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Zeros of real irreducible characters
of finite groups

Selena Marinelli and Pham Huu Tiep

We prove that if all real-valued irreducible characters of a finite group G with
Frobenius–Schur indicator 1 are nonzero at all 2-elements of G, then G has a
normal Sylow 2-subgroup. This result generalizes the celebrated Ito–Michler
theorem (for the prime 2 and real, absolutely irreducible, representations), as well
as several recent results on nonvanishing elements of finite groups.

1. Introduction

Suppose that G is a finite group. Let Irr(G) be the set of the irreducible complex
characters of G, and let F be a subfield of C. Write IrrF(G) for the set of those
χ ∈ Irr(G) such that χ(g)∈ F for all g ∈G. Hence IrrR(G) is the set of real-valued
(or real) irreducible characters of G.

As shown in recent papers [Dolfi et al. 2008; Navarro et al. 2009; Navarro
and Tiep 2010], several fundamental results on characters of finite groups admit a
version in which Irr(G) is replaced by IrrF(G) for a suitable field F. For instance, S.
Dolfi, G. Navarro and P. H. Tiep proved in [Dolfi et al. 2008] that if all χ ∈ IrrR(G)
have odd degree, then a Sylow 2-subgroup of G is normal in G (therefore, providing
a strong version of the celebrated Ito–Michler theorem for the prime p = 2).

In this paper, we turn our attention to the nonvanishing elements of a finite
group G. These elements, introduced by M. Isaacs, G. Navarro and T. R. Wolf in
[Isaacs et al. 1999], are the x ∈ G such that χ(x) 6= 0 for all χ ∈ Irr(G). Since
their definition, there has been an increasing interest in the set of the nonvanishing
elements of finite groups. See for instance [Dolfi et al. 2009; Dolfi et al. 2010c;
Dolfi et al. 2010d; Dolfi et al. 2010a; Dolfi et al. 2010b]. One of most relevant
results in this area was obtained by S. Dolfi, E. Pacifici, L. Sanus and P. Spiga
in [Dolfi et al. 2009], where they proved that if all the p-elements of a finite group
G are nonvanishing, then G has a normal Sylow p-subgroup. Since characters
of degree not divisible by p cannot vanish on any p-element (by an elementary
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argument involving roots of unity — see for instance Lemma 5.1), this result is
again an extension of the Ito–Michler theorem.

Recall that the Frobenius–Schur indicator of χ ∈ Irr(G) is 0 if χ is nonreal, ±1
if χ is real; moreover it is 1 precisely when χ is afforded by a real representation
of G.

Our main result in this paper is the following.

Theorem A. Let G be a finite group. If χ(x) 6= 0 for all real-valued irreducible
characters χ of G with Frobenius–Schur indicator 1 and all 2-elements x ∈ G, then
G has a normal Sylow 2-subgroup.

Since odd degree characters do not vanish on 2-elements, Theorem A above
provides at the same time a generalization of [Dolfi et al. 2008, Theorem A] and of
the p = 2 case of [Dolfi et al. 2009, Theorem A]. As an immediate consequence of
Theorem A, we obtain the following refinement of the Ito–Michler theorem for the
prime 2 and real, absolutely irreducible, representations:

Theorem B. Let G be a finite group. If χ(1) is odd for all real-valued irreducible
characters χ of G with Frobenius–Schur indicator 1, then G has a normal Sylow
2-subgroup.

A few remarks are in order here. First of all, the hypotheses of our Theorem A
here are strictly more general than those of [Dolfi et al. 2008, Theorem A]. In
Section 5 below, we will describe an interesting family of examples of groups
G, having real irreducible characters of even degree, such that all 2-elements of
G are nonvanishing. We also mention that in order to obtain the solvable part of
Theorem A, we will prove a result guaranteeing the existence of real 2-defect zero
characters, which might be of independent interest; see Theorem 2.4.

2. Regular orbits and characters of 2-defect zero

We will need the following result, showing that real characters are remarkably
well-behaved across odd sections. As usual, if N is a normal subgroup of a group
G and θ ∈ Irr(N ), we denote by IG(θ) the inertia subgroup of θ in G and by
Irr(G|θ) the set of the irreducible characters of G that lie over θ . For brevity, we
call χ ∈ Irr(G) strongly real if the Frobenius–Schur indicator of χ equals 1, and let
Irr+(G) denote the set of all strongly real irreducible characters of G. Certainly, if
H ≤ G and χ = λG

∈ Irr(G) for some λ ∈ Irr+(H), then χ ∈ Irr+(G).

Lemma 2.1. Let G be a finite group and let N G G with G/N of odd order.

(i) If θ ∈ IrrR(N ), then there exists a unique χ ∈ IrrR(G|θ).

(ii) If θ ∈ Irr+(N ), then there exists a unique χ ∈ Irr+(G|θ).
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Proof. Part (i) is [Navarro and Tiep 2008, Corollary 2.2].
For (ii), let T = IG(θ). Since |T/N | is odd, θ extends to a real character λ of

T by [Navarro and Tiep 2008, Lemma 2.1]. As λN = θ is strongly real, the same
holds for λ. Now χ = λG is irreducible and strongly real. The uniqueness of χ
follows from (i). �

Lemma 2.2. Let G = N 〈 j〉 be a split extension of a normal subgroup N by a
subgroup 〈 j〉 of order 2. Suppose that α ∈ Irr(N ) is of odd degree, and that
α j
= ᾱ 6= α. Then αG is irreducible and strongly real.

Proof. The irreducibility of αG is obvious. Let α be afforded by a represen-
tation 8 : N → GLn(C), so that n = α(1) is odd. Then the representations
8 j
: x 7→8( j x j−1) and 8∗ : x 7→ t8(x−1) afford the same character ᾱ, whence

8( j x j−1)= At8(x−1)A−1 for some A ∈ GLn(C). Conjugating by j once more,
we see that A · tA−1 commutes with8(x) for all x ∈ N . By Schur’s lemma, tA= κA
for some κ ∈ C. Transposing once more, we get κ2

= 1. But A ∈ GLn(C) and n is
odd, so κ = 1, that is, A = tA. Now we define 9 : G→ GL2n(C) by

9(x)=
(
8(x) 0

0 A t8(x−1)A−1

)
, 9(x j)=9(x) ·

(
0 In

In 0

)
for all x ∈ N ; in particular, 9(x j)=9( j)9( j x j−1). It is straightforward to check
that 9 is a group homomorphism, and that t9(g) · M9(g) = M for all g ∈ G
and with

M :=
(

0 A−1

tA−1 0

)
.

Thus the CG-module corresponding to 9 supports a G-invariant symmetric bilinear
form (with Gram matrix M) and affords the character αG , whence αG is strongly
real. �

Note that the examples with (G,N ,α(1))=(2S7,2A7,4) and with (G,N ,α(1))=
(Q8,C4, 1) show that one cannot remove any of the assumptions of Lemma 2.2.

A character χ ∈ Irr(G) is said to be of p-defect zero for a given prime p if p does
not divide |G|/χ(1). By a fundamental result of R. Brauer [Isaacs 1976, Theorem
8.17], if χ ∈ Irr(G) is a character of p-defect zero, then χ(g)= 0 for every element
g ∈ G such that p divides the order o(g) of g. Next we recall the following result
of G. R. Robinson:

Lemma 2.3 [Robinson 1989, Remark 2, p. 254]. Let G be a finite group and let
χ ∈ Irr(G) be a real character of 2-defect zero. Then χ is strongly real.

Let G be a finite group and let U be a faithful G-module. We recall that a
G-orbit {ug

| g ∈ G} of G on U is a regular orbit if its cardinality is equal to |G|
or, equivalently, if CG(u)= 1.
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Theorem 2.4. Let G be a finite group. Assume that O2(G)= 1 and that G has a
nilpotent normal 2-complement M. Let P be a Sylow 2-subgroup of G and assume
that whenever U is a faithful Fq [P]-module, P has a regular orbit on U , where
q is a prime dividing |M |. Then there exists a strongly real irreducible character
χ ∈ Irr+(G) of 2-defect zero.

If P is an abelian 2-group, then P has a regular orbit in every faithful action
on a module of coprime characteristic. In fact, this is an application of Brodkey’s
theorem [1963].

We observe, for completeness, that a 2-group P acting faithfully on a module
U of characteristic q 6= 2 has no regular orbit on U only if q is either a Mersenne
or Fermat prime, and P involves a section isomorphic to the dihedral group D8.
This follows from [Manz and Wolf 1993, Theorems 4.4 and 4.8], using Maschke’s
theorem and standard arguments for passing from irreducible to completely reducible
modules.

Theorem 2.4 will be derived from the following result, whose somewhat more
technical statement will be needed in the proof of Theorem A.

Theorem 2.5. Let G be a finite group with a nontrivial Sylow 2-subgroup P.
Assume that O2(G) = 1 and that G has a nilpotent normal 2-complement M.
Assume in addition that, whenever U is a faithful Fq [P]-module, P has a regular
orbit on U , where q is a prime dividing |M |. Then there exist a character θ ∈ Irr(M)
and an element z ∈ P , such that θG

∈ Irr(G) and θ z
= θ .

Proof. Let P ∈ Syl2(G). Since O2(G)= 1, P acts faithfully on M . By coprimal-
ity, P acts faithfully on M/8(M), as well. So, by factoring out 8(M), we can
assume that

M = L1× L2× · · ·× Lk,

where each L i is an irreducible Fqi [P]-module for some prime qi 6= 2. We define
Wi = CP(L i ) for any i = 1, . . . , k. Observe that Wi is a normal subgroup of P for
each i , and that

⋂k
i=1 Wi = 1, since P acts faithfully on M .

