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For any finite Coxeter group W , we introduce two new objects: its cutting poset
and its biHecke monoid. The cutting poset, constructed using a generalization
of the notion of blocks in permutation matrices, almost forms a lattice on W .
The construction of the biHecke monoid relies on the usual combinatorial model
for the 0-Hecke algebra H0(W ), that is, for the symmetric group, the algebra
(or monoid) generated by the elementary bubble sort operators. The authors
previously introduced the Hecke group algebra, constructed as the algebra gen-
erated simultaneously by the bubble sort and antisort operators, and described its
representation theory. In this paper, we consider instead the monoid generated
by these operators. We prove that it admits |W | simple and projective modules.
In order to construct the simple modules, we introduce for each w ∈ W a com-
binatorial module Tw whose support is the interval [1, w]R in right weak order.
This module yields an algebra, whose representation theory generalizes that of
the Hecke group algebra, with the combinatorics of descents replaced by that of
blocks and of the cutting poset.

1. Introduction

In this paper we introduce two novel objects for any finite Coxeter group W : its
cutting poset and its biHecke monoid. The cutting poset is constructed using a
generalization of blocks in permutation matrices to any Coxeter group and is almost
a lattice. The biHecke monoid is generated simultaneously by the sorting and
antisorting operators associated to the combinatorial model of the 0-Hecke algebra
H0(W ). It turns out that the representation theory of the biHecke monoid, and
in particular the construction of its simple modules, is closely tied to the cutting
poset.
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The study of these objects combines methods from and impacts several areas
of mathematics: Coxeter group theory, monoid theory, representation theory, com-
binatorics (posets, permutations, descent sets), as well as computer algebra. The
guiding principle is the use of representation theory, combined with computer ex-
ploration, to extract combinatorial structures from an algebra, and in particular a
monoid algebra, often in the form of posets or lattices. This includes the structures
associated to monoid theory (such as for example Green’s relations), but also goes
beyond. For example, we find connections between the classical orders of Coxeter
groups (left, right, and left-right weak order and Bruhat order) and Green’s relations
on our monoids (R, L, J, and H-order and ordered monoids), and these orders
play a crucial role in the combinatorics and representation theory of the biHecke
monoid.

The usual combinatorial model for the 0-Hecke algebra H0(Sn) of the symmet-
ric group is the algebra (or monoid) generated by the (anti) bubble sort operators
π1, . . . , πn−1, where πi acts on words of length n and sorts the letters in positions
i and i + 1 decreasingly. By symmetry, one can also construct the bubble sort
operators π1, . . . , πn−1, where π i acts by sorting increasingly, and this gives an
isomorphic construction H 0 of the 0-Hecke algebra. This construction generalizes
naturally to any finite Coxeter group W . Furthermore, when W is a Weyl group,
and hence can be affinized, there is an additional operator π0 projecting along the
highest root.

In [Hivert and Thiéry 2009] the first and last author constructed the Hecke group
algebra HW by gluing together the 0-Hecke algebra and the group algebra of W
along their right regular representation. Alternatively, HW can be constructed as
the biHecke algebra of W , by gluing together the two realizations H0(W ) and
H 0(W ) of the 0-Hecke algebra. HW admits a more conceptual description as the
algebra of all operators on KW preserving left antisymmetries; the representation
theory of HW follows, governed by the combinatorics of descents. In [Hivert et al.
2009], the authors further proved that, when W is a Weyl group, HW is a natural
quotient of the affine Hecke algebra.

In this paper, following a suggestion of Alain Lascoux, we study the biHecke
monoid M(W ), obtained by gluing together the two 0-Hecke monoids. This in-
volves the combinatorics of the usual poset structures on W (left, right, left-right,
Bruhat order), as well as the new cutting poset. Building upon the extensive
study of the representation theory of the 0-Hecke algebra [Norton 1979; Carter
1986; Denton 2010; 2011], we explore the representation theory of the biHecke
monoid. In the process, we prove that the biHecke monoid is aperiodic and its
Borel submonoid fixing the identity is J-trivial. This sparked our interest in the
representation theory of J-trivial and aperiodic monoids, and the general results
we found along the way are presented in [Denton et al. 2010/11].
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We further prove that the simple and projective modules of M are indexed by
the elements of W . In order to construct the simple modules, we introduce for
each w ∈ W a combinatorial module Tw whose support is the interval [1, w]R
in right weak order. This module yields an algebra, whose representation theory
generalizes that of the Hecke group algebra, with the combinatorics of descents
replaced by that of blocks and of the cutting poset.

Let us finish by giving some additional motivation for the study of the biHecke
monoid. In type A, the tower of algebras (KM(Sn))n∈N possesses long sought-
after properties. Indeed, it is well known that several combinatorial Hopf algebras
arise as Grothendieck rings of towers of algebras. The prototypical example is the
tower of algebras of the symmetric groups that gives rise to the Hopf algebra Sym
of symmetric functions, on the Schur basis [Macdonald 1995; Zelevinsky 1981].
Another example, due to Krob and Thibon [1997], is the tower of the 0-Hecke
algebras of the symmetric groups that gives rise to the Hopf algebra QSym of
quasisymmetric functions of [Gessel 1984], on the FI basis. The product rule on
the FI is naturally lifted through the descent map to a product on permutations,
leading to the Hopf algebra FQSym of free quasisymmetric functions [Duchamp
et al. 2002]. This calls for the existence of a tower of algebras (An)n∈N, such that
each An contains H0(Sn) and has its simple modules indexed by the elements
of Sn . The biHecke monoids M(Sn), and their Borel submonoids M1(Sn) and
Mw0(Sn), satisfy these properties, and are therefore expected to yield new repre-
sentation theoretical interpretations of the bases of FQSym.

