕ L ′. �

4.5. The group H. For the rest of this section we will assume, in addition to the
hypotheses of Section 3.1, that A/F is tractable. Let G\ ad

A be the linear algebraic
group over Q introduced in Section 3.3.

To prove the theorem for A, we will use the results on 1-motives obtained
in Section 2 so it is convenient to study the Galois representations defined by
the Tate-modules; see Section 3.2. Let V = H1(A(C),Q) and for each prime
number ` put V` = T`(A)⊗Z` Q`, where T`(A) is the `-adic Tate module of A.
As in Section 3.2, there is a natural representation of G A on V and there are
canonical isomorphisms V` ∼= V ⊗Q`. The action of 0F on the V` is given by the
representations ρ` : 0F → G A(Q`).

We closely follow the proof of [Noot 2009, Théorème 2.4]. Let the endo-
morphism algebra L ⊂ End0(A) be as in Section 4.3. It is a product of number
fields L i for i = 1, . . . , s. This decomposition gives rise to a decomposition up to
isogeny A ∼

∏s
i=1 Ai and to a corresponding decomposition V =

⊕s
i=1 Vi , where

Vi = H1(Ai (C),Q). For each i one has L i ⊂ End0(Ai ) and this action endows Vi

with the structure of L i -vector space. It follows from Lemma 4.4 that each factor
Ai is either strictly tractable or that it is of type DR

n . If Ai is not strictly tractable, it
follows from the definition and again from Lemma 4.4 that there is another factor
A j such that L i ∼= L j and the product Ai × A j is strictly tractable. In this case
we change definitions and put Ai = Ai × A j and L i = L i × L j . We suppress the
factors A j and L j and modify the value of s accordingly. After these modifications,
we have decompositions L =

∏s
i=1 L i and A ∼

∏s
i=1 Ai , where all factors Ai are

strictly tractable and each L i is either a field of a product L ′i × L ′i of fields.
Let di = dimL i Vi and let

H =
s∏

i=1

ResL i/Q GL/L i (Vi )=

s∏
i=1

Hi ∼=

s∏
i=1

ResL i/Q GLdi/L i

be the centraliser of L in GL(V ). In the case where L i ∼= L ′i × L ′i , the factor Hi is(
ResL ′i/Q GLdi/L ′i

)2
.
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It is a linear algebraic group over Q. The action of G A on V commutes with the
action of End0(A), so G A ⊂ H . The decomposition H =

∏s
i=1 Hi corresponds to

the decompositions of L , of A and of V . In particular, Hi is the only factor of H
acting nontrivially on Vi . Writing G Ai for the Mumford–Tate group of Ai one has
G Ai ⊂ Hi .

Let � be an algebraically closed extension of Q. For each Q-algebra homo-
morphism ι : L → � there is a unique index i = i(ι) such that ι factors through
L→ L i →�, where L→ L i is the projection and L i →� a ring homomorphism.
This final map is an embedding if L i is a field and an embedding of one of the
factors of L i if Ai is of type DR

n and L i is a product L ′i×L ′i . Let dι= di . Extending
the base field to � one obtains

H/� ∼=
∏

ι : L→�

GLdι/� .

The group G A/� embeds into this product and for ι : L→� we let Gι be its image
in the factor GLdι/� corresponding to ι.

This gives rise to similar decompositions of the Lie algebras. For h=Lie(H) we
have h⊗Q�=

⊕
hι =

⊕
End(Vι)∼=

⊕
gldι/�. The inclusion G A ⊂ H induces

gA⊗�= Lie(G A)⊗� ↪→
⊕

ι : L→�
gι ⊂

⊕
ι

End(Vι)= h⊗�, (4.5∗)

where gι ⊂ hι = End(Vι ⊗ �) is the Lie algebra of Gι. For both the group
H/� ∼=

∏
GLdι/� and the Lie algebra h ⊗Q � ∼=

∏
gldι/�, the obvious action

of σ ∈ Aut(�) on the left hand side translates on the right hand side to

σ : (xι)ι : L→� 7→ (σ (xσ−1ι))ι : L→� . (4.5†)

4.6. Monodromy and Frobenius weights. The `-adic realisations of A decompose
in the same way as the Betti realisation. Define Vi,`= T`(Ai )⊗Q` for every `. The
decomposition of A gives rise to 0Fv -equivariant L`= L⊗Q`-linear decompositions
V` =

⊕s
i=1 Vi,` and we have canonical L i -linear isomorphisms Vi,` ∼= Vi ⊗Q Q`.

Assume that A has semistable reduction at v and let further notation be as in
Section 3.1. Let q be the order of the residue field of Fv . To study the monodromy we
follow Section 2.2, so we fix identifications Q`(1)∼=Q` and define the monodromy
operators N ′` by (2.2∗). One has N ′` ∈ gss

A ⊗Q` by Section 3.2. Similarly, for
each Ai we have the monodromy operator N ′i,` ∈ g

ss
Ai
⊗Q`. Under the embedding

gA ⊂
⊕s

i=1gAi the element N ′` maps to (N ′i,`)i=1,...,s .
For A and each one of the Ai , let the Frobenius weight cocharacters

w` : Gm/Q`
→ G A/Q`

and wi,` : Gm/Q`
→ G Ai/Q`
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be as in Section 3.8. These cocharacters factor through the Mumford–Tate groups
by Lemma 3.10. As in the case of the monodromy operators, the cocharacter

(wi,`)i=1,...,s : Gm/Q`
→

∏
i=1,...,s

G Ai/Q`

is the composite of w` with the inclusion G A ⊂
∏

G Ai . It follows from Lemma 3.9
that w` and the wi,` split the monodromy filtrations on V` and on the Vi,`, respec-
tively.

5. Strictly tractable abelian varieties of types An, Cn and DH
n

5.1. We keep the notation of Section 3.1. In this section, we will assume that A is
a strictly tractable abelian variety and that its Mumford–Tate group G A is of type
An , Cn or DH

n . According to Lemma 4.4, the algebra L then is a field. In particular,
where the group H introduced in Section 4.5 is concerned, we have dι = d1 = d
for all ι : L→�. As in Section 4.6, consider the monodromy operator N ′` and the
weight cocharacter w`. It follows from Corollary 2.7 that the H -conjugacy class of
(N ′`, w`) is defined over Q and that it is independent of `, in accordance with the
terminology developed in Section 2.3.

For any algebraically closed extension � of Q, the Lie algebra gss
⊗� is a direct

sum of simple Lie algebras. The groups Gad
A (�) and G\ ad

A (�) act on each direct
factor of this Lie algebra factor through a unique simple factor. Fix a factor gss

ι of
gss
⊗� and consider the corresponding factors Gder

ι of Gder
A/� and G\ ad

ι of G\ ad
A/�.

Under the sequence of embeddings (4.5∗), gι embeds into a simple factor hι ∼= gld
of h⊗�. If G A is of type An , then gss

ι and Gder
ι act on the direct factor Vι of V ⊗�

either as a multiple of the standard representation or as its dual. If G A is of type Cn

or DH
n in the classification, gss

ι and Gder
ι act on Vι as a multiple of the symplectic or

the orthogonal representation respectively.
Let � ⊃ Q` be an algebraically closed field and let σ ∈ Aut(�). As we saw

above, (N ′`, w`) and σ(N ′`, w`) ∈ h⊗� are conjugate under the adjoint action of
H(�). Writing N ′` = (N

′

`,ι)ι ∈
∏

hι as in (4.5∗) and w` = (w`,ι)ι it follows from
the formula (4.5†) that the projections (N ′`,ι, w`,ι) and σ(N ′

`,σ−1ι
, w`,σ−1ι) of these

pairs are Hι(�)-conjugate.
In the case where G A is of type An , it trivially follows that N ′`,ι and σ(N ′

`,σ−1ι
)

are conjugate under the action of Gad
ι (�) = G\ ad

ι (�) on gι. In the cases where
G A is of type Cn or Dn , it follows from [Springer and Steinberg 1970, IV §2], in
particular from 2.14, that N ′`,ι and σ(N ′`,σ−1ι) are conjugate under the action of
G\ ad
ι (�) on gι. See also [Humphreys 1995, 7.11] for a summary of the results

concerning the nilpotent conjugacy classes in the classical Lie algebras.
Similarly, if � is an algebraically closed field containing Q` and Q`′ then the

images of N ′` and N ′`′ in hss
⊗� are conjugate under H(�). The argument above
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implies that, for each ι, the operators N ′`,ι and N ′`′,ι are conjugate under the action
of G\ ad

ι (�) on gι.
Next consider the weight cocharacter w`. For each ι, let w`,ι be the projection

of w` to Gι. Recall that by Lemma 3.9, the monodromy operator N ′`,ι induces
an isomorphism of the t-eigenspace of w`,ι in Vι onto the t−1-eigenspace. Going
through the arguments of [Springer and Steinberg 1970, IV], with N ′`,ι playing the
role of X , one deduces that there exists a basis of Vι satisfying the conditions of
[ibid., IV, 2.19(b)] such that w`,ι is the inverse of the cocharacter λ defined in [ibid.,
IV, 2.22]. In particular, w`,ι factors through the derived group Gder

ι . This fact can
also quite easily be shown directly.

If � is an algebraically closed field and σ ∈ Aut(�) then, for X = σ(N ′
`,σ−1ι

),
there is a basis of Vι as in [ibid., IV, 2.19(b)] such that σ(w`,σ−1ι) coincides
with σ(λ−1). We know that N ′`,ι and σ(N ′`,σ−1ι) are conjugate under G\ ad

ι (�).
Moreover, any two bases of V that satisfy the conditions of [ibid., IV, 2.19(b)] are
conjugate under the centraliser Z \ ad

`,ι of N ′`,ι in G\ ad
ι . It follows that (N ′`,ι, w`,ι) and

σ(N ′
`,σ−1ι

, w`,σ−1ι) are G\ ad
ι (�)-conjugate.

If ` and `′ are two prime numbers and if � is an algebraically closed field
containing both Q` and Q`′ , then the same argument, applied to (N ′`,ι, w`,ι) and
(N ′`′,ι, w`′,ι), proves that these two pairs are G\ ad

ι (�)-conjugate.

Proposition 5.2. Let notation and assumptions be as above. In particular, A/F is
a strictly tractable abelian variety of type An , Bn or DH

n .

• For every `, every algebraically closed field � ⊃ Q` and every σ ∈ Aut(�),
the image of (N ′`, w`) in g⊗�× X (G A/�) is conjugate to σ(N ′`, w`) under
the adjoint action of G\ ad

A (�).

• If� is an algebraically closed field containing both Q` and Q`′ , then the images
in g⊗�× X (G A/�) of (N ′`, w`) and (N ′`′, w`′) are G\ ad

A (�)-conjugate.

Proof. As A is tractable, the group Gder
A/� is the product of its almost simple factors.

If G A is of type Cn or DH
n , then Gder

A/� is the product of the Gder
ι . In the case where

G A is of type An , we saw in the proof of Lemma 4.4 that the complex conjugation
acts nontrivially on each component of the Dynkin diagram. If n ≥ 2, it follows
from [Noot 2006, 5.1] that L is a CM field and hence that the complex conjugation
defines an nontrivial involution ι 7→ ι′ on the set of embeddings L→�. In this case,
Gder

A/� is a product of groups 1{ι,ι′}, where each 1{ι,ι′} ⊂Gder
ι ×Gder

ι′ is the graph of
an isomorphism Gder

ι
∼=Gder

ι′ . Identifying 1{ι,ι′} with Gder
ι through the projection on

the first factor, the representation of 1{ι,ι′} on Vι is a multiple of the representation
with highest weight $1 and Vι′ is its dual, a multiple of the representation with
highest weight $n . The case where n = 1 is left to the reader.

The N ′`,ι belong to gss
ι and, as we pointed out in Section 5.1, the w`,ι factor

through Gder
ι . The proposition follows from the fact, proved in Section 5.1, that
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(N ′`,ι, w`,ι) and σ(N ′`,ι, w`,ι) are G\ ad
ι (�)-conjugate for each ι, combined with the

formula (4.5†). �

5.3. The centraliser of (N ′`,w`) in G\
A/Q`

. We return to the construction 3.3 of
the group G\ ad

A . In the case considered here, this group is the adjoint group of a
Q-group G\

A containing the derived Mumford–Tate group Gder
A/Q. In fact, one has

to take G\

A = Gder
A/Q if G A is of type An or Cn and in this case we put G\

ι = Gder
ι

for each embedding ι : L→Q. If G A is of type DH
n , then

Gder
A/Q
=

∏
Gder
ι ,

where each Gder
ι
∼= SO2n . We put G\

ι =O2n and G\

A =
∏

G\
ι . In all cases, it is clear

from the construction Section 3.3 that Gder
A/Q ⊂ G\

A is the identity component and
that the group G\ ad

A defined in that construction is indeed the adjoint group of G\

A.
Working with this group G\

A, we may apply [Springer and Steinberg 1970, IV].
In what follows, the centralisers C \

`⊂G\

A/Q`
and C`⊂G A/Q`

of the pair (N ′`, w`)
will play an important role. The group C` is the subgroup of G A/Q`

generated by
C \

` ∩Gder
A/Q`

and the centre of G A/Q`
. The embedding

G\

A/Q`
→

∏
ι

G\

ι/Q`

gives rise to a similar embedding C \

`/Q`
→
∏
ι C

\

`,ι, where each C \

`,ι is the centraliser
of (N ′`,ι, w`,ι) in G\

ι. We first determine these groups C \
`,ι.

By Lemma 3.9, N ′` induces an isomorphism from the t-eigenspace of w` onto the
t−1-eigenspace of w`. As we saw in Section 5.1, this implies that, taking G = G\

ι

and X = N ′`,ι in [Springer and Steinberg 1970, IV §2], the proper choice of a basis
of Vι ensures that the cocharacter w`,ι is the inverse of the cocharacter λ defined
in that paper, IV 2.22. The group C \

`,ι is therefore equal to the group C of [ibid.,
IV 2.23(iii)]. Note that, contrary to what is affirmed in that statement, this group is
not necessarily connected. Indeed, there may be two connected components; see
[ibid., 2.25 and 2.26].

To give an explicit description of C \

`,ι, let the 1-motive M ′ and the dimensions
r = r? and g be as in Section 3.8. In this case, r = r? is equal to the dimension of
both the t and the t−1-eigenspaces of w`. Since N ′`,ι is nilpotent of echelon at most
2, it is easily deduced from [ibid., IV 1.8, 2.25] that the group C \

`,ι is isomorphic to
the Q`-group

• SLr ×SL2g if G A is of type An ,

• Or ×Sp2g if G A is of type Cn or

• Spr ×O2g if G A is of type Dn .



Representations of the Weil–Deligne group 269

Each factor C \

`,ι is therefore a product C \

`,ι,0×C \

`,ι,−1 and this decomposition is
determined by the cocharacter w`,ι. In fact, for each integer k let V k−1

` and V k−1
`,ι be

the tk-eigenspaces of w` and w`,ι in V` = V ⊗Q` and Vι⊗Q`, respectively. This
seemingly confusing notation is consistent with Section 1.10. As C \

`,ι commutes
with w`,ι, it respects the grading V`,ι =

⊕
k=−2,−1,0 V k

`,ι and it follows from [ibid.,
IV 1.8, 2.25] that for k = 0,−1, the group C \

`,ι,k is the image of C \

` in GL(V k
`,ι). For

a group of type An or Cn , this embedding is given by the standard or symplectic
representation, respectively, and for a group of type Bn or Dn it is defined by the
orthogonal representation. The monodromy operator N`,ι defines an isomorphism
of the representations of C \

`,ι,0 on V 0
`,ι and on V−2

`,ι .
The decomposition above can be defined on the level of the group C` by taking

C`,k equal to the image of C` in GL(V k
` ), for k = 0,−1. Finally, let C`,ι,k be the

image of C`/Q`
in GL(V k

`,ι), so that each Cder
`,ι,k ⊂ C \

`,ι,k is the identity component,
with equality for all factors other than those isomorphic to an SO2n .

5.4. The representations ρ′`. We now turn to the representations ρ ′` of the Weil
group Wv =WFv . For general ψ ∈Wv , the image ρ ′`(ψ) does not belong to C`(Q`)

so in order to apply the arguments of [Noot 2009, §2], we replace C` by the group
C̃` ⊂ G A/Q`

generated by C` and the image of w`. For ψ ∈Wv one has

Ad
(
ρ ′`(ψ)

)
(N ′`)= qα(ψ)N ′` = Ad

(
w`(qα(ψ)/2)

)
(N ′`).

On the other had, it follows from Lemma 2.5 that ρ ′`(ψ) and w` commute. This
implies that ρ ′`(ψ)w`(q

−α(ψ)/2) lies in C`(Q`) and hence that ρ ′`(ψ) ∈ C̃`(Q`).
The action of C̃` on V` respects the grading V` =

⊕
k=−2,−1,0 V k

` so, for k = 0,−1,
it makes sense to define C̃`,k as the image of C̃` in GL(V k

`,ι). The adjoint action of
C \

` on C` extends to an action of C \

` on C̃`, with the former group acting trivially
on the image of w`.

Recall that, according to Lemma 4.4, the algebra L is a field in the cases con-
sidered here. We write Ad

(L) = ResL/Q Ad
/L . The discussion above shows that

taking the L`-linear characteristic polynomials of the elements of C̃` acting on the
w`-eigenspace V−1

` , one defines a map

P ′L : C̃`→ C̃`,−1→ A
2g
(L)/Q`

. (5.4∗)

We will also write P ′L for the map C̃`,−1→ A
2g
(L)/Q`

. As in [Noot 2009], the maps
P ′L factor through the quotients of C̃` and C̃`,−1 by the adjoint C \

`-action.
It follows from Proposition 1.8 and from Section 3.8 that for any ψ ∈Wv, the

characteristic polynomial of ρ ′`(ψ) acting as an L`-linear automorphism on V−1
`

has coefficients in L and is independent of `. This proves the following lemma.

Lemma 5.5. Under the hypotheses above, the image of ρ ′`(ψ) ∈ C̃`(Q`) under the
map P ′L defined in (5.4∗) lies in A

2g
(L)(Q) and is independent of `.
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5.6. Remark. The statement of the lemma also holds for the image of ρ ′`(ψ) under
the map P ′′L : C̃`→ Ar (L) defined by taking the characteristic polynomial on V 0

` .
This observation is of little interest for weakly neat elements.

Proposition 5.7. The main theorem, Theorem 3.6, holds if A is strictly tractable
and its Mumford–Tate group G A is of type An , Cn or DH

n .

Proof. As the assumptions of Theorem 3.6 are now in force, A has semistable
reduction at v and the image ρ ′`(8v) of Frobenius is weakly neat. This implies that
the restriction of ρ ′` to Ib̄ is trivial and that ρ ′`(8v) acts on V 0

` as multiplication by
ε =±1 and on V−2

` as multiplication by qε.
As in Section 5.1, let �⊃Q` be an algebraically closed field and let σ ∈Aut(�).

We have to show that the pairs (N ′`, ρ
′

`(8v)) and (σ (N ′`), σ (ρ
′

`(8v))) are conjugate
under the action of G\

A(�). By Proposition 5.2, there is a g ∈ G\

A(�) such that

(N ′`, w`)= Ad(g)(σ (N ′`), σ (w`)).

This implies that ρ ′`(8v) and gσ(ρ ′`(8v))g
−1 belong to C̃`(�). As C \

` centralises
(N ′`, w`), it is enough to show that ρ ′`(8v) and gσ(ρ ′`(8v))g

−1 are conjugate under
C \

`(�). By Section 1.9 and the proof of Proposition 2.6, the element ρ ′`(8v) is
semisimple. Moreover

P ′L(gσ(ρ
′

`(8v))g
−1)= σ(P ′L(ρ

′

`(8v)))= P ′L(ρ
′

`(8v)),

where the former equality is elementary and the latter one follows from Lemma 5.5.
The projections of these elements to C̃`,−1(�) are semisimple and weakly neat and
their projections to C`,0(�) lie in the centre of this group. The required statement
therefore follows from Lemma 5.8.

For the `-independence, let ` and `′ be two prime numbers and let � be an
algebraically closed field containing Q` and Q`′ . It follows from Proposition 5.2
that there exists g∈G\

A(�) such that (N ′`, w`)=Ad(g)(N ′`′, w`′). Exactly as before
we combine the Lemmas 5.5 and 5.8 to show that ρ ′`(8v) and ρ ′`′(8v) are conjugate
under C \

`(�). �

Lemma 5.8. Let C̃`, C \

` and P ′L be as above and let g1, g2 ∈ C̃`(�) be semisimple
elements whose projections to C \

`,−1(�) are weakly neat and whose projections to
C̃`,0(�) act on V 0

` by the same scalar multiplication. If P ′L(g1)= P ′L(g2) then g1

and g2 are conjugate under C \

`(�).

Proof. This essentially results from [Noot 2009, Lemmas 2.5 and 2.6]. First
note that the variety Conj′(C̃`) considered in [ibid., Lemma 2.5] is the variety of
semisimple C \

`-conjugacy classes in C̃`. Similarly, for each ι and k, the variety
Conj′(C̃`,ι,k) is the variety of semisimple C \

`,ι,k-conjugacy classes in C̃`,ι,k . It
follows that Conj′(C̃`)(�) and Conj′(C̃`,ι,k)(�) are the sets of semisimple C \

`(�)

and C \

`,ι,k(�)-conjugacy classes in C̃`(�) and in C̃`,ι,k(�), respectively.
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It thus follows from [ibid., Lemma 2.5] and its proof that the map

C̃`(�)→ C̃`,0(�)× C̃`,−1(�)→
∏
ι

C̃`,ι,0(�)×
∏
ι

C̃`,ι,−1(�)

induces an injection on weakly neat C \

`(�)-conjugacy classes. As the images of
g1 and g2 in C̃`,0(�) are equal and since these images are C \

`(�)-invariant, it is
sufficient to show that the images of g1 and g2 in each Conj′(C̃`,ι,−1)(�) coincide.

To this end, note that each map

P ′L : Conj′(C̃`,ι,−1)(�)→ A2g(�)

is injective. This is the statement of [ibid., Lemma 2.6] for the group Cder
`,ι,−1, with

� instead of Q. Since Cder
`,ι,−1 is of type An , Cn or DH

n , it follows from the remark
in the beginning of the proof of [ibid., Lemma 2.6] that the lemma in question is
valid in this setting. �

6. Strictly tractable abelian varieties of types Bn and DR
n

6.1. The monodromy in a Mumford–Tate group of type Bn. With the notation of
Section 3.1, we turn to the case where A/F is a strictly tractable abelian variety with
Mumford–Tate group G A of type Bn . We will adapt the arguments of Section 5 to
this case. The endomorphism algebra L and the group H are defined as in Sections
4.3 and 4.5. As in the previous cases, it follows from Lemma 4.4 that L is a field.
Moreover we have G\ ad

A =Gad
A . For each prime number `, the monodromy operator

N ′` and the Frobenius weight cocharacter w` are defined as before. Each w` acts
on V` = V ⊗Q` with at most three eigenvalues. It presents a single weight if and
only if A has good reduction, which is the case if and only if N ′` = 0.

Recall the decomposition L ⊗Q =
⊕

ιQ from Section 4.3, where the direct
sum is indexed by the maps ι : L→ Q. As in Sections 4.3 and 4.5, we consider
the resulting decompositions V ⊗Q =

⊕
ι Vι and h⊗Q =

⊕
ι hι as well as the

embedding g⊗Q ↪→
⊕

ι gι. We write Gι for the image of G A/Q in GL(Vι). The
derived group Gder

A/Q identifies with the product
∏
ι Gder

ι . Each Gder
ι is a spin group

of type Bn and its representation on Vι is a multiple of the irreducible representation
V irr
ι of highest weight $n and hence of dimension d = 2n .
As before, let (N ′`,ι)ι be the image of N ′` in

⊕
ι gι⊗Q`. Of course, N ′` lies in

gss
⊗Q` and N ′`,ι ∈ g

ss
ι ⊗Q`. The operator N ′` is L`-linear so it belongs to h⊗Q`

and it follows from the Corollary 2.7 that its H(Q`)-orbit is defined over Q. This
implies the rank of the projection N ′`,ι is independent of ι. If N ′`,ι = 0 for some ι,
then all N ′`,ι are trivial and then the abelian variety A has potentially good reduction.
This is the situation treated in [Noot 2009]. In what follows, we will assume that this
is not the case. We investigate the possible ranks of the N ′`,ι and the corresponding
forms of the cocharacters w`,ι.
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Let Tι be a maximal torus of Gι and let T̃ι =Gd
m be a maximal torus of GL(V irr

ι )

containing it. According to [ibid., 2.6.4] we have d = 2n and we can assume that Tι
is the image of the application Gn+1

m → T̃ι given by

(λ0, λ1, . . . , λn) 7→ (λ0λ
ε1
1 · · · λ

εn
n )(ε1,...,εn)=(±1,...,±1),

where the factors of T̃ι are indexed by n-tuples of signs (ε1, . . . , εn).
For each ι, the Frobenius weight cocharacter w` defines a cocharacter w`,ι of

Gι/Q`
. The monodromy operator N ′`,ι defines an isomorphism between the t and

t−1 eigenspaces of w`,ι acting on Vι, so these eigenspaces have the same dimension
and it follows that w`,ι factors through Gder

ι/Q`
. Up to conjugation by an element

of Gder
ι (Q`), we can assume that w`,ι factors through Tι/Q`

. It then lifts to a
quasicocharacter w̃`,ι with values in Gn+1

m . The filtration on V irr
ι defined by w`,ι

has at most three weights and it follows that w̃`,ι projects nontrivially to at most
two factors of Gn

m . Moreover, if it projects nontrivially to two factors, then the two
projections must coincide.

The filtration by Frobenius weights coincides with the monodromy filtration and
it follows that

• if w̃`,ι is trivial, then N ′`,ι = 0;

• if w̃`,ι projects nontrivially to exactly one factor of Gn
m , then N ′`,ι is of rank

2n−1 (as an endomorphism of V irr
ι ); and

• if w̃`,ι projects nontrivially to exactly two factors of Gn
m , then N ′`,ι is of rank

2n−2.

The first possibility is excluded by the hypothesis that N ′` 6= 0.
As for the other cases, we consider the adjoint group Gad

ι of Gder
ι , which is

isomorphic to the special orthogonal group SO2n+1/Q`
. Let Wι be the orthogonal

representation of this group, that is, the representation with highest weight $1, and
let wad

`,ι be the projection of the cocharacter w`,ι to Gad
ι .

If we are in the second case then wad
`,ι acts on Wι with eigenvalues t , 1 and t−1

and the eigenspaces for t and for t−1 are 1-dimensional. The relation

Ad(w`,ι(t))(N ′`,ι)= t2 N ′`,ι

implies that the same relation holds with wad
`,ι instead of w`,ι. It follows that the

Jordan normal form of the image of N ′`,ι in the orthogonal representation of gss
ι

has one block of size 2 and that all other blocks are of size 1. This is impossible
according to [Springer and Steinberg 1970, IV 2.14; Humphreys 1995, 7.11] so the
second possibility is excluded.

We study of the conjugacy class of (N ′`, w`) in the third, and only possible, case.
The argument above shows that the image of N ′`,ι in the orthogonal representation
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Wι of gss
ι has two blocks of size 2 and that all other blocks are of size 1. Considering

the orthogonal representation Wι, we also see that if we take X = N ′`,ι in [Springer
and Steinberg 1970, IV 2.19(b)], then we can assume that wad

`,ι is the inverse
of the cocharacter λ of [ibid., IV 2.22]. This remains true after passing to any
algebraically closed field � ⊃ Q` and also after replacing the data (N ′`, w`) by
σ(N ′`, w`), where σ is an automorphism of �. Applying [ibid., IV, §2] in the same
way as in Section 5.1, we prove that for any such � and σ , the pairs (N ′`,ι, w

ad
`,ι)

and σ(N ′`,ι, w
ad
`,ι) are conjugate under the Gder

ι (�)-action. It follows that this is also
the case for (N ′`,ι, w`,ι) and σ(N ′`,ι, w`,ι).

One shows by the same argument that if `′ is a second prime number and if � is
an algebraically closed field containing Q` and Q`′ , then (N ′`, w`) and (N ′`′, w`′)
are G A(�)-conjugate. This proves Proposition 5.2 in the case where A/F is a
strictly tractable abelian variety of type Bn .

6.2. The Frobenius elements in Mumford–Tate groups of type Bn. To prove the
conjugacy of the Frobenius elements, we adapt the argument used from Section 5.3
to Lemma 5.8. On the one hand, notation is simplified because G\ ad

A = Gad
A , but

on the other hand, they are complicated by the fact that we need to consider
the orthogonal groups Gad

ι in order to apply [Springer and Steinberg 1970]. As
in Section 5.3, consider the centraliser C` ⊂ G A/Q`

of (N ′`, w`) and note that
ρ ′`(8v) ∈ C̃`(Q`), where C̃` is the subgroup of G A/Q`

generated by C` and the
image of w`. For any fixed embedding ι : L→Q, let Gι be the image of G A/Q`

in
GL(Vι). The centraliser C`,ι ⊂ Gι/Q`

of (N ′`,ι, w`,ι) can be described by projecting
it to the adjoint group.

The action of Gι on itself by conjugation factors through the adjoint group
Gad
ι
∼= SO2n+1. Recall that Wι is the orthogonal representation of this group. In

view of [ibid., IV §2] and the dimension count carried out in Section 6.1, the
centraliser C [

`,ι ⊂ Gad
ι/Q`

of the pair (N`,ι, wad
`,ι) satisfies

C [

`,ι
∼= SL2/Q`

×SO2n−3/Q`
. (6.2∗)

Consider the tori Tι ⊂ T̃ι defined in Section 6.1. Up to conjugation, we can
assume that w`,ι factors through Tι and that its lift w̃`,ι along Gn+1

m → T̃ι is given
by

w̃`,ι : Gm→ Gn+1
m , t 7→ (1, t1/2, t1/2, 1, . . . , 1).

The image 1′′ ⊂ Tι ⊂ T̃ι of the map t 7→ (1, t1/2, t−1/2, 1, . . . , 1) then projects to
a maximal torus of the factor SL2 of C [

`,ι ⊂ Gad
ι/Q`

. The product 1′ = Gn−2
m of the

last n− 2 factors projects to a maximal torus of the factor SO2n−3.
The group C`,ι ⊂ Gι is the inverse image of C [

`,ι. Its derived group therefore
admits an isogeny

C ′′`,ι×C ′`,ι = SL2/Q`
×C ′`,ι→ Cder

`,ι ,
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where C ′`,ι is a spin group of type Bn−2.
The map from 1′′ to Gder

ι factors through C ′′`,ι× 1= SL2 in the product above
and the image of 1′′ in C ′′`,ι is a maximal torus. Similarly, 1′ maps through 1×C ′ι
and defines a maximal torus in C ′ι . Recall from Section 6.1 that Vι is a multiple
of the spin representation V irr

ι of Gι. Considering the characters occurring in
the representation of 1′′×1′ on V irr

ι , one concludes that, as a representation of
SL2/Q`

×C ′ι , the space V irr
ι is a tensor product V ′′ι ⊗V ′ι . Here V ′′ι is a multiple of the

direct sum of the standard representation and two copies of the trivial representation
of SL2 and V ′ι is the spin representation of C ′ι . As representations of C`,ι, the t-
and t−1-eigenspaces V 0

`,ι and V−2
`,ι ⊂ V`,ι of w`,ι are both isomorphic to a multiple

of V ′ι , so the representation of C ′′`,ι×C ′`,ι on V 0
`,ι identifies C ′`,ι with its image in

GL(V 0
`,ι).

These observations imply that the isogeny above is in fact an isomorphism
C ′′`,ι×C ′`,ι = SL2/Q`

×C ′`,ι ∼= Cder
`,ι and hence

Cder
`/Q`

∼=
∏

ι : L→Q`

(C ′′`,ι×C ′`,ι).

It also follows that Cder
` itself decomposes as a product C ′′` ×C ′` of algebraic groups

over Q`. The group C` is generated by Cder
` and the centre of G A/Q`

and C̃` is
generated by C` and the image of w`. We will show that ρ ′`(8v) lies in C̃ ′′` ⊂ C̃`,
the subgroup generated by C ′′` and the centre of C̃`.

Indeed, as in Section 5.4, we consider the action of ρ ′`(8v) on the differ-
ent w`-eigenspaces in V`. It was pointed out in the beginning of the proof of
Proposition 5.7 that, since ρ ′`(8v) is weakly neat, it acts on V 0

` as multiplication by
ε =±1 and on V−2

` as multiplication by εq . This means that ρ ′`(8v) ∈ C̃ ′′` (Q`), as
claimed.

The group C ′′`,ι, which is isomorphic to SL2, acts trivially on V 0
`,ι and on V−2

`,ι and
V−1
`,ι is a multiple of the standard representation. The centre of C` acts on each Vι

through a fixed character. Through w`, the group Gm acts on V−2
` , on V−1

` and on
V 0
` as multiplication by t−1, by 1 and by t , respectively. For the group C̃ ′′` defined

above, this discussion implies that the map

C̃ ′′` → GL(V−2
` )×GL(V−1

` )×GL(V 0
` )

is injective. As in the proof of Lemma 5.5, the image of ρ ′`(8v) under the map
P ′L , defined in (5.4∗) by taking the L-linear characteristic polynomial on V−1

` , lies
in A

2g
(L)(Q) and is independent of `. We already know that the images of ρ ′`(8v)

in GL(V−2
` ) and in GL(V 0

` ) are rational scalars, independent of `. In the case of
an abelian variety of type Bn , the main theorem now follows using a variant of
Lemma 5.8, again using [Noot 2009, 2.5, 2.6]. Note that, as before, the statement of
[ibid., 2.6] is valid for any �, instead of just Q, because the group C̃ ′′` is of type A1.



Representations of the Weil–Deligne group 275

6.3. Abelian varieties of type DR
n . The case where the abelian variety A is strictly

tractable with Mumford–Tate group of type DR
n can be treated by analogous argu-

ments. We will just indicate the points where the discussion of Sections 6.1 and 6.2
needs to be modified.

First of all, the quotient of G A one has to consider in order apply [Springer and
Steinberg 1970] is not the adjoint group, but the intermediate quotient of G A/Q`

for
which the simple factors G[

ι are groups of the form SO2n . Also, A is not necessarily
simple in this case. If it is not, then the endomorphism algebra L is of the form
L = L ′× L ′, where L ′ is a number field; see Lemma 4.4.

We now follow the proof of [Noot 2009, Théorème 2.4] for this type. For each
ι : L→Q, let Vι be the direct factor of V ⊗Q on which L acts through ι. The group
Gder

A/Q acts on Vι through a single direct factor Gder
ι , but for n ≥ 4 this factor does

not act faithfully on Vι. In fact Vι is a multiple of a semispin representation V irr
ι of

Gι, with highest weight $n−1 say. For ι= ι+, there is a ι− : L→Q such that Vι− is
a multiple of the other semispin representation V irr

ι−
of Gι, with highest weight $n .

The representation of G A/Q on Vι+ ⊕ Vι− restricts to a faithful representation of
Gder
ι . We redefine Gι as the image of Gder

A/Q in GL(Vι+)×GL(Vι−).
If L is a field, then it is a CM field and the involution ι+ 7→ ι− on the set of

maps L → Q defined by this construction is given by the composition with the
complex conjugation on L . If L = L ′ × L ′ is a product of two fields, then ι− is
the composite of ι+ with the involution exchanging the factors. Using the spin
representation V irr

ι+
⊕ V irr

ι−
instead of V irr

ι , the arguments of Section 6.1 and hence
the proof of Proposition 5.2 carry over to this case.

Where the discussion of Section 6.2 is concerned, the analogue of (6.2∗) states
that the centraliser C [

`,ι of (N`,ι, wad
`,ι) in G[

ι is given by

C [

`,ι
∼= SL2,Q`

×SO2n−4 .

Once again, C`,ι ⊂ Gι is the inverse image of C [

`,ι and there is an isogeny

C ′′`,ι×C ′`,ι ∼= SL2/Q`
×C ′`,ι→ Cder

`,ι .

Here the group C ′`,ι is a spin group of type Dn−2. Similarly to the previous case,
one shows that V irr

ι+
⊕ V irr

ι−
is of the form V ′′ι ⊗ V ′ι , where V ′′ι is a multiple of the

direct sum of the standard representation and two copies of the trivial representation
of SL2 and V ′ι is the spin representation of C ′ι . We prove once again that

Cder
`,ι = C ′′`,ι×C ′`,ι

and we define C̃` and C̃ ′′` as before. As in Section 6.2 one has ρ ′`(8v) ∈ C̃ ′′` (Q`).
For each pair ι+, ι− as above, the image of C ′′` in C ′′

`,ι+
×C ′′

`,ι−
is the graph of an

isomorphism. Each C ′′` is again a group of type A1, acting on the 1-eigenspace
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V−1
ι+
⊕ V−1

ι−
for w` as a multiple of the standard representation. The argument can

be completed as in Section 6.2.

7. The proof of the main theorem, Theorem 3.6

Proposition 7.1. Assume that we are in the situation of Theorem 3.6 and that the
variety A is tractable. Then there is a finite extension F ′ of F such that Theorem 3.6
holds for A/F ′ .

Proof. The Proposition 5.7 and the results of Section 6 prove the proposition in the
case where A is strictly tractable.

If A is tractable then there exists a finite extension F ′ ⊃ F , strictly tractable
abelian varieties A1, . . . Am/F ′ and an isogeny A/F ′ ∼

∏m
i=1 Ai such that the

inclusion f : G A→
∏m

i=1 G Ai induces an isomorphism Gder
A
∼=
∏m

i=1 Gder
Ai

. In that
case there are isomorphisms

gss
A
∼=

m⊕
i=1

gss
Ai

and G\

A
∼=

m∏
i=1

G\

Ai
.

For the induced map

f` : G A(Q`)→

m∏
i=1

G Ai (Q`),

one has f` ◦ ρA,` = (ρAi ,`)i=1,...,m , so the tangent map to f` sends the monodromy
operator N ′` ∈g

ss
A⊗Q` to the m-tuple in

⊕m
i=1 g

ss
Ai
⊗Q` of the monodromy operators

associated to the Ai . This obviously implies that f` ◦ ρ ′A,` = (ρ
′

Ai ,`
)i=1,...,m . The

statement for A/F ′ therefore results immediately from the corresponding statements
for the Ai . �

7.2. Preliminaries to the proof of Theorem 3.6. We use the method of the proof
of [Noot 2009, Théorème 1.8] in Section 3 of that paper. After fixing the notation
we will indicate an omission, pointed out by Abhijit Laskar, in [Noot 2009] and
explain how to complete the argument.

In what follows, the notation and the hypotheses of Section 3.1 and of Theorem 3.6
are in force, so A has semistable reduction at v and the image ρ`(8v) of the arith-
metic Frobenius is weakly neat. However, since the argument involves auxiliary
abelian varieties, we write (ρ ′A,`, N ′A,`) for the representation of ′Wv associated
to A/Fv .

By [Noot 2006, §2 and Corollary 3.2] of that paper, there is a tractable abelian
variety B/F̄ such that B/C provides a weak Mumford–Tate lift of A/C. Following
[Noot 2009, §3], this implies that there exists an abelian variety of CM-type C/F̄ such
that A/F̄ belongs to the category of absolute Hodge motives generated by B/F̄ and
C/F̄ . This fact determines a morphism of Mumford–Tate groups π : G B×C → G A
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but, contrary to what is stated in [ibid., §3], not a morphism G B ×GC → G A. In
fact, G B×C is a closed subgroup of the product G B×GC and the inclusion identifies
the derived groups. This means that the diagram considered in the proof of [ibid.,
Théorème 1.8] has to be replaced by the diagram

0F ′
ρB×C,` //

ρA,`

**

(ρB,`,ρB,`)

))
G B×C(Q`)

π

��

� � // G B(Q`)×GC(Q`)

G A(Q`),

(7.2∗)

which commutes for a sufficiently large finite extension F ′ of F . None of the above
depends on v but this will not play any role in what follows.

7.3. Addendum to the proof of [Noot 2009, Théorème 1.8]. Recall that the state-
ment of the theorem in question is essentially the special case of the main theorem
of this paper where A has good reduction. In [Noot 2009] it is formulated in terms
of the variety of geometric conjugacy classes of the Mumford–Tate group. We have
to prove that there exists a conjugacy class ClA Frv ∈ Conj′(G A)(Q) containing
the image of ρA,`(8

−1
v ) of any ` with v(`)= 0. Here Conj′(G A)/Q is the quotient

of G A/Q by the adjoint action of G\ ad
A . We refer to [ibid., 1.5] for the construc-

tion of a natural model Conj′(G A) over Q. Assume for the moment that [ibid.,
Theorem 1.8] holds for B×C/F ′, where F ′ is a sufficiently big finite extension
of F and v′ an extension of the valuation v to F ′. We then obtain a conjugacy
class ClB×C Frv′ ∈Conj′(G B×C)(Q) and its image ClA Frv′ ∈Conj′(G A)(Q) fulfils
the statement [ibid., Theorem 1.8] for A/F ′ . The proof of Theorem 1.8 there then
applies and it follows that the theorem also holds for A/F .

It remains to construct ClB×C Frv′ . As GC is a torus, Conj′(G B×C)/Q and
Conj′(G B × GC)/Q are the quotients of G B×C/Q and of G B/Q × GC/Q for the
adjoint action by the same group, denoted Aut′(G B) in [Noot 2009, 1.5] and G\ ad

B
in Section 3.3 of this paper. If TB×C ⊂ TB ×GC denote maximal tori of G B×C and
of G B ×GC , then Conj′(G B×C) and Conj′(G B ×GC) are also quotients of these
tori by the finite group W̃ of [ibid., 1.6]. The group W̃ is an extension of a finite
group of outer automorphisms by the Weyl group of Gder

B . We claim that the closed
immersion TB×C ⊂ TB ×GC induces a closed immersion on the quotients for the
W̃ -action.

To justify the claim, assume that R→ S is a surjective morphism of Q-algebras
with W̃ action. Let b ∈ SW̃ and assume that a ∈ R maps to b. The average of the
elements of the W̃ -orbit of a then is an element of RW̃ mapping to b. It follows
that RW̃

→ SW̃ is also surjective.
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As B is tractable, Thórème 2.4 of [Noot 2009] provides a conjugacy class

(ClB Frv′,ClC Frv′) ∈ Conj′(G B ×GC)(Q)

containing (ρB,`(8
−1
v′ ), ρC,`(8

−1
v′ )) for any ` 6= p. As (ρB,`, ρC,`) factors through

G B×C for all `, it follows that (ClB Frv′,ClC Frv′) ∈ Conj′(G B×C)(Q). It is obvi-
ously the class ClB×C Frv′ we had to construct.

Proof of Theorem 3.6. We take up the thread of the proof of Theorem 3.6 by
considering the diagram (7.2∗). In this diagram, the map G B×C ↪→ G B × GC

induces an isomorphism on the derived groups and it follows that G\ ad
B×C = G\ ad

B
and that both the subgroup G B×C/Q ⊂ (G B × GC)/Q and the Lie subalgebra
gB×C ⊗Q ⊂ (gB ⊕ gC)⊗Q are stable under the adjoint action of G\ ad

B . Taking
F ′ big enough and fixing an extension v′ of the valuation, we can assume, by
Proposition 7.1, that the conclusion of the main theorem holds for B. By [Noot
2009, Corollaire 2.2] we can also assume that it is valid for C . This implies that
the theorem is true for (B×C)/F ′ .

Consider the statement of Theorem 3.6 for the representation of ′WF ′
v′

associated
to AF ′ . The monodromy operators are unaffected by passing from A to AF ′ , whereas
8v, and hence the ρ ′A,`(8v), are replaced by their f -th powers, where f is the
residue degree of the extension F ′v′/Fv. This exponent is independent of `.

The variety C has potentially good reduction at v′, so for every prime number `,
the monodromy operator N ′A,` ∈ gA⊗Q` is the image of

(N ′B,`, 0) ∈ gB×C ⊗Q` ⊂ (gB ⊕ gC)⊗Q`

under the tangent map to π . Here N ′B,` is the monodromy operator associated to
B/Fv . We have made use of the fact, expressed by the diagram (7.2∗), that the
product of the `-adic Galois representations associated to B and C factors through
G B×C(Q`).

Similarly,
ρ ′A,`(8v′)= π(ρ

′

B,`(8v′), ρ
′

C,`(8v′)),

which makes sense since (ρ ′B,`(8v′), ρ
′

C,`(8v′)) ∈ G B×C(Q`)⊂ (G B ×GC)(Q`).
As the theorem holds for (B×C)/F ′ , it follows that the theorem is true for A/F ′ .

Now return to the original field F . Let � ⊃ Q` be an algebraically closed
field and σ ∈ Aut(�). By what we just proved, the images of (N ′A,`, ρ

′

`(8
f
v )) and

σ(N ′A,`, ρ
′

`(8
f
v )) in gA⊗�×G A(�) are conjugate by an element g∈G\

A(�). Thus
N ′A,` = Ad(g)(σ (N ′A,`)) and we will show that ρ ′`(8v)= gσ(ρ ′`(8v))g

−1 as well.
Indeed, applying [Raynaud 1994, 4.2] as in Section 3.8, we obtain a strict 1-motive
M ′/Fv and a system of 0Fv -equivariant isomorphisms V`(A/Fv )

∼= V`(M ′). By
Proposition 1.8, the characteristic polynomials of ρ ′`(8v) and σ(ρ ′`(8v)) acting on
V`(A) coincide. This common polynomial is also the characteristic polynomial of
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gσ(ρ ′`(8v))g
−1. As we already know that ρ ′`(8

f
v )= gσ(ρ ′`(8

f
v ))g−1, the equality

ρ ′`(8v)= gσ(ρ ′`(8v))g
−1 follows from Lemma 7.4 below.

Similarly, let � be an algebraically closed field containing Q` and Q`′ . We know
that the images of the pairs (N ′A,`, ρ

′

`(8
f
v )) and (N ′A,`′, ρ

′

`′(8
f
v )) are conjugate by

some g ∈ G\

A(�). Again by Proposition 1.8, the characteristic polynomials of
ρ ′`(8v) and ρ ′`′(8v)) coincide so Lemma 7.4 implies that ρ ′`(8v)= ρ

′

`′(8v)). This
proves the theorem for A. �

Lemma 7.4. Assume that � is an algebraically closed field, d > 0 is an integer
and that x, y ∈ GLd(�) are two semisimple and weakly neat elements. Assume
that x f

= y f for some integer f and that x and y have the same characteristic
polynomial. Then x = y.

Proof. This is a variant of [Noot 2009, Proposition 3.2].
For any semisimple element z ∈ GLd(�), let Tz ⊂ GLd be the torus acting by

scalar multiplication on each eigenspace of z. Up to conjugation, z is a point of
the diagonal torus Gd

m ⊂GLd and, writing t1, . . . , td for the coordinates on Gd
m and

z = (z1, . . . , zd), one then has

Tz = {(t1, . . . , td) ∈ Gd
m | ti = t j if zi = z j }. (7.4∗)

Note that for every positive integer n one has Tzn ⊂ Tz and that this inclusion is an
equality if z is weakly neat.

With this notation we prove the lemma. As x and y are weakly neat and
satisfy x f

= y f , we get Tx = Tx f = Ty f = Ty . This implies in particular that
y ∈ Tx(�). We can assume that x lies in the diagonal torus Gd

m ⊂ GLd and we
write x = (x1, . . . , xd) ∈Gd

m(�). The fact that x and y have the same characteristic
polynomial implies that there is a permutation σ ∈Sd of the factors of the product Gd

m
such that y=σ(x). We have x f

= y f
=σ(x f ) and, considering the equations (7.4∗)

for Tx f , it follows that σ |Tx f = id. Since Tx f = Tx we conclude that x = σ(x)= y
as claimed. �
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Fourier–Jacobi coefficients of
Eisenstein series on unitary groups

Bei Zhang

This paper studies the Fourier–Jacobi expansions of Eisenstein series on U(3, 1).
I relate the Fourier–Jacobi coefficients of the Eisenstein series with special values
of L-functions. This relationship can be applied to verify the existence of certain
Eisenstein series on U(3, 1) that do not vanish modulo p. This is a crucial step
towards one divisibility of the main conjecture for GL2× K× using the method
of Eisenstein congruences.
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1. Introduction

Eisenstein congruence and Iwasawa main conjecture. Eisenstein series have been
intensively used in constructions of p-adic L-functions and in the Iwasawa main
conjectures. Ribet [1976] used the congruences between Eisenstein series and cusp
forms to prove the converse of the Herbrand theorem. This idea was extended to
congruences between p-adic families of modular forms, which was successfully
used, first by Mazur and Wiles [1984] to prove the main conjecture for real abelian
fields, then by Wiles [1990] for all totally real fields. Subsequently, Skinner and
Urban used this technique to study the main conjectures for the motives attached to
modular forms; see [Urban 2001; Urban 2006; Skinner and Urban 2012].
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In the ongoing joint project with Hsieh, we want to apply Eisenstein congruences
to the following main conjecture for elliptic curves. Take an imaginary quadratic
field K in which p splits. Fix an embedding i∞ : Q→ C and an isomorphism
i : C∼= Cp. Let

ρE : Gal(Q/Q)→ GL(H 1
et(E,Qp))

be the p-adic Galois representation associated to an elliptic curve E over Q with
good ordinary reduction at p. Let η : A×K /K×→ C× be a Hecke character with the
infinity type (k, 0), where k is an integer and k > 1. Put O= Zp[Im η], the ring of
values of η. Let Kmax be the unique Z2

p-extension of K , and let 0 =Gal(Kmax/K ).
Define 3 = O[[0]] the Iwasawa algebra of 0. Given 9 a 3-valued character of
Gal(Q/K ) that interpolates η, there exists a unique element L p(ρE ⊗9) in 3
interpolating ((2π i)2k/�2k

K )L K (0, E ⊗ η), where �K is the CM-period associated
to K . (About the precise normalization of L K (E ⊗ η, 0), one may check [Hsieh
2011b, Definition 1]. Especially, since the weight of the CM form associated to
η is greater than 2, the period appearing in the denominator of the normalization
of L K (E ⊗ η, 0) is not the period of E , but the CM period attached to η and K .)
Let p and p̄ be the two primes in K above p. Let KS be the maximal unramified
extension of K outside S, where

S = {p, p̄} ∪ {v finite | ηv is ramified, or E has a bad reduction at v} ∪ {∞}.

Use M∗ to denote the Pontryagin dual of a 3-module M . Define the nonprimitive
3-adic Selmer group to ρE ⊗9 by

SelK (ρE ⊗9)= ker{H 1(Gal(KS/K ), T ⊗3∗)→ H 1(Ip̄, Tp̄⊗3∗)},

where T =H 1
et(E,Zp), Ip̄ is the inertia group at p̄; see [Hsieh 2011b]. The following

conjecture is formulated in [Greenberg 1994]:

Conjecture 1.1. SelK (ρE ⊗9) is cotorsion over 3, and for any height 1 prime P ,

ordP L p(ρE ⊗9)= lP(SelK (ρE ⊗9)),

where lP(SelK (ρE ⊗9))= length3P
(SelK (ρE ⊗9)

∗
⊗33P).

Remark 1.2. Though they have similar formulations, the conjecture above is differ-
ent from the main conjecture of elliptic curves studied in [Skinner and Urban 2012],
because the specializations of 9 are different. Our 9 interpolates Hecke characters
over K with the infinity type (k, 0) for an integer k > 1; the infinity types in [ibid.]
are different. In addition, we consider different L p(ρE ⊗9) and SelK (ρE ⊗9).
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Nonvanishing modulo p of Eisenstein series. Both for Ribet’s original argument
and for various cases of Iwasawa main conjectures, we crucially need to guarantee
the Eisenstein series (or the p-adic Eisenstein series) used in the proofs does not
vanish modulo p, for the naive reason that this is sufficient to deduce that the
congruent cusp form is nontrivial. A more technical reason is that it is necessary to
show that the constant term of this Eisenstein series divides the Eisenstein ideal,
which is the first step towards one divisibility of the main conjecture.

For main conjectures of different cuspidal representations, Eisenstein series on
different reductive groups are constructed so that the p-adic L-functions in the
main conjectures interpolate the constant terms of the Eisenstein series. There is no
consistent way to argue nonvanishing modulo p of an Eisenstein series on a general
reductive group. This question has been one of the obstacles of Iwasawa theory for
L-functions of higher degrees. Urban [2006] argued that an Eisenstein–Klingen
series on GSp(4) is nontrivial modulo p in the following way: Find an algebraic
linear combination of its Fourier coefficients (this is essentially a period integral of
the Eisenstein series) that turns out to be a special L-value, and use Vatsal’s result
[2003] that this L-value does not vanish modulo p. A similar argument is used as
well by Skinner and Urban [2012] to show an Eisenstein series on U(2, 2) does not
vanish modulo p.

To solve the main conjecture in our ongoing project, we need to construct an
Eisenstein series on U(3, 1). To attack the question about nonvanishing modulo p
of this Eisenstein series, the method is a bit different from other cases. Because
U(3, 1) is nonquasisplit, the Eisenstein series has a Fourier–Jacobi expansion where
the coefficients are theta functions.

Results on Fourier–Jacobi coefficients. From now on, let K be an imaginary qua-
dratic extension of a totally real field F . Assume the degree of F over Q is r . Let P
be the minimal parabolic subgroup of U(3, 1) with U(2)×K× as the Levi part. Let
5 be an automorphic representation of U(2)(F) \U (2)(AF ), which corresponds to
a holomorphic weight 2 cuspidal eigenform on GL2(F). Take a Hecke character η
of K× such that η∞(z∞)= |z∞|k/z∞k . The desirable Eisenstein series Ek( · ,5, η)

of weight k on U(3, 1) is defined by pulling back a Siegel–Eisenstein series on
U(3, 3). This pullback idea was due to Shimura and was applied in the constructions
of Eisenstein series in many cases; see [Urban 2006; Skinner and Urban 2012;
Hsieh 2011b].

Let Mk(U (3, 1)) be the space of weight k automorphic forms on U(3, 1). A
linear functional associated to a Bruhat–Schwartz function φ on A2 (where A is the
adèle of F) can be defined by

lφ :Mk(U(3, 1))→ C, F 7→
〈Fψ , θφ〉 · θ5φ (1)
〈θφ, θφ〉

, (1)
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where θ5φ is the theta lifting from the cuspidal representation 5 on U(2) to U(1)
defined by θφ , and Fψ is the Fourier–Jacobi coefficient of F attached to the additive
character ψ . When defining the theta lifting, a Hecke character χ will be introduced.
So in the following Theorem 1.3, χ is implicit in the left side of the equation, but
appears in the right. For the precise definition of the Fourier–Jacobi coefficient of
F, one can refer to (25), and change E( · , f, s) in that equation to F. Let TA(ψ)

be the space of adelic theta functions on N (F)U (2)(F) \ N (A)U (2)(A) with a
well-defined inner product 〈 · , · 〉. Then Fψ and θφ are both elements inside.

In the following theorem, S denotes the set of ramified places (the ramified
places include places where any data used in the computation is ramified, for
example, the characters η and χ are ramified, the field extension K/F is ramified,
the representation 5 is ramified, and so on). We use L S to denote the partial
L-function omitting the local L-factors at primes in S.

Theorem 1.3. For Ek( · ,5, η),

lφ(Ek( · ,5, η))

= C ·
(2π i)(2k−4)r L S(ηχ−1, 1

2(k− 2))L S(η−1χ, 1
2(k− 4))L S(5, χ, 1)

�2k
K

,

where C is a nonzero constant which can be explicitly calculated, r = [F :Q] and
�K is the CM-period associated to K .

The nature of lφ(Ek( · ,5, η)) depends on the normalization of Ek( · ,5, η).
However, when we choose Ek( · ,5, η) to be rational, we can then show that
lφ(Ek( · ,5, η)) ∈Q. So C must be an algebraic number.

In the paper, the value of lφ(Ek( · ,5, η)) can simply be obtained by detailed
computations of 〈Ek( · ,5, η), θφ〉, from which one can prove Theorem 4.12. The
proof uses computations of Fourier–Jacobi coefficients of the Siegel–Eisenstein
series on U(3, 3), whose definition can be found in (21); pullback formulas; the theta
liftings for unitary groups; and the Siegel–Weil formula. By unfolding integrals
step by step, the questions are translated to computations of Rallis inner product
type. Then by studying the integral structure of the space of theta functions TA(ψ),
we can prove:

Proposition 1.4. For the p-integral holomorphic Eisenstein series Ek , lφ(Ek) is a
p-integer.

Conjecture 1.5. Ek( · ,5, η) does not vanish modulo p.

By the nonvanishing modulo p of Hecke L-values (see [Hida 2004a]), we see
that this conjecture is reduced to the question “Does there exist a Hecke character χ
such that L S(5, χ, 1) does not vanish modulo p?” There have been many results
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of this flavor by Vatsal, Hida, Sun and Brakočević. I will consider this question in
the near future.

The method introduced in this paper for calculating Fourier–Jacobi coefficients
of Eisenstein series on U(3, 1) can be generalized well to other nonquasisplit unitary
groups. I will briefly explain the generalizations in Remark 5.7 at the end of this
paper. For example, this method gives an alternative way to calculate the Fourier–
Jacobi coefficients of the Eisenstein series on U(2, 1) other than the one given in
[Murase and Sugano 2002], and recovers the proof of nonvanishing modulo p of
this Eisenstein series (compare to the discussion in [Mainardi 2004], which uses
results in [Murase and Sugano 2002]).

The generalized computational results for Fourier–Jacobi coefficients of certain
Eisenstein series on arbitrary unitary groups might inspire a new argument on the
nonvanishing modulo p of the Eisenstein series Ek( · ,5, η) on U(3, 1). Briefly, one
can construct an Eisenstein series on U(4, 2) of the type explained in Remark 5.7.
Thus the linear functional on this Eisenstein series will be the product of central
special L-values, whose p-adic properties are much easier to study. Especially, we
can first obtain nonvanishing modulo p of this Eisenstein series. Then by studying
the relations between Fourier–Jacobi coefficients of Ek( · ,5, η) on U(3, 1) and this
Eisenstein series on U(4, 2), we can furthermore argue the nonvanishing modulo p
of Ek( · ,5, η). I hope to address this question soon in another paper.

Structure of the paper and some notation. Section 2 is about the theory of Eisenstein
series on unitary groups. Two types of Eisenstein series are defined: one is on
U(3, 1) (U(Iζ )), and the other is the Siegel type on U(3, 3). Section 2C discusses
the pullback formula. Theorem 2.6 gives the precise form, which is actually an
adelic counterpart of “pullback of Eisenstein series” in [Shimura 1997].

Section 3 recalls the theory of Weil representations and theta functions. First,
Section 3A introduces the Schrödinger representation ρψ of the Heisenberg group
and the Weil representation ωψ of the metaplectic group. For this paper, we mainly
need the Weil representation restricted to the dual reductive pair of unitary groups.
The needed results are summarized in Section 3B, which also explains the relation
between ωψ |U (2) and ωψ |U (2,2). Section 3C briefly recalls the theta lifting that
appears in (1) and the Siegel–Weil formula, which is used to calculate the theta
lifting.

Section 4 is about computations of Fourier–Jacobi coefficients of the two types
of Eisenstein series used in the paper. The very important result that helps give a
nice expression of the Fourier–Jacobi coefficients of Ek( · ,5, η) is summarized
in Theorem 4.9.

Section 5, gives a strategic answer to the question of how to apply the results in
Section 4 to show Ek( · ,5, η)) on U(3, 1) does not vanish modulo p.
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Unfortunately, the Siegel–Weil formula for the reductive pair (U(2),U(1)) that I
use in this paper is not to be found in the literature — I give a proof in Appendix A.
Appendix B gives a very brief discussion about integral theta functions, which is
used in Section 5.

Let G be an algebraic group defined over the totally real number field F . In this
paper, we use G(A) and G(F) to denote the groups of adelic points and F-points of
G, respectively. We use [G] to denote the quotient G(F)\G(A). Given an arbitrary
number field L (for example, Q, F, K ), for each place v, we choose the additive
Haar measure on Lv so that, if Lv ' R, the measure is the usual Lebesgue measure,
if Lv ' C, the measure is 2 dx dy (z = x + iy ∈ C), and if v is a finite place, the
measure gives the volume of the integer ring of Lv to be D−1/2

Lv (DLv is the absolute
discriminant of Lv). The product of these local measures gives a measure on AL ,
and thus induces a measure on L \AL . At each finite place v, the multiplicative
measure on L×v is taken such that vol(O×Lv )= 1, from which we obtain the measure
on A×L . Notice that this multiplicative measure and the measure chosen in [Skinner
and Urban 2012, 8.2.1] differ by a constant. The Haar measures on local and adelic
points of algebraic groups should be clear from the definitions above and from the
context.

2. Eisenstein series on U(3, 1)

2A. Unitary groups. Let K be a totally imaginary quadratic extension of a to-
tally real number field F . Consider an n-dimensional K -vector space V with an
ε-Hermitian form σ for ε = ±1. Without loss of generality, from now on we fix
ε =−1. The unitary group associated to (V, σ ) can be defined as follows:

U(σ )= {g ∈ GL(V ) | σ(xg, yg)= (x, y) for all x, y ∈ V }.

To obtain a good matrix representation of U(σ ), let us fix a Witt decomposition of V ,
with V = J + Z + J ′, where J and J ′ are maximal totally σ -isotropic subspaces,
and Z is anisotropic or empty, so that dim J = dim J ′ = r and dim Z = t = n− 2r .
Under a suitable basis of V consistent with the Witt decomposition, σ can be
expressed by the matrix

Iζ =

 0 0 Ir

0 ζ 0
−Ir 0 0


with ζ =−ζ ∗ ∈ GLt(K ). (From now on, we use x∗ to denote x t for a matrix x .)
Then:

U (σ )=U (Iζ )= {g ∈ GLn(K ) | gIζ g∗ = Iζ }.



Fourier–Jacobi coefficients of Eisenstein series on unitary groups 289

Accordingly, the adelic unitary group U(Iζ )(A) and local groups U(Iζ )v can be
defined. Given a totally σ -isotropic subspace J (which may not be maximal), put
PJ = {g ∈U (Iζ ) | Jg = J }. Then PJ is the parabolic subgroup of U(Iζ ) associated
to J .

The Hermitian domain associated to U(Iζ ) is defined as

Z= Z(r, ζ )=
{(

x
y

)
∈ Cr+t

r

∣∣∣∣ x ∈ Cr
r , y ∈ Ct

r , i(x∗− x) > iy∗ζ−1 y
}

(2)

Let

g∞ =

a b c
d e f
h l p

 ∈U (Iζ )∞,

with a, p ∈ Cr
r and e ∈ Ct

t . The action of g∞ on Z(r, ζ ) is

g∞

(
x
y

)
=

(
(ax + by+ c)(hx + ly+ p)−1

(dx + ey+ f )(hx + ly+ p)−1

)
.

The automorphy factor is

j
(

g∞,
(

x
y

))
= det(hx + ly+ p). (3)

Proposition 2.1. (1) Pick the origin i of Z and put C = {g∞ ∈U (Iζ )∞ | g∞ i = i}.
Then C is a maximal compact subgroup of U(Iζ )∞.

(2) Let P = PJ , where J is a maximal totally isotropic subspace of V . Then
U(Iζ )∞ = P∞C.

Assume dim V = 4 so that J and J ′ are two isotropic lines, and Z is a 2-
dimensional anisotropic space; then U(Iζ )⊂ GL4(K ) is a degree 4 unitary group.
From now on, whenever we write U(Iζ ), I mean particularly this unitary group. To
U(Iζ ), there is only one nontrivial parabolic subgroup up to conjugation that is PJ .
We can simply denote it by P . It consists of such elements

p =

a ∗ ∗

u ∗

(a∗)−1

 ,
where a ∈ K× and

u ∈U (ζ )= {u | uζu∗ = ζ }. (4)
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2B. Eisenstein series. Following the notation above, P is the parabolic subgroup
of U(Iζ ). It has the Levi decomposition P = M · N , where M is the Levi part
which is isomorphic to U(ζ )×Gm/K , and N is the unipotent radical, consisting of
elements like 1 ∗ ∗

I2 ∗

1

 .
Given a cuspidal representation 5 of U(ζ ) and a Hecke character η of K , we

get a cuspidal representation 5⊗ η on the Levi part M . Then one has the induced
representation

I U (Iζ )
P (5⊗ η, s) := IndU (Iζ )(A)

P(A) δP
1
2+s
·5⊗ η,

where δP is the modulus character on P . If we denote by V5 the representation
space of 5, then the representation space for I U (Iζ )

P (5⊗ η, s) is the set of smooth
functions f̃s :U (Iζ )(A)→ V5 such that

(1) f̃s(pg)= δP(p)
1
2+s
·5⊗ η(p)( f̃s(g)), p ∈ P(A),

(2) f̃s is right K-finite with K a maximal open compact subgroup of U(Iζ )(A).

The action of U(Iζ )(A) on I U (3,1)
P (5⊗ η, s) is by right translation.

If we further assume that 5 is an irreducible submodule of A(M), where A(M)
denotes the set of automorphic forms on M , we can realize I U (Iζ )

P (5⊗ η, s) as
C-valued functions rather than functions valued in V5. For f̃s ∈ I U (Iζ )

P (5⊗ η, s),
let fs(g) = ( f̃s(g))(1). Then fs(g) satisfies fs(nmg) = f̃s(g)(m). Define the
Eisenstein series

E(g, f, s)=
∑

γ∈P(F)\U (Iζ )(F)

fs(γ g). (5)

It can be proved that the sum converges absolutely when Re(s)� 0, and can be
continued to a meromorphic function on C.

Aside from the Eisenstein series on U(Iζ ), we also want to define an Eisenstein
series on U(3, 3), which we are going to use in next section. Following definitions
of unitary groups in the previous section,

U (3, 3)=
{

g ∈ GL6(K )
∣∣∣∣ g
(

0 I3

−I3 0

)
g∗ =

(
0 I3

−I3 0

)}
. (6)

The Siegel parabolic subgroup P of U(3, 3) is the one that fixes the maximal totally
isotropic space of dimension 3 in a 6-dimensional Hermitian vector space. The
Levi part of P is isomorphic to GL3(K ). Take the one-dimensional representation
η(det · ) on the Levi part. Then it induces the representation on U(3, 3) as

I U (3,3)
P (η, s) := IndU (3,3)(A)

P(A) δ
1
2+s
P · η(det · ).
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Pick a section fs in the induced representation. The Siegel–Eisenstein series is
defined by

E(g, f, s)=
∑

γ∈P(F)\U (3,3)(F)

fs(γ g) for g ∈U (3, 3)(A). (7)

It satisfies analytic properties similar to E( · , f, s).

2C. Pullback formulas. In this section, the Eisenstein series E(g, f, s) on U(Iζ )
is constructed using the pullback of a Siegel Eisenstein series on U(3, 3).

The unitary group U(ζ ) is closely related to the quaternion algebra, about which,
let me quote two lemmas from [Shimura 1997].

Lemma 2.2. V is a 2-dimensional K -vector space with a nondegenerate Hermitian
pairing described by ζ . Then V is anisotropic if and only if det ζ is represented by
−1 in K×/NK/F (K×).

Lemma 2.3. Let (V, ζ ) be anisotropic.

(1) D := {α ∈ End(V ) | σ(αιx, y) = σ(x, αy) for all x, y ∈ V }, where ι is the
main involution of End(V ) such that

(
a b
c d

)ι
=
(

d −b
−c a

)
. Then D is a definite

quaternion algebra over F.

(2) U(ζ )= {sα | s ∈ K×, α ∈ D×, ssρ detα = 1}.

So, locally:

(1) When Kv splits, namely Kv = Fv × Fv, we have U(ζ )v ' GL2(Fv).

(2) When Kv is a field and d(σv) is represented by 1, we have U(ζ )v =U (1, 1)v .

(3) When Kv is a field and d(σv) is represented by −1 (including archimedean
places), we have U(ζ )v ⊂ K×v · D

×
v , and Dv is a quaternion algebra. In this

case, U(ζ )v is compact.

The following theorem about the Jacquet–Langlands correspondence relates
automorphic forms on D× to automorphic forms on GL2(F).

Theorem 2.4 [Gelbart 1975]. S is the set of places of F where D is ramified. To
each irreducible unitary admissible representation π =⊗vπv of D×A , let π ′ denote
the representation of GL2(A) whose v-th component is equivalent to πv if v /∈ S,
and special or supercuspidal if v ∈ S.

(1) The map π→ π ′ restricted to the collection of (greater than one-dimensional)
cusp forms on D× is one-to-one onto the collection of all (equivalence classes
of ) cusp forms on GL2(F) such that π ′v is square-integrable for each v ∈ S.

(2) If we require further that π ⊂ L2(D×(F) \ D×(A)), then it implies that π ′v is
one-dimensional for v ∈ S.
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For an irreducible representation π on the definite quaternion algebra D, π∞ as
a finite-dimensional representation of D×

∞
is equivalent to |det|r ⊗ ρn , where ρn is

the n-th symmetric tensor product. It corresponds to the discrete series

σ(µ1, µ2) of GL2(R) with µ1(x)= |x |r+n+ 1
2 and µ2(x)= |x |r−

1
2 sgn(x)n.

Globally, π corresponds to a cuspidal newform f that is also a Hecke eigenform of
weight k = n+ 2.

Take a representation 5 of U(ζ ) in this way: First pick an irreducible represen-
tation λ ·π on A×K · D

×

A satisfying λ|A× = χπ , where χπ is the central character of
π . Then 5= (λ ·π)|U (ζ )(A) gives an irreducible representation on U(ζ ). For our
later application, the cusp form f that π corresponds to comes from an elliptic
curve. So f has weight k = 2. Then 5∞ must be one-dimensional. In this case,
the pullback formula will have a simple form. So in this paper, we always assume
5 satisfies this condition.

Define an embedding

e :U (Iζ )×U (ζ )→U (3, 3), (g, u) 7→ e(g, u)= Aζ
( g

u
)

A−1
ζ , (8)

where

Aζ =


1
ζ−1

−ζ−1

1
1
2

1
2

 .
Pay attention that U(ζ ) has no nontrivial parabolic subgroup. If P is the Siegel
parabolic subgroup of U(3, 3) and P is the only nontrivial parabolic subgroup of
U(Iζ ), we have the following lemma:

Lemma 2.5 [Shimura 1997]. P(F)\U (3, 3)(F)= e(P(F)\U (Iζ )(F),U (ζ )(F)).

Take fs ∈ I U (3,3)
P (η, s). Define the Eisenstein series E(g, f, s) on U(3, 3) by (7).

Theorem 2.6. Take β ∈ V5 ⊂ L2(U (ζ )(F) \U (ζ )(A)). Then the integral∫
U (ζ )(F)\U (ζ )(A)

E(e(g, u), f, s)β(u)η−1(det u) du

gives an Eisenstein series E(g, f, s) on U(Iζ ) associated to fs ∈ I U (Iζ )
P (5⊗ η, s),

and

fs(g)=
∫

U (ζ )(A)
fs(e(g, u))β(u)η−1(det u) du.

Here we understand β(u) as (5(u)β)(1).
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Proof. General results about the pullback formula at infinity are essentially discussed
in [Shimura 1997]. Here I give a proof using the adelic language. Using Lemma 2.5,

E(e(g, u), f, s)=
∑

γ∈P(F)\U (3,3)(F)

fs(γ e(g, u))

=

∑
γ1∈P(F)\U (Iζ )(F)

∑
γ2∈U (ζ )(F)

fs(e(γ1g, γ2u)),

unfold the integral:∫
U (ζ )(F)\U (ζ )(A)

E(e(g, u), f, s)β(u)η−1(det u)du

=

∫
U (ζ )(F)\U (ζ )(A)

∑
γ1∈P(F)\U (Iζ )(F)

∑
γ2∈U (ζ )(F)

fs(e(γ1g, γ2u))du

=

∫
U (ζ )(A)

∑
γ1∈P(F)\U (Iζ )(F)

fs(e(γ1g, u))β(u)η−1(det u)du

=

∑
γ1∈P(F)\U (3,1)(F)

∫
U (ζ )(A)

fs(e(γ1g, u))β(u)η−1(det u)du. (∗)

In the last step, we suppose s is in a proper range so that there are no conver-
gence problems. Then we can change the order of the integral and the summation.
Formally, (∗) looks like the Eisenstein series E(g, f, s) on U(Iζ ) defined by (5)
with

fs =

∫
U (ζ )(A)

fs(e(g, u))β(u)η−1(det u) du.