Now, let B be a subset of {W1, . . . ,Wk} minimal such that⋂
W∈B

W = 1.

We can assume that B= {W1, . . . ,Wn} for some n ≤ k. Thus P acts faithfully on
U = L1× · · ·× Ln .

By assumption, for all i ∈ {1, . . . , n}, there exists an element ui ∈ L i such that
CP(ui ) = Wi . So, if we set u = (u1, . . . , un) ∈ U , it follows that CP(u) = 1.
Now, we consider the dual group Û = Irr(U ). Since |U | is odd, by [Isaacs 1976,
Theorem 13.24], U and Û are isomorphic as P-modules. Hence there exists µ∈ Û
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such that IP(µ) = 1, where IP(µ) is the inertia group of µ in P . Consider now,
for 1≤ j ≤ n, the subgroup

H j =
⋂

1≤t≤n
t 6= j

Wt .

Note that H j is a normal subgroup of P and that H j is not contained in W j , by the
minimality of B. Furthermore, H j ∩W j = 1 for each j . Now, let z j ∈ Z(P)∩ H j

be an involution; such an element certainly exists, as H j is a nontrivial normal
subgroup of P . So, CL j (z j ) is a P-submodule of L j and CL j (z j ) < L j as z j /∈W j .
As L j is irreducible, it follows that CL j (z j )= 1. Hence z j inverts every element
of L j ; see, for instance, [Huppert 1998, Theorem 16.9(e)]. Moreover, as z j ∈ H j ,
z j centralizes L i for every i 6= j , 1≤ i, j ≤ n.

Let z = z1 · · · zn , and observe that z inverts every element of U . By the isomor-
phism of P-modules U ∼= Û , then z inverts every irreducible character of U . In
particular, µz

=µ−1
=µ. Now, we can write M =U × N , where N is P-invariant.

Let θ = µ× 1N ∈ Irr(M). Then, we have θ z
= θ and IP(θ)= IP(µ)= 1. Thus, by

Clifford theory θG
∈ Irr(G) and the proof is complete. �

Proof of Theorem 2.4. Clearly, we may assume P 6= 1. So, by Theorem 2.5 there
exists a character θ ∈ Irr(M) such that χ = θG

∈ Irr(G) and an element z ∈ P such
that θ z

= θ . Hence,

χ = θG = θG
= (θ z)G = θG

= χ,

so χ ∈ IrrR(G). Next, since χ(1) = |G :M | θ(1) = |P| θ(1), χ is a character of
2-defect zero of G. Hence χ is strongly real by Lemma 2.3. �

3. Proof of Theorem A

We will need the following deep result concerning the existence of suitable strongly
real characters of almost simple groups. We state it here and prove it in Section 4.

Theorem 3.1. Let S be any finite nonabelian simple group. For any H with
S ≤ H ≤ Aut(S), there exist a character θ ∈ Irr(S) and a 2-element x ∈ S, such
that both the following conditions apply:

(i) θ(xσ )= 0 for all σ ∈ Aut(S).

(ii) There exists a subgroup J with IH (θ)≤ J ≤ H and a strongly real character
α ∈ Irr(J |θ).

We can now proceed to prove Theorem A, which we restate below.

Theorem 3.2. Let G be a finite group and P ∈ Syl2(G). Suppose that χ(x) 6= 0 for
all χ ∈ Irr+(G) and for all 2-elements x ∈ G. Then P G G.
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Proof. Let G be a minimal counterexample to the statement; in particular, P 6= 1.
Let M 6= 1 be a minimal normal subgroup of G.

1. Observe that Irr+(G/M)⊆ Irr+(G) and 2-elements of G/M lift to 2-elements
of G. Hence, PM G G by minimality of G. If M1 is another minimal normal
subgroup of G with M1 6= M , then G/M×G/M1 has a normal Sylow 2-subgroup,
as both G/M and G/M1 do. Since M ∩M1 = 1, G is isomorphic to a subgroup of
G/M ×G/M1 and hence G has a normal Sylow 2-subgroup, a contradiction. So,
M is the only minimal normal subgroup of G.

2. Suppose first that 2 divides |M |. If M is solvable, then M is a 2-group and so
P = PM G G, a contradiction. Hence M is not solvable. Thus M = S1× · · ·× St ,
where Si ∼= S, a nonabelian simple group. Write S := S1, H := NG(S) and
C :=CG(S). Thus, H/C is isomorphic to a subgroup H of Aut(S), with S ≤ H ≤
Aut(S). By Theorem 3.1, there exists a character θ ∈ Irr(S) and a 2-element x ∈ S
such that θ(xσ ) = 0 for all σ ∈ Aut(S). Moreover, there exists a subgroup J
with IH (θ) ≤ J ≤ H and a strongly real character α ∈ Irr(J |θ). By the Clifford
correspondence [Isaacs 1976, Theorem 6.11], α = λJ for a suitable character
λ∈ Irr(IH (θ)|θ). Therefore, β := λH is an irreducible character of H . Furthermore,
β is strongly real as β = (λJ )H

= αH , and β lies over θ .
Let now ψ := θ × 1S × · · · × 1S ∈ Irr(M). Note that C G IG(ψ) ≤ H and that

IG(ψ)/C is isomorphic to IH (θ). Hence, by lifting characters from the correspond-
ing factor groups modulo C , we can view λ ∈ Irr(IG(ψ)|ψ) and λH

= β ∈ Irr+(H).
Define χ = λG . By the Clifford correspondence, χ is an irreducible character

of G and, since χ = βG , we have χ ∈ Irr+(G). We will show that χ vanishes on the
2-element g = (x, x, . . . , x) ∈ M . In fact, χ lies over ψ and hence the restriction
χM is a sum of conjugates ψ y , with y ∈ G. Now, each conjugate ψ y is of the form

ψ y
= 1S × · · ·× 1S × θ

σ
× 1S × · · ·× 1S,

for a suitable σ ∈ Aut(S). Thus ψ y(g)= θ(xσ
−1
)= 0 for all y ∈ G. It follows that

χ(g)= 0, against our assumptions.

3. We have shown that M is an elementary abelian q-group for some prime q 6= 2.
Let Z :=�1(Z(P)) so that Z 6= 1. Since |M | is odd, Z M/M =�1(Z(PM/M))

and so Z M G G. Observe also that M is a normal nilpotent 2-complement of Z M
and that Z is a Sylow 2-subgroup of Z M . Moreover, O2(Z M)= 1, as O2(Z M) is
normal in G and M is the unique minimal normal subgroup of G. Finally, since Z
is abelian, Z has a regular orbit on every faithful Z -module of odd characteristic.
Thus, by Theorem 2.5 there exist θ ∈ Irr(M) and z ∈ Z , such that θ z

= θ and
θ Z M
∈ Irr(Z M). Since Z 6= 1 and q 6= 2, we must have that θ 6= θ and z 6= 1; in

fact z is an involution.
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Let T = IG(θ) ∩ PM = IPM(θ). Since q 6= 2, θ has a canonical extension
γ ∈ Irr(T ); see [Isaacs 1976, Corollary 8.16]. By uniqueness of the canonical
extension of θ , it follows that γz

= γ. Let δ = γPM. By Clifford theory δ is
irreducible. Since θ z

= θ 6= θ , we see that z /∈ T but z normalizes T . It follows that
K := T 〈 j〉 is a split extension of T by 〈 j〉. We have already shown that γz

= γ.
Also, γM = θ is nonreal. Hence γ is nonreal and has degree 1. Applying Lemma 2.2
to the character γ of T , we see that γK is strongly real. Consequently, δ = (γK )PM

is strongly real.
Recalling that PM is a normal subgroup of odd index in G, by Lemma 2.1(ii)

there exists a character χ ∈ Irr+(G) that lies over δ.
Now, we show that δ(g)= 0 for every g ∈ Z M r M . In fact, as θ Z M

∈ Irr(Z M),
by Clifford theory T ∩ Z M = IZ M(θ)= M . As both M and Z M are normal in G,
we get that for all x ∈ G, T x

∩ Z M = (T ∩ Z M)x = M x
= M . So,

Z M ∩
(⋃

x∈G

T x
)
= M.

As δ = γPM with γ ∈ Irr(T ), the formula of character induction yields that δ(g)= 0
for all g ∈ Z M r M .

Note now that, because Z M >M , there exists a 2-element g0 ∈ Z MrM . Finally,
observe that χPM is a sum of conjugates δy of δ in G and that δy(g0)= δ(g

y−1

0 )= 0,
since gy−1

0 ∈ Z M r M for all y ∈ G. Therefore, we conclude that χ(g0)= 0, with
χ ∈ Irr+(G) and g0 a 2-element of G, the final contradiction. �

4. Almost simple groups

This section is devoted to proving Theorem 3.1. First we handle some easy cases:

Lemma 4.1. Theorem 3.1 holds if S is an alternating group, a sporadic simple
group, or a simple group of Lie type in characteristic 2.

Proof. The cases of A5, A6, and all the sporadic groups can be verified directly using
[Conway et al. 1985]. Assume S = An with n ≥ 7; in particular Aut(S)∼= Sn . As
shown in [Dolfi et al. 2009, Proposition 2.4], one can find a character θ satisfying
the conditions described in Theorem 3.1, which extends to a strongly real character
α of Aut(S).