In the remainder of this introduction, we briefly review Coxeter groups and
their 0-Hecke monoids, introduce the biHecke monoid, which is our main object
of study, and outline the rest of the paper.

1a. Coxeter groups. Let (W, S) be a Coxeter group, that is, a group W with a
presentation

W = 〈S | (ss ′)m(s,s
′) for all s, s ′ ∈ S〉, (1-1)

with m(s, s ′)∈{1, 2, . . . ,∞} and m(s, s)=1. The elements s ∈ S are called simple
reflections, and the relations can be rewritten as

s2 = 1 for all s ∈ S,

ss ′ss ′s · · ·︸ ︷︷ ︸
m(s,s′)

= s ′ss ′ss ′ · · ·︸ ︷︷ ︸
m(s,s′)

for all s, s ′ ∈ S, (1-2)

where 1 denotes the identity in W .
Most of the time, we just write W for (W, S). In general, we follow the notation

of [Björner and Brenti 2005], and we refer to this and to [Humphreys 1990] for
details on Coxeter groups and their Hecke algebras. Unless stated otherwise, we
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always assume that W is finite, and denote its generators by S = (si )i∈I , where
I = {1, 2, . . . , n} is the index set of W .

The prototypical example is the Coxeter group of type An−1 which is the n-th
symmetric group (W, S) := (Sn, {s1, . . . , sn−1}), where si denotes the elementary
transposition which exchanges i and i + 1. The relations are given by

s2
i = 1 for 1≤ i ≤ n− 1,

si s j = s j si for |i − j | ≥ 2,

si si+1si = si+1si si+1 for 1≤ i ≤ n− 2 ;
(1-3)

the last two relations are called the braid relations. When writing a permutation
µ∈Sn explicitly, we use one-line notation, that is the sequenceµ1µ2 . . . µn , where
µi := µ(i).

A reduced word i1 . . . ik for an element w ∈W corresponds to a decomposition
w= si1 · · · sik of w into a product of generators in S of minimal length k= `(w). A
(right) descent of w is an element i ∈ I such that `(wsi ) < `(w). If w is a permu-
tation, this translates into wi > wi+1. Left descents are defined analogously. The
sets of left and right descents of w are denoted by DL(w) and DR(w), respectively.

For J ⊆ I , we denote by WJ = 〈s j | j ∈ J 〉 the subgroup of W generated by s j

with j ∈ J . Furthermore, the longest element in WJ and W are denoted by sJ and
w0, respectively. Any finite Coxeter group W :=〈si | i ∈ I 〉 can be realized as a finite
reflection group; see for example [Humphreys 1990, Chapter 5.6] and [Björner and
Brenti 2005, Chapter 4]. The generators si of W can be interpreted as reflections
on hyperplanes in some |I |-dimensional vector space V . The simple roots αi for
i ∈ I form a basis for V ; the set of all roots is given by8 := {w(αi ) | i ∈ I, w ∈W }.
One can associate reflections sα to all roots α ∈ 8. If α, β ∈ 8 and w ∈ W , then
w(α)= β if and only if wsαw−1 = sβ ; see [Humphreys 1990, Chapter 5.7].

1b. The 0-Hecke monoid. The 0-Hecke monoid H0(W )=〈πi | i ∈ I 〉 of a Coxeter
group W is generated by the simple projections πi with relations

π2
i = πi for all i ∈ I ,

πiπ jπiπ j · · ·︸ ︷︷ ︸
m(si ,s j )

= π jπiπ jπi · · ·︸ ︷︷ ︸
m(si ,s j )

for all i, j ∈ I . (1-4)

Thanks to these relations, the elements of H0(W ) are canonically indexed by the
elements of W by setting πw := πi1 · · ·πik for any reduced word i1 . . . ik of w. We
further denote by πJ the longest element of the parabolic submonoid H0(WJ ) :=
〈πi | i ∈ J 〉.

As mentioned before, any finite Coxeter group W can be realized as a finite
reflection group, each generator si of W acting by reflection along an hyperplane.
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The corresponding generator πi of the 0-Hecke monoid acts as a folding, reflecting
away from the fundamental chamber on one side of the hyperplane and as the
identity on the other side. Both the action of W and of H0(W ) stabilize the set of
reflecting hyperplanes and therefore induce an action on chambers.

The right regular representation of H0(W ), or equivalently the action on cham-
bers, induce a concrete realization of H0(W ) as a monoid of operators acting on W ,
with generators π1, . . . , πn defined by

w.πi :=
{
w if i ∈ DR(w),
wsi otherwise.

(1-5)

In type A, πi sorts the letters at positions i and i + 1 decreasingly, and w.πw0 =
n · · · 21 for any permutation w. This justifies naming πi an elementary bubble
antisorting operator.

Another concrete realization of H0(W ) can be obtained by considering instead
the elementary bubble sorting operators π1, . . . , πn , whose action on W are de-
fined by

w.π i :=
{
wsi if i ∈ DR(w),
w otherwise.

(1-6)

In geometric terms, this is folding toward the fundamental chamber. In type A,
and for any permutation w, one has w.πw0 = 12 · · · n.

Remark 1.1. For a given w ∈ W , define v by wv = w0, where w0 is the longest
element of W . Then

i ∈ DR(w) ⇐⇒ i /∈ DL(v) ⇐⇒ i /∈ DR(v
−1)= DR(w0w).