We are left to show that fs ∈ I U (Iζ )
P (5⊗ η, s). Take

p =

a ∗ ∗

v ∗

(a∗)−1

 ∈ P(A),

and also note that

e

a ∗ ∗

v ∗

(a∗)−1

 , v
=


a ∗ ∗ ∗

ζ−1vζ ∗ ∗

(a∗)−1
∗

v

 ∈ P(A)
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by the embedding formula (8). So

fs(pg)=
∫

U (ζ )(A)
fs(e(pg, u))β(u)η−1(det u) du

=

∫
U (ζ )(A)

fs(e(pg, vu))β(vu)η−1(det vu) du

=

∫
U (ζ )(A)

fs

e

a ∗ ∗

v ∗

(a∗)−1

 , v
 · e(g, u)

β(vu)η−1(det vu) du

=

∫
U (ζ )(A)

η(a det v)|a det v|
1
2+sfs(e(g, u))β(vu)η−1(det vu) du

=5⊗ η(p) fs(g)|a|
1
2+s .

This means that fs ∈ I U (Iζ )
P (5⊗ η, s). �

3. Theta functions

3A. Weil representations. Suppose V is a finite-dimensional vector space over a
field F. When F is a nonarchimedean local field, use S(V ) to denote the space of
Bruhat–Schwartz functions (locally constant compactly supported functions) on V .
If F = R or C, we first take S(V ) to be L2(V ) (but later, we may add holomorphic
conditions when needed).

Following the notation in previous sections, F is a totally real number field. Let
W be a finite-dimensional symplectic vector space over Fv with a nondegenerate
alternating form 〈 · , · 〉. The Heisenberg group H(W ) associated to W is a nontrivial
central extension of W by Fv and is defined to be a group of pairs {(w, t) | w ∈
W, t ∈ Fv} with the law of multiplication

(w1, t1)(w2, t2)=
(
w1+w2, t1+ t2+ 1

2〈w1, w2〉
)
.

Fix an additive character ψ of Fv and a complete polarization of W as W = X ⊕Y
where X and Y are maximal totally isotropic subspaces of W . Define the Schrödinger
representation ρψ of H(W ) on S(X) as follows:

ρψ(x) f (z)= f (x + z) for x ∈ X,

ρψ(y) f (z)= ψ(〈z, y〉) f (z) for y ∈ Y,

ρψ(t) f (z)= ψ(t) f (z) for t ∈ Fv.

Theorem 3.1 (Stone, von Neumann). H(W ) has a unique irreducible smooth
representation on which Fv operates via the character ψ .
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One may have seen other constructions of smooth irreducible representations
of H(W ) on which the center acts by the character ψ . However, by Theorem 3.1,
they are isomorphic to one another. In this paper, I only use (ρψ , S(X)) defined
above, which is so-called the Schrödinger model.

The symplectic group Sp(W ) has an action on H(W ) as g · (w, t)= (gw, t). By
the uniqueness theorem of Stone and von Neumann, there is an operator ωψ(g) on
S(X) that it is unique up to scalar and satisfies

ρψ(gw, t)ωψ(g)= ωψ(g)ρψ(w, t) for all (w, t) ∈ H(W ). (10)

Define the metaplectic group

S̃pψ(W )= {(g, ωψ(g)) such that (10) holds},

which fits in the following exact sequence:

1→ C×→ S̃pψ(W )
proj
−−→ Sp(W )→ 1.

The Weil representation of S̃pψ(W ) is the one obtained by projecting to the second
factor (g, ωψ(g))→ ωψ(g). Under the Schrödinger model (ρψ , S(X)), the Weil
representation can be explicitly written down:

ωψ

(
A
(At)−1

)
φ(x)= |det A|

1
2φ(x A),

ωψ

(
I B

I

)
φ(x)= ψ

( x Bx t

2

)
φ(x),

ωψ

(
I

−I

)
φ(x)= γ φ̂(x),

where φ ∈ S(X), φ̂ is the Fourier transform

φ̂(x)=
∫

Fn
v

φ(y)ψ
( n∑

i=1

xi yi

)
dy,

the Haar measure dy is chosen so that ˆ̂φ = φ(−x), and γ is an 8-th root of unity
determined by ψ .

The discussion above in the local case can mostly be generalized to the global
case. The global Schrödinger representation ρψ of H(W )(A) on S(X (A)) can be
defined, where

S(X (A))= {⊗vφv | φ∞ ∈ L2(X∞), φv ∈ S(Xv), and for a.a. v, φ̂v = φv}.
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Also we have the global Weil representation ωψ of S̃p(W )(A) on S(X (A)), and for
each place v of F , one has the following commutative diagram:

1 // C×

��

// S̃p(W )(Fv)
proj // Sp(W )(Fv) //

��

1

1 // C× // S̃p(W )(A)
proj // Sp(W )(A) // 1

3B. Dual reductive pair.

Definition. A dual reductive pair is a pair of subgroups (G,G ′) of the symplectic
group Sp(W ) such that

(1) G is the centralizer of G ′ in Sp(W ) and vice versa, and

(2) the actions of G and G ′ are completely reducible on W . (An action is called
completely reducible if every invariant subspace has an invariant complement.)

Obviously this definition can be applied locally or globally.
In this paper, the types of reductive pairs used are the following: K is again an

imaginary quadratic extension of F , (V1, ( · , · )1) is a skew-Hermitian space over
K , and (V2, ( · , · )2) is a Hermitian space over K . Take W = V1⊗ V2, and on W
define an alternating form 1

2 trK/F ( · , · )1⊗ ( · , · )2. Then the unitary groups U(V1)

and U(V2) form a dual reductive pair in Sp(W ). We have the embedding

e :U (V1)×U (V2)→ Sp(W ), (g1, g2) · (v1⊗ v2) 7→= v1g1⊗ g−1
2 v2. (11)

In this paper, we use e to denote the embeddings of unitary groups into symplectic
groups, and use e to denote the embeddings of the same type of groups, such as the
embedding of one unitary group into another unitary group, or the embedding of
one symplectic group into another symplectic group.

Splittings. For a fixed Weil representation g→ ω(g) (for example, the Weil repre-
sentation ωψ defined through the Schrödinger model), we can define c(g1, g2) so
that

ω(g1)ω(g2)= c(g1, g2)ω(g1g2).

Then c : Sp(W )× Sp(W )→ C× is a 2-cocycle whose class is in the cohomology
group H 2(Sp(W ),C×). When the additive character ψ of F and one maximal
isotropic subspace of W are fixed, c is determined using the Leray invariant. The
following proposition claims that under certain condition, c could be a coboundary.
Returning to the dual reductive pair (U (V1),U (V2))) of Sp(W ), we have this:

Proposition 3.2 [Harris et al. 1996]. S̃p(W ) splits over U(Vi ) compatibly with re-
spect to rational points for i = 1, 2. In particular, there is a splitting homomorphism
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si :U (Vi )(A)→ S̃p(W )(A) such that we have the commutative diagram

S̃p(W )

proj
��

U (Vi )

si
::

ei // Sp(W ),

where ei is the embedding of U(Vi ) into Sp(W ), which is the restriction of e defined
in (11). Further, si (U (Vi )(F))⊂ S̃p(W )(F).

If dimK V2 = m, we choose a character χV2 of K× such that χV2 |F× = ε
m
K/F ,

where εK/F is the quadratic character associated to the extension K/F . This choice
determines a lifting s1 : U (V1) → S̃p(W ), which can be explicitly formulated.
Notice that two choices χ and χ ′ of χV2 differ by a character µ of K×, namely
χ = µχ ′ and µ|F× = 1. Then µ defines a character µ′ on K 1 by µ′(x/x)= µ(x),
with x ∈ K×, and we have:

Lemma 3.3 [Harris et al. 1996]. s1,χ = (µ
′
◦ det) · s1,χ ′

Doubling method. From the symplectic space W = V1⊗ V2, we can create a new
symplectic space W, which is essentially two copies of W , in this way: Take
W− = V−1 ⊗ V2. As a vector space, V−1 is the same as V1, but the skew-Hermitian
form defined on it is −( · , · )1. To W=W ⊕W−, we have one dual reductive paier
(U (V1⊕ V−1 ),U (V2)). We have the following commutative diagram:

U (V1⊕ V−1 )
e1 // Sp(W ⊕W−)= Sp(W)

U (V1)×U (V1)

e

OO

e1×e1 // Sp(W )×Sp(W )

e

OO

U (V1)

4

OO

e1 // Sp(W )

4

OO

By Proposition 3.2, S̃p(W) splits over each of the unitary groups in the diagram
above. We want to determine the compatibility among the splittings. The Weil
representation of S̃p(W) determines an isomorphism

S̃p(W)' Sp(W)×C×.

Group multiplications on the right hand side are described by the cocycle c(g1, g2):

(g1, c1)(g2, c2)= (g1g2, c(g1, g2)c1c2).
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The inverse image of e(Sp(W )× 1) in S̃p(W ⊕W−) is isomorphic to S̃p(W ). We
choose a lift ẽ of e so that

ẽ : S̃p(W )× S̃p(W )→ S̃p(W ⊕W−)

restricted to the C×-component is

C××C×→ C×, (c1, c2) 7→ c1c2.

Since (U (V1⊕ V−1 ),U (V2)) is a dual reductive pair of Sp(W), and dimK V2 = m,
choose χ such that χ |A× = εm

K/F . We can obtain an explicit homomorphism

sχ :U (V1⊕ V−1 )→ S̃p(W),

so that

U (V1⊕ V−1 )
sχ // S̃p(W)

U (V1)×U (V1)

e

OO

s1,χ×s1,χ,− // S̃p(W )× S̃p(W )

ẽ

OO

Lemma 3.4 [Harris et al. 1996]. In the commutative diagram above,

sχ |U (V1)×1 = s1,χ and s1,χ,− = (χ
−1
◦ det) · s1,χ .

Weil representations on dual reductive pairs. Let W = X ⊕ Y be the complete
polarization. Then W naturally has the polarization W = (X ⊕ X)⊕ (Y ⊕ Y ).
Now take the Weil representation ωψ of S̃p(W) constructed from the standard
Schrödinger model associated to this polarization. Fix a pair of characters χn

and χm of K× with χn|A× = ε
n
K/F and χm |A× = ε

m
K/F , where n = dimK V1 and

m = dimK V2. These characters determine the splitting homomorphisms

sχm :U (V1⊕ V−1 )→ S̃p(W),

s1,χm :U (V1)→ S̃p(W ),

s2,χm :U (V2)→ S̃p(W ).

Define the representation of U(V1⊕V−1 ) to be ωχm = ωψ ◦ sχm ; the representations
ω1,χm and ω2,χn of U(V1) and U(V2) can be defined similarly.

There is another polarization of W that we are also interested in. The skew-
Hermitian space V1 ⊕ V−1 has the decomposition V1 ⊕ V−1 = Vd ⊕ V d where
Vd = {(x, x) | x ∈ V1} and V d

= {(x,−x) | x ∈ V1}. They are maximal isotropic
subspaces. Thus W = Vd ⊗ V2⊕ V d

⊗ V2 =Wd ⊕Wd is a complete polarization.
We abuse the notation and still use ωψ to denote the Weil representation defined
from this polarization, since one can easily distinguish representations attached to
two polarizations from the context. First, let us write down the Weil representation
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ωχm of U(V1 ⊕ V−1 ) on S(Wd), which we are going to use in later calculations.
By the Witt decomposition V1 ⊕ V−1 = Vd ⊕ V d ,

( A
(A∗)−1

)
∈ U (V1 ⊕ V−1 ) for

A ∈ GL(Vd), and
(

1 B
1

)
∈U (V1⊕ V−1 ) if B = B∗. Given φ(x) ∈ S(Vd ⊗ V2), we

have

ωχm

(
A
(A∗)−1

)
φ(x)= χm(det A)|det A|m/2K φ(At x),

ωχm

(
1 B

1

)
φ(x)= ψ(x∗Bx)φ(x),

ωχm

(
1

−1

)
φ(x)= φ̂(x).

(12)

Proposition 3.5. (1) Under the homomorphism ẽ : S̃p(W )× S̃p(W )→ S̃p(W),
we have ωψ ◦ ẽ= ωψ ⊗ ω̌ψ , where ω̌ψ is the contragredient of ωψ .

(2) As the representation of U(V1)×U (V1), we have ωχm ◦e'ω1,χm⊗(χm◦ω̌1,χm ).

(3) The representation ωχm ◦ e ◦4 of U(V1) is isomorphic to the twist by χm of the
linear action of U(V1) on S(Wd), that is, for φ ∈ S(Wd) and x ∈Wd ,

ωχm (e(g, g))φ(x)= χm(det g) ·φ(xg).

Using two polarizations of W, two Weil representations of U(V1 ⊕ V−1 ) are
defined above. An isometry between the two representation spaces S((X ⊕ X)(A))
and S(Wd(A)) can be given so that it intertwines the two representations on the
spaces. Let

δψ : S((X ⊕ X)(A))→ S(Wd(A))

be the intertwining isometry. Identify Wd with W via the map (w,−w)→ w and
write w ∈W as w = (x, y) with respect to the polarization W = X ⊕ Y . Then for
φ ∈ S((X ⊕ X)(A)), one has

δψ(φ)(w)=

∫
X (A)

ψ(2〈u, y〉)φ(u+ x, u− x) du, (13)

where 〈 · , · 〉 is the alternating pair on W . The map δψ intertwines the action of
S̃p(W) on those two spaces. In particular, if φ = φ1⊗φ2 for φ1, φ2 ∈ S(X (A)),

δψ(φ1⊗φ2)(0)= (φ1, φ2),

where ( · , · ) is the Hermitian inner product in the Hilbert space L2(X (A)), and

ωχm (i(g1, g2))δψ(φ1⊗φ2)= δψ(ω1,χm (g1)φ1⊗χm(det g2)ω̌1,χm (g2)φ2).
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3C. Theta functions and applications. In this section, I will recall some facts
about theta functions that are used in calculations of Fourier–Jacobi coefficients of
Eisenstein series. More discussions about arithmetic properties of theta functions
will be left to Appendix B.

Introduction. Recall W has a complete polarization W = X ⊕ Y . On S(X (A)),
there is a distribution θ defined by

θ(φ)=
∑

l∈X (F)

φ(l).

It can be proved that for each φ∈ S(X (A)), the sum on the right converges absolutely.
Let the Jacobi group J (W ) be the semidirect product of H(W ) and Sp(W ). Put
J̃ (W )(A)= H(W )(A) · S̃p(W )(A). Use g̃ ·φ to represent the Weil representation of
g̃ ∈ S̃p(W )(A) on φ. So for each φ ∈ S(X (A)), the theta function θφ on J̃ (W )(A)

is defined as
θφ((w, t)g̃)=

∑
l∈X (F)

ρψ(w, t)(g̃ ·φ)(l).

It is J (W )(F)-invariant.
When χm is chosen, the splitting s1,χm : U (V1)→ S̃p(W ) is fixed as stated in

Proposition 3.2. Let

ω(g1, g2)φ(x)= ω1,χm (g1)φ(g−1
2 x) (14)

for g1 ∈U (V1) and g2 ∈U (V2). Thus θφ can also be regarded as a function on the
dual reductive pair (U (V1),U (V2)), and

θφ(g1, g2)= θ(ω(g1, g2)φ). (15)

Theta liftings. From now on, assume that dimK V1 = 2, dimK V2 = 1 and assume
(V1, ( · , · )1) is an anisotropic skew-Hermitian space. This is exactly the situation
that one will see in next sections.

Let 5 be a cuspidal representation contained in L2(U (V1)(F) \U (V1)(A)). For
convenience, given a reductive group G over F , we use [G] to denote the quotient
G(F)\G(A). For each smooth β ∈ V5, where V5 is the representation space of 5,
the function

θ
β
φ (g2)=

∫
[U (V1)]

θφ(g1, g2)β(g1) dg1

is well-defined, where θφ(g1, g2) is given in (15). Actually, θβφ determines a slowly
increasing function on [U (V2)]. It is expected that θβφ (g2) is nonzero and generates
an irreducible automorphic representation on U(V2). So θβφ defines a theta lifting
from U(V1) to U(V2).
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By (11), e(g1, g2) · (v1⊗ v2)= v1g1⊗ g−1
2 v2. So

θ
β
φ (g2)= χ5(g2)

∫
[U (V1)]

θφ(g1, 1)β(g1) dg1, (16)

where χ5 is the central character of 5. Whether θβφ is zero or not only depends on
the scalar

∫
[U (V1)]

θφ(g1, 1)β(g1) dg1. In fact, |
∫
[U (V1)]

θφ(g1, 1)β(g1) dg1|
2 can be

transformed into the Rallis inner product using the Siegel–Weil formula. I am going
to introduce the Siegel–Weil formula in the following and show its application in
the calculation of |

∫
[U (V1)]

θφ(g1, 1)β(g1)dg1|
2.

The Siegel–Weil formula. The Siegel–Weil formula on unitary groups relates the
value of a Siegel–Eisenstein series to the integral of a theta function. We temporar-
ily return to the general case. Consider the reductive pair (U (n, n),U (V )) with
dimK V = m. Use S(V n(A)) to denote the space of the Weil representation ωψ .
Here we take S(V n

∞
) to be the subspace of L2(V n

∞
) called the Fock space, that is,

S(V n
∞
)=

{
φ : V n

∞
→ C

∣∣∣∣ φ(v1, . . . , vn)ψ

(
i

n∑
i=1

|vi |
2
)

is antiholomorphic as

a function of vi for vi ∈ V∞

}
.

Fix χm and χ2n such that the Weil representation on the reductive pair can be
defined. For φ ∈ S(V n(A)), g ∈U (n, n)(A) and u ∈U (V )(A), define such a theta
integral:

I (g, φ)=
∫
[U (V )]

θφ(g, u) du.

On the other hand, let P′ be the Siegel parabolic subgroup of U(n, n) and
K′ be the maximal open compact subgroup. So U(n, n)(A) = P′(A)K′(A). For
g= pk with p=

( A ∗

(A∗)−1

)
∈P′(A) and k ∈K′(A), put |a(g)|K = |det A|K . Given

φ ∈ S(V n(A)), let
fφ,s(g)= |a(g)|

s−s0
K ω(g, 1)φ(0), (17)

where s0 = (m − n)/2. Then fφ,s ∈ I U (n,n)
P′ (χm, s). The Siegel–Eisenstein series

can be defined as

E(g, fφ,s)=
∑

γ∈P′(F)\U (n,n)(F)

fφ,s(γ g).

It has been proved in many cases that E(g, fφ,s0)= I (g, φ) if E(g, fφ,s) is holo-
morphic at s = s0 and I (g, φ) is absolutely convergent. The case we are interested
in is when n = 2 and m = 1. By a result of Weil [1965], I (g, φ) is absolutely
convergent if V is anisotropic. So it is automatically satisfied if dimK V = 1.
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Theorem 3.6. When n = 2 and m = 1, E(g, fφ,s) is holomorphic at s =− 1
2 for all

φ ∈ S(V n(A)), and

E(g, fφ,s)|s=− 1
2
= 2I (g, φ).

For the reductive pair (Spn,O(V )) when V is an anisotropic F-vector space, the
Siegel–Weil formula has been proved by Kudla and Rallis [1988]. The proof of
Theorem 3.6 is very similar to theirs, and is found in Appendix A. Let us return to
the theta lifting question. With the Siegel–Weil formula, we are ready to calculate
|
∫
[U (V1)]

θφ(g, 1)β(g) dg|2. According to (16), we have

∣∣∣∫
[U (V1)]

θφ(g, 1)β(g) dg
∣∣∣2 = (θβφ , θβφ ), (18)

where (θβφ , θ
β
φ )=

∫
[U (1)] θ

β
φ (u)θ

β
φ (u) du.

Proposition 3.7. We have

(θ
β
φ , θ

β
φ )=

1
2

∫
U (V1)(A)

fδψ (φ⊗φ),s(e(g, 1))〈5(g)β, β〉 dg|s=− 1
2
,

where 〈5(g)β, β〉 =
∫
[U (V1)]

β(g′g)β(g′) dg′ is the matrix coefficient of the repre-
sentation 5.

Proof. First,

(θ
β
φ , θ

β
φ )=

∫
[U (1)]

∫
[U (V1)]

θφ(g, u)β(g)
∫
[U (V1)]

θφ(g′, u)β(g′) dg dg′ du

=

∫
[U (V1)×U (V1)]

β(g)β(g′)
(∫
[U (1)]

θφ(g, u)θφ(g′, u) du
)

dg dg′.

Notice that

θφ(g, u)θφ(g′, u)= χ−1
1 (det g′)θδψ (φ⊗φ)(e(g, g′), u),

where δψ is defined by (13), and e(g, g′) ∈ U (V1 ⊕ V−1 )(A) ' U (2, 2)(A). So
θδψ (φ×φ) is a theta function of the reductive pair (U (2, 2),U (1)). Applying Theo-
rem 3.6, we have∫

[U (1)]
θφ(g, u)θφ(g′, u) du = χ−1

1 (det g′)
∫
[U (1)]

θδψ (φ⊗φ)(e(g, g′), u) du

=
1
2χ
−1
1 (det g′)E(e(g, g′), fδψ (φ⊗φ),s)|s=− 1

2
.
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Unfolding the Eisenstein series, we have∫
[U (V1)×U (V1)]

β(g)β(g′)χ−1
1 (det g′)E(e(g, g′), fδψ (φ×φ),s) dg dg′

=

∫
U (V1(A))

fδψ (φ×φ),s(i(g, 1))〈5(g)β, β〉 dg. �

4. Fourier–Jacobi coefficients of Eisenstein series

In Sections 2A and 2B, we first define the unitary group U(Iζ ) for

Iζ =

 0 0 1
0 ζ 0
−1 0 0


with ζ ∈ GL2(K ) such that ζ = −ζ ∗ and det ζ /∈ NK/F (K×), and then define an
Eisenstein series E(g, f, s) on U(Iζ ). In this section, we are going to use the
pullback formula introduced in Section 2C (refer to Theorem 2.6) to calculate the
Fourier–Jacobi coefficients of E(g, f, s).

4A. Fourier–Jacobi coefficients of Siegel–Eisenstein series on U(3, 3). Recall
that

U(3, 3)=
{

g ∈ GL6(K )
∣∣∣∣ g
(

I3

−I3

)
g∗ =

(
I3

−I3

)}
.

In Section 2B, we define a Siegel–Eisenstein series as follows: Take f∈ I U (3,3)
P (η, s)

and define
E(g, f, s)=

∑
γ∈P(F)\U (3,3)(F)

fs(γ g).

In this section, we will define the Fourier–Jacobi coefficients of this Eisenstein
series, and show that if the holomorphic section f is chosen properly, the Fourier–
Jacobi coefficient is a product of a theta function and a Siegel–Eisenstein series on
U(2, 2).

Let H = {(x, y, t) | x, y ∈ K 2, t ∈ F} ⊂U (3, 3), where

(x, y, t)=


1 x t + 1

2(xy∗− yx∗) y
I2 y∗ 02

1
−x∗ I2

 .
Notice that

(x1, y1, t1)·(x2, y2, t2)=
(
x1+x2, y1+y2, t1+t2+ 1

2(x1 y∗2+y2x∗1 )−
1
2(x2 y∗1−y1x∗2 )

)
.
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So if we take Wd = {(x, 0, 0)} and Wd
= {(0, y, 0)}, then W = Wd ⊕Wd is a

symplectic space with the alternating pair

〈(x1, y1), (x2, y2)〉 = x1 y∗2 + y2x∗1 − x2 y∗1 − y1x∗2 ,

and Wd and Wd are two isotropic subspaces. By the definition of Heisenberg groups
in Section 3A, H is a Heisenberg group associated to W, and

T = {(0, 0, t), t ∈ F}

is the center of H . There is another subgroup of U(3, 3):

U (Wd ⊕Wd)=

{(
1

A B
1

C D

) ∣∣∣∣ (A B
C D

)
∈U (2, 2)

}
'U (2, 2). (19)

The action of U(Wd ⊕Wd) on H is(
A B
C D

)
· (x, y, t)=

(
A B
C D

)−1

(x, y, t)
(

A B
C D

)
= (x A+ yC, x B+ y D, t).

Denote by ψQ the additive character of Q \AQ with

ψQ(x∞)= exp(2π
√
−1x∞) for x∞ ∈ R.

For m ∈ F , define an additive character ψm (later in this paper, we may simply
denote it by ψ) of F \A by

ψm(x)= ψA(TrF/Q(mx)) for x ∈ A. (20)

Define the Fourier–Jacobi coefficient of the Eisenstein series E( · , f, s) associated
to ψ as follows:

Eψ(g, f, s)=
∫
[T ]

E(tg, f, s)ψ(−t) dt for g ∈U (3, 3)(A). (21)

So E admits the Fourier–Jacobi expansion

E(g, f, s)=
∑
m∈F

Eψm (g, f, s).

We can regard Eψ as a function on the semidirect product of H and U(2, 2), denoted
by JH . Thus Eψ(hg, f, s) ∈ C∞ψ ([JH ]), where the subindex ψ means that the left
action of T on the functions is given by ψ .

Lemma 4.1. (1) Let

ξ0 =

( 0 1
I2

−1 0
I2

)
.

Then U(3, 3) = PJH t Pξ0 JH , where P is the Siegel parabolic subgroup
of U(3, 3).
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(2) P\Pξ0 JH = ξ0 ·W
d
\H ·P′ \U (2, 2)=w3 ·Wd \H ·w2 ·P

′
\U (2, 2), where

P′ is the Siegel parabolic subgroup of U(2, 2) and wn =
( In
−In

)
∈U (n, n).

Applying this lemma to Eψ(hg, f, s), we have

Eψ(hg, f, s)=
∫
[T ]
ψ(−t)

∑
γ∈P(F)\U (3,3)(F)

fs(γ thg) dt

=

∫
[T ]
ψ(−t)

( ∑
γ∈P(F)\P(F)JH (F)

+

∑
γ∈P\P(F)ξ0 JH (F)

fs(γ thg)
)

dt

=

∫
[T ]
ψ(−t)

∑
γ∈w3·Wd (F)\H(F)·w2·P′(F)\U (2,2)(F)

fs(γ thg) dt,

(22)
because

∫
[T ] ψ(−t)

∑
γ∈P(F)\P(F)JH (F) fs(γ thg) dt = 0.

Pick a character χ of K× such that χ |A× = εK/F and χ∞(z)= |z|/z for z ∈ K×
∞

.
We defined a Weil representation ωχ of U(2, 2) on S(Wd) by (12). Here what we
actually use is a bit different from the conventional one. The difference is that
instead of taking ωχ (w2)φ(x)= φ̂(x) we take

ωχ

((
1
−1

−1
1

))
φ(x)= φ̂(x).

Fix such an ωχ ; we are going to prove that if fs is chosen properly, then∫
T (A)

fs(w3t (0, y, 0)w2g′)ψ(−t) dt = cf,ψωχ (g′)φf(y)Rs(g′), (23)

where Rs(g′) ∈ I U (2,2)
P′ (ηχ−1, s), cf,ψ is a nonzero constant and φf ∈ S(Wd(A)).

Since the integral (23) can be decomposed into the product of local integrals, we
can do the calculations place by place. The results are stated in Theorem 4.9 at the
end of this section. Take a subgroup K(A) =

∏
Kv of U(3, 3)(A), such that K∞

is a maximal compact subgroup of U(3, 3)∞, and Kv is a maximal open compact
subgroup of U(3, 3)v. Let f = ⊗′fv, with f∞ being right K∞-finite and fv being
spherical for almost all finite places v. By spherical, I mean that fv is Kv-invariant.
In the following, the computations are purely local, so we omit the subindex v.

Case: fs is spherical and χ is unramified. In this case, we make these assumptions:

Assumption 4.2. (1). Assume f is normalized, so f(1)= 1.

(2). Assume Wd ∩K= O2
K . The dual of Wd ∩K with respect to ψ(xy∗+ yx∗) is

defined as

(Wd ∩K)∨ = {(0, y, 0) ∈Wd
| ψ(xy∗+ yx∗)= 1 for all (x, 0, 0) ∈Wd ∩K}.

We assume (Wd ∩K)∨ is also O2
K and (Wd ∩K)∨ =Wd

∩K.
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Lemma 4.3.
∫

T fs(w3(0, y, t)w2)ψ(−t) dt = 8O2
K
(y), where 8O2

K
is the charac-

teristic function supported on O2
K .

Proof. Take

x =
( 1
−x∗ I2

1 x
I2

)
∈ P

and notice that xw3 = w3(x, 0, 0). So,

xw3t (0, y, 0)w2 = w3(0, y, t + xy∗+ yx∗)(x, 0, 0)w2.

Then∫
T

fs(w3(0, y, t)w2)ψ(−t) dt

=

∫
T

fs(xw3(0, y, t)w2)ψ(−t) dt

=

∫
T

fs(w3(0, y, t + xy∗+ yx∗)(x, 0, 0)w2)ψ(−t) dt

= ψ(xy∗+ yx∗)
∫

T
fs(w3(0, y, t)(x, 0, 0)w2)ψ(−t) dt.

For (0, y, 0) ∈Wd
∩K,∫

T
fs(w3(0, y, t)w2)ψ(−t) dt =

∫
T

fs(w3t)ψ(−t) dt = 1.

If (0, y, 0) /∈Wd
∩K, there must exist (x, 0, 0)∈Wd∩K, such thatψ(xy∗+yx∗) 6=1.

So,∫
T

fs(w3(0, y, t)w2)ψ(−t) dt

=

∫
T

fs

((
1
−x∗ I2

1 x
I2

)
w3(0, y, t)w2

)
ψ(−t) dt

= ψ(xy∗+ yx∗)
∫

T
fs(w3(0, y, t)(x, 0, 0)w2)ψ(−t) dt

= ψ(xy∗+ yx∗)
∫

T
fs(w3(0, y, t))ψ(−t) dt.

Then
∫

T fs(w3(0, y, t)w2)ψ(−t)dt = 0, if (0, y, 0) /∈Wd
∩K. �

We have the Iwasawa decomposition U(2, 2) = P′K′, where P′ is the Siegel
parabolic subgroup of U(2, 2), K′ is the maximal open compact subgroup and
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K′ = K∩U (2, 2). Take g′ = p′k ′ =
( a b

(a∗)−1

)
k ′ ∈U (2, 2), where k ′ ∈ K′. Then∫

T
fs

(
w3(0, y, t)w2

(
a b
(a∗)−1

)
k ′
)
ψ(−t) dt

=

∫
T

fs

(
w3(0, y, t)

(
(a∗)−1

−b a

))
ψ(−t) dt

=

∫
T

fs

((
a b
(a∗)−1

)
w3(−yb, ya, t)

)
ψ(−t) dt

= η(det a)|det a|s+
3
2

∫
T

fs(w3(0, ya, t + yba∗y∗))ψ(−t) dt

= η(det a)|det a|s+
3
2ψ(yba∗y∗)8O2

K
(ya)

= χ(det a)|det a|
1
28O2

K
(ya)ψ(yba∗y∗)ηχ−1(det a)|det a|s+1

= ωχ (p′)8O2
K
(y)Rs(g′).

Notice that ωχ (k ′)8O2
K
=8O2

K
. So∫

T
fs(w3(0, y, t)w2g′)ψ(−t) dt = ωχ (g′)8O2

K
(y)Rs(g′)

with normalized spherical Rs ∈ I U (2,2)
P′ (ηχ−1, s).

Archimedean places. Let U(n)= {u ∈ GLn(C) | uu∗ = In} be the unitary group of
degree n at an archimedean place. Take such an embedding:

e :U (3)×U (3) ↪→U (3, 3),

(u, v) 7→ e(u, v)=

(
−

i
2 I3

i
2 I3

1
2 I3

1
2 I3

)(
u
v

)(
i I3 I3

−i I3 I3

)
.

The Hermitian domain of a unitary group is defined in (2). Choose an initial point
in the Hermitian domain of U(3, 3) to be i = i I3, where we fix i =

√
−1 once and

for all. From Proposition 2.1, one choice of a maximal compact subgroup at an
archimedean place for U(3, 3) is K= {g ∈U (3, 3) | gi = i}. Notice that the image
of the embedding e defined above is exactly K. So K

e
'U (3)×U (3). Recall that

U(2, 2), which is isomorphic to U(Wd ⊕Wd), is naturally embedded into U(3, 3)
(refer to (19)). So we can choose compatibly the maximal compact subgroup K′ of
U(2, 2) by K′ = K∩U (2, 2), and obviously K′ 'U (2)×U (2). The initial point
i ′= i I2 of the Hermitian domain of U(2, 2) is invariant under the action of elements
in K′.

At archimedean places, take a weight (0, k) section fk such that

fk(g)= j (g, i)−k,
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where j is the automorphy factor defined in (3). Assume η satisfies η(z)= zl ′/zl ;
then l ′ + l = k, and fk ∈ I (η, l − 3/2). Recall that [F : Q] = r . Then for
m ∈ F , let m∞ = (m1,m2, . . . ,mr ) ∈ F∞ ' Rr . Given z = (z1, z2, . . . , zr ) ∈ F∞,
ψ(z)= exp(2π im1z1) exp(2π im2z2) · · · exp(2π imr zr ).

Proposition 4.4. Take fk and ψ as above. We have∫
T
ψ(−t)fk(w3(0, y, t)w2g′) dt = cψωχ (g′)φfk (y)Rk−1(g′), (24)

where g′ ∈U (2, 2), φfk (y)= ψ(iyy∗), χ satisfies χ(z)= |z|/z for z ∈ K×
∞

, and

cψ =
(−2π i)kr (m1m2 · · ·mr )

k−1e−2π(m1+m2+···+mr )

[(k− 1)!]r
.

The function Rk−1 satisfies Rk−1(g′)= j (g′, i ′)−k+1. As an induced representation
on U(2, 2), it is in I (ηχ−1, l − 3

2) and is a weight (0, k− 1) section.

Proof. For simplicity, we prove this proposition under the assumption that r = 1,
from which the general result should be easily derived. So regard m as a real number
first.

Step 1. Let g′ = I4. We have∫
R

ψ(−t)fk(w3(0, y, t)w2) dt = (−1)k
∫

R

ψ(−t)(t + i + iyy∗)−k dt

= (−1)kψ(iyy∗+ i)
∫

R+i+iyy∗
ψ(−t)t−k dt

=
(−2π i)kmk−1e−2πm

(k− 1)!
ψ(iyy∗).

This calculation hints that we should take φfk to be ψ(iyy∗).

Step 2. Replace g′ by

p′g′ =
(

a
(a∗)−1

)(
I2 b

I2

)
g′.

If we assume that∫
R

ψ(−t)fk(w3(0, y, t)w2g′) dt =
(−2π i)kmk−1e−2πm

(k− 1)!
ψ(iyy∗)Rk−1(g′),
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then∫
R

ψ(−t)fk(w3(0, y, t)w2 p′g′) dt

= (det a)kψ(yaba∗y∗)
∫

R

ψ(−t)fk(w3(0, ya, t)w2g′) dt

=
(−2π i)kmk−1e−2πm

(k− 1)!
(det a)kψ(yaba∗y∗)ψ(iyaa∗y∗)Rk−1(g′)

=
(−2π i)kmk−1e−2πm

(k− 1)!
ωχ (p′g′)φfk (y)Rk−1(p′g′).

Step 3. Take g′ = w2n′ = w2
( I2 b

I2

)
. Note that we take

ωχ

(( 1
−1

−1
1

))
φ(x)= φ̂(x),

so one easily checks that at archimedean places, ωχ (w2)φ(x)=−φ̂(x). Then,∫
R

ψ(−t)fk(w3(0, y, t)w2w2n′ dt

= (−1)k
∫

R

ψ(−t) det
(

t + i −y
−y∗ b+ i

)−k

dt

= (−1)k
∫

R

ψ(−t) det(b+ i)−k(t + i − y(b+ i)−1 y∗)−k dt

=
(−2π i)kmk−1e−2πm

(k− 1)!
det(b+ i)−kψ(−y(b+ i)−1 y∗)

=
(−2π i)kmk−1e−2πm

(k− 1)!
ωχ (w2n′)φfk (y)Rk−1(w2n′).

Here we use that the Fourier transform of ψ(y(i + b)y∗) is det(1− ib)−1ψ(y(−i−
b)−1 y∗).

Step 4. Let g′ = w2n′1w2n′2, where n′1 =
( I2 b1

I2

)
and n′2 =

( I2 b2
I2

)
. Both b1 and b2

are 2× 2 Hermitian matrices. We have a decomposition

w2n′1w2n′2 = w2

(
I2 b1

I2

) 1√
b2

2+1
−b2√
b2

2+1
√

b2
2+ 1

 e

(
−b2+ i
√

b2
2+ 1

,
−b2− i
√

b2
2+ 1

)

=

(√
b2

2+ 1
1/
√

b2
2+ 1

)
w2

(
I2 −b2+

√

b2
2+ 1b1

√

b2
2+ 1

I2

)

· e

(
−b2+ i
√

b2
2+ 1

,
−b2− i
√

b2
2+ 1

)
.
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From Steps 2 and 3, one can see that when g′ ∈P′w2N′ ⊂U (2, 2), where N′ is the
unipotent radical of P′, the equality (24) holds. Then let us prove that when taking
g′ = w2n′1w2n′2, the equality still holds. We have

fk(w3(0, y, t)w2w2n1w2n2)= fk(w3(0, y, t)w2 p′w2n′) det

(
b2+ i
√

b2
2+ 1

)−k

,

where

p′ =

(√
b2

2+ 1
1/
√

b2
2+ 1

)
and n′ =

(
I2 −b2+

√

b2
2+ 1b1

√

b2
2+ 1

I2

)
.

So∫
R

ψ(−t)fk(w3(0, y, t)w2w2n1w2n2) dt

= det

(
b2+ i
√

b2
2+ 1

)−k ∫
R

ψ(−t)fk(w3(0, y, t)w2 p′w2n′) dt

=
(−2π i)kmk−1e−2πm

(k− 1)!
det
(

b2+ i
√

b2
2+ 1

)−k

ωχ (p′w2n′)φfk (y)Rk−1(p′w2n′)

=
(−2π i)kmk−1e−2πm

(k− 1)!
det
(

b2+ i
√

b2
2+ 1

)−1

ωχ (p′w2n′)φfk (y)Rk−1(w2n1w2n2).

Note that

ωχ (p′w2n′)φfk (y)=−
1

det
(√

b2
2+ 1

) 1

det
( b2i+1

b2
2+1
− b1i

)ψ(y
( b2−i

b2
2+1
− b1

)−1
y∗
)
.

Also,

ωχ (w2n′1w2n′2)φfk (y)

=
1

det(1− b2i)
1

det((1− b2i)−1− b1i)
ψ(y((b2+ i)−1

− b1)
−1 y∗).

By comparison,∫
R

ψ(−t)fk(w3(0, y, t)w2g′) dt =
(−2π i)kmk−1e−2πm

(k− 1)!
ωχ (g′)φfk (y)Rk−1(g′)

for g′ = w2n′1w2n′2.

Step 5. It is known that elements in U(2, 2) can be generated by w2 and p′ ∈ P′,
where P′ is the Siegel parabolic subgroup of U(2, 2). The following lemma shows
how these elements generate U(2, 2).

Lemma 4.5. U(2, 2)= P′ ∪P′w2N′ ∪P′w2N′w2N′.
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The proof is straightforward, so let me skip it. In Steps 1 to 4, we have verified
that∫

R

ψ(−t)fk(w3(0, y, t)w2g′) dt = (−2π i)kmk−1e−2πm

(k−1)!
ωχ (g′)φfk (y)Rk−1(g′)

for g′ in each of the subsets of U(2, 2).
For each archimedean place, the computations are exactly as above as long as

we change m to the corresponding mi . Putting them together, we can prove the
proposition. �

fs is not spherical. Denote the set of places where fs is not the spherical element
in the induced representation space by S. When fs is not spherical, we make such a
choice: fs ∈ I (η, s) and fs is supported in the big cell Pw3P such that fs(w3n(b))=
8(b), where n(b) =

( I3 b
I3

)
, and b is a 3× 3 Hermitian matrix. Let b =

( t y
y∗ b′

)
,

where t ∈ F and b′ is a 2× 2 Hermitian matrix. Assume 8(b)= φ′(t)φ(y)8′(b′)
such that φ, φ′,8′ are all Bruhat–Schwartz functions. Further we make these
assumptions concerning fs and the additive character ψ :

Assumption 4.6. (1) The set S includes all the places where η or χ is ramified.
In another words, when χ or η is ramified, we should take fs supported on
the big cell, and as long as such an fs satisfies the following two assumptions,
Theorem 4.9 can be derived. However, for the sake of later computations in
Remark 4.14, we need to further assume (28).

(2) For b′ ∈ supp8′ and y ∈ suppφ, we have ψ(yb′y∗)= 1.

(3) When t ∈ suppφ′, we have ψ(t)= 1.

Remark 4.7. The assumptions above are in general quite weak. In practice, we
may first determine 8′ and φ. Because they are both compactly supported, as a
set of F , {yb′y∗ | y ∈ supp8′, b′ ∈ suppφ} must be compact. So there exists an
additive character ψ (in fact, infinitely many such characters) that is constant of
value 1 on this set. Moreover, we can even choose a universal ψ that is independent
of the conductors of η and χ . Then based on Assumption 4.6(3), one can determine
the function φ′. Then in this way, we can determine 8, and in turn fs .

Lemma 4.8. Suppose Rs is in I U (2,2)
P′ (ηχ−1, s) and is supported on the big cell

P′w2P′, such that

Rs

(
w2

(
I2 b′

I2

))
=8′(b′).

Let φfs (y)= φ̂(−y). Then∫
T
ψ(−t)fs(w3(0, y, t)w2g′) dt =

(∫
T
ψ(−t)φ′(t) dt

)
ωχ (g′)φfs (y)Rs(g′).
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Proof. In order that w3(0, y, t)w2g′ ∈ Pw3P, it must be that g′ is in P′w2P′,
which implies that Rs is supported on P′w2P′. Let g′ = w2n′(b′)= w2

( I2 b′
I2

)
for

n′(b′) ∈ N′; then∫
T
ψ(−t)fk(w3(0, y, t)w2w2n′(b′)) dt

=

∫
T
ψ(−t)8

((
t y
y∗ b′

))
dt

=

(∫
T
ψ(−t)φ′(t) dt

)
φ(y)8′(b′)

=

(∫
T
ψ(−t)φ′(t) dt

)
ωχ (w2n′(b′))φfs (y)Rs(w2n′(b′)). �

Let me summarize the local computations of the three cases above in the following
theorem. Let S be a finite set of local places, such that fk,v is not spherical if and
only if v ∈ S.

Theorem 4.9. For a Hecke character η of K and η∞(z)= z k−l/zl , take

fk ∈ I U (3,3)(A)
P(A)

(
η, l − 3

2

)
.

Assume that fk,∞(g)= j (g, i)−k , and fk,v is supported on the big cell when v ∈ S.
Choose a Hecke character χ of K so that χ∞(z)= |z|/z. Fix an additive character
ψ of F as in (20). When fk , χ and ψ satisfy Assumptions 4.2 and 4.6, we have

Eψ(hg′)= cfk ,ψθφfk
(hw−1

2 g′)E(g′, Rk−1) for h ∈ H(A), g′ ∈U (2, 2)(A),

where
cfk ,ψ = cψ

∏
v∈S

vol(suppφ′v),

cψ is given in Proposition 4.4, φfk ∈ S(Wd(A)), and Rk−1 ∈ I U (2,2)(A)
P′(A) (ηχ−1, l− 3

2).
Specifically, Rk−1,∞(g′) = j (g′, i ′)−k+1 and Rk−1,v is normalized and spherical
when v 6∈ S. Otherwise, Rk−1,v is supported on the big cell. The Siegel–Eisenstein
series E is associated to Rk−1.

Proof. Recall (22):

Eψ(hg′, fk)=

∫
[T ]
ψ(−t ′)

∑
γ∈w3·Wd (F)\H(F)·w2
·P′(F)\U (2,2)(F)

fk(γ t ′hg′) dt ′.

Let h = (x, y, t) ∈ H(A); then

fk(w3hw2g′))= fk
(
w3(x, 0, 0)(0, y, t − 1

2(xy∗+ yx∗))w2g′
)

= fk
(
w3(0, y, t − 1

2(xy∗+ yx∗))w2g′
)
.
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So we get

Eψ(hg′, fk)

=

∫
T (A)

ψ(−t ′)
∑

y0∈Wd (F)
g0∈P′(F)\U (2,2)(F)

fk(w3(0, y0, t ′)w2g0hg′) dt ′

=

∫
T (A)

ψ(−t ′)
∑

y0∈Wd (F)
g0∈P′(F)\U (2,2)(F)

fk(w3(0, y0, t ′)((x, y)g−1
0 w−1

2 , t)w2g0g′) dt ′

= cψ
∏
v∈S

∫
Tv
ψv(−t ′)fk,v(w3(0, 0, t ′)) dt ′

·

∑
y0∈Wd (F)

g0∈P′(F)\U (2,2)(F)

ωχ (((x, y)g−1
0 w−1

2 , t)g0g) φfk (y0)Rk−1(g0g′).

Notice that
∫

Tv
ψv(−t ′)fk,v(w3(0, 0, t ′)) dt ′ = vol(suppφ′v) for v ∈ S. So

Eψ(hg′, fk)= cfk ,ψθφfk
(((x, y)w−1

2 , t)g′)E(g′, Rk−1)

= cfk ,ψθφfk
(hw−1

2 g′)E(g′, Rk−1). �

4B. Fourier–Jacobi coefficients of Eisenstein series on U(3, 1). In this section,
I will define the Fourier–Jacobi coefficients of the Eisenstein series E(g, f, s)
on U(Iζ ). If this E(g, f, s) is from the pullback of a Siegel–Eisenstein series
E( · , f, s), then by applying the pullback formula (Theorem 2.6) and results about
the Fourier–Jacobi coefficients of E( · , f, s) (Theorem 4.9), we will get formulas
for the Fourier–Jacobi coefficients of E(g, f, s).

Definitions. Let P be the only nontrivial parabolic subgroup P of U(Iζ ); then the
unipotent radical of P is

N =


1 x t + xζ x∗/2

I2 ζ x∗

1

 ∣∣∣∣∣∣ t ∈ F

.
From another point of view, N can be regarded as a Heisenberg group attached to a
4-dimensional symplectic space W of F . Using conventional notation, denote1 x t + xζ x∗/2

I2 ζ x∗

1

 by (x, t);

then
(x1, t1)(x2, t2)= (x1+ x2, t1+ t2+〈x1, x2〉/2),
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where 〈 · , · 〉 represents the alternating pair on W , and

〈x1, x2〉 = x1ζ x∗2 − x2ζ x∗1 .

The degree two unitary group U(ζ )= {u | uζu∗ = ζ } is a subgroup of U(Iζ ), and
has an action on N by u · (x, t)= u−1(x, t)u = (xu, t).

Given the additive character ψ as in (20), define the Fourier–Jacobi coefficient
of E(g, f, s) as

Eψ(nu, f, s)=
∫
[T ]
ψ(−t)E(tnu, f, s) dt (25)

for u ∈U (ζ )(A) and n ∈ N (A), where T is the center of N . So Eψ ∈C∞ψ ([NU (ζ )]).

Pullback of Eψ . Recall in (8), we define an embedding e :U (Iζ )×U (ζ ) ↪→U (3, 3).
See that

e|U (ζ )×U (ζ ) :U (ζ )×U (ζ ) ↪→U (2, 2)=U (Wd ⊕Wd)⊂U (3, 3).

Also for (x, t)∈ N , we have e((x, t), I2)= (xζ/2, x, t). This implies e(N , I2)⊂ H .
Specifically, the center of N is mapped to the center of H under e, which explains
why I use T to denote both centers of H and N .

From Theorem 2.6, we know that

E(g, f, s)=
∫
[U (ζ )]

E(e(g, u), f, s)β(u)η−1(det u) du (26)

for fs(g)=
∫

U (ζ )(A) fs(e(g, u))β(u)η−1(det u) du ∈ I U (Iζ )
P (5⊗η, s), where β ∈V5.

So it is reasonable to infer that Eψ is also the pullback of Eψ . The following
proposition is easy to verify.

Proposition 4.10. If E(g, f, s) is defined by (26), then

Eψ(nu, f, s)=
∫
[U (ζ )]

Eψ(e(nu, u′), f, s)β(u′)η−1(det u′) du′.

Let us study the relation between N · U (ζ ) and H · U (2, 2) induced by the
embedding e. N is the Heisenberg group associated to the symplectic group W ,
and U(W ) = U (ζ ), while H ⊂ U (3, 3) is the Heisenberg group associated to
W =Wd +Wd , and U(W)=U (2, 2). Notice that

W
e
↪→W, x 7→

( xζ
z
, x
)
.

At the same time, we can define another embedding of W−:

W− ↪→W, x 7→
(
−

xζ
z
, x
)
.
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So, the two embeddings combine to give

W +W− −→∼ W =Wd +Wd ,

(x,−x) 7→ (xζ, 0),

(x, x) 7→ (0, x).

Since W has the polarization W = X+Y , the Weil representation of U(2, 2) can be
realized on S(X + X) or on S(Wd). Recall that we define an intertwining isometry
operator δψ between the two representations by (13) . It can be applied here with
a little revision. Take φ ∈ S(X + X), and let δψ ′(φ)(w) = δψ(φ)(wζ−1) be the
corresponding function in S(Wd). If we take φ = φ1⊗φ2 for φ1, φ2 ∈ S(X), then

ωχ (e(u1, u2))δ
′

ψ(φ1⊗φ2)= δ
′

ψ(ωχ (u1)φ1⊗χ(det u2)ω̌χ (u2)φ2).

It is straightforward to verify that

θδ′ψ (φ1⊗φ2)
(e(nu1, u2))= χ(det u2)θφ1(nu1)θφ2(u2),

where θφ2(u2)=
∑

x∈X (F) ω̌χ (u2)φ2(x). Then Proposition 4.10 and Theorem 4.9
give this:

Corollary 4.11. Assume that φfk = δ
′

ψ(φ1 ⊗ φ2), and E(g, fk) is defined as the
pullback of E( · , fk), where fk satisfies the conditions of Theorem 4.9. Then

Eψ(nu, fk)= cfk ,ψθφ1(nu)
∫
[U (ζ )]

β(u′)χη−1(det u′)E(e(u, u′), Rk−1)θφ2(u
′) du′.

Inner product of Eψ with θϕ . As we mentioned, both Eψ and θϕ for ϕ ∈ S(X) are
functions in C∞ψ ([NU (ζ )]). Let L2

ψ([NU (ζ )]) be the completion of C∞ψ ([NU (ζ )])
with respect to the inner product

〈θ, θ ′〉 =

∫
[NU (ζ )]

θ(r)θ ′(r) dr.

Treat Eψ and θϕ as elements in L2
ψ([NU (ζ )]). Let us calculate 〈Eψ , θϕ〉.

Theorem 4.12. In the setting above, we have

〈Eψ(nu, fk), θϕ(nu)〉

= cfk ,ψ(φ1, ϕ)

∫
U (ζ )(A)

Rk−1(e(u, 1)) du
∫
[U (ζ )]

β(u)θφ2(u) du,

∏
v /∈S

∫
U (ζ )v

Rk−1,v(e(u, 1)) du =
L S(ηχ−1, l − 1

2)L
S(ηχ−1, l − 3

2)

L S(ηFεK/F , 2l − 1)L S(ηF , 2l − 2)
,

where S is the set of places introduced in Theorem 4.9, and L S is the partial
L-function skipping the factors at v ∈ S.
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(I will discuss the case v ∈ S in Remark 4.14.)

Proof. We prove the theorem in three steps:

Step 1. 〈Eψ(nu, fk), θϕ(nu)〉 = cfk ,ψ(φ1, ϕ)I (Eψ), where

I (Eψ)=
∫
[U (ζ )×U (ζ )]

β(u′)χη−1(det u′)E(e(u, u′), Rk−1) θφ2(u
′) du du′.

Step 2. I (Eψ)=
∫

U (ζ )(A) Rk−1(e(u, 1)) du ·
∫
[U (ζ )] β(u)θφ2(u) du.

Step 3. We show∫
U (ζ )v

Rk−1,v(e(u, 1)) du =
Lv(ηχ−1, l − 1

2)Lv(ηχ
−1, l − 3

2)

Lv(ηFεK/F , 2l − 1)Lv(ηF , 2l − 2)

for a finite place v /∈ S.
The equation in Step 1 is straightforward from Corollary 4.11, because first for

θφ1, θϕ ∈ L2
ψ([NU (ζ )]), we have 〈θφ1, θϕ〉 = (φ1, ϕ); then

〈Eψ(nu, fk), θϕ(nu)〉

=

∫
[NU (ζ )]

cfk ,ψ

(∫
[U (ζ )]

β(u′)χη−1(det u′)

E(e(u, u′))θφ2(u
′) du′

)
θφ1(nu)θϕ(nu) dn du

= cfk ,ψ(φ1, ϕ)

∫
[U (ζ )×U (ζ )]

β(u′)χη−1(det u′)E(e(u, u′), Rk−1)θφ2(u
′) du du′

= cfk ,ψ(φ1, ϕ)I (Eψ).

To get the expression of I (Eψ) in Step 2, let us unfold E( · , Rk−1):

E(e(u, u′), Rk−1)=
∑

γ∈P′(F)\U (2,2)(F)

Rk−1(γ e(u, u′))

=

∑
γ=e(u1,u2)∈1(U (ζ ))(F)\U (ζ )(F)×U (ζ )(F)

Rk−1(γ e(u, u′)),

where 1(U (ζ )) is the image of the diagonal embedding of U(ζ ) to U(ζ )×U (ζ ).
Then,

I (Eψ)

=

∫
1(U (ζ ))(F)\U (ζ )(A)×U (ζ )(A)

β(u′)χη−1(det u′)θφ2(u
′)Rk−1(e(u, u′)) du du′

u=u′v
=

∫
U (ζ )(A)×[U (ζ )]

β(u′)χη−1(det u′)θφ2(u
′)Rk−1(e(u′v, u′)) dv du′

=

∫
U (ζ )(A)

Rk−1(e(u, 1)) du ·
∫
[U (ζ )]

β(u)θφ2(u) du.
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Now we are left with the calculation of
∫

U (ζ )(A) Rk−1(e(u, 1)) du. It can be
written as the product of local integrals:∫

U (ζ )(A)
Rk−1(e(u, 1)) du =

∏
v

∫
U (ζ )(Fv)

Rk−1,v(e(u, 1)) du.

In the following computations, we drop the subscript v if this does not cause
confusion.

First, v = ∞. Now Rk−1,∞ is defined by the automorphy factor, namely
Rk−1,∞(g′)= j (g′, i ′)−k+1, and U(ζ )(F∞) is isomorphic to copies of the compact
group U(2)(R). By Proposition 4.4, Rk−1(e(u, 1))= 1. So,∫

U (ζ )(F∞)
Rk−1,∞(e(u, 1)) du = vol(U (ζ )(F∞)).

Second, v splits in F . Then U(ζ )(Fv)'GL2(Fv). Assume Rk−1,v is normalized
and spherical. Now, K = F+F , η(a, b)= η1(a)η2(b) for (a, b)∈ K , and similarly
for χ . Since χ |A× = εK/F , we have χ1χ2 = 1. Let us take the Godement section
representation of Rk−1:

L(ηF , 2l − 1)L(ηF , 2l − 2)Rk−1(g)

= η1χ
−1
1 (det g)|det g|l−

1
2

∫
GL2(F)

8M2×4(OF )((0, X)g)η1η2(det X)|det X |2l−1 d X,

where 8M2×4(OF ) is the characteristic function of M2×4(OF ). Then

L(ηF , 2l − 1)L(ηF , 2l − 2)Rk−1(e(u, 1))

= η1χ
−1
1 (det u)|det u|l−

1
2

∫
GL2(F)

8M2×4(OF )(X, Xu)η1η2(det X)|det X |2l−1 d X.

So,

L(ηF , 2l − 1)L(ηF , 2l − 2)
∫

U (ζ )
Rk−1(e(u, 1)) du

= L(ηF , 2l − 1)L(ηF , 2l − 2)
∫

GL2(F)
Rk−1(e(u, 1)) du

=

∫
GL2(F)×GL2(F)

η1χ
−1
1 (det u)|det u|l−

1
2

8M2×4(OF )(X, Xu)η1η2(det X)|det X |2l−1 d X du

Y=Xu
=

∫
GL2

η1χ
−1
1 (det Y )|det Y |l−

1
28O2

F
(Y ) dY

·

∫
GL2

η2χ1(det X)|det X |l−
1
28O2

F
(X) d X
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which is equal to
L
(
ηχ−1, l − 1

2

)
L
(
ηχ−1, l − 3

2

)
.

Then we have∫
GL2(F)

Rk−1(e(u, 1)) du =
L(ηχ−1, l − 1

2)L(ηχ
−1, l − 3

2)

L(ηF , 2l − 1)L(ηF , 2l − 2)
.

First, Rk−1,v is normalized and spherical, and U(ζ )(Fv) is quasisplit over Fv.
So U(ζ )'U (1, 1). The embedding e of U(1, 1)×U (1, 1) to U(2, 2) is inherited
from the global definition of e|U (ζ )×U (ζ ).

Take the local Iwasawa decomposition U(1, 1) = P K = N M K , where N , M
and K are the unipotent radical, Levi part and maximal open compact subgroup,
respectively. Then K = U (1, 1)(OF ), and e(K , K ) ⊂ K′, which is the maximal
compact subgroup of U(2, 2). Let u = nmk; then du = δ−1

P (m) dn dm dk, where
δP is the modular character on P . If m =

(
α−1

α

)
, then δP(m)−1

= |α|K . Let

w13 =

( 1
1

−1
1

)
,

then∫
U (ζ )

Rk−1(e(u, 1)) du =
∫

N M
Rk−1(e(nm, 1))δ−1

P (m) dn dm

=

∫
M

∫
F

Rk−1

(
w13

( 1 x
1

1
1

)
w−1

13 e(m, 1)
)
δ−1

P (m) dx dm.

Consider such a function on U(2, 2):

R′k−1(g)=
∫

F
Rk−1

(
w13

( 1 x
1

1
1

)
g
)

dx .

We have ∫
U (ζ )

Rk−1(e(u, 1)) du =
∫

M
R′k−1(w

−1
13 e(m, 1))δ−1

P (m) dm. (27)

Recall that U(2, 2)=U (W)=U (Wd +Wd). If we have

Wd +Wd
= K e1+ K e2+ K f1+ K f2,

then a parabolic subgroup P ′ fixing both Wd and K e2 can be defined. An element
p′ ∈ P ′ looks like 

a d
b c e f

a′ b′

c′

 .
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Lemma 4.13. R′k−1 is in the space of the induced representations from P ′, so that

R′k−1(p
′gk ′)= ηχ−1(a′c)|a′|

l− 3
2

K |c|
l− 1

2
K R′k−1(g)

for p′ ∈ P ′, k ′ ∈ K′ and g ∈U (2, 2).

This lemma can be proved by direct calculations, which I will skip here. Applying
the lemma, we see R′k−1 has a Godement section representation as follows:

L(ηFεK/F , 2l − 1)
L(ηFεK/F , 2l − 2)

R′k−1(g)

= c
∫

GL2(K )
8M2×4(OK )((0, X)g)η−1χ(det X)|det X |

−l+ 3
2

K d X ·

·

∫
K×
8O4

K
((0, 0, 0, Z)g)ηχ−1(|Z |K )|Z |2l−2

K d Z ,

where the normalizing constant c satisfies

1= c
∫

GL2(K )
8M2×2(OK )(X)η

−1χ(det X)|det X |
−l+ 3

2
K d X

·

∫
K×
8OK (Z)ηχ

−1(|Z |K )|Z |2l−2
K d Z ,

R′k−1(1)=
∫

F
Rk−1

(
w13

( 1 x
1

1
1

))
dx =

L(ηFεK/F , 2l − 2)
L(ηFεK/F , 2l − 1)

.

Let g = w−1
13 e(m, 1)= w−1

13 e
((
α−1

α

)
, 1
)
. It can be verified that

R′k−1(w
−1
13 e(m, 1))

=
ηχ−1(α)|α|

l− 3
2

K

L(ηFεK/F , 2l − 1)L(ηF , 2l − 2)

∫
K×
8OK (Z)8OK (Zα)ηχ

−1(|Z |K )|Z |2l−2
K d Z .

Substituting the expression of R′k−1(w13e(m, 1)) in (27), we have∫
U (ζ )

Rk−1(e(u, 1)) du

=

∫
M

R′k−1(w
−1
13 e(m, 1))δ−1

P (m) dm

=
1

L(ηFεK/F , 2l−1)L(ηF , 2l−2)

·

∫
K××K×

ηχ−1(α)|α|
l− 1

2
K 8OK (Z)8OK (Zα)ηχ

−1(|Z |K )|Z |2l−2
K d Z dα

=
L
(
ηχ−1, l − 1

2

)
L
(
ηχ−1, l − 3

2

)
L(ηFεK/F , 2l − 1)L(ηF , 2l − 2)

. �
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Remark 4.14. In Theorem 4.12,
∫

U (ζ )(Fv)
Rk−1,v(e(u, 1)) du was not explicitly

calculated when v ∈ S, because we need more assumptions and things become
more technical. Let me put it here. When v ∈ S, Rk−1,v is supported in the big
cell associated to a characteristic function 8′ on Her2(Fv). (One can refer to the
section about nonspherical fk , especially Lemma 4.8.)

Skip the subindex v now. Fix an integral ideal c of OK so that ηχ−1(1+ c)= 1.
Then pick a totally imaginary element δ ∈ OK satisfying 1+ δ ∈ O×K . Assume that

supp8′ = Her2(F)∩ δζ−1(2I2+ 2cGL2(OK )). (28)

Define D1(c), a subset of U(ζ ), by

D1(c)=

{
u ∈U (ζ )

∣∣∣∣ u =
(

a b
c d

)
, a, d ∈ −1+δ

1−δ
+ δc, b, c ∈ δc

}
.

Lemma 4.15. Let u ∈U (ζ ). Then

e(u, 1) ∈ supp Rk−1⇐⇒ u ∈ D1(c).

Proof. First notice that for a matrix in U(2, 2),(
a b
c d

)
∈ supp Rk−1⇐⇒ c−1d ∈ supp8′.

By the definition of the embedding e in (8),

e(u, 1)=
(
(ζ−1(u+ I2)ζ )/2 ζ−1(u− I2)

((u− I2)ζ )/4 (u+ I2)/2

)
.

So
e(u, 1) ∈ supp Rk−1⇐⇒ 2ζ−1(u− I2)

−1(u+ I2) ∈ supp8′

⇐⇒ u ∈ D1(c). �

Then we get

Rk−1(e(u, 1))=
{
ηχ−1(δ) if u ∈ D1(c),

0 otherwise.

The integral ∫
U (ζ )

Rk−1(e(u, 1)) du = ηχ−1(δ) vol(D1(c)).

As we see from Theorem 4.12, 〈Eψ , θϕ〉 equals the product of an explicit constant
and the integral

∫
[U (ζ )] β(u)θφ2(u) du. Using the discussion of Section 3C, I will

show that this integral can be interpreted by the theta lifting from U(ζ ) to U(1).
Recall that N is the unipotent radical of the parabolic subgroup P of U(Iζ ). We

take N as the Heisenberg group associated to the 4-dimensional symplectic space
W over F . On W , the alternating pairing is defined as 〈x1, x2〉 = x1ζ x∗2 − x2ζ x∗1 ,
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while, as a K -vector space, W = V1⊗ V2, where V1 and V2 are Hermitian vector
spaces with dimensions 2 and 1 over K , respectively. The skew-Hermitian form on
V1 is (x, y)1 = xζ y∗. The Hermitian form on V2 is defined as (x, y)2 = x y. So, we
immediately have the reductive pair (U (V1),U (V2)) in Sp(W ) with U(V1)'U (ζ ),
and U(V2)'U (1).

Consider the theta lifting

θ
β
φ2
(u)=

∫
U (ζ )

θφ2(g, u)β(g) dg

from U(ζ ) to U(1). In Section 3C, I give the definition of a theta lifting and explain
the way to compute |θβφ2

(1)|2 using the Siegel–Weil formula. If we assume that the
representation 5 on U(ζ ) is self-dual, then V5 ' V5̌, and∣∣∣∫

[U (ζ )]
β(u)θφ2(u) du

∣∣∣2 = ∣∣θβφ2
(1)
∣∣2

Proposition 3.7 and (18) together imply:

Corollary 4.16. |θβφ2
(1)|2 = 1

2

∫
U (ζ )(A)

fδψ (φ2⊗φ2),s(e(g, 1))〈5(g)β, β〉 dg|s=− 1
2
.

Remark 4.17. The integral in the corollary above should be nonzero if φ2 is chosen
properly, because the theta lifting of5 should define a nonzero representation space
of U(1). This is a special case in [Li 1992]. The nonzero result is crucial for our
application.

Remark 4.18. If φ2,v is a standard characteristic function, then δψ(φ2⊗φ2) is also
a standard characteristic function, and fδψ (φ2⊗φ2),s,v is normalized spherical.

Proposition 4.19. If 5v is an unramified representation with a spherical vector β,
fs,v is the unique U(2, 2)(OFv )-invariant section in I U (2,2)

P′ (χ, s)v and fs,v(1) = 1,
then ∫

U (ζ )v
fs,v(e(u, 1))〈5(u)β, β〉v du =

L
(
5v, χv, s+ 1

2

)
Lv(εK/F , 2s+ 2)Lv(1, 2s+ 1),

where Lv(1, · ) is the Zeta function of the local field Fv.

Remark 4.20. This type of integral was considered by Piatetski-Shapiro and Rallis
in many cases. Similar calculations have been done in [Li 1992]. In the (U (1),U (1))
case, Yang [1997] had explicit formulas.

Proof. Let me calculate the integral above in the case when U(ζ )v 'GL2(Fv). The
computations at other types of unramified places are skipped here. Now we omit
the subindex v.



322 Bei Zhang

Denote the matrix coefficient of 5 by w5. Let χ |F×F = (χ1, χ2). Using the
Godement section of fs , we have

1
L(εK/F , 2s+ 2)L(εK/F , 2s+ 1)

∫
U (ζ )

fs(e(u, 1))〈5(u)β, β〉 du

=

∫
GL2(F)

χ1(det u)|det u|s+1

·

∫
GL2(F)

8M2×4(OF )((0, Z)e(u, 1))εK/F (det Z)|det Z |2s+2w5(u) du d Z

=

∫
GL2(F)×GL2(F)

8M2×4(OF )(Z , Zu)χ1(det u)|det u|s+1

· εK/F (det Z)|det Z |2s+2w5(u) du d Z

Y=Zu
=

∫
GL2(F)×GL2(F)

8M2×4(OF )(Y, Z)χ1(det Y )|det Y |s+1

·χ2(det Z)|det Z |s+1w5(Z−1Y ) dY d Z . (29)

Let GL2(F)= BK , where B consists of upper triangular matrices and K =GL2(OF ).
The matrix coefficient w5 is a zonal spherical function and satisfies

∫
K
w5(XkY ) dk = w5(X)w5(Y ) for X, Y ∈ GL2(F).

Lemma 4.21. The expression in (29) equals the product of

∫
GL2(F)

8M2(OF )(Y )χ1(Y )|det Y |s+1w5(Y ) dY

and ∫
GL2(F)

8M2(OF )(X)χ2(X)|det X |s+1w5(X) d X.

Proof. First, it is obvious that

(29)=
∫

GL2(F)×GL2(F)×K
8M2×4(OF )(kY, Z)χ1(det kY )|det kY |s+1

·χ2(det Z)|det Z |s+1w5(Z−1Y ) dY d Z dk. (30)
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Then, substitute kY by Y ′:

(30)=
∫

GL2(F)×GL2(F)
8M2×4(OF )(Y

′, Z)χ1(det Y ′)|det Y ′|s+1χ2(det Z)|det Z |s+1

·

∫
K
w5(Z−1k−1Y ′) dk dY ′ d Z

=

∫
GL2(F)

8M2(OF )(Y )χ1(Y )|det Y |s+1w5(Y ) dY

·

∫
GL2(F)

8M2(OF )(Z)χ2(Z)|det Z |s+1w5(Z−1) d Z .

So this proves Lemma 4.21. �

Let

Z(8M2(OF ), χ1⊗w5, s+ 1)=
∫

GL2(F)
8M2(OF )(Y )χ1(Y )|det Y |s+1w5(Y ) dY.

Zeta integrals such as this are discussed in [Godement and Jacquet 1972].

Lemma 4.22. If 5= π(µ1, µ2), then

Z(8M2(OF ), χ1⊗w5, s+ 1)= L
(
χ1µ1, s+ 1

2

)
L
(
χ2µ2, s+ 1

2

)
.

Proof. Let Y = pk, for p=
(

a1 b
a2

)
∈ B and k ∈ K . Then dY = (1/|a1|) db da1 da2.

w5(Y )= w5(p)= µ1(a1)µ2(a2)(|a1|/|a2|)
1
2 . So,

Z(8M2(OF ), χ1⊗w5, s+ 1)=
∫

OF×OF

χ1µ1(a1)|a1|
s+ 1

2χ1µ2(a2)|a2|
s+ 1

2 da1 da2

= L
(
χ1µ1, s+ 1

2

)
L
(
χ2µ2, s+ 1

2

)
.

�

By Lemmas 4.21 and 4.22, we have∫
U (ζ )

fs(e(u, 1))〈5(u)β, β〉 du =
L
(
5,χ, s+ 1

2

)
L(εK/F , 2s+ 2)L(εK/F , 2s+ 1)

.

And notice that in this case, εK/F ($) = 1 for the prime element $ in F . This
proves Proposition 4.19 when U(ζ )' GL2(F). �

Next, let me explain the local integrals of |θβφ2
(1)|2 at archimedean places and

ramified finite places. At archimedean places, fδψ (φ2⊗φ2),s,∞ is U(ζ )∞×U (ζ )∞-
invariant, and 5∞ is one-dimensional. Apparently,∫

U (ζ )∞
fδψ (φ2⊗φ2),s,∞(e(g, 1))〈5(g)β, β〉∞ dg = vol(U (ζ )∞) 6= 0.
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As for finite places, first we are always allowed to take the standard characteristic
function φ2,v when 5v is unramified. This means if 5v is unramified, we can
guarantee fδψ (φ2⊗φ2),s,v is spherical.

If 5v is ramified at a finite place v, let Dv ⊂U (ζ )v be a compact open subgroup
fixing5v . Especially, when5v= I (µ1, µ2) is a ramified principal series associated
to the local charactersµ1 andµ2, we assume thatµ1 is ramified andµ2 is unramified.
Then Dv =

{
g ∈ U (ζ )v

∣∣ g =
(

a b
c d

)
, a ∈ 1+m, b, d ∈ OKv

, c ∈ m
}
, where m is

the conductor of µ1. We can choose φ2,v so that fδψ (φ2⊗φ2),s,v(e(g, 1))=8Dv
(g),

where 8Dv
is the characteristic function with the support in Dv. For instance, if v

splits, U(ζ )v ' GL2(Fv). Then µ1 and µ2 are both characters of Fv. We can take
φ2 such that

φ2(x)=
{

1 if x ∈
(

1
0

)
+mO2

Fv ,

0 otherwise.

In this way,∫
U (ζ )v

fδψ (φ2⊗φ2),s,v(e(g, 1))〈5(g)β, β〉v dg = vol(Dv) 6= 0.

5. Applications to Eisenstein series nonvanishing modulo p

Section 4 calculated the Fourier–Jacobi coefficients of two Eisenstein series. One
is the holomorphic Siegel–Eisenstein series Ek( · , η) on U(3, 3). The other is the
holomorphic Eisenstein series Ek( · ,5, η) on U(Iζ ) that is from the pullback of
Ek( · , η). From now on, we fix a prime p, so that every prime in F above p is
unramified for both Eisenstein series. In this section, we will briefly discuss how to
apply the computations of Section 4 to look for an Eisenstein series on U(3, 1) that
does not vanish modulo p.

Remark 5.1. (1) Recall that Ek( · , η) is defined from the section fk that is spherical
outside S (for the definition of S, one may refer to Theorem 4.9). In the
application, S is usually taken to be the set of places where the given data (for
instance the number fields F and K , the characters η and χ , the representation
5 and so on) are ramified. Notice that we can assume that all the data at p are
unramified. So p 6∈ S. In other words, fk is spherical at p.

(2) Ek( · , η) can be normalized to become a p-integral Eisenstein series Eint. About
this claim, one can refer to (3.3.5.3) and Remark (3.3.5.5) in [Harris et al.
2006]. The normalizing factor is given in (3.3.5.1). In fact, the situation here
is simpler than [ibid.], because Ek( · , η) is unramified at p.
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(3) The pullback of Eint denoted by Eint
pb is an Eisenstein series on U(Iζ ). It only

differs by a constant with E( · ,5, η). Define

E int
=

Eint
pb

�k
K
, (31)

where �K is the CM-period of K and it is well-defined up to Z×p .

Lemma 5.2. E int is a p-integral holomorphic Eisenstein series.

About �K and this lemma, one can refer to [Hsieh 2011b, Section 7.2].

As mentioned in the introduction, one of the motivations of this paper is to
provide a possible way to argue nonvanishing modulo p of the Eisenstein series on
the unitary group U(3, 1) used in the Iwasawa theory through the calculation of its
Fourier–Jacobi coefficients. For the discussion on this topic, let me assume that
F =Q and that the imaginary quadratic extension K/Q splits at p.