If S = 2F4(2)′, then we can choose J = H and θ ∈ Irr(H) of degree 2048 if
H = S and of degree 4096 if H = Aut(S) (and x 6= 1 any 2-element in S); see
[Conway et al. 1985]. The case Sp4(2)

′ ∼= A6 has been considered above. For all
other simple groups of Lie type in characteristic 2, we choose θ to be the Steinberg
character St and 1 6= x ∈ S to be any 2-element: it is well-known [Feit 1993] that
St vanishes at any 2-singular element and extends to the character of a rational
representation of H . �
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Lemma 4.2. Let G be a finite group with a normal subgroup N , and χ ∈ Irr(G).
Then χN is irreducible (over N ) if and only if the characters χα, where α ∈
Irr(G/N ), are all irreducible and pairwise distinct. Moreover, in this case the
irreducible characters of G that lie above χN are precisely the characters χα,
where α ∈ Irr(G/N ).

Proof. The “only if” direction is Gallagher’s theorem [Isaacs 1976, Theorem 6.17].
For the “if” direction, observe that the hypothesis implies

(χN )
G
= χ · (1N )

G
=

∑
α∈Irr(G/N )

α(1)χα

contains χ with multiplicity 1, and so [χN , χN ]N = [χ, (χN )
G
]G = 1, as stated. �

In the rest of this section, let S be a simple group of Lie type in characteristic
p > 2. We can find a simple algebraic group G of adjoint type defined over a field
of characteristic p and a Frobenius morphism F : G→ G such that S = [G,G]
for G := GF . We refer to [Carter 1985; Digne and Michel 1991] for basic facts
on the Deligne–Lusztig theory of complex representations of finite groups of Lie
type. In particular, irreducible characters of G are partitioned into (rational) Lusztig
series that are labeled by conjugacy classes of semisimple elements s in the dual
group L , where the pair (L, F∗) is dual to (G, F) and L =LF∗ . Since L is simply
connected, CL(s) is connected for any semisimple element s ∈ L; see [Carter
1985, Theorem 3.5.6]. Hence the L-conjugacy class sL corresponds to a (unique)
irreducible (semisimple) character χs of G of degree [L : CL(s)]p′ ; see [Digne
and Michel 1991, §14]. Since χs belongs to the Lusztig series defined by sL , two
semisimple characters χs and χt are equal precisely when s and t are conjugate
in L .

The structure of Aut(S) is described in [Gorenstein et al. 1994, Theorem 2.5.12];
in particular, it is a split extension of G by an abelian group (of field and graph
automorphisms), which we denote by A(S).

Our arguments will rely on the following proposition, which is of independent
interest:

Proposition 4.3. In the notation above, assume that s ∈ L is a semisimple element
of order coprime to |Z(L)|. Then the following statements hold.

(i) If s is real in L then χs is strongly real.

(ii) Let σ be a bijective morphism of the algebraic group G commuting with F and
let σ ∗ be the corresponding morphism of L. Assume that χs is σ -invariant.
Then s and σ ∗(s) are L-conjugate. Moreover, if σ is a Frobenius morphism,
then s is L-conjugate to some element in Lσ ∗ ; in particular, |s| divides |Lσ ∗

|.

(iii) θ := (χs)S is irreducible (over S).
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(iv) Let σ be a bijective morphism of G commuting with F (and so fixing G and S).
Suppose that σ fixes θ . Then σ fixes χs .

Proof. Part (ii) and the statement about χs being real in (i) can be proved exactly in
the same way as [Dolfi et al. 2008, Lemma 2.5] using [Navarro et al. 2008, Corollary
2.5]. Assume now that s is real. Since G is of adjoint type, Z(G)= 1; in particular,
it is connected, and Z(G)= Z(G)F

= 1 by [Carter 1985, Proposition 3.6.8]. Hence,
by [Vinroot 2010, Theorem 4.2], the Frobenius–Schur indicator of χs is 1, as stated
in (i).

For (iii), by [Digne and Michel 1991, Proposition 13.30] and its proof, the
characters α ∈ Irr(G/S) are exactly the semisimple characters χz with z ∈ Z(L);
moreover, χsz = χsχz . Observe that sz and st are not L-conjugate if z, t ∈ Z(L)
are distinct. (Indeed, suppose g(sz)g−1

= st for some g ∈ L . Then since |s| is
coprime to |Z(L)|, we have

|s| = |gsg−1
| = |s · (t z−1)| = |s| · |t z−1

|,

and so z = t .) It follows that the characters χsz are all irreducible and pairwise
distinct. By Lemma 4.2, θ = (χs)S is irreducible, and Irr(G|θ)= {χsz | z ∈ Z(L)}.

Suppose now that σ fixes θ as in (iv). Since σ fixes G, it now fixes Irr(G|θ) and
so it sends χs to χsz for some z ∈Z(L). Let σ ∗ be the morphism of L corresponding
to σ . By [Navarro et al. 2008, Corollary 2.5], sz and σ ∗(s) are L-conjugate. In
particular, |s| = |σ ∗(s)| = |sz| = |s| · |z|, and so z = 1 as stated. �

Proposition 4.4. Theorem 3.1 holds if S is one of the following simple groups in
characteristic p > 2: G2(q), 2G2(q), 3D4(q), F4(q), or E8(q), where q = p f .

Proof. Notice that in each of these cases, Out(S)= A(S) is cyclic, of order 2 f if
S =G2(q) and p= 3, of order 3 f if S = 3D4(q), and of order f otherwise; see for
instance [Gorenstein et al. 1994, Theorem 2.5.12]. Furthermore, S = G ∼= L; see
[Carter 1985, p. 120]. Choose the integer m to be 6, 12, 12, or 30, if S = 2G2(q),
3D4(q), F4(q), or E8(q), respectively. If S = G2(q), we choose m = 3 if q = 3 f

with f odd, and m = 6 otherwise. By [Zsigmondy 1892], there exists a primitive
prime divisor (p.p.d.) r = r(p,m f ) of pm f

− 1, that is, a prime divisor of pm f
− 1

that does not divide
∏m f−1

i=1 (pi
− 1). According to [Moretó and Tiep 2008, Lemma

2.3], L contains a semisimple element s of order r for which CL(s) is a torus of
order dividing 8m(q) if 8m(t) is the m-th cyclotomic polynomial in t ; in particular,
s is regular. It is well-known [Tiep and Zalesski 2005, Proposition 3.1] that every
semisimple element s ∈ L is real. It then follows by Proposition 4.3(i) that θ := χs

is strongly real.
We claim that χs is not stable under any nontrivial outer automorphism σ of S.

Indeed, since Aut(S) is a split extension of S by the cyclic group Out(S) in the
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cases under consideration [Gorenstein et al. 1994, Theorem 2.5.12] we can choose
σ to be a power σ e

0 of some canonical outer automorphism σ0 of S.

(a) If S = 2G2(q), G2(q) (with p 6= 3), F4(q), or E8(q), then σ0 is induced by
the field automorphism x 7→ x p, and so we can choose e such that 1≤ e < f
and e | f . In this case, |Lσ ∗

| is equal to the order of |L|, but with q replaced
by pe, and hence is not divisible by r by the choice of r .

(b) Now suppose that S = G2(q) and p = 3. Then 1≤ e < 2 f , e | 2 f , and |Lσ ∗
|

equals |G2(pe/2)| if 2 | e and |2G2(pe)| if e is odd. In either case, r is coprime
to |Lσ ∗

| by the choice of r .

(c) Finally, consider the case S= 3D4(q). Then we can choose e so that 1≤ e<3 f
and e | 3 f . Now |Lσ ∗

| equals |D4(pe)| and so r is coprime to |Lσ ∗
| by the

choice of r .

We have shown that IAut(S)(χs) = S, whence IH (χs) = S. Since χs(1) =
[L : CL(s)]p′ and |CL(s)|, being a divisor of 8m(q), is odd, we see that χs has
2-defect zero and so χs vanishes at any 2-element 1 6= x ∈ S. Hence we are done
by taking J = S and α = χs . �

Proposition 4.5. Theorem 3.1 holds if S is any of the following simple groups of Lie
type in characteristic p > 2: PSL2(q) with q ≥ 5; PSp2n(q) with n ≥ 2; �2n+1(q)
with n ≥ 3; P� ε

2n(q) with 2 | n, n ≥ 6 for ε =+, and n ≥ 4 for ε =−; or E7(q).

Proof. 1. Recall that L = SL2(q), respectively Spin2n+1(q), Sp2n(q), Spin ε2n(q), or
E7(q)sc in the described cases; in particular, Z(L) is a 2-group. We write q = p f

as usual. By [Tiep and Zalesski 2005, Proposition 3.1], any semisimple element in
L is real. Now we choose a semisimple element s ∈ L of (odd) order r , where r is
selected as follows.

(i) If L = SL2(q), then r = (q + ε)/2 if ε =±1 is chosen so that q ≡ ε (mod 4).

(ii) Next, r = r(p, 2n f ) is a p.p.d. of p2n f
− 1 in the other classical cases, unless

L = Spin+2n(q).

(iii) In the case L = E7(q), r = r(p, 18 f ).