Hence, the action of π i on W can be expressed from the action of πi on W usingw0:

w.π i = w0[(w0w).πi ].
1c. The biHecke monoid M(W). We now introduce our main object of study.

Definition 1.2. Let W be a finite Coxeter group. The biHecke monoid is the sub-
monoid of functions from W to W generated simultaneously by the elementary
bubble sorting and antisorting operators of (1-5) and (1-6):

M := M(W ) := 〈π1, π2, . . . , πn, π1, π2, . . . , πn〉.
As mentioned in [Hivert and Thiéry 2009; Hivert et al. 2009] this monoid admits

several natural variants, depending on the choice of the generators:

〈π1, π2, . . . , πn, s1, s2, . . . , sn〉,
〈π0, π1, π2, . . . , πn〉,
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where π0 is defined when W is a Weyl group and hence can be affinized. Unlike the
algebras they generate, which all coincide with the biHecke algebra (in particular
due to the linear relation 1+si =πi+π i which expresses how to recover a reflection
by gluing together the two corresponding foldings), these monoids are all distinct
as soon as W is large enough. Another close variant is the monoid of all strictly
order-preserving functions on the Boolean lattice [Gaucher 2010]. All of these
monoids, and their representation theory, remain to be studied.

1d. Outline. The remainder of this paper consists of two parts: We first introduce
and study the new cutting poset structure on finite Coxeter groups, and then proceed
to the biHecke monoid and its representation theory.

In Section 2, we recall some needed basic facts, definitions, and properties about
posets, Coxeter groups, monoids, and representation theory.

In Section 3, we generalize the notion of blocks of permutation matrices to any
Coxeter group, and use it to define a new poset structure on W , which we call
the cutting poset; we prove that it is (almost) a lattice, and derive that its Möbius
function is essentially that of the hypercube.

In Section 4, we study the combinatorial properties of M(W ). In particular, we
prove that it preserves left and Bruhat order, derive consequences on the fibers and
image sets of its elements, prove that it is aperiodic, and study Green’s relations
and idempotents.

In Section 5, our strategy is to consider a “Borel” triangular submonoid of M(W )

whose representation theory is simpler, but with the same number of simple mod-
ules, to later induce back information about the representation theory of M(W ).
Namely, we study the submonoid M1(W ) of the elements fixing 1 in M(W ). This
monoid not only preserves Bruhat order, but furthermore is regressive. It follows
that it is J-trivial (in fact B-trivial) which is the desired triangularity property. It is
for example easily derived that M1(W ) has |W | simple modules, all of dimension 1.
In fact most of our results about M1 generalize to any J-trivial monoid, which is
the topic of a separate paper on the representation theory of J-trivial monoids
[Denton et al. 2010/11]. We also provide properties of the Cartan matrix and a
combinatorial description of the quiver of M1.

In Section 6, we construct, for each w ∈ W , the translation module Tw by
induction of the corresponding simple KM1(W )-module. It is a quotient of the
indecomposable projective module Pw of KM(W ), and therefore admits the simple
module Sw of KM(W ) as top. It further admits a simple combinatorial model using
the right classes with the interval [1, w]R as support, and which passes down to Sw.
We derive a formula for the dimension of Sw, using an inclusion-exclusion on the
sizes of intervals in (W,≤R) along the cutting poset. On the way, we study the
algebra HW (w) induced by the action of M(W ) on Tw. It turns out to be a natural
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w-analogue of the Hecke group algebra, acting not anymore on the full Coxeter
group, but on the interval [1, w]R in right order. All the properties of the Hecke
group algebra pass through this generalization, with the combinatorics of descents
being replaced by that of blocks and of the cutting poset. In particular, HW (w) is
Morita equivalent to the incidence algebra of the sublattice induced by the cutting
poset on the interval [1, w]v.

In Section 7, we apply the findings of Sections 4, 5, and 6 to derive results on
the representation theory of M(W ). We conclude in Section 8 with discussions on
further research in progress.

There are two appendices. Appendix A summarizes some results on colored
graphs which are used in Section 4 to prove properties of the fibers and image sets
of elements in the biHecke monoid. Appendix B we present tables of q-Cartan
invariant and decomposition matrices for M(Sn) for n = 2, 3, 4.

2. Background

We review some basic facts about partial orders and finite posets in Section 2a,
finite lattices and Birkhoff’s theorem in Section 2b, order-preserving functions in
Section 2c, the usual partial orders on Coxeter groups (left and right weak order,
Bruhat order) in Section 2d, and the notion of J-order (and related orders) and
aperiodic monoids in Section 2e. We also prove a result in Proposition 2.4 about
the image sets of order-preserving and regressive idempotents on a poset that will
be used later in the study of idempotents of the biHecke monoid. Sections 2f and 2g
contain reviews of some representation theory of algebras and monoids that will
be relevant in our study of translation modules.

2a. Finite posets. For a general introduction to posets and lattices, we refer the
reader to for example [Pouzet 2013; Stanley 1997] or [Wikipedia 2010, Poset,
Lattice]. Throughout this paper, all posets are finite.

A partially ordered set (or poset for short) (P,�) is a set P with a binary relation
� such that for all x, y, z ∈ P:

(i) x � x (reflexivity);

(ii) if x � y and y � x , then x = y (antisymmetry);

(iii) if x � y and y � z, then x � z (transitivity).