Following the idea of Skinner and Urban [Skinner and Urban 2012; Urban 2006]
to show one divisibility of the main conjecture for GL2×K× by the method of
Eisenstein congruence on U(3, 1), a Hida family of holomorphic Eisenstein series
Eord on U(3, 1) is constructed so that its constant terms at all cusps are divisible by
the p-adic L-function of GL2×K×. Suppose Eord is defined over a two-variable
Iwasawa algebra 3 (refer to Conjecture 1.1), and denote by m3 the maximal ideal
of 3. It is required that Eord

6≡ 0 (mod m3). Since Eord is obtained by interpolating
a p-ordinary holomorphic Eisenstein series Eord, we have:

Lemma 5.3. If Eord
6≡ 0 (mod mp), then Eord

6≡ 0 (mod m3), where mp is the
maximal ideal of Z(p) induced by i : C→ Cp.

So it is enough to show Eord does not vanish modulo mp. For the strict definition
and construction of Eord, see [Hsieh 2011b]. Although Eord and E int are both
p-integral holomorphic Eisenstein series, they are not the same, because we assume
E int is unramified at p, but Eord is ramified at p. So in order to apply the computation
of Fourier–Jacobi coefficients of E int in Section 4, two points will be addressed in
this section. The first is to relate Eord used in the proof of the main conjecture to
E int. The second is to give a strategy of showing nonvanishing modulo p of E int.

At p, U(ζ )(Qp)' GL2(Qp). In [Hsieh 2011b], the representation 5 of U(ζ ) is
chosen so that the local representation 5p of GL2(Qp) is ordinary; then 5p must
be of the type π(µ1, µ2). Assume that the characters µi of Qp are unramified.
Then an Eisenstein series E0 is defined with the data of 5 and η, so that Eord is
exactly the ordinary projection of E0 (Eord

= eE0, where e is the map of ordinary
projection). The only difference between E0 considered in [ibid.] and E int in (31)
is that local sections at p are different. A special section at p is taken to make
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sure the corresponding E0 leads to the ordinary p-adic Eisenstein series with the
optimal constant terms at cusps. But, for E int, the local section at p is spherical.

Define normalized actions of Up and Tp operators (‖Up and ‖ Tp) to a modular
form on U(Iζ ); refer to [Hsieh 2011a; 2011b].

Lemma 5.4. Let E be a p-adic modular form of weight (0, k), k > 2. Suppose that
E is unramified at p. Then we have

E ‖Up(αi )≡ E ‖ Tp(αi ) (mod p),

for αi =

(
I6−i 0

0 pIi

)
∈ GL6(Qp)'U (Iζ )(Qp), i = 1, 2, . . . , 6.

The analogous result for modular forms on U(2, 1) was due to Hida’s observation.
Hsieh summarized it in [2011a, Lemma 7.3], whose proof is essentially the same as
that of Lemma 5.4. I want to emphasize that the formulas of the normalized Hecke
operators at p used in the proof are especially for holomorphic forms. So, we can
safely apply this lemma to E int and Eord.

Lemma 5.5. Eord
= eE0 = C · eE int, where C is a p-adic unit.

Roughly speaking, the proof is as follows. Suppose the local sections at p for the
Eisenstein series Eord and E int are, respectively, f ord

p and f int
p . There is a unique

normalized ordinary local section at p, denoted by f ord,N
p (for the uniqueness, see

[Hida 2004b; Hsieh 2011b, Remark 6.3]). Then

f ord
p = C1 f ord,N

p and e f int
p = C2 f ord,N

p .

Moreover it can be shown that C = C1C−1
2 is a p-adic unit. Combining the two

lemmas above, we get

Eord
6≡ 0 (mod mp)⇐⇒ E int

6≡ 0 (mod mp).

We are left to show that E int
6≡ 0 (mod mp).

From the calculation of Section 4, we can construct a linear functional on the
space of holomorphic modular forms on U(3, 1), such that

lθ (E int)=
〈E int

ψ , θ〉

〈θ, θ〉
· θβ(1).

And notice that E int
ψ and θ are both in the space of holomorphic theta functions,

and 〈 · , · 〉 is defined to be the inner product in this space. When θ is θϕ , we
have lθϕ (E

int) ∼ Lalg(ηχ−1, l − 1
2)L

alg(ηχ−1, l − 3
2)L

alg(5, χ, 1). Notice that χ
is from the Weil representation and we can vary χ with only the restrictions that
χ∞(z)= |z|/z and χ |A× = εK/Q. Lalg(ηχ−1, l− 1

2) and Lalg(ηχ−1, l− 3
2) are both

p-units for almost all χ . These facts are due to Hida [2004a]. The question of
whether Lalg(5, χ, 1) is a p-unit or not for infinitely many χ remains an open
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problem. Many results are known about nonvanishing modulo p of special values
of L-functions (refer to [Hida 2004a; Vatsal 2003] for results on GL1 and GL2 L-
functions). These facts suggest Lalg(5, χ, 1) may share the same property. Recent
work of M. Brakočević on anticyclotomic p-adic L-functions of central critical
Rankin–Selberg L-value may help prove the conjecture. I will address this question
in my next paper.

From Appendix B, we see by choosing proper ϕ that θϕ is a p-integral theta
function, and can serve as one element of the basis that spans the space of p-integral
holomorphic theta functions T (m, L ,U f ). So lθϕ maps a p-integral modular form
in U(3, 1) to a p-adic integer.

From the discussion above, we have this:

Conjecture 5.6. E int
6≡ 0 (mod m3).

Remark 5.7. As mentioned in the introduction, the computations explained in
this paper can be generalized to an arbitrary nonquasisplit unitary group U(m, n)
for m > n. Let P = M N be the minimal parabolic subgroup of U(m, n), and
M=GLn(K )×U (m−n). Given8∈ I U (m,n)

P (5⊗η(det · ), s), define the Eisenstein
series E(8) and consider the Fourier–Jacobi coefficients Eψ(8) as a theta function
on the Jacobi group U(m− n) · N . Because E(8) can be written as the pullback
of a Siegel–Eisenstein series E(η) on U(m,m), we can study Eψ(8) using certain
Fourier–Jacobi coefficients of E(η). So Eψ(8) will have similar expressions as
in Corollary 4.11. Again using the inner product of the space of theta functions
on U(m− n) · N , we can define a linear functional on E(8) that leads to special
L-values.

Appendix A: Proof of the Siegel–Weil formula for (U(2, 2), U(1))

The Siegel–Weil formula for the dual reductive pair (U (2, 2),U (1)) is formulated
in Theorem 3.6. Let us first fix necessary notation and then give the proof.

Consider the dual reductive pair (U (2, 2),U (V )), where V is a Hermitian vector
space of dimension 1 over K . Now U(2, 2)×U (V ) acts on S(V 2(A)) via the Weil
representation ωχ determined by an additive character ψ of A and a character χ of
A×K /K× such that χ |A× = εK/F . For φ ∈ S(V 2(A)), we have fφ,s ∈ I U (2,2)

P′ (χ, s),
where P′ is the Siegel parabolic subgroup of U(2, 2) (refer to (17)). Theorem 3.6
states that the Eisenstein series E(g, fφ,s) on U(2, 2) is holomorphic at s =−1

2 and

E(g, fφ,s)|s=− 1
2
= 2

∫
[U (V )]

θφ(g, u) du.

I give the proof of this theorem following the idea of Kudla and Rallis [1988], who
proved the Siegel–Weil formula for (Spn,O(V )) when V is anisotropic. First, we
prove that E(g, fφ,s) is holomorphic at s =−1

2 by studying the analytic properties
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of the constant term. Denote
∫
[U (V )] θφ(g, u) du by I (g, φ). Notice that I (g, φ) is

orthogonal to all cusp forms on U(2, 2)(A) and is moreover concentrated on the
Borel subgroup B in the sense that the constant term of I (g, φ) along any parabolic
subgroup P strictly containing B is orthogonal to all cusp forms on the Levi factor
of P . Since the same is true for E(g, fφ,s), it suffices to show that the constant
term of E(g, fφ,s) along the Siegel parabolic subgroup at s =−1

2 is equal to that
of I (g, φ).

Denote the constant term of E(g, fφ,s) with respect to P′ by EP′(g, fφ,s). Then
we have this:

Lemma A.1. For any K′-finite section f , E(g, fs) and EP′(g, fs) have the same
set of poles.

If φ is K′-finite, so is fφ . We can apply the lemma above to find the poles of
E(g, fφ,s). There are three terms in EP′(g, fφ,s), that is

EP′(g, fφ,s)= E0
P′(g, fφ,s)+ E1

P′(g, fφ,s)+ E2
P′(g, fφ,s), (32)

corresponding to the Bruhat decomposition

U(2, 2)(F)= P′ tP′w13P′ tP′w2P′,

where

w13 =

( 1
1

−1
1

)
and w2 =

(
I2

−I2

)
.

We have E0
P′(g, fφ,s) = fφ,s(g). So E0

P′(g, fφ,s)|s=− 1
2
= ωχ (g)φ(0). The third

term has

E2
P′(g, fφ,s)=

∫
N′(A)

fφ,s(w2ng) dn = M(s) fφ,s(g),

where M(s) is the intertwining operator. The second term has

E1
P′(g, fφ,s)=

∑
γ∈B1\GL2(K )

f 1
φ,s(γ g), (33)

where B1 is the Borel subgroup of GL2(K ) and

f 1
φ,s(γ g)=

∫
N′′(A)

fφ,s(w13ng) dn,

where N′′ is a subgroup of N′ such that for n ∈ N′′,

n =
( 1 x

1
1

1

)
.
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Since the Levi part of P′(F) is isomorphic to GL2(K ), we see E1
P′(g, fφ,s)|GL2(AK )

is an Eisenstein series on GL2(AK ) associated to the section

f 1
φ,s ∈ I GL2

B1

(
χ | · |

−s− 1
2

K , χ | · |
s+ 3

2
K

)
,

that is,

f 1
φ,s

((
a b

d

)
g
)
= χ(a)|a|

−s− 1
2

K χ(b)|b|
s+ 3

2
K

∣∣∣ab ∣∣∣ 1
2

K
f 1
φ,s(g). (34)

Let us consider the analytic property of M(s) fφ,s(g). It is well known that M(s) is
well-defined for s if Re s is big enough and it has the meromorphic continuation to
the complex plane. Let S be a finite set of places of F such that fφ,s,v = f0,s,v is
spherical for all v /∈ S. Then we have

M(s) fφ,s =
a(s)
b(s)

∏
v∈S

b(s)v
a(s)v

M(s)v fφ,s,v
∏
v /∈S

f0,−s,v,

where
a(s)
b(s)
=

ξ(2s− 1, 1)ξ(2s, εK/F )

ξ(2s+ 2, 1)ξ(2s+ 1, εK/F )
;

specifically,
a(s)v
b(s)v

=
Lv(2s− 1, 1)Lv(2s, εK/F )

Lv(2s+ 2, 1)Lv(2s+ 1, εK/F )

for v 6= ∞, and
a(s)∞
b(s)∞

= c(s)
0(2s− 1)0(2s+ 1)
0(2s+ 2)0(2s+ 2)

, (35)

where c(s) is some exponential, which will not affect the analytic property of
M(s) fφ,s .

Theorem A.2. M(s) fφ,s |s=− 1
2
= 0

Proof. Notice that
a(s)
b(s)

∣∣∣
s=− 1

2

= 0.

So we only need to show that

b(s)v
a(s)v

M(s)v fφ,s,v

for v ∈ S at s =− 1
2 is holomorphic.

When v ∈ S and v is a finite place, we always have this:

Lemma A.3. 1
a(s)v

M(s)v fs,v is holomorphic at s =− 1
2 for any fs .
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The general form of the lemma is stated in [Kudla and Rallis 1988]. If v ∈ S is
an inert place, b(s)v is obviously holomorphic at s =− 1

2 . So

b(s)v
a(s)v

M(s)v fφ,s,v

is holomorphic at s =− 1
2 .

If v ∈ S is a splitting place, pay attention that now b(s)v has a simple pole. We
need a refinement of Lemma A.3 as follows:

Lemma A.4. If v is a splitting place,

1
a(s)v

M(s)v fφ,s,v

vanishes at s =− 1
2 .

I have to emphasize that this lemma is only right for the Siegel–Weil section.
Then in this case, we still have

b(s)v
a(s)v

M(s)v fφ,s,v

is holomorphic at s =−1
2 . I omit the proof of Lemma A.4. It is a direct corollary

of [Kudla and Sweet 1997, Theorem 1.3].
For v =∞, for convenience, we take φ0

∞
(x)= ψ(i xx∗) as it is what we use in

the paper. For general functions in S(V 2)∞ in the space of the Fock representation,
the holomorphic result still holds. We have that φ0

∞
is an eigenfunction under the

action of an element k in the maximal open compact subgroup of U(2, 2)∞. Then,

Lemma A.5. M(s)∞ fφ0
∞,s = c

0(2s)0(2s− 1)

0(s+ 3
2)0(s+

1
2)

20(s− 1
2)

fφ0
∞,−s .

From (35) and Lemma A.5, we can see that

b(s)∞
a(s)∞

M(s)∞ fφ0
∞,s

is holomorphic at s = − 1
2 . Combining the discussions above at each place, we

prove Theorem A.2. �

Now let us consider (33), which is the second term of the constant term of
E(g, fφ,s). As we see, restricted to the Levi part of U(2, 2), it is an Eisenstein series
associated to the (34). In [Kudla and Rallis 1988, Proposition 6.4], the Eisenstein
series like this was discussed and the holomorphic property was confirmed. The
idea is to obtain a relation of the form

E1
P′(g, fφ,s)=

∑
j

α j (s)E1(g, F j (s)), (36)
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where α j (s) is a meromorphic function holomorphic at s =−1
2 , and E1(g, F j (s))

is an Eisenstein series on GL2(AK ) and

F j (g, s)= µ1(det g)|det g|
1
2
K

∫
A×K

φ j ((0, x)g)µ1µ
−1
2 (det g)|det g|K dx

for φ j ∈ S(M12(AK )), and µ1= χ | · |
−s− 1

2
K , µ2= χ | · |

s+ 3
2

K . The analytic property of
this type of Eisenstein series is explicitly worked out. In our case, each E1( · , F j (s))
is holomorphic at s = − 1

2 . Furthermore, because the sum in (36) is a finite sum,
E1

P′(g, fφ,s) is also holomorphic at s =− 1
2 .

Theorem A.6. E(g, fφ,s) is holomorphic at s =− 1
2 .

It is not hard to verify that I (g, φ) as an automorphic form on U(2, 2) is orthog-
onal to all cusp forms on U(2, 2) and is concentrated on the Borel subgroup B.
Since the constant term of I (g, φ) with respect to the Siegel parabolic subgroup
P′ is ωχ (g)φ(0), the only thing remaining to prove the Siegel–Weil formula is to
confirm the constant term of E(g, fφ,s) at s =− 1

2 is 2ωχ (g)φ(0).
Let us first calculate the constant term EP′1

(g, fφ,s) of E(g, fφ,s) with respect to
the parabolic subgroup P′1 whose Levi factor is isomorphic to K××U (1, 1). Let

i :U (1, 1)→U (2, 2),
((

a b
c d

))
7→

( 1
a b

1
c d

)
.

Then:

Proposition A.7. For g ∈U (1, 1),

EP′1
(g, fφ,s)= E0

P′1

(
g, s+ 1

2 , i∗ fφ,s
)
+ E1

P′1

(
g, 1

2 − s, i∗M(s) fφ,s
)
, (37)

where E0
P′1

and E1
P′1

are both Eisenstein series on U(1, 1).

Notice that E0
P′1

is an Eisenstein series associated to the Siegel–Weil section
i∗ fφ,s . Applying the result about the Siegel–Weil formula for the dual reductive
pair (U (1, 1),U (1)) [Ichino 2004], we see that the constant term of

E0
P′1
(g, s+ 1

2 , i∗ fφ,s)

with respect to the Siegel parabolic subgroup of U(1, 1) has two terms and they are
both equal to ωχ (i(g))φ(0) for g ∈U (1, 1) when s =− 1

2 .
First, E1

P′1

(
g, 1

2− s, i∗M(s) fφ,s
)

is holomorphic at s =− 1
2 by arguments similar

to those in [Kudla and Rallis 1988, Section 8]. Then applying Theorem A.2, we
have this Eisenstein series is zero at s =− 1

2 .
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It seems that too many constant terms are involved. The relation can be described
by the following diamond graph used in [ibid.]:

U (2, 2)
uu ''

GL1×U (1, 1)
))

GL2

ww
GL1×GL1

From the line

U(2, 2)→ GL1×U (1, 1)→ GL1×GL1,

we get E00
P′1

, E01
P′1

, E10
P′1

, and E11
P′1

. They are constant terms of E0
P′1

and E1
P′1

. From
the line

U(2, 2)→ GL2→ GL1×GL1,

we get E0
P′ , E10

P′ , E11
P′ , and E2

P′ (refer to (32)), where E10
P′ and E11

P′ are the constant
terms of E1

P′ . Restricting all these to GL1×GL1, we have the following match up
relation:

E00
P′1

E01
P′1

E10
P′1

E11
P′1

E0
P′ E10

P′ E11
P′ E2

P′

The top terms match up with the bottom terms. Because E1
P′1

is zero at s = −1
2 ,

then we have that E11
P′ is zero at s =− 1

2 .

Proposition A.8. E1
P′(g, fφ,s)|s=− 1

2
= ωχ (g)φ(0).

Thus, we obtain that EP′(g, fφ,s)|s=− 1
2
= 2ωχ (g)φ(0). Then Theorem 3.6 is

proved.

Appendix B: Integral theta functions

First recall classical definitions of theta functions. For applications, let us restrict
to the 2-dimensional case here. Most of the results can be generalized to arbitrary
dimensions without difficulty. Fix the embeddings

Q
i∞
−→ C and Q

i p
−→ Cp.

Let V be a 2-dimensional Hermitian vector space over K . Choose an OK -lattice L
so that it fixes an abelian variety AL with complex multiplication defined over a
number field M , where K ⊂ M ⊂Q. Under the embedding i∞, L can be regarded
as a Z-module of rank 4, and so a lattice of C2. Then there exists an analytic
parametrization over C such that

AL ⊗i∞ C' C2/L .
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For a Riemann form H on C2/L , and a map ε : L→U , where U is the unit circle
of C, define an analytic line bundle Lan

H,ε 'C×C2/L with the action of L given by

l · (w, x)=
(
w+ l, ε(l)e

( 1
2i

H
(

l, w+ l
2

))
x
)

for l ∈ L , (w, x) ∈ C2
×C,

where e(x) = e2π i x . Then the space of global sections 0(C2/L ,Lan
H,ε) can be

identified with the space of holomorphic theta functions T (H, ε, L) such that
for f ∈ T (H, ε, L),

f (w+ l)= f (w)ε(l)e
( 1

2i
H
(

l, w+ l
2

))
for w ∈ C2, l ∈ L .

To study arithmetic theta functions and furthermore integral theta functions inside
T (H, ε, L), let us consider the line bundle LH,ε on AL defined over M , and give
LH,ε a rigidification at the origin. At∞, fix an isomorphism

LH,ε ⊗i∞ C' Lan
H,ε,

such that it is consistent with the analytic parametrization of AL , and carries the
rigidification of LH,ε into the canonical one of Lan

H,ε . For a prime p, when AL⊗i p Cp

has a good reduction, we can assume it is defined over the ring of integers O=O(Cp).
Then we require that the rigidification of LH,ε satisfies that the p-integral elements
of the stalk of LH,ε over the origin correspond to the p-integral points on the affine
line.

Within the context above, we see that i∞(0(AL ,LH,ε)) is an i∞(M)-vector
space of theta functions inside 0(C2/L ,Lan

H,ε) = T (H, ε, L). Let us denote this
space by T ar(H, ε, L); each element inside is an arithmetic theta function. Inside
the Cp-vector space 0(AL ⊗i p Cp,LH,ε⊗i p Cp), we have the O-module of integral
sections. It is in turn the i∞(i−1

p (O)∩M)-module of p-integral theta functions in
i∞(0(AL ,LH,ε)) = T ar(H, ε, L). We give it a notation T int(H, ε, L). Thus we
have

T int(H, ε, L)⊂ T ar(H, ε, L)⊂ T (H, ε, L).

For f ∈ T (H, ε, L), define

f∗(w)= e
( i

4
H(w,w)

)
f (w).

The following lemma gives simple characterizations of arithmetic theta functions
and integral theta functions.

Lemma B.1. T ar(H, ε, L) consists of all functions f ∈ T (H, ε, L) such that f∗(w)
is an algebraic number in C for anyw∈K L. The module T int(H, ε, L) of p-integral
theta functions consists of f ∈ T (H, ε, L) such that i p · i−1

∞
( f∗(w)) is integral in

Cp for w ∈ K L.
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For the proof, see the proof [Finis 2006, Lemma 3.1]. Even though, there, only
the case of one-dimensional Hermitian space was considered, the idea can be easily
generalized here.

Shimura [1976] studied the arithmetic properties of theta functions with complex
multiplication, and gave a basis for T ar(H, ε, L). Let me mainly discuss the case
when V/K is a 2-dimensional anisotropic Hermitian space. Also, V can be regarded
as a symplectic vector space with the alternating form

〈v1, v2〉 = v1ζv
∗

2 − v2ζv
∗

1 ,

with v1ζv
∗

2 the anti-Hermitian pairing on V . There exist w1, w2 ∈ M2(K ), such
that z = w−1

2 w1 is a point in the Siegel upper half plane H2, and

L =
{
(a b)

(
w1

w2

) ∣∣∣∣ a ∈ Z2, b ∈ Z2
(

1 0
0 α

)
for a fixed α ∈ Z

}
.

Then the Riemann form on V can be written as

H(uw2, vw2)= 2im · u(z− z)−1v∗ for u, v ∈ K 2, (38)

and ε is of the form

ε(aw1+ bw2)= e
(m

2
· abt
+ br t

+ ast
)

for a ∈ Z2, b ∈ Z2
(

1 0
0 α

)
,

with a choice of r and s in Q2. For u ∈ C2, z ∈ H2, r, s ∈ R2, and a positive
integer µ, define

θr,s(u, z)= e
( 1

2 u(z− z)−1ut) ∑
x∈Z2

e
( 1

2(x + r)z(x + r)t + (x + r)(u+ s)t
)
.

Put fm,r,s(u)= θr,s(muw−1
2 ,mw−1

2 w1).

Theorem B.2. (1) For r, s ∈Q2, we have fm,r,s(u) ∈ T ar(H, ε, L) for H defined
in (38) and ε defined by

ε(aw1+ bw2)= e
(

1
2 m · abt

+mbr t
− ast

)
.

Moreover, the functions

fm,r+ j,s for j ∈ m−1
(

1 0
0 α−1

)
Z2/Z2

give a basis of T ar(H, ε, L) over the field of algebraic numbers in C.

(2) Let p be an unramified prime number for T (H, ε, L). When z is diagonal,
fm,r,s is a p-integral element in T int(H, ε, L). Thus T int(H, ε, L) is spanned
by the functions fm,r+ j,s over i∞(i−1

p (O)).
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Proof. See [Shimura 1976, Proposition 2.5] for the proof of (1). For (2), though it is
possible to remove the condition that z is diagonal, I will skip the discussion of the
more general results because the proof would be more technical. When z =

( z1 0
0 z2

)
is diagonal,

θr,s(u, z)=
2∏

i=1

θri ,si (ui , zi ),

where

θri ,si (ui , zi )= e
( 1

2 ui (zi − zi )
−1ui

)∑
x∈Z

e
( 1

2(x + ri )zi (x + ri )+ (x + ri )(ui + si )
)
,

for r = (r1, r2) and so on. Notice that these θri ,si (ui , zi ) are essentially theta
functions in the one-dimensional case. The p-integrality of them is confirmed by
[Finis 2006, Lemma 3.3]. Thus, the p-integrality of the fm,r+ j,s follows. �

Remark B.3. When L corresponds to a diagonal element in H2, AL is isomor-
phic to the product of two elliptic curves. In this case, the i∞(i−1

p (O))-basis of
T int(H, ε, L) is given in Theorem B.2(2), and the number of elements inside is
exactly equal to the dimension of T ar(H, ε, L). In general, when AL is an abelian
variety with CM, it is always isogenous to E1× E2, where E1 and E2 are elliptic
curves with CM. Such isogeny induces the isomorphism between modules of integral
theta functions of AL and E1 × E2 with appropriate choices of Riemann forms
accordingly.

Then let me briefly explain the relation between classical theta functions and
adelic theta functions. One can find the discussion of one-dimensional case in [Finis
2006]. Define TA(m, L ,U f ) to be the space of all smooth functions

2 : N (Q)U (ζ )(Q)�N (A)U (ζ )(A)�U (ζ )∞U f N (L) f → C,

where U f is a certain open compact subgroup of U(ζ ) at finite places such that the
level is prime to p, and

N (L) f =
{
(w, t)

∣∣ w ∈ L̂, t + 1
2wζw

∗
∈ µ(L)ÔK

}
,

where µ(L) is the ideal generated by wζw∗ for all w ∈ L . The function 2 satisfies

2((0, t)r)= e(mt)2(r) for r ∈ N (A)U (ζ )(A).

Because U(ζ ) is anisotropic, U(ζ )(Q)�U (ζ )(A)�U (ζ )∞U f consists of a finite
set of points {u1, . . . , us} ⊂U (ζ )(A f ). So we have

TA(m, L ,U f )=
⊕s

i=1 T (m, ui L), 2 7→ (2i )
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such that 2i (n)=2(nui )for n ∈ N (A). Then one may check for each i ,

θi (w∞)= e
(
−m

wζw∗

2

)
2i ((w∞, 0))

is a classical theta function in T (H, ε, ui L), where H and ε are defined according
to the lattice ui L , and

〈2,2′〉 =
∑

i

〈θi , θ
′

i 〉 for 2,2′ ∈ TA(m, L ,U f ),

where
〈2,2′〉 =

∫
N (Q)U (ζ )(Q)�N (A)U (ζ )(A)

2(r)2′(r) dr

and
〈θi , θ

′

i 〉 =
1

µ(L)

∫
C/L

θi (w)θ
′

i (w) dw.
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The phase limit set of a variety
Mounir Nisse and Frank Sottile

A coamoeba is the image of a subvariety of a complex torus under the argument
map to the real torus. We describe the structure of the boundary of the coamoeba
of a variety, which we relate to its logarithmic limit set. Detailed examples of
lines in three-dimensional space illustrate and motivate these results.

1. Introduction

A coamoeba is the image of a subvariety of a complex torus under the argument
map to the real torus. Coamoebae are cousins to amoebae, which are images of
subvarieties under the coordinatewise logarithm map z 7→ log |z|. Amoebae were
introduced by Gelfand, Kapranov, and Zelevinsky [1994] and have subsequently
been widely studied [Kenyon et al. 2006; Mikhalkin 2000; Passare and Rullgård
2004; Purbhoo 2008]. Coamoebae were introduced by Passare in a talk in 2004,
and they appear to have many beautiful and interesting properties. For example,
coamoebae of A-discriminants in dimension 2 are unions of two nonconvex poly-
hedra [Nilsson and Passare 2010], and a hypersurface coamoeba has an associated
arrangement of codimension-1 tori contained in its closure [Nisse 2009].

Bergman [1971] introduced the logarithmic limit set L∞(X) of a subvariety X
of the torus as the set of limiting directions of points in its amoeba. Bieri and
Groves [1984] showed that L∞(X) is a rational polyhedral complex in the sphere.
Logarithmic limit sets are now called tropical algebraic varieties [Speyer and
Sturmfels 2004]. For a hypersurface V( f ), logarithmic limit set L∞(V( f )) consists
of the directions of nonmaximal cones in the outer normal fan of the Newton
polytope of f . We introduce a similar object for coamoebae and establish a structure
theorem for coamoebae similar to those of Bergman and of Bieri and Groves for
amoebae.

Let coA(X) be the coamoeba of a subvariety X of (C∗)n with ideal I . The phase
limit set P∞(X) of X is the set of accumulation points of arguments of sequences
in X with unbounded logarithm. For w ∈ Rn , the initial variety inwX ⊂ (C∗)n is
the variety of the initial ideal of I . The fundamental theorem of tropical geometry

MSC2010: primary 14T05; secondary 32A60.
Keywords: coamoeba, amoeba, initial ideal, toric variety tropical geometry.
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asserts that inwX 6= ∅ exactly when the direction of −w lies in L∞(X). We
establish its analog for coamoebae.

Theorem 1. The closure of coA is coA(X)∪P∞(X), and

P∞(X)=
⋃
w 6=0

coA(inwX).

Johansson [2013] used different methods to prove this when X is a complete
intersection.

The cone over the logarithmic limit set admits the structure of a rational polyhe-
dral fan 6 in which all weights w in the relative interior of a cone σ ∈6 give the
same initial scheme inwX . Thus, the union in Theorem 1 is finite and indexed by
the images of these cones σ in the logarithmic limit set of X . The logarithmic limit
set or tropical algebraic variety is a combinatorial shadow of X encoding many
properties of X . While the coamoeba of X is typically not purely combinatorial
(see the examples of lines in (C∗)3 in Section 3), the phase limit set does provide a
combinatorial skeleton and that we believe will be useful in the further study of
coamoebae.

We give definitions and background in Section 2 and detailed examples of lines
in three-dimensional space in Section 3. These examples are reminiscent of the
concrete descriptions of amoebae of lines in [Theobald 2002]. We prove Theorem 1
in Section 4.

2. Coamoebae, tropical varieties, and initial ideals

As a real algebraic group, the set T := C∗ of invertible complex numbers is
isomorphic to R × U under the map (r, θ) 7→ er+

√
−1θ . Here, U is the set of

complex numbers of norm 1 that may be identified with R/2πZ. The inverse map
is z 7→ (log |z|, arg(z)).

Let M be a free abelian group of finite rank and N =Hom(M,Z) its dual group.
We use 〈 · , · 〉 for the pairing between M and N . The group ring C[M] is the ring of
Laurent polynomials with exponents in M . It is the coordinate ring of a torus TN that
is identified with N ⊗Z T=Hom(M,T), the set of group homomorphisms M→ T.
There are natural maps Log : TN → RN = N ⊗Z R and arg : TN → UN = N ⊗Z U,
which are induced by the maps C∗ 3 z 7→ log |z| and z 7→ arg(z)∈U. Maps N→ N ′

of free abelian groups induce corresponding maps TN→TN ′ of tori and also of RN

and UN . If n is the rank of N , we may identify N with Zn , which identifies TN

with Tn , UN with Un , and RN with Rn .
The amoeba A(X) of a subvariety X ⊂ TN is its image under Log : TN → RN ,

and the coamoeba coA(X) of X is the image of X under arg : TN→UN . An amoeba
has a geometric-combinatorial structure at infinity encoded by the logarithmic limit
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set [Bergman 1971; Bieri and Groves 1984]. Coamoebae similarly have phase limit
sets that have a related combinatorial structure that we define and study in Section 4.

If we identify C∗ with R2
\{(0, 0)}, then the map arg : C∗→U given by (a, b) 7→

(a, b)/
√

a2+ b2 is a real algebraic map. Thus, coamoebae, as they are the image
of a real algebraic subset of the real algebraic variety TN under the real algebraic
map arg, are semialgebraic subsets of UN [Basu et al. 2006]. It would be very
interesting to study them as semialgebraic sets; in particular, what are the equations
and inequalities satisfied by a coamoeba? When X is a Grassmannian, such a
description would generalize Richter-Gebert’s five-point condition for phirotopes
from rank 2 to arbitrary rank [Below et al. 2003].

Similarly, we may replace the map C∗ 3 z 7→ log |z| ∈ R in the definition of
amoebae by the map C∗ 3 z 7→ |z| ∈ R+ := {r ∈ R | r > 0} to obtain the algebraic
amoeba of X , which is a subset of R+N . The algebraic amoeba is a semialgebraic
subset of R+N , and we also ask for its description as a semialgebraic set.

Example 2. Let ` ⊂ T2 be defined by x + y + 1 = 0. The coamoeba coA(`) is
the set of points of U2 of the form (arg(x), π + arg(x + 1)) for x ∈ C \ {0,−1}.
If x is real, then these points are (±π, 0), (±π,±π), and (0,±π) if x lies in the
intervals (−∞,−1), (−1, 0), and (0,∞), respectively. For other values, consider
the picture below in the complex plane:

x x + 1

R0

arg(x + 1)��9arg(x) XXXz

For arg(x) 6∈ {0, π} fixed, π + arg(x+1) can take on any value strictly between
π + arg(x) (for w near∞) and 0 (for x near 0), and thus, coA(`) consists of the
three points (π, 0), (π, π), and (0, π) and the interiors of the two triangles displayed
below in the fundamental domain [−π, π]2 ⊂ R2 of U2. This should be understood
modulo 2π so that π =−π .

−π

0

π

−π 0 π

-
arg(x)

6

arg(y)= π + arg(x+1) (1)

The coamoeba is the complement of the region{
(α, β) ∈ [−π, π]2

∣∣ |α−β| ≤ π = arg(−1)
}
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together with the three images of real points (±π, 0), (±π,±π), and (0,±π).
Given a general line ax + by + c = 0 with a, b, c ∈ C∗, we may replace x

by cx ′/a and y by cy′/b to obtain the line x ′ + y′ + 1 = 0 with coamoeba (1).
This transformation rotates the coamoeba (1) by arg(a/c) horizontally and arg(b/c)
vertically.

Let f ∈ C[M] be a polynomial with support A⊂ M

f :=
∑
m∈A

cm · ξ
m, where cm ∈ C∗, (2)

and we write ξm for the element of C[M] corresponding to m ∈ M . Given w ∈RN ,
let w( f ) be the minimum of 〈m, w〉 for m ∈A. Then the initial form inw f of f
with respect to w ∈ RN is the polynomial inw f ∈ C[M] defined by

inw f :=
∑

〈m,w〉=w( f )

cm · ξ
m.

Given an ideal I ⊂ C[M] and w ∈ RN , the initial ideal with respect to w is

inw I := 〈inw f | f ∈ I 〉 ⊂ C[M].

Lastly, when I is the ideal of a subvariety X , the initial scheme inwX ⊂ TN is
defined by the initial ideal inw I .

The sphere SN := (RN \{0})/R+ is the set of directions in RN . Let π : RN \{0}→
SN be the projection. The logarithmic limit set L∞(X) of a subvariety X of TN is
the set of accumulation points in SN of sequences {π(Log(xn))}, where {xn} ⊂ X is
an unbounded set. A sequence {xn}⊂TN is unbounded if its sequence of logarithms
{Log(xn)} is unbounded.

A rational polyhedral cone σ ⊂ RN is the set of points w ∈ RN that satisfy
finitely many inequalities and equations of the form

〈m, w〉 ≥ 0 and 〈m′, w〉 = 0,

where m,m′ ∈ M . The dimension of σ is the dimension of its linear span, and faces
of σ are proper subsets of σ obtained by replacing some inequalities by equations.
The relative interior of σ consists of its points not lying in any face. Also, σ is
determined by σ ∩ N , which is a finitely generated subsemigroup of N .

A rational polyhedral fan 6 is a collection of rational polyhedral cones in RN

in which every two cones of 6 meet along a common face.

Theorem 3. The cone in RN over the negative −L∞(X) of the logarithmic limit
set of X is the set of w ∈ RN such that inwX 6= ∅. Equivalently, it is the set of
w ∈ RN such that for every f ∈ C[M] lying in the ideal I of X , inw f is not a
monomial. This cone over −L∞(X) admits the structure of a rational polyhedral
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fan 6 with the property that if u and w lie in the relative interior of a cone σ of 6,
then inu I = inw I .

It is important to take −L∞(X). This is correct as we use the tropical convention
of minimum, which is forced by our use of toric varieties to prove Theorem 1 in
Section 4.2.

We write inσ I for the initial ideal defined by points in the relative interior
of a cone σ of 6. The fan structure 6 is not canonical for it depends upon an
identification M ∼

→ Zn . Moreover, it may be the case that σ 6= τ but inσ I = inτ I .
Bergman [1971] defined the logarithmic limit set of a subvariety of the torus TN ,

and Bieri and Groves [1984] showed it was a finite union of convex polyhedral
cones. The connection to initial ideals was made more explicit through work of
Kapranov [2006], and the form above is adapted from Speyer and Sturmfels [2004].
The logarithmic limit set of X is now called the tropical algebraic variety of X , and
this latter work led to the field of tropical geometry.

3. Lines in space

We consider coamoebae of lines in three-dimensional space. We will work in
the torus TP3 of P3, which is the quotient of T4 by the diagonal torus 1T and
similarly in UP3, the quotient of U4 by the diagonal 1U := {(θ, θ, θ, θ) | θ ∈ U}.
By coordinate lines and planes in UP3, we mean the images in UP3 of lines and
planes in U4 parallel to some coordinate plane.

Let ` be a line in P3 not lying in any coordinate plane, so ` has a parametrization

φ : P1
3 [s : t] 7→ [`0(s, t) : `1(s, t) : `2(s, t) : `3(s, t)], (3)

where `0, `1, `2, and `3 are nonzero linear forms that do not all vanish at the same
point. For i = 0, . . . , 3, let ζi ∈ P1 be the zero of `i . The configuration of these
zeroes determine the coamoeba of `∩TP3, which we will simply write as coA(`).

Suppose that two zeroes coincide; say ζ3 = ζ2. Then `3 = a`2 for some a ∈ C∗,
and so ` lies in the translated subtorus z3 = az2, and its coamoeba coA(`) lies in
the coordinate subspace of U3 defined by θ3= arg(a)+θ2. In fact, coA(`) is pulled
back from the coamoeba of the projection of ` to the θ3 = 0 plane. It follows that if
there are only two distinct roots among ζ0, . . . , ζ3, then coA(`) is a coordinate line
of U3. If three of the roots are distinct, then (up to a translation) the projection of
the coamoeba coA(`) to the θ3 = 0 plane looks like (1) so that coA(`) consists of
two triangles lying in a coordinate plane.

For each i = 0, . . . , 3, define a function depending upon a point [s : t] ∈ P1 and
θ ∈ U by

ϕi (s, t; θ) :=
{
θ if `i (s, t)= 0,
arg(`i (s, t)) otherwise.
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For each i = 0, . . . , 3, let hi be the image in UP3 of U under the map

θ 7→ [ϕ0(ζi , θ), ϕ1(ζi , θ), ϕ2(ζi , θ), ϕ3(ζi , θ)].

Lemma 4. For each i = 0, . . . , 3, hi is a coordinate line in UP3 that consists of
accumulation points of coA(`).

This follows from Theorem 1. For the main idea, note that arg ◦φ(ζi + εeθ
√
−1)

for θ ∈ U is a curve in UP3 whose Hausdorff distance to the line hi approaches 0
as ε→ 0. The phase limit set of ` is the union of these four lines.

Lemma 5. Suppose that the zeroes ζ0, ζ1, and ζ2 are distinct. Then

P1
\ {ζ0, ζ1, ζ2} 3 x 7→ arg(`0(x), `1(x), `2(x)) ∈ U3/1U = UP2

is constant along each arc of the circle in P1 through ζ0, ζ1, and ζ2.

Proof. After changing coordinates in P1 and translating in UP2 (rotating coordi-
nates), we may assume that these roots are∞, 0, and −1, and so the circle becomes
the real line. Choosing affine coordinates, we may assume that `0 = 1, `1 = x , and
`2 = x + 1 so that we are in the situation of Example 2. Then the statement of
the lemma is the computation there for x real in which we obtained the coordinate
points (π, 0), (π, π), and (0, π). �

Lemma 6. The phase limit lines h0, h1, h2, and h3 are disjoint if and only if the
roots ζ0, . . . , ζ3 do not all lie on a circle.

Proof. Suppose that two of the limit lines meet, say h0 and h1. Without loss of
generality, we suppose that we have chosen coordinates on U4 and P1 so that ζi ∈C

and `i (x)= x − ζi for i = 0, . . . , 3. Then there are points α, β, θ ∈ U such that

(ϕ0(ζ0, α), ϕ1(ζ0, α), ϕ2(ζ0, α), ϕ3(ζ0, α))

= (ϕ0(ζ1, β), ϕ1(ζ1, β), ϕ2(ζ1, β), ϕ3(ζ1, β))+ (θ, θ, θ, θ).

Comparing the last two components, we obtain

arg(ζ0− ζ2)= arg(ζ1− ζ2)+ θ and arg(ζ0− ζ3)= arg(ζ1− ζ3)+ θ,

and so the zeroes ζ0, . . . , ζ3 have the configuration below:

θ
θ

ζ3
ζ2

ζ0 ζ1
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But then ζ0, . . . , ζ3 are cocircular. Conversely, if ζ0, . . . , ζ3 lie on a circle C , then
by Lemma 5, the lines hi and h j meet only if ζi and ζ j are the endpoints of an arc
of C \ {ζ0, . . . , ζ3}. �

Lemma 7. If the roots ζ0, . . . , ζ3 do not all lie on a circle, then the map

arg ◦φ : P1
\ {ζ0, ζ1, ζ2, ζ3} → UP3

is an immersion.

Proof. Let x ∈ P1
\ {ζ0, ζ1, ζ2, ζ3}, which we consider to be a real two-dimensional

manifold. After possibly reordering the roots, the circle C1 containing x , ζ0, and ζ1

meets the circle C2 containing x , ζ2, and ζ3 transversally at x . Under the derivative
of the map arg ◦φ, tangent vectors at x to C1 and C2 are taken to nonzero vectors
(0, 0, u1, v1) and (u2, v2, 0, 0) in the tangent space to U4. Furthermore, as the four
roots do not all lie on a circle, we cannot have both u1= v1 and u2= v2, and so this
derivative has full rank two at x as a map from P1

\ {ζ0, ζ1, ζ2, ζ3} → UP3, which
proves the lemma. �

By these lemmas, there is a fundamental difference between the coamoebae of
lines when the roots of the linear forms `i are cocircular and when they are not.
We examine each case in detail. First, choose coordinates so that ζ0 =∞. After
dehomogenizing and separately rescaling each affine coordinate (e.g., identifying
UP3 with U3 and applying phase shifts to each coordinate θ1, θ2, θ3 of U3), we may
assume that the map (3) parametrizing ` is

φ : C 3 x 7→ (x − ζ1, x − ζ2, x − ζ3) ∈ C3. (4)

Suppose first that the four roots are cocircular. As z0 =∞, the other three lie on
a real line in C, which we may assume is R. That is, if the four roots are cocircular,
then up to coordinate change, we may assume that the line ` is real and the affine
parametrization (4) is also real. For this reason, we will call such lines ` real lines.
We first study the boundary of coA(`). Suppose that x lies on a contour C in the
upper half plane as in Figure 1 that contains semicircles of radius ε centered at each
root and a semicircle of radius 1/ε centered at 0 but otherwise lies along the real

ζ1 ζ2 ζ3

R

C

Figure 1. Contour in upper half plane.
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axis for ε, a sufficiently small positive number. Then arg(φ(w)) ∈ U3 is constant
on the four segments of C lying along R with respective values

(π, π, π), (0, π, π), (0, 0, π), and (0, 0, 0), (5)

moving from left to right. On the semicircles around ζ1, ζ2, and ζ3, two of the
coordinates are essentially constant (but not quite equal to either 0 or π !) while the
third decreases from π to 0. Finally, on the large semicircle, the three coordinates
are nearly equal and increase from (0, 0, 0) to (π, π, π). The image arg(φ(C))
can be made as close as we please to the quadrilateral in U3 connecting the points
of (5) in cyclic order when ε is sufficiently small. Thus, the image of the upper
half plane under the map arg ◦φ is a relatively open membrane in U3 that spans the
quadrilateral. It lies within the convex hull of this quadrilateral, which is computed
using the affine structure induced from R3 by the quotient U3

= R3/(2πZ)3.
For this, observe that its projection in any of the four coordinate directions

parallel to its edges is one of the triangles of the coamoeba of the projected line in
CP2 of Example 2, and the convex hull of the quadrilateral is the intersection of
the four preimages of these triangles.

Because ` is real, the image of the lower half plane is isomorphic to the image
of the upper half plane under the map (θ1, θ2, θ3) 7→ (−θ1,−θ2,−θ3), and so the
coamoeba is symmetric in the origin of U3 and consists of two quadrilateral patches
that meet at their vertices. Here are two views of the coamoeba of the line where
the roots are∞, −1/2, 0, and 3/2:

Now suppose that the roots ζ0, . . . , ζ3 do not all lie on a circle. By Lemma 6, the
four phase limit lines h1, . . . , h3 are disjoint, and the map from ` to the coamoeba
is an immersion. Figure 2 shows two views of the coamoeba in a fundamental
domain of UP3 when the roots are∞, 1, ζ , and ζ 2, where ζ is a primitive third
root of infinity. This and other pictures of coamoebae of lines are animated on the
website [Nisse and Sottile 2010].
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Figure 2. Two views of the coamoeba of a symmetric line.

The projection of this coamoeba along a coordinate direction (parallel to one of
the phase limit lines hi ) gives a coamoeba of a line in TP2 as we saw in Example 2.
The line hi is mapped to the interior of one triangle, and the vertices of the triangles
are the images of line segments lying on the coamoeba. These three line segments
come from the three arcs of the circle through the three roots other than ζi , the root
corresponding to hi .

Proposition 8. The interior of the coamoeba of a general line in TP3 contains
twelve line segments in triples parallel to each of the four coordinate directions.

The symmetric coamoeba we show in Figure 2 has six additional line segments,
two each coming from the three longitudinal circles through a third root of unity
and 0 and∞. Two such segments are visible as pinch points in the leftmost view
in Figure 2. We ask, What is the maximal number of line segments on a coamoeba
of a line in TP3?

4. Structure of the phase limit set

The phase limit set P∞(X) of a complex subvariety X ⊂ TN is the set of all
accumulation points of sequences {arg(xn) | n ∈N} ⊂ UN , where {xn | n ∈N} ⊂ X
is an unbounded sequence. For w ∈ N , inwX ⊂ TN is the (possibly empty) initial
scheme of X , whose ideal is the initial ideal inw I , where I is the ideal of X . Our
main result, Theorem 1, is that the phase limit set of X is the union of the coamoebae
of all its initial schemes.

Remark 9. The union of Theorem 1 is finite. By Theorem 3, inwX is nonempty
only when w lies in the cone over the logarithmic set L∞(X), which can be given
the structure of a finite union of rational polyhedral cones such that any two points
in the relative interior of the same cone σ have the same initial scheme. If we write
inσ X for the initial scheme corresponding to a cone σ , the torus T〈σ 〉 ' (C

∗)dim σ
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acts on inσ X by translation (e.g., see Corollary 13). (Here, 〈σ 〉 ⊂ N is the span
of σ ∩N , a free abelian group of rank dim σ .) This implies coA(inσ X) is a union of
orbits of coA(T〈σ 〉)= U〈σ 〉 and thus that dim(coA(inσ X))≤ 2 dim(X)− dim(σ ).

This discussion implies the following proposition:

Proposition 10. Let X ⊂ TN be a subvariety, and suppose that TX ⊂ TN is the
largest subtorus acting on X. Then dim coA(X)≤min{dim TN , 2 dim X−dim TX }.

We prove Theorem 1 in the next two subsections.

4.1. Coamoebae of initial schemes. We review the standard dictionary relating
initial ideals to toric degenerations in the context of subvarieties of TN [Gelfand
et al. 1994, Chapter 6]. Let X ⊂ TN be a subvariety with ideal I ⊂ C[M]. We
study inw I and the initial schemes inwX = V(inw I ) ⊂ TN for w ∈ N . Since
in0 I = I so that in0 X = X , we may assume that w 6= 0. As N is the lattice of one-
parameter subgroups of TN , w corresponds to a one-parameter subgroup written
as C∗ 3 t 7→ tw ∈ TN . Define X⊂ C×TN by

X := {(t, x) ∈ C∗×TN | tw · x ∈ X}. (6)

The fiber of X over a point t ∈ C∗ is t−wX . Let X be the closure of X in C×TN ,
and set X0 to be the fiber of X over 0 ∈ C.

Proposition 11. X0 = inwX.

Proof. We first describe the ideal I of X. For m ∈ M , the element ξm
∈C[M] takes

the value t 〈m,w〉 ∈ C∗ on the element tw ∈ TN , and so if x ∈ TN , then ξm takes the
value t 〈m,w〉ξm(x)= t 〈m,w〉m(x) on twx . Given a polynomial f ∈C[M] of the form

f :=
∑
m∈A

cmξ
m for cm ∈ C∗,

define the polynomial f (t) ∈ C[t, t−1
][M] by

f (t) :=
∑
m∈A

cmt 〈m,w〉ξm. (7)

Then f (t)(x) = f (twx), so I is generated by the polynomials f (t) of (7) for
f ∈ I . A general element of I is a linear combination of translates ta f (t) of such
polynomials for a ∈ Z.

If we set w( f ) to be the minimal exponent of t occurring in f (t), then

inw f =
∑

〈m,w〉=w( f )

cmξ
m,

and
t−w( f ) f (t)= inw f +

∑
〈m,w〉>w( f )

t 〈m,w〉−w( f )cmξ
m.
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This shows that I∩C[t][M] is generated by polynomials t−w( f ) f (t), where f ∈ I .
Since inw f ∈C[M] and the remaining terms are divisible by t , we see that the ideal
of X0 is generated by {inw f | f ∈ I}, which completes the proof. �

We use Proposition 11 to prove one inclusion of Theorem 1, namely that

P∞(X)⊃
⋃

w∈N\{0}

coA(inwX). (8)

Fix 0 6= w ∈ N , and let X, X, and X0 = inwX be as in Proposition 11, and let
x0 ∈ X0. We show that arg(x0) ∈P∞(X). Since (0, x0) ∈ X, there is an irreducible
curve C ⊂X with (0, x0)∈C . The projection of C ⊂C∗×TN to C∗ is dominant, so
there exists a sequence {(tn, xn) | n ∈N} ⊂ C that converges to (0, x0) with each tn
real and positive. Then arg(x0) is the limit of the sequence {arg(xn)}.

For each n ∈ N, set yn := twn · xn ∈ X . Since tn is positive and real, every
component of twn is positive and real, and so arg(yn) = arg(xn). Thus, arg(x0) is
the limit of the sequence {arg(yn)}. Since xn converges to x0 and tn converges to 0,
the sequence {yn} ⊂ X is unbounded, which implies that arg(x0) lies in the phase
limit set of X . This proves (8).

4.2. Coamoebae and tropical compactifications. We finish the proof of Theorem 1
by establishing the other inclusion,

P∞(X)⊂
⋃

w∈N\{0}

coA(inwX).

Suppose that {xn | n ∈ N} ⊂ X is an unbounded sequence. To study the accumu-
lation points of the sequence {arg(xn) | n ∈ N}, we use a compactification of X
that is adapted to its inclusion in TN . Suitable compactifications are the tropical
compactifications of Tevelev [2007] for in these the boundary of X is composed of
initial schemes inwX of X in a manner we describe below.

By Theorem 3, the cone over the logarithmic limit set L∞(X) of X is the support
of a rational polyhedral fan 6 whose cones σ have the property that all initial
ideals inw I coincide for w in the relative interior of σ .

Recall the construction of the toric variety Y6 associated with a fan 6 [Fulton
1993; Gelfand et al. 1994, Chapter 6]. For σ ∈6, set

σ∨ := {m ∈ M | 〈m, w〉 ≥ 0 for all w ∈ σ },

σ⊥ := {m ∈ M | 〈m, w〉 = 0 for all w ∈ σ }.

Set Vσ := spec C[σ∨] and Oσ := spec C[σ⊥], which is naturally isomorphic to
TN/T〈σ 〉, where 〈σ 〉⊂ N is the subgroup generated by σ∩N . The map m 7→m⊗m
determines a comodule map C[σ∨] → C[σ∨]⊗C[M], which induces the action of
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the torus TN on Vσ . Its orbits correspond to faces of the cone σ , and the smallest orbit
Oσ corresponds to σ itself. The inclusion σ⊥ ⊂ σ∨ is split by the semigroup map

σ∨ 3 m 7→
{

m if m ∈ σ⊥,
0 if m 6∈ σ⊥,

(9)

which induces a map C[M]� C[σ⊥], and thus, we have the TN -equivariant split
inclusion

Oσ ↪−→ Vσ
πσ
−−� Oσ . (10)

On orbits Oτ in Vσ , the map πσ is simply the quotient by T〈σ 〉.
If σ, τ ∈6 with σ ⊂ τ , then σ∨⊃ τ∨, so C[σ∨] ⊃C[τ∨], and so Vσ ⊂ Vτ . Since

the quotient fields of C[σ∨] and C[M] coincide, these are inclusions of open sets,
and these varieties Vσ for σ ∈6 glue together along these natural inclusions to give
the toric variety Y6 . The torus TN acts on Y6 with an orbit Oσ for each cone σ of 6.

Since V0 = TN , Y6 contains TN as a dense subset, and thus X is a (nonclosed)
subvariety. Let X be the closure of X in Y6 . As the fan 6 is supported on the
cone over L∞(X), X will be a tropical compactification of X , and X is complete
[Tevelev 2007, Proposition 2.3]. To understand the points of X \ X , we study the
intersection X ∩ Vσ , which is defined by I ∩ C[σ∨], as well as the intersection
X ∩Oσ , which is defined in C[σ⊥] by the image I (σ ) of I ∩C[σ∨] under the map
C[σ∨]� C[σ⊥] induced by (10).

Lemma 12. The initial ideal inσ I ⊂ C[M] of I is generated by I (σ ) under the
inclusion C[σ⊥] ↪→ C[M].

Proof. Let f ∈ I . Since σ is a cone in 6, we have that inσ f = inw f for all w in
the relative interior of σ . Thus, for w ∈ σ , the function m 7→ 〈m, w〉 on exponents
of monomials of f is minimized on (a superset of) the support of inσ f , and if w
lies in the relative interior of σ , then the minimizing set is the support of inσ f .
Multiplying f if necessary by ξ−m, where m is some monomial of inσ f , we may
assume that for every w ∈ σ , the linear function m 7→ 〈m, w〉 is nonnegative on the
support of f so that f ∈ C[σ∨], and the function is zero on the support of inσ f .
Furthermore, if w lies in the relative interior of σ , then it vanishes exactly on the
support of inσ f . Thus, inσ f ∈ C[σ⊥], which completes the proof. �

Since Oσ = TN/T〈σ 〉, Lemma 12 has the following geometric counterpart:

Corollary 13. By translation with inσ X/T〈σ 〉 = X ∩Oσ , T〈σ 〉 acts (freely) on inσ X.

Proof of Theorem 1. Let θ ∈ P∞(X) be a point in the phase limit set of X . Then
there exists an unbounded sequence {xn | n ∈ N} ⊂ X with

lim
n→∞

arg(xn)= θ.
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Since X is compact, the sequence {xn | n ∈N} has an accumulation point x in X . As
the sequence is unbounded, x 6∈ O0, and so x ∈ X \ X . Thus, x is a point of X ∩Oσ
for some cone σ 6= 0 of 6. Replacing {xn} by a subsequence, we may assume
that limn xn = x .

Because the map πσ of (10) is continuous and is the identity on Oσ , we have that
{πσ (xn)} converges to πσ (x)= x , and thus,

πσ (θ)= πσ
(

lim
n→∞

arg(xn)
)
= arg

(
lim

n→∞
πσ (xn)

)
= arg(x) ∈ coA(X ∩Oσ ). (11)

Corollary 13 implies that coA(X ∩ Oσ ) = coA(inσ X)/Uσ as U〈σ 〉 = arg(T〈σ 〉).
Recall that on O0, πσ is the quotient by T〈σ 〉. Thus, we conclude from (11) that
θ ∈ coA(inσ X), which completes the proof of Theorem 1 as inσ X = inwX for
any w in the relative interior of σ . �

Example 14. In [Nisse 2009], the closure of a hypersurface coamoeba coA(V( f ))
for f ∈C[M] was shown to contain a finite collection of codual hyperplanes. These
are translates of codimension-1 subtori Uσ for σ a cone in the normal fan of the
Newton polytope of f corresponding to an edge. By Theorem 1, these translated
tori are that part of the phase limit set of X corresponding to the cones σ dual to the
edges, specifically coA(inσ X). Since σ has dimension n−1, the torus Tσ acts with
finitely many orbits on inσ X , which is therefore a union of finitely many translates
of Tσ . Thus, coA(inσ X) is a union of finitely many translates of Uσ .

The logarithmic limit set L∞(C) of a curve C ⊂ TN is a finite collection of
points in SN . Each point gives a ray in the cone over L∞(C), and the components
of P∞(C) corresponding to a ray σ are finitely many translations of the dimension-1
subtorus Uσ of UN , which we referred to as lines in Section 3. These were the lines
lying in the boundaries of the coamoebae coA(`) of the lines ` in T2 and T3.
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Base change behavior of the relative
canonical sheaf related to higher

dimensional moduli
Zsolt Patakfalvi

We show that the compatibility of the relative canonical sheaf with base change
fails generally in families of normal varieties. Furthermore, it always fails if the
general fiber of a family of pure dimension n is Cohen–Macaulay and the special
fiber contains a strictly Sn−1 point. In particular, in moduli spaces with functorial
relative canonical sheaves Cohen–Macaulay schemes can not degenerate to Sn−1

schemes. Another, less immediate consequence is that the canonical sheaf of an
Sn−1, G2 scheme of pure dimension n is not S3.

1. Introduction

The canonical sheaf plays a crucial role in the classification of varieties of char-
acteristic zero. Global sections of its powers define the canonical map, which
is birational onto its image for varieties of general type with mild singularities.
The image is called the canonical model, and it is a unique representative of the
birational equivalence class of the original variety. In particular, the canonical
model can be used to construct a moduli space that classifies varieties of general
type up to birational equivalence. This moduli space Mh of stable schemes is the
higher dimensional generalization of the intensely investigated space Mg of stable
curves. In order to build Mh , it is important to understand when the canonical sheaf
behaves functorially in families, that is, when it is compatible with base change.

More precisely, to obtain a compact moduli space, in Mh , not only canonical
models are allowed, but also their generalizations, the semi-log canonical models
[Kollár 2010, Definition 15]. By definition these are projective schemes with semi-
log canonical singularities [Hacon and Kovács 2010, Definition 3.13.5] and ample
canonical bundles. The first naive definition of the moduli functor of stable schemes
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Keywords: canonical sheaf, relative canonical sheaf, dualizing complex, relative dualizing complex,

base change, depth, moduli of stable varieties.
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with Hilbert function h is then as follows. Here h : Z→ Z is an arbitrary function.

Mh(B)=

{
f : X→ B

∣∣∣∣∣
f is flat, proper, X b̄ is a semi-
log canonical model (∀b ∈ B),
h(m)= χ(ω[m]Xb

) (∀m ∈ Z, b ∈ B)

}/
∼= over B (1.0.a)

As usual, the naive definition works only in the naive cases but not in general.
More precisely, (1.0.a) is insufficient to prove the existence of a projective coarse
moduli space or a proper Deligne–Mumford stack structure on Mh; see [Kollár
2008; 2010]. In general, (1.0.a) has to be complemented with

ω
[m]
X/B

∣∣
Xb
∼= ω

[m]
Xb

for every integer m and b ∈ B. (1.0.b)

Usually (1.0.b) is referred to as Kollár’s condition (for instance, in [Hassett and
Kovács 2004, page 238]). Note also that (1.0.b) is not necessary for reduced B, but
it does add important extra restrictions when B is nonreduced.

Currently, it is not understood in every aspect why and how deeply this condition
is needed. For example it is not known if in characteristic zero it is equivalent or
not to the other possible choice, called Viehweg’s condition (see [Viehweg 1995,
Assumption 8.30; Hassett and Kovács 2004, page 238]):

There is an integer m such that ω[m]X/B is a line bundle. (1.0.c)

The starting point of this article is the m= 1 case of (1.0.b), that is, the compatibility
of the relative canonical sheaf with base change. We will try to understand how
restrictive this condition is on flat families. The results will also yield statements
about how Serre’s Sn condition behaves in families and for the canonical sheaves
of single schemes.

Recently it has been proven in [Kollár and Kovács 2010, Theorem 7.9.3] that
the relative canonical sheaf of flat families of projective schemes (over C) with
Du Bois fibers is compatible with base change. According to [Kollár and Kovács
2010, Theorem 1.4] this pertains to families with semi-log canonical fibers as well.
Furthermore, compatibility holds whenever the fibers are Cohen–Macaulay [Conrad
2000, Theorem 3.6.1].

It is important to note at this point that the m=1 case of (1.0.b) behaves differently
than the rest. For m > 1 there are examples of families of normal surfaces for which
(1.0.b) does not hold; see [Hacon and Kovács 2010, Section 14.A]. However, since
normal surfaces are Cohen–Macaulay, condition (1.0.b) with m = 1 holds for every
flat family of normal surfaces. Hence, any incompatibility can be observed only
in higher dimensions. Partly due to this fact, there has been a common misbelief,
sometimes even stated in articles, that the relative canonical sheaf is compatible with
base change for flat families of normal varieties. The question if this compatibility
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holds indeed was asked about the same time independently by János Kollár and
the author.

Question 1.1 (Kollár). Is ωX/B |Xb
∼=ωXb for every flat family X→ B of normal va-

rieties?

Here we construct examples showing that the answer is no. That is, there are
flat families of normal varieties over smooth curves such that the relative canonical
sheaves are not compatible with base change. The examples also show that the
known results are optimal in many senses. That is, the fibers of the given families
can be chosen to be S j for any n > j ≥ 2 and their relative canonical sheaves to
be Q-line bundles. The precise statement is as follows.

Theorem 1.2. For each n ≥ 3 and n > j ≥ 2 there is a flat family H→ B of S j

(but not S j+1) normal varieties of dimension n over some open set B ⊆ P1, with
ωH/B a Q-line bundle, such that

ωH/B |H0 6
∼= ωH0, (1.2.a)

(Here H0 is the central fiber of H.)
Moreover, the general fiber of H can be chosen to be smooth and the central

fiber to have only one singular point.

When j = n−1 and the general fiber is Cohen–Macaulay, somewhat surprisingly,
the incompatibility of (1.2.a) always holds. Furthermore, one can allow Sn−1 points
also in the general fibers provided the relative Sn−1 locus has a component in the
central fiber. The precise statement is as follows. (See Section 2 for the assumptions
of the article, for instance, scheme is always separated and of finite type over k = k̄,
etc.)

Theorem 1.3. If f :H→ B is a flat family of schemes of pure dimension n over a
smooth curve, such that a component of the locus

{x ∈H | x is closed, depth OH f (x),x = n− 1} (1.3.a)

is contained in the special fiber H0, then the restriction homomorphism ωH/B |H0→

ωH0 is not an isomorphism.

In particular, the contrapositive of Theorem 1.3 when the general fiber is Cohen–
Macaulay yields the following corollary.

Corollary 1.4. If f :H→ B is a flat family of schemes of pure dimension n such
that ωH/B is compatible with base change and the general fiber of f is Cohen–
Macaulay, then the central fiber of f cannot have a closed point x such that
depth OH f (x),x = n− 1.
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Corollary 1.4 has many geometric consequences with respect to building moduli
spaces with functorial relative canonical sheaves. For example, cone singularities
over abelian surfaces cannot be smoothed over irreducible bases. It also generalizes
some aspects of theorems by Kollár and Kovács [2010, Theorem 7.12] and Hassett
[2001, Theorem 1.1] stating that if all fibers are Du Bois schemes or log canonical
surfaces and the general fiber is Sk or Cohen–Macaulay, respectively, then so is the
central fiber.

Interestingly, the nonexistence of a depth n− 1 point is the strongest implication
of the compatibility of the relative canonical sheaf with base change.

Proposition 1.5. Corollary 1.4 is sharp in the sense that n− 1 cannot be replaced
by i for any i < n− 1.

Summarizing, Corollary 1.4 and Proposition 1.5 state that in moduli spaces satis-
fying Kollár’s condition, Sn−1 schemes do not appear in the irreducible components
containing Cohen–Macaulay schemes. However, S j schemes can possibly show up
for some j < n− 1.

If a scheme X is Cohen–Macaulay, which by definition means that OX is Cohen–
Macaulay, then ωX is Cohen–Macaulay as well [Kollár and Mori 1998, Corol-
lary 5.70]. One would expect that if OX is only Sn−1, then typically ωX is also Sn−1

or at least it can be Sn−1. Surprisingly the truth is quite the opposite. The following
application of Theorem 1.3 states that in certain cases an Sn−1 scheme cannot have
even an S3 canonical sheaf.

Theorem 1.6. If X is an S3,G2 scheme of pure dimension n, which has a closed
point with depth n− 1, then ωX is not S3.

The most immediate consequences of Theorem 1.6 deal with compatibility of
restriction to subvarieties. For example, one can show that on a cone X over a
Calabi–Yau threefold Y with h2(OY ) 6= 0, for an effective, normal Cartier divisor D,

ωX (D)|D ∼= ωD ⇐⇒ D does not pass through the vertex.

Or more generally, for an Sn−1, normal variety X and an effective, normal Cartier
divisor D,

ωX (D)|D∼=ωD ⇐⇒ D does not pass through any closed point with depth n− 1.

Theorem 1.6 can also be related to log canonical centers. If (X, D) is a log
canonical pair, D ∼Q −K X and ωX is not S3 at x ∈ X , then x is a log canonical
center of the pair (X, D) [Kollár 2011, Theorem 3]. Hence by Theorem 1.6, if X
is Sn−1 and (X, D) log canonical such that D ∼Q −K X , then (X, D) has a log-
canonical center at all closed points with depth n− 1. This statement is of course
obvious if we know that the depth n− 1 closed points are already log-canonical
centers of X . However, that is not always the case. For example, let X be the
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cone, with high enough polarization, over the product Y of a K3 surface with the
projective line and let D be the cone over an anti canonical divisor of Y . Then,
(X, D) is log-canonical, X is Sn−1 and the cone point is the only closed point with
depth n− 1; see Lemma 4.3. Still, the vertex is not a log-canonical center of X ,
because K X is not Q-Cartier.

Theorem 1.6 raises the following question as well.

Question 1.7. Is it true that if X is a pure n-dimensional scheme such that OX is
Sl , but not Sl+1, and ωX is S j , but not S j+1, for some j, l < n, then j + l ≤ n+ 1?

Remark 1.8. By the methods of Section 4, the answer to Question 1.7 is positive
if X is a cone over a smooth projective variety.

There are a couple of intuitive reasons for the failure of compatibility in (1.2.a).
First, compatibility holds for the relative dualizing complex if the base is smooth
by Proposition 3.3.(1). Hence ωH/B is a nonfunctorial component, the −n-th
cohomology sheaf, of the functorial object ω•H/B . For example, by the proof of
Theorem 1.3, if the general fiber is Cohen–Macaulay and the central fiber is Sn−1,
the restriction homomorphism fits into an exact sequence as follows, with a nonzero
term on the right.

0→ ωH/B |Xb → ωHb → Tor 1
(h−(n−1)(ω•H/B),OH0)→ 0 (1.8.a)

This shows in a precise way how the functoriality might be destroyed by passing to
the lowest cohomology sheaf of ω•H/B .

Another explanation for the incompatibility (1.2.a) is that H0 is too singular.
Using stable reduction one may find a replacement for H0 with the mildest possible
singularities. The reduction steps consist of blow-ups, finite surjective normalized
base changes and contractions on the total space of the family. The output is a family,
the relative canonical sheaf of which is compatible with base change by [Kollár
and Kovács 2010]. At the end of the article, we also present the stable reduction
of our construction using a straightforward ad hoc method. The algorithmic, and
lengthy, method can be found in the preprint version of the article.

In Section 3, we start with a short background overview on the base-change
properties of relative dualizing complexes and relative canonical sheaves. The
proofs of the main theorems can be found in Section 6 and Section 7. Some of these
results are based on the existence of projective cones with appropriately chosen
singularities. In Section 4 we give a cohomological characterization of when certain
sheaves on a cone are Sd . Then in Section 5 we use this characterization to give the
desired examples of projective cones. In Section 8 we compute the stable limit of
our construction.

http://arxiv.org/abs/1005.5207
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2. Notation and assumptions

Unless otherwise stated, scheme means a separated scheme of finite type over a
fixed field k of characteristic zero and every morphism is separated. A variety is
an integral scheme. A projective or quasiprojective scheme means a projective or
quasiprojective scheme over k. A curve is a quasiprojective, integral scheme of
dimension one. If Y is a subscheme of X , then IY,X is the ideal sheaf of Y in X .
If IY,X is a line bundle (that is, a locally free sheaf of rank one), then we define
OX (−Y ) := IY,X and OX (Y ) := OX (−Y )−1. Notice that IY,X being a line bundle
is equivalent to Y being defined around every point P by a single nonzero divisor
element of OX,P .

A hypersurface of a quasiprojective scheme X ⊆ PN is a subscheme H ⊆ X
defined by a section of OX (d) for some d > 0. If H and H ′ are hypersurfaces
of a quasiprojective scheme X ⊆ PN , defined by f0 and f∞ ∈ H 0(PN ,OPN (d)),
respectively, then the pencil generated by H and H ′ is the subscheme H⊆ X ×P1

defined by the section f0t0+ f∞t1 of H 0(X ×P1,O(d, 1)). Here t0 and t1 are the
usual parameters of P1, and f0 and f∞ are viewed as elements of H 0(X,OX (d))
via the natural homomorphism H 0(PN ,OPN (d))→ H 0(X,OX (d)).

For a complex C• of sheaves, hi (C•) is the i-th cohomology sheaf of C. For a
morphism f : X→Y , ω•X/Y := f !OY , where f ! is the functor obtained in [Hartshorne
1966, Corollary VII.3.4.a]. If f has equidimensional fibers of dimension n, then
ωX/Y := h−n(ω•X/Y ). Every complex and morphism of complexes is considered
in the derived category D(qc/ · ) of quasicoherent sheaves up to the equivalences
defined there. If Z is a closed subscheme of X , where ι : Z→ X is the embedding
morphism, then the map Rι∗ ∼= ι∗ identifies D(qc/Z) with a full subcategory of
D(qc/X). We use this identification at multiple places, equating C• and Rι∗C

•

for every C• ∈ D(qc/Z). If Z is a closed subscheme of a scheme X , then ( · )|LZ
denotes the derived restriction functor, which is naturally isomorphic to · ⊗L OZ

via the identification mentioned above. A line bundle is a locally free sheaf of rank
one.

If X → B is a morphism of schemes, then Xb is the scheme theoretic fiber of
X over B. If a sheaf F on X is given, then Fb := F|Xb . The dimension dimX P
of a point P ∈ X is the dimension of its closure in X . The acronym slc stands for
semi-log canonical [Hacon and Kovács 2010, Definition 3.13.5].

The depth of a coherent sheaf F at a point x ∈ X is by definition the depth of
Fx with respect to the maximal ideal m X,x at x and is denoted by depth Fx . The
depth of a scheme X at x is depth OX,x . A coherent sheaf F is Sd on X if for every
x ∈ X ,

depth Fx ≥min{d, dim OX,x}. (2.0.b)
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Note that there is an ambiguity in the literature about the definition of Sd sheaves.
Many sources replace OX,x in (2.0.b) by Fx , thus gaining a weaker notion. Since
every sheaf of this article has full support, or equivalently every sheaf is considered
over its support, the two definitions are equivalent for all cases considered here.
Hence, we decided to include the stronger notion, but the reader should feel free to
think about the other one as well. For a morphism f : X→ B, F is relative Sd if
F|Xb is Sd for all b ∈ B. The word (relative) Cohen–Macaulay is a synonym for
(relative) Sdim X .

A scheme X is Gr for some r ≥ 0 if it is Gorenstein in codimension r . A point
P ∈ X is an associated point of a coherent sheaf F if m X,P is the annihilator of
some element of FP . An associated component of a coherent sheaf is the closure of
an associated point. One can show that if Q ∈ X , FQ 6= 0 and P is the set of prime
ideals of OX,Q corresponding to generalizations of Q that are associated points of
F, then ⋃

P∈P

P = {x ∈ OX,Q | there exists 0 6= m ∈ FQ with xm = 0}

Consequently, if s is a section of a line bundle, then it does not vanish on any
associated component of X (that is, of OX ) if and only if sP is not a zero divisor
for every P ∈ X . That is, if H is the subscheme of X cut out by s, then IH,X is a
line bundle if and only if s does not vanish on any associated component of X .

For an S2, G1 scheme and an arbitrary coherent sheaf F, the n-th reflexive power
is

F[n] :=

{
(F⊗n)∗∗ if n ≥ 0,
(F⊗(−n))∗ if n < 0.

That is, it is the reflexive hull of the n-th tensor power. A coherent sheaf F is a
Q-line bundle if F[n] is a line bundle for some n > 0. Note that if f : X → B is
a family with ωXb a Q-line bundle for all b ∈ B, then ωX/B is not necessarily a
Q-line bundle [Hacon and Kovács 2010, Section 14.A]. However, if the Xb are S2,
G1 schemes and ωX/B a Q-line bundle then ωXb is a Q-line bundle for all b ∈ B;
see [Hassett and Kovács 2004, Lemma 2.6].