(iv) In the remaining case, L = Spin+2n(q) contains a central product

C = Spin−4 (q) ∗Spin−2n−4(q),

and we choose s = s1s2 ∈ C where s1 ∈ Spin−4 (q) ∼= SL2(q2) has order
(q2
+ 1)/2 and s2 ∈ Spin−2n−4(q) has order (qn−2

+ 1)/2. More precisely, if
β and γ denote some elements in F̄

×

q of orders (q2
+ 1)/2 and (qn−2

+ 1)/2,
respectively, then we can choose s to act on the natural L-module F̄

2n
q with

spectrum {β i , β−i
| i = 1, q} ∪ {γq j

, γ−q j
| 0≤ j ≤ n− 3}.
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In these cases, it is straightforward to check (see for instance [Moretó and Tiep 2008,
Lemmas 2.3 and 2.4]) that s is a regular semisimple element, and T ∗ := CL(s)
is a maximal torus of order q + ε, qn

+ 1, 82(q)818(q), or (q2
+ 1)(qn−2

+ 1),
respectively. Hence, χs is a strongly real irreducible character of G, and in fact
χs =±R G

T,ϑ is a Deligne–Lusztig character corresponding to some maximal torus
T of G in duality with T ∗; in particular, |T | = |T ∗|. (Indeed, since T∗ := CL(s)
is a torus, this is the unique torus containing s. Now if (T, ϑ) is in duality with
(T∗, s), then T = TF and χs =±R G

T,ϑ .) Now the character formula [Carter 1985,
Theorem 7.2.8] shows that χs(x) = 0 for any semisimple element x ∈ G with
|CG(x)| not divisible by |T |.

2. By Proposition 4.3(iii), θ := (χs)S is irreducible and strongly real. Furthermore,
when S=PSL2(q), we have θ(1)=q−ε and so θ has 2-defect 0, whence it vanishes
at any nontrivial 2-element x ∈ S. In the remaining cases, we will find an involution
x ∈ S such that |CG(x)| is not divisible by |T |. If S = PSp2n(q), choose x to be an
involution with centralizer of type Sp2(q)×Sp2n−2(q) (in Sp2n(q)). If S=�2n+1(q),
choose x to be an involution with centralizer of type GO+4 (q)×GO2n−3(q) (in
GO2n+1(q)). For S = P� ε

2n(q), choose x to be an involution with centralizer of
type GO+4 (q)×GO ε

2n−4(q) (in GO ε
2n(q)). Finally, for S of type E7(q), choose x

to be an involution with centralizer of type SL2(q) ∗ Spin16(q); see [Gorenstein
et al. 1994, Table 4.5.1]. It is straightforward to check that |CG(x)| is not divisible
by |T | for the chosen element x . Then for any σ ∈ Aut(S), |CG(xσ )| = |CG(x)|
(as GCAut(S)), whence θ(xσ )= 0.

3. Next we show that any automorphism σ ∈ Aut(S) that fixes θ must belong to
G. Since Aut(S) = G : A(S) and G fixes θ = (χs)S , we may assume σ ∈ A(S).
Recall that |A(S)| = 2 f if S = P� ε

2n(q) and |A(S)| = f otherwise. Let σ0 ∈ A(S)
denote the automorphism of S (and of G, G) induced by the field automorphism
y 7→ y p. If S=P� ε

2n(q), we denote by τ ∈ A(S) the nontrivial graph automorphism
commuting with F (otherwise set τ = 1S). Notice that G =GF with F = σ f

0 , unless
S = P�−2n(q) in which case F = τσ f

0 . Then A(S) is generated by σ0 and τ . It
follows that σ can be extended to a Frobenius morphism of G, which commutes
with F , unless σ = τ and S = P�+2n(q). Replacing σ by τσ f

0 in the latter case,
we again see that σ extends to a Frobenius morphism of G that commutes with F .
Since σ fixes θ , σ fixes χs by Proposition 4.3(iv), which in turn implies that |s|
divides |Lσ ∗

| by Proposition 4.3(ii).

3a. First consider the case σ = σ e
0 . Then |Lσ ∗

| equals the order of L but with
q replaced by pe; denote it by |L(pe)|. Suppose S = PSL2(q); in particular
A(S) = 〈σ0〉 ∼= C f and so we may choose e | f . If q ≡ 1 (mod 4), we get
|s| = (p f

+ 1)/2 divides p2e
− 1, which is possible only when e = f . If q ≡

−1 (mod 4), then f is odd; hence |s| = (p f
− 1)/2 can divide p2e

− 1 only when
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e = f . Next suppose S = PSp2n(q) or �2n+1(q). Then |s| = r(p, 2n f ) can divide
|L(pe)| only when f | e. If S is of type E7(q), then |s| = r(p, 18 f ) can divide
|L(pe)| only when f | e. In all these cases, A(S)= 〈σ0〉 ∼= C f , so we conclude that
σS = 1S . Consider the case S = P�−2n(q). Since |s| = r(p, 2n f ) divides |L(pe)|,
we get f | e. Recall that A(S)= 〈σ0〉 ∼= C2 f for S = P�−2n(q), so we may assume
e|(2 f ). Now if 2 f |e then σS=1S . On the other hand, if f = e, then |s|= r(p, 2n f )
does not divide |L(pe)|.

Assume now that S = P�+2n(q). Since the order of (σ0)S is f , we may assume
that 0≤ e ≤ f/2. Observe that |s| is divisible by some p.p.d. r1 = r(p, (2n− 4) f ).
Now since r1 divides |L(pe)|, we get (2n− 4) f | je for some j , 1 ≤ j ≤ 2n− 2.
But then je ≤ (n− 1) f < (2n− 4) f , so e = 0 and σS = 1S .

3b. It remains to consider the case σ is not contained in 〈σ0〉. This can happen
only when S = P�+2n(q). Since (σ0)

f acts trivially on S, we can write σ = τσ e
0

with 1≤ e ≤ f . Moreover, replacing σ by σ−1
= τσ

f−e
0 (while acting on S), we

may in fact assume that 1≤ e ≤ f/2 or e = f . Now r1 = r(p, (2n− 4) f ) divides
|s| and |s| divides |Lσ ∗

|, and so we get (2n− 4) f | 2 je for some j with 1≤ j ≤ n.
It follows that e ≥ (n− 2) f/n > f/2 as n ≥ 6. We have shown that e = f , and
so by Proposition 4.3(ii), s is L-conjugate to some element s ′ ∈ Lσ ∗

= Spin−2n(q).
Certainly, |s ′| = |s| is divisible by r1 = r(p, (2n−4) f ). Observe that the r1-part of
s ′ has centralizer of type GO+4 (q)×GO−2n−4(q) (in GO−2n(q)). Hence, the action of
s ′ on the natural L-module V = F̄

2n
q is induced by diag(A, B) with A ∈ GO+4 (q)

and B ∈ GO−2n−4(q). But in this case, the spectrum of s ′ and s on V cannot have
the shape indicated in (iv) above.

We have shown that IAut(S)(θ)= G; in particular, if S ≤ H ≤ Aut(S), we have
IH (θ)= G ∩ H . Choosing J = G ∩ H and α = (χs)J , we are done. �

Lemma 4.6. Let L be a simple simply connected algebraic group of type An with
n ≥ 2, Dn with n ≥ 3 odd, or E6, F : L→ L a Frobenius morphism, and let
L := LF . Let ϕ ∈ Aut(L) be a (nontrivial) graph automorphism of L (modulo
inner-diagonal automorphisms). Then ϕ(s) and s−1 are conjugate in L for any
semisimple element s ∈ L.

Proof. It is well-known [Steinberg 1968, §10] that such an automorphism ϕ lifts to
an automorphism ϕ = ψτ of L, where ψ is inner: ψ(x)= gxg−1 for some g ∈ L,
and τ acts as the inversion t 7→ t−1 on some maximal torus T of L. Since s is
semisimple, s = hth−1 for some t ∈ T and h ∈ L. Thus

ϕ(s)= ψτ(hth−1)= gτ(h)t−1τ(h)−1g−1
= zs−1z−1,

where z := gτ(h)h−1
∈L. Since s and ϕ(s) are F-stable, we see z−1 F(z) ∈CL(s).

But L is simply connected; hence CL(s) is connected and F-stable. Therefore,
by the Lang–Steinberg theorem, there is c ∈ CL(s) such that z−1 F(z)= c−1 F(c),
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that is, u := zc−1
∈ L . It follows that ϕ(s) = zs−1z−1

= us−1u−1 is L-conjugate
to s−1. �

Proposition 4.7. Theorem 3.1 holds if S is any of the following simple groups of
Lie type in characteristic p > 2: PSLn(q) with n ≥ 3, PSUn(q) with n ≥ 5 odd,
P� ε

2n(q) with n ≥ 5 odd, E6(q), or 2E6(q).

Proof. Recall that L = SLn(q), SUn(q), Spin ε2n(q), E6(q)sc, or 2E6(q)sc in the
described cases, respectively, and we write q = p f as usual. In all these cases, S, G,
and L have an outer automorphism that lifts to an involutive graph automorphism
τ of L mentioned in the proof of Lemma 4.6. In particular, τ(X) = tX−1 in the
SL and SU cases, and τ acts on S = P� ε

2n(q) as a conjugation by some element
X ∈GO ε

2n(q)rSO ε
2n(q). Also recall that GCAut(S) and τG generates a subgroup

of order 2 in Aut(S)/G ∼= A(S). Our proof will be divided in two cases according
to whether the subgroup G H of Aut(S) contains 〈G, τ 〉 or not. In the former case,
we will choose θ = χS with χ ∈ Irr(G) being nonreal and use τ to produce a real
character for some subgroup J > IH (θ). In the latter case, we choose θ = χS with
χ ∈ Irr(G) being real and with IH (θ)≤ G. In fact, we also consider PSUn(q) with
n ≥ 4 even in all parts of this proof, except in part 6 below. Moreover, even though
the case of PSUn(q) with n ≥ 5 odd is also handled in Proposition 4.8 (below)
using a different method, we also treat it here, since the character χ constructed
here in this case will be used in some of our other works.

Case I (G H does not contain 〈G, τ 〉). 1. We will construct χ ∈ Irr(G), θ = χS ,
and x ∈ S as follows.