When we exclude the possibility that x = y, we write x ≺ y.
If x � y in P , we define the interval

[x, y]P := {z ∈ P | x � z � y}.
A pair (x, y) such that x ≺ y and there is no z ∈ P such that x ≺ z ≺ y is called
a covering. We denote coverings by x → y. The Hasse diagram of (P,�) is the
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diagram where the vertices are the elements x ∈ P , and there is an upward-directed
edge between x and y if x→ y.

Definition 2.1. Let (P,�) be a poset and X ⊆ P .

(i) X is convex if for any x, y ∈ X with x � y we have [x, y] ⊆ X .

(ii) X is connected if for any x, y ∈ X with x ≺ y there is a path in the Hasse
diagram x = x0→ x1→ · · · → xk = y such that xi ∈ X for 0≤ i ≤ k.

The Möbius inversion formula [Stanley 1997, Proposition 3.7.1] generalizes the
inclusion-exclusion principle to any poset. Namely, there exists a unique func-
tion µ, called the Möbius function of P , which assigns an integer to each ordered
pair x � y and enjoys the following property: For any two functions f, g : P→ G
taking values in an additive group G,

g(x)=
∑

y�x

f (y) if and only if f (y)=
∑

x�y

µ(x, y) g(x). (2-1)

The Möbius function can be computed thanks to the following recursion:

µ(x, y)=
{

1 if x = y,
−∑x�z≺y µ(x, z) for x ≺ y.

2b. Finite lattices and Birkhoff’s theorem. Let (P,�) be a poset. The meet z =∧
A of a subset A⊆ P is an element such that, first, z� x for all x ∈ A and, second,

u � x for all x ∈ A implies that u � z. When the meet exists, it is unique and is
denoted by

∧
A. The meet of the empty set A = {} is the largest element of the

poset, if it exists. The meet of two elements x, y ∈ P is denoted by x ∧ y. A poset
(P,�) for which every pair of elements has a meet is called a meet-semilattice. In
that case, P endowed with the meet operation is a commutative J-trivial semigroup,
and in fact a monoid with unit the maximal element of P , if the latter exists.

Reversing all comparisons, one can similarly define the join
∨

A of a subset
A⊆ P or x∨ y of two elements x, y ∈ P , and join-semilattices. A lattice is a poset
for which both meets and joins exist for pair of elements. Recall that we only
consider finite posets, so we do not have to worry about the distinction between
lattices and complete lattices.

A lattice (L ,∨,∧) is distributive if the following additional identity holds for
all x, y, z ∈ L:

x ∧ (y ∨ z)= (x ∧ y)∨ (x ∧ z).

This condition is equivalent to its dual,

x ∨ (y ∧ z)= (x ∨ y)∧ (x ∨ z).

Birkhoff’s representation theorem (see [Wikipedia 2010, Birkhoff’s representa-
tion theorem], or [Stanley 1997, Theorem 3.4.1]) states that any finite distributive
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lattice can be represented as a sublattice of a Boolean lattice, that is, a collection
of sets stable under union and intersection. Furthermore, there is a canonical such
representation, which we construct now.

An element z in a lattice L is called join-irreducible if z is not the smallest
element in L and z = x ∨ y implies z = x or z = y for any x, y ∈ L (and similarly
for meet-irreducible). Equivalently, since L is finite, z is join-irreducible if and
only if it covers exactly one element in L . We denote by I (L) the poset of join-
irreducible elements of L , that is the restriction of L to its join-irreducible elements.
Note that this definition still makes sense for nonlattices. From a monoid point of
view, I (L) is the minimal generating set of L .

A lower set of a poset P is a subset Y of P such that, for any pair x ≤ y
of comparable elements of P , x is in Y whenever y is. Upper sets are defined
dually. The family of lower sets of P ordered by inclusion is a distributive lattice,
the lower sets lattice O(P). Birkhoff’s representation theorem [Birkhoff 1937]
states that any finite distributive lattice L is isomorphic to the lattice O(I (L)) of
lower sets of the poset I (L) of its join-irreducible elements, via the reciprocal
isomorphisms:

{
L → O(I (L)),
x 7→ {y ∈ I (L) | y ≤ x} and

∨
:
{

O(I (L)) → L ,
I 7→∨

I .

Following Edelman [1986], a meet-semilattice L is meet-distributive if for every
y ∈ L , if x ∈ L is the meet of elements covered by y then [x, y] is a Boolean
algebra. A stronger condition is that any interval of L is a distributive lattice. A
straightforward application of Birkhoff’s representation theorem yields that L is
then isomorphic to a lower set of O(I (L)).

2c. Order-preserving functions.

Definition 2.2. Let (P,�) be a poset and f : P→ P a function.

(i) f is called order-preserving if x � y implies f (x) � f (y). We also say f
preserves the order �.

(ii) f is called regressive if f (x)� x for all x ∈ P .

(iii) f is called extensive if x � f (x) for all x ∈ P .

Lemma 2.3. Let (P,�) be a poset and f : P → P an order-preserving map.
Then, the preimage f −1(C) of a convex subset C ⊆ P is convex. In particular, the
preimage of a point is convex.

Proof. Let x, y∈ f −1(C)with x� y. Since f is order-preserving, for any z∈[x, y],
we have f (x)� f (z)� f (y), and therefore f (z) ∈ C . �
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Proposition 2.4. Let (P,�) be a poset and f : P→ P be an order-preserving and
regressive idempotent. Then, f is determined by its image set. Namely, for u ∈ P
we have

f (u)= sup
�
(↓u ∩ im( f )),

the supremum being always well-defined. Here ↓u = {x ∈ P | x � u}.
An equivalent statement is that, for v ∈ im( f ),

f −1(v)= ↑v \
⋃

v′∈im( f )
v′�v

↑v′, where ↑v = {x ∈ P | x � v}.