3. Background on base change for dualizing complexes

This section contains a general overview on the base change properties of relative
dualizing complexes and relative canonical sheaves. For experts, some of the
statements might be well known, but they are included here for completeness and
easier reference. Readers more interested in geometric arguments and willing to
accept the statements of this section without proof should feel free to skip to the
next section.
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Recall that the relative dualizing complex ω•X/B of a quasiprojective family
f : X→ B is defined as f !OB . Here f ! is the functor constructed in [Hartshorne

1966, Corollary VII.3.4.a]. The following technical point should be noted here.

Remark 3.1. There is also another definition of f ! in [Neeman 1996] as the right
adjoint of R f∗. The two definitions coincide for proper morphisms by [Hartshorne
1966, Theorem VII.3.3; Neeman 1996, Section 6], but not in general. For example,
if X is smooth affine variety over B = Spec k and f is the structure map, then
Hartshorne’s definition of f !OSpec k lives in cohomological degree − dim X while
Neeman’s is in cohomological degree zero. See [Lipman and Hashimoto 2009,
Part I, Exercise 4.2.3.d] for more details on the differences (Neeman’s f ! is denoted
f × there). We use Hartshorne’s definition in this article.

The dualizing complex of a single scheme Y is ω•Y := ω
•

Y/Spec k . The following
fact is needed in the proof of Proposition 3.3(11). It follows from the invariance of
the length of maximal regular sequences [Bruns and Herzog 1993, Theorem 1.2.5].

Fact 3.2. Let P be a point of a subscheme H of a scheme X such that (IH,X )P is a
line bundle, d is an integer, and F is a coherent S1 sheaf with full support (that is,
supp F= X ) on X.

(1) depth FP ≥ d ⇐⇒ depth(F|H )P ≥ d−1 (here F|H is regarded as a sheaf
on H , not on X ),

(2) depth FP ≥min{d, dim OX,P} ⇐⇒ depth(F|H )P ≥min{d−1, dim OH,P}.

Proposition 3.3. Suppose we have a flat family f : H→ B of schemes of pure
dimension n over a smooth base, a point 0 ∈ B and a single quasiprojective scheme
X of pure dimension n.

(1) There is an isomorphism

ω•H/B |
L
H0
∼= ω

•

H0
. (3.3.a)

(2) Fixing any isomorphism in (3.3.a) yields natural homomorphism

ωH/B |H0 → ωH0 . (3.3.b)

(3) If B is of pure dimension d with OB ∼= ωB , then ω•H/B
∼= ω•H[−d].

(4) If V ⊆ X is any open set, then ω•V ∼= ω
•

X |V .

(5) If U ⊆H is any open set, then ω•U/B
∼= ω•H/B |U .

(6) If P ∈ X is a point, then depthP OX = d if and only if hi (ω•X )P is zero for
i >−d − dimX P and nonzero for i =−d − dimX P.

(7) If P ∈H is a point, then depthP OH f (P) = d if and only if hi (ω•H/B)P is zero for
i >−d − dimH f (P) P and nonzero for i =−d − dimH f (P) P.
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(8) ωX is S2.

(9) ωH/B is S2.

(10) If the fibers of f are Cohen–Macaulay then ωH/B ∼= ω
•

H/B and consequently
(3.3.b) is an isomorphism.

(11) If H0 is S2 and G1, then (3.3.b) is isomorphism if and only if

depthωH/B,P ≥min{3, dim OH,P} for every P ∈H0. (3.3.c)

Furthermore if (3.3.c) is not satisfied then not only is (3.3.b) not an isomor-
phism, but ωH/B |H0 6

∼= ωH0 .

Proof. First, we prove point (1). It will be an ad hoc proof, since we have not found
the exact statement in the literature. The statements we found are either only for
flat base change morphisms [Hartshorne 1966, Corollary VII.3.4.a] or for proper f
[Lipman and Hashimoto 2009, Part I, Corollary 4.4.3]. Note that, however, it might
seem that point (1) follows from base change for proper f , to the best knowledge
of the author, it is not clear whether one can compactify a flat morphism to a flat
morphism.

First, by [Hartshorne 1966, Corollary VII.3.4.a], ω•H/B is compatible with flat
base change. So, since Spec ÔB,0 is flat over B, we may assume that B is the
spectrum of a complete local ring of a smooth scheme and 0 is the unique closed
point. In particular, then B ∼= Spec k[[x1, . . . , xm]]. Hence, by induction on m, it is
enough to prove that

ω•H/B |Y
∼= ω

•

Y/C , (3.3.d)

where C :=Spec k[[x1, . . . , xm−1]] and Y :=H×B C . To prove (3.3.d), first consider
the usual exact triangle

OH
µ
−→ OH→ OY

+1
−→ , (3.3.e)

where µ is multiplication by xm . Tensoring (3.3.e) by ω•H/B yields

ω•H/B

µ⊗idω•H/B
−−−−−−→ ω•H/B→ ω•H/B |

L
Y
+1
−→ . (3.3.f)

On the other hand, applying RHom( · , ω•H/B) and a rotation to (3.3.e) yields

ω•H/B

µ⊗idω•H/B
−−−−−→ ω•H/B→RHom(OY , ω

•

H/B)[1]
+1
−→ . (3.3.g)

So, (3.3.f) and (3.3.g) together imply that

RHom(OY , ω
•

H/B)[1] ∼= ω
•

H/B |Y . (3.3.h)
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Denote by ι and g the maps Y→ X and Y→C , respectively. The following stream
of isomorphisms finishes then the proof of point (1).

ω•H/B |Y
∼=RHom X (Rι∗OY , ω

•

H/B)[1]︸ ︷︷ ︸
by (3.3.h)

∼=RHomY (OY , ι
!ω•H/B)[1]︸ ︷︷ ︸

by Grothendieck duality

∼= ι
!ω•H/B[1]! ∼= ι! f !OB[1]︸ ︷︷ ︸

definition of ω•H/B

∼= i ! f !ω•B[−(m− 1)]︸ ︷︷ ︸
ω•B [−m]∼=OB

∼= ω
•

Y [−(m− 1)]︸ ︷︷ ︸
ω•Y
∼=( f ◦ι)!ω•B

∼= g!ω•C [−(m− 1)]︸ ︷︷ ︸
ω•Y
∼=g!ω•C

∼= g!OC︸ ︷︷ ︸
ω•C [−(m−1)]∼=OC

∼= ω
•

Y/C .

To prove point (2), notice that sinceωH/B :=h−n(ω•H/B) is the lowest cohomology
sheaf of ω•H/B , there is a homomorphism

ωH/B[n] → ω•H/B . (3.3.i)

Applying ( · )|LH0
to (3.3.i) and then composing with the isomorphism given by (3.3.a)

yields a homomorphism

ωH/B[n]|LH0
→ ω•H0

. (3.3.j)

Finally taking −n-th cohomology sheaves of (3.3.j) yields the restriction homomor-
phism of (3.3.b).

Point (3) is shown by the following line of isomorphisms:

ω•H/B = f !OB ∼= f !ωB ∼= f !ω•B[−d] ∼= ω•H[−d].

To prove point (4), consider the following commutative diagram.

V
j //

ν

""

X

µ

��
Spec k

Since j is smooth of relative dimension 0, using the notation of [Hartshorne 1966],
we have j ! ∼= j# ∼= j∗, and then

ω•V = ν
!OSpec k ∼= j !µ!OSpec k ∼= j !ω•X ∼= j∗ω•X = ω

•

X |V .

Point (5) follows from points (4) and (3).



Base change behavior of the relative canonical sheaf 363

Point (6) is proved in [Kovács 2011, Proposition 3.2] (by taking F := OX ). To
prove point (7), let b := f (P) and consider the following Cartesian square.

H

f
��

H′
λ′

oo

f ′

��
B Spec OB,b

λ
oo

By flat base change,

(λ′)∗ω•H/B
∼= ω

•

H′/Spec OB,b
. (3.3.k)

That is,

hi (ω•H/B)P ∼= hi (ω•H′/Spec OB,b
)P︸ ︷︷ ︸

by (3.3.k)

∼= hi (ω•H′[− dim OB,b])P︸ ︷︷ ︸
by point (3)

∼= hi−dim OB,b(ω•H′)P .

Hence,

hi (ω•H/B)P is
{

0 if i >−d − dimHb P,
6= 0 if i =−d − dimHb P.

KS

��

hi (ω•H′)P is
{

0 if i >−d − dimHb P − dim OB,b,

6= 0 if i =−d − dimHb P − dim OB,b.KS

��
depthP OH′ = d + dim OB,bKS

(by Fact 3.2)
��

(depthP O(H′) f (P) =) depthP OH f (P) = d.

To prove point (8), by point (4) we may assume that X is affine. Using point
(4) again we may also assume that it is projective. Then [Kollár and Mori 1998,
Corollary 5.69] concludes the proof of point (8). Point (9) is a consequence of point
(8) and point (3). Point (10) is shown in [Conrad 2000, Theorem 3.5.1].

To prove point (11), notice that by point (8), ωH0 is S2. Also since H0 is G1, using
point (10), the homomorphism ωH/B |H0→ωH0 is isomorphism in codimension one.
Then by [Hartshorne 1994, Theorem 1.9 and Theorem 1.12], using that H0 is S2

and G1, ωH/B |H0 → ωH0 is an isomorphism if and only if ωH/B |H0 is S2. Finally,
by Fact 3.2(2), this is equivalent to (3.3.c).
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Notice that if (3.3.c) is not satisfied, then ωH/B |H0 is not S2 over H0. Hence in
this case not only can (3.3.b) not be isomorphism, but any isomorphism between
ωH/B |H0 and ωH0 is impossible. �

Remark 3.4. A priori, saying that (3.3.b) is an isomorphism is a stronger state-
ment than that ωH/B |H0 is isomorphic to ωH0 . However, if B is smooth, H0 is
projective, S2 and G1, they are equivalent by the following argument. In this
case ωH0 is S2 and is a line bundle over the Gorenstein locus U . Assume that
ωH/B |H0

∼= ωH0 via an arbitrary isomorphism α. Then ωH/B |H0 is also S2 and
a line bundle over U . Since both are S2, homomorphisms ωH/B |H0 → ωH0 are
determined in codimension one, e.g., over U . Furthermore, any two isomorphisms
over U between any two line bundles differ by multiplication with an element of
H 0(U,OH0), where H 0(U,OH0)

∼= k∗, by H0 being S2 and projective. Since the
restriction of the natural morphism β :ωH/B |H0→ωH0 over U is an isomorphism, α
differs from β over U by a multiplication with an element of k∗. However, then the
same is true over entire X , by the codimension one determination. Hence β is also
an isomorphism.

Finally, we conclude with a statement about restriction behavior of relative
dualizing complexes and relative canonical sheaves to hypersurfaces. For that we
also need a lemma about flatness of hypersurfaces.

Lemma 3.5. If f : X→ B is a flat morphism onto a smooth curve and H⊆ X is a
subscheme for which IH,X is a line bundle, then the following are equivalent:

(1) IHb,Xb is a line bundle for every b ∈ B.

(2) H is flat over B.

In particular, if f : X→ B is flat with fibers of pure dimension n and H⊆ X is also
flat with IH,X a line bundle, then fibers of H are of pure dimension n− 1.

Proof. We prove only the equivalence statement, since the addendum follows from
the ideals IHb,Xb being line bundles.

The statement is local on H. So, fix P ∈H and let Q := f (P). By [Hartshorne
1977, Proposition 9.1A.a], H and X are flat over B at P if and only if the respective
homomorphisms OH,P → OH,P and OX,P → OX,P induced by multiplication with
some power of the local parameter t of OB,Q are injective. Furthermore, by induction
this is equivalent to the injectivity of multiplication with the first power t .

The assumptions of the lemma state that (IH,X)P ⊆ OX,P is generated by a
nonzero divisor element s. Hence there is a commutative diagram with exact rows
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and columns as follows.

0 0

0 // ker( · s) // OXQ ,P
·s //

OO

OXQ ,P

OO

0 // OX,P
·s //

OO

OX,P
·s //

OO

OH,P // 0

0 // OX,P
·s //

·t

OO

OX,P
·s //

·t

OO

OH,P //

·t

OO

0

0

OO

0

OO

ker( · t)

OO

0

OO

By the snake lemma applied vertically, ker( · t)= ker( · s). In particular, ker( · t)= 0
if and only if ker( · s) = 0. The former is equivalent to flatness of H→ B at P
while the latter is equivalent to IHQ ,XQ being a line bundle at P . �

Proposition 3.6. If X→ B is a flat family of pure n-dimensional schemes, and
H⊆ X a flat subscheme such that IH,X is a line bundle, then

(1) there is an isomorphism

ω•X/B(H)|
L
H[−1] ∼= ω•H/B, (3.6.a)

(2) there is a homomorphism

ωX/B(H)|H→ ωH/B, (3.6.b)

which is isomorphism over the relative Cohen–Macaulay locus of H→ B.

Proof. Notice first that by Lemma 3.5, H has equidimensional fibers and hence
ωH/B is defined indeed. To prove point (1), consider the exact sequence

0→ OX→ OX(H)→ OH(H)→ 0. (3.6.c)

Applying ( · )⊗L ω•X/B to (3.6.c) and then translating yields the exact triangle

ω•X/B(H)|
L
H[−1] → ω•X/B→ ω•X/B(H)

+1
−→ . (3.6.d)
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On the other hand if ι :H→ X is the embedding morphism, then

ω•H/B
∼= ι
!ω•X/B = RHomH(OH, ι

!ω•X/B)
∼= RHomX(OH, ω

•

X/B)︸ ︷︷ ︸
by Grothendieck duality

.

Now, applying RHomX( · , ω
•

X/B) to the twist of (3.6.c) by OX(−H) yields the exact
triangle

ω•H/B
∼= RHomX(OH, ω

•

X/B)→ ω•X/B→ ω•X/B(H)
+1
−→ . (3.6.e)

Putting together (3.6.d) and (3.6.e) finishes the proof of point (1).
To prove (2), take the natural map ωX/B[n] → ω•X/B , twist it with OX(H) and

then restrict to H. This yields the commutative diagram

ωX/B[n− 1](H)|LH //
**

ω•X/B(H)[−1]|LH ∼=︸︷︷︸
by point (1)

// ω•H/B (3.6.f)

Applying then h−(n−1)( · ) to the long composition arrow of (3.6.f) yields the homo-
morphism (3.6.b).

Let P be a point of H that is relatively Cohen–Macaulay over B, and let b be the
image of P in B. By the openness of the relative Cohen–Macaulay locus, there is a
neighborhood U of P where X→ B is relatively Cohen–Macaulay. In particular,
then ωX/B[n− 1] → ω•X/B[−1] is an isomorphism over U by Proposition 3.3(10)
and hence so is the first arrow of (3.6.f). This proves that (3.6.b) is an isomorphism
in a neighborhood of P , which finishes the proof of point (2) as well. �

Remark 3.7. The homomorphisms constructed in Propositions 3.3 and 3.6, for
example the isomorphisms (3.3.a) and (3.6.a), are not canonical in any sense.

4. Serre’s condition on projective cones

In this section we consider sheaves on projective cones that are isomorphic to
pullbacks from the base outside the vertex. Lemma 4.3 gives a cohomological
description of when such sheaves are Sd . Before that we also need a short lemma,
Lemma 4.2, about how the property Sd pulls back in flat relatively Cohen–Macaulay
families.

We cite the following fact separately here, because it is used at many places
throughout the article, including the aforementioned Lemma 4.2.

Fact 4.1 [Grothendieck 1965, Proposition 6.3.1]. Let X and Y be two noetherian
schemes, f : X→ Y a flat morphism, P ∈ X arbitrary and F a coherent Y module.
In this situation,

depthOX,P
( f ∗F)P = depthOY, f (P)

F f (P)+ depthOX f (P),P
OX f (P),P .
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Lemma 4.2. If G is a full-dimensional coherent Sd sheaf on the scheme X , and
f : X→ X is a flat, relatively Cohen–Macaulay family, then F := f ∗G is Sd as
well.

Proof. For every x ∈ X ,

depth Fx = depth G f (x)+ depth OX f (x),x︸ ︷︷ ︸
Fact 4.1

= depth G f (x)+ dim OX f (x),x︸ ︷︷ ︸
X f (x) is Cohen–Macaulay

≥min{d, dim OX, f (x)}+ dim OX f (x),x︸ ︷︷ ︸
G is Sd

≥min{d, dim OX, f (x)+ dim OX f (x),x}

= min{d, dim OX,x}︸ ︷︷ ︸
dim OX, f (x)+dim OX f (x),x=dim OX,x

by [Matsumura 1989, Theorem 15.1.ii].

�

Lemma 4.3. Assume that we are in the following situation:

• Y is a projective scheme,

• X is the projectivized cone over Y ,

• P is the vertex of X and V := X \ P ,

• d is an integer such that 2≤ d ≤ dim X , and

• F is a coherent sheaf on X , such that F|V = π
∗G for some Sd coherent sheaf

G on Y , where π : V → Y is the natural projection.

Then the following conditions are equivalent:

(1) depth FP ≥ d.

(2) depth FP ≥min{d, dim OX,P}.

(3) F is Sd .

(4) F is S2 and H i (Y,G(n))= 0 for all 0< i < d − 1 and n ∈ Z.

Proof. Since G is Sd , F is Sd everywhere except at the vertex P by Lemma 4.2.
Hence, using the assumption d ≤ dim X ,

F is Sd ,KS

��
depth FP ≥min{d, dim OX,P}KS

��
depth FP ≥ d

KS

��
H i

P(Z ,F)= 0 for all i < d and for the affine cone Z ,
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where the latter equivalence follows from [Hartshorne 1977, Exercises III.3.4.b and
III.2.5]. So, we are left to show that the condition H i

P(Z ,F) = 0 for all i < d is
equivalent to point (4). Define U := Z \ P . Then there is a long exact sequence

· · · → H i
P(Z ,F)→ H i (Z ,F)→ H i (U,F)→ · · · .

Since Z is affine H i (Z ,F)= 0 for all i > 0. Hence

H i (U,F)∼= H i+1
P (Z ,F) for all i > 0. (4.3.a)

So, since H 0
P(Z ,F)= H 1

P(Z ,F)= 0 is assumed in point (4), it is enough to show
that for all 0< i < d − 1,

H i (U,F)∼=
⊕
n∈Z

H i (Y,G(n)). (4.3.b)

In fact we will prove this for all i . First, notice that U ∼= SpecY (
⊕

n∈Z OY (n)) and
the natural projection SpecY (

⊕
n∈Z OY (n))→ Y can be identified with π |U via this

isomorphism. Hence (π |U )∗OU ∼=
⊕

n∈Z OY (n) and Ri (π |U )∗OU = 0 for i > 0. So:

H i (U,F)∼= H i (Y, (π |U )∗F|U )∼= H i (Y, (π |U )∗(π |U )∗G)∼=
∼= H i (Y,

⊕
n∈Z

G(n))∼=
⊕
n∈Z

H i (Y,G(n))

as claimed in (4.3.b). �

5. Construction of varieties with prescribed singularities

In this section, normal S j (but not S j+1) varieties of dimension n ≥ 3 with Sl (but
not Sl+1), Q-line bundle canonical sheaves are constructed for certain values of j
and l. They are going to be used in Section 6 and in Section 7 to build families
with prescribed base change behavior for the relative canonical sheaves. First we
need some lemmas.

Lemma 5.1. If H is a general, high enough degree hypersurface in a projective
variety X , then H i (H,OH )∼= H i (X,OX ) for every i such that 0< i < dim H.

Proof. We start with the usual exact sequence

0→ OX (−H)→ OX → OH → 0. (5.1.a)

Since deg H � 0,

H i (X,OX (−H))= 0 whenever i < dim X. (5.1.b)

Taking the cohomology long exact sequence of (5.1.a) and using (5.1.b) finishes
the proof. �

Iterated use of Lemma 5.1 yields the following:
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Lemma 5.2. If H is a general, high enough degree complete intersection (that is,
it is the intersection of hypersurfaces, all of which are high enough degree) in a
smooth projective variety X , then H i (H,OH ) ∼= H i (X,OX ) for every i such that
0< i < dim H.

Finally, iterated use of the adjunction formula yields the following:

Lemma 5.3. If H is a complete intersection in a smooth projective variety X , then
ωH ∼= ωX (m)|H for some m > 0 (here OX (1) is the very ample line bundle given by
the projective embedding of X ).

Proposition 5.4. For each n ≥ 2 and 2≤ d, l ≤ n such that l ≤ d and d+ l ≤ n+2
there is an (n+1-dimensional projective variety Xn+1 for which

• Xn+1 is the projective cone over a smooth projective variety Yn with vertex P ,

• Xn+1 is Sd and depth OXn+1,P = d ,

• ωXn+1 is Sl and depthωXn+1,P = l, and

• ωXn+1 is a Q-line bundle.

Proof. Take first two Calabi–Yau hypersurfaces Z and W of dimensions d − 1 and
n + 1− l, respectively. Let Y := Yn be a general high enough degree complete
intersection of codimension d − l in Z ×W . Notice that d − l ≥ 0 by assumption.
Finally, let Xn+1 be the projective cone over Y polarized by OY (1) := OZ×W (p)|Y
for some p� 0 (after fixing Y ). Here OZ×W (1) is the very ample line bundle on
Z ×W coming from its projective embedding.

The Künneth isomorphism yields

Hq(Z ×W,OZ×W )∼=

q⊕
r=0

H r (Z ,OZ )⊗ Hq−r (W,OW ).

Since Z and W are Calabi–Yau hypersurfaces of dimension d − 1 and n+ 1− l,
respectively, the following holds for their cohomology table:

Hq(Z ,OZ ) 6= 0 ⇐⇒ q = 0 or d − 1,

H s(W,OW ) 6= 0 ⇐⇒ s = 0 or n+ 1− l.

Hence

Hq(Z × E,OZ×E) 6= 0 ⇐⇒ q = 0, d − 1, n+ 1− l or n− l + d.

Using Lemma 5.2 yields, for 0< q < n,

Hq(Y,OY ) 6= 0 ⇐⇒ q = d − 1 or n+ 1− l. (5.4.a)

Since p� 0, also,

Hq(Y,OY (r))= 0 for every r and 0< q < n.
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Then by Lemma 4.3 using that d − 1 ≤ n + 1 − l by assumption, Xn+1 is Sd

and depth OXn+1,P = d (Xn+1 is S2 at the vertex, because p � 0 and hence Y is
projectively normal).

Serre duality implies that

Hq(Y, ωY )∼= (H n−q(Y,OY ))
∗.

So, by (5.4.a), for 0< q < n,

Hq(Y, ωY ) 6= 0 ⇐⇒ q = l − 1 or n+ 1− d.

Since Xn+1 is an affine bundle over Y , ωXn+1 is isomorphic to the pullback of ωY

outside of the vertex. Then by Lemma 4.3 using that l − 1≤ n+ 1− d , ωXn+1 is Sl

and depthωXn+1,P = l (ωXn+1 is always S2 by Proposition 3.3(8)).
We have left to show that the ωXn+1 are Q-Cartier. By Lemma 5.3,

ω
⊗p
Y
∼= (ωZ×E(m)|Y )⊗p ∼= (OZ×E(m)|Y )⊗p ∼= OY (m).

That is, ω⊗p
Y is an integer multiple of the polarization of Y used at the construction

of Xn+1. Hence, [Hacon and Kovács 2010, Exercise 3.5] concludes the proof. �

6. Construction of families without the base change property

In this section we present the proof of Theorem 1.2. The following lemma contains
the key argument. It is also used in the proofs of Proposition 1.5 and Theorem 1.6.

Lemma 6.1. Let f : H→ B = P1 be a flat pencil of hypersurfaces of a quasi-
projective, equidimensional scheme X , such that IH,X×B is a line bundle and H

and the closed fibers of f are S2 and G1.

(1) If ωX is S3, the restriction map ωH/B |H0 → ωH0 is an isomorphism.

(2) If depthωX,P 6≥ min{3, dim OX,P} for some P ∈ X , such that P ∈ H0, but
P 6∈H∞, then ωH/B |H0 6

∼= ωH0 .

Proof. Notice that by flatness of H and by Lemma 3.5, it does make sense to
talk about ωH/B . Define X := X × B. Then H is a hypersurface of X. By
Proposition 3.6.(2) there is a homomorphism ωX/B(H)|H → ωH/B , which is an
isomorphism in codimension one, over the Gorenstein locus of H. Fix this homo-
morphism for the course of the proof.

Now, we show point (1). If ωX is S3, then so is ωX/B ∼= p∗1ωX by Lemma 4.2.
Hence, by Fact 3.2.(2), ωX/B(H)|H is S2. Then, since ωH/B is S2 by Proposition
3.3(9), ωX/B(H)|H→ ωH/B is an isomorphism everywhere by [Hartshorne 1994,
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Theorems 1.9 and 1.12]. However, for every P ∈ X0,

depthωX/B,P = depthωX,p1(P)+ 1︸ ︷︷ ︸
Fact 4.1, applied to ωX/B ∼= p∗1ωX

≥min{3, dim OX,p1(P)}+ 1︸ ︷︷ ︸
ωX is S3

=min{4, dim OX,P}. (6.1.a)

But then, for every P ∈H0,

depthωH/B,P = depth(ωX/B(H)|H)P︸ ︷︷ ︸
ωH/B∼=ωX/B(H)|H

≥min{3, dim OH,P}︸ ︷︷ ︸
Fact 3.2.(2) and (6.1.a)

,

which implies point (1) by Proposition 3.3(11).
To prove point (2), denote by U the open set p−1

1 (X \ (H0 ∩H∞))⊆ X. This is
the set of points, the first coordinates of which are not contained in every element
of the pencil H→ B. By Proposition 3.3(4) and 3.3(5), we may replace X by U ,
or with other words, X by X \ (H0∩H∞). In particular, then H0∩H∞ =∅ and P
is an arbitrary point of H0, such that

depthωX,P 6≥min{3, dim OX,P}. (6.1.b)

Then all fibers of the projection p1|H :H→ X have dimension zero. So, for every
Q ∈H,

depthωX/B,Q = depthωX,p1(Q)+ 1︸ ︷︷ ︸
Fact 4.1, applied to ωX/B ∼= p∗1ωX

≥min{2, dim OX,p1(Q)}+ 1︸ ︷︷ ︸
Proposition 3.3.(8)

=min{3, dim OX,Q}.

Then, repeating the argument of the previous paragraph ωX/B(H)|H ∼= ωH/B . Also,
at the fixed P ∈H0, the following computation estimates the depth more precisely.

depthωX/B,P = depthωX,P + 1︸ ︷︷ ︸
Fact 4.1, applied to ωX/B ∼= p∗1ωX

6≥min{3, dim OX,P}+ 1︸ ︷︷ ︸
(6.1.b)

=min{4, dim OX,P} (6.1.c)

However, then

depthωH/B,P = depth(ωX/B(H)|H)P︸ ︷︷ ︸
ωH/B∼=ωX/B(H)|H

6≥min{3, dim OH,P}︸ ︷︷ ︸
by Fact 3.2.(2)

,

which concludes the proof by Proposition 3.3(11). �
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Remark 6.2. The condition of IH,X being a line bundle in Lemma 6.1 might look
superfluous at first sight, since H is a hypersurface in X. However, according to
Section 2, the latter only means that H is the zero locus of some special section of
a line bundle. That is, H or Hb for some b ∈ B could contain an entire irreducible
component of X or Xb, respectively. Then Proposition 3.6 would not apply. Such
situations should definitely be avoided.

The following is the main construction to which Lemma 6.1 is applied in this
section.

Construction 6.3. Consider a projective cone X over a variety Y . Let P be the
vertex of X . Take two hypersurfaces in X . The first one H is a projective cone
over a degree d generic hypersurface D of Y . The second one H̃ is a general
degree d hypersurface of X . Denote by H→ B the pencil generated by H and H̃
(for which H = H0 and H̃ = H∞). Throughout the paper we allow ourselves to
replace this family by its restriction to a small enough open neighborhood of 0 ∈ B.
Furthermore, when we compute stable reduction in Section 8, we will assume that
d � 0.

Lemma 6.4. In the situation of Construction 6.3, if X is S3 and Y is R1, then

(1) H and the closed fibers of f are normal varieties,

(2) IH,X×B is a line bundle,

(3) f is flat.

Proof. We use the notation X := X × B. Since Y is a variety (that is, integral), so
are D, X , X, H0 and H∞. By the definition of a pencil, H is defined by a single
nonzero equation locally on X. So, since X is integral, point (2) follows. Similarly,
for every b ∈ B, Hb is defined locally by a single nonzero equation locally. Hence
by integrality of X , IHb,Xb is also a line bundle for every b ∈ B. Thus, Lemma 3.5
yields point (3).

To prove point (1), note that X is S3 by Lemma 4.2 and by the assumption of
the lemma. So, by Fact 3.2, H and the closed fibers of H are S2. (Remember,
in Construction 6.3 we allowed ourselves to shrink B around 0 ∈ B). Since D
is general and Y is R1, D is R1 as well by Bertini’s theorem; see [Harris 1992,
Theorem 17.16]. Therefore, so is H . Then, by possibly shrinking B, each closed
fiber of H is R1. Thus all closed fibers of H, and H itself, are normal. �

Theorem 6.5. In the situation of Construction 6.3, if dim X ≥ 3, X is S3, Y is R1,
and depthωX,P = 2, then

ωH/B |H0 6
∼= ωH0 . (6.5.a)

In addition:
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(1) If ωX is a Q-line bundle, then ωH/B is a Q-line bundle. In particular then ωHb

is a Q-line bundle for all b ∈ B.

(2) If X is Sd and depth OX,P = d, then Hb is Sd−1 for all b ∈ B, and

depth OH0,P = d − 1.

Proof. By Lemma 6.4, we may apply Lemma 6.1(2) to obtain the main statement
of the theorem.

To prove addendum (1), note that the normality of H and Hb for every b ∈ B,
[Hartshorne 1994, Theorem 1.12] and Proposition 3.6 imply that

ω
[n]
Hb
∼= (ωXb(Hb)|Hb)

[n] for any b ∈ B, and ω[n]H/B
∼= (ωX/B(H)|H)

[n] (6.5.b)

for all n ∈ Z. Hence if ωX is a Q-line bundle, then (6.5.b) implies that so is ωH/B

and ωHb for all b ∈ B. To prove (2) we use Fact 3.2 once again. �

Theorem 1.2 now follows as a corollary:

Proof of Theorem 1.2. It follows by combining Proposition 5.4 (setting d = j + 1
and l = 2), Construction 6.3 and Theorem 6.5. �

7. Degenerations and Serre’s condition

We turn to proving the statements relating Serre’s condition Sd to degenerations of
flat families. The first half of the section is devoted to Theorem 1.3.

Remark 7.1. By the restriction homomorphism ωH/B→ ωH0 we mean any homo-
morphism obtained as in Proposition 3.3(2).

Theorem 1.3 might look technical, but it applies for example to the special case,
when the general fiber is Cohen–Macaulay and the central fiber contains at least
one closed point with depth n− 1.

Proof of Corollary 1.4 and Proposition 1.5. Fix a 2 ≤ i < n − 1. Consider the
projective cone X given by Proposition 5.4, setting d = i + 1 and l = 3. Use then
Construction 6.3 for X . By Lemma 6.4, this yields a flat family f :H→ B of normal
varieties for which Lemma 6.1(1) applies. That is, the restriction homomorphisms
ωH/B |Hb → ωHb are isomorphisms for every b ∈ B. Finally, since X is Cohen–
Macaulay outside of P and depth OX,P = i+1, by Fact 3.2, Hb is Cohen–Macaulay
outside of P , where depth OH0,P = i . �

We also need the following lemma in the proof of Theorem 1.3.

Lemma 7.2. If f :H→ B is a flat morphism of schemes onto a smooth curve, F is
a coherent OH-module on H, and P ∈H0, then

(1) Tor 1
H(F,OH0)P 6= 0 if and only if F has an associated component W such that

P ∈W ⊆H0, and
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(2) Tor i
H(F,OH0)= 0 for i > 1.

Proof. By restricting B, we may assume that I0,B ∼= OB . Denote by s a generator
of I0,B and consider the exact sequence

0→ OH
·s
−→ OH→ OH0 → 0. (7.2.a)

Then the long exact sequence of Tor •H(F, · ) applied to (7.2.a) yields

Tor 1
H(F,OH)= 0→ Tor 1

H(F,OH0)→ F
·s
−→ F.

Hence Tor 1
H(F,OH0)P 6= 0 if and only if s annihilates something in FP , if and only

if F has an associated component W such that P ∈W ⊆H0.
Another part of the long exact sequence of Tor •H(F, · ) applied to (7.2.a) yields

the following for i > 1:

Tor i
H(F,OH)= 0→ Tor i

H(F,OH0)→ Tor i−1
H (F,OH)= 0.

Hence, Tor i
H(F,OH0)= 0 indeed if i > 1. �

Proof of Theorem 1.3. Fix a closed point x ∈ H0 with depth OH0,x = n − 1,
contained in a component W ⊆ H0 of the locus (1.3.a). The locus (1.3.a) is
supp(h−(n−1)(ω•H/B)) by Proposition 3.3(7); hence W is also an associated compo-
nent of h−(n−1)(ω•X/B). Consider an open neighborhood of x , where every closed
point has depth at least n− 1. Replacing H by this neighborhood, all assumptions
of the theorem stay valid, and moreover we may assume that every closed point of
H has depth at least n− 1. In particular, then

hi (ω•H/B) 6= 0 ⇐⇒ i =−n or − (n− 1). (7.2.b)

Define E := h−(n−1)(ω•H/B). By (7.2.b), there is an exact triangle

ωH/B[n] → ω•H/B→ E[n− 1]
+1
−→ . (7.2.c)

Applying · ⊗L OH0 to (7.2.c) and then considering the long exact sequence of
cohomology sheaves yields

h−n−1(E[n− 1]⊗L OH0)→ h−n(ωH/B[n]⊗L OH0)→ h−n(ω•H/B ⊗L OH0)

→ h−n(E[n− 1]⊗L OH0)→ h−n+1(ωH/B[n]⊗L OH0), (7.2.d)

where

• h−n−1(E[n− 1]⊗L OH0)
∼= Tor 2

H(E,OH0)= 0 by Lemma 7.2,

• h−n(ωH/B[n]⊗L OH0)
∼= ωH/B |H0 ,

• h−n(ω•H/B ⊗L OH0)
∼= h−n(ω•H0

)∼= ωH0 by Proposition 3.3(1),

• h−n(E[n− 1]⊗L OH0)
∼= Tor 1

H(E,OH0) and
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• h−n+1(ωH/B[n]⊗L OH0)
∼=h1(ωH/B⊗L OH0)=0 since ·⊗L OH0 is a left derived

functor, so ωH/B ⊗L OH0 is supported in negative cohomological degrees.

Therefore, (7.2.d) is isomorphic to the exact sequence

0→ ωH/B |H0 → ωH0 → Tor 1
H(E,OH0)→ 0.

Since E has an associated component through x contained in H0, we know that
Tor 1

H(E,OH0)x 6= 0 by Lemma 7.2, which concludes our proof. �

Having finished the proof of Theorem 1.3, the rest of the section is devoted its
consequence, Theorem 1.6. See Section 1 for its motivation.

Proof of Theorem 1.6. Since the statement of the theorem is local, we may assume X
is affine and hence quasiprojective. Restricting to a sufficiently small neighborhood
of a point with depth n− 1, all assumptions of the theorem stay valid and we may
assume that all closed points of X have depth at least n− 1. We use the notation
X := X × B. Let X =

⋃r
i=1 X i be the decomposition into irreducible components.

Consider a pencil f :H→ B = P1 of hypersurfaces of X such that

(1) H0 contains the entire non-Gorenstein locus,

(2) ∅ 6=H0 ∩ X j 6= X j for every 1≤ j ≤ r ,

(3) H∞ is a general hypersurface.

In particular then,

(H0 \H∞)∩ X j 6=∅ for every 1≤ j ≤ r. (7.2.e)

By definition of the pencil, if P ∈ H0 \H∞, then P /∈ Hb for any b 6= 0. Hence
assumption (2) and (7.2.e) imply that for all b ∈ B, there is a point of X j not
contained in Hb. Note now, that since X is S1, by Lemma 4.2, so is X. In particular,
then all associated points of X and X are general points of components. So, since
none of the Hb contains any of the X j , IH,X and IHb,Xb for every b ∈ B have
nonzero divisor local generators and hence are line bundles. Then H is flat over B
by Lemma 3.5.

Define the loci

Z := {x ∈ X | x is closed, depth OX,x = n− 1},

W := {x ∈ X | x is closed, depth OH f (x),x = n− 2}.

By construction and by Fact 3.2, W0 = Z and W = (p−1 Z)red, where p :H→ X
is the natural projection. Let Z ′ be an irreducible component of Z of the highest
dimension. By the choice of H0 and H∞, we have Z ′ ⊆ H0, and Z ′ 6⊆ H∞.
Furthermore, H∞ does not contain any of the irreducible components of Z . Hence,
the general fiber of the map W → B will have dimension at most dim Z ′− 1. So,
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W has dimension dim Z ′. Hence, Z ′ ⊆ W0 is an irreducible component of W . In
particular, by Theorem 1.3, the restriction morphism ωH/B |H0 → ωH0 is not an
isomorphism.

On the other hand assume thatωX is S3. Since X is G2, H and Hb are G1 for every
b∈ B. In fact, H, and Hb for a general b∈ B, are G2 also, but for H0 only G1 can be
guaranteed. Also, X is S3 by assumption and X is S3 because of Lemma 4.2. Then
H and Hb are S2 for every b ∈ B by Fact 3.2. That is, we may apply Lemma 6.1(1),
which states that the restriction homomorphism ωH/B |H0→ωH0 is an isomorphism.
This is a contradiction; hence ωX cannot be S3. �

8. Stable reduction

In Construction 6.3, although the general fiber of H→ B has mild, that is, log
canonical, singularities, H0 is very singular. The failure of base change for ωH/B

implies that by [Kollár and Kovács 2010, Theorem 7.9] H0 is not Du Bois. By
[ibid., Theorem 1.4], it is also not log canonical. In this section, we compute the
stable limit of H→ B. It is the limit at 0 of some stable family H′→ B̃. This
family has two important properties. First, H×B B̃|B̃\{0} ∼= H′|B̃\{0} for a finite
cover φ : (B̃, 0)→ (B, 0) totally ramified at 0. Second, (H′)0 is log canonical,
and hence by [ibid., Theorems 1.4 and 7.9], ωH′/B̃ commutes with base change.
So, (H′)0 is the “right” limit of H, and the incompatibility of Theorem 1.2 can be
thought of as a consequence of using the wrong limit in Construction 6.3.

Proposition 8.1. Assuming that Y is smooth, the stable limit of Construction 6.3
is the d-fold cyclic cover of Y ramified exactly over D, with eigen-line bundles
OY (−i) for i = 0, . . . , d − 1.

Proof. First, shrink B if necessary so that∞ /∈ B and that every fiber apart from
H0 is log canonical. This is possible because the general fiber of H is smooth
by Bertini’s theorem. Also, since we assumed that d � 0, the family H→ B
has canonically polarized fibers and hence is stable over B∗ := B \ {0}. Define
X := X × B.

The closed embedding Y ⊆ PN−1 induces a natural closed embedding X ⊆ PN .
This yields very ample line bundles OPN (1) and OX (1). Then, H is the zero locus
of a section f0+ t f∞ of OX(d) := p∗1OX (d) for some f0, f∞ ∈ H 0(PN ,OPN (d)),
as explained in Section 2.

Choose a basis z0, . . . , zN of H 0(PN ,OPN (1)), such that z0, . . . , zN−1 form a
basis of H 0(PN−1,OPN−1(1)). Then f0 and f∞ correspond to degree d homoge-
neous polynomials in variables z0, . . . , zN−1 and z0, . . . , zN , respectively. Also,
the fact that P /∈H∞ implies that the coefficient of zd

N in f∞ is nonzero, say c.
Let φ : (B̃, 0)→ (B, 0) be the degree d cyclic cover branched only at 0, where

it is totally ramified, and let s be a local parameter of B̃ at 0, such that sd
= t .
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Consider the subscheme H′ ⊆ X×B B̃ =: Xφ defined by

f0(z0, . . . , zN−1)+ sd f∞
(
z0, . . . , zN−1,

1
s zN

)
∈ H 0(Xφ,OXφ (d)),

where OXφ (d) is the pullback of OX(d) to Xφ .
By the uniqueness of stable limit, H′ is a stable reduction of H (that is, a stable

family isomorphic generically to the pullback of H), if

(1) (H′)0 is a canonically polarized manifold, and

(2) H′|B̃∗
∼=Hφ|B̃∗ , where Hφ :=H×B B̃ and B̃∗ := B̃ \ {0}.

To prove point (1), notice that (H′)0 is defined by the zero locus of s on H′ or
equivalently by the zero locus of the following section of OX (d) on X :

f0(z0, . . . , zN−1)+ czd
N .

Hence it is the cyclic cover of Y of degree d branched along D with eigensheaves
OY (−i) for 0 ≤ i ≤ d − 1. So first, it is smooth by [Kollár and Mori 1998,
Lemma 2.51]. Second, since (H′)0 is contained in the smooth part of X , we have
ω(H′)0

∼= ωX (d)|(H′)0 by Proposition 3.6 and it is a line bundle. So, since d � 0,
(H′)0 is a canonically polarized manifold indeed.

To prove point (2), notice that the equation of Hφ in Xφ is

f0(z0, . . . , zN−1)+ sd f∞(z0, . . . , zN−1, zN ) ∈ H 0(Xφ,OXφ (d)).

Hence, Hφ|B̃∗
∼=H′|B̃∗ via the isomorphism induced by the following automorphism

of PN
× B̃∗:

(z0, . . . , zN+1, zN ) 7→ (z0, . . . , zN−1, szN ).

We proved both points (1) and (2). Consequently, H′ is a stable reduction of H

indeed. Through the course of the proof of point (1), we also proved that (H′)0 is
indeed the cyclic cover described in the statement of the proposition. �
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Two ways to degenerate the Jacobian
are the same

Jesse Leo Kass

We provide sufficient conditions for the line bundle locus in a family of compact
moduli spaces of pure sheaves to be isomorphic to the Néron model. The result
applies to moduli spaces constructed by Eduardo Esteves and Carlos Simpson,
extending results of Busonero, Caporaso, Melo, Oda, Seshadri, and Viviani.

1. Introduction

1.1. Background. This paper relates two different approaches to extending fami-
lies of Jacobian varieties. Recall that if X0 is a smooth projective curve of genus g,
then the associated Jacobian variety is a g-dimensional smooth projective variety
J0 that can be described in two different ways: as the universal abelian variety
that contains X0 (the Albanese variety), and as the moduli space of degree 0 line
bundles on X0 (the Picard variety). If XU → U is a family of smooth, projective
curves, then the Jacobians of the fibers fit together to form a family JU → U . In
this paper, U will be an open subset of a smooth curve B (or, more generally, a
Dedekind scheme), and we will be interested in extending JU to a family over B.
Corresponding to the two different ways of describing the Jacobian (Albanese vs.
Picard) are two different approaches to extending the family JU →U .

Viewing the Jacobian as the Albanese variety, it is natural to try to extend
JU → U by extending it to a family of group varieties over B. Néron [1964]
showed that this can be done in a canonical way. He worked with an arbitrary
family of abelian varieties AU → U and proved that there is a unique B-smooth
group scheme N :=N(AU )→ B extending AU→U which is universal with respect
to a natural mapping property. This scheme is called the Néron model. Arithmetic
geometry has seen the use of the Néron model in a number of important results, e.g.,
[Mazur 1972; 1977; Mazur and Wiles 1984; Gross 1990]. The Néron model of a
Jacobian variety plays a particularly prominent role, and an alternative description
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of this scheme in terms of the relative Picard functor was given by Raynaud [1970].
We primarily work with Raynaud’s description, which is recalled in Section 2.

An alternative approach, suggested by viewing the Jacobian as the Picard variety,
is to extend JU → U as a family of moduli spaces of sheaves. This approach
was first proposed by Mayer and Mumford [1964]. Typically, one first extends
XU → U to a family of curves X → B and then extends JU to a family J̄ → B
with the property that the fiber over a point b ∈ B is a moduli space of sheaves on
Xb parametrizing certain line bundles, together with their degenerations. In this
paper, we show that the line bundle locus J in J̄ is canonically isomorphic to the
Néron model for some schemes J̄ constructed in the literature.

To state this more precisely, we need to specify which schemes J̄ we consider.
The problem of constructing such a family of moduli spaces has been studied by
many mathematicians, and they have constructed a number of different compact-
ifications; see for example [Ishida 1978; D’Souza 1979; Oda and Seshadri 1979;
Altman and Kleiman 1980; Caporaso 1994; Simpson 1994; Pandharipande 1996;
Jarvis 2000; Esteves 2001]. Many of the difficulties to performing such a construc-
tion arise from the fact that, when Xb is reducible, the degree 0 line bundles on a
fiber Xb do not form a bounded family.

For simplicity, assume the residue field k(b) is algebraically closed and Xb is
reduced with components labeled X1, . . . , Xn . Given a line bundle M of degree 0
on Xb, the sequence (deg(M|X1), . . . , deg(M|Xn )) is called the multidegree of M.
This sequence must sum to 0, but may otherwise be arbitrary, which implies un-
boundedness. A bounded family can be obtained by fixing the multidegree, and
typically the scheme J̄ is defined so that it parametrizes (possibly coarsely) line
bundles (and their degenerations) that satisfy a numerical condition on the multide-
gree. This paper focuses on constructions given by Simpson [1994] and by Esteves
[2001], which we now describe in more detail.

For the Simpson moduli space, the numerical condition imposed on line bundles
is slope semistabilty with respect to an auxiliary ample line bundle. This condition
arises from the method of construction: the moduli space is constructed using
geometric invariant theory (GIT), and slope stability corresponds to GIT stability.
In general, the Simpson moduli space is a coarse moduli space in the sense that
nonisomorphic sheaves may correspond to the same point of the space, but it con-
tains an open subscheme (the stable locus) that is a fine moduli space, and we will
work exclusively with this locus. Families of moduli spaces of semistable sheaves
have been constructed for arbitrary families of projective schemes, but we will only
be concerned with the case of families of curves.

The moduli spaces of Esteves parametrize sheaves that are σ -quasistable. Like
slope stability, σ -quasistabillity is a numerical conditions on the multidegree, but
it is defined in terms of an auxiliary vector bundle E and a section σ , rather than an
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ample line bundle. The moduli spaces are constructed for families over an arbitrary
locally noetherian base, but strong conditions are required of the fibers: They must
be geometrically reduced. The space is constructed as a closed subspace of a
(nonnoetherian, nonseparated) algebraic space that was constructed in [Altman and
Kleiman 1980]. For nodal curves, Melo and Viviani [2012] describe the relation
between the Esteves moduli spaces and the Simpson moduli spaces. However, here
we treat these moduli spaces separately.

For a discussion of the relation between these moduli spaces and other mod-
uli spaces constructed in the literature, the reader is directed to [Alexeev 2004;
Casalaina-Martin et al. 2011, Section 2]. The reader familiar with the work of
Caporaso is warned of one potential point of confusion. In [Caporaso 1994], the
compactified Jacobian associated to a stable curve X parametrizes pairs (Y, L)
consisting of a line bundle L on a nodal curve Y stably equivalent to X that satisfies
certain conditions. The line bundle locus J that we study corresponds to the locus
parametrizing pairs (Y, L) with X = Y .

1.2. Main result. The main result of this paper relates the line bundle locus in a
proper family of moduli spaces of sheaves to the Néron model of the Jacobian:

Theorem 1. Fix a Dedekind scheme B. Let f : X→ B be a family of geometrically
reduced curves with regular total space X and smooth generic fiber Xη. Let J ⊂ J̄
the locus of line bundles in one of the following moduli spaces:

• the Esteves compactified Jacobian J̄ σE ;

• the Simpson compactified Jacobian J̄ 0
L associated to an f -ample line bundle

L such that slope semistability coincides with slope stability.

Then J is the Néron model of its generic fiber.

Theorem 1 is the combination of Corollaries 4.2 and 4.5, which themselves are
consequences of Theorem 3.9. Theorem 3.9 is quite general, and we expect that
it applies to many other fine moduli spaces of sheaves (but not coarse ones). In
particular, Theorem 3.9 applies to families of curves with possibly nonreduced
fibers, though then general results asserting the existence of a suitable moduli space
are unknown (but see Section 4.3 for some simple examples).

The arithmetically inclined reader should note Theorem 1 and the results later
in this paper do not place any hypotheses on the base Dedekind scheme B. In
particular, we do not assume that the residue fields are perfect. This surprised the
author initially as there is a body of work (e.g., [Liu et al. 2004; Raynaud 1970])
showing that various pathologies can arise when k(b) fails to be perfect.

Theorem 1 has interesting consequences for both the Néron model and the
compactified Jacobian. One consequence of the theorem is that Néron models
of Jacobians can often be constructed over high-dimensional bases. The Néron
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model of an abelian variety is only defined over a (regular) 1-dimensional base B,
but no such dimensional hypotheses are needed to apply the existence results from
[Simpson 1994; Esteves 2001]. At the end of Section 4.3, we examine a family
J→P2 over the plane with the property that a dense, open subset of P2 is covered
by lines C such that the restriction JC of J is the Néron model of its generic fiber.
Surprisingly, while the Néron models fit into a 2-dimensional family, their group
structure does not.

Theorem 1 also has interesting consequences for the moduli spaces of Esteves
and Simpson. Indeed, if f : X→ B is a family of curves satisfying the hypotheses
of the theorem, then both the Esteves Jacobians J σE and the Simpson Jacobians J 0

L

(for L as in the hypothesis) are independent of the particular polarizations, and
every such Simpson Jacobian is isomorphic to every Esteves Jacobian. This is not
immediate from the definitions. At the end of Section 4.1, we discuss this fact in
greater detail and pose a related question.

1.3. Past results. Certain cases of Theorem 1 were already known. In his (unpub-
lished) thesis, Simone Busonero [2008] established Theorem 1 for certain Esteves
Jacobians. A different proof using similar techniques that extends the result to
the Simpson moduli spaces is due to Melo and Viviani [2012, Theorem 3.1]. They
prove Theorem 1 when the fibers of f are nodal and X is regular. We do not discuss
the Caporaso universal compactified Jacobian here, but the relation between that
scheme and the Néron model was described by Caporaso [2008a; 2008b; 2012,
especially Theorem 2.9]. Earlier still, Oda and Seshadri related their φ-semistable
compactified Jacobians, also not discussed here, to Néron models [Oda and Se-
shadri 1979, Corollary 14.4]. In each of those papers, an important step in the
proof is a combinatorial argument establishing that, for example, the natural map
from the set of σ -quasistable multidegrees to the degree class group is a bijection.

The proof given here does not use any combinatorics, and the idea can be de-
scribed succinctly. Consider the special case where B := Spec(C[[t]]), which is
a strict henselian discrete valuation ring with algebraically closed residue field.
There is a natural map J → N to the Néron model coming from the univer-
sal property of N, and an application of Zariski’s main theorem shows that this
morphism is an open immersion. Thus the only issue is set-theoretic surjectiv-
ity. Because B is henselian, every point on the special fiber of N is the spe-
cialization of a section, so surjectivity is equivalent to the surjectivity of the map
J (C[[t]])→ J (Frac C[[t]]) that sends a section to its restriction to the generic fiber.
A given point p ∈ J (Frac C[[t]]) may be extended to a section σ ∈ J̄ (C[[t]]) of J̄
by the valuative criteria. As J̄ is a fine moduli space, σ corresponds to a family of
rank 1, torsion-free sheaves, which in fact must be a family of line bundles because
X is factorial. We may conclude that σ ∈ J (C[[t]]), yielding the result.
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1.4. Questions. It would be interesting to know when a Simpson Jacobian J 0
L sat-

isfying the hypotheses of Theorem 1 exists; that is, given a family f : X → B,
does there exist an ample line bundle L such that every L-slope semistable sheaf
of degree 0 is stable? We briefly survey the literature on this question at the end
of Section 4.2.

More generally, given a family f : X → B, it would be desirable to have a
description of the maximal subfunctors of the degree 0 relative Picard functor P0

representable by a separated B-scheme. We discuss this question in Section 4.3,
where we analyze the simple case of genus 1 curves.

1.5. Organization. We end this introduction with a few technical remarks about
the paper. The moduli spaces of sheaves that we consider are moduli spaces of pure
sheaves. On a curve, a coherent sheaf is pure if and only if it is Cohen–Macaulay.
This condition is also equivalent to the condition of being torsion-free in the sense
of elementary algebra when the curve is integral, and the term “torsion-free” is
sometimes used in place of “pure”.

The term “family of curves” only to refers to families with geometrically irre-
ducible generic fibers. This is done to avoid notational complications concerning
multidegrees. Families of curves are required to be proper, but not projective. A
family of curves over a Dedekind scheme can fail to be projective (e.g., [Altman
and Kleiman 1980, 8.10]), but projectivity is automatic if the local rings of the total
space are factorial, which is the main case of interest. (See Proposition 4.1.)

We prove the main results for families over a base scheme S that is the spectrum
of a strict henselian discrete valuation ring rather than a more general Dedekind
scheme. Doing so lets us make sectionwise arguments because a smooth family
of a henselian base admits many sections. Furthermore, this is not a real restric-
tion: Results over a general Dedekind base can be deduced by passing to the strict
henselization.

The body of the paper is organized as follows. In Section 2, we review Rayanud’s
construction of the maximal separated quotient. We then relate this scheme to a
general moduli space of line bundles satisfying some axioms in Section 3. Finally,
we describe some schemes that satisfy these axioms in the final section, Section 4.

Conventions

1.1. The symbol XT denotes the fiber product X ×S T .

1.2. The letter S denotes the spectrum of a strict henselian discrete valuation ring
with special point 0 and generic point η.

1.3. A curve over a field k is a proper k-scheme f0 : X0→ Spec(k) that is geomet-
rically connected and of pure dimension 1.
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1.4. If B is a scheme, then a family of curves over B is a proper, flat morphism f :
X→ B whose fibers are curves and whose geometric generic fibers are irreducible.

1.5. If f : Y → B is a finitely presented morphism, then we write Y sm
⊂ Y for the

smooth locus of f .

1.6. A coherent module I0 on a noetherian scheme X0 is rank 1 if the localization
of I0 at x is isomorphic to OX0,x for every generic point x .

1.7. A coherent module I0 on a noetherian scheme X0 is pure if the dimension of
Supp(I0) equals the dimension of Supp(J0) for every nonzero subsheaf J0 of I0.

1.8. If X0 → Spec(k) is proper, then the degree of a coherent OX0-module F is
defined by deg(F) := χ(F)−χ(OX ).

2. Raynaud’s maximal separated quotient

We begin by reviewing Raynaud’s construction of the Néron model of a Jacobian
and, more generally, the maximal separated quotient of the relative Picard func-
tor [Raynaud 1970]. Much of this material is also treated in [Bosch et al. 1990,
Chapter 9].

Let S be a strict henselian discrete valuation ring with generic point η and special
point 0. Given a family of curves f : X→ S, the relative Picard functor P of f is
defined to be the étale sheaf P : S-Sch→ Grp associated to the functor

T 7→ Pic(XT ). (2-1)

Here Pic(XT ) is the set of isomorphism classes of line bundles on XT . Rayanud
actually defines P to be the associated fppf sheaf, but then observes that this is the
same as the associated étale sheaf ([Raynaud 1970, 1.2]; see also [Kleiman 2005,
Remark 9.2.11]). The fibers of P are representable by group schemes locally of
finite type, and P itself is representable by an algebraic space if and only if f is co-
homologically flat [Raynaud 1970, Theorem 5.2]. Regardless of its representability
properties, P is locally finitely presented and formally S-smooth.

Inside of P, we may consider the functor E : S-Sch→ Grp that is defined to
be the scheme-theoretic closure of the identity section. This is the fppf subsheaf
of P generated by the elements g ∈ P(T ), where T → S is flat and gη ∈ P(Tη) is
the identity element. When P is a scheme, this coincides with the usual notion of
closure. The representability properties of E are similar to those of P: The fibers of
E are group schemes locally of finite type, and E is representable by an algebraic
space precisely when f is cohomologically flat [Raynaud 1970, Proposition 5.2].
When representable, E → S is an étale S-group space; in general, the generic
fiber of E is the trivial group scheme, and the special fiber is a group scheme of
dimension equal to h0(OX0)− h0(OXη).
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When E is not the trivial S-group scheme, P does not satisfy the valuative cri-
teria of separatedness. We can, however, form the maximal separated quotient
Q : S-Sch→ Grp of P. By definition, this is the fppf quotient sheaf Q := P /E.
The maximal separated quotient Q is always representable by a scheme that is
S-smooth, separated, and locally of finite type [Raynaud 1970, Theorem 4.1.1,
Proposition 8.0.1]. Rather than working directly with Q, we shall primarily work
with the slightly smaller subfunctor Qτ

: S-Sch→ Grp, which we now define.
Suppose generally that B is a scheme and G : S-Sch→Grp is a B-group functor

whose fibers are representable by group schemes locally of finite type. For every
point b ∈ B, we may form the identity component Go

b ⊂ Gb and the component
group Gb/Go

b. The subgroup functor Gτ
⊂G is defined to the subfunctor whose T -

valued points are elements g∈G(T )with the property that, for every t ∈T mapping
to b ∈ B, the element gt ∈ Gb(k(t)) maps to a torsion element of Gb/Go

b(k(t)). If
we instead require that gt maps to the identity element, then we obtain the subgroup
functor Go

⊂G. Let us examine these constructions when B equals S and G equals
P or Q.

The functors Po and Pτ coincide, and this common functor is the étale sheaf
associated to the assignment sending T to the set of isomorphism classes of line
bundles on XT that fiberwise have multidegree 0. From this description, it is easy
to see that Po

= Pτ ⊂ P is an open subfunctor. Another open subfunctor of P is the
subfunctor parametrizing line bundles on XT with fiberwise degree 0, which we
denote by P0. It is typographically difficult to distinguish between P0 and Po, but
we will not make use of Po in this paper, so this should not cause confusion.

The functors Qo and Qτ are different in general. They are, however, both open
subfunctors of Q [Grothendieck 1966b, Theorem 1.1(i.i), Corollary 1.7]. In partic-
ular, they are both representable by smooth and separated S-group schemes that are
locally of finite type. In fact, both schemes are of finite type over S as their fibers
are easily seen to have a finite number of connected components. The condition that
Qτ
⊂Q is a closed subscheme is important, but slightly subtle. A characterization

of this condition is given by [Raynaud 1970, Proposition 8.1.2(iii)]; one sufficient
(but not necessary) condition for Qτ

⊂ Q to be closed is that the local rings of X
are factorial.

The factoriality condition is also almost sufficient to ensure that Qτ is the Néron
model of its generic fiber. Suppose that the generic fiber of f is smooth, so the
generic fiber of Qτ

→ S is an abelian variety, and thus it makes sense to speak of the
Néron model N := N(Qτ

η). By the universal property, there is a unique morphism
Qτ
→N that is the identity on the generic fiber. Theorem 8.1.4 of [Raynaud 1970]

states that if the local rings of X are factorial, then Qτ
→ N is an isomorphism in

the cases that k(0) is perfect and that a certain invariant δ is coprime to the residual
characteristic.
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The proof uses the characterization of the Néron model in terms of the weak
Néron mapping property. Recall that a S-scheme Y → S is said to be a weak
Néron model of its generic fiber if the natural map Y (S)→ Y (η) is bijective. If
G→ S is a finite type S-group scheme whose generic fiber is an abelian variety,
then G is the Néron model of its generic fiber if and only if it satisfies the weak
Néron mapping property [Bosch et al. 1990, Section 7.1, Theorem 1].

3. The main theorem

Here we derive the main results for families over a strict henselian discrete val-
uation ring S with generic point η and special point 0. Specifically, we provide
sufficient conditions for the maximal separated quotient Qτ of the Picard functor
to be the Néron model and we relate Qτ to a fine moduli space of line bundles that
satisfies certain axioms. These moduli spaces are, by definition, subfunctors of a
(large) functor that we now define.

Definition 3.1. If T is a S-scheme, then we define Sheaf(XT ) to be the set of
isomorphism classes of OT -flat, finitely presented OXT -modules I on XT that are
fiberwise pure, rank 1, and of degree 0.

The functor Sh=ShX/S : S-Sch→Sets is defined to be the étale sheaf associated
to the functor

T 7→ Sheaf(XT ). (3-1)

There is a tautological transformation P0
→ Sh that realizes P0 as a subfunctor

of Sh.

Lemma 3.2. The subfunctor P0
⊂ Sh is open.

Proof. Given a S-scheme T and a morphism g :T→Sh, we must show that T×ShP0

is representable by a scheme and that T ×Sh P0
→ T is an open immersion. Thus,

let g be given.
By definition, there exists an étale surjection p : T ′ → T and a sheaf I′ ∈

Sheaf(XT ′) that represents g ◦ p : T ′→ Sh. Consider the subset U ′ ⊂ T ′ of points
t ∈ T ′ with the property that the restriction of I to the fiber X t is a line bundle. This
locus is open by [Altman and Kleiman 1980, Lemma 5.12(a)], and one may easily
show that U ′ represents T ′×Sh P0. A descent argument establishes the analogous
property for the image U of U ′ under T ′→ T . This completes the proof. �

A remark about topologies: We work with the étale sheaf associated to (3-1),
but one could instead work with the associated fppf sheaf. When f is projective,
it is a theorem of Altman and Kleiman [1980, Theorem 7.4] that the subfunctor of
Sh parametrizing simple sheaves can be represented by a quasiseparated, locally
finitely presented S-algebraic space, and hence is an fppf sheaf. We do not know
if Sh is an fppf sheaf in general. Here Sh is just used as a tool for keeping track of
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representable functors, and certainly any representable subfunctor of Sh is an fppf
sheaf.

One reason for working with the étale topology instead of the fppf topology is
that it makes the following fact easy to prove.

Fact 3.3. The natural map Sheaf(X)→ Sh(S) is surjective.

Proof. Let g ∈ Sh(S) be given. By definition, there is an étale morphism S′→ S
and an element I′ ∈ Sheaf(X S′) that maps to gS′ ∈ Sh(S′). But S is strict henselian,
so S′→ S may be taken to be an isomorphism S→ S [Grothendieck 1967, Propo-
sition 18.8.1(c)], in which case the result is obvious. �

The following two facts about separably closed fields are standard, but they will
be used so frequently that it is convenient to record them.

Fact 3.4. If k(0) is a separably closed field and f0 : Y0→ Spec(k(0)) is smooth of
relative dimension n, then the closed points of Y0 with residue field k(0) are dense.

Proof. This is [Bosch et al. 1990, Corollary 13]. The scheme Y0 can be covered
by affine opens U0 that admit an étale morphism p : U0 → An

k(0). Certainly, the
closed points with residue field k(0) are dense in the image of p. If v0 ∈ An

k(0) is
one such point, then p−1(v0) is a finite, étale k(0)-algebra, and hence a disjoint
union of closed points defined over k(0). Density follows. �

Fact 3.4 is typically used in conjunction with the following fact to assert that a
smooth morphism has many sections.

Fact 3.5. Let Y→ S be a smooth morphism over strict henselian discrete valuation
ring. Then Y (S)→ Y (k(0)) is surjective.

Proof. This is [Grothendieck 1967, Corollary 17.17.3], or [Bosch et al. 1990,
Proposition 14]. If U and X ′ are as in the statement of the former, then we
must have U = S and X ′ → U may be taken to be an isomorphism (again, by
[Grothendieck 1967, Proposition 18.8.1(c)]). �

We now prove the main results of the paper.

Proposition 3.6. Let f : X → S be a family of curves and J ⊂ P0 a subfunctor
such that the generic fibers Jη=P0

η coincide. Assume J is represented by a smooth,
finitely presented S-scheme.

If J is S-separated, then J → Q is an open immersion. Furthermore, the im-
age is contained in Qτ provided Qτ

⊂ Q is closed (e.g., the local rings of X are
factorial).
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Proof. This is an application of Zariski’s main theorem. We begin by showing that
the induced map J→Q is injective on closed points. It is enough to verify this after
extending base S so that k(0) is algebraically closed. Thus, we will temporarily
assume k := k(0) is algebraically closed and work with k-valued points instead of
closed points. Given q ∈ Q(k), there is nothing to show when the fiber over q is
empty. If nonempty, pick p ∈ J (k)mapping to q . We may invoke Fact 3.5 to assert
that there exists a section σ ∈ J (S) with σ(0)= p.

The fiber of P→Q over q is the set of elements of the form p+e with e ∈ E(k)
or, equivalently, the elements of (σ +E)(k) [Raynaud 1970, Corollary 4.1.2]. Re-
stricting to J , we see that the fiber of q under J →Q is the set of k-valued points
of (σ + E) ∩ J . But (σ + E) ∩ J is the scheme-theoretic closure of σ in J (by
[Grothendieck 1965, 2.8.5]), which is just the image of σ by separatedness. In
particular, the preimage of q under J → Q must be the singleton set {p}. This
proves that the map is injective on closed points. We now return to the case
where S is a henselian discrete valuation ring (so k(0) is no longer assumed to
be algebraically closed).

It follows that the set-theoretic fibers of J→Q are finite sets. Indeed, if Z ⊂ J
is the locus of points x ∈ J with the property that x lies in a positive dimensional
fiber, then Z is closed by Chevalley’s theorem [Grothendieck 1965, 13.1.3]. Fur-
thermore, Z is contained in the special fiber J0 and contains no closed points. This
is only possible if Z is the empty scheme. In other words, the set-theoretic fibers
of J → Q are 0-dimensional, and hence finite (by [Grothendieck 1964, 14.1.9]).

It follows immediately from Zariski’s main theorem [Grothendieck 1961, 4.4.9]
that J → Q is an open immersion. This proves the first part of the theorem. To
complete the proof, observe that flatness implies that the generic fiber of Jη is dense
in J [Grothendieck 1965, 2.8.5]. In particular, J is contained in the closure of Jη
in Q. The generic fiber of J coincides with the generic fiber of Qτ , so the closure
of this common scheme is contained in Qτ when Qτ

⊂Q is closed. This completes
the proof. �

Remark 3.7. In Proposition 3.6, we do not assume that J ⊂ P0 is an open sub-
functor, but this condition holds in most cases of interest. When open, J is auto-
matically formally smooth and locally of finite presentation. Thus, the key hypo-
thesis in the proposition is that J is represented by a S-separated scheme. A similar
remark holds for Theorem 3.9; there the key hypotheses are that J̄ satisfies the
valuative criteria of properness and that J is representable. Indeed, we do not even
need to assume that J̄ is representable.

Under stronger assumptions, we can actually show that the natural map J→Qτ

is an isomorphism. The essential point is to prove that J satisfies the weak Néron
mapping property. When J can be embedded in a S-proper moduli space J̄ , this
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property holds provided that the local rings of X are factorial. The content of this
claim is that a line bundle on the generic fiber can specialize only to a line bundle
on the special fiber. By localizing, the claim is equivalent to the following lemma,
which is based on a proof from [Altman and Kleiman 1979, p. 27 after Step XII].

Lemma 3.8. Suppose that (R, π) is a discrete valuation ring and R→ O a local,
flat algebra extension with O noetherian. Let M be a R-flat, finite O-module with
the property that M[π−1

] is free of rank 1 and M/πM is a rank 1, pure module. If
O is factorial, then M is free of rank 1.

Proof. We can certainly assume O is not the zero ring. To ease notation, we write
M := M/πM and O := O/πO. It is enough to prove that M is isomorphic to a
height 1 ideal. Indeed, such an ideal is principal by the factoriality assumption.

We argue by first showing that M is isomorphic to an ideal of O. Let p̄1, . . . , p̄n

be the minimal primes of O and p1, . . . , pn the corresponding primes of O. We have
assumed that the stalk M ⊗ k(p̄i ) is 1-dimensional. This stalk coincides with the
stalk M ⊗ k(pi ), so we can conclude that the localization Mpi is free of rank 1 for
i = 1, . . . , n.

We can also conclude that the same holds for the localizations of the dual module
M∨ :=Hom(M,O). An application of the prime avoidance lemma shows that there
exists an element φ ∈ M∨ that maps to a generator of M∨pi

for all i . We will show
that φ : M → O realizes M as a R-flat family of ideals (i.e., φ is injective with
R-flat cokernel).

It is enough to show that the reduction φ̄ : M → O is injective. An element of
the kernel of this map is also in the kernel of the composition

M→
⊕

M p̄i →
⊕

Op̄i .

The kernel of the leftmost map is a submodule whose support does not contain any
of the primes p̄i , and thus must be zero by pureness. Furthermore, the rightmost
map is an isomorphism by construction. This proves injectivity.

Consider the ideal I [π−1
] given by the image of φ[π−1

] : M[π−1
] → O[π−1

].
This is a principal ideal, and hence is either the unit ideal or an ideal of height at
most 1 (Hauptidealsatz!). By flatness, the same is true of the image I of φ. In fact,
I cannot be a height zero ideal: The only such prime is the zero ideal, which does
not satisfy the hypotheses. Thus, I is either the unit ideal or a height 1 ideal. In
either case, I must be principal, and the proof is complete. �

We record the factorial condition as a hypothesis.

Hypothesis 1. We say a family of curves f : X → B over a Dedekind scheme
satisfies Hypothesis 1 if the generic fiber Xη is smooth and the local rings of X S

are factorial for every strict henselization S→ B.
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Hypothesis 1 is satisfied when X is regular and Xη is smooth. We now prove
the main theorem of this paper.

Theorem 3.9. Let f : X→ S be a family of curves and J̄ a subfunctor of Sh such
that the generic fibers J̄η = Shη coincide. Assume the line bundle locus J ⊂ J̄ is
represented by a smooth and finitely presented S-scheme.

If J̄ satisfies the valuative criteria of properness and f satisfies Hypothesis 1,
then Qτ is the Néron model and

J ⊂ Qτ
= N

is an open subscheme that contains all the k(0)-valued points of Qτ . Furthermore,

J = Qτ
= N

provided one of the following conditions hold:

(1) k(0) is algebraically closed;

(2) J is stabilized by the identity component Qo.

Proof. By Proposition 3.6, the natural map J → Q is an open immersion with
image contained in Qτ . Using this fact, we can prove that Qτ is the Néron model
of its generic fiber. Indeed, it is enough to prove that Qτ satisfies the weak Néron
mapping property. The open subscheme J ⊂ Qτ , in fact, already satisfies this
property. Let ση ∈ Qτ (η) = J (η) be given. By properness, we can extend ση to
a section σ ∈ J̄ (S), and this element can be represented by a family I of pure,
rank 1 sheaves (by Fact 3.3). But every such family is a family of line bundles
(Lemma 3.8), and hence σ lies in J (S) ⊂ J̄ (S). In other words, J satisfies the
weak Néron mapping property.

The weak Néron mapping property of J also implies that the image of J contains
all the k(0)-valued points of Qτ . Indeed, every k(0)-valued point of Qτ is the
specialization of a section by Fact 3.5. If k(0) is algebraically closed, then we
have shown that J contains every k(0)-valued point of Qτ , hence every closed
point. Thus, J = Qτ , and there is nothing more to show.

Let us now turn our attention to the case where k(0) is only separably closed,
but J is stabilized by Qo. Our goal is to show J = Qτ , and to show this, we pass
to the special fiber J0→ Qτ

0 and argue with points. Let x be a k̄(0)-valued point
of Qτ , where k̄(0) is the algebraic closure of the residue field. By density (Fact 3.4),
there exists a k̄(0)-valued point y in the image of J0 → Qτ

0 that lies in the same
connected component as x . We have x = y + (x − y), which expresses x as the
sum of a point of Qo

0 and a point of J0. The point x must lie in J0 by assumption.
This shows that the image of J contains all of Qτ , completing the proof. �
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Remark 3.10. The hypothesis that J is stabilized by the identity component Qo

is perhaps unexpected, but it is often satisfied in practice. The moduli space J̄ is
typically constructed by imposing numerical conditions on the multidegree of a
sheaf, and the multidegree is invariant under the action of Qo (because the action
is given by tensoring with a multidegree 0 line bundle).

In the next section, we will show that certain moduli spaces constructed in the
literature satisfy the hypotheses of Theorem 3.9. There are, however, families of
curves f : X → S with factorial local rings OX,x such that there does not exist a
S-scheme J̄ satisfying the conditions of the theorem. Indeed, the family f : X→ S
in [Raynaud 1970, Example 9.2.3] is a family of genus 1 curves such that the local
rings of X are factorial (even regular), but the natural map Qτ

→ N is not an
isomorphism. In particular, no J̄ satisfying the hypotheses of Theorem 3.9 can
exist.