Case Ia. Suppose S = PSL3(q) and f is odd. Then A(S)∼= C2 f contains a unique
involution τ and |H/(H ∩G)|, |(H ∩G)/S| are odd. In this case, we choose χ
to be the unipotent (Weil) character of G of degree q(q + 1) and x ∈ S to be any
element of order (q2

− 1)2. Note that χ + 1G is just the permutation character of
G acting on the 1-spaces of the natural GL3(q)-module F3

q . It follows that χ is
strongly real, θ = χS is irreducible, and χ(x)= 0. By Lemma 2.1(ii), θ extends to
a strongly real character of J := IH (θ).

Now we may assume that we are not in the case (Ia), and choose a semisimple
element s ∈ L of order r as follows.

Case Ib. Suppose that S=PSL ε
n (q), where either n≥ 4, or (n, ε)= (3,+) and 2| f .

Choose m ∈ {n, n− 1} to be even and r = r(p,m f ) a p.p.d. of pm f
− 1. Note that

our hypothesis on n and f guarantees that r exists, and furthermore, r is coprime
to |Z(L)| = gcd( n, q− ε). Embed Spm(q) in L = SL ε

n (q) and choose s ∈ Spm(q)
of order r . One can check that |CL(s)| = (qm/2

+ 1)2(q − ε)n−m−1 if ε = − and
m ≡ 2 (mod 4), and |CL(s)| = (qm

− 1)(q − ε)n−m−1 otherwise.
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Case Ic. Next suppose that S = P� ε
2n(q). Then choose r = r(p, (2n−2) f ) > 2, a

p.p.d. of p(2n−2) f
− 1, and s ∈ Spin−2n−2(q) < L of order r . By [Moretó and Tiep

2008, Lemma 2.4], |CL(s)| = (qn−1
+ 1)(q + ε).

Case Id. In the case L = E ε
6 (q)sc (where ε =+ for E6 and ε =− for 2E6(q)), we

choose s ∈ F4(q) < L of order r = r(p, 12 f ) ≥ 13. By [Moretó and Tiep 2008,
Lemma 2.3], |CL(s)| =812(q) · (q2

+ qε+ 1).

In Cases Ib–Id, it is straightforward to check that s is a regular semisimple
element; furthermore, s is real by [Tiep and Zalesski 2005, Proposition 3.1]. Hence,
χ = χs is a strongly real irreducible character of G, and, arguing as in part (1) of
the proof of Proposition 4.5, we see that χs(xσ )= 0 for all σ ∈ Aut(S), whenever
x ∈G is any semisimple element with |CG(x)| not divisible by |T | = |CL(s)|. Also,
by Proposition 4.3(iii), θ := (χs)S is irreducible.

2. Observe that, when L = E ε
6 (q), χ and θ have 2-defect 0, whence they vanish at

any 2-element 1 6= x ∈ S. In the remaining cases, we now find a 2-element x ∈ S
such that |CG(x)| is not divisible by |T |. If L = SL ε

n (q), we choose x represented
by diag(x1, In−2) ∈ SL2(q)× SL ε

n−2(q) with |x1| = 4. One can then check that
|CG(x)| = |GL ε

n−2(q)| · (q−α) with α =±1 chosen such that 4 | (q−α), whence
|CG(x)| is not divisible by |T |. Finally, if L = Spin ε2n(q), then we choose x to be
an involution with centralizer of type GO+4 (q)×GO ε

2n−4(q) (in GO ε
2n(q)). It is

easy to see that |CG(x)| is not divisible by r for the chosen element x . Thus for all
σ ∈ Aut(S), θ(xσ )= 0, as required in Theorem 3.1(i).

3. It remains to show that IH (θ)≤G and so θ extends to the strongly real character
α = χJ of J = IH (θ) = G ∩ H . Since G fixes θ = χS and G H does not contain
〈G, τ 〉, it suffices to show that IAut(S)(θ) = 〈G, τ 〉. Consider any automorphism
σ ∈ Aut(S) that fixes θ . Since Aut(S)= G : A(S), we may assume σ ∈ A(S), and
so in the notation of the proof of Proposition 4.5, we may write σ = τ i (σ0)

e with
i, e ≥ 0. Since σ fixes θ , σ fixes χs by Proposition 4.3(iv), which in turn implies
that s and σ ∗(s) are L-conjugate by Proposition 4.3(ii). But s is real, and τ(s) is
L-conjugate to s−1 by Lemma 4.6. Hence, replacing σ by σ−1 if necessary, we
may assume that σ = (σ0)

e, where 0 ≤ e ≤ f/2 in the (untwisted) cases of SL,
Spin+, and E6. In the (twisted) cases of SU, Spin−, and 2E6, since τ acts on S
as σ f

0 , replacing σ by σ−1 we may assume that σ = (σ0)
e with 0≤ e≤ 2 f/3. Also,

r = |s| divides |Lσ ∗
| by Proposition 4.3(ii). In either case, we can now check that

this can happen only when e = 0, that is, σ ∈ 〈G, τ 〉.

Case II (G H contains 〈G, τ 〉). 4. In this case, we will choose a semisimple element
s ∈ L of order r as follows.

Case IIa. Suppose that S = PSLn(q). Choose m ∈ {n, n− 1} to be odd (so m ≥ 3)
and r1 = r(p,m f ) a p.p.d. of pm f

− 1. Furthermore, choose r2 = 1 if f is odd,
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and r2 = r(p,m f/2) a p.p.d. of pm f/2
− 1 if 2 | f . Then r = r1r2 is coprime to

|Z(L)| = gcd( n, q − 1). Since L ≥ SLm(q) contains a cyclic subgroup of order
(qm
− 1)/(q − 1), we can find a semisimple element s ∈ L of order r . One can

check that |CL(s)| = (qm
− 1)(q − 1)n−m−1.

Case IIb. Suppose that S = PSUn(q) with n ≥ 3. Choose m ∈ {n, n−1} to be odd
(so m ≥ 3) and r = r(p, 2m f ) a p.p.d. of p2m f

− 1; in particular, r is coprime to
|Z(L)| = gcd( n, q + 1). Now we can find a semisimple element s ∈ L of order r ,
with |CL(s)| = (qm

+ 1)(q + 1)n−m−1.

Case IIc. Suppose that S = P�+2n(q). Choose r1 = r(p, n f ) to be a p.p.d. of
pn f
− 1. Furthermore, choose r2 = 1 if f is odd, and r2 = r(p, n f/2) a p.p.d. of

pn f/2
− 1 if 2 | f , and set r = r1r2. Since SO+2n(q) > GLn(q) contains a cyclic

subgroup of order qn
− 1, we can find a semisimple element s ∈ L of (odd) order r .

One can check that |CL(s)| = qn
− 1.

Case IId. Assume now that S = P�−2n(q). Then choose r = r(p, 2n f ) to be a
p.p.d. of p2n f

− 1. Since n is odd, GO−2n(q) > GUn(q) contains a cyclic subgroup
of order qn

+ 1, and so we can find a semisimple element s ∈ L of order r , with
|CL(s)| = qn

+ 1.

Case IIe. Next suppose that L = E6(q)sc. Then choose r1 = r(p, 9 f ), a p.p.d. of
p9 f
− 1, and choose r2 = 1 if f is odd, and r2 = r(p, 9 f/2), a p.p.d. of p9 f/2

− 1
if 2 | f . Then r = r1r2 is coprime to |Z(L)| = (3, q − 1). We claim that there is
a regular semisimple element s ∈ L with T ∗ = CL(s) of order 89(q). Indeed, by
[Moretó and Tiep 2008, Lemma 2.3], there is a regular semisimple element s1 ∈ L
of order r1 with T ∗ :=CL(s1) of order 89(q). If f is odd, set s = s1. Assume 2 | f .
Then 89(q)= (q9

− 1)/81(q)83(q) is divisible by r2, so T ∗ contains an element
s2 of order r2. Now set s = s1s2.

Case IIf. In the case L = 2E6(q)sc, we choose s ∈ L of order r = r(p, 18 f )≥ 19.
By [Moretó and Tiep 2008, Lemma 2.3], we have |CL(s)| =818(q).

In all these cases, it is straightforward to check that s is a regular semisimple
element. Hence, as above, χ =χs ∈ Irr(G), and χs(xσ )=0 for all σ ∈Aut(S), when-
ever x ∈ G is any semisimple element with |CG(x)| not divisible by |T | = |CL(s)|.
Also, by Proposition 4.3(iii), θ := (χs)S is irreducible.

5. Observe that, when L = E ε
6 (q), both χ and θ have 2-defect 0, whence they

vanish at any 2-element 1 6= x ∈ S. In the remaining cases, one easily checks
that the 2-element x ∈ S constructed in part 2 of this proof has the property that
|CG(x)| is not divisible by |T ∗|. Thus θ(xσ )= 0 for all σ ∈ Aut(S), as required in
Theorem 3.1(i).

Next we claim that s is not real in L . Assume the contrary: gsg−1
= s−1 for

some g ∈ L . Then g normalizes T ∗ = CL(s) and g2
∈ T ∗. But (using for instance
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[Fleischmann et al. 1998, §5 and Theorem 5.7]) one can see that NL(T ∗)/T ∗ has
odd order (indeed it is Cm in IIa and IIb, Cn in IIc and IId, and C9 in IIe and IIf). It
follows that g ∈ T ∗ and so s2

= 1, a contradiction.
Now we show that IAut(S)(χ)= G. Consider any automorphism σ ∈Aut(S) that

fixes χ . As in 3), we may write σ = τ i (σ0)
e with e ≥ 0 and i = 0, 1. Moreover,

σ /∈Gτ (otherwise χσ = (χs)
τ
=χs−1 6=χ as s is not real), so e> 0 if i = 1. Hence,

r = |s| must divide |Lσ ∗
| by Proposition 4.3(ii).