Proof. We first prove that ↓u ∩ im( f ) = f (↓u). The inclusion ⊇ follows from
the fact that f is regressive: Taking v ∈ ↓u, we have f (v) � v � u and therefore
f (v) ∈ ↓u ∩ im( f ). The inclusion ⊆ follows from the assumption that f is an
idempotent: For v ∈ im( f ) with v � u, one has v = f (v), so v ∈ f (↓u).

Since f is order-preserving, f (↓u) has a unique maximal element, namely
f (u). The first statement of the proposition follows. The second statement is a
straightforward reformulation of the first one. �

An interior operator (sometimes also called a kernel operator) is a function
L→ L on a lattice L that is order-preserving, regressive and idempotent; see for
example [Wikipedia 2010, Moore Family]. A subset A⊆ L is a dual Moore family
if it contains the smallest element ⊥L of L and is stable under joins. The image
set of an interior operator is a dual Moore family. Reciprocally, any dual Moore
family A defines an interior operator by

L→ L , x 7→ red(x) :=
∨

a∈A,a�x

a, (2-2)

where
∨
{} =⊥L by convention.

A (dual) Moore family is itself a lattice with the order and join inherited from L .
The meet operation usually differs from that of L and is given by x ∧A y =
red(x ∧L y).

2d. Classical partial orders on Coxeter groups. A Coxeter group W = 〈si | i ∈ I 〉
comes endowed with several natural partial orders: left (weak) order, right (weak)
order, left-right (weak) order, and Bruhat order. All of these play an important role
for the representation theory of the biHecke monoid M(W ).

Fix u, w ∈W . Then, in right (weak) order,

u ≤R w if w = usi1 · · · sik for some i j ∈ I and `(w)= `(u)+ k.
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Similarly, in left (weak) order,

u ≤L w if w = si1 · · · sik u for some i j ∈ I and `(w)= `(u)+ k,

and in left-right (weak) order,

u≤L Rw if w = si1 · · · sik usi ′1 · · · si ′` for some i j , i ′j ∈ I and `(w)= `(u)+ k+ `.
Note that left-right order is the transitive closure of the union of left and right
order. Thanks to associativity, this is equivalent to the existence of a v ∈ W such
that u ≤L v and v ≤R w.

Let w = si1si2 · · · si` be a reduced expression for w. Then, in Bruhat order,

u ≤B w if there exists a reduced expression u = s j1 · · · s jk
where j1 . . . jk is a subword of i1 . . . i`.

For any finite Coxeter group W , the posets (W,≤R) and (W,≤L) are graded
lattices [Björner and Brenti 2005, Section 3.2]. The following proposition states
that any interval is isomorphic to some interval starting at 1:

Proposition 2.5 [Björner and Brenti 2005, Proposition 3.1.6]. Let O ∈ {L , R} and
u ≤O w ∈W . Then [u, w]O ∼= [1, t]O where t = wu−1.

Definition 2.6. The type of an interval in left and right order are defined to be
type([u, w]L) := wu−1 and type([u, w]R) := u−1w, respectively.

It is easily shown that, if O is considered as a colored poset, then the converse
of Proposition 2.5 holds as well:

Remark 2.7. Fix a type t . Then, the collection of all intervals in left weak order of
type t is in bijection with [1, t−1w0]R , and the operators πi and π i act transitively
on the right on this collection. More precisely: πa induces an isomorphism from
[1, ba−1]L to [a, b]L , and πa−1 induces an isomorphism from [a, b]L to [1, ba−1]L .

Proof. Take u ∈ [a, b]L , and let si1 · · · sik be a reduced decomposition of a. Let
s j1 · · · s j` be a reduced decomposition of ua−1 = usik · · · si1 . Then

u = (s j1 · · · s j`)(si1 · · · sik )

is a reduced decomposition of u and u .πa−1 = s j1 · · · s j` = ua−1. Reciprocially,
applying πa to an element u ∈ [1, ba−1]L progressively builds up a reduced word
for a. The result follows. �

2e. Preorders on monoids. J. A. Green [1951] introduced several preorders on
monoids, which are essential for the study of their structures; see for example



606 Florent Hivert, Anne Schilling and Nicolas Thiéry

[Pin 2012, Chapter V]. Throughout this paper, we only consider finite monoids.
Define ≤R,≤L,≤J,≤H for x, y ∈ M as follows:

x ≤R y if and only if x = yu for some u ∈ M,

x ≤L y if and only if x = uy for some u ∈ M,

x ≤J y if and only if x = uyv for some u, v ∈ M,

x ≤H y if and only if x ≤R y and x ≤L y.

These preorders give rise to equivalence relations:

x R y if and only if x M = yM,

x L y if and only if Mx = My,

x J y if and only if Mx M = MyM,

x H y if and only if xRy and xLy.

Strict comparisons are defined by x <R y if x ≤R y but x /∈R(y), or equivalently
R(x)⊂R(y), and similarly for <L, <J, <H.

We further add the relation ≤B (and its associated equivalence relation B) de-
fined as the finest preorder such that x ≤B 1, and

x ≤B y implies that uxv ≤B uyv for all x, y, u, v ∈ M .

(One can view ≤B as the intersection of all preorders with the property above.
There exists at least one such preorder, namely x ≤ y for all x, y ∈ M). In the
semigroup community, this order is sometimes colloquially referred to as the mul-
tiplicative J-order.