4. Applications

Here we apply Theorem 3.9 to some families of moduli spaces from the literature
and then deduce consequences. The two moduli spaces that we are interested in
are the Esteves moduli space of quasistable sheaves (Section 4.1) and the Simpson
moduli space of slope stable sheaves (Section 4.2). In Section 4.3, we discuss the
special case of families of genus 1 curves, where suitable moduli spaces can be
constructed explicitly.

The moduli spaces we study are associated to a relatively projective family of
curves. We are primarily interested in families over a Dedekind scheme with lo-
cally factorial total space, in which case projectivity is automatic. This fact is a
consequence of the generalized Chevalley Conjecture when the Dedekind scheme
is defined over a field, but we do not know a reference. For completeness, we
prove:

Proposition 4.1. Let f : X→ B be a family of curves over a Dedekind scheme. If
the local rings of X are factorial, then f is projective.

Proof. This proof was explained to the author by Steven Kleiman. Fix a closed
point b0 ∈ B. Given any component F ⊂ Xb0 , I claim that we can find a line bundle
L on X that has nonnegative degree on every component of every fiber and strictly
positive degree on F .

Pick a closed point x ∈ F and an open affine neighborhood U ⊂ X of that point.
By the prime avoidance lemma, we can find a regular function r ∈ H 0(U,OX ) that
does not vanish on any component of Xb0 but does vanish at x . Pick a component
D of the closure of {r =0}⊂U in X . Then D is a Cartier divisor (by the factoriality
assumption) that does not contain any component of any fiber Xb (by construction).
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Furthermore, D has nontrivial intersection with F . The associated line bundle
L := OX (D) has the desired positivity property.

Now construct one such line bundle for every irreducible component F of Xb0

and define M to be their tensor product. The line bundle M is nef on every fiber
and ample on Xb0 . Ampleness is an open condition, so M is in fact ample on all but
finitely many fibers of f . After repeating the construction for each such fiber and
forming the tensor product, we have constructed a f -relatively ample line bundle
on X . This completes the proof. �

We now turn our attention to the moduli spaces.

4.1. Esteves Jacobians. We first discuss the Esteves moduli space of quasistable
sheaves. This moduli space fits very naturally into the framework of the previous
section.

Suppose B be a locally noetherian scheme and f : X→ B a projective family of
curves whose fibers are geometrically reduced. Quasistability is defined in terms
of a section σ : B→ X sm and a vector bundle E on X with fiberwise integral slope
deg(Eb)/ rank(Eb), which we assume is constant as a function of b ∈ B. Given
σ and E, σ -quasistability is a numerical condition on the multidegree of a rank 1,
torsion-free sheaf of degree

d(E)= d := −χ(OXb)− deg(Eb)/ rank(Eb).

For the definitions (which we will not use), we direct the reader to [Esteves 2001,
p. 3051] (for a single sheaf) and [ibid., p. 3054] (for a family). The basic existence
theorem is [ibid., Theorem A on p. 3047], which is proved in [ibid., Section 4]).
It states that if SheafσE : S-Sch→ Sets is the functor defined by setting SheafσE(T )
equal to the set of isomorphism classes of OT -flat, finitely presented OXT -modules
that are fiberwise σ -quasistable, then there is a B-proper algebraic space J̄ σE → B
of finite type that represents the étale sheaf associated to SheafσE.

Strictly speaking, our definition differs from the one given in [ibid.] in two ways.
First, Esteves does not work with isomorphism classes of sheaves but rather with
equivalence classes under the relation given by identifying two sheaves I1 and
I2 on XT when I1 is isomorphic to I2 ⊗ f ∗(L) for some line bundle L on T .
Zariski locally on T , the sheaves I1 and I2 are isomorphic, and it follows that the
étale sheaf associated to SheafσE is canonically isomorphic to the sheaf considered
by Esteves. Second, Esteves only defines his functor as a functor from locally
noetherian schemes to sets. However, the functor SheafσE and its associated étale
sheaf are easily seen to be locally finitely presented. It follows that J̄ σE represents
the étale sheaf associated to SheafσE, rather than just the restriction of this sheaf to
locally noetherian schemes.



Two ways to degenerate the Jacobian are the same 393

If f satisfies stronger conditions, then the space J̄ σE is actually a scheme. This
is the content of [Esteves 2001, Theorem B, p. 3048], proved on [ibid., p. 3086].
The theorem states that if there exist sections σ1, . . . , σn : B→ X sm of f with the
property that every irreducible component of a fiber Xb is geometrically integral
and contains one of the points σ1(b), . . . , σn(b), then J̄ σE is a scheme.

In the special case where B = S is a strict henselian discrete valuation ring with
generic point η and special point 0, the hypotheses of Theorem B are automatically
satisfied. Indeed, the locus of k(0)-valued points is dense in the smooth locus X sm

0
(Fact 3.4), which in turn is dense in X0 as X0 is geometrically reduced. We may
conclude that the irreducible components of X0 are geometrically integral. Finally,
every k(0)-valued point of X0 extends to a section σ : S → X (Fact 3.5), so the
hypotheses of Theorem B are certainly satisfied.

We call J̄ σE the Esteves compactified Jacobian. Inside of the Esteves compact-
ified Jacobian, we can consider the open subscheme parametrizing line bundles.
This scheme is called the Esteves Jacobian and denoted by J σE . While the scheme
J̄ σE parametrizes sheaves, it is not naturally a subfunctor of Sh because it does not
parametrize degree 0 sheaves. We can, however, define a natural transformation
J̄ σE → Sh by the rule

I 7→ I(−d · σ)

Both Proposition 3.6 and Theorem 3.9 apply to J̄ σE .

Corollary 4.2. Fix a Dedekind scheme B. Let f : X→ B be a projective family of
geometrically reduced curves. Let σ : B→ X sm be a section and E a vector bundle
on X with fiberwise integral slope.

Then the natural map J σE → Q is an open immersion.
Assume further that f satisfies Hypothesis 1. Then J σE =Qτ , and this scheme is

the Néron model.

Proof. By localizing, we can assume that B = S is a strict henselian discrete
valuation ring, in which case we are reduced to proving that the hypotheses of
Proposition 3.6 and Theorem 3.9 hold. The scheme J σE is easily seen to be for-
mally S-smooth. Indeed, σ -quasistability is a condition on fibers, so the formal
smoothness of P0 implies the formal smoothness of J σE . The remaining hypotheses
of Proposition 3.6 are explicitly assumed, so we can deduce the first part of the
theorem. To complete the proof, it is enough to show that J σE is stabilized by Qo.
But the action of Qo on J σE is given by the tensor product against a multidegree 0
line bundle, so this action preserves multidegree and hence σ -quasistability. �

Corollary 4.2 implies that J σE is a scheme with (unique) B-group scheme struc-
ture that extends the group scheme structure of the generic fiber. It is not immediate
from the definition that J σE admits such structure, and Example 4.9 shows that the
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group structure is special to the case of families over a 1-dimensional base. The
result also implies uniqueness results for the Esteves Jacobian; if σ ′ : B → X sm

is a second section and E′ a second vector bundle on X , then J σ
′

E′ is canonically
isomorphic to J σE . In the next section, we will define the Simpson stable Jacobian
J 0

L(X), and this scheme is also isomorphic to J σE provided every slope semistable
sheaf is stable. It would be interesting to know if these isomorphisms extend to
the compactifications. Important results along these lines can be found in [Melo
and Viviani 2012; Esteves 2009], but many basic question remain unanswered.
Currently, there is no example of a curve X0 → Spec(k) such that two Esteves
compactified Jacobians associated to X0 are nonisomorphic.

4.2. Simpson Jacobians. The hypotheses to Proposition 3.6 and Theorem 3.9 are
satisfied by certain moduli spaces of stable sheaves, which we call Simpson Ja-
cobians. Here we recall Simpson’s construction, along with later work of Langer
and Maruyama, and then apply results from Section 3. We restrict our attention
to families of reduced curves (but see Remark 4.4, and the discussion preceding
Example 4.9).

We work over a scheme B that is finitely generated over a universally Japanese
ring R (e.g., R=C, Fp,Z, . . . ). Let f : X→ B a family of curves with f -relatively
ample line bundle L, and assume the Euler–Poincaré characteristics χ(OXb) and
χ(Lb) are constant as functions of the base B. Set Pd equal to the polynomial

Pd(t) := deg(Lb) · t + d +χ, (4-1)

where χ is the Euler–Poincaré characteristic of a fiber of f and deg(Lb) is the
degree of the restriction of L to a fiber. This is the Hilbert polynomial of a degree
d line bundle.

Given this data, Simpson constructed an associated moduli space in the case
that R = C. The Simpson moduli space M(OX , Pd) parametrizes slope semistable
sheaves with Hilbert polynomial Pd . (See [Simpson 1994, pp. 54–56] for the
definition of semistability). To be precise, define M](OX , Pd) to be the functor
whose T -valued points are isomorphism classes of OT -flat, finitely presented OXT -
modules whose fibers are L-slope semistable sheaves with Hilbert polynomial Pd .
The main existence result [Simpson 1994, Theorem 1.21] asserts that there is a
projective scheme M(OX , Pd) that corepresents M](OX , Pd). Inside of M(OX , Pd),
we may consider the open subscheme Mst(OX , Pd) parametrizing L-slope stable
sheaves. The stable locus is a fine moduli space: Its C-valued points are in natu-
ral bijection with the isomorphism classes of L-slope stable sheaves with Hilbert
polynomial Pd , and étale locally on Mst(OX , Pd), the product X ×B Mst(OX , Pd)

admits a universal family of sheaves. The reader may check that these conditions
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are equivalent to the condition that Mst(OX , Pd) represents the étale sheaf asso-
ciated the functor parametrizing stable sheaves. While Simpson only considers
the case R = C, later work of Langer [2004a, Theorem 4.1; 2004b, Theorem 0.2]
and Maruyama [1996] extends these results to the case where R is an arbitrary
universally Japanese ring.

Let us now specialize to the case where B is a Dedekind scheme. When f has
reducible fibers, Mst(OX , Pd) may contain points corresponding to sheaves that
are not rank 1; see [López-Martín 2005, Example 2.2]. This is potentially a major
source of confusion: The term “rank” is used in a different way in [Simpson 1994],
and the sheaves parametrized by Mst(OX , Pd) are rank 1 in Simpson’s sense but
not necessary in the sense used here.

We avoid these sheaves. Define the Simpson stable Jacobian J d
L of degree d to

be the locus of stable line bundles in Mst(OX , Pd) (which is an open subscheme
by [Altman and Kleiman 1980, Lemma 5.12(a)]). We define the Simpson stable
compactified Jacobian J̄ d

L to be the subset of the stable locus Mst(OX , Pd) that
corresponds to pure, rank 1 sheaves. (Warning: The compactified Jacobian is a
B-proper scheme when every semistable pure sheaf with Hilbert polynomial Pd is
stable but not in general!)

When the fibers of X → B are geometrically reduced, a minor modification
of the proof of [Pandharipande 1996, Lemma 8.1.1] shows that the subset J̄ d

L ⊂

Mst(OX , Pd) is closed and open, and hence has a natural scheme structure:

Lemma 4.3. Assume the fibers of f : X→ B are geometrically reduced. Then the
subset J̄ d

L is closed and open in Mst(OX , Pd).

Proof. The main point to prove is that a 1-parameter family of line bundles cannot
specialize to a pure sheaf that fails to have rank 1, and this is shown by examining
the leading term of the Hilbert polynomial. To begin, we may cover Mst(OX , Pd) by
étale morphisms M→Mst(OX , Pd) with the property that a universal family Iuni.

on M×B X exists. It is enough to verify the claim after passing from Mst(OX , Pd)

to an arbitrary such scheme, and so for the remainder of the proof we work with
M in place of Mst(OX , Pd). We will also abuse notation by denoting the pullback
of J̄ d

L under M→Mst(OX , Pd) by the same symbol J̄ d
L.

We first need to check that J̄ d
L ⊂ M is constructible, so that we can make use

of the valuative criteria. Given m ∈ M mapping to b ∈ B, the condition that the
fiber Im is rank 1 is just the condition that the restriction of Im to X sm

b is a line
bundle. Constructibility thus follows from [Grothendieck 1966a, 9.4.7] applied to
M×B X sm

→M.
To finish, it is enough to prove that J̄ d

L is closed under specialization and gen-
eralization. Thus, we pass from M to a discrete valuation ring T mapping to M. If
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I is the sheaf on XT given by the pullback of the universal family, then we need
to show that the generic fiber of Iη is rank 1 if and only if the special fiber I0 is.

To prove this, we turn our attention to the Hilbert polynomial Pd of a fiber of I .
This polynomial is defined so that the leading term is deg(Lb), and we can express
this number in terms of components of a fiber of XT → T as follows. If x is
generic point of the special fiber X0, then we define degx(L0) to be the degree of
the restriction of L0 to the irreducible component corresponding to x . (Give the
component the reduced subscheme structure.) For any generic point y of Xη, we
define degy(Lη) in the analogous manner. If x1, . . . , xn are all the generic points
of X0 and y1, . . . , ym all the generic points of Xη, then we have

deg(Lb)= degx1
(L0)+ · · ·+ degxn

(L0)

= degy1
(Lη)+ · · ·+ degym

(Lη)

by, say, [Altman and Kleiman 1979, 2.5.1]. The terms degxi
(L0) and degy j

(Lη) in
the equation above are each strictly positive as L is relatively ample.

We can also express deg(Lb) in terms of the generic rank of a fiber of I . Using
[Altman and Kleiman 1979, 2.5.1] again, we have

deg(Lb)= degx1
(L0) · `x1(I0)+ · · ·+ degxn

(L0) · `xn (I0)

= degy1
(Lη) · `y1(Iη)+ · · ·+ degym

(Lη) · `ym (Iη).

Here `xi (I0) denotes the length of the localization of I0 at xi and similarly for
`y j (Iη). The fibers of XT→ T are reduced, so such a length is equal to the minimal
number of generators. In particular, these numbers are upper semicontinuous. In
other words, if y j specializes to xi , then we have `y j (Iη)≤ `xi (I0) (by Nakayama’s
lemma).

The desired result now follows. Suppose first that I0 is rank 1. Then we have
`yi (Iη)≤1 for all i by semicontinuity. If some inequality was strict, say `y1(Iη)=0,
then we would have

deg(Lb)= degy1
(Lη)+ degy2

(Lη)+ · · ·+ degym
(Lη)

> degy2
(Lη)+ · · ·+ degym

(Lη)

≥ degy1
(Lη) · `y1(Iη)+ · · ·+ degym

(Lη) · `ym (Iη)

= deg(Lb).

This is absurd! Thus, we must have `yi (Iη)= 1 for all yi and Iη is rank 1. Similar
reasoning shows that if Iη is rank 1, then I0 is rank 1. �

Remark 4.4. The hypothesis that the fibers of f are geometrically reduced is nec-
essary. Indeed, the moduli space Mst(OX , Pd) was described in [Chen and Kass
2011] in the case that X is a nonreduced curve whose reduced subscheme Xred
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is smooth and whose nilradical N is square-zero (i.e., X is a ribbon). Using that
description it is easy to produce examples where J̄ d

L ⊂Mst(OX , Pd) is not closed
(e.g., take d equal to 0, X to have even genus, and Xred to have genus 1). The
points of the complement in the closure correspond to stable rank 2 vector bundles
on Xred.

We now apply Proposition 3.6 and Theorem 3.9 to the Simpson Jacobians.

Corollary 4.5. Fix a Dedekind scheme B that is finitely generated over a univer-
sally Japanese ring. Let f : X → B be a family of geometrically reduced curves.
Let L be f -relatively ample line bundle.

Then the natural map J 0
L(X)→ Qτ is an open immersion. Assume further that

both of the following conditions hold:

• Every L-slope semistable rank 1, torsion free sheaf of degree 0 is L-slope
stable.

• f satisfies Hypothesis 1.

Then J 0
L(X)= Qτ , and this scheme is the Néron model.

Proof. The local existence of a universal family [Simpson 1994, Theorem 2.1(4)]
implies that there is a natural transformation J̄L(X)→ Sh with the property that
JL(X) is the preimage of P0

⊂ Sh. Furthermore, the slope stability condition is
a fiberwise condition, so a modification of the argument given in Corollary 4.2
completes the proof. �

Remark 4.6. A minor generalization of Corollary 4.5 can be obtained by allowing
for moduli spaces of degree d lines bundles, with d 6= 0. If we are given a line
bundle M on X with fiberwise degree d , then there is an associated map J d

L(X)→Q
that extends the map on the generic fiber given by tensoring with M−1. With only
notational changes the previous corollary generalizes to a statement about this map.

Corollary 4.5 is, of course, only of interest when there exists an L such that
L-slope stability coincides with L-slope semistability. Thus, we ask, When does
such an L exist? A comprehensive discussion of this question would require a
digression on stability conditions, so we limit ourselves to reviewing known results
about a single curve X0 over an algebraically closed field. When X0 is integral,
the stability condition is vacuous, so every ample L0 has the desired property.
If X0 is reducible of genus g 6= 1 with only nodes as singularities, then Melo and
Viviani have proven the existence of a suitable L0 [2012, Proposition 6.4]. Stability
conditions on reduced, genus 1 curves were analyzed by López-Martín [2005]. She
exhibits curves X0 with the property that there is no L0 such that every L0-slope
semistable, pure, rank 1 sheaf degree 0 is stable, but a suitable L0 always exists
if one considers sheaves of fixed degree d 6= 0. Finally, stability conditions for a
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ribbon were analyzed in [Chen and Kass 2011]. On a ribbon, the stability condition
is independent of L0, and for rational ribbons, slope stability coincides with slope
semistability precisely when the genus g is even. It would be desirable to have a
general result asserting (non)existence of a suitable L0.

4.3. Genus 1 curves. The Néron model of the Jacobian of a genus 1 curve can
be quite complicated (see for example [Liu et al. 2004]), but these complications
do not arise if the family admits a section. Suppose B is a Dedekind scheme and
f : X → B is a family of curves such that the total space X is regular and the
generic fiber Xη is smooth. If σ : B→ X sm is a section contained in the smooth
locus, then there is a canonical identification of the smooth locus X sm with the
Néron model N of the Jacobian of Xη. Here we examine how this fact fits into the
preceding framework.

Definition 4.7. Let f : X → B be a family of genus 1 curves over a Dedekind
scheme and σ : B → X sm a section contained in the smooth locus. We define a
sheaf Iuni. on X ×B X by the formula

Iuni. := I1(π
∗

1 (σ )+π
∗

2 (σ )). (4-2)

Here I1 is the ideal sheaf of the diagonal, and π1, π2 : X ×B X → X are the
projection maps.

The sheaf Iuni. determines a transformation X→ Sh that realizes X as a moduli
space of sheaves over itself. Proposition 3.6 and Theorem 3.9 apply to this moduli
space.

Corollary 4.8. Fix a Dedekind scheme B. Let f : X → B be a family of genus 1
curves. Let σ : B→ X sm be a section.

Then the natural map X sm
→ Q is an open immersion.

Assume further that f satisfies Hypothesis 1. Then X sm
= Qτ , and this scheme

is the Néron model.

Let us consider the special case where B is a discrete valuation ring, X is a
minimal regular surface, and the residue field k(0) is algebraically closed. The
possibilities for the special fiber X0 are given by the Kodaria–Néron classification
([Kodaira 1960; Néron 1964]; see [Silverman 1994, pp. 353–354] for a recent
exposition). The reduced curves appearing in the classification are the reduction
types In , II, III, and IV. In these cases, one may show that the induced morphism
X→ Sh identifies X with the Esteves compactified Jacobian J̄ σO .

In every remaining case (reduction type I∗n , II∗, III∗, or IV∗) the morphism X→
Sh is not a special case of the fine moduli spaces discussed in the previous two
sections. Indeed, the special fiber X0 is nonreduced, so the Esteves Jacobian of X
is not defined. In Section 4.2, we reviewed Simpson’s moduli space Mst(OX , Pd) of
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stable sheaves, but the image of X→Sh cannot be described as a closed subscheme
of that space. The reason is that slope stable sheaves are simple, but some fibers
of Iuni. are not simple. Specifically, if p0 ∈ X0 lies on the intersection of two
components, then the fiber of Iuni of p0 fails to be simple. This can be seen
as follows. This fiber is the sheaf Ip0(+σ(0)), where Ip0 is the ideal of p0. If
ν : X ′0→ X0 is the blow-up of X0 at p0, then one may show that H 0(X ′0,OX ′0) is
canonically isomorphic to the endomorphism ring of Ip0(+σ(0)). An inspection
of the Kodaria–Néron table shows that X ′0 is disconnected, so H 0(X ′0,OX ′0) does
not equal k(0) and Ip0(+σ(0)) is not simple.

Corollary 4.8 provides a partial answer to a question posed in the introduction:
What are the maximal subfunctors J of P0 represented by a separated B-scheme?
When X is, say, regular, a strong result one could hope for is that there is always a
subfunctor J̄ of Sh satisfying the hypotheses of Theorem 3.9. The line bundle locus
J ⊂ J̄ in such a functor has the property that J→Qτ is an isomorphism, and hence
J is maximal. Corollary 4.8 shows that such a J̄ exists when f : X→ S is a family
of genus 1 curves that f admits a section. Similarly, the Esteves compactified
Jacobian represents a suitable subfunctor when f has geometrically reduced fibers
and admits a section. In general, however, the hope is too optimistic: Raynaud’s
family, mentioned at the end of Section 3, has that property that no such J̄ can
exist.

The question of describing maximal subfunctors J is most interesting when f
has nonreduced fibers. The slope stable line bundles form a subfunctor J ⊂P0 rep-
resented by a S-separated scheme, but our discussion of genus 1 families together
with Remark 4.4 suggest that we should consider other methods for constructing
a suitable J when f has nonreduced fibers.

In a different direction, one nice property of the moduli spaces described by
Corollary 4.8 is that their geometry is very simple. We use these spaces to provide
an example showing that a family J → B of Esteves Jacobians over a regular
2-dimensional base may not have group scheme structure.

Example 4.9 (Néron models in 2-dimensional families). We will construct a 2-
dimensional family f : X→ B of plane cubics and an associated Esteves Jacobian
J → B with the property that the group law on the locus JU → U parametriz-
ing nonsingular cubics does not extend over all of B. Furthermore, the family is
constructed so that a dense open subset of B is covered by nonsingular curves C
with the property that the restriction XC of X to C is regular, so JC is the Néron
model of its generic fiber (and in particular admits group scheme structure that
extends the group scheme structure over C ∩U ). Thus, the Néron models fit into
a 2-dimensional family, but their group scheme structure does not.

The idea is as follows. The family we construct has a reducible element Xb0→

b0 with the property that, for every nonsingular curve C ⊂ B passing through b0
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such that XC is regular, the restriction of the Esteves Jacobian JC is the Néron
model of its generic fiber. The fiber Jb0 inherits a group law from this Néron
model, and we show explicitly that this group law depends on the particular choice
of C . But, if the group law on JU extended to J , then all the different group laws
on Jb0 coming from the different curves C would be the restriction of one common
group law on J , which is absurd. We now construct the family.

We work over an algebraically closed field k. The family X→ B will be a net of
plane cubics. Let X0⊂P2

k be a reducible plane cubics that is the union of a smooth
quadric Q0 and a line L0 that meet in two distinct points. (See Figure 1.) Fix two
general points p1, p2 ∈ L0(k) on the line and one general point q1 ∈ Q0(k) on the
quadric. Say that F ∈H 0(P2

k,O(3)) is an equation for X0 and G, H ∈H 0(P2
k,O(3))

are two general cubic equations that vanish on all of the points p1, p2, q1. We will
work with the net V := 〈F,G, H〉 ⊂ H 0(P2

k,O(3)) and the associated family of
curves

X := {(p, [r, s, t]) : r · F(p)+ s ·G(p)+ t · H(p)= 0}

⊂ P2
k ×P2

k .

(4-3)

There are two obvious morphisms e, f : X→P2
k given by the two projections. If we

set B :=P2
k equal to the plane, then the second morphism f : X→ B realizes X as a

family of genus 1 curves with X0= f −1(b0), where b0 := [1, 0, 0]. Corresponding
to the points p1, p2, q1 ∈ X0(k) are three section σ1, σ2, τ1 : B→ X sm, which lie
in the smooth locus by the generality assumption.

q1

p1p2
pC

L0 Q0

Figure 1. The pencil XC .
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Another application of the generality assumption shows that the fibers of f
are reduced, so we can form the Esteves Jacobian J := J σ1

E , where E = OX . The
quasistability condition on a line bundle L0 on X0 is the condition that the bidegree
(deg(LL0), deg(LQ0)) equals (0, 0) or (1,−1). Now we assume J→ B is a group
scheme and derive a contradiction.

Suppose that we are given a general line C ⊂ B in the plane that contains b0.
Such a line corresponds to a 2-dimensional linear subspace of the form W :=
〈F,GC〉 ⊂ V for some GC ∈ V . Invoking generality again, the base locus

{p ∈ P2
k : F(p)= GC(p)= 0} (4-4)

consists of 9 distinct points. The first projection map e : X → P2
k realizes XC as

the blow-up of the plane at these points, so XC is regular, and thus JC is the Néron
model of its generic fiber. We now study the group of sections of JC → C .

The base locus (4-4) includes the points p1, p2, q1. In addition to the points
p1, p2, a unique third point of the base locus must lie on the line L0. Let us label
that point pC and write σC : C→ XC for the corresponding section.

Now consider the following line bundles on XC :

L1 := O(σ1− τ1), LC := O(σC − τ1),

L2 := O(σ2− τ1), M := O(1)⊗O(−3 · τ1).

These lines bundles are all σ1-quasistable. If we let g1, g2, gC , h ∈ JC(C) respec-
tively correspond to L1,L2,LC ,M, then I claim we have

g1+ g2+ gC = h. (4-5)

Indeed, it is enough to verify the claim after passing to the generic fiber of JC→C ,
where the equation is just the statement that the points p1, p2, pC all lie on a line
(the line L0). Now suppose that J → P2

k admits a group law extending the group
law of the generic fiber. Then the specialization of (4-5) to Jb0 holds for all C si-
multaneously. In particular, the isomorphism class of the line bundle OXb0

(pC−q1)

is independent of the particular line C ⊂P2
k chosen. But this is absurd: For distinct

general lines C1,C2, the points pC1 and pC2 (and hence the associated line bundles)
are distinct! This completes our discussion of this example.

This example is particularly interesting in light of [Oda and Seshadri 1979].
The authors of that paper consider the case of a family of nodal curves f : X→ B
over a suitable Dedekind scheme with the property that X is regular. Let Jη be
the Jacobian of the generic fiber. Given a closed point 0 ∈ B, they prove that the
special fiber N0 of the Néron model of Jη depends only on the curve X0 and not
the particular family f [ibid., Corollary 14.4]. This result must be interpreted with
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care: In our example, the group law depends on a particular choice of family, but
any two such group laws define isomorphic group schemes.

5. Acknowledgements

The results of this paper are a part of my thesis. I would like to thank my advisor Joe
Harris for his invaluable help. The thesis was carefully read by Filippo Viviani and
Margarida Melo, who where very helpful in writing this paper, and I thank them.
I thank Steven Kleiman for explaining the proof of Proposition 4.1, and Valery
Alexeev for a useful discussion of stability conditions. I also thank the anonymous
referee, Bryden Cais, Lucia Caporaso, Eduardo Esteves, Robert Lazarsfeld, and
Dino Lorenzini for feedback about early drafts of this paper. Finally, I thank
Bhargav Bhatt, Matthew Satriano, and Karen Smith for conversations that were
helpful in clarifying technical aspects of this paper.

References

[Alexeev 2004] V. Alexeev, “Compactified Jacobians and Torelli map”, Publ. Res. Inst. Math. Sci.
40:4 (2004), 1241–1265. MR 2006a:14016 Zbl 1079.14019

[Altman and Kleiman 1979] A. B. Altman and S. L. Kleiman, “Compactifying the Picard scheme,
II”, Amer. J. Math. 101:1 (1979), 10–41. MR 81f:14025b Zbl 0427.14016

[Altman and Kleiman 1980] A. B. Altman and S. L. Kleiman, “Compactifying the Picard scheme”,
Adv. in Math. 35:1 (1980), 50–112. MR 81f:14025a Zbl 0427.14015

[Bosch et al. 1990] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergeb. Math.
Grenzgeb. (3) 21, Springer, Berlin, 1990. MR 91i:14034 Zbl 0705.14001

[Busonero 2008] S. Busonero, Compactified Picard schemes and Abel maps for singular curves,
thesis, Università di Roma La Sapienz, 2008.

[Caporaso 1994] L. Caporaso, “A compactification of the universal Picard variety over the moduli
space of stable curves”, J. Amer. Math. Soc. 7:3 (1994), 589–660. MR 95d:14014 Zbl 0827.14014

[Caporaso 2008a] L. Caporaso, “Compactified Jacobians, Abel maps and theta divisors”, pp. 1–23
in Curves and abelian varieties (Athens, GA, 2007), edited by V. Alexeev et al., Contemp. Math.
465, Amer. Math. Soc., Providence, RI, 2008. MR 2010b:14088 Zbl 1152.14027

[Caporaso 2008b] L. Caporaso, “Néron models and compactified Picard schemes over the moduli
stack of stable curves”, Amer. J. Math. 130:1 (2008), 1–47. MR 2009j:14030 Zbl 1155.14023

[Caporaso 2012] L. Caporaso, “Compactified Jacobians of Néron type”, Rend. Lincei Mat. Appl.
23:2 (2012), 213–227. Zbl 1244.14031

[Casalaina-Martin et al. 2011] S. Casalaina-Martin, J. L. Kass, and F. Viviani, “The local structure
of compactified Jacobians: Deformation theory”, preprint, 2011. arXiv 1107.4166v1

[Chen and Kass 2011] D. Chen and J. L. Kass, “Moduli of generalized line bundles on a ribbon”,
preprint, 2011. arXiv 1106.5441v1

[D’Souza 1979] C. D’Souza, “Compactification of generalised Jacobians”, Proc. Indian Acad. Sci.
Sect. A Math. Sci. 88:5 (1979), 419–457. MR 81h:14004 Zbl 0442.14016

[Esteves 2001] E. Esteves, “Compactifying the relative Jacobian over families of reduced curves”,
Trans. Amer. Math. Soc. 353:8 (2001), 3045–3095. MR 2003b:14036 Zbl 0974.14009

http://dx.doi.org/10.2977/prims/1145475446
http://msp.org/idx/mr/2006a:14016
http://msp.org/idx/zbl/1079.14019
http://dx.doi.org/10.2307/2373937
http://dx.doi.org/10.2307/2373937
http://msp.org/idx/mr/81f:14025b
http://msp.org/idx/zbl/0427.14016
http://dx.doi.org/10.1016/0001-8708(80)90043-2
http://msp.org/idx/mr/81f:14025a
http://msp.org/idx/zbl/0427.14015
http://msp.org/idx/mr/91i:14034
http://msp.org/idx/zbl/0705.14001
http://dx.doi.org/10.2307/2152786
http://dx.doi.org/10.2307/2152786
http://msp.org/idx/mr/95d:14014
http://msp.org/idx/zbl/0827.14014
http://dx.doi.org/10.1090/conm/465/09097
http://msp.org/idx/mr/2010b:14088
http://msp.org/idx/zbl/1152.14027
http://dx.doi.org/10.1353/ajm.2008.0000
http://dx.doi.org/10.1353/ajm.2008.0000
http://msp.org/idx/mr/2009j:14030
http://msp.org/idx/zbl/1155.14023
http://dx.doi.org/10.4171/RLM/625
http://msp.org/idx/zbl/1244.14031
http://msp.org/idx/arx/1107.4166v1
http://msp.org/idx/arx/1106.5441v1
http://msp.org/idx/mr/81h:14004
http://msp.org/idx/zbl/0442.14016
http://dx.doi.org/10.1090/S0002-9947-01-02746-5
http://msp.org/idx/mr/2003b:14036
http://msp.org/idx/zbl/0974.14009


Two ways to degenerate the Jacobian are the same 403

[Esteves 2009] E. Esteves, “Compactified Jacobians of curves with spine decompositions”, Geom.
Dedicata 139 (2009), 167–181. MR 2010d:14041 Zbl 1171.14018

[Gross 1990] B. H. Gross, “A tameness criterion for Galois representations associated to modular
forms (mod p)”, Duke Math. J. 61:2 (1990), 445–517. MR 91i:11060 Zbl 0743.11030

[Grothendieck 1961] A. Grothendieck, “Éléments de géométrie algébrique, III: Étude cohomolo-
gique des faisceaux cohérents, I”, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 5–167. MR 36
#177c Zbl 0118.36206

[Grothendieck 1964] A. Grothendieck, “Éléments de géométrie algébrique, IV: Étude locale des
schémas et des morphismes de schémas, I”, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 5–259.
MR 30 #3885 Zbl 0136.15901

[Grothendieck 1965] A. Grothendieck, “Éléments de géométrie algébrique, IV: Étude locale des
schémas et des morphismes de schémas, II”, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 5–
231. MR 33 #7330 Zbl 0135.39701

[Grothendieck 1966a] A. Grothendieck, “Éléments de géométrie algébrique, IV: Étude locale des
schémas et des morphismes de schémas, III”, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 5–
255. MR 36 #178 Zbl 0144.19904

[Grothendieck 1966b] A. Grothendieck, “Technique de descente et théorèmes d’existence en géo-
métrie algébrique, VI, Les schémas de Picard: propriétés générales”, exposé 236 in Séminaire
Bourbaki 1961–1962, W. A. Benjamin, Amsterdam, 1966. Reprinted as pp. 221–243 in Séminaire
Bourbaki 7, Soc. Math. France, Paris, 1995. MR 1610872 Zbl 0238.14015

[Grothendieck 1967] A. Grothendieck, “Éléments de géométrie algébrique, IV: Étude locale des
schémas et des morphismes de schémas, IV”, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 5–
361. MR 39 #220 Zbl 0153.22301

[Ishida 1978] M.-N. Ishida, “Compactifications of a family of generalized Jacobian varieties”, pp.
503–524 in Proceedings of the International Symposium on Algebraic Geometry (Kyoto, 1977),
edited by M. Nagata, Kinokuniya Book Store, Tokyo, 1978. MR 81h:14025 Zbl 0415.14015

[Jarvis 2000] T. J. Jarvis, “Compactification of the universal Picard over the moduli of stable curves”,
Math. Z. 235:1 (2000), 123–149. MR 2001m:14040 Zbl 0980.14020

[Kleiman 2005] S. L. Kleiman, “The Picard scheme”, pp. 235–321 in Fundamental algebraic ge-
ometry: Grothendieck’s FGA explained (Trieste, 2003), Math. Surveys Monogr. 123, Amer. Math.
Soc., Providence, RI, 2005. MR 2223410 Zbl 1085.14001

[Kodaira 1960] K. Kodaira, “On compact analytic surfaces”, pp. 121–135 in Analytic functions
(Princeton, NJ, 1958), Princeton Mathematical Series 24, Princeton University Press, 1960. MR 25
#3939 Zbl 0137.17401

[Langer 2004a] A. Langer, “Moduli spaces of sheaves in mixed characteristic”, Duke Math. J. 124:3
(2004), 571–586. MR 2005g:14082 Zbl 1086.14036

[Langer 2004b] A. Langer, “Semistable sheaves in positive characteristic”, Ann. of Math. (2) 159:1
(2004), 251–276. MR 2005c:14021 Zbl 1080.14014

[Liu et al. 2004] Q. Liu, D. Lorenzini, and M. Raynaud, “Néron models, Lie algebras, and reduction
of curves of genus one”, Invent. Math. 157:3 (2004), 455–518. MR 2005m:14039 Zbl 1060.14037

[López-Martín 2005] A. C. López-Martín, “Simpson Jacobians of reducible curves”, J. Reine Angew.
Math. 582 (2005), 1–39. MR 2006d:14032 Zbl 1078.14033

[Maruyama 1996] M. Maruyama, “Construction of moduli spaces of stable sheaves via Simpson’s
idea”, pp. 147–187 in Moduli of vector bundles (Kyoto, 1994), edited by M. Maruyama, Lecture
Notes in Pure and Appl. Math. 179, Dekker, New York, 1996. MR 97h:14020 Zbl 0885.14005

http://dx.doi.org/10.1007/s10711-008-9322-5
http://msp.org/idx/mr/2010d:14041
http://msp.org/idx/zbl/1171.14018
http://dx.doi.org/10.1215/S0012-7094-90-06119-8
http://dx.doi.org/10.1215/S0012-7094-90-06119-8
http://msp.org/idx/mr/91i:11060
http://msp.org/idx/zbl/0743.11030
http://www.numdam.org/item?id=PMIHES_1961__11__5_0
http://www.numdam.org/item?id=PMIHES_1961__11__5_0
http://msp.org/idx/mr/36:177c
http://msp.org/idx/mr/36:177c
http://msp.org/idx/zbl/0118.36206
http://www.numdam.org/numdam-bin/item?id=PMIHES_1964__20__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1964__20__5_0
http://msp.org/idx/mr/30:3885
http://msp.org/idx/zbl/0136.15901
http://www.numdam.org/numdam-bin/item?id=PMIHES_1965__24__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1965__24__5_0
http://msp.org/idx/mr/33:7330
http://msp.org/idx/zbl/0135.39701
http://www.numdam.org/numdam-bin/item?id=PMIHES_1966__28__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1966__28__5_0
http://msp.org/idx/mr/36:178
http://msp.org/idx/zbl/0144.19904
http://www.numdam.org/item?id=SB_1961-1962__7__221_0
http://www.numdam.org/item?id=SB_1961-1962__7__221_0
http://msp.org/idx/mr/1610872
http://msp.org/idx/zbl/0238.14015
http://www.numdam.org/numdam-bin/item?id=PMIHES_1967__32__5_0
http://www.numdam.org/numdam-bin/item?id=PMIHES_1967__32__5_0
http://msp.org/idx/mr/39:220
http://msp.org/idx/zbl/0153.22301
http://msp.org/idx/mr/81h:14025
http://msp.org/idx/zbl/0415.14015
http://dx.doi.org/10.1007/s002090000127
http://msp.org/idx/mr/2001m:14040
http://msp.org/idx/zbl/0980.14020
http://msp.org/idx/mr/2223410
http://msp.org/idx/zbl/1085.14001
http://msp.org/idx/mr/25:3939
http://msp.org/idx/mr/25:3939
http://msp.org/idx/zbl/0137.17401
http://dx.doi.org/10.1215/S0012-7094-04-12434-0
http://msp.org/idx/mr/2005g:14082
http://msp.org/idx/zbl/1086.14036
http://dx.doi.org/10.4007/annals.2004.159.251
http://msp.org/idx/mr/2005c:14021
http://msp.org/idx/zbl/1080.14014
http://dx.doi.org/10.1007/s00222-004-0342-y
http://dx.doi.org/10.1007/s00222-004-0342-y
http://msp.org/idx/mr/2005m:14039
http://msp.org/idx/zbl/1060.14037
http://dx.doi.org/10.1515/crll.2005.2005.582.1
http://msp.org/idx/mr/2006d:14032
http://msp.org/idx/zbl/1078.14033
http://msp.org/idx/mr/97h:14020
http://msp.org/idx/zbl/0885.14005


404 Jesse Leo Kass

[Mayer and Mumford 1964] A. Mayer and D. Mumford, “Further comments on boundary points”,
Lecture notes, Summer Institute on Algebraic Geometry (Woods Hole, MA), Amer. Math. Soc.
Summer Institute, 1964, Available at http://www.jmilne.org/math/Documents/index.html.

[Mazur 1972] B. Mazur, “Rational points of abelian varieties with values in towers of number
fields”, Invent. Math. 18 (1972), 183–266. MR 56 #3020 Zbl 0245.14015

[Mazur 1977] B. Mazur, “Modular curves and the Eisenstein ideal”, Inst. Hautes Études Sci. Publ.
Math. 47 (1977), 33–186. MR 80c:14015 Zbl 0394.14008

[Mazur and Wiles 1984] B. Mazur and A. Wiles, “Class fields of abelian extensions of Q”, Invent.
Math. 76:2 (1984), 179–330. MR 85m:11069 Zbl 0545.12005

[Melo and Viviani 2012] M. Melo and F. Viviani, “Fine compactified Jacobians”, Math. Nachr.
285:8–9 (2012), 997–1031. Zbl 06049557

[Néron 1964] A. Néron, “Modèles minimaux des variétés abéliennes sur les corps locaux et glo-
baux”, Inst. Hautes Études Sci. Publ.Math. 21 (1964), 5–128. MR 31 #3423 Zbl 0132.41403

[Oda and Seshadri 1979] T. Oda and C. S. Seshadri, “Compactifications of the generalized Jacobian
variety”, Trans. Amer. Math. Soc. 253 (1979), 1–90. MR 82e:14054 Zbl 0418.14019

[Pandharipande 1996] R. Pandharipande, “A compactification over Mg of the universal moduli
space of slope-semistable vector bundles”, J. Amer. Math. Soc. 9:2 (1996), 425–471. MR 96f:14014
Zbl 0886.14002

[Raynaud 1970] M. Raynaud, “Spécialisation du foncteur de Picard”, Inst. Hautes Études Sci. Publ.
Math. 38 (1970), 27–76. MR 44 #227 Zbl 0207.51602

[Silverman 1994] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate
Texts in Mathematics 151, Springer, New York, 1994. MR 96b:11074 Zbl 0911.14015

[Simpson 1994] C. T. Simpson, “Moduli of representations of the fundamental group of a smooth
projective variety. I”, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129. MR 96e:14012
Zbl 0891.14005

Communicated by Brian Conrad
Received 2011-09-23 Revised 2012-01-13 Accepted 2012-02-20

jkass@umich.edu Institut für Algebraische Geometrie, Leibniz Universität
Hannover, Welfengarten 1, D-30167 Hannover, Germany
http://www2.iag.uni-hannover.de/~kass/

mathematical sciences publishers msp

http://www.jmilne.org/math/Documents/index.html
http://dx.doi.org/10.1007/BF01389815
http://dx.doi.org/10.1007/BF01389815
http://msp.org/idx/mr/56:3020
http://msp.org/idx/zbl/0245.14015
http://www.numdam.org/item?id=PMIHES_1977__47__33_0
http://msp.org/idx/mr/80c:14015
http://msp.org/idx/zbl/0394.14008
http://dx.doi.org/10.1007/BF01388599
http://msp.org/idx/mr/85m:11069
http://msp.org/idx/zbl/0545.12005
http://dx.doi.org/10.1002/mana.201100021
http://msp.org/idx/zbl/06049557
http://www.numdam.org/item?id=PMIHES_1964__21__5_0
http://www.numdam.org/item?id=PMIHES_1964__21__5_0
http://msp.org/idx/mr/31:3423
http://msp.org/idx/zbl/0132.41403
http://dx.doi.org/10.2307/1998186
http://dx.doi.org/10.2307/1998186
http://msp.org/idx/mr/82e:14054
http://msp.org/idx/zbl/0418.14019
http://dx.doi.org/10.1090/S0894-0347-96-00173-7
http://dx.doi.org/10.1090/S0894-0347-96-00173-7
http://msp.org/idx/mr/96f:14014
http://msp.org/idx/zbl/0886.14002
http://www.numdam.org/item?id=PMIHES_1970__38__27_0
http://msp.org/idx/mr/44:227
http://msp.org/idx/zbl/0207.51602
http://dx.doi.org/10.1007/978-1-4612-0851-8
http://msp.org/idx/mr/96b:11074
http://msp.org/idx/zbl/0911.14015
http://www.numdam.org/item?id=PMIHES_1994__79__47_0
http://www.numdam.org/item?id=PMIHES_1994__79__47_0
http://msp.org/idx/mr/96e:14012
http://msp.org/idx/zbl/0891.14005
mailto:jkass@umich.edu
http://www2.iag.uni-hannover.de/~kass/
http://msp.org


msp
ALGEBRA AND NUMBER THEORY 7:2 (2013)

dx.doi.org/10.2140/ant.2013.7.405

Arithmetic motivic Poincaré series
of toric varieties

Helena Cobo Pablos and Pedro Daniel González Pérez

The arithmetic motivic Poincaré series of a variety V defined over a field of
characteristic zero is an invariant of singularities that was introduced by Denef
and Loeser by analogy with the Serre–Oesterlé series in arithmetic geometry.
They proved that this motivic series has a rational form that specializes to the
Serre–Oesterlé series when V is defined over the integers. This invariant, which
is known explicitly for a few classes of singularities, remains quite mysterious.
In this paper, we study this motivic series when V is an affine toric variety. We
obtain a formula for the rational form of this series in terms of the Newton
polyhedra of the ideals of sums of combinations associated to the minimal system
of generators of the semigroup of the toric variety. In particular, we explicitly
deduce a finite set of candidate poles for this invariant.

Introduction

Let S denote an irreducible and reduced algebraic variety defined over a field k of
characteristic zero. The set H(S) of formal arcs of the form Spec k[[t]] → S can be
given the structure of scheme over k (not necessarily of finite type). If 0 ∈ S, we
denote by H(S)0 the subscheme of the arc space consisting of arcs in H(S) with
origin at 0. The set Hm(S) of m-jets of S of the form Spec k[t]/(tm+1)→ S has
the structure of algebraic variety over k. By a theorem of Greenberg, the image of
the space of arcs H(S) by the natural morphism of schemes jm : H(S)→ Hm(S)
that maps any arc to its m-jet is a constructible subset of Hm(S).

It follows that jm(H(S)) defines a class [ jm(H(S))] in the Grothendieck ring of
varieties K0(Vark) and also a class χc([Hm(S)])∈K0(CHMotk) in the Grothendieck
ring of Chow motives, where χc : K0(Vark)→ K0(CHMotk) is the unique ring
homomorphism that maps the class of a smooth projective variety to its Chow
motive (see [Gillet and Soulé 1996; Guillén and Navarro Aznar 2002]). We denote
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by K mot
0 (Vark) the image of K0(Vark) by the homomorphism χc. We use the same

symbol L to denote the class [A1
k] ∈ K0(Vark) and the class χc([A1

k]) ∈ K mot
0 (Vark).

Denef and Loeser [DL 2004] have defined various notions of motivic Poincaré
series, motivated by some generating series in arithmetic geometry. Assume for
simplicity that the variety S is defined over the integers. We denote by p a prime
number and by Zp the p-adic integers. For every positive integer m, the symbol
Np,m(S) denotes the number of rational points of S over Z/pm+1Z that can be
lifted to rational points of S over Zp by the projection induced by the natural map
Zp→ Z/pm+1Z. The Serre–Oesterlé series of S at the prime p is

P S
p (T )=

∑
m≥0

Np,m(S)T m ∈ Z[[T ]].

The definition of the geometric motivic Poincaré series,

P S
geom(T )=

∑
m≥0

χc([ jm(H)])T m ∈ K mot
0 (Vark)⊗Q[[T ]],

is inspired by that of the Serre–Oesterlé series. However, there is no specialization
of the series P S

geom(T ) into P S
p (T ) in general [DL 2004].

Denef and Loeser studied the “motivic nature” of the series P S
p (T ), passing

through the Grothendieck ring K0(Fieldk) of ring formulas over k. By Greenberg’s
theorem, for every m there exists a formula ψm over k, such that for any field
extension k ⊂ K , the m-jets over k that can be lifted to arcs defined over K
correspond to the tuples satisfying ψm in K . It follows that ψm defines an element
[ψm] ∈ K0(Fieldk). Then, Denef and Loeser defined a ring homomorphism χ f :
K0(Fieldk)→ K mot

0 (Vark)⊗Q. This homomorphism can be seen as a generalization
of χc, since the image by χ f of the class of the ring formula defining a variety
V coincides with the class χc([V ]) in K mot

0 (Vark)⊗Q. The arithmetic motivic
Poincaré series of S is defined as

P S
ar(T )=

∑
m≥0

χ f ([ψm])T m ∈ K mot
0 (Vark)⊗Q[[T ]].

Denef [1984] proved the rationality of the series P S
p (T ) using quantifier elimi-

nation results. Denef and Loeser [1999; 2001] proved the rationality of the series
P S

geom(T ) and P S
ar(T ) by using quantifier eliminations theorems, various forms of

motivic integration, and the existence of resolution of singularities.
If V is a variety defined over the integers and p is a prime number, the symbol

Np(V ) denotes the number of rational points of V over the field of p elements.
Denef and Loeser proved that the result of applying the operator Np to the motivic
arithmetic series P S

ar(T ) provides the Serre–Oesterlé series P S
p (T ) for almost all

primes p.
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If we fix the origin of the arcs at a fixed point 0 ∈ S, we obtain local versions of
the series P (S,0)ar (T ) and P (S,0)geom (T ), which are also rational; see [DL 1999; 2001].
The rationality proofs therein are qualitative in nature; in particular, there is no
conjecture on the significance of the terms appearing in the denominator of the
rational form of the series P (S,0)ar (T ) or in P (S,0)geom (T ).

The rational form of the series P (S,0)ar (T ) is known explicitly for a few classes
of singularities. If (S, 0) is an analytically irreducible germ of plane curve, the
information provided by the series P (S,0)ar (T ) is equivalent to the data of the Puiseux
pairs [DL 2001]. Nicaise [2005a] proved the equality of the geometric and arithmetic
motivic Poincaré series in the case of varieties that admit a very special resolution
of singularities, in particular for normal toric surfaces; see also [Nicaise 2005b;
Lejeune-Jalabert and Reguera 2003]. He gave a criterion for the equality P (S,0)ar (T )=
P (S,0)geom (T ) for various classes of singularities and also an example of a normal toric
threefold (S0, 0) such that the series P (S0,0)

ar (T ) and P (S0,0)
geom (T ) are different. Some

features of the motivic arithmetic series are studied for quasi-ordinary singularities
in [Rond 2009].

In this paper, we describe the arithmetic motivic Poincaré series of an affine
toric variety Z3 = Spec k[3], in terms of the semigroup 3. We assume that 3 is a
semigroup of finite type of a rank d lattice M (lattice of characters), which generates
M as a group, and such that the cone R≥03 contains no lines. In this situation,
there is a unique minimal system of generators e1, . . . , en of the semigroup 3.
The monomial ideal (X ei )i=1,...,n ⊂ k[3] is maximal, and defines the distinguished
point 0 ∈ Z3. In this paper we consider other monomial ideals as the logarithmic
jacobian ideals Jl , generated by monomials of the form Xu for u in the set

{ei1 + · · ·+ eil | ei1 ∧ · · · ∧ eil 6= 0}
for l = 1, . . . , d (see [Cobo Pablos and González Pérez 2012]), and the ideals of
sums of combinations C j , defined by monomials Xw, with w in the set{

ei1 + · · ·+ ei j

∣∣ {i1, . . . , i j } ∈
({1, . . . , n}

j

)}
,

where
({1,...,n}

j

)
denotes the set of combinations of j elements of {1, . . . , n} for

j = 1, . . . , n.
We study the motivic arithmetic series P (Z

3,0)
ar (T ) by extending the approach

we used in [CoGP 2010; 2012] to describe the geometric motivic Poincaré series of
toric and quasi-ordinary singularities.

For convenience, we explain the methods and results first when the variety Z3 is
normal. The set jm(H(Z3)0) of m-jets of arcs through (Z3, 0) is constructible; it
is a finite disjoint union of locally closed subsets of the form jm(H∗ν ) [Cobo Pablos
and González Pérez 2012]. Here H∗ν denotes the set of arcs through (Z3, 0) that
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have generic point in the torus and a given order ν ∈ M∗. The set H∗ν is an orbit of
the natural action of the arc space of the torus on the arc space of the toric variety
Z3 [Ishii 2004; 2005].

We describe the class, denoted by χ f ([ jm(H∗ν )] f ), of the formula defining the
locally closed subset jm(H∗ν ) in terms of the Newton polyhedra of the logarithmic
jacobian ideals and the degree of a certain Galois cover. This Galois cover reflects the
relation between the initial coefficients of the arcs in H∗ν and the initial coefficients
of the m-jets in jm(H∗ν ); see Section 5.

A key point in the description of the rational form of the series P (Z
3,0)

ar (T )
is that using the ideals C j , we can refine a finite partition of the set of possible
pairs {(ν,m)}, which was defined in [Cobo Pablos and González Pérez 2012] to
describe the sum of P (Z

3,0)
geom (T ). If (ν,m) and (ν ′,m′) belong to the same subset

of this refinement, then the degrees of the Galois covers associated to jm(H∗ν ) and
jm′(H∗ν′) coincide (see Sections 6 and 7). Using these partitions, we decompose the
series P (Z

3,0)
ar (T ) as a sum of a finite number of contributions. The main result is a

formula for the rational form of P (Z
3,0)

ar (T ) (see Theorem 11.4 and Corollary 10.4).
The proofs pass by the results on the generating function of the projection of the set
of integral points in the interior of a rational polyhedral cone; see [Cobo Pablos and
González Pérez 2012]. The denominator of P (Z

3,0)
ar (T ) is a finite product of terms

of the form 1−LaT b with a≥ 0 and b> 0, which are determined explicitly in terms
of the ideals of sums of combinations C j . The integers a and b can be described
in terms of the orders of vanishing of the ideals C j and Jl at the codimension-one
orbits of various toric modifications given by the Newton polyhedra of the ideals C j

(see Remark 10.8). In the normal toric case, we obtain a formula for P Z3
ar (T ) in

terms of arithmetic motivic series at the distinguished points of the orbits.
In the nonnormal case, we obtain in a similar way a formula for the rational form

of P (Z
3,0)

ar (T ) and the factors of its denominator. The main difference is that we
have to consider contributions of jets of arcs with generic point in the various orbits
of Z0. We deduce a formula for the difference P (Z

3,0)
geom (T )− P (Z

3,0)
ar (T ) and we

give a criterion for the equality of these two series that generalizes the one given by
Nicaise [2005b] (see Proposition 10.5 and Corollary 10.6).

The paper is organized as follows. In Sections 1 and 2 we introduce the Grothen-
dieck rings, the arc and jet spaces, and the motivic Poincaré series. The notations
on toric varieties, their monomial ideals, and their arcs are introduced in Sections 3
and 4. The computation of the class χ f ([ jm(H∗ν )] f ) is given in Section 5. Sections
6 and 7 deal with the partitions associated to sequences of monomial ideals. The
main results are stated and proved in Sections 8, 9 and 10. In the case of normal
toric varieties, some features of the computation can be simplified (see Section 11).
We discuss some examples in Section 12.



Arithmetic motivic Poincaré series of toric varieties 409

1. Grothendieck rings of varieties and of ring formulas

The Grothendieck ring K0(Vark) of k-varieties is the free abelian group of isomor-
phism classes [X ] of k-varieties X modulo the relations [X ] = [X ′]+[X \ X ′] if X ′
is closed in X , and where the product is defined by [X ][X ′] = [X× X ′]. We denote
by L := [A1

k] the class of the affine line. If C is a constructible subset of some
variety X , that is, a disjoint union of finitely many locally closed subvarieties Ai

of X , then [C] ∈ K0(Vark) is well-defined as [C] :=∑i [Ai ] independently of the
representation. Bittner [2004] proved, using the weak factorization theorem, that
the ring K0(Vark) is generated by classes of smooth projective k-varieties, modulo
relations of the form [W ] − [E] = [X ] − [Y ], where Y ⊂ X is a closed subvariety,
and W is the blowing up of X along Y with exceptional divisor E .

We refer to [Scholl 1994; Gillet and Soulé 1996; Guillén and Navarro Aznar
2002] for the definition of the category of Chow motives. Roughly speaking, its
definition involves replacing the category of smooth projective algebraic varieties
over k by a category with basically the same objects, and whose morphisms are
suitable correspondences modulo rational equivalence. There exists a unique ring
homomorphism

χc : K0(Vark)→ K0(CHMotk) (1)

that maps the class of a smooth projective variety over k to its Chow motive, where
K0(CHMotk) denotes the Grothendieck ring of the category of Chow motives over
k (with coefficients in Q). This fundamental theorem, which is due to Gillet and
Soulé [1996] and Guillén and Navarro Aznar [2002], can be seen also in terms of
Bittner’s result. We refer to [Gillet and Soulé 1996; Guillén and Navarro Aznar
2002; Bittner 2004] for precise definitions and proofs and to [Scholl 1994] for a
survey on the notion of motives. We denote by K mot

0 (Vark) the image of K0(Vark)

in K0(CHMotk) under this homomorphism.
Notice that the image of L in K mot

0 (Vark), which we denote with the same symbol,
is not a zero divisor in K mot

0 (Vark) since it is a unit in K0(CHMotk). However, it
seems that it is not known if L is a zero divisor in K0(Vark).

A ring formula ψ over k is a first-order formula in the language of k-algebras and
free variables x1, . . . , xn , that is, the formula ψ is built from boolean combinations
(“and”, “or”, “not”) of polynomial equations over k and existential and universal
quantifiers. The Grothendieck ring K0(Fieldk) of ring formulas over k is generated
by symbols [ψ], where ψ is a ring formula over k, subject to the relations

[ψ1 ∨ψ2] = [ψ1] + [ψ2] − [ψ1 ∧ψ2]
if ψ1 and ψ2 have the same free variables, and [ψ1] = [ψ2] if there exists a ring
formula 9 over k such that when interpreted in any field, K ⊇ k provides the graph
of a bijection between the tuples of elements of K satisfying ψ1 and those satisfying
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ψ2. The ring multiplication is induced by the conjunction of formulas in disjoint
sets of variables [DL 2001]. Denef and Loeser defined a ring homomorphism

χ f : K0(Fieldk)→ K mot
0 (Vark)⊗Q. (2)

They proved that this homomorphism is characterized by two conditions. The first
one is that for any ring formula ψ that is a conjunction of polynomial equations
over k, the element χ f ([ψ]) is equal to the class χc([V ]) in K mot

0 (Vark)⊗Q of the
variety V defined by ψ . The second condition, which is more technical, expresses
that certain relations should hold in terms of unramified Galois coverings over k.
We refer to [DL 2001; 2004] for the precise statement. In the simplest case it
implies the following:

Example 1.1 [DL 2004, Example 6.4.3]. If n ≥ 1 is a fixed integer, k is a field
containing all n-th roots of unity, and ψ is the ring formula

ψ : there exists y such that x = yn and x 6= 0,

then we have that χ f ([ψ])= (1/n)(L− 1).

Lemma 1.2. Let ψ be the ring formula whose interpretation in any field K ⊇ k
provides the set of K -rational points of T that lift to K -rational points of T ′ by a
Galois covering T ′→ T of degree n of d-dimensional algebraic k-tori. If the field
k contains all the n-th roots of unity, then we have that χ f ([ψ])= (1/n)(L− 1)d .

Proof. The morphism T ′→ T induces a finite index inclusion of the corresponding
character group M ⊆ M ′, and hence a map of k-algebras k[M] ↪→ k[M ′]. By
the classification theorem of finitely generated abelian groups applied to M ′/M ,
there exists a basis {v1, . . . , vd} of M ′ and unique integers b1 | b2 | · · · | bd , where |
denotes division, such that {b1v1, . . . , bdvd} is a basis of M and n = b1 . . . bd . It
follows that the map of coordinate rings K [M] ↪→ K [M ′] expresses in coordinates
as K [z±b1

1 , . . . , z±bd
d ] ↪→ K [z±1

1 , . . . , z±1
d ]. We deduce that the ring formula ψ is

the conjunction of formulas ψi : there exists yi such that xi = ybi
i and xi 6= 0 for

i = 1, . . . , d, where the variables x1, . . . , xd are independent. Then we get that

χ f ([ψ])= 1
b1 . . . bd

(L− 1)d . �

Remark 1.3. Denef and Loeser defined the map χ f by factoring it through the
Grothendieck ring K0(PFFk) of ring formulas for the category of pseudofinite fields
containing k. See [DL 2001; 2004; 2002].
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2. Arcs, jets and motivic Poincaré series

We start this section by recalling the definition of the space of arcs of a variety S.
We assume for simplicity that S is an affine irreducible and reduced algebraic variety
defined over a field k of characteristic zero.

For any integer m ≥ 0, the functor from the category of k-algebras to the category
of sets, sending a k-algebra R to the set of R[t]/(tm+1)-rational points of S, is
representable by a k-scheme Hm(S) of finite type over k, called the m-jet scheme
of S. The natural maps induced by truncation jm+1

m : Hm+1(S)→ Hm(S) are affine,
and hence the projective limit H(S) := lim←−Hm(S) is a k-scheme, not necessarily
of finite type, called the arc space of S.

In what follows, we consider the schemes Hm(S) and H(S) with their reduced
structure. We have natural morphisms jm : H(S)→ Hm(S). By an arc we mean
a k-rational point of H(S), that is, a morphism Spec k[[t]] → S. By an m-jet we
mean a k-rational point of Hm(S), that is, a morphism Spec k[t]/(tm+1)→ S. The
origin of the arc (respectively of the m-jet) is the image of the closed point 0 of
Spec k[[t]] (respectively of Spec k[t]/(tm+1)).

If Z ⊂ S is a closed subvariety, then H(S)Z := j−1
0 (Z) (respectively Hm(S)Z :=

( jm
0 )
−1(Z)) denotes the subscheme of H(S) (respectively of Hm(S)) formed by

arcs (respectively m-jets) in S with origin in Z .
By a theorem of Greenberg [1966], jm(H(S)) is a constructible subset of the

k-variety Hm(S) for any integer m ≥ 0. We can then consider the class

[ jm(H(S))] ∈ K0(Vark).

Greenberg’s result implies also that there is a ring formula ψm over k, such that
for any field K containing k, the k-rational points of Hm(S) that can be lifted to
K -rational points of H(S) correspond to the tuples satisfying ψm in K . If ψ ′m is
another ring formula over k with the same property, then [ψm]= [ψ ′m] in K0(Fieldk).
The same applies for jm(H(S)Z ) if Z ⊂ S is a closed subvariety.

Notation 2.1. We denote the class [ψm] by [ jm(H(S))] f to avoid confusion with
the class [ jm(H(S))] ∈ K0(Vark).

Definition 2.2 [DL 1999; 2001].

(1) The geometric motivic Poincaré series of (S, Z) is

P (S,Z)geom (T ) :=
∑
m≥0

χc([ jm(H(S)Z )])T m ∈ K mot
0 (Vark)⊗Q[[T ]].

(2) The arithmetic motivic Poincaré series of (S, Z) is

P (S,Z)ar (T ) :=
∑
m≥0

χ f ([ jm(H(S)Z )] f )T m ∈ K mot
0 (Vark)⊗Q[[T ]].
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Remark 2.3. In order to have the geometric and arithmetic setting in the same ring,
we have slightly modified the original definition of the geometric motivic Poincaré
series, since

∑
m≥0[ jm(H(S)Z )]T m ∈ K0(Vark)[[T ]]; see [DL 1999]. This does not

affect the rationality results below.

Denef and Loeser proved that these series have a rational form:

Theorem 2.4 [DL 1999, Theorem 1.1; 2001, Theorem 9.2.1]. The series P (S,Z)geom (T )
and P (S,Z)ar (T ) belong to the subring of K mot

0 (Vark)⊗Q[[T ]] generated by

K mot
0 (Vark)⊗Q[T ]

and the series (1−LaT b)−1, with a ∈ Z and b > 0.

The arithmetic motivic Poincaré series has interesting properties of specialization
to classical arithmetic series. Let p be a prime number. The operators Np and Np,m

are applied to a variety V defined over the integers by Np(V ) := #V (Z/pZ) and
Np,m(V ) := #{πm(V (Zp))}, where Zp denotes the p-adic integers,

πm(V (Zp))⊂ V (Z/pm+1Z)

is the image of V (Zp)) by the natural projection induced by Zp→ Z/pm+1Z, and
# denotes the cardinality. Suppose that the variety S is defined over the integers.
The Serre–Oesterlé series P S

p (T ) :=
∑

m≥0 Np,m T m ∈ Z[[T ]] of S at the prime
p is a rational function of T [Denef 1984]. Denef and Loeser proved that for
p� 0, the series P S

p (T ) is obtained from P S
ar(T ) by applying to each coefficient

the operator Np [DL 2001; 2002; 2004].

Remark 2.5. These results hold in a more general setting, in particular when S
is not affine as assumed here [DL 1999; 2001]. The proof of the rationality of
P S

p (T ) involves the use of quantifier elimination results and p-adic integration
[Denef 1984]. The proof of the rationality of P S

ar(T ) requires also quantifier elimi-
nation results and arithmetic motivic integration [DL 2001; 2004; 2002].

3. Affine toric varieties and monomial ideals

In this section we introduce the basic notions and notations from toric geometry;
see [Ewald 1996; Oda 1988; Fulton 1993; Gel’fand et al. 1994] for proofs.

If N ∼= Zd is a lattice, we denote by NR := N ⊗R the vector space spanned by
N over the field R, and by NQ := N ⊗Q the vector space spanned by N over Q.
In what follows, a cone in NR means a rational convex polyhedral cone: the set of
nonnegative linear combinations of vectors a1, . . . , ar ∈ N . The cone τ is strictly
convex if it contains no line through the origin, in which case we denote by 0 the
0-dimensional face of τ ; the cone τ is simplicial if the primitive vectors of the
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1-dimensional faces are linearly independent over R. We denote by τ̊ or by int(τ )
the relative interior of the cone τ .

We denote by M the dual lattice. The dual cone τ∨ ⊂ MR of τ is the set
{w ∈ MR | 〈w, u〉 ≥ 0 for all u ∈ τ }. The orthogonal cone τ⊥ has the condition
〈w, u〉 = 0 instead of 〈w, u〉 ≥ 0.

A fan 6 is a family of strictly convex cones in NR such that any face of such a
cone is in the family and the intersection of any two of them is a face of each. The
relation θ ≤ τ denotes that θ is a face of τ . By θ < τ , we mean θ 6= τ is a face of τ .
The support of the fan 6 is the set |6| :=⋃τ∈6 τ ⊂ NR. The k-skeleton of the
fan 6 is 6(k) = {τ ∈6 | dim τ = k}. We say that a fan 6′ is a subdivision of the
fan 6 if both fans have the same support and if every cone of 6′ is contained in a
cone of 6. If 6i for i = 1, . . . , n are fans with the same support, their intersection⋂n

i=16i := {⋂n
i=1 τi | τi ∈6i } is also a fan.

Notation 3.1. In this paper,3 is a subsemigroup of finite type of a lattice M , which
generates M as a group and such that the cone σ∨ = R≥03 is strictly convex and
of dimension d. We denote by N the dual lattice of M and by σ ⊂ NR the dual
cone of σ∨. We denote by Z3 the affine toric variety Z3 = Spec k[3], where
k[3] = {∑finite aλXλ | aλ ∈ k} denotes the semigroup algebra of the semigroup
3 with coefficients in the field k. The semigroup 3 has a unique minimal set of
generators e1, . . . , en; see the proof of [Ewald 1996, Lemma V.3.5, page 155]. We
have an embedding of Z3 ⊂ An

k given by xi := X ei for i = 1, . . . , n.

If 3 = σ∨ ∩M , then the variety Z3, which we denote also by Zσ,N or by Zσ
when the lattice is clear from the context, is normal. If 3 6= σ∨ ∩M , the inclusion
of semigroups 3→ 3̄ := σ∨∩M defines a toric modification Z 3̄→ Z3, which is
the normalization map.

The torus TN := Z M is an open dense subset of Z3 that acts on Z3, and the
action extends the action of the torus on itself by multiplication. The origin 0
of the affine toric variety Z3 is the 0-dimensional orbit, defined by the maximal
ideal (Xλ)06=λ∈3 of k[3]. There is a one-to-one inclusion reversing correspondence
between the faces of σ and the orbit closures of the torus action on Z3. If θ ≤ σ ,
we denote by orb3θ the orbit corresponding to the face θ of σ . The orbit closures
are of the form Z3∩θ⊥ for θ ≤ σ .

Notation 3.2. The Newton polyhedron of a monomial ideal corresponding to a
nonempty set of lattice vectors I⊂3 is defined as the convex hull of the Minkowski
sum of sets I+σ∨. We denote this polyhedron by N(I). Notice that the vertices of
N(I) are elements of I. We denote by ordI the support function of the polyhedron
N(I), which is defined by ordI : σ → R, ν 7→ infω∈N(I)〈ν, ω〉. A vector ν ∈ σ
defines the face Fν := {ω ∈ N(I) | 〈ν, ω〉 = ordI(ν)} of the polyhedron N(I). All
faces of N(I) are of this form, and the compact faces are defined by vectors ν ∈ σ̊ .
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The fan 6(I) of the polyhedron N(I) is the set of cones

σ(F) := {ν ∈ σ | 〈ν, ω〉 = ordI(ν) for all ω ∈ F}
for F running through the faces of N(I). The fan 6(I) is supported on σ . By
definition, it is easy to check that if τ ∈6(I) and if ν, ν ′ ∈ τ̊ , then the faces of the
polyhedron N(I) defined by ν and ν ′ coincide, that is, Fν = Fν′ ; we denote this
face also by Fτ .

The affine varieties Zτ corresponding to cones τ in a fan 6 glue up to define
a toric variety Z6 . A fan 6 subdividing the cone σ defines a toric modification
π6 : Z6→ Zσ .

If I⊂3 defines a monomial ideal, the composite Z6(I)
π6(I)−→ Zσ −→ Z3 is equal

to the normalized blowing up of Z3 centered at I; see for instance [Lejeune-Jalabert
and Reguera 2003].

Definition 3.3. For 1≤ j ≤ n, the j -th ideal of sums of combinations of Z3 is the
monomial ideal C j of k[3] generated by Xα, where α runs through{

ei1 + · · ·+ ei j

∣∣∣ {i1, . . . , i j } ∈
({1, . . . , n}

j

)}
, (3)

where
({1,...,n}

j

)
denotes the set of combinations of j elements of {1, . . . , n} for

j = 1, . . . , n. We denote by 2 j the fan of the polyhedron N(C j ), and by ordC j its
support function; see Notation 3.2. The maps

ϕ1 := ordC1 and ϕ j := ordC j −ordC j−1 for j = 2, . . . , n,

are piecewise linear functions defined on the cone σ . If ν ∈ σ , we write ϕ0(ν) := 0
and ϕn+1(ν) := +∞ for convenience.

Definition 3.4. For 1 ≤ l ≤ d, the l-th logarithmic jacobian ideal of Z3 is the
monomial ideal Jl of k[3] generated by Xα, where α runs through

{ei1 + · · ·+ eil | ei1 ∧ · · · ∧ eil 6= 0 for 1≤ i1, . . . , il ≤ n}. (4)

We denote by 6l the fan of the polyhedron N(Jl), and by ordJl its support function;
see Notation 3.2. The maps

φ1 := ordJ1 and φl := ordJl − ordJl−1 for l = 2, . . . , d,

are piecewise linear functions defined on the cone σ . If ν ∈ σ , we write φ0(ν) := 0
and φd+1(ν) := +∞ for convenience.

We also use the notations Jl and C j for the sets (4) and (3), respectively.

Lemma 3.5. If ν ∈ σ̊ and if (p1, . . . , pn) is a permutation of (1, . . . , n) such that

〈ν, ep1〉 ≤ · · · ≤ 〈ν, epn 〉,
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then ordC j (ν)= 〈ν,
∑ j

r=1 epr 〉 and ϕ j (ν)= 〈ν, ep j 〉 for 1≤ j ≤ n. Moreover,

0= ϕ0(ν)≤ ϕ1(ν)≤ · · · ≤ ϕn(ν) and 0= φ0(ν)≤ φ1(ν)≤ · · · ≤ φd(ν).

Proof. The first assertion follows by induction on j ∈ {1, . . . , n}.
See [Cobo Pablos and González Pérez 2012, Lemma 5.3] for the second sequence

of inequalities. �

Proposition 3.6. The Newton polyhedra of the ideals C j for j = 1, . . . , n determine
and are determined by the minimal system of generators of the semigroup 3.

Proof. The Newton polyhedron N(C j ) determines and is determined by its support
function ordC j for j = 1, . . . , n. By Lemma 3.5 and the definitions if θ is a
d-dimensional cone of the fan

⋂n
r=12r , there exists a permutation i1, . . . , in of

1, . . . , n such that ϕ j (ν)=〈ν, ei j 〉 for j=1, . . . , n and all ν ∈ θ̊ . Thus, the functions
ϕ j for j = 1, . . . , n or equivalently, ordC j for j = 1, . . . , n determine the vectors
e1, . . . , en . �

4. Arcs and jets on a toric singularity

Let 3 be a semigroup as in Notation 3.1. If R is a k-algebra, an R-rational
point of Z3 is a homomorphism of semigroups (3,+ )→ (R, · ), where (R, · )
denotes the semigroup R for the multiplication. In particular, the closed points
are obtained for R = k. An arc h on the affine toric variety Z3 is given by a
semigroup homomorphism (3,+)→ (k[[t]], · ). An arc in the torus TN is defined
by a semigroup homomorphism 3→ k[[t]]∗, where k[[t]]∗ denotes the group of
units of the ring k[[t]].
Notation 4.1. We denote the set of arcs H(Z3)0 of Z3 with origin at the distin-
guished point 0 of Z3 simply by H3, and by H∗3 the set consisting of those arcs of
H3 with generic point in the torus TN .