First we consider the twisted cases: L = SUn(q), Spin−2n(q), or 2E6(q)sc. Then
A(S)= 〈σ0〉 ∼= C2 f and (σ0)

f
= τ on S. Replacing σ by σ−1 if necessary, we may

assume that 0≤ e < f and i = 0. The condition r = |s| divides |Lσ ∗
| now implies

that e = 0.
Finally we consider the untwisted cases: L = SLn(q), Spin+2n(q), or E6(q)sc.

Then A(S) = 〈σ0〉 × 〈τ 〉 ∼= C f ×C2. Replacing σ by σ−1 if necessary, we may
assume that 0 ≤ e ≤ f/2. If i = 0, then the condition r = |s| divides |Lσ ∗

| now
implies that e= 0, that is, σ ∈G. Next assume that i = 1 (and so 0< e≤ f/2), and
L = SLn(q) for instance. Then r divides |Lσ ∗

| = |SUn(pe)|, and so r1 = r(p,m f )
divides p je

− (−1) j for some j , 1≤ j ≤ n. If j is even, then

(n− 1) f ≤ m f | je ≤ n f/2,

a contradiction as n ≥ 3. Hence j is odd. Recall that m ∈ {n, n− 1} is chosen to
be odd and 1 ≤ j ≤ n, so j ≤ m. Now m f | 2 je ≤ m f implies that e = f/2. In
this case we have that r2 = r(p,m f/2) divides pke

− (−1)k for some k, 1≤ k ≤ n.
In particular, me | 2ke and so m | 2k, which implies m | k because m is odd. Since
1 ≤ k ≤ n and m ≥ n− 1, we obtain that k = m and so k is odd. But in this case
r2 = r(p, ke) cannot divide pke

+ 1, a contradiction. The same argument shows
that r = |s| cannot divide |Lσ ∗

| if i = 1 and L = Spin+2n(q) or E6(q)sc.

6. We have shown that IAut(S)(χ) = G. Hence, IH (θ) = H ∩ G by Proposition
4.3(iv). Since

H/(G ∩ H)∼= G H/G ≥ 〈G, τ 〉/G ∼= C2

by the main hypothesis in Case II, we can find ϕ ∈ H rG such that ϕ induces τ
modulo G and ϕ2

∈ G ∩ H . Now set J = 〈G ∩ H, ϕ〉 and α = (χG∩H )
J . Then by

Lemma 4.6 and [Navarro et al. 2008, Corollary 2.5] we have

χϕ = χ τ = (χs)
τ
= χτ(s) = χs−1 = χ̄ ,

in particular, θϕ = θ̄ , but θϕ 6= θ as ϕ /∈ G ∩ H = IH (θ). Since SC J , this implies
that α ∈ Irr(J |θ). Also, α equals χ + χ̄ on G ∩ H and 0 on J r (G ∩ H), whence
it is real.

Under the extra assumption that S 6∼= PSUn(q) with n ≥ 4 even, we now show
that α is strongly real. Indeed, setting K := 〈G, ϕ〉 = 〈G, τ 〉 and ϑ := χK (as
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K ∩ H = J ), we see that ϑJ = α, so ϑ ∈ Irr(K ). Also, ϑ equals χ + χ̄ on G and 0
on K rG, so ϑ is real.

• Now, if S= PSLn(q), then K is a quotient of 〈GLn(q), τ 〉, and so ϑ is strongly
real by [Gow 1983, Theorem 2].

• Suppose S = P�ε2n(q). Then 〈S, τ 〉 ≤ R := PGOε
2n(q) < K . Since θ τ = θϕ =

θ̄ 6= θ and ϑS = θ + θ̄ , we see that ϑR is irreducible. By the main result of
[Gow 1985], ϑR , as an irreducible character of GOε

2n(q), is strongly real. In
turn, this implies that ϑ is strongly real.

• Suppose that S = PSUn(q) with n ≥ 3 odd or S = Eε6(q). Then |CL(s)| =
(qn
+1)/(q+1), 89(q) or818(q), respectively, and is odd; hence χ and ϑ are

of 2-defect zero. Since ϑ is real of 2-defect 0, it is strongly real by Lemma 2.3.

Thus in all cases ϑ is strongly real, and so is α = ϑJ , as claimed. �

Proposition 4.8. Theorem 3.1 holds if S = PSUn(q) where n ≥ 3 and q is odd.

Proof. Keep all the notation of the proof of Proposition 4.7.

1. First we consider the case S = PSU3(q). When q = 3, one can check using
[Conway et al. 1985] that Irr(S) contains a character θ of degree 14, which extends
to a strongly real character of Aut(S) and vanishes at all elements of order 8 in S.
Furthermore, the case where G H contains 〈G, τ 〉 has already been considered in
Case II of the proof of Proposition 4.7. So we may assume that q ≥ 5 and that G H
does not contain 〈G, τ 〉.

In the notation of [Geck 1990, Table 3.1], consider the irreducible character
θ = χ

(u)
q3+1 of degree q3

+ 1 of L = SU3(q), with u := q + 1. Since θ is trivial
at Z(L), we will view it as an irreducible character θ of S = L/Z(L). Using the
character values listed in [Geck 1990, Table 3.1], one checks that θ is real and
τ -invariant (indeed,

χ
(u)
q3+1 = χ

(−u)
q3+1 = χ

(uq)
q3+1

by our choice of u). Next, the largest degree of irreducible characters of G =
PGU3(q) is (q + 1)(q2

− 1), which is less than 3θ(1). Since G/S has order 1 or 3,
it follows that θ is G-invariant. Hence, by [Navarro and Tiep 2008, Lemma 2.1],
θ extends to a unique χ ∈ IrrR(G). Viewing χ as a real irreducible character of
GU3(q), we conclude by [Ohmori 1981, Theorem 7(ii)] that χ is strongly real.

Next we show that IAut(S)(θ)= 〈G, τ 〉. Since θ is invariant under G and τ and
Aut(G)=G : A(S), it suffices to show that the only nontrivial element σ = (σ0)

e
∈

A(S) that fixes θ is τ = (σ0)
f . So assume that 1 ≤ e ≤ f for such a σ . Consider

an element y belonging to the conjugacy class C (1)
7 in [Geck 1990, Table 1.1], so

that yσ belongs to the class C (pe)

7 . Then the condition θ(y)= θ(yσ ) implies that

δ+ δ−1
= δ pe

+ δ−pe
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for a fixed (q−1)-st primitive root δ of unity in C. Since 1≤ e ≤ f and q ≥ 5, it
follows that e = f , as claimed.

We have shown that θ extends to the strongly real character α = χJ of J =
H ∩ G = IH (θ). It remains to find an element x satisfying the condition (i) of
Theorem 3.1. Suppose first that q ≡ 3 (mod 4). Then we choose x ∈ S to be
any element of order 4 that affords eigenvalue 1 on the natural module F3

q2 for L .
Observe that xAut(S) is just the conjugacy class C (0,(q+1)/4,3(q+1)/4)

6 in [Geck 1990,
Table 1.1], and so θ(x)= 0; cf. [ibid., Table 3.1].

Assume now that q ≡ 1 (mod 4). Then we choose x ∈ S to be any element of
order 8. Any Aut(S)-conjugate xσ of such an x belongs to the conjugacy class
Ck(q2

−1)/8
7 in [ibid., Table 1.1] for some odd integer k. Hence

θ(xσ )= δk(q2
−1)/8
+ δ−k(q2

−1)/8
= 0

since k is odd and |δ| = q − 1.

2. From now on we may assume that S = PSUn(q) with n ≥ 4. Then it was shown
in parts 2. and 5. of the proof of [Dolfi et al. 2008, Theorem 2.1] that there is a
permutation character ρ of Aut(S) such that ρS = 1S +ϕ+ψ is the sum of three
irreducible (unipotent) characters of S, all of distinct degrees, and with exactly one,
call it θ , of even degree. In fact, ρS is just the permutation character of the action
of S on the singular 1-spaces of the natural L-module V = Fn

q2 , and

ϕ(1)= (q
n
−(−1)n)(qn−1

+(−1)nq2)

(q+1)(q2−1)
, ψ(1)= (q

n
+(−1)nq)(qn

−(−1)nq2)

(q+1)(q2−1)
.

Since SG Aut(S), it follows that the same is true for ρ, and so θ extends to a strongly
real character of even degree of Aut(S). Note that θ = ϕ if n ≡ 0, 3 (mod 4) and
θ = ψ if n ≡ 1, 2 (mod 4).