Beware that 1 is the largest element of those (pre)-orders. This is the usual
convention in the semigroup community, but is the converse convention from the
closely related notions of left/right/left-right/Bruhat order in Coxeter groups as
introduced in Section 2d.

Example 2.8. For the 0-Hecke monoid of Section 1b, K-order for K∈{R,L,J,B}
corresponds to the reverse of right, left, left-right and Bruhat order of Section 2d.
More precisely for x, y∈H0(W ), x≤K y if and only if x≥K y for K∈{R,L,J,B}
and K ∈ {R, L , L R, B} the corresponding letter.

Definition 2.9. Elements of a monoid M in the same K-equivalence class are called
K-classes, where K ∈ {R,L,J,H,B}. The K-class of x ∈ M is denoted by K(x).

A monoid M is called K-trivial if all K-classes are of cardinality one.
An element x ∈ M is called regular if it is J-equivalent to an idempotent.
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An equivalent formulation of K-triviality is given in terms of ordered monoids.
A monoid M is called

right-ordered if xy ≤ x for all x, y ∈ M ,

left-ordered if xy ≤ y for all x, y ∈ M ,

left-right-ordered if xy ≤ x and xy ≤ y for all x, y ∈ M ,

two-sided-ordered if xy = yz ≤ y for all x, y, z ∈ M with xy = yz,

ordered with 1 on top if x ≤ 1, and x ≤ y implies uxv ≤ uyv
for all x, y, u, v ∈ M

for some partial order ≤ on M .

Proposition 2.10. M is right-ordered (respectively left-ordered, left-right-ordered,
two-sided-ordered, ordered with 1 on top) if and only if M is R-trivial (respectively
L-trivial, J-trivial, H-trivial, B-trivial).

When M is K-trivial for K ∈ {R,L,J,H,B}, the partial order ≤ is finer
than ≤K; that is, for any x, y ∈ M , x ≤K y implies x ≤ y.

Proof. We give the proof for right-order as the other cases can be proved in a
similar fashion.

Suppose M is right-ordered and that x, y ∈ M are in the same R-class. Then
x = ya and y = xb for some a, b ∈ M . This implies that x ≤ y and y ≤ x , so that
x = y. Conversely, suppose that all R-classes are singletons. Then x ≤R y and
y ≤R x imply that x = y, so that the R-preorder turns into a partial order. Hence
M is right-ordered using xy ≤R x . �

Definition 2.11. A monoid M is aperiodic if there is an integer N > 0 such that
x N = x N+1 for each x ∈ M .

Since we are only dealing with finite monoids, it is enough to find such an
N = Nx depending on the element x . Indeed, taking N :=max{Nx} gives a uniform
bound. From this definition it is clear that, for an aperiodic monoid M , the sequence
(xn)n∈N eventually stabilizes for every x ∈ M . We write xω for the stable element,
which is idempotent, and E(M) := {xω | x ∈ M} for the set of idempotents.

Equivalent characterizations of (finite) aperiodic monoids M are that they are
H-trivial, or that the sub-semigroup S of M (the identity of S is not necessarily the
one of M), which are also groups, are trivial; see for example [Pin 2012, VII, 4.2,
Aperiodic monoids]. In this sense, the notion of aperiodic monoids is orthogonal
to that of groups as they contain no group-like structure. By the same token, their
representation theory is orthogonal to that of groups.

As we will see in Section 4d, the biHecke monoid M(W ) of Definition 1.2 is
aperiodic. Its Borel submonoid M1(W ) of functions fixing the identity is J-trivial
(see Section 5).
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2f. Representation theory of algebras. We refer to [Curtis and Reiner 1962] for
an introduction to representation theory, and to [Benson 1991] for more advanced
notions such as Cartan matrices and quivers. Here we mostly review composition
series and characters.

Let A be a finite-dimensional algebra. Given an A-module X , any strictly in-
creasing sequence (X i )i≤k of submodules

{0} = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xk = X

is called a filtration of X . A filtration (Y j )i≤` such that, for any i , Yi = X j for
some j is called a refinement of (X i )i≤k . A filtration (X i )i≤k without a nontrivial
refinement is called a composition series. For a composition series, each quotient
module X j/X j−1 is simple and is called a composition factor. The multiplicity
of a simple module S in the composition series is the number of indices j such
that X j/X j−1 is isomorphic to S. The Jordan–Hölder theorem states that this
multiplicity does not depend on the choice of the composition series. Hence, we
may define the generalized character (or character for short) of a module X as the
formal sum

[X ] :=
∑

i∈I

ci [Si ],

where I indexes the simple modules of A and ci is the multiplicity of the simple
module Si in any composition series for X .

The additive group of formal sums
∑

i∈I mi [Si ], with mi ∈ Z, is called the
Grothendieck group of the category of A-modules and is denoted by G0(A). By
definition, the character satisfies that, for any exact sequence

0→ X→ Y → Z→ 0,

the equality
[Y ] = [X ] + [Z ]

holds in the Grothendieck group. See [Serre 1977] for more information about
Grothendieck groups.

Suppose that B is a subalgebra of A. Any A-module X naturally inherits an
action from B. The constructed B-module thereby is called the restriction of X
to B and its B-character [X ]B depends only on its A-character [X ]A. Indeed, any
A-composition series can be refined to a B-composition series and the resulting
multiplicities depend only on those in the A-composition series and in the com-
position series of the simple modules of A restricted to B. This defines a Z-linear
map [X ]A 7→ [X ]B , called the decomposition map. Let (S A

i )i∈I and (SB
j ) j∈J be

complete families of simple module representatives for A and B, respectively. The
matrix of the decomposition map is called the decomposition matrix of A over B;
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its coefficient (i, j) is the multiplicity of SB
j as a composition factor of S A

i , viewed
as a B-module.