Notice that h ∈ H∗3 if and only if the formal power series Xu ◦h ∈ k[[t]] is nonzero
for all u ∈3. Any arc h ∈ H∗3 defines two group homomorphisms νh : M→ Z and
ωh : M→ k[[t]]∗ by Xm ◦h = tνh(m)ωh(m). If m ∈3, then νh(m) > 0, and hence νh

belongs to σ̊ ∩ N . Notice that ωh defines an arc in the torus, that is, ωh ∈ H(TN ).

Remark 4.2. The space of arcs in the torus acts on the arc space of a toric variety;
[Ishii 2004; 2005].

Lemma 4.3 [Ishii 2004, Theorem 4.1; 2005, Lemma 5.6; Lejeune-Jalabert and
Reguera 2003, Proposition 3.3]. The map σ̊ ∩ N × H(TN )→ H∗3, which applies a
pair (ν, ω) to the arc h defined by Xu ◦ h = t 〈ν,u〉ω(u) for u ∈3 is a bijection. The
sets H∗3,ν := {h ∈ H∗3 | νh = ν} for ν ∈ σ̊ ∩ N are orbits for the action of H(TN ) on
H∗3, and we have H∗3 =

⊔
ν∈σ̊∩N H∗3,ν .
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Remark 4.4. We often denote the set H∗3 and orbit H∗3,ν by H∗ and H∗ν , respec-
tively, if 3 is clear from the context.

An arc h ∈ H3 has its generic point η contained in exactly one orbit of the torus
action on Z3. If h(η) ∈ orb3θ for some θ ≤ σ , then h factors through the orbit
closure Z3∩θ⊥ and h ∈ H∗

3∩θ⊥ , that is, h is an arc through (Z3∩θ⊥, 0) with generic
point in the torus orb3θ . We can apply Lemma 4.3 to describe the set H∗

3∩θ⊥ , just
replacing the semigroup 3 by 3∩θ⊥; see [Cobo Pablos and González Pérez 2012].
In particular, if θ = 0, then h ∈ H∗3; if θ = σ , then 3∩θ⊥ = 0 and h is the constant
arc at the distinguished point 0 ∈ Z3. We have a partition H3 =⊔θ≤σ H∗

3∩θ⊥ .

5. The image of the class of the formula defining js(H∗
ν )

Definition 5.1. We associate to (ν, s) ∈ (σ̊ ∩ N )×Z>0 the sets

M s
ν := spanZ{ei | 〈ν, ei 〉 ≤ s, i = 1, . . . , n},
`s
ν := spanQ{ei | 〈ν, ei 〉 ≤ s, i = 1, . . . , n}.

We denote by l(ν, s) the dimension of the Q-vector space `s
ν . The integer l(ν, s)

is also the rank of the lattice M s
ν . We denote by q(ν, s) the index of the lattice

extension M s
ν ⊂ `s

ν ∩M .

Proposition 5.2. If (ν, s) ∈ σ̊ ×Z>0, with l(ν, s) > 0, and if the field k contains all
the q(ν, s)-th roots of unity, then we have

χ f ([ js(H∗ν )] f )= 1
q(ν, s)

(L− 1)l(ν,s)×Lsl(ν,s)−ordJl(ν,s) (ν).

If l(ν, s)= 0, then we have χ f ([ js(H∗ν )] f )= 1.

Proof. If h ∈ H∗ν , the equality ordt(X ei ◦ h) = 〈ν, ei 〉 holds for 1 ≤ i ≤ n. By
Definition 5.1, those vectors ei such that js(X ei ◦h) 6= 0 span the Q-vector space `s

ν ,
since 〈ν, ei 〉 ≤ s. If l(ν, s) = 0, this vector space is empty, the jet space js(H∗ν )
consists of the constant 0-jet, and the conclusion follows easily from the definitions.

Suppose then that l := l(ν, s) > 0. If h ∈ H∗ν , then it is given by n series of the
form

X ei ◦ h = t 〈ν,ei 〉c(ei )
(

1+
∑
m≥1

um(ei )tm
)

for i = 1, . . . , n.

The s-jet js(X ei ◦ h) is different from zero if and only if 〈ν, ei 〉 ≤ s.
By [Cobo Pablos and González Pérez 2012, Lemma 5.7], there exist integers

1≤ k1, . . . , kl ≤ n such that φi (ν)= 〈ν, eki 〉 ≤ s for i = 1, . . . , l,

`s
ν = spanQ{ek1, . . . , ekl }, and ordJl (ν)=

l∑
i=1

〈ν, eki 〉.
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By [Cobo Pablos and González Pérez 2012, Section 6], if h is the universal
family of arcs parametrizing H∗ν , the terms {um(eki ) | i = 1, . . . , l,m ≥ 1} are
algebraically independent over Q and the terms {c(ei )

±1 | i = 1, . . . , n} generate a
k-algebra isomorphic to k[M] by the isomorphism that maps c(ei ) 7→ X ei .

By the proof of [Cobo Pablos and González Pérez 2012, Theorem 7.1], a formula
defining js(H∗ν ) is the conjunction of two formulas, ψ1 and ψ2, with independent
sets of variables. The first formula, ψ1, is a finite sequence of polynomial equalities
with rational coefficients expressing the terms ur (ei ) appearing in js(X ei ◦ h), for
1≤ r ≤ s−〈ν, ei 〉, in terms of the variables

{ur (eki ) | 1≤ i ≤ l, 1≤ r ≤ s−〈ν, eki 〉}.
We deduce that χ f ([ψ1])= Lsl−ordJl (ν). The second formula comes from the effect
on the initial coefficients c(ei ) for ei ∈ `s

ν of the operation taking the s-jet of an arc.
This operation is described by taking the image by the map

9 : T ′ := Spec k[c(ei )
±1]ei∈`s

ν
→ T := Spec k[c(ei )

±1]〈ν,ei 〉≤s

of the point determined by h ∈ H∗ν . The map 9 is the unramified covering of
l-dimensional algebraic tori determined by the inclusion M s

ν ⊂ `s
ν ∩ M of index

q(ν, s) of rank l(ν, s) lattices. Thus the second formula is equivalent to ψ2: there
exists y ∈ T ′ such that 9(y)= x for x ∈ T , and hence by Lemma 1.2 we get that
χ f ([ψ2])= (1/q(ν, s))(L− 1)l . �

6. Sequences of convex piecewise linear functions and fans

Let σ ⊂ NR be a rational convex polyhedral cone of dimension d = dim NR.
Consider a sequence of piecewise linear continuous functions

h p : σ → R for 1≤ p ≤ m,

such that h p(σ ∩ N )⊂ Z, and

0≤ h1(ν)≤ · · · ≤ hm(ν) for all ν ∈ σ. (5)

By convenience we set h0(ν)= 0 and hm+1(ν)=+∞. We denote by 40 the fan
consisting on the faces of σ and by 4p the coarser fan such that the restriction of
h p to η is linear for any cone η ∈4p for 1≤ p ≤m. In addition we assume that for
any cone η ∈4p−1 the restriction h p|η is upper convex, that is, h p(ν)+ h p(ν

′)≤
h p(ν+ ν ′) for all ν, ν ′ ∈ η.

Notation 6.1. For 0≤ p ≤ m and for η ∈⋂p
r=14r we set

η(h, p) := {(ν, s) ∈ NR×R≥0 | ν ∈ σ̊ ∩ η̊, h p(ν)≤ s < h p+1(ν)}.
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Lemma 6.2. The closure η̄(h, p) of the set η(h, p) is a convex polyhedral cone
that is rational for the lattice N ×Z.

Proof. If η ∈⋂p
r=04r , then the restriction h j |η : η→R is linear if j = p, and upper

convex if j = p+ 1. It follows that η̄(h, p) is a convex polyhedral cone, rational
for the lattice N ×Z, since h p and h p+1 take integral values on N . �

Notation 6.3. For 0≤ p ≤ m and η ∈4p we define the following sets:

(i) A(h, p) := {(ν, s) ∈ N ×Z | ν ∈ σ̊ , h p(ν)≤ s < h p+1(ν)}.
(ii) A(h, p, η) := {(ν, s) ∈ N ×Z | ν ∈ σ̊ ∩ η̊, h p(ν)≤ s < h p+1(ν)}.

Remark 6.4. We have partitions

(σ̊ ∩ N )×Z≥0 =
m⊔

p=0

A(h, p) and A(h, p)=
⊔

η∈⋂p
r=0 4r

A(h, p, η).

7. Refinements of partitions

We apply the procedure of Section 6 to both sequences φ = (φ1, . . . , φd) and
ϕ = (ϕ1, . . . , ϕn) (see Lemma 3.5).

Remark 7.1. The sequence of fans associated to φ (respectively ϕ) is
⋂i

r=06r for
i = 0, . . . , d (respectively

⋂i
r=02r for i = 0, . . . , n), where for convenience we

denote by 60 or by 20 the fan consisting of the faces of the cone σ .

Lemma 7.2. If A(ϕ, j, θ) 6= ∅ for some 1 ≤ j ≤ n and θ ∈ ⋂ j
r=12r (using

Notation 6.3), then the restriction of the functions (σ̊ ∩ N )×Z>0→ Z≥0 given by

(ν, s) 7→ l(ν, s) and (ν, s) 7→ q(ν, s)

to the set A(ϕ, j, θ) are constant functions. We denote their values on the set
A(ϕ, j, θ) by l( j, θ) and q( j, θ), respectively.

Proof. If ν ∈ θ̊ for θ ∈ ⋂ j
r=12r , then there exists a unique cone θr ∈ 2r such

that ν ∈ θ̊r for r = 1, . . . , j . We denote by Fr,θ the face of the polyhedron N(Cr )

defined by any such vector ν ∈ θ̊ for r = 1, . . . , j (see Notation 3.2).
Suppose that ν, ν ′ ∈ θ̊ and (p1, . . . , pn) and (p′1, . . . , p′n) are two permutations

of (1, . . . , n) such that the inequalities

〈ν, ep1〉 ≤ · · · ≤ 〈ν, epn 〉 and 〈ν ′, ep′1〉 ≤ · · · ≤ 〈ν ′, ep′n 〉 (6)

hold. We prove first that

〈ν, ep′1〉 ≤ · · · ≤ 〈ν, ep′j 〉. (7)
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By definition, for any 1≤ r ≤ j , we have that ordCr (ν)= 〈ν, ur 〉 for any ur ∈Fr,θ .
We get from Lemma 3.5 that the vectors ur := ep1+· · ·+epr and u′r := ep′1+· · ·+ep′r
belong to Fr,θ for 1≤ r ≤ j . This implies (7).

If (ν, s) ∈ A(ϕ, j, θ), then by Lemma 3.5, we obtain ϕ j (ν) = 〈ν, ep j 〉 ≤ s <
ϕ j+1(ν). We deduce that if (ν, s) and (ν ′, s ′) belong to A(ϕ, j, θ), then

{ei | 1≤ i ≤ n, 〈ν, ei 〉 ≤ s} = {ei | 1≤ i ≤ n, 〈ν ′, ei 〉 ≤ s ′} = {ep1, . . . , ep j }. (8)

Since (8) spans the lattice M s
ν and the vector space `s

ν , the sublattices `s
ν ∩M and

M s
ν are independent of the choice of (ν, s) in A(ϕ, j, θ). This implies the constancy

of the functions l and q on A(ϕ, j, θ). �

Remark 7.3. If 1 ≤ l ≤ d and if τ ∈⋂l
r=16r , we denoted in [Cobo Pablos and

González Pérez 2012] the sets A(φ, l) and A(φ, l, τ ) by Al and Al,τ , respectively.
The map l(ν, s) is also constant on the sets of the form A(φ, l, τ ) for τ ∈⋂l

i=06i ;
see [Cobo Pablos and González Pérez 2012, Lemma 5.7].

By Remark 6.4, we have two partitions

(σ̊ ∩ N )×Z>0 =
n⊔

j=0

⊔
θ∈⋂ j

r=0 2r

A(ϕ, j, θ),

(σ̊ ∩ N )×Z>0 =
d⊔

l=0

⊔
η∈⋂l

i=0 6i

A(φ, l, η)

(9)

associated to the sequences ϕ and φ.

Proposition 7.4. If θ(ϕ, j) 6=∅ for some 1≤ j ≤ n and θ ∈⋂ j
r=12r , then there

exists a unique cone τ ∈⋂l( j,θ)
r=1 6r such that θ ⊂ τ and

A(ϕ, j, θ)⊂ A(φ, l( j, θ), τ ). (10)

Proof. Given (ν, s) and (ν ′, s ′) in A(ϕ, j, θ)⊂ ( ◦σ ∩ N )×Z>0, we deduce from (9)
that there exist cones τ ∈⋂l

i=06i and τ ′∈⋂l ′
i=06i for integers 0≤ l, l ′≤d such that

(ν, s) ∈ A(φ, l, τ ) and (ν ′, s ′) ∈ A(φ, l ′, τ ′). By [Cobo Pablos and González Pérez
2012, Lemma 5.7], we have l = l(ν, s) and l ′ = l(ν ′, s ′), and then l = l ′ by (8).
Then l = l( j, θ) by definition in Lemma 7.2.

Let (p1, . . . , pn) and (p′1, . . . , p′n) be two permutations of (1, . . . , n) such that
(6) holds. Then we can apply the method given in [Cobo Pablos and González Pérez
2012, Proposition 5.1] to determine the value of ordJi (ν) for 1 ≤ i ≤ l(ν, s).
Moreover, it is enough to apply this on the set (8) instead of {e1, . . . , en}. We
deduce from (7) that ν and ν ′ define the same face of N(Ji ) for 1≤ i ≤ l(ν, s). This
is equivalent to the equality τ = τ ′. We have proven (10), and as a consequence,
the inclusion θ ⊂ τ holds. �
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Definition 7.5 [Cobo Pablos and González Pérez 2012, Definition 8.1 and Re-
mark 8.6]. We consider the equivalence relation∼ defined on the set (σ̊ ∩N )×Z>0

by
(ν, s)∼ (ν ′, s ′) ⇐⇒ s = s ′, `s

ν = `s
ν′ and ν|`s

ν
= ν ′|`s

ν′
.

Lemma 7.6. The set A(ϕ, j, θ) is a union of equivalence classes by the relation ∼
of Definition 7.5 for 1≤ j ≤ n and θ ∈⋂ j

r=12r . Moreover, we have

A(φ, l, τ )/∼ =
θ⊂τ⊔

θ∈⋂ j
r=1 2r , l( j,θ)=l

A(ϕ, j, θ)/∼. (11)

Proof. By (9) and Proposition 7.4, it follows that

A(φ, l, τ )=
θ⊂τ⊔

θ∈⋂ j
r=1 2r , l( j,θ)=l

A(ϕ, j, θ).

If (ν, s) belongs to A(ϕ, j, θ) and (ν, s) ∼ (ν ′, s), then (8) holds. The vectors ν
and ν ′ define the same face of N(Cr ) for 1≤ r ≤ j , and therefore ν ′ ∈ int θ . Since
ϕ j (ν

′)≤ s < ϕ j+1(ν
′), we conclude that (ν ′, s) ∈ A(ϕ, j, θ). �

8. The structure of the series P (Z
3,0)

ar (T )

We consider the auxiliary Poincaré series

Par(3) :=
∑
s≥0

χ f

([
js(H3)

∖ ⋃
0 6=θ≤σ

js(H3∩θ⊥)
]

f

)
T s ∈K mot

0 (Vark)⊗Q[[T ]]. (12)

Notice that the Poincaré series Par(3) measures the class of the formula defining
the set of jets of arcs with origin in 0 that are not jets of arcs factoring through
proper orbit closures of the toric variety Z3.

Proposition 8.1. We have P (Z
3,0)

ar (T )=
∑
θ≤σ

Par(3∩ θ⊥).

It follows from Proposition 8.1 that in order to describe the motivic series
P (Z

3,0)
ar (T ), it is enough to describe the form of the auxiliary series Par(3) for any

semigroup 3.

Remark 8.2. In the normal case, the equality jm(H3) = jm(H∗3) holds for all
m ≥ 0 [Nicaise 2005b], but this property fails in general.

Definition 8.3 [Cobo Pablos and González Pérez 2012, Definition 8.9]. If 1≤ l ≤ d ,
τ ∈⋂l

i=16i , and ν ∈ τ̊ , then ν defines a face Fl,ν of the polyhedron N(Jl). Since
the face Fl,ν is independent of the choice of ν ∈ τ̊ , we denote it by Fl,τ . If 1≤ l ≤ d ,
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the set Dl is the subset of cones τ ∈⋂l
i=16i such that the face Fl,τ of N(Jl) is

contained in the interior of σ∨. We denote by |Dl | the set
⋃
τ∈Dl

τ .

Proposition 8.4. Let us fix an integer s0≥ 1. The set js0(H
∗
3)\

⋃
06=θ≤σ js0(H3∩θ⊥)

expresses as a finite disjoint union of locally closed subsets, as follows:

js0(H
∗
3) \

⋃
06=θ≤σ

js0(H3∩θ⊥)=
n⊔

j=1

θ⊂|Dl( j,θ)|⊔
θ∈⋂ j

r=1 2r

⊔
[(ν,s0)]∈A(ϕ, j,θ)/∼

js0(H
∗
3,ν). (13)

Proof. This partition follows from the partition in [Cobo Pablos and González Pérez
2012, Proposition 8.11] by using formula (11) (see Remark 7.3). �

If s0 ≥ 1, the coefficient of T s0 in the auxiliary series P(3) is obtained by
applying the map χ f to the class of the formula defining (13). Then we determine
this class by using Proposition 5.2.

We introduce the following auxiliary series for θ ∈⋂ j
r=12r :

Pϕ, j,θ (3) := (L− 1)l( j,θ)
∑
s≥1

∑
[(ν,s)] ∈A(ϕ, j,θ)/∼

Ll( j,θ)s−ordJl( j,θ) (ν)T s . (14)

We deduce the next proposition from Propositions 8.4 and 5.2 and formula (14).

Proposition 8.5. Par(3)=
n∑

j=1

θ⊂|Dl( j,θ)|∑
θ∈⋂ j

r=1 2r

1
q( j, θ)

Pϕ, j,θ (3).

9. The rational form of some generating series

In this section, we fix an integer 1 ≤ j ≤ n and a cone θ ∈ ⋂ j
r=12r such that

A(ϕ, j, θ) 6= ∅. For simplicity, we denote by l the integer l( j, θ) defined in
Lemma 7.2 and by τ the unique element of the fan

⋂l
r=16r such that (10) holds.

Since θ ⊂ τ ⊂⋂l
r=16r , the restriction of φr to θ is a linear function of the form

(φr )|θ (ν)= 〈ν, eir 〉 for r = 1, . . . , l,

where {i1, . . . , il} ⊂ {1, . . . , n}.
Consider the lattice homomorphisms

µ : N ×Z→ Zl+1, (ν, s) 7→ (〈ν, ei1〉, . . . , 〈ν, eil 〉, s)

and

π = (π1, π2) : Zl+1→ Z2, (a1, . . . , al+1) 7→ (lal+1− a1− · · ·− al, al+1).

We set ξ = π ◦µ.
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Remark 9.1. The homomorphisms π , µ, and ξ were considered in [Cobo Pablos
and González Pérez 2012]. Since θ is contained in τ , the kernels of µ and ξ
intersect the cone θ only at the origin. Similarly, by formula (10), the inclusion
ξ(A(ϕ, j, θ))⊂ Z2

≥0 \ {(0, 0)} holds. See [Cobo Pablos and González Pérez 2012,
Section 9].

If j 6= n, the lower boundary of the cone θ is the set

∂−θ(ϕ, j) := {(ν, s) | ν ∈ θ, s = ϕ j (ν)}.
Notice that ∂−θ(ϕ, j) is a cone since θ ∈ ⋂ j

r=12 j , and then the function ϕ j is
linear on θ . The upper boundary is the set

∂+θ(ϕ, j) := {(ν, s) | ν ∈ θ, s = ϕ j+1(ν) 6= ϕ j (ν)}.
If j = n, then l = d and ϕn+1(ν) = +∞, and the upper boundary is the union of
cones spanned by (0, 1) ∈ NR×R and the proper faces of the cone ∂−θ(ϕ, j). The
edges of the cone θ(ϕ, j) are edges of ∂−θ(ϕ, j)∪ ∂+θ(ϕ, j).

Notation 9.2. If ρ ⊂ τ is a one-dimensional cone rational for the lattice N , we
denote by νρ the primitive integral vector on ρ, that is, the generator of the semigroup
ρ ∩ N .

Remark 9.3. The primitive integral vectors for the lattice N ×Z on the edges of
the cone θ are

(νρ, ϕ j (νρ)) for ρ ≤ θ, dim ρ = 1

together with {
(0, 1) if j = n,
(νρ, ϕ j+1(νρ)) if j 6= n

for ρ ∈2 j+1, ρ ⊂ θ , dim ρ = 1, and ϕ j (ν) 6= ϕ j+1(ν). Then notice that

ξ(ν, s)=


(lϕ j (νρ)− ordJl (νρ), ϕ j (νρ)) if (ν, s)= (νρ, ϕ j (νρ)),

(lϕ j+1(νρ)− ordJl (νρ), ϕ j+1(νρ)) if (ν, s)= (νρ, ϕ j+1(νρ)),

(d, 1) if (ν, s)= (0, 1).

(15)

Definition 9.4. Suppose that A(ϕ, j, θ) 6=∅. We denote by Bϕ, j,θ (3) the finite
set{
(lϕ j (νρ)− ordJl (νρ), ϕ j (νρ))

∣∣ ρ ≤ θ, dim ρ = 1
}

∪
{{
(lϕ j+1(νρ)− ordJl (νρ), ϕ j+1(νρ))

∣∣ ρ ∈2(1)j+1, ρ ⊂ θ
}

if j 6= n,

{(d, 1)} if j = n.

Definition 9.5. If A⊂Zl+1 is a set, we denote by FA(x) :=∑a∈A xa the generating
function of A; see [Cobo Pablos and González Pérez 2012, Section 12].
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Proposition 9.6. We have the following equality:

Pϕ, j,θ (3)= (L− 1)l( j,θ)
∑

a∈µ(A(ϕ, j,θ))

Lπ1(a)T π2(a) ∈ Z[L][[T ]]. (16)

There exists a polynomial Rϕ, j,θ ∈ Z[L, T ] such that Pϕ, j,θ (3) has the rational
form

Pϕ, j,θ (3)= Rϕ, j,θ

∏
(a,b)∈Bϕ, j,θ (3)

(1−LaT b)−1.

Proof. The map µ defines a bijection

A(ϕ, j, θ)/∼→ µ(A(ϕ, j, θ)), [(ν, s)] 7→ µ(ν, s);
see [Cobo Pablos and González Pérez 2012, Lemma 9.3] and Lemma 7.6. Then the
equality (16) follows from the definitions.

We denote by π∗ : k[[Zl+1]]→ k[[L, T ]] the monomial transformation defined by
π∗(xa) := Lπ1(a)T π2(a) for a ∈ Zl+1. Then we get that

Pϕ, j,θ (3)= (L− 1)l( j,θ)π∗(Fµ(Aϕ, j,θ )(x)).

We apply [Cobo Pablos and González Pérez 2012, Theorem 12.4]. We obtain
that the denominator of a rational form of Fµ(Aϕ, j,θ )(x) consists of products of
terms 1− xµ(b) for b running through the primitive integral vectors in the edges
of the closure of the cone θ(ϕ, j). Then the result follows by Remark 9.3 and
Definition 9.4. �

10. Main results

Definition 10.1. (i) For a semigroup 3 generating a rank d ≥ 1 lattice, we define
a finite subset Bar(3) of Z2

≥0 as (see Definition 9.4):

Bar(3) :=
1≤ j≤n⋃

θ∈⋂ j
r=1 2r , θ⊂|Dl( j,θ)|

Bϕ, j,θ (3). (17)

If 0< η < σ , then 3∩ η⊥ is a semigroup generating lattice of rank d− dim η.
We use formula (17) and Definition 9.4 to define in this case a finite subset
Bar(3∩ η⊥) of Z2

≥0. We set

Bar(3∩ σ⊥) := {(0, 1)} and Bar,3 :=
⋃
τ≤σ

Bar(3∩ σ⊥).

(ii) We define the integer

q(3) := lcm
{
q( j, θ)

∣∣ θ ∈⋂ j
r=12r , θ ⊆ |Dl( j,θ)|, 1≤ j ≤ n

}
. (18)
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If 0<η<σ , then q(3∩η⊥) is the number obtained by replacing3 by3∩η⊥
in (18). We set q(3∩ σ⊥) := 1. We define also the integer

q3 := lcm{q(3∩ η⊥) | η ≤ σ }.
Theorem 10.2. Suppose that the field k contains all q(3)-th roots of unity. Then
there exists a polynomial Qar(3) ∈ Z[L, T ] such that

Par(3)= 1
q(3)

Qar(3)
∏

(a,b)∈Bar(3)

(1−LaT b)−1.

Proof. This follows from Propositions 8.5 and 9.6. �

Notation 10.3. If η < σ , then the polynomial Qar(3 ∩ η⊥) is obtained from
Theorem 10.2 by replacing 3 by the semigroup 3∩ η⊥. We set Qar(3∩ σ⊥) := 1.

Corollary 10.4. If the field k contains all q3-th roots of unity, then there exists a
polynomial Qar,3 ∈ Z[L, T ] such that

P (Z
3,0)

ar (T )= 1
q3

Qar,3
∏

(a,b)∈Bar,3

(1−LaT b)−1.

Moreover, we have the equality

P (Z
3,0)

ar (T )=
∑
η≤σ

1
q(3∩η⊥)Qar(3∩ η⊥)

∏
(a,b)∈Bar(3∩η⊥)

(1−LaT b)−1. (19)

Proof. The result follows by Theorem 10.2 and Proposition 8.1. �

We can now compare the series P (Z ,0)geom (T ) and P (Z ,0)ar (T ) (see Definition 2.2). In
[Cobo Pablos and González Pérez 2012] we introduced the series

Pgeom(3) :=
∑
s≥0

χc

([
js(H∗3)

∖ ⋃
06=θ≤σ

js(H3∩θ⊥)
])

T s ∈ K mot
0 (Vark)⊗Q[[T ]],

(20)
and we proved that

P (Z
3,0)

geom (T )=
∑
θ≤σ

Pgeom(3∩ θ⊥).

Proposition 10.5. If the field k contains all q(3)-th roots of unity, then

Par(3)− Pgeom(3)=
n∑

j=1

θ⊂|Dl( j,θ)|∑
θ∈⋂ j

r=1 2r

(
1− 1

q( j, θ)

)
Rϕ, j,θ

∏
(a,b)∈Bϕ, j,θ (3)

(1−LaT b)−1.

Proof. This follows from Proposition 9.6, formula (20), Theorem 10.2, and the
results in [Cobo Pablos and González Pérez 2012] for Pgeom(3). �
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Corollary 10.6. If for every integer 1 ≤ l ≤ d and any vertex v of the Newton
polyhedra N(Jl), there exists a subset Iv ⊂ {1, . . . , n} of l elements such that

v =
∑
i∈Iv

ei

and the vectors ei for i ∈ Iv form part of a basis of M , then the series P (Z
3,0)

ar (T )
and P (Z

3,0)
geom (T ) coincide.

Proof. This condition implies that q(ν, s) = 1 for every (ν, s) ∈ (σ̊ ∩ N )× Z>0.
By Proposition 10.5, we get that Par(3)= Pgeom(3). Now for any face η ≤ σ , the
vertices of the Newton polyhedra of the logarithmic jacobian ideals of 3∩ η⊥ are
also vertices of the logarithmic jacobian ideals of 3. The hypothesis implies that
3∩η⊥ spans the lattice M∩η⊥ and then also that Par(3∩η⊥)= Pgeom(3∩η⊥). �

Remark 10.7. Corollary 10.6 is a generalization of the Nicaise condition [2005b,
Theorem 1] in the case of normal toric varieties.

Remark 10.8. The coordinates of the vectors in the set Bϕ, j,θ (3) can be described
geometrically in terms of the ideals C j and Jl for l = l( j, θ). Let π j : Z j→ Z3 be
the composite of the normalization of Z3, with the toric modification defined by the
subdivision

⋂ j
r=12r of σ . The modification π j is the minimal toric modification

that factors through the normalized blowing up with center Cr for r = 1, . . . , j .
If ρ is an edge of θ , the orbit closure Eρ of the orbit associated to ρ on Z j has
codimension one. We denote by vρ the divisorial valuation defined by Eρ . It
satisfies vρ(Xm)= 〈νρ,m〉 for m ∈ M . The pullback π∗j (I) of a monomial ideal I

of Z3 is a sheaf of monomial ideals on Z j . The ideals π∗j (Cr ) for r = 1, . . . , j are
locally principal on Z j . Then we get the following identities:

ϕ j (νρ)= vρ(π∗j (C j ))− vρ(π∗j (C j−1)),

ϕ j+1(νρ)= vρ(π∗j (C j+1))− vρ(π∗j (C j )),

ordJl (νρ)= vρ(π∗j (Jl)).

Compare this with the geometrical description of the set of candidate poles of
P (Z

3,0)
geom (T ); see [Cobo Pablos and González Pérez 2012].

11. The normal case

In the normal case, when the semigroup 3 is saturated, that is, 3= σ∨ ∩M , we
describe the motivic arithmetic series in a simpler way by using j s(H3)= js(H∗3);
see [Nicaise 2005b].

Notation 11.1. (i) A=⊔d
l=1

⊔
τ∈⋂l

r=1 6r
A(φ, l, τ )/∼.

(ii) For s0 ≥ 0 we set As0 = {[(ν, s)] ∈A | s = s0}.
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Remark 11.2. The set As is finite; see [Cobo Pablos and González Pérez 2012,
Remark 8.2]. By (9) and Lemma 7.6, we deduce that

A=
n⊔

j=1

⊔
θ∈⋂ j

r=1 2r

A(ϕ, j, θ)/∼.

Proposition 11.3. Let us fix an integer s0 ≥ 1. The set js0(H
∗) expresses as a

finite disjoint union of locally closed subsets as js0(H
∗)=⊔[(ν,s)]∈As0

js0(H
∗
ν ). We

deduce that χ f ([ js(H∗)] f )=∑[(ν,s)]∈As
χ f ([ js(H∗ν )] f ).

Proof. The first claim follows by the method of [Cobo Pablos and González Pérez
2012, Proposition 8.11]. The second is a consequence of the first and Proposition 5.2.

�

Theorem 11.4. If Z3 is normal, then we have

P (Z
3,0)

ar =
n∑

j=1

∑
θ∈⋂ j

r=1 2r

1
q( j, θ)

Rϕ, j,θ

∏
(a,b)∈Bϕ, j,θ (3)

(1−LaT b)−1.

Proof. It is a consequence of Propositions 11.3 and 9.6 and Remark 11.2. �

Corollary 11.5. Suppose that the affine toric variety Z3 is normal. If θ ≤ σ , we
denote by σ∨θ the image of the cone σ∨ in (Mθ )R, where Mθ := M/θ⊥ ∩M , and by
3(θ) the saturated semigroup 3(θ) := (σ∨θ ∩Mθ )×Zcodimθ

≥0 . With this notation, we
have

P Z3
ar (T )=

∑
θ≤σ

(L− 1)codimθ P (Z
3(θ),0)

ar (T ).

Proof. The proof follows by the arguments of [Cobo Pablos and González Pérez
2012, Corollary 4.11]. �

12. Examples

12a. The case of monomial curves. Let 3 ⊂ Z≥0 be a semigroup with minimal
system of generators e1 < e2 < · · ·< en such that gcd{e1, . . . , en} = 1. In this case,
we have σ̊ ∩ N = Z>0. If qi := gcd{e1, . . . , ei }, then we obtain

P (Z
3,0)

ar (T )= 1
1− T

+ L− 1
1−LT

( 1
q1

T e1

1− T e1
+

n∑
i=2

qi−1− qi

qi−1qi

Lei−e1 T ei

1−Lei−e1 T ei

)
. (21)

This follows from the results of this paper, taking the following observations
into account:

• We have the equality js(H)= js(H∗).
• If ν, ν ′ ∈ Z>0 satisfy js(H∗ν ) and js(H∗ν′) 6= {0}, then the equality js(H∗ν ) =

js(H∗ν′) implies ν = ν ′.
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• If ν ∈ Z>0 satisfies νei ≤ s < νei+1, then q(ν, s)= qi .

Then, setting ed+1 :=∞, we get the following equality, which implies (21):

P (Z
3,0)

ar (T )= 1
1− T

+
n∑

i=1

∞∑
ν=1

νei+1−1∑
s=νei

(L− 1)
1
qi

Ls−νe1 T s .

Remark 12.1. The inequalities q1 ≥ q2 ≥ · · · ≥ qn = 1 are not always strict. For
instance, if 3 is generated by e1 = 8, e2 = 18, e3 = 20 and e4 = 21, then we get
q1 = 8, q2 = q3 = 2 and q4 = 1. It follows from (21) that the term 1−L12T 20 is
not a factor of the denominator of the series P (Z

3,0)
ar (T ). If 3′ is the semigroup

generated by e1, e2 and e4, then we obtain from (21) that

P (Z
3,0)

ar (T )= P (Z
3′ ,0)

ar (T ),

while the semigroups 3 and 3′ are not isomorphic. In contrast with this behavior,
the motivic series P (C,0)ar (T ) of a plane branch (C, 0) determines the semigroup of
the branch (C, 0); see [DL 2001].

12b. An example of non-normal toric surface. Consider the semigroup 3 gener-
ated by the vectors e1 = (5, 0), e2 = (0, 2), e3 = (0, 3) and e4 = (6, 2). The cone σ
is R2
≥0 and the lattice M is equal to Z2. We have the semigroups3∩η⊥1 = (5, 0)Z>0

and 3 ∩ η⊥2 = (0, 2)Z>0 + (0, 3)Z>0, where η1 and η2 are the one-dimensional
faces of σ . By the case of monomial curves, we get

Par(3∩η⊥1 )= L−1
1−LT

T
1−T

and Par(3∩η⊥2 )= L−1
2(1−LT )

( T 2

1−T 2+
LT 3

1−LT 3

)
.

Figure 1 shows the subdivisions associated with the ideals Cr for r = 1, 2, 3.
In the following table, we give the different values of q( j, θ) and l( j, θ) for θ

in the subdivisions of Figure 1 and j such that A(ϕ, j, θ) 6=∅. We exclude from

21

ρ1 = (2, 5)

θ11

θ12

21 ∩ 22

ρ1 = (2, 5)

ρ2 = (3, 5)

θ21

θ22

θ23

21 ∩ 22 ∩ 23

ρ3 = (1, 6)

ρ1 = (2, 5)

ρ2 = (3, 5)

θ31

θ32

θ33

θ34

Figure 1. The subdivisions 21, 21 ∩22 and 21 ∩22 ∩23.
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this table the cones in θ ∈⋂4
r=12r for j = 4, since in this case q(4, θ) = 1 and

l(4, θ)= 2.

q(1, θ11)= 2 q(1, θ12)= 5
l(1, θ11)= 1 l(1, θ12)= 1

q(2, θ21)= 1 q(2, θ22)= 10 q(2, θ23)= 10 q(2, ρ1)= 10
l(2, θ21)= 1 l(2, θ22)= 2 l(2, θ23)= 2 l(2, ρ1)= 2

q(3, θ31)= 5 q(3, θ32)= 5 q(3, θ33)= 5 q(3, θ34)= 2 q(3, ρ1)= 5
q(3, ρ2)= 5

l(3, θ31)= 2 l(3, θ32)= 5 l(3, θ33)= 2 l(3, θ34)= 2 l(3, ρ1)= 2
l(3, ρ2)= 2

Notice that A(ϕ, 1, ρ1)= A(ϕ, 2, ρ2)= A(ϕ, 3, ρ3)=∅. In the following table,
we have filled in the cases corresponding to the pairs (a, b)∈ Bar(3), (a, b) 6= (2, 1)
in terms of the rays appearing in the subdivisions of Figure 1:

(a, b) ∈ Bar(3) νρ1 = (2, 5) νρ2 = (3, 5) νρ3 = (1, 6) νσ∨∩η⊥1 = (1, 0) νσ∨∩η⊥2 = (0, 1)

(2ϕ2− ordJ2 , ϕ2) (0, 10) (5, 15) (2, 2)
(2ϕ3− ordJ2 , ϕ3) (10, 15) (5, 15) (19, 18) (5, 5) (2, 2)
(2ϕ4− ordJ2 , ϕ4) (24, 22) (31, 28) (19, 18) (7, 6) (4, 3)

It follows that Bar,3 = Bar(3) ∪ {(1, 3), (0, 2), (1, 1), (0, 1)}. We have com-
puted the sum of the series P (Z

3,0)
ar (T ) with the methods of [Cobo Pablos and

González Pérez 2012]. We have obtained an irredundant representation of the form

P (Z
3,0)

ar (T )= R(L, T )
∏

(a,b)∈B

(1−LaT b)−1

with R(L, T ) ∈Q[L, T ], and where B = Bar,3 \ {(24, 22), (31, 28)}.
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Maximal ideals and representations
of twisted forms of algebras

Michael Lau and Arturo Pianzola

Given a central simple algebra g and a Galois extension of base rings S/R, we
show that the maximal ideals of twisted S/R-forms of the algebra of currents
g(R) are in natural bijection with the maximal ideals of R. When g is a Lie
algebra, we use this to give a complete classification of the finite-dimensional
simple modules over twisted forms of g(R).

1. Introduction

Let S/R be a (finite) Galois extension of commutative, associative, and unital
algebras over a field k, and let g be a finite-dimensional central simple k-algebra.
Let L be an S/R-form of g⊗k R, that is, an R-algebra L such that

L⊗R S ' g⊗k S (1.1)

as algebras over S.
In this paper we accomplish two tasks:
(1) We establish a natural correspondence between the maximal ideals of L and

those of the base ring R.
(2) If g is a Lie algebra, k is algebraically closed of characteristic 0, and R is

of finite type, we describe all the finite-dimensional irreducible modules of L and
classify them up to isomorphism.

In what follows, we will denote g⊗k S as g(S). Recall that if 0 is the Galois group
of S/R, then there is a natural correspondence between the set of isomorphism
classes of S/R-forms of g(R)= g⊗k R and the pointed set of nonabelian Galois
cohomology H1(0,AutS-alg g(S)). See [Knus and Ojanguren 1974], for example.
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MSC2010: primary 17B10; secondary 17B67, 12G05, 17A60.
Keywords: Galois descent, maximal ideals, finite-dimensional modules, multiloop algebras, twisted

forms.
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For example, consider the multiloop algebra L(g, σ ), where g is a finite-dimen-
sional Lie algebra over an algebraically closed field k of characteristic 0, and σ is
an N -tuple of commuting automorphisms

σ1, . . . , σN : g→ g

of finite orders m1, . . . ,m N , respectively. This is a ZN -graded Lie subalgebra of
the Lie algebra g(S), where S = k[t±1

1 , . . . , t±1
N ]:

L(g; σ)=
⊕
j∈ZN

g j ⊗ t j1
1 t j2

2 · · · t
jN
N ,

where g j = {x ∈ g | σi (x)= ξ
ji

i x for all i}, for fixed primitive mi -th roots of unity
ξi ∈ k. Then L(g, σ ) is an S/R-form of g(R), where R = k

[
t±m1
1 , . . . , t±m N

N

]
. The

Galois group 0 of S/R is Zm1 × · · · × Zm N , and the corresponding (constant) 1-
cocycle in H1(0,AutS-alg g(S)) is the group homomorphism taking a fixed generator
αi of Zmi to σ−1

i ⊗ 1. Such algebras play an important role in affine Kac–Moody,
toroidal, and extended affine Lie theory.1

We open the paper with a detailed investigation of the maximal ideals of twisted
forms L.2 Given any ideal I of the R-algebra L, we show that there is a unique
0-stable ideal J (I)⊆ S for which I⊗R S maps to g⊗k J (I) under the isomorphism
L⊗R S→ g⊗k S. As all maximal ideals I of the k-algebra L are R-stable, this
produces a bijection ψ : I 7→ J (I)∩ R between maximal ideals of the k-algebra L

and the set Max(R) of maximal ideals of R. Explicitly, ψ−1
: I 7→ I L for maximal

ideals I ⊆ R.
To have access to the attractive results of classical representation theory, we

then assume that g is a finite-dimensional simple Lie algebra and R is of finite
type over an algebraically closed field k of characteristic 0. The classification of
finite-dimensional simple L-modules V proceeds by observing that the kernel of the
representation φ :L→ End k(V ) is an intersection of a finite collection of distinct
maximal ideals I1, . . . ,In ⊆L. Given any maximal ideals M1, . . . ,Mn ∈Max(S)
lying over the maximal ideals ψ(I1), . . . , ψ(In)∈Max(R), respectively, we obtain
evaluation maps

evM : L ↪→ g⊗k S→ (g⊗k S/M1)⊕ · · ·⊕ (g⊗k S/Mn)' g⊕n.

We then use properties of forms to show that evM is surjective and descends to an
isomorphism evM : L/ kerφ −→∼ g⊕n . The finite-dimensional simple L-modules V

1For simplicity of notation, we use integral powers of the variables ti , though fractional exponents
are sometimes used to work with the absolute Galois group of the base ring R or with twisted modules
for vertex algebras.

2Throughout this paper, all ideals are assumed to be two-sided unless there is an explicit mention
to the contrary.
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are thus pullbacks of tensor products of g-modules along evM :

V ' V (λ,M)= Vλ1(M1)⊗k · · · ⊗k Vλn (Mn),

for some nonzero dominant integral highest weights λ1, . . . , λn of g (relative to a tri-
angular decomposition g=n−⊕h⊕n+) and maximal ideals M1, . . . ,Mn ∈Max(S),
where Vλi (Mi ) is the simple g-module of highest weight λi , viewed as an L-module
via the composition of maps

L
evMi
−−→ g⊗k S/Mi ' g→ End(Vλi ).

Two such representations V (λ,M)=Vλ1(M1)⊗k · · ·⊗k Vλm (Mm) and V (µ, N )=
Vµ1(N1)⊗k · · ·⊗k Vµn (Nn) are isomorphic (L/ kerφ)-modules, and thus isomorphic
L-modules, if and only if their highest weights are equal, relative to the induced
triangular decomposition

L/ kerφ = ev−1
M (n⊕n

−
)⊕ ev−1

M (h⊕n)⊕ ev−1
M (n⊕n

+
).

The cohomological interpretation of forms leads to an action of the group 0 on
P+×Max(S), for which V (λ,M)' V (µ, N ) if and only if m = n and

(λi ,Mi )=
γi(µi , Ni )

for some γ1, . . . , γn ∈ 0. This classification (Proposition 3.7) is then described in
terms of 0-invariant functions from the maximal spectrum Max(S) to the set P+
of dominant integral weights. This gives a constructive description (Theorem 3.9)
of the moduli space of finite-dimensional simple L-modules in terms of finitely
supported 0-invariant functions Max(S)→ P+.

One of our main motivations in the present paper was to generalize and provide
more intuitive proofs of previous work on (twisted) loop and multiloop algebras. See
[Lau 2010; Senesi 2010] for a summary of past work on this problem. However, the
interpretation of isomorphism classes as spaces of 0-equivariant maps used in past
work does not generalize to our context of twisted forms. Instead, the 0-equivariant
functions had to be reinterpreted as 0-invariant functions Max(S)→ P+. This
turned out to be the correct perspective to include cases where there is no natural
action of 0 on the space P×+ of nonzero dominant integral weights. More signif-
icantly, with new proofs, we have eliminated all dependence on the ZN -grading
of L(g, σ ), a point that was crucial in the arguments of [Lau 2010]. This lets us
apply our work to nongraded contexts, including a classification of modules for the
mysterious Margaux algebras explained in Section 4.

Perhaps the most striking feature of the present work is its nearly complete
independence from the particular S/R-form under consideration. The maximal
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ideals of any S/R-form L of g(R) are in bijection with Max(R), and the finite-
dimensional simple L-modules are evaluation modules enumerated by finitely
supported 0-invariant maps Max(S) → P+. Indeed, the only place where the
Galois cocycle (and hence the isomorphism class) of the S/R-form plays an explicit
role is in the isomorphism criterion for L-modules (Proposition 3.7). But in many
interesting examples, even this condition vanishes, as we illustrate in Section 4.

Notation. Throughout this paper, k will denote a field. We let k× = k \ {0} and
denote the set of nonnegative integers by Z+. The category of finitely generated
unital commutative associative k-algebras will be denoted by k-alg, and we will
write Max(S) for the maximal spectrum of each S ∈ k-alg.

2. Twisted forms and their maximal ideals

In this section, k will denote an arbitrary field and S/R will be a finite Galois
extension in k-alg with Galois group 0. Let g be a finite-dimensional central simple
algebra over k, and let R ∈ k-alg. We may view g(R)∼= g⊗k R as an algebra over
R by base change, the multiplication given by (x ⊗ r)(y⊗ s)= xy⊗ rs (for each
x, y ∈ g and r, s ∈ R). As before, L will denote an S/R-form of g(R). Any such L

is obviously an algebra over k by restriction of scalars, and we may thus speak of
k-ideals and R-ideals of L, namely the ideals of L viewed as an algebra over k and
over R, respectively.3 The goal of this section is to classify the maximal k-ideals
of L.

Since Galois extensions are faithfully flat, we have the following general facts.
See [Matsumura 1989, Theorem 7.5], for instance.

Lemma 2.1. Let I be an ideal of R, and let M be an R-module.

(1) The canonical map

M→ M ⊗R S, x 7→ x ⊗ 1

is injective. In particular, R can be identified with a k-subalgebra of S.

(2) After viewing R inside of S via (1), I S is an ideal of S and R ∩ I S = I .

Up to coboundary, we can associate a Galois 1-cocycle

u = (uγ)γ∈0 ∈ Z1(0,AutS-alg(g(S)))

to L, such that L' Lu = {z ∈ g⊗k S | uγγz = z for all γ ∈ 0}. We therefore can
(and henceforth will) view L as an R-subalgebra of g(S)= g⊗k S. Note that the
S-algebra isomorphism

L⊗R S ' g(R)⊗R S = g(S)

3We remind the reader that the word ideal means two-sided ideal.
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may be realized as the multiplication map

µ : L⊗R S→ g(S),
(∑

i

xi ⊗ si

)
⊗ s 7→

∑
i

xi ⊗ si s (2.2)

for all
∑

i xi ⊗ si ∈ L and s ∈ S. This will allow us to associate an ideal of S to
every R-ideal of L.

Lemma 2.3. Let I be an R-ideal of L. Then I⊗R S is an S-ideal of L⊗R S, and
there is a unique ideal J = J (I)⊆ S such that g⊗k J = µ(I⊗R S).

Proof. Fix a k-basis {x1, . . . , xm} of g. Let J = J (I) be the set of all s ∈ S for which
there exists

∑m
i=1 xi ⊗ si ∈µ(I⊗R S) such that s = si for some i . By the definition

of J , it is clear that µ(I⊗R S)⊆ g⊗k J . Moreover, since g⊗1⊆ g⊗k S is a finite-
dimensional central simple k-algebra, it follows from the Jacobson density theorem
that xi ⊗ s ∈ µ(I⊗R S) for all s ∈ J and for all i ≤ m. Thus g⊗k J ⊆ µ(I⊗R S).
The uniqueness of J is clear since the tensor product g⊗k J is being taken over a
field k. �

Proposition 2.4. Let I1 and I2 be R-ideals of L. Then J (I1)⊆ J (I2) if and only
if I1 ⊆ I2. In particular, the map J : {R-ideals of L} → {ideals of S} is injective.

Proof. Let I= I1+I2. The restriction of the multiplication map

µ : L⊗R S→ g(S)

to I⊗R S gives an isomorphismµI :I⊗R S→g⊗k J (I)with J (I)= J (I1)+J (I2).
By flatness of S/R,

(I/I2)⊗R S '
I⊗R S
I2⊗R S

as S-modules. The injection µI restricts to an isomorphism

I2⊗R S→ g⊗k J (I2),

so we see that

I⊗R S
I2⊗R S

'
g⊗k J (I)
g⊗k J (I2)

= g⊗k (J (I)/J (I2)).

Thus (I/I2)⊗R S = 0 if and only if g⊗k (J (I)/J (I2)) = 0; then by faithful
flatness, I/I2 = 0 if and only if J (I)/J (I2) = 0. That is, I1 ⊆ I2 if and only
if J (I1)⊆ J (I2). �

Proposition 2.5. Let I⊆L be an R-ideal. Then J (I) is stable under the action of
the Galois group 0 = Gal(S/R).
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Proof. As in the proof of Lemma 2.3, we fix a k-basis β = {x1, . . . , xm} of g. From
the definition of J = J (I), it is easy to see that J is the ideal of S generated by
the set Eβ(I) of those elements s ∈ S for which there is an element

∑
i xi ⊗ si ∈ I

for which si = s for some i . It is thus enough to show γs ∈ J for all γ ∈ 0 and
s ∈ Eβ(I).

Let u ∈ Z1(0,AutS-alg(g(S))) be a cocycle corresponding to the S/R-form L.
Fix γ ∈ 0, and write uγ(xi ⊗ 1)=

∑m
j=1 x j ⊗ ai j . Since uγ is an automorphism of

g(S), the matrix A= (ai j ) is invertible in Mm(S). Let z =
∑

xi⊗ si ∈ I. It suffices
to show that γsi ∈ J for i = 1, . . . ,m. We have∑

xi ⊗ si = µ(z⊗ 1)= µ(uγγz⊗ 1)= µ
(∑

i

uγ(xi ⊗
γsi )⊗ 1

)
= µ

(∑
i

γsi uγ(xi ⊗ 1)⊗ 1
)
= µ

(∑
i

uγ(xi ⊗ 1)⊗ γsi

)
= µ

(∑
i, j

x j ⊗ ai j ⊗
γsi

)
=

∑
j

x j ⊗

(∑
i

ai j
γsi

)
.

In matrix form, we see that 
γs1
...

γsm

= (At)−1

s1
...

sm

 .
By definition, si ∈ Eβ(I)⊆ J for all i , and (At)−1

∈ Mm(S). Hence γsi ∈ J for all
i . �

Lemma 2.6. Let I be an ideal of R. Then I L is an ideal of L, and J (I L)= I S.

Proof. It is obvious that I L is an ideal of L. As S-modules (in fact, as S-algebras),

I L⊗R S = L⊗R I S ' L⊗R S⊗S I S ' g⊗k S⊗S I S ' g⊗k I S,

so J (I L)= I S. �

We now turn to the classification of maximal k-ideals I of the S/R-form L.

Lemma 2.7. The sets of maximal k-ideals and maximal R-ideals of L coincide.

Proof. Let I be a maximal k-ideal of L. We claim that I is stable under the
action of R. For any r ∈ R, the space rI is clearly a k-ideal of L, and if rI 6⊆ I,
then I+ rI = L by the maximality of I. The algebra L is perfect by descent
considerations, as has already been noted in [Gille and Pianzola 2007], for instance.
Thus

L= LL= (I+ rI)L= IL+I(rL)⊆ IL⊆ I,
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since L is an R-algebra. But this contradicts the proper inclusion I ( L, so rI⊆ I

as claimed. From this, it follows that every maximal k-ideal of L is also a maximal
R-ideal of L and conversely. �

Lemma 2.8. Let M be a maximal ideal of R.

(1) There exist prime ideals of S lying over M , and any such ideal is maximal. The
group 0 acts transitively on the set of such maximal ideals. In particular, this
set is finite.

(2) M S =
⋂

i Mi , where the intersection is taken over the (finite) set of maximal
ideals of S lying over M.

Proof. (1) This is well-known, but we recall the main ideas for completeness. From
basic properties of Galois extensions, we know that R = S0, and hence S/R is
integral. From this it follows that the set of prime ideals of S lying over M is
not empty, that any such ideal is maximal, and that the action of 0 on this set is
transitive. (See [Bourbaki 1964, §2.1 Proposition 1 and §2.2 Théorème 2].)

(2) Any maximal ideal m of S containing M S will lie over M , since the intersec-
tion m∩ R is a proper ideal of R containing M S∩ R, which is equal to the maximal
ideal M by Lemma 2.1(2). Thus m= Mi for some i , and

⋂
i Mi is the radical of

M S. Since S/R is flat,

S/M S ' (R⊗R S)/(M ⊗R S)' (R/M)⊗R S.

Let L = R/M , a field extension of k. Since the extension S is Galois over R,
general facts about base change guarantee that the extension (R/M)⊗R S is Galois
over (R/M)⊗R R ' L . (See [Milne 1980, §I.5], for instance.) That is, S/M S
is a Galois extension of L . Galois extensions are finite étale and the only such
extensions of L are products L1× · · ·× Lm , where the L i are finite separable field
extensions of L . We see from this that S/M S has trivial Jacobson radical. Hence
M S is a radical ideal of S, and M S =

⋂
i Mi . �

Theorem 2.9. The map ψ : I 7→ I L defines a bijection between the set of maximal
ideals of R and the set of maximal ideals of L.

Proof. Let I be a maximal ideal of L, and let J = J (I)⊆ S be the ideal correspond-
ing to I. Let P ⊆ S be a maximal ideal containing J , and let M = P ∩ R. Since
S/R is integral, M is a maximal ideal of R [Bourbaki 1964, §2.1 Proposition 1].

As explained in Lemma 2.8(1), the Galois group 0 acts transitively on the
finite set M1, . . . ,MN of maximal ideals S lying over M . Since J is 0-stable
(Proposition 2.5) and contained in a maximal ideal P lying over M , we see that
J ⊆

⋂N
i=1 Mi . By Lemma 2.8(2), M S =

⋂N
i=1 Mi . Hence J ⊆ M S.

Note that ML is an ideal of L whose corresponding ideal is M S, by Lemma 2.6.
By Proposition 2.4, I ⊆ ML. Since M S =

⋂N
i=1 Mi is a proper ideal of S,
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Lemma 2.3 guarantees that ML is a proper ideal of L. Hence I = ML by the
maximality of I, so the image of the map ψ includes all maximal ideals of L.

Let I1 and I2 be maximal ideals of R. If I1L = I2L, then I1S = I2S by
Proposition 2.4 and Lemma 2.6. Now Lemma 2.1(2) yields that I1 = I2, hence that
ψ is injective. It remains only to check that I L⊆ L is maximal whenever I ⊆ R
is maximal. Suppose that I ⊆ R is a maximal ideal, and let I⊆ L be a maximal
ideal containing I L. We have already shown that there is a maximal ideal M ⊆ R
for which I= ML. By Lemma 2.1(2) and Lemma 2.6,

M = M S ∩ R = J (ML)∩ R = J (I)∩ R.

By Proposition 2.4, J (I L)⊆ J (I), so

I = I S ∩ R = J (I L)∩ R ⊆ J (I)∩ R = M.

By the maximality of I , we see that I = M . Hence I L= ML= I is a maximal
ideal of L. �

As an application, we recover the following well-known fact; see [Knus and
Ojanguren 1974, Corollary III.5.2].

Corollary 2.10. Let A be an Azumaya algebra over R. Every (two-sided) maximal
ideal of A is of the form I A for some maximal ideal I of R.

3. Classification of simple modules

We maintain the notation of the previous section but now assume that g is a finite-
dimensional simple Lie algebra over an algebraically closed field k of characteristic
zero. The base ring R will be of finite type in k-alg, and all modules (representations)
will be of finite dimension over k. Unless explicitly indicated otherwise, ⊗ will
denote a tensor product ⊗k taken over the base field k.

Let L ⊂ g⊗ S be an S/R-form of g(R) as before, and let φ : L→ Endk(V )
be a finite-dimensional irreducible representation of L. We fix a cocycle u ∈
Z1(0,AutS-Lie(g(S))) so that L= Lu .

3a. Evaluation maps and simple modules. Since L is perfect, L/ kerφ is a finite-
dimensional semisimple Lie algebra over k [Lau 2010, Proposition 2.1]. Hence
there is an isomorphism

f : L/ kerφ→ g1⊕ · · ·⊕ gn

for some collection of finite-dimensional simple k-Lie algebras g1, . . . , gn . Let
π : L→ L/ kerφ be the natural projection. Then

L/ kerφ ' L/M1⊕ · · ·⊕L/Mn,
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where M1, . . . ,Mn are pairwise distinct maximal ideals of L whose intersection is
kerφ. More precisely, we can take

Mi = π
−1
◦ f −1(g1⊕ · · ·⊕ ĝi ⊕ · · ·⊕ gn)

for i = 1, . . . , n, where ĝi indicates that the i-th summand is omitted. To classify
the simple modules of L, it thus suffices to consider quotients of L by maximal
ideals.4

Let I ⊆ L be a maximal ideal. By Theorem 2.9, I = I L for some maximal
ideal I ⊆ R. Let P ⊆ S be a maximal ideal lying over I , and let

ε : S→ S/P ' k (3.1)

be the natural evaluation map.5 Then the composition

evP : L ↪→ g⊗ S
1⊗ε
−−→ g⊗ k ' g (3.2)

is a homomorphism of k-Lie algebras.

Proposition 3.3. The map evP :L→ g is surjective and has kernel I= (P ∩ R)L.

Proof. The multiplication map µ : L⊗R S→ g(S) is an isomorphism (2.2), so
given any element x ∈ g, there exist elements zi ∈ L and ti ∈ S such that

µ
(∑

i

zi ⊗ ti
)
= x ⊗ 1.

That is, if zi =
∑

j x j ⊗ si j for some k-basis {x j } of g and si j ∈ S, then∑
i, j

x j ⊗ si j ti = x ⊗ 1.

Applying the map 1⊗ ε introduced in (3.1), we get
∑

i, j x j ⊗ ε(si j )ε(ti )= x ⊗ 1.
But L is closed under multiplication by elements of k, so

∑
i ε(ti )zi ∈ L, and

evP

(∑
i

ε(ti )zi

)
=

∑
i, j

x jε(si j )ε(ti )= x .

Hence evP is surjective.
Let z =

∑
i xi ⊗ si ∈L and r ∈ I . Then ε(r)= 0, since I = P ∩ R ⊆ P = ker ε.

Hence
evP(r z)=

∑
xiε(rsi )=

∑
xiε(r)ε(si )= 0,

4Recall that there is no difference in the concept of maximal ideal if we view L as an R- or k-Lie
algebra.

5S is of finite type over R and R is assumed to be of finite type over k. Thus S is of finite type
over k and therefore S/P ' k by the Nullstellensatz.
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so I L⊆ ker evP . Since I= I L is a maximal ideal and evP is nonzero, the kernel
of evP is precisely I. �

We have now shown that L/ kerφ is isomorphic to a direct sum of finitely many
copies of g. Explicitly, kerφ is the intersection of a (finite) family of distinct
maximal ideals M1, . . . ,Mn in L. Let I1, . . . , In be the (distinct) maximal ideals
of R given by Theorem 2.9. For any collection M of maximal ideals M1, . . . ,Mn

of S lying over I1, . . . , In , respectively, the map

evM = (evM1, . . . , evMn ) : L→ g⊕ · · ·⊕ g,

z 7→ (evM1(z), . . . , evMn (z))

descends to an isomorphism evM : L/ kerφ→ g⊕ · · ·⊕ g.
Since the irreducible representations of g⊕n

= g⊕· · ·⊕g are precisely the tensor
products

ρ = (ρ1, . . . , ρn) : g⊕ · · ·⊕ g→ Endk(V1⊗ · · ·⊗ Vn),

(x1, . . . , xn) 7→

n∑
i=1

id⊗ · · ·⊗ ρi (xi )⊗ · · ·⊗ id

of simple g-modules (ρi , Vi ), we now have a complete list of the simple L-modules.

Theorem 3.4. Let φ :L→ Endk(V ) be a finite-dimensional irreducible representa-
tion of L. Then there exists a finite collection P = (P1, . . . , Pn) of maximal ideals
of S with Pi ∩ R 6= Pj ∩ R for i 6= j , and a simple g⊕n-module (ρ, V1⊗ · · ·⊗ Vn)

such that V ' V1⊗ · · ·⊗ Vn and φ = ρ ◦ evP .

Remark 3.5. The converse of Theorem 3.4 is obvious. Given a collection of
maximal ideals P1, . . . , Pn of S for which the ideals Pi ∩ R of R are pairwise
distinct, the Chinese remainder theorem gives an isomorphism

L/M1⊕ · · ·⊕L/Mn ' L/∩i Mi ,

where Mi = (Pi ∩ R)L. (This uses the fact that the Pi ∩ R are maximal, as shown
in the proof of Theorem 2.9.) Thus the map

L→ L/M1⊕ · · ·⊕L/Mn ' g⊕n

is surjective, so the pullback of any simple g⊕n-module V = V1⊗ · · ·⊗ Vn will be
a simple L-module.

3b. Isomorphism classes of simple modules. Fix a Cartan subalgebra h of g and
an épinglage of (g, h); see [Bourbaki 1975, VIII, §4.1]. Given a maximal ideal
M ∈Max(S) and a finite-dimensional representation ρ : g→ Endk(W ), we write
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W (M) for the vector space W , viewed as an L-module with action given by the
composition of maps

L ↪→ g⊗ S
evM
−−→ g

ρ
−→ Endk(W ),

where evM is the quotient map

evM : g⊗ S→ (g⊗ S)/(g⊗M)= g⊗ (S/M)' g,

x ⊗ s 7→ (x ⊗ s)(M)= s(M)x

for all x ∈ g and s ∈ S. For each automorphism α ∈AutS-Lie(g(S)) and M ∈Max(S),
we write α(M) ∈ Aut(g) for the automorphism defined by

(α(M))(x)= (α(x ⊗ 1))(M)= evM(α(x ⊗ 1))

for each x ∈ g. It is straightforward to verify that the map

AutS-Lie(g(S))→ Aut(g), α 7→ α(M)

is a group homomorphism for each M ∈Max(S). We write Outα(M) and Intα(M)
for the outer and inner parts, respectively, of the automorphism

α(M)= Intα(M) ◦Outα(M).

See [Bourbaki 1975, VIII, §5.3 corollaire 1] for details.
By Theorem 3.4, the (finite-dimensional) simple L-modules are those of the form

V (λ,M)= Vλ1(M1)⊗ · · ·⊗ Vλn (Mn), where each λi is in the set P×+ of nonzero
dominant integral weights, Vλi is the simple g-module of highest weight λi , and
M = (M1, . . . ,Mn) is an n-tuple of maximal ideals of S lying over distinct (closed)
points of Spec(R).

Lemma 3.6. Suppose that the L-modules V (λ,M) = Vλ1(M1)⊗ · · · ⊗ Vλm (Mm)

and V (µ, N ) = Vµ1(N1)⊗ · · · ⊗ Vµn (Nn) are isomorphic for certain λ1, . . . , λm ,
µ1, . . . , µn ∈ P×+ and M1, . . . ,Mm, N1, . . . , Nn ∈Max(S). Then m = n, and up to
reordering, Mi ∩ R = Ni ∩ R for all i .

Proof. Let φλ,M : L→ Endk(V (λ,M)) and φµ,N : L→ Endk(V (µ, N )) be the
homomorphisms determining the module actions. Since V (λ,M)' V (µ, N ), their
kernels are equal, so

m⋂
i=1

(Mi ∩ R)L= kerφλ,M = kerφµ,N =
n⋂

j=1

(N j ∩ R)L.
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By Lemma 2.1(2) and Lemma 2.6,
m⋂

i=1

(Mi ∩ R)=
( m⋂

i=1

(Mi ∩ R)S
)
∩ R = J

( m⋂
i=1

(Mi ∩ R)L
)
∩ R

= J
( n⋂

j=1

(N j ∩ R)L
)
∩ R =

n⋂
j=1

(N j ∩ R).

For I ⊆ R, let Var I be the set of m ∈ Spec R with I ⊆m. Then
m⋃

i=1

{Mi ∩ R} =
m⋃

i=1

Var (Mi ∩ R)= Var
( m⋂

i=1

(Mi ∩ R)
)

= Var
( n⋂

j=1

(N j ∩ R)
)
=

n⋃
j=1

{N j ∩ R}.

Thus m = n, and after reordering, Mi ∩ R = Ni ∩ R for all i . �

Recall that uγ is the image of γ ∈ 0 = Gal(S/R) under the Galois cocycle
u :0→AutS-Lie(g(S)). The group 0 acts on the set of pairs (λ,M)∈ P×+ ×Max(S)
by γ(µ, N )= (µ ◦Out uγ−1(γN ), γN ).

Proposition 3.7. Suppose

V (λ,M)= Vλ1(M1)⊗· · ·⊗Vλn (Mn) and V (µ, N )= Vµ1(N1)⊗· · ·⊗Vµn (Nn)

are irreducible L-modules with λ,µ ∈ (P×+ )
n and Mi ∩ R = Ni ∩ R for all i . Then

V (λ,M)' V (µ, N ) if and only if there exist γ1, . . . , γn ∈ 0 such that

(λi ,Mi )=
γi(µi , Ni ) for i = 1, . . . , n.

Proof. Let φλ,M : L→ Endk(V (λ,M)) and φµ,N : L→ Endk(V (µ, N )) be the
homomorphisms defining the module actions. Since each λi is nonzero, the kernel
of the action of g⊕n on V (λ,M) is trivial, and the evaluation maps evMi induce an
automorphism

evM = evM1 ⊕ · · ·⊕ evMn : L/ kerφλ,M −→∼ g⊕n.

Similarly, evN : L/ kerφµ,N → g⊕n is a Lie algebra isomorphism.
Let g= n−⊕h⊕n+ be the triangular decomposition of g relative to the épinglage

of (g, h). We pull back the corresponding triangular decomposition of g⊕n to obtain
the triangular decomposition

L/ kerφλ,M = ev−1
M (n⊕n

−
)⊕ ev−1

M (h⊕n)⊕ ev−1
M (n⊕n

+
). (3.8)

The representations V (λ,M) and V (µ, N ) will be isomorphic precisely when they
have the same highest weights relative to the decomposition (3.8).
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The Galois group 0 = Gal(S/R) acts transitively on the fibers of the pullback
map Spec(S)→Spec(R) over maximal ideals of R. Choose γi ∈0 so that Mi =

γi Ni

for all i .
Let gi

= 0⊕ · · ·⊕ g⊕ · · ·⊕ 0 be the i-th component of g⊕n . Note that

ev−1
M (gi )=

⋂
r 6=i

ker evMr =

⋂
r 6=i

(Mr ∩ R)L=
⋂
r 6=i

(Nr ∩ R)L=
⋂
r 6=i

ker evNr .

Therefore, evN j ◦ ev−1
M (gi )= 0 for all i 6= j , and

evN ◦ ev−1
M (x i )= ιi ◦ evNi ◦ ev−1

M (x i )= ιi ◦ evNi ◦ ev−1
Mi
(x)

for all x i
∈ gi , where ιi is the inclusion of g as the i-th component of g⊕n:

ιi : g ↪→ 0⊕ · · ·⊕ g⊕ · · ·⊕ 0⊆ g⊕n.

Relative to the decomposition (3.8), the highest weight of V (λ,M) is thus∑n
i=1 λi ◦ evMi and the highest weight of V (µ, N ) is

∑n
i=1 νi ◦ evNi , where νi ∈

(evNi ◦ ev−1
Mi
(h))∗ is the highest weight of Vµi , relative to the new triangular decom-

position

g= evNi ◦ ev−1
Mi
(n−)⊕ evNi ◦ ev−1

Mi
(h)⊕ evNi ◦ ev−1

Mi
(n+).

By [Lau 2010, Lemma 5.2], νi = µi ◦ τ
−1
i , where τi = Int(evNi ◦ ev−1

Mi
). That is,

V (λ,M)' V (µ, N ) if and only if

n∑
i=1

λi ◦ evMi =

n∑
i=1

µi ◦ τ
−1
i ◦ evNi

on ev−1
M (h⊕n). For the i-th component hi

= 0⊕ · · ·⊕ h⊕ · · ·⊕ 0, we have

ev−1
M (hi )⊆ ev−1

M (gi )=
⋂
j 6=i

(M j ∩ R)L,

so λ j ◦evM j (ev−1
M (hi ))= 0 for i 6= j . Therefore, V (λ,M)' V (µ, N ) if and only if

λi ◦evMi =µi ◦τ
−1
i ◦evNi for all i ; that is, if and only if λi =µi ◦Out(evNi ◦ ev−1

Mi
).

We now simplify the expression for the automorphism evNi ◦ev−1
Mi
: g→ g. For

x ∈ g, write ev−1
Mi
(x)=

∑
j x j ⊗ s j + ker evMi ∈ L/ ker evMi = L/ ker evNi , where

x j ∈ g and s j ∈ S for all j . Then evNi ◦ ev−1
Mi
(x)=

∑
j s j (Ni )x j . By definition,

s j (Ni )+ Ni = s j + Ni ∈ S/Ni ,

and s j (Ni ) ∈ k ⊆ R is clearly fixed by γi ∈ 0. Hence

s j (Ni )+
γi Ni =

γis j +
γi Ni ∈ S/γi Ni = S/Mi ,
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and s j (Ni )=
γis j (Mi ). Therefore,

evNi ◦ ev−1
Mi
(x)=

∑
j

γis j (Mi )x j .

Moreover,
∑

j x j ⊗ s j ∈ L= {z ∈ g⊗ S | uγ γz = z for all γ ∈ 0}, so

evNi ◦ ev−1
Mi
(x)=

γi
(∑

j

x j ⊗ s j

)
(Mi )= (uγi )

−1
(∑

j

x j ⊗ s j

)
(Mi )

= u−1
γi
(Mi )

∑
j

s j (Mi )x j = u−1
γi
(Mi )(x),

and evNi ◦ ev−1
Mi
= u−1

γi
(Mi ). Hence V (λ,M)' V (µ, N ) if and only if there exist

γ1, . . . , γn ∈ 0 such that γi(µi , Ni )= (λi ,Mi ) for all i . �

We identify the L-module V (λ,M)= Vλ1(M1)⊗ · · ·⊗ Vλn (Mn) with the map

χ
[λ,M] :Max(S)→ P+,

where χ
[λ,M] =

∑
γ∈0

∑n
i=1 χγ(λi ,Mi )

and

χ(µi ,Ni )
:Max(S)→ P+, I 7→

{
µi if I = Ni ,

0 otherwise.

The Galois group 0 acts on the set F of finitely supported functions Max(S)→ P+,
by identifying each function f with the set of ordered pairs {( f (M),M) | M ∈
Max(S)} and defining γ f = {γ( f (M),M) | M ∈Max(S)}. The function χ

[γ,M] is
then 0-invariant, and the set F0 of 0-invariant functions in F is in bijection with
the set C of isomorphism classes [V ] of (finite-dimensional) simple L-modules V :

Theorem 3.9. The map ψ : [V (λ,M)] 7→ χ
[λ,M] is a well-defined natural bijection

between C and F0.

Proof. By Theorem 3.4, Lemma 3.6, and Proposition 3.7, two simple L-modules
W1 and W2 are isomorphic if and only if there exist n ≥ 0, ordered pairs

(M, λ), (N , µ) ∈ (Max(S))n × (P×
+
)n

with Mi ∩ R = Ni ∩ R 6= N j ∩ R = M j ∩ R for i 6= j , and γ1, . . . , γn ∈ 0

such that W1 ' V (λ,M), W2 ' V (µ, N ), and (Mi , λi ) =
γi(Ni , µi ) for all i .

Thus V (λ,M) ' V (µ, N ) if and only if χ
[λ,M] = χ[µ,N ]. In particular, the map

ψ : C→ F0 is well-defined and injective. It is also surjective, as the support of
any f ∈ F0 decomposes into a disjoint union of 0-orbits. Therefore,

f =
∑
γ∈0

m∑
i=1

χγ(λi ,Mi )
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for some collection of orbit representatives M1, . . . ,Mm ∈Max(S). �

4. Applications

In this section, k will denote an algebraically closed field of characteristic zero.

4a. Multiloop algebras. Multiloop algebras are multivariable generalizations of
the loop algebras in affine Kac–Moody theory. The study of these algebras and
their extensions includes a substantial body of work on (twisted and untwisted)
multiloop, toroidal, and extended affine Lie algebras. The representation theory of
multiloop algebras has also been adapted to include generalized current algebras
and equivariant map algebras [Chari et al. 2010; Neher et al. 2012]. When R and
S are Laurent polynomial rings, the intersection of the class of algebras with the
class of twisted forms discussed in the present paper includes multiloop algebras
(Section 4a), but not Margaux algebras (Section 4b), for instance.