3. It remains to find a 2-element h ∈ S such that θ(hσ )= 0 for all σ ∈ Aut(S). It
suffices to show that θ(h) = 0 since θ is Aut(S)-invariant. To this end, we will
use the technique of dual pairs; see for instance [Liebeck et al. 2010; Tiep 2010].
We consider the dual pair X ∗ Y inside 0 := GU2n(q), where X = GU2(q) and
Y = GUn(q). More precisely, we view X as GU(U ), where U = F2

q2 is endowed
with a nondegenerate Hermitian form ( · , · )U , and Y is meant to be GU(V ), where
V = Fn

q2 is endowed with a nondegenerate Hermitian form ( · , · )V . Now we
consider W =U⊗Fq2V with the Hermitian form ( · , · ) defined via (u⊗v, u′⊗v′)=
(u, u′)U · (v, v′)V for u ∈ U and v ∈ V . The action of X × Y on V induces a
homomorphism X ×Y → 0 :=GU(W ). Recall (see [Tiep and Zalesskii 1997, §4])
that for any m ≥ 1, the class function

ζm,q(g)= (−1)m(−q)
dim

F
q2

Ker(g−1)
(4-1)
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is a (reducible) Weil character of GUm(q) of degree qm , where Ker(g− 1) is the
fixed point subspace of g ∈ GUm(q) on the natural module (Fq2)m for GUm(q).
By [Liebeck et al. 2010, Proposition 6.3], the restriction of ζ := ζ2n,q to X × Y
decomposes as

ζX×Y =
∑

α∈ Irr(X)

α⊗Dα, (4-2)

where the Y -characters D◦α := Dα− kα · 1Y are all irreducible and distinct, for some
kα ∈ {0, 1}. Furthermore, kα = 1 precisely when α = 1X or α is the Steinberg
character St of X . Also, Dα can be computed explicitly using the formula

Dα(g)=
1
|X |

∑
x∈X

α(x)ζ(xg). (4-3)

In particular, one can show (see [Liebeck et al. 2010, Table III]) that D◦1X
is the

only irreducible constituent of ζY of degree ϕ(1), and D◦St is the only irreducible
constituent of ζY of degree ψ(1). On the other hand, (4-1) and (4-2) imply that

ζY =
∑

α∈ Irr(X)

α(1) ·D◦α + (q + 1) · 1Y

is just the permutation character of Y on the points of the vector space V , whence
ζY contains ρY , the inflation of ρPGUn(q) to Y = GUn(q). It follows that

ϕ = (D◦1X
)S − 1S, ψ = (D

◦

St)S − 1S.

Together with (4-1) and (4-3), this will allow us to find the desired element h.

4. Among the irreducible characters of X = GU2(q), there are q + 1 distinct
characters ζ i

2 , where 0≤ i ≤ q, which are known as (irreducible) Weil characters
of X . They are computed explicitly in [Tiep and Zalesskii 1997, Lemma 4.1];
furthermore, ζ2,q =

∑q
i=0 ζ

i
2 and ζ 0

2 = St. In particular,

[ζ2,q , St]X = 1. (4-4)

Let µq+1 := {c ∈ Fq2 | cq+1
= 1}. Note that, for any c ∈ µq+1, x 7→ ζ2,q(cx) is a

class function on X . Moreover, using the well-known character table of X (see for
instance [Ennola 1963]), we can check that

1
|X |

∑
x∈X

ζ2,q(cx)ζ2,q(dx)St(x)= 1 (4-5)

for any c, d ∈ µq+1, and

1
|X |

∑
x∈X

ζ2,q(cx)2ζ2,q(dx)= 1 (4-6)

whenever c, d ∈ µq+1 and c 6= d .
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5. Now we are ready to find the desired element h. This will be done according
to n (mod 8). Let N = 2(q2

− 1)2 denote the 2-part (q4
− 1)2 of (q4

− 1), and
let γ be a fixed N -th primitive root of unity in Fq2 . Observe that GU4(q) has a
cyclic maximal torus T of order q4

− 1 that contains an element g4 conjugate to
diag(γ, γ−q , γq2

, γ−q3
) over Fq2 , and set

g8 := diag(g4, g−1
4 ) ∈ SU8(q).

Note that no eigenvalue of g4 and g8 belongs to Fq2 by the choice of γ. On the
other hand, any eigenvalue of any x ∈ X = GU2(q) belongs to F×q2 .

Let 8 | n, and choose h = diag(g8, . . . , g8) ∈ SUn(q). Then, for any x ∈ X , no
eigenvalue of xh can be equal to 1, whence ζ(xh) = 1 by (4-1). Hence, by (4-3)
we have

θ(h)= D◦1X
(h)= 1

|X |

∑
x∈X

ζ(xh)− 1= [1X , 1X ] − 1= 0.

Next, for n ≡ 1 (mod 8) we choose h = diag(g8, . . . , g8, 1) ∈ SUn(q). Then,
for any x ∈ X , no eigenvalue of xg8 can be equal to 1, whence ζ(xh)= ζ2,q(x) by
(4-1). It then follows by (4-3) and (4-4) that

θ(h)= D◦St(h)=
1
|X |

∑
x∈X

ζ2,q(x)St(x)− 1= [ζ2,q , St] − 1= 0.

For n ≡ 2 (mod 8) we choose h = diag(g8, . . . , g8, 1, 1) ∈ SUn(q). Then,
ζ(xh)= ζ2,q(x)2 for any x ∈ X by (4-1). By (4-3) and (4-5) applied to c = d = 1
we have

θ(h)= D◦St(h)=
1
|X |

∑
x∈X

ζ2,q(x)2St(x)− 1= 0.

For n≡ 3 (mod 8) we choose h= diag(g8, . . . , g8, 1,−1,−1)∈ SUn(q). Again,
ζ(xh) = ζ2,q(x)ζ2,q(−x)2 for all x ∈ X . By (4-3) and (4-6) applied to (c, d) =
(−1, 1) we have

θ(h)= D◦1X
(h)= 1

|X |

∑
x∈X

ζ2,q(−x)2ζ2,q(x)− 1= 0.

Assume that n≡ 5 (mod 8). Note that 1 6= c1 := det(g−1
4 )= γ(q

4
−1)/(q+1)

∈µq+1.
Let h = diag(g8, . . . , g8, g4, c1) ∈ SUn(q). Then, ζ(xh)= ζ2,q(c1x) for any x ∈ X
by (4-1), and St(c1x)= St(x) since St is trivial at Z(X). Hence, by (4-3) and (4-4)
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we have

D◦St(h)=
1
|X |

∑
x∈X

ζ2,q(c1x)St(x)− 1

=
1
|X |

∑
x∈X

ζ2,q(c1x)St(c1x)− 1= [ζ2,q , St]X − 1= 0.

For n ≡ 6 (mod 8) we choose h = diag(g8, . . . , g8, g4, 1, c1) ∈ SUn(q). Then,
ζ(xh) = ζ2,q(c1x)ζ2,q(x) for any x ∈ X by (4-1). By (4-3) and (4-5) applied to
(c, d)= (c1, 1) we have

θ(h)= D◦St(h)=
1
|X |

∑
x∈X

ζ2,q(c1x)ζ2,q(x)St(x)− 1= 0.

For n≡ 7 (mod 8) we choose h = diag(g8, . . . , g8, g4, 1, 1, c1)∈ SUn(q). Then,
ζ(xh) = ζ2,q(x)2ζ2,q(c1x) for any x ∈ X by (4-1). By (4-3) and (4-6) applied to
(c, d)= (1, c1) we have

θ(h)= D◦1X
(h)= 1

|X |

∑
x∈X

ζ2,q(x)2ζ2,q(c1x)− 1= 0.

Finally, assume that n≡ 4 (mod 8). Then we choose h4 ∈SU4(q) to be conjugate
to diag(γ2, γ−2q , 1, γ2q−2) over Fq2 , and set h = diag(g8, . . . , g8, h4) ∈ SUn(q).
Note that γ2, γ−2q

∈ F×q2 and 1 6= c2 := γ
2q−2
∈µq+1. Now, for any x ∈ X , we have

ζ(xh)= ζ2,q(x)ζ2,q(c2x)ζ2,q(γ
2x)ζ2,q(γ

−2q x)

by (4-1). Direct computation using the character table of GU2(q) shows that

θ(h)= D◦1X
(h)= 1

|X |

∑
x∈X

ζ2,q(x)ζ2,q(c2x)ζ2,q(γ
2x)ζ2,q(γ

−2q x)− 1= 0,

and so we are done. �

To complete the proof of Theorem 3.1, we handle the case S = P�+8 (q):

Proposition 4.9. Theorem 3.1 holds in the case S = P�+8 (q) with q odd.

Proof. 1. Suppose that q = 3. Then, according to [Conway et al. 1985], S
has a unique irreducible character θ of degree 300, which is strongly real, and a
unique conjugacy class (4E in the notation of [ibid.]) of elements x of order 4
with |CS(x)| = 1536 and θ(x) = 0. It follows that θ(xσ ) = 0 for all σ ∈ Aut(S).
Furthermore, one can show (directly, or using [GAP 2004]) that θ extends to a
rational character of Aut(S)= S ·S4. From now on we may assume that q = p f

≥ 5.
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2. Choose ε = ±1 such that q ≡ ε (mod 4). Also view S as L/Z(L), where
L = Spin+8 (q) and Z(L)∼= C2×C2. Fix an orthonormal basis (e1, . . . , e4) of R4

and realize the simple roots of the algebraic group L= Spin8(F̄q) as

α1 = e1− e2, α2 = e2− e3, α3 = e3− e4, α4 = e3+ e4

as usual. Then the four fundamental weights of L are given by

$1 = e1, $2 = e1+ e2, $3 =
e1+ e2+ e3− e4

2
, $4 =

e1+ e2+ e3+ e4

2
.

Let 0 ∼= S3 denote the subgroup of A(S) consisting of graph automorphisms. Then
0 permutes the 3 fundamental weights $1, $3, $4 transitively and faithfully, and
fixes $2. Consider the corresponding L-modules Vi = V ($i ) with highest weight
$i , i = 1, 3, 4. Then the set of weights of Vi is

{±e j | 1≤ j ≤ 4}, when i = 1,{ 1
2

∑4
j=1 a j e j

∣∣ a j =±1,
∏4

j=1 a j =−1
}
, when i = 3{

1
2

∑4
j=1 a j e j

∣∣ a j =±1,
∏4

j=1 a j = 1
}
, when i = 4.