The adjoint construction of restriction is called induction: For any right B-
module X the space

X↑A
B := X ⊗B A

is naturally endowed with a right A-module structure by right multiplication by
elements of A, and is called the module induced by X from B to A.

The next subsection, and in particular the statement of Theorem 2.13, requires a
slightly more general setting, where the identity e of B does not coincide with that
of A. More precisely, let B be a subalgebra of eAe for some idempotent e of A.
Then, for any A-module Y , the restriction of Y to B is defined as Y e, whereas, for
any B-module X , the induction of X to A is defined as X↑A

B := X ⊗B eA.

2g. Representation theory of monoids. Although representation theory started at
the beginning of the 20th century with groups before being extended to more gen-
eral algebraic structures such as algebras, one has to wait until [Clifford 1942] for
the first results on the representation theory of semigroups and monoids. Renewed
interest in this subject was sparked more recently by the emergence of connec-
tions with probability theory and combinatorics; see for example [Brown 2000;
Saliola 2007]. Compared to groups, only a few general results are known, the
most important one being the construction of the simple modules. It is originally
due to Clifford, Munn, and Ponizovskiı̌, and we recall here the construction of
[Ganyushkin et al. 2009] (see also the historical references therein) from the regular
J-classes and corresponding right class modules.

In principle, one should be specific about the ground field K; in other words,
one should consider the representation theory of the monoid algebra KM of a
monoid M , and not of the monoid itself. However, the monoids under study in this
paper are aperiodic, and their representation theory only depends on the character-
istic. We focus on the case where K is of characteristic 0. Note that the general
statements mentioned in this section may further require K to be large enough (e.g.,
K = C) for nonaperiodic monoids.

Let M be a finite monoid. Fix a regular J-class J , that is, a J-class containing
an idempotent. Consider the sets

M≥J :=
⋃

K∈J(M), K≥J J

K and IJ := M −M≥J .

Then, IJ is an ideal of M , so that the vector space KM≥J can be endowed with
an algebra structure by identifying it with the quotient KM/KIJ . Note that any
KM≥J -module is then a KM-module.



610 Florent Hivert, Anne Schilling and Nicolas Thiéry

Definition 2.12. Let f ∈ M . Set KR<( f ) := K{b ∈ f M | b <R f }. The right
class module of f (also known as right Schützenberger representation) is the KM-
module

KR( f ) := K f M/KR<( f ).

KR( f ) is clearly a right module since KR<( f ) is a submodule of K f M . Also,
as suggested by the notation, R( f ) forms a basis of KR( f ). Moreover, for a fixed
J-class J and thanks to associativity and finiteness, the right class module KR( f )
does not depend on the choice of f ∈ J (up to isomorphism). Our main tool for
studying the representation theory of the biHecke monoid will be a combinatorial
model for its right class modules, which we will call translation modules (see
Section 6a).

We now choose a J-class J , fix an idempotent eJ in J , and set KRJ :=KR(eJ ).
Recall that

R(eJ )= eJ M ∩ J = eJ M≥J ∩ J.

Define similarly

G J := GeJ := eJ MeJ ∩ J = eJ M≥J eJ ∩ J.

Then, G J is a group that does not depend on the choice of eJ . More precisely, if
e and f are two idempotents in J , the ideals MeM and M f M are equal and the
groups Ge and G f are conjugate and isomorphic. Note that when working with
the quotient algebra KM≥J , the equations above simplify to

KRJ = eJ KM≥J and KG J = eJ KM≥J eJ .

With these notations, the simple KM-modules can be constructed as follows:

Theorem 2.13 (Clifford, Munn, and Ponizovskiı̌; see [Ganyushkin et al. 2009,
Theorem 7]). Let M be a monoid, and U(M) be the set of its regular J-classes.
For any J ∈ U(M), define the right class module KRJ and groups G J as above,
let S J

1 , . . . , S J
n J

be a complete family of simple KG J -modules, and set

X J
i := top(S J

i ↑KM≥J

KG J
)= top(S J

i ⊗KG J eJ KM≥J )= top(S J
i ⊗KG J KRJ ), (2-3)

where top(X) := X/ rad X is the semisimple quotient of the module X. Then,
(X J

i for J ∈U(M) and i=1, . . . , n J ) is a complete family of simple KM-modules.

In the present paper we only need the very particular case of aperiodic monoids.
The key point is that a monoid is aperiodic if and only if all the groups G J are
trivial [Pin 2012, Proposition 4.9]: G J = {eJ }. As a consequence, the only KG J -
module is the trivial one, 1, so that the previous construction boils down to the
following theorem:
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Theorem 2.14. Let M be an aperiodic monoid. Choose an idempotent transversal
E = {eJ | J ∈U(M)} of the regular J-classes. Further set

X J := top(1↑KM≥J
KeJ

)= top(eJ KM≥J )= top(KRJ ). (2-4)

Then, the family (X J )J∈U(M) is a complete family of representatives of simple KM-
modules. In particular, there are as many isomorphic types of simple modules as
regular J-classes.

Since the top of KRJ is simple, one obtains immediately the following corollary;
see [Curtis and Reiner 1962, Corollary 54.14].

Corollary 2.15. Each regular right class module KRJ is indecomposable and a
quotient of the projective module PJ corresponding to SJ .