Let g be a finite-dimensional simple Lie algebra over k, with commuting au-
tomorphisms σ1, . . . , σN : g→ g of finite orders m1, . . . ,m N , respectively. Fix a
primitive m j -th root of unity ξ j ∈ k for each j , and let R = k[t±m1

1 , . . . , t±m N
N ] ⊆

S = k[t±1
1 , . . . , t±1

N ].
The (twisted) multiloop algebra L = L(g, σ ) is a ZN -graded subalgebra of

g(S)= g⊗ S:

L(g, σ )=
⊕
j∈ZN

g j ⊗ t j ,

where j = ( j1, . . . , jN ), g j = {x ∈ g | σi (x) = ξ
ji

i x for i = 1, . . . , N }, and
t j
= t j1

1 t j2
2 · · · t

jN
N . It is easy to see that L is a Lie algebra over R and an S/R-

form of g(R).
Specializing our main theorems to the case of multiloop algebras, we recover

the results of [Lau 2010]. Maximal ideals Mi = Mai = (t1− ai1, . . . , tN − ai N ) of
S correspond to points ai = (ai1, . . . , ai N ) on the algebraic n-torus (k×)N

= k××
· · ·× k×. Note that Mi ∩ R is the ideal (of R) of polynomials vanishing at ai . Thus
Mi ∩ R ∈Max R is generated by {tm1

1 −am1
i1 , . . . , tm N

N −am N
i N }. Therefore, Mi ∩ R=

M j ∩ R if and only if m(ai )=m(a j ), where we write m(a`)= (a
m1
`1 , . . . , am N

`N ) for
all a` ∈ (k×)N .

The Galois group 0=Gal(S/R) is Zm1×· · ·×Zm N , where each Zmi is generated
by an element

αi : t j 7→

{
ξi ti if i = j,
t j otherwise.

The 1-cocycle u : 0→ AutS-Lie( g(S)) corresponding to L is given by

uγ = σ
−r1
1 · · · σ

−rN
N ⊗ 1,
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for each γ = (αr1
1 , . . . , α

rN
N ) ∈0. Then uγ(M)= σ

−r1
1 · · · σ

−rN
N for all M ∈Max(S).

The fact that
uγ :Max(S)→ Aut g, M 7→ uγ(M)

is constant means that the action of 0 on P×+ ×Max(S) splits into separate actions
of 0 on Max(S) and on P×+ by

ψ : 0× P×
+
→ P×

+
, (γ, λ) 7→ λ ◦Out σ−r1

1 · · · σ
−rN
N .

In this language, 0 acts on P×+ ×Max(S) as γ(λ,M) = (ψ(γ−1, λ),γ M). The
0-invariant functions χ[λ,M] :Max(S)→ P+ become 0-equivariant functions under
the new action ψ on P×+ . We thus recover the following theorem [Lau 2010,
Corollary 4.4, Theorem 4.5, and Corollary 5.10]:

Theorem 4.1. (1) The finite-dimensional simple modules of L(g; σ) are those of
the form V (λ, a) = Vλ1(Ma1)⊗ · · · ⊗ Vλn (Man ) for n ≥ 0, ai ∈ (k×)N , and
m(ai ) 6= m(a j ) whenever i 6= j .

(2) The isomorphism classes of finite-dimensional simple L(g; σ)-modules are in
bijection with the finitely supported 0-equivariant maps (k×)N

→ P+.

4b. Azumaya and Margaux algebras. Fix Laurent polynomial rings

R = k
[
t±2
1 , t±2

2

]
and S = k

[
t±1
1 , t±1

2

]
.

Let A = A(1, 2) be the standard Azumaya algebra, the unital associative R-algebra
generated by {T±1

1 , T±1
2 }with relations T2T1=−T1T2 and T 2

i = t2
i for i=1, 2. Then

A is an S/R-form of the associative algebra M2(R) of 2×2 matrices over R, as can
be readily verified using one of the well-known representations of the quaternions
as matrices in M2(C).

Since PGL2 is the automorphism group (scheme) of both M2(k) and sl2(k), there
is a natural correspondence between S/R-forms of M2(R) and sl2(R). Namely,
given any S/R-form B of the matrix algebra M2(R), view B as a Lie algebra Lie B
with bracket [a, b] = ab − ba. Its derived subalgebra (Lie B)′ = Span{[a, b] |
a, b ∈ B} is then an S/R-form of sl2(R).

Applying this construction to L1 = (Lie A)′ and computing explicitly, it follows
that L1 ' L(sl2(k), σ1, σ2) where σ1 and σ2 are conjugation by

(
1 0
0 −1

)
and

(
0 1
1 0

)
,

respectively [Gille and Pianzola 2007]. Therefore, we obtain the representations of
L1 as in the previous section.

Surprisingly, not every twisted form of g(k[t±1
1 , t±1

2 ]) is a multiloop algebra.
This can be seen using loop torsors. The only known S/R-forms of g(R) that are
not isomorphic to multiloop algebras are called Margaux algebras. The simplest of
these can be constructed concretely as follows. See [Gille and Pianzola 2007] for
details.
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Let A, R, and S be as in Section 4a. The right A-module

M = {(λ, µ) ∈ A⊕ A | (1+ T1)λ= (1+ T2)µ}

is projective but not free. This can be used to show that its endomorphism ring
M = EndA(M), while also an S/R-form of M2(R), is not isomorphic to A as an
A-algebra. It follows that L1 and L2 = (Lie M)′ are nonisomorphic S/R-forms of
sl2(R). By the classification of involutions in PGL2(k) and a study of loop torsors,
it can be shown that L2 is not a (twisted) multiloop algebra.

By Theorems 3.4 and 3.9, the irreducible representations of L2 are the tensor
products V (λ,M) = Vλ1(M1)⊗ · · · ⊗ Vλn (Mn), where λ1, . . . , λn ∈ Z+ \ {0} are
highest weights of sl2(k) and Mi = 〈t1 − ai1, t2 − ai2〉 are maximal ideals of
S = k[t±1

1 , t±1
2 ] corresponding to points in distinct fibers over Spec R. That is,

(a2
i1, a2

i2) 6= (a
2
j1, a2

j2) for i 6= j .
Two such representations

V (λ,M)=Vλ1(M1)⊗· · ·⊗Vλm (Mm) and V (µ, N )=Vµ1(N1)⊗· · ·⊗Vµn (Nn)

are isomorphic precisely when the corresponding Gal(S/R)-invariant functions
χ
[λ,M] and χ

[µ,N ] are equal. But the action

γ(λi ,Mi )= (λi ◦Out uγ−1(γMi ),
γMi )

is simply an action on Max(S),

γ(λi ,Mi )= (λi ,
γMi ),

since uγ−1(γM) ∈ Aut sl2(k), and every automorphism of sl2(k) is inner! Thus
V (λ,M) ' V (µ, N ) if and only if (after reordering the tensor factors) m = n,
λi = µi , and the ai , bi ∈ k×× k× corresponding to Mi and Ni satisfy ai j =±bi j

for all i and j .
As for any Galois extension S/R, the isomorphism classes of the (finite-dimen-

sional) simple modules of any S/R-form of sl2(R) are given by restrictions of
the same evaluation modules of sl2(S). In particular, the irreducible L1- and
L2-modules come from the same sl2(S)-modules.
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Higher Chow groups of varieties
with group action

Amalendu Krishna

We give explicit descriptions of the higher Chow groups of toric bundles and flag
bundles over schemes. We derive several consequences of these descriptions for
the equivariant and ordinary higher Chow groups of schemes with group action.

We prove a decomposition theorem for the equivariant higher Chow groups of
a smooth scheme with action of a diagonalizable group. This theorem is applied
to compute the equivariant and ordinary higher Chow groups of smooth toric
varieties. The results of this paper play fundamental roles in the proof of the
Riemann–Roch theorems for equivariant higher K -theory.

1. Introduction

A scheme in this paper will mean a separated and reduced scheme of finite type
over a perfect field k, which admits an ample line bundle. This base field k will
be fixed throughout this paper. A linear algebraic group G over k will mean a
smooth and affine group scheme over k. By a closed subgroup H of an algebraic
group G, we shall mean a morphism H → G of algebraic groups over k that is
a closed immersion of k-schemes. In particular, a closed subgroup of a linear
algebraic group will be of the same type and hence smooth. Recall from [Borel
1991, Proposition 1.10] that a linear algebraic group over k is a closed subgroup of
a general linear group, defined over k.

Recall that an action of a linear algebraic group G on a k-scheme X is said
to be linear if X admits a G-equivariant ample line bundle, a condition that is
always satisfied if X is normal (see [Sumihiro 1975, Theorem 2.5] for G connected
and [Thomason 1988, 5.7] for G general). All G-actions in this paper will be
assumed to be linear. Let Vk denote the category of quasiprojective k-schemes
and let VS

k denote the full subcategory of smooth k-schemes. We shall denote the
category of quasiprojective G-schemes with G-equivariant maps by VG , and the
full subcategory of smooth G-schemes will be denoted by VS

G .

MSC2010: primary 14C40, 14C35; secondary 14C25.
Keywords: algebraic cycles, group action.
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The G-equivariant higher Chow groups CHG
∗
(X, i) of X ∈ VG were defined by

Edidin and Graham [1998] in terms of the ordinary higher Chow groups (motivic
Borel–Moore homology) of the quotient space X ×G U . Here, U is a G-invariant
open subscheme of a finite-dimensional representation V of G such that it acts
freely on U and V \U is of sufficiently high codimension. This definition of Edidin
and Graham is based on an earlier construction of Totaro [1999], who invented the
idea above to define the Chow groups of the classifying spaces of linear algebraic
groups.

In this paper, we develop further the Edidin–Graham theory of equivariant higher
Chow groups and establish many important properties of this theory. We also prove
some decomposition theorems for the equivariant higher Chow groups of smooth
schemes with torus action. These results turn out to have many applications.

Brion [1997] proved many results about the equivariant Chow groups of the form
CHG
∗
(X, 0). Many of the structural results in this paper can be described as the

generalization of the results of [Brion 1997] to the case of equivariant higher Chow
groups. In Section 2, we recall the definition of equivariant higher Chow groups
from [Edidin and Graham 1998] and prove its basic properties, which are all well
known for the ordinary higher Chow groups; see [Bloch 1986]. As a consequence,
one finds that the equivariant higher Chow groups form a Borel–Moore oriented
bigraded homology theory in the category of schemes with the action of a given
linear algebraic group. Other important results about these groups such as the
Morita isomorphism are proven in Section 3. We also prove a structure theorem
(see Theorem 3.5) for the equivariant higher Chow groups of schemes with action
of tori.

Section 4 contains the proof of the self-intersection formula for the higher Chow
groups. This formula plays a very important role in the proofs of the main results
of this paper. In Section 5, we construct Demazure operators on equivariant higher
Chow groups and give some consequences of these operators.

In Section 6, we prove the Leray–Hirsch theorem for the higher Chow groups. As
a consequence of this theorem, we compute the higher Chow groups of toric bundles
in Section 7. In Section 8, we turn to the description of the higher Chow groups of
principal bundles and flag bundles over schemes. We give several applications of
these descriptions in the study of equivariant higher Chow groups.

In Sections 9 and 10, we prove a decomposition theorem (see Theorem 10.3)
for the equivariant higher Chow groups of smooth schemes with action of a diago-
nalizable group G. This result describes the equivariant higher Chow group of a
G-scheme in terms of the equivariant higher Chow groups of the loci where the
stabilizers have a fixed dimension. This result is an analogue of a similar result
of Vezzosi and Vistoli [2003] in equivariant K -theory and has many important
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applications in the study of equivariant and ordinary higher Chow groups of smooth
schemes.

Theorem 10.3 is the basic step in the proof of the equivariant Riemann–Roch
theorem in [Krishna 2009b]. This theorem presents an explicit relation between
the equivariant K -theory and the equivariant higher Chow groups. Like in the
ordinary case, this Riemann–Roch is a fundamental result in equivariant algebraic
geometry. This theorem was in fact one of the main motivations for the author to
work on this paper. We expect Theorem 10.3 to have many more applications in the
computation of equivariant and ordinary higher Chow groups. In Section 11, we
apply this theorem to compute the equivariant and ordinary higher Chow groups of
smooth toric varieties. We shall follow the following convention while studying the
equivariant and ordinary higher Chow groups with the rational coefficients.

Convention. In this paper, all the results and statements up to Section 7 do not
make any assumption on the coefficient ring of the higher Chow groups. On the
other hand, all the results and statements from Section 8 onwards assume rational
coefficients. In order to simplify the notation, the following convention will be
followed.

From Section 8 onwards, an abelian group A will actually mean its extension
A⊗Z Q. In particular, all higher Chow groups and other cohomology groups will be
considered with the rational coefficients. For Q-vector spaces A and B, the tensor
product A⊗Q B will be simply written as A⊗ B. We shall however, indicate the
appropriate coefficients in the statements of the all results.

2. Equivariant higher Chow groups

In this section, we recall the definition of the equivariant higher Chow groups from
[Edidin and Graham 1998] and review their main functorial properties. It turns out
in particular that the equivariant higher Chow groups have all the properties of an
oriented bigraded Borel–Moore homology theory.

Let G be a linear algebraic group and let X be a scheme over k with a G-action.
We shall denote the dimension of the underlying group G usually by the letter g.
All representations of G in this paper will be finite-dimensional. The definition of
equivariant higher Chow groups of X needs one to consider certain kind of mixed
spaces which in general may not be schemes even if the original spaces are schemes.
The following well-known (see [Edidin and Graham 1998, Proposition 23]) lemma
shows that this problem does not occur in our context and all the mixed spaces in
this paper are schemes with ample line bundles.

Lemma 2.1. Let H be a linear algebraic group acting freely and linearly on a
k-scheme U such that the quotient U/H exists as a quasiprojective scheme. Let X
be a k-scheme with a linear action of H. Then the mixed quotient X×H U exists for
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the diagonal action of H on X ×U and is quasiprojective. Moreover, this quotient
is smooth if both U and X are so. In particular, if H is a closed subgroup of a
linear algebraic group G and X is a k-scheme with a linear action of H , then the
quotient G×H X is a quasiprojective scheme.

Proof. It is already shown in [Edidin and Graham 1998, Proposition 23] using
[Mumford et al. 1994, Proposition 7.1] that the quotient X ×H U is a scheme.
Moreover, as U/H is quasiprojective, [Mumford et al. 1994, Proposition 7.1] in fact
shows that X ×H U is also quasiprojective. The similar conclusion about G×H X
follows from the first case by taking U =G and by observing that G/H is a smooth
quasiprojective scheme; see [Borel 1991, Theorem 6.8]. The assertion about the
smoothness is clear since X ×U → X ×H U is a principal H -bundle. �

2a. Good pairs and equivariant higher Chow groups. For any integer j ≥0, let V
be an l-dimensional representation of G and let U be a G-invariant open subset of V
such that the codimension of the complement V \U in V is sufficiently larger than j ,
and G acts freely on U such that the quotient U/G is a quasiprojective scheme.
Such a pair (V,U ) will be called a good pair for the G-action corresponding to j .
It is easy to see that a good pair always exists; see [Edidin and Graham 1998,
Lemma 9].

For an equidimensional G-scheme X , let XG denote the quotient X ×G U of the
product X×U by the diagonal action of G, which is free. We define the equivariant
higher Chow group CH j

G(X, i) as the homology group Hi (Z
j (XG, • )), where

Z j (XG, • ) is the Bloch cycle complex of the scheme XG . It is known [Edidin and
Graham 1998, Section 2] that this definition of CH j

G(X, i) is independent of the
choice of a good pair (V,U ) for the G-action up to unique isomorphisms. One
should also observe that CH j

G(X, i) may be nonzero for infinitely many values of j ,
a crucial change from the case of nonequivariant (ordinary) higher Chow groups.

If X is of dimension d, which is not necessarily equidimensional, one defines
the equivariant higher Chow groups as

CHG
j (X, i) := Hi (Z j+l−g(XG, • )), (2-1)

where (V,U ) is an l-dimensional good pair for the G-action corresponding to d− j ,
and Zp(XG, • ) is the homological cycle complex of Bloch such that Zp(XG, i) is
the group of admissible algebraic cycles on XG ×1

i of dimension p+ i . We write

CHG
∗
(X, i)=

⊕
−∞< j≤d

CHG
j (X, i) and CHG

∗
(X)=

⊕
i≥0

CHG
∗
(X, i). (2-2)

It is easy to see that CHG
j (X, i)=CHd− j

G (X, i) if X is equidimensional of dimension
d . For most of this paper, we shall use the cohomological indexing for the equivariant
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higher Chow groups while dealing with smooth schemes. In particular, CH∗G(X)
will denote the sum

⊕
i≥0 CH∗G(X, i).

For a commutative ring R, the equivariant higher Chow groups CH j
G(X, i; R)

are defined as the homology groups of the complex Z j (XG, • )⊗Z R. The symbol
CH∗G(X; R) will denote the direct sum of all CH j

G(X, i; R). We shall denote the
rings CH∗G(k, 0) and CH∗G(k, 0; R) by S(G) and S(G; R), respectively.

2b. Equivariant operational Chow groups. For X ∈ VG , we define

OPCH j
G(X, i)= lim

−→
CH j

G(Y, i), (2-3)

where the limit is taken over the category of arrows X → Y in VG with Y ∈ VS
G .

Notice that the natural map OPCH j
G(X, i)→ CH j

G(X, i) is an isomorphism if X is
smooth. We shall write the sum

⊕
i, j≥0 OPCH j

G(X, i) as OPCH∗G(X).
It follows from [Bloch 1986, Proposition 5.5, Corollary 5.6] that OPCH∗G(X)

has a ring structure and OPCH∗G(X, 0) is a subring of OPCH∗G(X). Moreover,
X 7→ OPCH∗G(X) is a contravariant functor on VG which acts on the higher Chow
groups of X . In particular, OPCH1

G(X, 0) −→∼ PicG(X) acts on CHG
∗
(X, i). This

action is same as the action of the Chern classes of equivariant line bundles on the
homology theory CHG

∗
(X, i).

2c. Main properties of equivariant higher Chow groups. The following result
summarizes most of the essential properties of the equivariant higher Chow groups
that will be used in this paper.

Proposition 2.2. The equivariant higher Chow groups as defined above satisfy the
following properties.

(1) Functoriality: Covariance for proper maps, contravariance for flat maps and
their compatibility. That is, for a fiber diagram

X ′
g′ //

f ′
��

X

f
��

Y ′ g
// Y

in VG with f proper and g flat, one has

g∗ ◦ f∗ = f ′∗ ◦ g′∗ : CHG
∗
(X, i)→ CHG

∗
(Y ′, i).

Moreover, if f : X→ Y is a morphism in VG with Y in VS
G , then there is a

pull-back map f ∗ : CHG
∗
(Y, i)→ CHG

∗
(X, i).

(2) Homotopy: If f : X→ Y is an equivariant vector bundle, then

f ∗ : CHG
∗
(Y, i)−→∼ CHG

∗
(X, i).
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(3) Exterior product: There is a natural product map

CHG
∗
(X, i)⊗CHG

∗
(Y, i ′)→ CHG

∗
(X × Y, i + i ′).

Moreover, if f : X → Y is such that Y ∈ VS
G , then there is a pull-back via

the graph map 0 f : X→ X × Y , which makes CH∗G(Y ) a bigraded ring and
CHG
∗
(X) a module over this ring. In particular, CHG

∗
(X, i) an S(G)-module

for X ∈ VG and i ≥ 0.

(4) Localization: If Y ⊂ X is a G-invariant closed subscheme with complement U ,
then there is a long exact localization sequence of S(G)-modules

· · · → CHG
∗
(Y, i)→ CHG

∗
(X, i)→ CHG

∗
(U, i)→ CHG

∗
(Y, i − 1)→ · · · .

This sequence is compatible with the push-forward and flat pull-back maps of
higher Chow groups.

(5) Chern classes: For any G-equivariant vector bundle of rank r , there are
equivariant Chern classes cG

l (E) : CHG
j (X, i)→ CHG

j−l(X, i) for 0 ≤ l ≤ r ,
having the same functoriality properties as in the nonequivariant case and
cG

0 (E)= 1.

(6) Projection formula: For a proper map f : X→ Y in VG and for x ∈ CHG
∗
(X),

y ∈ OPCH∗G(Y ), one has f∗( f ∗(y) · x) = y · f∗(x). Here, the action of
OPCH∗G(Y ) on CHG

∗
(X) is given by (3) above.

(7) Free action: If G acts freely on X with quotient Y , then there is a canonical
isomorphism CHG

∗
(X, i)−→∼ CH∗(Y, i).

Proof. Since the equivariant higher Chow groups of X are defined in terms of
the higher Chow groups of XG , the proposition (except possibly the last property)
can be easily deduced from the similar results for the nonequivariant higher Chow
groups as in [Bloch 1986] and the techniques of [Edidin and Graham 1998]. We
therefore skip the proof. To see that the maps in the localization sequence are
S(G)-linear, it suffices to know that for a good pair (V,U ), the long exact sequence

· · · → CH∗(YG, i)→ CH∗(XG, i)→ CH∗(UG, i)→ CH∗(YG, i − 1)→ · · ·

is a sequence of CH∗(U/G)-modules. But this is a well-known fact as U/G is
smooth and the above is a sequence of higher Chow groups of schemes over it; see
[Bloch 1986, Exercise 5.8(ii)].

To prove (6), we need to show that if Y
g
−→ Z is a G-equivariant map with Z ∈VS

G ,
then the map CHG

∗
(X)

f∗
−→CHG

∗
(Y ) is CH∗G(Z)-linear. Since the push-forward and

the pull-back maps of equivariant Chow groups are nothing but the maps of ordinary
higher Chow groups of suitable mixed quotients, it suffices to prove the statement
above for the push-forward map of the higher Chow groups corresponding to the
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maps of mixed quotients XG→ YG→ ZG . Since ZG is smooth, this nonequivariant
version is well-known [Bloch 1986, §5.5, Exercise 5.8].

For the last property, fix j ≤ d and choose a good pair (V,U ) of dimension l for
the G-action corresponding to d− j ≥ 0. Since G acts freely on X , it acts likewise
also on X×V with quotient, say XV . Then XG is an open subset of XV and XV→Y
is a vector bundle, which implies that the map CH j (Y, i)→ CH j+l(XV , i) is an
isomorphism by the homotopy invariance. On the other hand, the restriction map
CH j+l(XV , i)→ CH j+l(XG, i)= CHG

j−g(X, i) is an isomorphism by the property
(4) as d − j is sufficiently small. �

Remark 2.3. The reader should be warned that the various isomorphisms between
the (equivariant) higher Chow groups in the proposition above are true only up to
some obvious shift in the dimension of cycles, which we have chosen not to write.

We next recall from [Edidin and Graham 1998] that the Chern classes cG
l (E)

of an equivariant vector bundle E , as described in Proposition 2.2 above, live in
the operational Chow groups OPCHl(XG). If X is in VS

G however, this operational
Chow group is isomorphic to the equivariant Chow group CHl

G(X, 0) and the
action of cG

l (E) on CH∗G(X) then coincides with the intersection product in the
ring CH∗G(X).

Finally, we recall from [ibid.] that if H ⊂ G is a closed subgroup and if (V,U )
is a good pair, then for X ∈ VG , the natural map of quotients X ×H U → X ×G U
is an étale locally trivial G/H -fibration and hence there is a natural restriction map

r G
H,X : CHG

∗
(X, i)→ CHH

∗
(X, i). (2-4)

Taking H = {1}, one obtains the forgetful map

r G
X : CHG

∗
(X, i)→ CH∗(X, i). (2-5)

Moreover, as r G
H,X is the pull-back under a flat (in fact, a smooth) map, it commutes

(see Proposition 2.2) with the pull-back for any flat map, and with the push-forward
for any proper map in VG . We remark here that although the definition of r G

H,X uses
a good pair (V,U ) for any given j ≤ dim(X), it is easy to check from the homotopy
invariance that r G

H,X is independent of the choice of the good pair (V,U ).

3. Morita isomorphisms

In this section, we prove some Morita-type isomorphisms that address the question
of comparison between the equivariant higher Chow groups for the action of two
different algebraic groups. We also prove a structure theorem for these equivariant
higher Chow groups under the trivial action of split tori. These results are analogues
of the similar results of Thomason in equivariant K -theory; see [Thomason 1986,
Lemma 5.6; 1988, Section 1].
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Proposition 3.1 (Morita isomorphism). Let H be a normal subgroup of a linear
algebraic group G and let F =G/H. Let f : X→ Y be a G-equivariant morphism
of G-varieties that is an H-torsor for the restricted action. Then the map induced
on the equivariant higher Chow groups

CHF
∗
(Y, i)

f ∗
−→ CHG

∗
(X, i).

is an isomorphism.

Proof. We first observe from [Springer 1998, Corollary 12.2.2] that F is also a
linear algebraic group over the given ground field k. Now, since f is an H -torsor,
it is clear that G acts on Y via F . Fix j ≤ dim(X) and choose a good pair (V,U )
of dimension l for the F-action corresponding to dim(Y )− j . Then V is also a
representation of G in which U is G-invariant. In particular, G acts on X×U via the
diagonal action, which is easily seen to be free since H acts freely on X and F acts
freely on U . By the same reason, we see that X×U→ Y ×U , which is a principal
H -bundle, is G-equivariant. This in turn implies that the map (X ×U )/G→ YF

is an isomorphism and hence we get

CHF
j (Y, i)∼= CH j+l−g+h(YF , i)−→∼

f ∗
CH j+l−g+h(X ×G U, i), (3-1)

where dim(H)= h. On the other hand, we have

CHG
j+h(X, i)∼=CHG

j+h+l(X×V, i)∼=CHG
j+h+l(X×U, i)∼=CH j+h+l−g(X×GU, i),

where the first isomorphism is due to the homotopy invariance, the second follows
from the localization property (see Proposition 2.2(4)) as j is sufficiently small, and
the third isomorphism follows from Proposition 2.2(7). The proof of the proposition
now follows by combining this with (3-1). �

Corollary 3.2 (see [Edidin and Graham 2000]). Let H ⊂ G be a closed subgroup
and let X ∈ VH . Then for any i ≥ 0, there is a natural isomorphism

CHG
∗
(G×H X, i)−→∼ CHH

∗
(X, i). (3-2)

Proof. Define an action of H ×G on G× X by

(h, g) · (g′, x)= (gg′h−1, hx) (3-3)

and an action of H×G on X by (h, g)·x=hx . Then the projection map G×X
p
−→ X

is (H×G)-equivariant and is a G-torsor. Hence by Proposition 3.1, the natural
map

CHH
∗
(X, i)

p∗
−→ CHH×G

∗
(G× X, i)
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is an isomorphism. On the other hand, the projection map G × X → G ×H X is
(H×G)-equivariant and is an H -torsor. Hence we get an isomorphism

CHG
∗
(G×H X, i)−→∼ CHH×G

∗
(G× X, i).

The corollary follows by combining these two isomorphisms. �

Proposition 3.3. Let G be a connected reductive group over k. Let B be a Borel
subgroup of G containing a maximal torus T over k. Then for any i ≥ 0, the
restriction map

CHB
∗
(X, i)

r B
T,X
−−→ CHT

∗
(X, i) (3-4)

is an isomorphism for any X ∈ VB .

Proof. By Corollary 3.2, we only need to show that

CHB
∗
(X, i)−→∼ CHB

∗
(B×T X, i). (3-5)

By [M. Demazure 1970, XXII, 5.9.5], there exists a characteristic filtration

Bu
=U0 ⊇U1 ⊇ · · · ⊇Un = {1}

of the unipotent radical Bu of B such that U j−1/U j is a vector group, each U j

is normal in B and T U j = T nU j . Moreover, this filtration also implies that for
each j , the natural map B/T U j → B/T U j−1 is a torsor under the vector bundle
U j−1/U j × B/T U j−1 on B/T U j−1. Hence, the homotopy invariance gives an
isomorphism

CHB
∗
(B/T U j−1× X, i)−→∼ CHB

∗
(B/T U j × X, i).

Composing these isomorphisms successively for j = 1, . . . , n, we get

CHB
∗
(X, i)−→∼ CHB

∗
(B/T × X, i).

The canonical isomorphism of B-varieties B×T X ∼= B/T × X (see Corollary 3.2)
now proves (3-5) and hence (3-4). �

Recall that a linear algebraic group G over k of dimension g is diagonalizable if
Gk
∼= H × (Gm)

g, where H is a finite abelian group. The group G is called split
diagonalizable, if such an isomorphism is defined over k. A connected reductive
group G over k is said to be split if it contains a split maximal torus T over k such
that G is given by a root system relative to T . Every connected and reductive group
containing a split maximal torus is split; see [M. Demazure 1970, Chapter XXII,
Proposition 2.1].

Recall from [Springer 1998, Lemma 14.1.1] that every solvable group G over k
has a filtration {e} = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G by closed normal k-subgroups
such that each quotient group G j/G j−1 is either diagonalizable or an elementary
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unipotent group; see [Springer 1998, §3.4]. The group G is called split over k if
each G j/G j−1 is either split diagonalizable or Ga . It is known [Springer 1998,
Corollary 14.3.10] that every unipotent group over a perfect field is split.

Proposition 3.4. Let H be a possibly nonreductive group over k. Assume that H
has a Levi decomposition H = L n H u such that H u is split over k (for example, if
k is of characteristic zero). Then for each i ≥ 0, the map

CHH
∗
(X, i)

r H
L ,X
−−→ CHL

∗
(X, i) (3-6)

is an isomorphism.

Proof. Since the unipotent radical of H is split over k, the proof is exactly same
as in the proof of (3-4), where we just have to replace B and T by H and L ,
respectively. �

3a. A structure theorem for CHT
∗ (X). We end this section with the following

structure theorem for the equivariant higher Chow groups of a scheme with the
action of a split diagonalizable group on which certain subgroup acts trivially.
This theorem is the initial step in the proof of its far reaching generalization in
Theorem 10.3.

Theorem 3.5. Let T be a split diagonalizable group and let X ∈ VT . Let H be a
connected closed subgroup of T that acts trivially on X. Then there is a natural
isomorphism

CHT/H
∗

(X)⊗ZS(H)
i T
H,X
−−→ CHT

∗
(X).

This is a bigraded ring isomorphism if X is smooth.

Proof. Put T ′ = T/H . Since H is a split torus, we can choose a decomposition
(not necessarily canonical) T = H × T ′. Fix an integer j ≤ dim(X) and let (V,U )
and (V ′,U ′) be good pairs for the actions of H and T ′, respectively, corresponding
to dim(X)− j as in [Edidin and Graham 1998, Example 3.1]. Thus U is a product
of punctured affine spaces and U/H = (Pn)r for some n� 0, where r = rank(H).
Then (VT ,UT ), with VT = V × V ′ and UT =U ×U ′, is a good pair for the action
of T . We now have

XT = (X ×U ×U ′)/(H × T ′)= (X ×U ′)×T ′ U/H = XT ′ × (P
n)r ,

where the second equality holds since H acts trivially on X ×U ′ and the third
equality holds because T ′ acts trivially on U . It follows from the projective bundle
formula (see also Lemma 6.2) for the ordinary higher Chow groups that the map

CH∗(XT ′)⊗Z CH∗((Pn)r , 0)→ CH∗(XT ) (3-7)
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is an isomorphism. We conclude the proof by noting that CHp(XT ′)∼= CHT ′
p (X)

and CHp(XT ) ∼= CHT
p (X) for all p ≤ j . If X is smooth, the assertion about the

ring isomorphism of i T
H,X now follows because (3-7) is known to be a bigraded ring

isomorphism in that case. �

4. Self-intersection and projection formulas

Our aim in this section is to prove the following two results for the ordinary and
equivariant higher Chow groups. The first result is the self-intersection formula for
the higher Chow groups of smooth schemes. The analogue of this formula for the
higher K -theory was proven by Thomason [1993, Theorem 3.1]. Surprisingly, this
formula for the higher Chow groups has remained unnoticed. Its equivariant version
will play a very crucial role in the decomposition Theorem 10.3 for the equivariant
higher Chow groups of smooth schemes with an action of a diagonalizable group.

The second result of this section is a version of projection formula for the higher
Chow groups of singular schemes. Such a formula for the smooth schemes was
proven by Bloch [1986]. We shall need this version of the projection formula in
our construction of Demazure operators on the equivariant higher Chow groups.

4a. Self-intersection formula. We shall use the method of deformation to the
normal cone as the main technical tool to prove the self-intersection formula.
Since this technique will be used several times in this paper, we briefly recall the
construction from [Fulton 1984, Chapter 5] for our, as well as reader’s, convenience.
Let X be a smooth scheme over k and let f : Y ↪→ X be a smooth closed subscheme
of codimension d ≥ 1. Let M̃ be the blow-up of X×P1 along Y×∞. Then BlY (X)
is a closed subscheme of M̃ and one denotes its complement by M . There is a
natural map π : M→ P1 such that π−1(A1)∼= X ×A1 with π the projection map
and π−1(∞)∼= X ′, where X ′ is the total space of the normal bundle NY/X of Y in
X . One also gets the following diagram, where all the squares and the triangles
commute.

Y

u′ ##
f

��

i0

**
Y ×P1

pY
oo

F

��

Y
i∞oo

f ′

��

Y ×A1

F ′

��

j ′

99

X

h
**

u ##

M X ′
i

oo

X ×A1.

j

99

(4-1)
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In this diagram, all the vertical arrows are the closed embeddings, i0 and i∞ are the
obvious inclusions of Y in Y ×P1 along the specified points, i and j are inclusions
of the inverse images of ∞ and A1, respectively, under the map π , u and f ′

are zero section embeddings and pY is the projection map. In particular, one has
pY ◦ i0 = pY ◦ i∞ = idY .

In case X is a G-scheme and Y is G-invariant, then by letting G act trivially
on P1 and diagonally on X × P1, one gets a natural action of G on M , and all
the spaces in the diagram above become G-spaces and all the morphisms become
G-equivariant. This observation will be used later in this paper.

We shall need the following result about the higher Chow groups, which is an
easy consequence of Bloch’s moving lemma.

Lemma 4.1. Let

W
f ′ //

g′
��

Y

g
��

Z
f
// X

be a fiber diagram of closed immersions of schemes such that X and Y are smooth
and Y and Z intersect properly in X. Then one has for each i ≥ 0,

f ∗ ◦ g∗ = g′∗ ◦ f ′∗ : CH∗(Y, i)→ CH∗(Z , i).

Proof. Since X and Y are smooth, we can assume them to be equidimensional. Let

Z
p
Z W (Y, • )

iY
↪→ Zp(Y, • )

be the subcomplex that is generated by cycles on Y ×1• which intersect all faces
of Z ×1• and W ×1• properly. Similarly, let

Z
p
Z (X, • )

iX
↪→ Zp(X, • )

be the subcomplex generated by the cycles on X ×1• that intersect all faces of
Z ×1• properly. Then iX and iY are quasi-isomorphisms by the moving lemma;
see [Krishna and Levine 2008, Theorem 1.10]. However, if V ∈ Z

p
Z W (Y, • ) is an

irreducible cycle in Y ×1n , then the conclusion of the lemma is checked easily. �

Corollary 4.2. Let G be a linear algebraic group and let

W
f ′ //

g′
��

Y

g
��

Z
f
// X
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be a fiber diagram of closed immersions of smooth G-schemes such that Y and Z
intersect properly in X. Then one has f ∗◦g∗= g′∗◦ f ′∗ :CH∗G(Y, i)→CH∗G(Z , i).

Proof. By choosing a good pair (V,U ) for the G-action and then considering
the appropriate mixed quotients, we can reduce to proving the corollary for the
nonequivariant higher Chow groups. But this is shown in Lemma 4.1. �

Lemma 4.3. Consider the diagram (4-1) and let y ∈ CH∗(Y,m). Then there exists
z ∈ CH∗(M,m) such that f∗(y)= h∗(z) and f ′∗(y)= i∗(z).

Proof. Put ỹ = p∗Y (y) and z = F∗(ỹ). Then

f∗(y)= f∗((pY ◦ i0)
∗(x))= f∗ ◦ i∗0 ◦ p∗Y (y)= f∗ ◦ i∗0 (ỹ)= f∗ ◦ u′∗ ◦ j ′∗(ỹ)

= u∗ ◦ F ′∗( j ′∗(ỹ)) (by Lemma 4.1)

= u∗ ◦ j∗ ◦ F∗(ỹ) (since j is an open immersion)

= h∗ ◦ F∗(ỹ)= h∗(z).

Similarly,

f ′∗(y)= f ′∗((pY ◦ i∞)∗(x))= f ′∗ ◦ i∗
∞
◦ p∗Y (y)= f ′∗ ◦ i∗

∞
(ỹ)

= i∗ ◦ F∗(ỹ) (by Lemma 4.1)

= i∗(z). �

Theorem 4.4 (self-intersection formula). Let Y
f
↪→X be a closed immersion of

smooth varieties of codimension d ≥ 0, and let NY/X be the normal bundle of Y in
X. Then for every y ∈ CH∗(Y, i), one has f ∗ ◦ f∗(y)= cd(NY/X ) · y.

Proof. There is nothing to prove when d = 0 and so we assume d ≥ 1. We first
consider the case when X

p
−→ Y is a vector bundle of rank d and f is the zero

section embedding so that p ◦ f = idY . In that case, we have

f ∗ ◦ f∗(y)= f ∗ ◦ f∗( f ∗ ◦ p∗(y))= f ∗( f∗(1) · p∗(y)) (by Proposition 2.2(6))

= f ∗( f∗(1)) · ( f ∗ ◦ p∗(y))= f ∗( f∗(1)) · y = cd(NY/X ) · y,

where the last equality follows from the self-intersection formula for Fulton’s Chow
groups; see [Fulton 1984, Corollary 6.3]. This proves the theorem in the case of
zero section embedding.

Now let Y ↪→ X be as in the theorem. We consider the deformation to the normal
cone diagram (4-1) and choose z ∈ CH∗(M, i) as in Lemma 4.3. Then we have

f ∗ ◦ f∗(y)= f ∗ ◦ h∗(z)= i0
∗
◦ F∗(z)= i∗

∞
◦ F∗(z)= f ′∗ ◦ i∗(z)

= f ′∗ ◦ f ′∗(y) (by Lemma 4.3)

= cd(NY/X ′) · y (by the case of vector bundle above)

= cd(NY/X ) · y.
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This completes the proof of the theorem. �

Corollary 4.5. Let G be a linear algebraic group over k and let Y
f
↪→X be a closed

immersion of codimension d ≥ 0 in VS
G . Then for every i ≥ 0 and y ∈ CH∗G(Y, i),

one has f ∗ ◦ f∗(y)= cG
d (NY/X ) · y.

Proof. There is nothing to prove if d = 0 and so we assume d ≥ 1. Fix i, j ≥ 0
and choose a good pair (V,U ) for n � j + d. We can then identify CHp

G(X, i)
with CHp(XG, i) (and same for Y ) for p ≤ n. We can also identify cG

d (E) with
cd(EG) for any equivariant vector bundle E on Y ; see [Edidin and Graham 1998,
Section 2.4]. Now, the proof of the corollary would follow straightaway from
Theorem 4.4, once we show that (NY/X )G is the normal bundle of YG in XG . But
this follows immediately from the elementary fact that if G acts freely on a smooth
scheme Z and W is a smooth closed and G-invariant subscheme of Z with normal
bundle N , then G acts freely on N , and moreover, N/G is the normal bundle of
W/G in Z/G. We leave the proof of this fact to the reader. �

4b. A projection formula for singular schemes. Recall from Section 2b (see also
[Bloch 1986, Corollary 5.6]) that the operational Chow groups X 7→ OPCH∗(X)
form a ring-valued contravariant functor on Vk that acts on the higher Chow groups.
The action of OPCH1(X, 0)−→∼ Pic(X) on CH∗(X, j) coincides with the action of
the Chern classes of line bundles.

Proposition 4.6. Let X ∈ Vk and let f : Y = P(E)→ X be the projective bundle
associated to a vector bundle E of rank n+ 1 on X and let

ξ = c1(OY (1)) ∈ OPCH1(Y, 0)

be the first Chern class of the relative tautological line bundle on Y . Then for any
x ∈ CH∗(X, j), one has

f∗(ξ i
· f ∗(x))=

{
0 if i < n,
x if i = n.

Proof. If X is smooth, the proposition is an easy consequence of the projection
formula [Bloch 1986, Exercise 5.8], as this formula implies that

f∗(ξ i
· f ∗(x))= f∗(ξ i ) · x .

Moreover, it follows from [Fulton 1984, Proposition 3.1] that f∗(ξ i )= 1 if i = n
and zero otherwise. The case of singular schemes is the hard part of the theorem
because we cannot directly apply the projection formula of [Bloch 1986]. We obtain
a proof by an indirect approach of reduction to the smooth case and by unravelling
the action of Chern classes on the higher Chow cycles on singular schemes.
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By [Fulton 1984, Lemma 18.2], we can find a closed embedding ι : X→ X ′ and
a vector bundle E ′ of rank n+ 1 on X ′ such that E ∼= ι∗(E ′) and X ′ is smooth. We
set Y ′ = P(E ′), ξ ′ = c1(OY ′(1)) and consider the Cartesian diagram

Y ι′ //

f
��

Y ′

f ′
��

X
ι
// X ′.

(4-2)

Recall from the construction of the action of ξ ′i on CH∗(Y, j) in [Bloch 1986]
that for any irreducible cycle [V ] on Y ×1 j , the support of ξ i

· [V ] = ξ ′i · [V ] is
supp(V ∩α), where α is cycle on Y ′ representing ξ ′i and such that each component
of α intersects V properly. This is achieved by using the moving lemma on Y ′, a
smooth scheme. Since ξ ′ reduces the dimension of a cycle on Y×1 j by exactly one,
we see that dim(ξ i

· f ∗([W ]))= dim(W )+n−i and the support of f∗(ξ i
· f ∗([W ]))

is contained in W , whenever W is an irreducible admissible cycle on X ×1 j . We
conclude from the definition of the push-forward map that f∗(ξ i

· f ∗([W ])) must
be zero if n− i > 0. Since any admissible cycle on X ×1 j is a sum of irreducible
admissible cycles, this proves the first case.

We prove the case of i = n by induction on n. If E is of rank one, then f is
an isomorphism and OY (1) is trivial and hence c0(OY (1))= 1. So we assume that
n ≥ 1. We let ι : X ↪→ X ′ be a closed embedding into a smooth scheme as in (4-2).

By [Panin 2003, Lemma 3.24], there is a morphism φ′ : T ′→ X ′, which is a
composite of projective and affine bundles on X ′ such that φ′∗(E ′)= F ′⊕L ′, where
L ′ is a line bundle on T ′. Moreover, if φ : T → X is the restriction of φ′ on X ,
then the pull-back map φ∗ : CH∗(X, j)→ CH∗(T, j) is a split injection and the
same holds for φ′∗. Notice here that X is a closed subscheme of X ′ and hence
CH∗(X) −→∼ CHX

∗
(X ′) in the notation of [ibid., Definition 2.1]. We denote the

restrictions of F ′ and L ′ on X by F and L respectively.
Consider the Cartesian diagram

Z
ψ //

g
��

Y

f
��

T
φ
// X

(4-3)

and suppose the given assertion holds for the projective bundle g. We then have

φ∗( f∗(ξ n
· f ∗(x)))= g∗(ψ∗(ξ n

· f ∗(x)))= g∗((ψ∗(ξ))n ·ψ∗ ◦ f ∗(x))

= g∗((ψ∗(ξ))n · g∗ ◦φ∗(x))= φ∗(x),
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where the first equality holds by Proposition 2.2 and the last equality holds by our
assumption. Since φ∗ is injective, we see that the conclusion holds for f as well.
Thus we have reduced the problem to the case when E ′ = F ′⊕ L ′ and E = F ⊕ L .

If we set Ẽ = E ⊗ L−1 and Ỹ = P(Ẽ), there is a commutative diagram

Ỹ h //

f̃ ��

P(E)

f��
X

such that h is an isomorphism and OỸ (1)= h∗(OY (1))⊗ f̃ ∗(L−1). Set η = c1(L)
in OPCH1(X, 0) and η̃ = f̃ ∗(η) and ξ̃ = c1(OỸ (1)) in OPCH1(Ỹ , 0).

Suppose that our assertion holds for the projective bundle f̃ . In this case, we get

f∗(ξ n
· f ∗(x))= f̃∗((η̃+ ξ̃ )n · f̃ ∗(x))= f̃∗((ξ̃ )n · f̃ ∗(x))= x,

where the last equality holds by our assertion about f̃ . The second equality holds
because of the fact that

f̃∗
(
(η+ ξ̃ )n · f̃ ∗(x)

)
=

n∑
i=0

(n
i

)
f̃∗((η̃)i (ξ̃ )n−i

· f̃ ∗(x))

=

n∑
i=0

(n
i

)
ηi
· f̃∗((ξ̃ )n−i

· f̃ ∗(x))

(see [Bloch 1986, Exercise 5.8]) and that the term f̃∗((ξ̃ )n−i
· f̃ ∗(x)) vanishes for

0≤ n− i < n by the first assertion of proposition. Hence, we are further reduced to
the case when E ′ = F ′⊕OX ′ and E = F ⊕OX .

Let Z = P(F) and let p and q be the closed and the open inclusions of Z ↪→ Y
and F ↪→ Y , respectively. Let g : Z ↪→ Y → X be the composite map and set
ζ = c1(OZ (1)). We observe that Z is a Cartier divisor on Y such that OY (1)=L(Z).
In particular, the pull-back p∗ is defined and we have ξ · f ∗(a)= p∗(p∗ ◦ f ∗(a)).
Since F is of rank n, the desired assertion holds for g : Z→ X by induction. That
is, g∗(ζ n−1

· g∗(x))= x . We now have

f∗(ξ n
· f ∗(x))= f∗(ξ n−1 p∗(p∗ ◦ f ∗(x)))

= f∗(p∗(ζ n−1
· p∗ ◦ f ∗(x)))= g∗(ζ n−1

· g∗(x))= x .

This proves the desired assertion and the proof of the proposition is complete. �

5. Demazure operators on equivariant higher Chow groups

In this section, we introduce Demazure (divided difference) operators on the equi-
variant higher Chow groups of schemes. Such operators were constructed by Brion
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[1997] on the equivariant Chow groups CHG
∗
(X, 0) and by Holm and Sjamaar

[2008] on the equivariant singular cohomology H∗G(X). We extend these operators
to the higher Chow groups and discuss some consequences.

Let G be a connected reductive group with a split maximal torus T of rank n.
Let8=8(G, T )⊂X(T ) be the root system of G with respect to T , where X(T ) is
the character group of T . For any α ∈8, let Pα be the minimal parabolic subgroup
of G corresponding to α and let B = T UαU and B ′ = T U−αU be the opposite
Borel subgroups of G containing T in Pα. Let Wα = {sα, s−α} denote the Weyl
group of Pα, where sα is the reflection in X(T ) given by

sα(λ)= λ−〈α∨, λ〉α for λ ∈ X(T ).

Let X be a k-scheme with a free G-action and let B and B ′ act on X × Pα by
b · (x, g) = (x, bg) and b′ · (x, g) = (b′x, gb′−1). It is easy to check that the two
actions are free and they commute with each other. Hence we get a free action
of B × B ′ on X × G by (b, b′) · (x, g) = (b′x, bgb′−1). One checks that B acts
freely on X ′ = X ×B ′ Pα. Pα acts freely on X ′ by acting trivially on its X -factor
and by left multiplication on the Pα-factor. In particular, we have a B-equivariant
map X ′→ X given by [x, g] 7→ x , which yields the projection map on quotients
f1 : X ′/B→ X/B ∼= X ′/Pα. One also has the Pα-equivariant map X ′→ X given
by [x, g] 7→ [gx], which yields the map f2 : X ′/B → X/B on quotients by the
action of B. It is also easy to check that the data above yield the commutative
diagram

X ′/B
f2 //

f1

��

X/B

pX

��

σ2

��

X/B pX
//

σ1

;;

X/Pα,

(5-1)

which is Cartesian. The section σ2 of f2 is defined by σ2([x]) = [x, 1] and the
section σ1 of f1 is defined by σ1([x]) = [x, nα], where nα is a representative of
sα in NPα (T ). Since f2 is induced by a Pα-equivariant map, we see that it is
Wα-equivariant with respect to the natural action of Wα on X ′/B and X/B. In
particular, we get

f ∗2 ◦ sα = sα ◦ f ∗2 ,

f ∗2 (ax)= a f ∗2 (x) for all a ∈ S and x ∈ CH∗(X/B).
(5-2)

Note that the all the maps (except the sections) in (5-1) are Pα/B ∼= P1-bundles
and hence they are all smooth and projective. Let OX/B(1) denote the universal
quotient line bundle on X/B relative to pX .
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Let D denote the image of σ1 and let L(D) denote the associated line bundle
on X ′/B. Let Lλ and L′λ denote the line bundles X ×B Lλ and X ′ ×B Lλ on
X/B and X ′/B respectively, where Lλ is the B-equivariant line bundle on Spec(k)
corresponding to the character λ of T . It follows from [Demazure 1974, Lemme 2,
Proposition 2] that

L′α = f ∗1 (Lα)⊗ (L(D))⊗2,

sα(L(D))= (L(D)⊗ f ∗1 (Lα))
⊗(−1).

(5-3)

5a. Demazure operators on CH∗(X). Let G be a connected reductive group with
split maximal torus T as above and let X be a G-scheme of dimension d . Let j ≤ d
be an integer and let (V,U ) be a good pair for the G-action corresponding to d− j .
The smooth and projective morphism pX×U : X B→ X Pα yields the maps

p∗X×U :CHPα
j (X, i)→CHB

j (X, i) and pX×U ∗:CHB
j (X, i)→CHPα

j+1(X, i). (5-4)

For the rest of this text, the ring S will denote the equivariant Chow ring

S(T )= CH∗T (k, 0).

Lemma 5.1. The maps p∗X×U and pX×U ∗ do not depend on the choice of the good
pair (V,U ).

Proof. We prove the lemma for the push-forward map and a very similar proof
works also for the pull-back map; see [Edidin and Graham 1998, Section 1].

Let g and b denote the dimensions of Pα and B, respectively. Let (V,U ) and
(V ′,U ′) be good pairs of dimensions l and l ′, respectively, corresponding to d − j .
We let V = V ⊕ V ′ and U = (U ⊕ V ′) ∪ (V ⊕U ′). Let G act diagonally on V.
Then it is easy to see that the dimension of the complement of the open subset
X ×B (U ⊕ V ′) in X ×B U is sufficiently smaller than l + l ′ − b+ j . Similarly,
the dimension of the complement of the open subset X ×Pα (U ⊕ V ′) in X ×pα U

is sufficiently smaller than l + l ′ − g + j ≤ l + l ′ − b + j . It follows from the
localization sequence for the higher Chow groups and Lemma 5.2 that the there is
a commutative diagram

CHl+l ′+ j−b(X ×B U, i) //

��

CHl+l ′+ j−b(X ×B (U ⊕ V ′), i)

��
CHl+l ′+ j−b(X ×Pα U, i) // CHl+l ′+ j−b(X ×Pα (U ⊕ V ′), i)

where the vertical maps are the push-forward maps and the horizontal maps are
isomorphisms.

On the other hand, the maps

X ×G (U ⊕ V ′)→ X ×G U and X ×B (U ⊕ V ′)→ X ×B U
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are vector bundles of rank l ′ and hence we get another commutative diagram

CHl+ j−b(X ×B U, i) //

��

CHl+l ′+ j−b(X ×B (U ⊕ V ′), i)

��
CHl+ j−b(X ×Pα U, i) // CHl+l ′+ j−b(X ×Pα (U ⊕ V ′), i),

where the vertical arrows are the push-forward maps and the horizontal arrows are
isomorphisms by the homotopy invariance.

Combining the two isomorphisms above, we get the commutative diagram

CH j+l+l ′−b(X ×B U, i) //

��

CHl+ j−b(X ×B U, i)

��
CH j+1+l+l ′−g(X ×Pα U, i) // CHl+l ′+ j+1−g(X ×Pα (U ⊕ V ′), i),

where the horizontal maps are isomorphisms. By repeating the same argument
with U ′, we get the diagram above with U replaced by U ′ and V ′ replaced by V
on the right column. This proves the lemma. �

Lemma 5.2. Let p : X → Y be a morphism in VPα such that Pα acts freely on X
and Y . Then the diagram of quotients

X/B //

��

Y/B

��
X/Pα // Y/Pα

is Cartesian such that the vertical maps are smooth and projective.

Proof. This is an easy exercise. �

Proposition 5.3. For any X ∈ VG , one has the restriction and the push-forward
maps

r Pα
B,X : CHPα

∗
(X, i)→ CHB

∗
(X, i) and pPα

B,X : CHB
∗
(X, i)→ CHPα

∗+1(X, i).

These maps are contravariant with respect to the flat maps and covariant with
respect to the proper morphisms of schemes in VG .

Proof. Let j ≤ d be an integer and let (V,U ) be a good pair for the G-action corre-
sponding to d − j . We define r Pα

B,X and pPα
B,X to be p∗X×U and pX×U ∗ respectively.

It follows from Lemma 5.1 that these maps are well-defined.
The functoriality properties of r Pα

B,X is already known; see [Edidin and Graham
1998, Section 1]. To prove these properties for pPα

B,X , it suffices to prove the same
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for pX×U ∗. But this follows easily from Lemma 5.2 and the similar properties of
the ordinary higher Chow groups. �

The following result generalizes [Brion 1997, Theorem 6.3] to equivariant higher
Chow groups.

Theorem 5.4. Let α be a simple root of G. For any X ∈ VG and i ≥ 0, there is a
unique operator δX

α on CHT
∗
(X, i) such that for all u ∈ S and v ∈ CHT

∗
(X, i), we

have

(1) αδX
α (v)= v− sα(v) and

(2) δX
α (uv)= uδX

α (v)+ δ
k
α(u)sα(v) if X is smooth.

Moreover, δX
α commutes with the G-equivariant flat pull-back and proper push-

forward maps between T -equivariant higher Chow groups.

Proof. Let B and B ′ be the opposite Borel subgroups of Pα containing T . Using
Proposition 3.3, we can replace T by B to define δX

α . We let

δX
α := r Pα

B,X ◦ pPα
B,X : CHB

j (X, i)→ CHB
j+1(X, i). (5-5)

The co- and contravariant functoriality of δX
α follows from Proposition 5.3. The

uniqueness of δX
α follows from [Brion 1997, Theorem 6.3] since this definition of

δX
α coincides with the one defined for CHB

∗
(X, 0) by Brion. We only need to show

the first and the second assertions.
Let j ≤ dim(X) and (V,U ) be a good pair the G-action corresponding to d− j .

There is a G-equivariant projection X ×U → X such that

CHG
j (X, i)−→∼ CHG

j (X ×U, i)

and δX
α on CHG

j (X, i) coincides with the operator δX×U
α on CHG

j (X ×U, i) by its
construction. Hence we can assume that G acts freely on X .

We now consider the diagram (5-1). Since f2 is a P1-bundle, the map f ∗2 is split
injective by Proposition 4.6. Hence it suffices to show that the two assertions of the
theorem hold after applying f ∗2 .

On the other hand, f ∗2 (sα(v)) = sα( f ∗2 (v)) and f ∗2 (αδ
X
α (v)) = α f ∗2 (δ

X
α (v))

by (5-2). Since f2 is induced by a G-equivariant map X ′ → X , we also have
f ∗2 (δ

X
α (v))= δ

X ′
α ( f ∗2 (v)) by the functoriality of δα . Thus we need to show for u ∈ S

and v′ ∈ CH∗(X ′/B, i) that

αδX ′
α (v

′)=v′−sα(v′) and δX ′
α (uv

′)=uδX ′
α (v

′)+δk
α(u)sα(v

′) if X ∈VG . (5-6)

Let c : CH∗T (k, 0) ∼= OPCH∗T (k, 0)→ OPCH∗(X/B, 0) be the ring homomor-
phism on the operational Chow groups induced by the map on the Picard groups
Lα 7→ Lα. We denote the corresponding map OPCH∗T (k, 0)→ OPCH∗(X ′/B, 0)
by c′. We set ξ = c1(L(D)) and ζ = c1(OX ′/B(1)), where OX ′/B(1) is the universal
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quotient line bundle associated to the P1-bundle f1. We shall write δk
α simply as δα

in what follows.
Since L(D) and OX ′/B(1) have same degree on every fiber of f1, there is a line

bundle M on X/B such that OX ′/B(1)∼=L(D)⊗ f ∗1 (M). In particular, there exists
η ∈ OPCH1(X/B, 0) such that ζ = ξ + f ∗1 (η). Since f ∗1 commutes with the action
of OPCH∗(X/B, 0) on the higher Chow groups, it follows from Proposition 4.6
that we can write v′ ∈ CH∗(X ′/B, i) as

v′ = f ∗1 (a)+ ξ f ∗1 (b), with a, b ∈ CH∗(X/B, i). (5-7)

Furthermore, it also follows that for any b ∈ CH∗(X/B, i),

f1∗(ξ f ∗1 (b))= f1∗(ζ f ∗1 (b))− f1∗( f ∗1 (ηb))= b+ 0= b. (5-8)

Since sα keeps the elements of the form f ∗(a) invariant, we get

sα(v′)= f ∗1 (a)+ sα(ξ) f ∗1 (b)

= f ∗1 (a)− [ξ + f ∗1 (c(α))] f
∗

1 (b), (5-9)

where the second equality follows from (5-3).
On the other hand, we have seen in (5-1) that f1 is same as the quotient map

X ′/B→ X ′/Pα and hence δX ′
α = f ∗1 f1∗. This yields

v′− c′(α)δX ′
α (v

′)= f ∗1 (a)+ ξ f ∗1 (b)− c′(α) f ∗1 [ f1∗ f ∗1 (a)+ f1∗(ξ f ∗1 (b))]

=
† f ∗1 (a)+ ξ f ∗1 (b)− c′(α) f ∗1 (b)

=
‡ f ∗1 (a)+ ξ f ∗1 (b)− [ f

∗

1 (c(α))+ 2ξ ] f ∗1 (b)

= f ∗1 (a)− [ξ + f ∗1 (c(α))] f
∗

1 (b), (5-10)

where =† follows from Proposition 4.6 and (5-8), and =‡ follows from (5-3). The
first equality of (5-6) follows at once by comparing (5-9) and (5-10).

To prove the second equality of (5-6) for u ∈ S and v′ ∈ CH∗(X ′/B, i) with X
smooth, we can assume using (5-7) that v′ is either f ∗1 (a) or ξ f ∗1 (a). We now have

δX
α (u f ∗1 (a))= f ∗1 ◦ f1∗(u f ∗1 (a))=

1 f ∗1 ( f1∗(u) · a)= f ∗1 f1∗(u) · f ∗1 (a)

=
2 δk

α(u) · f ∗1 (a)= δ
k
α(u) · sα( f ∗1 (a))+ uδX

α ( f ∗1 (a)).

The equality =1 holds by the projection formula for smooth schemes (see [Bloch
1986, Exercise 5.8]) and =2 holds by [Brion 1997, Theorem 6.3]. The last equality
holds because f ∗1 (a) is invariant under sα and f ∗1 f1∗(a) vanishes, again by the
projection formula. The required formula for v′ = ξ f ∗1 (a) is proved exactly in the
similar way using the observation that f1∗(ξ)= 1 and that the equality =2 holds
even if we replace u by ξu. �
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Proposition 5.5. For X ∈ VG , let r G
T,X : CHG

∗
(X, i)→ CHT

∗
(X, i) be the restric-

tion map.

(1) δα ◦ r G
T,X = 0.

(2) If X is smooth, then δα is CH∗G(X)-linear.

(3) δ2
α = 0.

(4) sαδα = δα =−δ−α, δαsα =−δα.

Proof. Since r G
T,X = r Pα

T,X ◦ r G
Pα,X , we can replace G by Pα. It suffices then to

show that

pPα
B,X ◦ r Pα

B,X = 0.

But this follows immediately from Proposition 4.6. The second point follows from
the observation that f ∗1 and f1∗ in (5-1) are CH∗(X ′/G)-linear. The third point
follows directly from the first and the fourth point is an immediate consequence of
the other assertions of the proposition. �

5b. Ring of Demazure operators. Let {α1, . . . , αm} be the set of all simple roots
of G. For any sequence I = {i1, . . . , il} of integers in the interval [1,m], we define
the operator δX

I on CHT
∗
(X, i) by

δX
I = δαil

◦ · · · ◦ δαi1
. (5-11)

Following the notation of [Brion 1997, §6.4], we let D denote the subring of
EndZ(S) generated by the elements δk

α and the endomorphisms given by the multi-
plication in S. It is clear from the definition of D and Theorem 5.4 that D contains
the twisted group algebra S[W ] and there are inclusions of rings S ( S[W ](D. It
is known that D is a free S-module with basis {∂w}w∈W , where ∂w is same as δk

I
above whenever w = sαi1

· · · sαil
. As an immediate consequence of Theorem 5.4,

Proposition 5.5 and (5-11), we get:

Corollary 5.6. For any X ∈ VG and i ≥ 0, there is a unique D-module structure
on CHT

∗
(X, i), which extends the action of S[W ]. Moreover, the flat pull-back

and proper push-forward maps between the T -equivariant higher Chow groups
are D-linear. For X ∈VS

G , the D-module structure on CH∗T (X) commutes with its
CH∗G(X)-module structure.

Let I (D) be the subset of D consisting of those operators δ such that δ(1)= 0.
It is easy to check that I (D) is a left ideal of D generated by {∂w}w 6=1. For any
X ∈ VG , let

(CHT
∗
(X, i))I (D)

=
{

x ∈ CHT
∗
(X, i)

∣∣ δ(x)= 0 ∀δ ∈ I (D)
}
. (5-12)
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Since the Weyl group is generated by simple reflections, it follows from Theorem 5.4
and Proposition 5.5 that

r G
T,X (CHG

∗
(X, i))⊆ (CHT

∗
(X, i))I (D)

⊆ (CHT
∗
(X, i))W . (5-13)

Recall that the torsion index tG of the group G is the order of the cokernel of the
map SN→CHN (G/B), where N = dim(G/B)= |8+|. Let R denote the localized
ring Z[t−1

G ].

Theorem 5.7. Let X ∈ VS
G and i ≥ 0 be such that CH∗T (X, i) is torsion-free. Then

the map CHG
∗
(X, i)→ (CHT

∗
(X, i))W is an isomorphism over R.

Proof. Let B be a Borel subgroup of G containing T . Let (V,U ) be a good pair
for the G-action and consider the Cartesian diagram

X B
qB //

pX

��

U/B

p
��

XG qG
// U/G.

(5-14)

By the definition of tG , it follows that there is a ∈ CHN (U/B, 0) such that
p∗(a) = tG ∈ CH0(U/G, 0). Using the projection formula, we get for any x ∈
CH∗(XG, i),

pX ∗(q
∗

B(a)p
∗

X (x))= pX ∗(q
∗

B(a))x = q∗G(p∗(a))x = tG x .

In particular, r G
T,X is split injective over R.

To show the surjectivity, we see from the above that for any x ∈ CH∗(XG, i),

p∗X f p∗X (x)= p∗X (tG x)= tG p∗X (x),

where f (y)= pX ∗(ay). This in particular implies that p∗X f (y)= tG y for all y in
the image of p∗X . It follows from Corollary 8.7 that

p∗X f (y)= tG y for all y ∈ (CH∗(X B, i)Q)W .

Since CH∗T (X, i) is torsion-free, we must have

p∗X f (y)= tG y for all y ∈ (CH∗(X B, i))W .

Hence the map r G
T,X is surjective onto the W -invariants over R. �

Remark 5.8. The proof of the theorem above in fact shows that the map r G
T,X is

split injective over R for any X ∈ VS
G .
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Corollary 5.9. Let X be a smooth projective scheme with a G-action such that the
fixed point locus X T for the T -action is isolated. Then the map

CHG
∗
(X, 0)→ (CHT

∗
(X, 0))W

is an isomorphism over R.

Proof. This is an immediate consequence of [Krishna 2009a, Theorem 4.2] and
Theorem 5.7. �

6. The Leray–Hirsch Theorem

In algebraic topology, the Leray–Hirsch theorem is a very important tool for de-
scribing the cohomology of the total space of a fiber bundle. Since the arguments
in this theorem are mostly topological, one cannot always expect such results for
the cohomology theories of algebraic varieties. A version of the Leray–Hirsch
theorem was proven for the Chow groups of the total space of a Zariski-locally
trivial fibration in [Ellingsrud and Strømme 1989, Lemma 2.8; Edidin and Graham
1997, Lemma 6]. In this section, we prove the general form of the Leray–Hirsch
theorem for the higher Chow groups of schemes. We shall give several important
applications of this theorem in the next few sections.

6a. A Künneth formula. In [Fulton 1984, Example 1.9.1], a k-scheme L is called
cellular if it has a filtration ∅ = Ln+1 ( Ln ( · · · ( L1 ( L0 = L by closed
subschemes such that each L i \ L i+1 is an affine space A

ri
k .1 It follows from the

Bruhat decomposition that schemes of the type G/B are cellular, where B is a
Borel subgroup of a split reductive group G.

Lemma 6.1. Let L be a cellular scheme with the cellular decomposition

∅= Ln+1 ( Ln ( · · ·( L1 ( L0 = L

and let Ui = L \L i for 0≤ i ≤ n+1. Then for any 0≤ i ≤ n and p≥ 0, the sequence

0→ CH∗(Ui+1 \Ui , p)→ CH∗(Ui+1, p)→ CH∗(Ui , p)→ 0

is exact.

Proof. The proof is very similar to the arguments of [Kahn 1999, Lemma 3.3] using
an induction on the number of cells. �

Lemma 6.2. Let L be a cellular scheme and let X be a any k-scheme. Then the
exterior product map

CH∗(X)⊗Z CH∗(L , 0)→ CH∗(X × L) (6-1)

1Some authors allow L i \ L i+1 to be a disjoint union of affine spaces over k. But both definitions
are equivalent.
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is an isomorphism. In particular, the natural map CH∗(k)⊗Z CH∗(L , 0)→CH∗(L)
is an isomorphism.

Proof. Consider the cellular decomposition of L as in Lemma 6.1. Then each
Ui = L \ L i is also a cellular scheme. It suffices to show by induction that (6-1)
holds when L is any of these Ui . There is nothing to prove for i = 0 and the case
i = 1 follows by the homotopy invariance since U1 is an affine space. In general,
we have the short exact sequence

0→ CH∗(Ui+1 \Ui , 0)→ CH∗(Ui+1, 0)→ CH∗(Ui , 0)→ 0 (6-2)

by applying Lemma 6.1 with p = 0. Since each Ui+1 \Ui is an affine space, it also
follows from Lemma 6.1 and by induction on the number of affine cells that each
CH∗(Ui , 0) is a free abelian group of finite rank. Tensoring this with CH∗(X) over
CH∗(k, 0)= Z, we get a commutative diagram

0

�� ��
CH∗(X)⊗CH∗(Ui+1 \Ui , 0) //

��

CH∗(X × (Ui+1 \Ui ))

i∗
��

CH∗(X)⊗CH∗(Ui+1, 0) //

��

CH∗(X ×Ui+1)

j∗

��
CH∗(X)⊗CH∗(Ui , 0)

��

// CH∗(X ×Ui ),

��0

where the left column is exact by the freeness of each CH∗(Ui , 0) and the right
column is the localization exact sequence. The top horizontal arcolumn is an
isomorphism by the homotopy invariance and the bottom horizontal arcolumn is
an isomorphism by the induction. In particular, j∗ is surjective in all indices. We
conclude that i∗ is injective in all indices and the middle horizontal arcolumn is
also an isomorphism. �

6b. Leray–Hirsch with integral coefficients. Let F be a cellular scheme over k.
For any field extension k ↪→ l, the scheme Fl is also cellular, for which the cel-
lular decomposition and the affine cells are the base extensions of the cellular
decomposition and affine cells of F . It follows from Lemma 6.1 that the map
CH∗(F, 0)→ CH∗(Fl, 0) is an isomorphism. The following is the integral version
of the Leray–Hirsch theorem for the Zariski-locally trivial fibrations.
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Theorem 6.3. Let B be a smooth k-scheme and let F
i
−→ E

p
−→ B be a Zariski-

locally trivial fibration such that the fiber F is a smooth cellular scheme. Assume
that there are elements {e1, . . . , er } in CH∗(E, 0) such that

{ f1 = i∗(e1), . . . , fr = i∗(er )}

forms a Z-basis of CH∗(Fy, 0) for each fiber Fy of the fibration. Then the map

8 : CH∗(F, 0)⊗Z CH∗(B)→ CH∗(E),
∑

1≤i≤r

fi ⊗ bi 7→
∑

1≤i≤r

p∗(bi )ei

is an isomorphism. In particular, CH∗(E) is a free CH∗(B)-module with basis
{e1, . . . , er }.

Proof. Since k is perfect, we can find a filtration

∅= Bn+1 ( Bn ( · · ·( B1 ( B0 = B

of B by closed subschemes such that for each 0 ≤ i ≤ n, the scheme Bi \ Bi+1

is smooth and the given fibration is trivial over it. We set Ui = B \ Bi and
Vi = Ui \Ui−1 = Bi−1 \ Bi . Observe then that each of the Ui and Vi is smooth.
Set Ei = p−1(Ui ) and Wi = p−1(Vi ). We prove by induction on i that the map
CH∗(F, 0) ⊗Z CH∗(Ui ) → CH∗(Ei ) is an isomorphism, which will prove the
theorem. Since U0 = ∅ and E1 = U1 × F , the desired isomorphism for i = 1
follows from Lemma 6.2. We now consider the commutative diagram

CH∗(Ui )⊗CH∗(F, 0) //

��

CH∗(Ei )

��
CH∗(Vi+1)⊗CH∗(F, 0) //

��

CH∗(Wi+1)

��
CH∗(Ui+1)⊗CH∗(F, 0) //

��

CH∗(Ei+1)

��
CH∗(Ui )⊗CH∗(F, 0) //

��

CH∗(Ei )

��
CH∗(Vi+1)⊗CH∗(F, 0) // CH∗(Wi+1).

(6-3)

The left column is obtained by tensoring the long exact localization sequence
for higher Chow groups with CH∗(F, 0) over Z, and the right column is just the
localization exact sequence. Since CH∗(F, 0) is a free abelian group, the left column
is also exact.

It is easily checked that the second and the third squares commute using the
commutativity property of the push-forward and pull-back maps of higher Chow
groups in a fiber diagram. We show that the other squares also commute. It is
enough to show that the first square commutes as the fourth one is same as the first.
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Let δ denote the connecting homomorphism in a long exact localization sequence
for the higher Chow groups.

Before we show the required commutativity, let us recall that if (X, Y ) is pair of
k-schemes where i : Y ↪→ X is a closed subscheme with complement j :U ↪→ X ,
then the localization exact sequence is the long exact homology sequence associated
to the short exact sequence of cycle complexes

0→ Zn(Y, • )
i∗
−→ Zn(X, • )

j∗
−→

Zn(X, • )
Zn(Y, • )

→ 0,

where the natural map

Zn(X, • )
Zn(Y, • )

→ Zn(U, • )

is a quasi-isomorphism. So we identify the last term with Zn(U, • ). The formal-
ism of the homological algebra now shows that the connecting homomorphism
δ : CHn(U, i)→ CHn(Y, i − 1) is obtained as one obtains the connecting homo-
morphism in the snake lemma. In particular, this is same as the differential map
∂ : Zn(X, i)→ Zn(X, i − 1), evaluated on the homology groups. The Leibniz rule
for this differential now implies that the connecting homomorphism δ also satisfies
the Leibniz rule; see [Panin 2003, §2.4].

If we now start with an element b⊗ i∗(e j ) ∈ CH∗(Ui )⊗CH∗(F, 0) and map
this vertically, we get δb⊗ i∗(e j ), which maps horizontally down to p∗(δb) · e j .
On the other hand, if we first map horizontally, we get p∗(b) · e j which maps
vertically to δ(p∗(b) · e j ). Using the Leibniz rule above, this last term is same as
δp∗(b) · e j = p∗(δb) · e j since δe j = 0. We have shown that the diagram above
commutes.

The first and the fourth horizontal arrows in (6-3) are isomorphisms by induction.
The second and the fifth horizontal arrows are isomorphisms by Lemma 6.2. Hence
the middle horizontal arrow is also an isomorphism by the 5-lemma. �

6c. Leray–Hirsch with rational coefficients. We need the following step to prove
the rational version of the Leray–Hirsch theorem for the étale locally trivial fibrations
of smooth schemes.

Let F be a smooth cellular scheme over k. We have seen before that for any
field extension k ↪→ l, the natural map CH∗(F, 0)→CH∗(Fl, 0) is an isomorphism.
Moreover, each of these is a free abelian group with the basis vectors given by
the closures of the affine cells in the cellular decomposition. We fix this basis
{ f1, . . . , fr } of CH∗(Fl, 0) in what follows. For a complete flag variety G/B, this
set is same as the set of Schubert cycles {ζw}w∈W .
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Lemma 6.4. Let B be a smooth k-scheme and let F
i
−→ E

p
−→ B be an étale

locally trivial fibration such that the fiber F is a smooth cellular scheme. As-
sume that this fibration becomes trivial after a finite étale cover of B of degree d.
Assume furthermore that there are elements {e1, . . . , er } in CH∗(E, 0) such that
{ f1 = i∗(e1), . . . , fr = i∗(er )} is the basis of CH∗(Fy, 0) for each geometric fiber
Fy of the fibration. Then the map

8 : CH∗(F, 0)⊗Z CH∗(B)→ CH∗(E),
∑

1≤i≤r

fi ⊗ bi 7→
∑

1≤i≤r

p∗(bi )ei

is an isomorphism over Z[d−1
]. In particular, CH∗(E)[d−1

] is a free CH∗(B)[d−1
]-

module with basis {e1, . . . , er }.