We can think of V1 as the natural module for K :=�+8 (q).

3. We will use the description above to show that L contains a regular semisimple
element s of (odd) order N := (q3

+ ε)/2 if q ≥ 9 and N := (q2
+ 1)/2 if q = 5, 7

such that sσ is not L-conjugate to s for any nontrivial σ ∈ 0.
Indeed, assume that q ≥ 9. Then fix δ ∈ F̄

×

q of order (q3
+ε)/2 and choose s ∈ L

to be the unique inverse image of odd order of s̄ ∈ �−ε2 (q)×�−ε6 (q) < K with
spectrum Spec(s, V1)= {δ

j
| j ∈ J1}, where

J1 = {±1,±r,±r2,±2(r2
+ r + 1)}

and r := −εq. Thus we may assume that

e1(s)= δ, e2(s)= δr , e3(s)= δr2
, e4(s)= δ2(r2

+r+1).

Hence Spec(s, Vi )= {δ
(N+ j)/2

| j ∈ Ji } for i = 3, 4, where

J3 = {±(3r2
+ 3r + 1),±(3r2

+ r + 3),±(r2
+ 3r + 3),±(r2

+ r + 1)},

J4 = {±(3r2
+ r + 1),±(r2

+ 3r + 1),±(r2
+ r + 3),±3(r2

+ r + 1)}.

Recall that |δ| = N ≥ 5(r2
+ r + 1) and |r | ≥ 9 since q ≥ 9. Hence δ belongs to

Spec(s, V1) but neither to Spec(s, V3) nor Spec(s, V4), and similarly δ(N+r2
+r+3)/2

belongs to Spec(s, V4) but not to Spec(s, V3). Thus s has pairwise different spectra
on the three modules V1, V3 and V4 permuted faithfully by 0, whence s and sσ

cannot be L-conjugate for any 1 6= σ ∈ 0. Arguing as in the proof of [Moretó and
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Tiep 2008, Lemma 2.3], we can view s as an element of SO+8 (q) to calculate the
order of its centralizer and find that T ∗ =CL(s) is a torus of order (q+ ε)(q3

+ ε);
in particular, s is regular.

Suppose now that q = 5 or 7. Then fix δ ∈ F̄
×

q of order (q2
+ 1)/2 and choose

s ∈ L to be the unique inverse image of odd order of s̄ ∈ �−4 (q)×�
−

4 (q) < K
with spectrum Spec(s, V1)= {δ

j
| j ∈ J1}, where

J1 = {±1,±q,±2,±2q}.

Thus we may assume that

e1(s)= δ, e2(s)= δq , e3(s)= δ2, e4(s)= δ2q .

Hence Spec(s, Vi )= {δ
j/2
| j ∈ Ji } for i = 3, 4, where

J3 = {±(3q + 1),±(q + 3),±(3q − 1),±(q − 3)},

J4 = {±(q + 1),±(3q − 3),±(q − 1),±(3q + 3)}.

One can again check that s has pairwise different spectra on the three modules V1,
V3 and V4, and so s and sσ cannot be L-conjugate for any 1 6= σ ∈ 0. Furthermore,
s is regular and T ∗ = CL(s) is a torus of order (q2

+ 1)2.

4. By [Tiep and Zalesski 2005, Proposition 3.1], s is real. It now follows by
Proposition 4.3 that χs is a strongly real irreducible character of G, and θ := (χs)S

is irreducible. We claim that IH (θ) ≤ G. Once this is completed, we can take
J = G ∩ H and α = (χs)J as usual. As in the proof of Proposition 4.7, it suffices
to show that if σ ∈ A(S)∼= C f ×S3 fixes χs then σ is trivial. Write σ = τ(σ0)

e for
some τ ∈ 0 and 0≤ e < f (and σ0 is induced by the field automorphism y 7→ y p

as usual). By the results of 3) we may assume 0< e < f ; in particular, f ≥ 2 and
so q ≥ 9. By Proposition 4.3(ii), sL is σ ∗-stable and N = |s| divides |Lσ ∗

|.
First assume that |τ | = 3, that is, τ is a triality graph automorphism. Then

N = (q3
+ ε)/2 divides |Lσ ∗

| = |
3D4(pe)|. Using a suitable p.p.d. of N one can

now show that 3 f | 12e and so f | 4e. It follows that sL is stable under σ 4
= τ ,

contrary to the results of 3).
Now we may assume that |τ | = 1 or 2, and so N = (q3

+ ε)/2 divides |Lσ ∗
| =

|Spinα8 (p
e)| with α = + or −, respectively. Using a suitable p.p.d. of N we now

see that 3 f | 6e or 3 f | 8e. If f is odd, then we get that f | e, a contradiction as
0< e< f . Hence f is even, ε=+, and N = (q3

+1)/2 is divisible by r = r(p, 6 f ),
a p.p.d. of p6 f

− 1. Since r divides |Spinα8 (p
e)|, we must have 6 f | 6e or 6 f | 8e.

In the former case we again have f | e, a contradiction. So 6 f |8e, and e= 3 f/4 as
0< e < f . In this case, sL is stable under σ 2

= (σ0)
f/2. Repeating the argument

above, we see that r = r(p, 6 f ) divides |Spin+8 (p
f/2)|, which is impossible.



590 Selena Marinelli and Pham Huu Tiep

5. We have shown that IH (θ) = G ∩ H and obviously θ extends to the strongly
real character (χs)G∩H . It remains to find a 2-element x ∈ S such that θ(xσ )= 0
for all σ ∈ Aut(S). Since s is regular, we have χs = ±R G

T,ϑ for some maximal
torus T of order |T | = |T ∗|. Recall that q ≡ ε (mod 4), hence we can choose x ∈ S
to be represented by diag(−I2, I6) ∈ �

ε
2 (q)×�

ε
6 (q) < �+8 (q) with centralizer

GO ε
2 (q)× GO ε

6 (q) (in GO+8 (q)). It is easy to see that |CG(x)| is not divisible
by |T |. Thus, θ(xσ )= 0 for any σ ∈ Aut(S). �

5. Final remarks

We start with a well-known lemma; see, for instance, [Bubboloni et al. 2009, Lemma
2.1]. We provide a proof for the sake of completeness.

Lemma 5.1. Let χ ∈ Irr(G) and let g be a p-element of the group G, p a prime. If
χ(g)= 0, then p divides χ(1).

Proof. Let ω be a primitive pa-th root of unity, where pa
= o(g), and write n=χ(1).

Then χ(g) =
∑n

i=1 ω
ki = 0 for suitable integers 0 ≤ ki ≤ pa , and ω is a root of

the polynomial q(x)=
∑n

i=1 xki . Hence, the pa-th cyclotomic polynomial 8(x)
divides q(x) (over Q, hence also over Z by Gauss’s lemma). In particular,8(1)= p
divides q(1)= χ(1), as required. �

Using Lemma 5.1, from Theorem A we immediately obtain Theorem B, which
in turn implies the following.

Corollary 5.2 [Dolfi et al. 2008, Theorem A]. Let G be a finite group. If every
χ ∈ IrrR(G) has odd degree, then G has a normal Sylow 2-subgroup.

However, the following class of examples shows that it is not possible to deduce
our Theorem A from [Dolfi et al. 2008, Theorem A] (even if we require χ(x) 6= 0
for all χ ∈ IrrR(G) and all 2-elements x ∈ G).

Example 5.3. For every Mersenne prime q>7 there exists a Frobenius {2, q}-group
G such that

(a) χ(g) 6= 0 for all χ ∈ IrrR(G) and every 2-element g ∈ G, and

(b) there exists a χ0 ∈ IrrR(G) with χ(1) even.

Let q = 2t
− 1 be a Mersenne prime, with t > 3 a prime. Write n = t − 1.

As shown in [Isaacs 1989, Section 4] and in [Riedl 1999], one can construct a
remarkable class of 2-groups (or, in general, p-groups for any prime p) Pn(2, t) as
subgroups of the group of units of suitable skew-polynomial rings. We recall that
the same class of groups has also been considered in [Hanaki and Okuyama 1997],
where they are given as matrix groups.

We mention (see [Riedl 1999]) that the group P = Pn(2, t) has order 2tn , that
the upper central series of P coincides with the lower central series of P and that
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all its factors are elementary abelian groups of order 2t . Moreover, P has a fixed
point free group of automorphisms Q of order q. Hence, the semidirect product
G = P Q is a Frobenius {2, q}-group.

As proved in [Bubboloni et al. 2009, Example 1] (see also [Isaacs et al. 1999,
Theorem 5.1]), χ(g) 6= 0 for every χ ∈ Irr(G) and for every element g ∈ G of
2-power order. So, in particular, (a) is satisfied.

To prove (b), we denote by ClR(P) the set of the P-conjugacy classes of real
elements of P . (Observe that they are precisely the classes where every irreducible
character of P assumes a real value). As an application of Brauer permutation
lemma [Isaacs 1976, (6.32)], we know that |IrrR(P)| = |ClR(P)|. Let W = Z2(P)
be the second term of the (upper) central series of G. By [Riedl 1999, part (i) of
Corollary 2.12 and Lemma 6.1], we see that |W | = 22t and that W is elementary
abelian, because t > 3. Since every involution is a real element of P , it follows
that |ClR(P)| > |Z(P)| = 2t . Therefore, as P has |P/P ′| = 2t linear characters,
we conclude that there exists a nonlinear ψ ∈ IrrR(P). So, χ = ψG

∈ IrrR(G) is a
real character of even degree of G.
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