Proof. Let B ′
q
−→ B be a finite étale cover such that E ′ = E ×B B ′

p′
−→ B ′ is a

trivial fibration and let q ′ : E ′→ E be the other projection. It follows from our
assumption and the isomorphism of CH∗(F, 0) under the field extensions that the
set {e′i = q ′∗(ei )} restricts to the basis { fi } of CH∗(Fy, 0) for every fiber Fy of the
fibration p′.

Setting 8′(b′ ⊗ f j ) = p′∗(b′)e′j and using the fact that q ′∗ ◦ p∗ = p′∗ ◦ q∗,
p∗ ◦ q∗ = q ′

∗
◦ p′∗ and q∗ ◦ q∗ = d = q ′

∗
◦ q ′∗ (see [Bloch 1986, Exercise 5.8(i)]),

one checks that the diagram

CH∗(B)
⊗

CH∗(F, 0)

q∗⊗1 //

8

��

CH∗(B ′)
⊗

CH∗(F, 0)

8′

��

q∗⊗1 //
CH∗(B)
⊗

CH∗(F, 0)

8

��
CH∗(E)

q ′∗
// CH∗(E ′)

q ′∗
// CH∗(E)

commutes. The middle vertical arrow is an isomorphism by Lemma 6.2. A diagram
chase shows that 8 is an isomorphism over Z[d−1

]. �

Theorem 6.5. Let B be a smooth k-scheme and let F
i
−→ E

p
−→ B be an étale locally

trivial fibration such that the fiber F is a smooth cellular scheme. Assume that there
are elements {e1, . . . , er } in CH∗(E, 0) such that { f1 = i∗(e1), . . . , fr = i∗(er )} is
the basis of CH∗(Fy, 0) for each geometric fiber Fy of the fibration. Then the map

8 : CH∗(F, 0)⊗Q CH∗(B)→ CH∗(E),
∑

1≤i≤r

fi ⊗ bi 7→
∑

1≤i≤r

p∗(bi )ei

is an isomorphism over the rationals. In particular, CH∗(E) is a free CH∗(B)-
module with basis {e1, . . . , er } over the rationals.



Higher Chow groups of varieties with group action 477

Proof. We assume all abelian groups to be tensored with Q in this proof. Since k is
perfect and since every étale cover is generically finite, we can find a filtration

∅= Bn+1 ( Bn ( · · ·( B1 ( B0 = B

of B by closed subschemes such that for each 0≤ i ≤ n, the scheme Vi = Bi−1\Bi is
smooth and there is a finite étale cover V ′i →Vi such that the given fibration is trivial
over V ′i . We set Ui = B \ Bi as before, which implies that Vi =Ui \Ui−1. Observe
then that each of the Ui and Vi is smooth. Set Ei = p−1(Ui ) and Wi = p−1(Vi ).
We prove by induction on i that the map

CH∗(F, 0)⊗Q CH∗(Ui )→ CH∗(Ei )

is an isomorphism, which will imply the proposition. Since U0 =∅ and since the
map E1→U1 is a smooth fibration which becomes trivial over the finite étale cover
V ′1→ V1 =U1, the desired isomorphism for i = 1 follows from Lemma 6.4. We
now consider the diagram

CH∗(Ui )

⊗

CH∗(F, 0)

//

��

CH∗(Vi+1)

⊗

CH∗(F, 0)

��

//
CH∗(Ui+1)

⊗

CH∗(F, 0)

��

//
CH∗(Ui )

⊗

CH∗(F, 0)

//

��

CH∗(Vi+1)

⊗

CH∗(F, 0)

��
CH∗(Ei ) // CH∗(Wi+1) // CH∗(Ei+1) // CH∗(Ei ) // CH∗(Wi+1).

The top row is obtained by tensoring the long exact localization sequence for higher
Chow groups with CH∗(F, 0) over Q and hence is exact. The bottom row is just
the localization exact sequence.

One checks as in the proof of Theorem 6.3 that the diagram above is commutative.
The first and the fourth vertical arrows are isomorphisms by induction. The second
and the fifth vertical arrows are isomorphisms by Lemma 6.4. Hence the middle
vertical arrow is also an isomorphism by 5-lemma. �

7. Higher Chow groups of toric bundles and applications

As an application of Theorem 6.3, we describe the ordinary higher Chow groups of
toric bundles with integral coefficients. Let T be a split torus of rank n over k and
let M =Hom(Gm, T ) be the group of its one-parameter subgroups. Let X = X (1)
be a smooth projective toric variety associated to a fan 1 in MR (see Section 11).
Let B be a smooth k-scheme and let p : E→ B be a principal T -bundle. Setting
E(X)= E ×T X , we see that

π : E(X)→ B, π((e, x))= p(e)
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is a Zariski-locally trivial smooth fibration with all fibers isomorphic to X . Since
X is projective, it follows that π is a projective morphism.

We fix an ordering {σ1, . . . , σm} of 1max and let τi ⊂ σi be the cone that is the
intersection of σi with all those σ j such that j ≥ i and that intersect σi in dimension
n−1. Let τ ′i ⊂ σi be the cone such that τi ∩ τ

′

i = {0} and dim(τi )+dim(τ ′i )= n for
1≤ i ≤m. It is easy to see that τ ′i is the intersection of σi with all those σ j such that
j ≤ i and that intersect σi in dimension n− 1. Since X is smooth and projective, it
is well-known that we can choose the ordering above of 1max such that

τi ⊂ σ j implies i ≤ j and τ ′i ⊂ σ j implies j ≤ i. (7-1)

Let11={ρ1, . . . , ρd} be the set of one-dimensional cones in1 and let {v1, . . . , vd}

be the associated primitive elements of M . We choose {ρ1, . . . , ρn} to be a set of
one-dimensional faces of σm such that {v1, . . . , vn} is a basis of M . Let {χ1, . . . , χn}

be the dual basis of M∨.

Definition 7.1. Let A be a commutative ring with unit and let {r1, . . . , rn} be
a subset of A. Let IA denote the ideal of the polynomial algebra A[t1, . . . , td ]
generated by the elements

t j1 · · · t jl for 1≤ jp ≤ d (7-2)

such that ρ j1, . . . , ρ jl do not span a cone of 1. Let I1 denote the ideal of
A[t1, . . . , td ] generated by I1 and the relations

si :=

( d∑
j=1

〈χi , v j 〉t j

)
− ri for 1≤ i ≤ n. (7-3)

We define the A-algebras Req(A,1) and R(A,1) to be quotients of A[t1, . . . , td ]
by the ideals I1 and I1, respectively.

The ring Req(A,1) is also known in the literature as the Stanley–Reisner algebra
over A associated to the fan 1; see [Sankaran and Uma 2003, Definition 2.1].
Notice that any character χ of T acts on Req(A,1) through the multiplication by
the element

∑d
j=1〈χ, v j 〉 t j . This makes Req(A,1) into an S = S(T )-algebra.

Any T -equivariant line bundle L→ X uniquely defines a line bundle

E(L)= E ×T L

on E(X). Every ρ ∈11 defines a unique T -equivariant line bundle Lρ on X with
a T -equivariant section sρ : X → Lρ that is transverse to the zero section and
whose zero locus is the orbit closure Vρ = Oρ . For any σ ∈1, let uσ denote the
fundamental class of the T -invariant cycle [Vσ ] in CH∗(X, 0) and let yσ denote
the cycle [E(Vσ )] in CH∗(E(X), 0). Notice that πσ : E(Vσ )→ B is a smooth
projective toric subbundle of π : E(X)→ B with fiber Vσ .
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Suppose that ρ j1, . . . , ρ jl do not span a cone in 1. Then s = (s j1, . . . , s jl ) is a
nowhere vanishing section of Lρ j1

⊕ · · ·⊕ Lρ jl
and hence

c1(E(Lρ j1
)) · · · c1(E(Lρ jl

))= 0 in CH∗(E(X)).

In particular, we get

yρ j1
· · · yρ jl

= 0 in CH∗(E(X)). (7-4)

We now consider the commutative diagram

Xl
ι //

πl

��

E(X)

π

��

E × X

pE

��

pX //poo X

πX

��
Spec(l) // B Ep

oo
πE

// Spec(k),

(7-5)

where Spec(l) is any point of B. It is clear that all squares are Cartesian and all the
maps in the right square are T -equivariant. Let Lχ denote the T -equivariant line
bundle on Spec(k) associated to a character χ of T . Since p and p are principal
T -bundles, we see that there is a unique line bundle ζ on B such that

π∗E(Lχ )= p∗(ζ ) and p∗X ◦π
∗

X (Lχ )= p∗ ◦π∗(ζ ). (7-6)

Using the identity

π∗X (c
T
1 (Lχ ))=

∑
ρ∈11

〈χ, vρ〉 uρ in CH∗T (X)

and the isomorphisms CH∗(B) ∼= CH∗T (E), CH∗(E(X)) ∼= CH∗T (E × X), we see
that π∗(c1(ζ ))=

∑
ρ∈11
〈χ, vρ〉yρ . Let ζi ∈ Pic(B) be such that π∗E(Lχi )= p∗(ζi ),

where {χ1, . . . , χn} is a chosen basis of M∨ as above. Setting ri = c1(ζi )∈CH∗(B),
we conclude that

π∗(ri )=

d∑
j=1

〈χi , v j 〉yρ j in CH∗(E(X)), 1≤ i ≤ n. (7-7)

We define a homomorphism of CH∗(B)-algebras

CH∗(B)[t1, . . . , td ] → CH∗(E(X))

by the assignment ti 7→ yρi for 1≤ i ≤ d . It follows from (7-4) and (7-7) that this
homomorphism descends to a CH∗(B)-algebra homomorphism

ψ : R(CH∗(B),1)→ CH∗(E(X)). (7-8)
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The following result describes the higher Chow groups of the projective toric
bundle π : E(X)→ B and generalizes [Sankaran and Uma 2003, Theorem 1.2(iii)]
to higher Chow groups.

Theorem 7.2. The homomorphism ψ is an isomorphism.

Proof. To prove this theorem, we first observe that for any σ ∈ 1 and any point
Spec(l)→ B, one has ι∗(E(Vσ )) = (Vσ )l . Also, it is well-known [Sankaran and
Uma 2003, Lemma 3.1] that {ι∗(yτ1), . . . , ι

∗(yτm )} forms a Z-basis of CH∗(Xl, 0).
Since yτi = yρi1

· · · yρi p
for every 1 ≤ i ≤ m, where {ρi1, . . . , ρi p} is the set of

edges of τi , it follows from the proof of Theorem 6.3 that CH∗(E(X)) is generated
by {yρ1, . . . , yρd } as a CH∗(B)-algebra. In particular, the map ψ is surjective.

To prove injectivity, let x(σ ) denote the monomial ti1 · · · ti p in R(CH∗(B),1)
such that {ρi1, . . . , ρi p} is the set of edges of σ ∈ 1. Then by [Sankaran and
Uma 2003, Lemma 2.1(ii)], the set {x(τ1), . . . , x(τm)} spans R(CH∗(B),1) as a
CH∗(B)-module. Since ψ(x(τi )) = yτi for 1 ≤ i ≤ m and since CH∗(E(X)) is a
free CH∗(B)-module with basis {yτ1, . . . , yτm } by Theorem 6.3, we conclude that
ψ must be injective. �

7a. Equivariant and ordinary higher Chow groups of smooth projective toric
varieties. As a consequence of Theorem 7.2, we derive some explicit formulas for
the equivariant and ordinary higher Chow groups of smooth projective toric varieties
with integral coefficients. We shall later show in Section 11 that such formulas hold
for all smooth toric varieties with rational coefficients. Recall that if X = X (1) is a
toric variety, then for every σ ∈1, the orbit closure Vσ is a T -invariant closed toric
subvariety of X and hence uniquely defines a class yσ = [Vσ ] in CH∗T (X, 0); see
[Edidin and Graham 1998, Section 2.2]. This is called the fundamental equivariant
class of Vσ .

We consider A=CH∗(k)⊗Z S∼=CH∗(k)[t1, . . . , tn] as a graded CH∗(k)-algebra
whose degree zero part is CH∗(k). We have seen above that Req(CH∗(k),1) has
an action of S that makes it a graded A-algebra. Moreover, R(CH∗(k),1) is just
the quotient Req(CH∗(k),1)⊗S Z∼= Req(CH∗(k),1)⊗A CH∗(k).

Corollary 7.3. Let X = X (1) be a smooth projective toric variety as above. Then
the assignment ti 7→ yρi induces CH∗(k)-algebra isomorphisms

9X : Req(CH∗(k),1)−→∼ CH∗T (X), (7-9)

9X : R(CH∗(k),1))−→∼ CH∗(X). (7-10)

Proof. The second isomorphism is just a special case of Theorem 7.2 when B =
Spec(k).

To prove the isomorphism of (7-9), we first observe that 9X is a graded A-linear
homomorphism; see Section 11. Let M denote the kernel of this map. It follows
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from [Krishna 2009a, Theorem 4.2] that CH∗T (X) is a free A-module with basis
{yτi }. It follows from this that 9X is surjective and we get an exact sequence of
graded A-modules

0→ M→ Req(CH∗(k),1)
9X
−−→ CH∗T (X)→ 0.

The freeness of CH∗T (X) as an A-module ensures that this sequence remains short
exact after tensoring with CH∗(k) via the augmentation A � CH∗(k).

It follows from [Krishna 2009a, Theorem 1.1] that

CH∗T (X)⊗A CH∗(k)−→∼ CH∗(X).

In particular, 9X becomes an isomorphism after tensoring with CH∗(k). We con-
clude that M ⊗A CH∗(k) = 0. Since M is a nonnegatively graded A-module, it
must be zero. �

8. Higher Chow groups of flag bundles and applications

We remind the readers of our convention that all the higher Chow groups for the
rest of this text will be considered with rational coefficients. We shall however,
indicate the coefficients in the statement of all results.

In this section, we describe a formula for the higher Chow groups of complete
flag bundles with rational coefficients. Such a formula for general flag bundles is
an immediate consequence of the case of complete flag bundles. We also give some
applications of this formula to the theory of equivariant higher Chow groups.

8a. Complete flag bundles. Let G be a connected reductive group over k and let
B be a Borel subgroup of G containing a split maximal torus T . Let X be a
k-scheme and let p : E → X be a principal G-bundle and let π : E/B → X be
the associated complete flag bundle. Vistoli [1989] described the classical Chow
groups CH∗(E, 0) and CH∗(E/B, 0) in terms of the Chow groups of X . In this
section we generalize Vistoli’s results to the case of higher Chow groups. The proof
below is completely different from Vistoli’s; it is much shorter and relies more on
the equivariant techniques.

The restriction map r G
T,X induces for every i ≥ 0, a natural map of S(T )-modules

CHG
∗
(E, i)⊗S(G) S(T )→ CHT

∗
(E, i), w⊗α 7→ α · r G

T,E(w).

Since G acts freely on E , one identifies CHG
∗
(E, i) with CH∗(X, i) by Proposition

2.2. The group CHB
∗
(E, i) is canonically identified with CH∗(E/B, i) for the same

reason. The map above then translates into a natural map of S(T )-modules

λX : CH∗(X, i)⊗S(G) S(T )→ CH∗(E/B, i). (8-1)
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Taking the direct sum over {CH∗(X, i)}i≥0, we get a natural map of S(T )-modules

λX : CH∗(X)⊗S(G) S(T )→ CH∗(E/B). (8-2)

This map is a ring homomorphism if X is smooth. One can easily check that λX

commutes with the flat pull-back and the proper push-forward maps between the
higher Chow groups of the base schemes of the bundle. We wish to show that λX

is an isomorphism. We begin with the following special case.

Lemma 8.1. Let X be a smooth (not necessarily connected) scheme over k and let
f : X ′→ X be a finite étale morphism such that the principal bundle p : E→ X is
trivialized over X ′. Then the map λX is an isomorphism with rational coefficients. In
particular, λX is an isomorphism with rational coefficients if X is zero-dimensional.

Proof. Since X is a disjoint union of connected smooth schemes, it is enough to
prove the lemma when X is smooth and connected. If E/B = G/B→ Spec(k) is
the flag variety, then we have

CH∗(k)⊗S(G) S(T )∼= CH∗(k)⊗CH∗(k,0) (CH∗(k, 0)⊗S(G) S(T ))
∼=

† CH∗(k)⊗CH∗(k,0) CH∗(G/B, 0)
∼= CH∗(G/B) (by Lemma 6.2),

where ∼=† follows from [Demazure 1973, théorème 2].
If G/B× X

π
−→ X is the trivial bundle, then we get

CH∗(X)⊗S(G) S(T )∼= CH∗(X)⊗CH∗(k,0) (CH∗(k, 0)⊗S(G) S(T ))
∼= CH∗(X)⊗CH∗(k,0) CH∗(G/B, 0)
∼= CH∗(G/B× X) (by Lemma 6.2).

In general, we consider the diagram

CH∗(X)⊗ S(T )
f ∗⊗id //

λX
��

CH∗(X ′)⊗ S(T )
f∗⊗id //

λX ′

��

CH∗(X)⊗ S(T )

λX
��

CH∗(E/B)
f
∗

// CH∗(EX ′/B)
f ∗

// CH∗(E/B),

where the tensor product in the top row is over S(G). We have just shown that
λX ′ is an isomorphism. It follows from the projection formula (see [Bloch 1986,
Exercise 5.8]) that the composite horizontal maps in both rows are multiplication
by [k(X ′) : k(X)]. Hence, λX must be an isomorphism too. �

Theorem 8.2. For any k-scheme X , the map λX is an isomorphism of S(T )-modules
with rational coefficients. This is a ring isomorphism if X is smooth.
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Proof. We only need to prove the first assertion, for which we use induction on the
dimension of X . The zero-dimensional case follows from Lemma 8.1. In general,
we can find an étale cover of X over which the bundle p : E→ X becomes trivial.
Since any such cover is generically finite and since the base field k is perfect, we
can find a dense open subset j :U ↪→ X and a finite étale cover f :U ′→U such
that U is a disjoint union of connected smooth schemes and the given bundle is
trivial over U ′. Let ι : Z ↪→ X be the complement of U with its reduced induced
closed subscheme structure.

We now consider the diagram

CH∗(U )
⊗

S(T )

∂ //

λU
��

CH∗(Z)
⊗

S(T )

λZ
��

ι∗ //
CH∗(X)
⊗

S(T )

λX
��

j∗ //
CH∗(U )
⊗

S(T )

∂ //

λU
��

CH∗(Z)
⊗

S(T )

λZ
��

CH∗(EU/B) // CH∗(EZ/B) // CH∗(E/B) // CH∗(EU/B) // CH∗(EZ/B)

of localization exact sequences, where the tensor product in the top row is over
the ring S(G). In particular, this row is exact by the flatness of S(T ) over S(G).
The second and the third squares commute by the compatibility of λX with the
push-forward and the pull-back maps as remarked above.

To see that the first square commutes, let us consider an element

a⊗ b ∈ CH∗(U )⊗S(T ).

If we map this horizontally, we get ∂(a)⊗ b, which is mapped vertically down to
b ·π∗Z ◦ ∂(a). Since the localization sequence of higher Chow groups is compatible
with respect to the flat pull-back, this last term is same as b ·∂ ◦π∗U (a). On the other
hand, mapping a⊗b vertically down gives b ·π∗U (a) and if we map this horizontally,
we get ∂(b ·π∗U (a)). Since the horizontal maps in the bottom row are S(T )-linear
(see Proposition 2.2), we conclude that the first (hence the fourth) square commutes.

The first and the fourth vertical arrows in the diagram above are isomorphisms
by Lemma 8.1. Since U is a dense open in X , the dimension of Z is strictly smaller
than that of X . Hence the second and the fifth vertical arrows are isomorphisms by
induction on the dimension and Lemma 8.1. We conclude from the 5-lemma that
λX is an isomorphism. �

8b. Principal bundles and flag bundles. The following extension of Theorem 8.2
to all flag bundles is a direct generalization of the projective bundle formula for
higher Chow groups.

Corollary 8.3. Let p : E→ X be a principal G-bundle over a k-scheme X and let
π : E/P→ X denote the flag bundle associated to a parabolic subgroup P. Then
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the natural map of S(P)-modules

λX : CH∗(X;Q) ⊗
S(G;Q)

S(P;Q)→ CH∗(E/P;Q), w⊗α 7→ α · r G
P,E(w).

is an isomorphism. This is a ring isomorphism if X is smooth.

Proof. We only need to prove the first assertion. Let B ⊆ P be a Borel subgroup of
G containing a split maximal torus T . Let 8(G, T ) be the root system of G with
respect to T such that B corresponds to the base 1 of 8(G, T ) and P corresponds
to a subset I ⊂1. Let P = MnN be the Levi decomposition and let BM = B∩M
be the Borel subgroup of M containing T . Let WP ⊂W be the Weyl group of P
with respect to T . It follows from Propositions 3.3, 3.4 and Corollary 8.7 that the
natural map

CH∗(E/P)→ (CH∗(E/B))WP (8-3)

is an isomorphism.
On the other hand, following the proof of Corollary 8.7, we get

(CH∗(X)⊗S(G) S(T ))WP ∼= CH∗(X)⊗S(G) (S(T ))WP

∼= CH∗(X)⊗S(G) S(M)
∼= CH∗(X)⊗S(G) S(P), (8-4)

where the last isomorphism follows again from Proposition 3.4. The corollary now
follows from Theorem 8.2 by combining (8-3) and (8-4). �

The following result generalizes [Vistoli 1989, Corollary 3.2] to higher Chow
groups.

Corollary 8.4. Let G be connected and split reductive group over k and let
p : E→ X be a principal G-bundle over a k-scheme X. Then there is a strongly
convergent spectral sequence

E p,q
2 = TorS(G;Q)

p (Q,CH∗(X, q;Q))⇒ CH∗(E, p+ q;Q).

The edge homomorphism yields an isomorphism

CH∗(X, 0;Q) ⊗
S(G;Q)

Q−→∼ CH∗(E, 0;Q).

Proof. This is an immediate consequence of Theorem 8.2, [Krishna 2009a, Theo-
rem 1.1] and flatness of S(T ) over S(G). �

8c. A change of groups isomorphism. The following theorem is an analogue of a
similar result in equivariant K -theory by Merkurjev [2005, Proposition 8]. However,
this result for the equivariant higher Chow groups has an advantage over Merkurjev’s
theorem in that it holds for the action of any split reductive group (though with
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rational coefficients) whereas [ibid., Proposition 8] is known only for the groups
whose derived subgroups are simply connected, for example, GLn . The special
case CHG

∗
(X, 0) of the result below was proven by Brion [1997, Theorem 6.7].

Theorem 8.5. Let G be a connected reductive group and let T be a split maximal
torus of G. Then for any X ∈ VG , the natural map of S(T )-modules

λX : CHG
∗
(X;Q) ⊗

S(G;Q)
S(T ;Q)→ CHT

∗
(X;Q) (8-5)

is an isomorphism. This is a ring isomorphism if X is smooth.

Proof. We only need to show the first assertion. If (V,U ) is a good pair for
the G-action, then CHG

∗
(X, i) and CHT

∗
(X, i) in suitable degrees are the same

as CH∗(XG, i) and CH∗(X B, i), respectively, where B is a Borel subgroup of G
containing T . Hence, it suffices to show that for any k-scheme Z with a free action
of G with quotients G/B and Z/G, the natural map

λZ/G : CH∗(Z/G)⊗S(G) S(T )→ CH∗(Z/B)

is an isomorphism. But this follows immediately by applying Theorem 8.2 to the
principal bundle Z→ Z/G. �

Remark 8.6. The first remark is that Theorem 8.5 holds if G is any connected linear
algebraic group (not necessarily reductive) if the base field is of characteristic zero.
This is an immediate consequence of Proposition 3.4. The second remark is that
the theorem above can also be proven as a simple consequence of the Leray–Hirsch
theorem 6.5. The case of smooth schemes is a direct consequence of Theorem 6.5
and the general case can be proven using noetherian induction and the localization
sequence. We leave it an exercise to fill in the details.

8d. Some consequences of Theorem 8.5. Recall that if G is a connected reductive
group with a split maximal torus T , then the normalizer N of T in G and all its
connected components are defined over k and the quotient N/T is the Weyl group
W of the corresponding root system. In particular, W ⊂G/T . If G acts on a variety
X and if (V,U ) is a good pair for the G-action, then X ×T U → X ×G U is an
étale-locally trivial smooth fibration with fiber G/T . In particular, W acts on each
CHT

j (X, i) and the map CHG
j (X, i)→CHT

j (X, i) factors through the W -invariants.
We get the following consequence of Theorem 8.5.

Corollary 8.7 (see Theorem 5.7). Let G be a connected reductive group and let T
be a split maximal torus of G with the Weyl group W . Then for any X ∈ VG , the
restriction map r G

T,X induces an isomorphism

CHG
∗
(X;Q)−→∼ (CHT

∗
(X;Q))W .
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Proof. Since W is a finite group, the trivial Q[W ]-module Q is a projective
Q[W ]-module of finite rank. In particular, it follows from Theorem 8.5 that

(CH∗T (X))
W
= HomQ[W ](Q,CHG

∗
(X)⊗S(G)S(T ))

= CHG
∗
(X)⊗S(G) HomQ[W ](Q, S(T ))

= CHG
∗
(X)⊗S(G) (S(T ))W

=
† CHG

∗
(X)⊗S(G) S(G)

= CHG
∗
(X),

where =† holds by [Edidin and Graham 1998, Proposition 6]. �

As an important consequence of the result above, we get the following analogue
of a similar result of Thomason [1988, Theorem 1.13] in equivariant K -theory.

Corollary 8.8 (see Remark 5.8). Let G be a connected and reductive group over k
and let T be a split maximal torus in G. Then the restriction map

CHG
∗
(X;Q)

r G
T,X
−−→ CHT

∗
(X;Q) (8-6)

is a split monomorphism. Moreover, this splitting is natural for morphisms in VG .
In particular, if H is any closed subgroup of G, then there is a split injective map

CHH
∗
(X;Q)

r G
T,X
−−→ CHT

∗
(G×H X;Q). (8-7)

Proof. The first statement follows directly from Corollary 8.7, where the splitting
is given by the trace map into the subgroup of W -invariants. The last statement
follows from (8-6) and Corollary 3.2. �

Remark 8.9. Let % ∈ S(T )∼= CH∗G(G/B, 0) be such that the forgetful map takes
% to the class of the zero-dimensional Schubert cycle in CH∗(G/B, 0). For a flag
bundle π : E/B → X over a scheme X , if we define ψX : CH∗(X)→ CH∗(X)
by ψX (α) = π∗(% · π

∗(α)), then it can be shown that ψX is an isomorphism. In
particular, π∗ is split injective. This gives another (and more conceptual) proof
of Corollary 8.8. In fact, this proof shows that r G

T,X is split injective with integer
coefficients if G is special.

Let G be a connected reductive group and let B be a Borel subgroup of G
containing a split maximal torus T . It follows from [Demazure 1973, théorème 2]
that the forgetful map S(T )→ CH∗(G/B, 0) is surjective. Moreover, if {%w}w∈W

are polynomials in S(T ) which map to the classes of Schubert cycles {ζw}w∈W in
CH∗(G/B, 0), then S(T ) is a free S(G)-module with basis {%w}w∈W . The following
is a direct generalization of Demazure’s theorem to the case of all smooth schemes
and all higher Chow groups. This also strengthens Corollary 8.7 for smooth schemes.
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Corollary 8.10. Let X ∈VS
G and let X

pX
−→Spec(k) be the structure map. Set %w,X =

p∗X (%w). Then CH∗T (X;Q) is a free CH∗G(X;Q)-module with basis {%w,X }w∈W .

Proof. It follows from the construction that the map

λX : CH∗G(X)⊗S(G) S(T )→ CH∗T (X)

takes 1 ⊗ %w onto %w,X . The corollary is now an immediate consequence of
Theorem 8.5. �

9. Cohomological rigidity and specializations

Let G be a split diagonalizable group over k acting on a smooth scheme X . Recall
[Springer 1998, 13.2.5] that all the diagonalizable subgroups of G are defined
and split over k. The equivariant K -theory of X for the G-action was studied by
Vezzosi and Vistoli [2003]. Their main result (Theorem 1) is to reconstruct the
equivariant K -theory ring of X in terms of the equivariant K -theory of the loci
where the stabilizers have constant dimension. In the next two sections, we use
the ideas of Vezzosi and Vistoli to prove an analogous decomposition theorem
(see Theorem 10.3) for the equivariant higher Chow groups of X for the G-action.
As mentioned in the introduction, this theorem and its compatibility with the
corresponding result for the equivariant K -theory play fundamental roles in the
proof of the equivariant Riemann–Roch theorems in [Krishna 2009b]. This theorem
is very useful in computing the equivariant and ordinary higher Chow groups of
smooth schemes with torus action. Some applications of this kind are given in
Section 11.

This section is concerned with the study of the notion of cohomological rigidity
and the construction of certain specialization maps in equivariant higher Chow
groups. In this and the next section, the group G will denote a split diagonalizable
group and the all schemes will be assumed to be smooth with G-action. We have
seen (Proposition 2.2) that for such a scheme X , CH∗G(X) is a bigraded ring, which
is an algebra over the ring CH∗G(k).

9a. Cohomological rigidity.

Definition 9.1. Let Y ⊂ X be a smooth and G-invariant closed subscheme of
codimension d ≥ 0 and let NY/X denote the normal bundle of Y in X . We say that
Y is cohomologically rigid inside X if cG

d (NY/X ) is a not a zero-divisor in the ring
CH∗G(Y ).

As one observes, this definition has reasonable meaning only in the equivariant
setting, since every element of positive degree in the nonequivariant Chow ring
is nilpotent. The importance of cohomological rigidity for the equivariant higher



488 Amalendu Krishna

Chow groups comes from the following analogue of the K -theory splitting theorem
(Proposition 4.3) of [Vezzosi and Vistoli 2003].

Proposition 9.2. Let Y be a smooth and G-invariant closed subscheme of X of
codimension d ≥ 0. Assume that Y is cohomologically rigid inside X , and put
U = X \ Y . Let i : Y ↪→ X and j :U ↪→ X be the inclusion maps.

(i) The localization sequence

0→ CH∗G(Y ;Q)
i∗
−→ CH∗G(X;Q)

j∗
−→ CH∗G(U ;Q)→ 0

is exact.

(ii) The restriction ring homomorphisms

CH∗G(X;Q)
(i∗, j∗)
−−−→ CH∗G(Y ;Q)×CH∗G(U ;Q)

give an isomorphism of rings

CH∗G(X;Q)−→∼ CH∗G(Y ;Q) ×
˜CH∗G(Y ;Q)

CH∗G(U ;Q),

where ˜CH∗G(Y ;Q)= CH∗G(Y ;Q)/(c
G
d (NY/X )), and the maps

CH∗G(Y ;Q)→ ˜CH∗G(Y ;Q), CH∗G(U ;Q)→ ˜CH∗G(Y ;Q)

are, respectively, the natural surjection and the map

CH∗G(U ;Q)=
CH∗G(X;Q)

i∗(CH∗G(Y ;Q))
i∗
−→

CH∗G(Y ;Q)
cG

d (NY/X )
= ˜CH∗G(Y ;Q),

which is well-defined by Corollary 4.5.

Proof. Part (i) follows directly from Corollary 4.5 and the definition of cohomolog-
ical rigidity. Since i∗ and j∗ are ring homomorphisms, the proof of the second part
follows directly from the first part and [Vezzosi and Vistoli 2003, Lemma 4.4]. �

To apply the result above in our context, we need to find some sufficient conditions
for checking the cohomological rigidity in specific examples. We begin with the
following elementary result.

Lemma 9.3. Let A be a ring which is a Q-algebra. Then an element of the form td ,
where t =

∑r
j=1 a j ti j ∈ A[t1, . . . , tn], is not a zero-divisor for any d ≥ 0 whenever

a j ∈Q for all j and a j 6= 0 for some j .

Proof. Since all a j ∈Q and some a j 6= 0, we see that td is a nonzero element of
Q[t1, . . . , tn] and hence a nonzero divisor in this ring. Since tensoring with A over
Q is exact, we see that the multiplication by td is injective in A[t1, . . . , tn] too. �
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Proposition 9.4. Let G be a split diagonalizable group acting on a smooth scheme
X and let E be a G-equivariant vector bundle of rank d on X. Assume that there
is a subtorus T ⊂ G of positive rank which acts trivially on X , such that in the
eigenspace decomposition of E with respect to T , the submodule corresponding to
the trivial character is zero. Then cG

d (E) is not a zero-divisor in CH∗G(X;Q).

Proof. By [Thomason 1986, Lemma 5.6], E has a unique direct sum decomposition

E =
r⊕

i=1

Eχi ⊗ Lχi ,

where we choose a splitting G = D× T , Eχi are D-bundles and χi are characters
of T with associated line bundles Lχi ∈ PicT (k). This decomposition is via the
functor

BunD
X ×Rep(T )→ BunG

X , (F, ρ) 7→ p∗1(F)⊗p∗2(ρ),

where p1 : D× T → D and p2 : D× T → T are the projections.
Since rank(E)=d , the Whitney sum formula yields cG

d (E)=
∏r

i=1 cG
di
(Eχi⊗Lχi ),

where di = rank(Eχi ). We can thus assume that E = Eχ⊗Lχ , where χ is not a
trivial character by our assumption. In particular, we can write

cT
1 (Lχ )= t =

p∑
i=1

ni ti ∈Q[t1, . . . , tn] (9-1)

with ni 6= 0 for some i . By neglecting those i for which the coefficients ni are zero,
we can assume that ni 6= 0 for all i . Now we have

cG
d (E)= cG

d (p
∗

1(Eχ )⊗p∗2(Lχ ))=
†

d∑
i=0

cG
d−i (p

∗

1(Eχ )) · (c
G
1 (p

∗

2(Lχ )))
i

=

d∑
i=0

p∗1(c
D
d−i (Eχ )) · p

∗

2((c
T
1 (Lχ ))

i
)=

d∑
i=0

αi t i ,

where αi ∈ CH∗D(X) and cG
d (E) ∈ CH∗G(X) ∼= CH∗D(X)⊗ S(T ) by Theorem 3.5

and =† holds by [Fulton 1984, Remark 3.2.3]. Furthermore, αd = p∗1(c
D
0 (Eχ ))= 1.

Thus we get cG
d (E)= td

+αd−1td−1
+ · · ·+α1t +α0 = g(t).

We need to show that g(t) is not a zero divisor in CH∗D(X)[t1, . . . , tn]. So
suppose f (t) is a nonzero polynomial such that g(t) f (t)= 0, and let f ′(t) be the
homogeneous part of f (t) of largest degree which is not zero. By comparing the
homogeneous parts, it is easy to see that g(t) f (t)= 0 only if td f ′(t)= 0. But this
is a contradiction since t satisfies the condition of Lemma 9.3 by (9-1), and hence
is not a zero-divisor. �
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Let G be a split diagonalizable group as above and let X ∈ VS
G . Following the

notation of [Vezzosi and Vistoli 2003], for any s ≥ 0, we let X≤s ⊂ X be the open
subset of points whose stabilizers have dimension at most s. We shall often write
X≤s−1 also as X<s . Let Xs = X≤s \ X<s denote the locally closed subset of X ,
where the stabilizers have dimension exactly s. We think of Xs as a subspace of
X with the reduced induced structure. It is clear that X≤s and Xs are G-invariant
subspaces of X . Let Ns denote the normal bundle of Xs in X≤s , and let N 0

s denote
the complement of the 0-section in Ns . Then G clearly acts on Ns . The following
result describes some very useful properties of these subspaces.

Proposition 9.5. Let s ≥ 0 be an integer.

(i) There exists a finite number of s-dimensional subtori T1, . . . , Tr in G such that
Xs is the disjoint union of the fixed point spaces X T j

≤s .

(ii) Xs is smooth locally closed subscheme of X.

(iii) N 0
s = (Ns)<s .

Proof. Since the base field k is perfect, this is a special case of [Vezzosi and Vistoli
2003, Proposition 2.2], which holds for regular G-schemes over any connected and
separated Noetherian base scheme. �

Remark 9.6. We mention here that although the proposition above has been stated
for the smooth schemes, part (i) of the proposition holds also when X is not
necessarily smooth, since the proof given in [loc. cit.] only uses Thomason’s
generic étale slice theorem, which holds very generally.

Corollary 9.7. For s ≥ 1, Xs is cohomologically rigid inside X≤s .

Proof. Let ds be the codimension of Xs in X≤s . We need to show that cG
ds
(Ns) is not

a zero-divisor in CH∗G(Xs). By Proposition 9.4, it suffices to show that there exists a
subtorus T in G of positive rank that acts trivially on Xs , such that in the eigenspace
decomposition of Ns with respect to T , the submodule corresponding to the trivial
character is zero. But this follows directly from parts (i) and (iii) of Proposition 9.5
and the fact that s ≥ 1; see [Vezzosi and Vistoli 2003, Proposition 4.6]. �

9b. Specialization maps. Let G and X be as above and let n be the dimension
of G. As seen above, there is a filtration of X by G-invariant open subsets

∅= X≤−1 ⊂ X≤0 ⊂ · · · ⊂ X≤n = X.

In particular, G acts on X≤0 with finite stabilizers, and the toral component of G
acts trivially on Xn . We fix 1≤ s ≤ n and let fs : Xs ↪→ X≤s and gs : X<s ↪→ X≤s

denote the closed and the open embeddings, respectively. Let π : Ms → P1 be
the deformation to the normal cone for the embedding fs as in Section 4. We
have already observed there that for the trivial action of G on P1, Ms has a
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natural G-action. Moreover, the deformation diagram (4-1) is a diagram of smooth
G-spaces. For 0 ≤ t ≤ s, we shall often denote the open subspace (Ms)≤t of
Ms by Ms,≤t . The terms like Ms,t and Ms,<t (and also for Ns) will have similar
meaning in what follows. Since G acts trivially on P1, it acts on Ms fiberwise with
Ns = π

−1(∞) and

Ms,≤t ∩π
−1(A1)= X≤t ×A1, Ms,t ∩π

−1(A1)= X t ×A1. (9-2)

Let is,≤t : Ns,≤t ↪→ Ms,≤t and js,≤t : X≤t ×A1 ↪→ Ms,≤t denote the obvious closed
and open embeddings. We define is,t and js,t similarly. Let ηs,t : Ns,t ↪→ Ns,≤t and
δs,t : Ms,t ↪→ Ms,≤t denote the other closed embeddings. One has a commutative
diagram

X≤t
g≤t //

fs,≤t
��

X≤t ×A1 js,≤t //

��

Ms,≤t

��
X≤s

g≤s // X≤s ×A1 j≤s // Ms // X≤s ×P1 // X≤s,

(9-3)

where g≤t is the 0-section embedding, and the composite of all the maps in the
bottom row is identity. This gives us the diagram

CH∗G(Ns,t)
is,t ∗ //

ηs,t ∗
��

CH∗G(Ms,t)
j∗s,t //

δs,t ∗��

CH∗G(X t ×A1)
g∗t //

ft ∗��

CH∗G(X t)

ft ∗��
CH∗G(Ns,≤t)

is,≤t ∗ // CH∗G(Ms,≤t)
j∗s,≤t // CH∗G(X≤t ×A1)

g∗≤t // CH∗G(X≤t)

of equivariant higher Chow groups, where the left square commutes by the covari-
ance of the push-forward map, the middle commutes by Proposition 2.2(1) and the
right commutes by Corollary 4.2. Since the last horizontal maps in both rows are
natural isomorphisms by the homotopy invariance, we shall often identify the last
two terms in both rows and use j∗s,≤t and ( js,≤t ◦ g≤t)

∗ interchangeably.

Theorem 9.8. The maps j∗s,≤t and j∗s,t are surjective and there are ring homomor-
phisms

Sp≤t
X,s :CH∗G(X≤t ;Q)→ CH∗G(Ns,≤t ;Q) and

Spt
X,s :CH∗G(X t ;Q)→ CH∗G(Ns,t ;Q)

such that i∗s,≤t = Sp
≤t
X,s ◦ j∗s,≤t and i∗s,t = Sp

t
X,s ◦ j∗s,t . Moreover, both the squares in

the following diagram commute:

CH∗G(X≤t ;Q)
f ∗t //

Sp
≤t
X,s ��

CH∗G(X t ;Q)

Sp
t
X,s��

ft ∗ // CH∗G(X≤t ;Q)

Sp
≤t
X,s��

CH∗G(Ns,≤t ;Q)
η∗s,t

// CH∗G(Ns,t ;Q) ηs,t ∗

// CH∗G(Ns,≤t ;Q)

(9-4)
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Proof. Using the results obtained so far in this section, one can define the spe-
cialization maps along the lines of the construction of such maps for K -theory
in [Vezzosi and Vistoli 2003, Theorem 3.2; 2005]. However, it is not at all clear
from the construction of the specialization maps in [Vezzosi and Vistoli 2005]
that these maps have good functorial properties, and, in particular, if they are ring
homomorphisms. Moreover, it is not clear if these maps will have the compatibility
properties with the Chern character and Riemann–Roch maps (see [Krishna 2009b])
from the equivariant K -groups to higher Chow groups.

We give here a more direct and functorial construction of the specialization maps,
which works both for the K -theory as well as the higher Chow groups, and the
proof of various compatibilities of these maps then becomes essentially obvious.
We give here the construction of these maps for the higher Chow groups. The same
construction works also for the K -theory without any change.

First of all, using Corollary 9.7 and Proposition 9.2, we see that for 1≤ s ≤ n
and 0 ≤ t ≤ s, the map CH∗G(X≤s)→ CH∗G(X≤t) is surjective. We now consider
the commutative diagram

CH∗G(Ms)
j∗≤s //

��

CH∗G(X≤s)

��
CH∗G(Ms,≤t)

j∗s,≤t // CH∗G(X≤t).

Since the composite map in the bottom row of (9-3) is identity, we see by the
homotopy invariance that j∗

≤s is surjective. Thus j∗s,≤t is also surjective. Applying
this surjectivity for j∗s,≤t and j∗s,≤t−1, we obtain the commutative diagram of Figure 1,
which is such that the second and the third rows are exact. All the columns are exact
by Corollary 9.7 and Proposition 9.2. We conclude that the localization sequence
of the top row is also exact. This proves the surjectivity part of the theorem.

Next, we apply the self-intersection formula (Corollary 4.5) to the inclusions
is,≤t and is,t to see that the composites i∗s,≤t ◦ is,≤t∗ and i∗s,t ◦ is,t∗ are multiplication
by the first Chern class cG

1 of the corresponding normal bundles. But these normal
bundles are the inverse images of a line bundle on P1. It follows that these normal
bundles are trivial, because the restriction of any line bundle on P1 to ∞ ∈ P1

and hence on the fiber over∞ is clearly trivial. We conclude that the composites
i∗s,≤t ◦ is,≤t∗ and i∗s,t ◦ is,t∗ are zero.

The diagram above now automatically defines the specializations Sp≤t
X,s and

Spt
X,s and gives the desired factorization of i∗s,≤t and i∗s,t . Since i∗s,t and j∗s,t are ring

homomorphisms, and since the latter is surjective as shown in 1, we deduce that
Sp

t
X,s is also a ring homomorphism. The map Sp

≤t
X,s is a ring homomorphism for

the same reason.
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0

��

0

��

0

��
0 // CH∗G(Ns,t)

is,t ∗ //

ηs,t ∗

��

CH∗G(Ms,t)
j∗s,t //

δs,t ∗
��

CH∗G(X t) //

ft ∗
��

0

0 // CH∗G(Ns,≤t)
is,≤t ∗ //

��

CH∗G(Ms,≤t)
j∗s,≤t //

��

CH∗G(X≤t) //

��

0

0 // CH∗G(Ns,≤t−1)
is,≤t−1∗//

��

CH∗G(Ms,≤t−1)
j∗s,≤t−1 //

��

CH∗G(X≤t−1) //

��

0

0 0 0

Figure 1

We are now left with the proof of the commutativity of (9-4). To prove that the
right square commutes, we consider the following diagram.

CH∗G(Ms,t)

j∗s,t && &&

δs,t ∗ //

i∗s,t

��

CH∗G(Ms,≤t)
j∗s,≤t

## ##
i∗s,≤t

��

CH∗G(X t)
Sp

t
X,s

xx
ft ∗

22 CH∗G(X≤t)

Sp
≤t
X,stt

CH∗G(Ns,t)
ηs,t ∗ // CH∗G(Ns,≤t)

(9-5)

It is easy to check that Ns,≤t and Ms,t are Tor-independent over Ms,≤t (see [Vezzosi
and Vistoli 2005, Lemma 1]) and hence the back face of the diagram above commutes
by Corollary 4.2. The upper face commutes by diagram 1. Since j∗s,t is surjective, a
diagram chase shows that the lower face also commutes, which is what we needed
to prove.

Finally, since we have shown that ηs,t∗ is injective, and the right square commutes,
it now suffices to show that the composite square in (9-4) commutes in order to
show that the left square commutes.

By the projection formula, the composite maps ft∗ ◦ f ∗t and ηs,t∗ ◦ η
∗
s,t are

multiplication by ft∗(1) and ηs,t∗(1) respectively. Since

Sp≤t
X,s and Spt

X,s
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are ring homomorphisms, it suffices to show that

Sp
≤t
X,s( ft∗ ◦ j∗s,t(1))= Sp

≤t
X,s( ft∗(1))= ηs,t∗(1).

But this follows directly from the commutativity of the right square. �

10. Decomposition theorem for equivariant higher Chow groups

We use the specialization maps to prove the main decomposition theorem for the
equivariant higher Chow groups of X ∈VS

G , where G is a split diagonalizable group.
We continue with the notation of the previous section.

Proposition 10.1. The restriction maps

CH∗G(X≤s;Q)
( f ∗s ,g

∗
s )

−−−−→ CH∗G(Xs;Q)×CH∗G(X<s;Q)

define an isomorphism of rings

CH∗G(X≤s;Q)−→
∼ CH∗G(Xs;Q) ×

CH∗G(N 0
s ;Q)

CH∗G(X<s;Q),

where CH∗G(Xs;Q)
η∗s,≤s−1
−−−→ CH∗G(N

0
s ;Q) is the pull-back

CH∗G(Xs;Q)−→
∼ CH∗G(Ns;Q)→ CH∗G(N

0
s ;Q)

and

CH∗G(X<s;Q)
Sp≤s−1

X,s
−−−→ CH∗G(Ns,≤s−1;Q)= CH∗G(N

0
s ;Q)

is the specialization map of Theorem 9.8.

Proof. We only need to identify the pull-back and the specialization maps with the
appropriate maps of Proposition 9.2. In the diagram

0 // CH∗G(Xs)
fs,∞∗ //

cG
ds &&

CH∗G(Ns)
η∗s,≤s−1 //

f ∗s,∞
��

CH∗G(N
0
s )

// 0

CH∗G(Xs),

where fs,∞ : Xs→ Ns is the 0-section embedding, the top sequence is exact, and
the lower triangle commutes by Corollary 4.5. Since f ∗s,∞ is an isomorphism, this
immediately identifies the pull-back map of the proposition with the quotient map

CH∗G(Xs)→
CH∗G(Xs)

(cG
ds
(Ns))

.
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Next, we consider the diagram

CH∗G(X≤s)
Sp
≤s
X,s //

f ∗s,≤s−1 ����

CH∗G(Ns)

��

f ∗s,∞ // CH∗G(Xs)

η∗s,≤s−1xx
CH∗G(X<s)

Sp
≤s−1
X,s

// CH∗G(N
0
s ).

(10-1)

Since the left vertical arrow in the diagram above is surjective, we only need to
show that

Sp≤s−1
X,s ◦ f ∗s,≤s−1 = η

∗

s,≤s−1 ◦ f ∗s

in order to identify Sp≤s−1
X,s with the map j∗ of Proposition 9.2. It is clear from the

diagram 1 and the definition of the specialization maps that the left square in the
diagram (10-1) commutes. We have just shown above that the right side triangle
also commutes. This reduces us to showing that

f ∗s,∞ ◦Sp
≤s
X,s = f ∗s . (10-2)

If Xs ×P1 Fs
−→ Ms denotes the embedding (see (4-1)), then for x ∈ CH∗G(X≤s), we

can write x = j∗
≤s(y) by Theorem 9.8. Then

f ∗s,∞ ◦Sp
≤s
X,s ◦ j∗

≤s(y)= f ∗s,∞ ◦ i∗s,≤s(y)=
†g∗
∞,≤s ◦ F∗s (y)

= g∗0,≤s ◦ F∗s (y)= f ∗s ◦ j∗
≤s(y)= f ∗s (x),

where =† follows from Corollary 4.2. This proves (10-2) and the proposition. �

We need the following algebraic result before we prove the main theorem. Let A
be a Q-algebra (not necessarily commutative) and let Z(A) denote the center of A.
For any linear form f (t)=

∑n
i=1 ai ti in A[t1, . . . , tn] such that ai ∈Q for each i ,

let c( f ) denote the vector (a1, . . . , an) ∈ Qn consisting of the coefficients of the
form f .

Lemma 10.2. Let A be as above and let S={ f1, . . . , fs} be a set of linear forms in
A[t1, . . . , tn] such that the vectors {c( f1), . . . , c( fs)} are pairwise nonproportional
in Qn . Let

γ j =
d j∑

i=0
m j

i f i
j

such that m j
d j
∈Q∗ for 1≤ j ≤ s, and m j

j ′ ∈ Z(A) for all j, j ′. Then one has

(γ1 · · · γs)=
⋂s

j=1(γ j )

as ideals in A[t1, . . . , tn].
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Proof. Using a simple induction, it suffices to show that for j 6= j ′, the relation
γ j |qγ j ′ implies that γ j |q. So we can assume S = { f1, f2}. Since c( f1) and
c( f2) are nonproportional, we can extend the set {c( f1), c( f2)} to a basis B of Qn .
Applying the linear automorphism of A[t1, . . . , tn] given by the invertible matrix
B, we can assume that f j = t j for j = 1, 2. Now the proof follows along the same
lines as the proof of [Vezzosi and Vistoli 2003, Lemma 4.9]. �

Theorem 10.3. Let G be a split diagonalizable group of dimension n and let
X ∈ VS

G . The ring homomorphism

CH∗G(X;Q)→
n∏

s=0

CH∗G(Xs;Q)

is injective. Moreover, its image consists of the n-tuples (αs) in the product with
the property that for each s = 1, . . . , n, the pull-back of αs ∈ CH∗G(Xs;Q) in
CH∗G(Ns,s−1;Q) is the same as Sps−1

X,s (αs−1) ∈ CH∗G(Ns,s−1;Q). In other words,
there is a ring isomorphism

CH∗G(X;Q)−→∼ CH∗G(Xn;Q) ×
CH∗G(Nn,n−1;Q)

· · · ×
CH∗G(N1,0;Q)

CH∗G(X0;Q).

Proof. We prove by induction on the largest integer s such that Xs 6=∅.
If s = 0, there is nothing to prove. If s > 0, we have by induction

CH∗G(X<s)
∼=
−→ CH∗G(Xs−1) ×

CH∗G(Ns−1,s−2)
· · · ×

CH∗G(N1,0)
CH∗G(X0). (10-3)

Using (10-3) and Proposition 10.1, it suffices to show that if αs ∈ CH∗G(Xs)

and if α<s ∈ CH∗G(X<s) with the restriction αs−1 ∈ CH∗G(Xs−1) are such that
αs 7→ α0

s ∈ CH∗G(N
0
s ) and αs 7→ αs,s−1 ∈ CH∗G(Ns,s−1), then

Sp≤s−1
X,s (α<s)= α

0
s if and only if Sp

s−1
X,s (αs−1)= αs,s−1.

Using the commutativity of the left square in Theorem 9.8, this is reduced to
showing that the restriction map

CH∗G(N
0
s )→ CH∗G(Ns,s−1) (10-4)

is injective.
To prove this, we first use Proposition 9.5 to assume that the toral component T

of the isotropy groups of the points of Xs is fixed, and choose a splitting G = D×T .
Now, following the proof of the analogous result for K -theory [Vezzosi and

Vistoli 2003, Theorem 4.5], we can write

Ns = E =
q⊕

i=1

Ei and Ns,s−1 =
∐

i

E0
i ,
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where each Ei is of the form
⊕

Em j ⊗ χ
m j
i such that for i 6= i ′, χi and χi ′ are

nonproportional characters of T , and E0
i is embedded in E by setting all the other

components equal to zero. Let di = rank(Ei ).
Now we see from Proposition 10.1 that

Ker(CH∗G(Xs)→ CH∗G(Ns,s−1))=
⋂

i

(cG
di
(Ei )),

Ker(CH∗G(Xs)→ CH∗G(N
0
s ))= (c

G
ds
(Ns)) with ds =

∑
di .

Put γi = cG
di
(Ei ) and γ = cG

ds
(Ns). Since the map CH∗G(Xs) → CH∗G(N

0
s ) is

surjective, showing the injectivity of the map in (10-4) is equivalent to showing that

(γ )=
(∏

i

γi

)
=

⋂
i

(γi ) (10-5)

in CH∗D(Xs)[t1, . . . , ts].
However, we have seen in the proof of Proposition 9.4 that each γi is of the form

γi = udi
i +α

i
di−1udi−1

i + · · ·+αi
1ui +α

i
0,

where αi
j ∈ CH∗D(Xs, 0) ⊆ Z(CH∗D(Xs)) and ui = cT

1 (Lχi ) =
∑s

j=1 bi
j t j 6= 0 in

Q[t1, . . . , ts]. Moreover, the pairwise nonproportionality of χi implies the same for
the vectors {c(u1), . . . , c(uq)} in Qs . We now apply Lemma 10.2 to conclude the
proof of (10-5) and hence the theorem. �

11. Equivariant higher Chow groups of toric varieties

In this section, we apply our decomposition theorem to give explicit descriptions
of the equivariant higher Chow groups of smooth toric varieties. An analogous
description of the equivariant cohomology of such varieties was earlier given by
Bifet, De Concini and Procesi in [Bifet et al. 1990] and such a description of
the equivariant K -theory was given by Vezzosi and Vistoli [2003]. Brion [1997,
Theorem 5.4] had proven similar results for the classical equivariant Chow groups
of toric varieties. As a consequence of our descriptions of the equivariant higher
Chow groups, we shall obtain formulas for the ordinary higher Chow groups (or
motivic cohomology) of smooth toric varieties.

Let T be a split torus of rank n over k. Let M = Hom(Gm, T ) be the lattice of
the one-parameter subgroups of T and let M∨ be the character lattice of T . Let
1 be a fan in MR and let 11 and 1max denote the subsets of the one-dimensional
cones and the maximal cones in 1, respectively.

Let X = X (1) be the smooth toric variety associated to the fan 1. The smooth-
ness of X is equivalent to the condition that every positive dimensional cone of 1
is generated by it edges such that the primitive vectors along these edges form a
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subset of a basis of M . In this case, there is an one-to-one correspondence between
the T -orbits in X and the cones in 1. For every cone σ ∈ 1, the corresponding
orbit Oσ is isomorphic to the torus T/Tσ , where Tσ is associated to the sublattice
Mσ of M generated by σ ∩M . Under this isomorphism, the origin (identity point)
of T/Tσ corresponds to the distinguished k-rational point xσ of Oσ . In particular,
for every 0≤ s ≤ n, Xs is of the form

Xs =
∐

dim(σ )=s

Oσ
∼=

∐
dim(σ )=s

T/Tσ . (11-1)

We shall write τ ≤ σ if τ is a face of σ as cones in 1. The orbit closure Vσ
of Oσ is the toric variety associated to the fan ∗(σ )= {τ ∈1 | σ ≤ τ }, called the
star of σ . Moreover, it is clear from the characterization of the smoothness of toric
varieties that Vσ is also smooth and is the disjoint union of all orbits Oτ such that
σ is a face of τ . In particular, Oσ is closed in X if and only if σ ∈ 1max. The
following is our first description of the equivariant higher Chow groups of smooth
toric varieties.

Theorem 11.1. Let X = X (1) be a smooth toric variety associated to a fan 1 in
MR. There is an injective homomorphism of S-algebras

8X : CH∗T (X;Q)→
∏

σ∈1max

CH∗(k;Q)⊗ S(Tσ ;Q).

An element
(aσ ) ∈

∏
σ∈1max

CH∗(k;Q)⊗ S(Tσ ;Q)

is in the image of this homomorphism if and only if for any two maximal cones σ1

and σ2, the restrictions of aσ1 and aσ2 to CH∗(k;Q)⊗ S(Tσ1∩σ2;Q) coincide.

Proof. We only need to appropriately identify the various terms and the maps in the
statement of Theorem 10.3. We follow the notation of Section 9 and Section 10. It
follows from [Vezzosi and Vistoli 2003, Lemma 6.1] that for every s ≥ 1, there is a
canonical isomorphism

Ns,s−1 =
∐
σ∈1

dim(σ )=s

∐
τ∈∂σ

Oτ . (11-2)

Furthermore, for each s-dimensional cone σ and τ ∈ ∂σ , the composition of the
map

Sps−1
X,s :CH∗T (Xs−1)=

∏
τ∈1

dim(τ )=s−1

CH∗T (Oτ )→CH∗T (Ns,s−1)=
∏
σ∈1

dim(σ )=s

∏
τ∈∂σ

CH∗T (Oτ )
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with the projection

Prσ,τ :
∏
σ∈1

dim(σ )=s

∏
τ∈∂σ

CH∗T (Oτ )→ CH∗T (Oτ )

is the projection map ∏
τ∈1

dim(τ )=s−1

CH∗T (Oτ )→ CH∗T (Oτ ).

The identification above of the specialization maps in [Vezzosi and Vistoli 2003,
Lemma 6.1] was shown for the equivariant K -theory, but the same holds in the
present case as well without any modification in view of the construction of these
specializations for higher Chow groups in Section 9.

It also follows from Corollary 3.2 and Theorem 3.5 that

CH∗T (Oσ )∼= CH∗T (T/Tσ )∼= CH∗Tσ (k)
∼= CH∗(k)⊗ S(Tσ ). (11-3)

We conclude now from (11-1) and Theorem 10.3 that CH∗T (X) is a subring of∏
σ∈1 CH∗(k) ⊗ S(Tσ ), consisting of elements (aσ ) with the property that the

restriction of aσ ∈ CH∗(k)⊗ S(Tσ ) to CH∗(k)⊗ S(Tτ ) coincides with aτ whenever
τ ≤ σ . The theorem now follows from the fact that every cone in 1 is contained in
a maximal cone in 1. �

As an immediate consequence of Theorem 11.1, we obtain the following local-
ization theorem for the equivariant higher Chow groups of smooth projective toric
varieties. This was earlier proven for CH∗T (X, 0) by Brion [1997, Theorem 3.4].

Corollary 11.2. Let X= X (1) be a smooth projective toric variety and {x1, . . . , xr }

be the fixed point locus of X. Then the map

CH∗T (X;Q)→ CH∗T (X
T
;Q)−→∼ (CH∗(k;Q)[t1, . . . , tn])r

is injective and its image is the set of all n-tuples ( f1, . . . , fn) such that fi ≡ f j

(mod χ) whenever xi and x j lie on a T -invariant smooth irreducible curve on which
T acts through its character χ .

Proof. This follows directly from Theorem 11.1 once we observe that the fixed points
of X for the torus action are same as the T -orbits corresponding to the maximal
cones in 1 that are n-dimensional. Moreover, the orbit closures corresponding to
the codimension one cones in 1 are the smooth T -invariant curves. �

11a. Stanley–Reisner presentation. Using Theorem 11.1, we now give another
explicit presentation of the equivariant higher Chow groups of smooth toric varieties.
This presentation is analogous to the Stanley–Reisner presentation of the equivariant
cohomology in [Bifet et al. 1990, Theorem 8] and equivariant K -theory in [Vezzosi
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and Vistoli 2003, Theorem 6.1]. This presentation has the advantage that it can
often be used to describe the ordinary higher Chow groups of smooth toric varieties.

Let T be a split torus of rank n and let M denote the lattice of the one-parameter
subgroups of T . Let X = X (1) be a smooth toric variety associated to a fan 1 in
MR. For r ≥ 1, let 1r denote the set of r-dimensional cones in 1. For σ ∈1max,
let Mσ denote the sublattice of one-parameter subgroups of Tσ so that T̂σ = M∨σ as
an abelian group. For any ρ ∈11, let vρ denote the generator of the monoid ρ∩M .
Note that if {ρ1, . . . , ρs} is the set of one-dimensional faces of σ ∈1max, then the
smoothness of X implies that {vρ1, . . . , vρs } is a basis of Mσ . Let {v∨ρ1

, . . . , v∨ρs
}

denote the dual basis of M∨σ .
We recall that for σ ∈ 1, there is a canonical isomorphism of abelian groups

T̂σ ↪→ S(Tσ )1 given by χ 7→ cTσ
1 (Lχ ). For each ρ ∈ 11, we define an element

uρ = (uσρ ) ∈
∏
σ∈1max

∏ S(Tσ ) such that

uσρ =
{
v∨ρ if ρ ≤ σ ,
0 otherwise.

(11-4)

Then uρ has the property that for all σ1, σ2 ∈1max, the restrictions of uσ1
ρ ∈ T̂σ1 and

uσ2
ρ ∈ T̂σ2 in T̂σ1∩σ2 coincide.

We have the obvious inclusion∏
σ∈1max

S(Tσ )⊆
∏

σ∈1max

CH∗(k)⊗ S(Tσ ) (11-5)

and using the description of CH∗T (X) in Theorem 11.1 and the description of uρ
above, we can consider these uρ as elements of the ring CH∗T (X). In other words,
we get a bigraded CH∗(k)-algebra homomorphism

CH∗(k)[tρ] → CH∗T (X), tρ 7→ uρ,

where CH∗(k)[tρ] is the polynomial algebra CH∗(k)[tρ | ρ ∈11].
If S is a subset of 11 that is not contained in any maximal cone of 1, then for

any given σ ∈1max, there is one ρ ∈ S such that ρ � σ . This implies in particular
that uσρ = 0. We conclude from this that the elements uρ satisfy the relation∏

ρ∈S

uρ = 0 in CH∗T (X) (11-6)

whenever S ⊆11 is such that it is not contained in any maximal cone of 1. We
shall denote the collection of all such subsets of 11 by 10

1. We conclude that
if I1 denotes the graded ideal of CH∗(k)[tρ] generated by the set of monomials{∏

ρ∈S tρ | S ∈10
1

}
, then there is a CH∗(k)-algebra homomorphism

9X :
CH∗(k)[tρ]

I1
→ CH∗T (X), tρ 7→ uρ . (11-7)
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Note also that any character χ ∈ M∨ defines multiplication by the element
tχ =

∑
ρ∈11
〈χ, vρ〉tρ in CH∗(k)[tρ], and this makes the term on the left hand side

of (11-7) an S-algebra and 9X is also an S-algebra homomorphism. Furthermore,
it is easy to check from the definition of uρ that it is the fundamental class (see
[Edidin and Graham 1998, Section 2]) of the T -equivariant Chow cycle

[Vρ→ X ] ∈ CH1
T (X, 0)( CH∗T (X),

where Vσ is the orbit closure in X associated to a cone σ ∈1.

Theorem 11.3. For a smooth toric variety X = X (1) associated to a fan 1 in MR,
the homomorphism 9X is an isomorphism with rational coefficients.

Proof. We prove the theorem by induction on the number of maximal cones in 1.
Suppose 1max = {σ } is a singleton set. In that case, σ is the only maximal cone
and X =Uσ is a T -equivariant vector bundle over Oσ such that the inclusion

Oσ

iσ
↪→ X

is the zero-section embedding. Hence, we conclude from (11-3) that there are
isomorphisms

CH∗T (X)−→∼
i∗σ

CH∗T (Oσ )∼= CH∗(k)⊗ S(Tσ )= CH∗(k)[t1, . . . , ts],

where s is the dimension of σ . It is also clear in this case that the ideal I1 in (11-7)
is zero. Hence, we have isomorphisms

CH∗(k)[t1, . . . , ts] −→∼
9X

CH∗T (X)−→∼
8X

CH∗(k)⊗ S(Tσ ).

We consider now the general case. We assume that |1max| ≥ 2 and choose a
maximal cone σ of dimension s ≥ 1 in 1. Let X ′ = X ′(1′) be the toric variety
associated to the fan 1′ =1 \ {σ }. Note that Oσ is a closed T -orbit in X and X ′ is
the complement of Oσ in X . Let Uσ ⊂ X be the principal open set associated to the
fan consisting of all faces of σ and let U ′ be the complement of Oσ in Uσ . Then U ′

is nothing but the complement of the zero-section in the T -equivariant vector bundle
Uσ → Oσ . Let iσ : Oσ ↪→ X and jσ : X ′ ↪→ X denote the T -invariant closed and
open embeddings respectively. Let Sσ = {ρ1, . . . , ρs} be the set of one-dimensional
faces of σ and set

xσ =
s∏

j=1

tρ j ∈
CH∗(k)[tρ]

I1
and yσ =

s∏
j=1

uρ j ∈ CH∗T (X).

Since NOσ /X = NOσ /Uσ
and since the latter is of the form

⊕s
j=1 Lχ j , where

{χ1, . . . , χs} is a basis of T̂σ , it follows from the definition of the elements uρ (see
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Proposition 9.4) that

cT
s (NOσ /X )= yσ ∈ CH∗T (X). (11-8)

We consider the diagram

CH∗(k)[tρ1, . . . , tρs ]
∼= //

xσ
��

CH∗T (Oσ )

iσ ∗

��

∼= // CH∗(k)⊗ S(Tσ )

yσ

��CH∗(k)[tρ]
I1

9X // CH∗T (X)
8X //

∏
τ∈1max

CH∗(k)⊗ S(Tτ ),

(11-9)

where the horizontal maps on the top are the obvious isomorphisms taking tρ j to uρ j .
The left and the right vertical maps are the multiplication by the indicated elements
in the target rings. We claim that all the vertical arrows are injective and the left
square in this diagram commutes.

To prove the claim, notice that the composite outer square clearly commutes by
the definition of xσ and yσ and the map9X . Since8X is injective by Theorem 11.1,
we only need to show that the right square commutes and the right vertical arrow is
injective to prove the claim.

We first observe that the right vertical arrow is the multiplication by yσ on the
factor CH∗(k)⊗ S(Tσ ) and is zero on the other factors of

∏
τ∈1max

CH∗(k)⊗ S(Tτ ).
Thus the required injectivity is equivalent to showing that the multiplication by
yσ is injective in CH∗(k)⊗ S(Tσ ). We can thus assume that X = Uσ and then
CH∗T (X)∼= CH∗(k)[t1, . . . , ts]. In this case, y is just the element t1 · · · ts and hence
is a nonzero divisor in CH∗(k)[t1, . . . , ts].

To show the commutativity of the right square, we observe from the proof of
Theorem 11.1 that 8X is simply the product of the pull-back maps

i∗τ : CH∗T (X)→ CH∗T (Oτ ) for τ ∈1max.

Hence the composite 8X ◦ iσ ∗ is i∗σ ◦ iσ ∗ on the factor CH∗T (Oσ ) and zero on the
other factors of

∏
τ∈1max

CH∗T (Oτ ). Since we have just seen that the composite

CH∗T (Oσ )
yσ
−→

∏
τ∈1max

CH∗T (Oτ )

is of similar type, we are reduced to showing that the triangle

CH∗T (Oσ )

yσ

$$
iσ ∗
��

CH∗T (X) i∗σ
// CH∗T (Oσ )
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commutes. But this follows immediately from Corollary 4.5 and (11-8). This proves
the claim.

To complete the proof of the theorem, we now consider the diagram

0 // CH∗(k)[tρ1, . . . , tρs ]
xσ //

∼=

��

CH∗(k)[tρ]
I1

9X

��

j
∗

σ // CH∗(k)[tρ]
(I1, xσ )

9X ′

��

// 0

0 // CH∗T (Oσ ) iσ ∗
// CH∗T (X) j∗σ

// CH∗T (X
′) // 0,

(11-10)
where j

∗

σ is the natural quotient map by the ideal (xσ ) in CH∗(k)[tρ]/I1. Note that
the image of the first map in the top row is the ideal (xσ ) because the product of xσ
with any tρ for ρ /∈ {ρ1, . . . , ρs} is zero.

The left square in this diagram commutes and the first maps in both the rows are
injective by the claim above. The bottom row is exact by Proposition 2.2. Since σ
is not a cone of 1′, the element xσ is zero in CH∗(k)[tρ, ρ ∈1′1]/I1′ and hence
the map j∗σ ◦9X has a factorization:

CH∗(k)[tρ]
I1

�
CH∗(k)[tρ]
(I1, xσ )

→
CH∗(k)[tρ, ρ ∈1′1]

I1′
9X ′
−−→ CH∗T (X

′),

where the middle arrow is the natural map of the Stanley–Reisner rings induced by
the inclusion of the fans 1′ ⊂1. Letting 9X ′ denote the composite

CH∗(k)[tρ]
(I1, xσ )

→
CH∗(k)[tρ, ρ ∈1′1]

I1′
9X ′
−−→ CH∗T (X

′),

we see that the right square in the diagram (11-10) also commutes.
If all the cones of 1 are at most one-dimensional, then xσ = tρ , where ρ = σ

and it is obvious that CH∗(k)[tρ]/(I1, xσ ) is the Stanley–Reisner ring associated
to the fan 1′. If 1 has a cone of dimension at least two, we can assume that σ is
of dimension at least two. In that case, we have 1′1 =11 and the natural inclusion
10

1 ⊆1
′0
1 gives the equality 1′01 =1

0
1
∐
{Sσ }. In particular, we have

CH∗(k)[tρ, ρ ∈11]

(I1, xσ )
−→∼

CH∗(k)[tρ, ρ ∈1′1]
I1′

.

On the other hand, 1′ is a fan with smaller number of maximal cones than in 1
and X ′ = X ′(1′). Hence the map

CH∗(k)[tρ, ρ ∈1′1]
I1′

9X ′
−−→ CH∗T (X

′)
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is an isomorphism by induction. We conclude that the map 9X ′ in the dia-
gram (11-10) is an isomorphism. A diagram chase in (11-10) now shows that
9X is also an isomorphism. �

As an important application of Theorem 11.3, we obtain the following pre-
sentation of the ordinary higher Chow groups (motivic cohomology groups) of
smooth toric varieties. An explicit description of CH∗(X, 0) for a smooth projective
toric variety X was given in [Fulton 1993, Proposition 5.2]. The following result
extends this to all smooth toric varieties, not necessarily projective. In fact, such a
description extends to all higher Chow groups of smooth projective toric varieties.
In particular, we obtain another proof of Corollary 7.3 with rational coefficients.
Recall that for every σ ∈1, the orbit closure Vσ = Oσ in X is a T -invariant Weil
divisor and defines a unique element [Vσ ] ∈ CH1(X, 0).

Corollary 11.4. Let X = X (1) be a smooth projective toric variety. Then the
assignment tρ 7→ [Vσ ] defines a CH∗(k;Q)-algebra isomorphism

9X :
CH∗(k;Q)[tρ](

I1,
∑

ρ∈11
〈χ, vρ〉 tρ

) → CH∗(X;Q), (11-11)

where χ runs over M∨.
If X is not necessarily projective, the map

Q[tρ](
I1,

∑
ρ∈11
〈χ, vρ〉tρ

) → CH∗(X, 0;Q)

is a ring isomorphism.

Proof. We have already seen before that every character χ ∈M∨ acts on CH∗(k)[tρ]
by multiplication with the element

∑
ρ∈11
〈χ, vρ〉 tρ which makes the left hand side

of (11-11) an S-algebra. The corollary now follows directly from Theorem 11.3
and [Krishna 2009a, Theorem 1.3]. The second isomorphism follows in the same
way from Theorem 11.3 and [Brion 1997, Corollary 2.3]. �

Corollary 11.5. Let X = X (1) be a smooth toric variety. Then there are canonical
ring isomorphisms

CH∗(k;Q)⊗CH∗T (X, 0;Q)−→∼ CH∗T (X;Q),

CH∗(k;Q)⊗CH∗(X, 0;Q)−→∼ CH∗(X;Q).

Proof. It follows from (11-7) that CH∗(k)⊗ (Q[tρ]/I1)−→∼ CH∗(k)[tρ]/I1. The
first part of the corollary now follows directly from Theorem 11.3. The second part
follows from the first and [Krishna 2009a, Theorem 1.1], which says that there is a
convergent spectral sequence

TorS
p(Q,CH∗T (X, q))⇒ CH∗(X, p+ q). �
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Remark 11.6. All the results in this section about the (equivariant) higher Chow
groups of smooth toric varieties have been stated over the rationals. However,
an attentive reader can check that these results (and the proofs) for the subrings
CH∗T (X, 0) and CH∗(X, 0) hold true with the integral coefficients. The basic reason
is that CH∗T (k, 0) and CH∗(k, 0) are torsion-free abelian groups. But this is false
for the higher Chow groups of k.
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