For a nonaperiodic finite monoid, each right class module remains indecompos-
able even if its top is not necessarily simple; see [Zalcstein 1971, Corollary 1.10].

The top of a right class module KRJ is easy to compute; indeed, the radical of
this module is nothing but the annihilator of J acting on it. This in turn boils down
to the calculation of the kernel of a matrix as we see below.

Rees matrix monoids [Rees 1940] play an important role in the representation
theory of monoids, because any J-class J of any monoid M is, roughly speaking,
isomorphic to such a monoid. We give here the definition of aperiodic Rees matrix
monoids, which we use in a couple of examples (see Examples 7.8 and 7.9).

Definition 2.16 (aperiodic Rees matrix monoid). Let P = (pi j ) be an n × m
0-1-matrix. The aperiodic Rees matrix monoid M(P) is obtained by endowing
the disjoint union

{1} ∪ {1, . . . ,m}× {1, . . . , n} ∪ {0}
with the product

(i, j)(i ′, j ′) :=
{
(i, j ′) if p j i ′ = 1,
0 otherwise,

1 being neutral and 0 being the zero element.
Note that (i, j) is an idempotent if and only if p j,i = 1; hence M(P) can be

alternatively described by specifying which elements (i, j) are idempotent.

Without entering into the details, we note that the radical of the unique (up to
isomorphism) nontrivial right class modules of KM(P) is given by the kernel of
the matrix P , and thus the dimension of the nontrivial simple module of KM(P)
is given by the rank of P [Clifford and Preston 1961; Lallement and Petrich 1969;
Rhodes and Zalcstein 1991; Margolis and Steinberg 2011].
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3. Blocks of Coxeter group elements and the cutting poset

In this section, we develop the combinatorics underlying the representation theory
of the translation modules studied in Section 6. The key question is, Given w ∈W ,
for which subsets J ⊆ I does the canonical bijection between a Coxeter group W
and the Cartesian product WJ × JW of a parabolic subgroup WJ by its set of coset
representatives JW in W restrict properly to an interval [1, w]R in right order (see
Figure 1)? In type A, the answer is given by the so-called blocks in the permutation
matrix of w, and we generalize this notion to any Coxeter group.

We start with some results on parabolic subgroups and quotients in Section 3a,
which are used to define blocks and cutting points of Coxeter group elements in
Section 3b. Then, we illustrate the notion of blocks in type A in Section 3c, recover-
ing the usual blocks in permutation matrices. In Section 3d it is shown that (W,v)
with the cutting order v is a poset (see Theorem 3.19). In Section 3e we show
that blocks are closed under unions and intersections, and relate these to meets and
joins in left and right order, thereby endowing the set of cutting points of a Coxeter
group element with the structure of a distributive lattice (see Theorem 3.26). In
Section 3f, we discuss various indexing sets for cutting points, which leads to the
notion of w-analogues of descent sets in Section 3g. Properties of the cutting poset
are studied in Section 3h (see Theorem 3.41, which also recapitulates the previous
theorems).

Throughout this section W := 〈si | i ∈ I 〉 denotes a finite Coxeter group.

3a. Parabolic subgroups and cosets representatives. For a subset J ⊆ I , the par-
abolic subgroup WJ of W is the Coxeter subgroup of W generated by s j for j ∈ J .
A complete system of minimal length representatives of the right cosets WJw and
of the left cosets wWJ are given respectively by

JW := {x ∈W | DL(x)∩ J =∅},
W J := {x ∈W | DR(x)∩ J =∅}.

Everyw∈W has a unique decompositionw=wJ
Jw withwJ ∈WJ and Jw∈ JW .

Similarly, there is a unique decomposition w =wK
Kw with Kw ∈ K W =WK and

wK ∈W K .

Lemma 3.1. Take w ∈W .

(i) For J ⊆ I consider the unique decomposition w = uv, where u = wJ and
v = Jw. Then, the unique decomposition of wsk is wsk = (us j )v if vskv

−1 is
a simple reflection s j with j ∈ J and wsk = u(vsk) otherwise.

(ii) For K ⊆ I consider the unique decomposition w = vu, where u = Kw and
v =wK . Then, the unique decomposition of s jw is s jw = v(sku) if v−1s jv is
a simple reflection sk with k ∈ K and s jw = (s jv)u otherwise.
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Proof. This follows directly from [Björner and Brenti 2005, Lemma 2.4.3 and
Proposition 2.4.4]. �

Note in particular that, if we are in case (i) of Lemma 3.1, we have the following:

• If k is a right descent of w, then (wsk)J ∈ [1, wJ ]R and J(wsk) ∈ [1, Jwsk]R .

• If k is not a right descent of w, then either sk skew commutes with Jw (that
is, there exists an i such that si

Jw = Jwsk), or J(wsk) = Jwsk . In particular,
J(wsk)≤R

Jwsk .

Definition 3.2. A subset J ⊆ I is left reduced with respect to w if J ′ ⊂ J implies
Jw <L

J ′w (or equivalently, if for any j ∈ J , s j appears in some and hence all
reduced words for wJ ).

We say K ⊆ I is right reduced with respect to w if K ′⊂ K implies wK <R w
K ′ .

Lemma 3.3. Let w ∈W and J ⊆ I be left reduced with respect to w. Then

(i) v = Jw ≤R w if and only if there exists K ⊆ I and a bijection φR : J → K
such that s jv = vsφR( j) for all j ∈ J .

For K ⊆ I right reduced with respect to w, we have

(i) v =wK ≤L w if and only if there exists J ⊆ I and a bijection φL : K → J
such that vsk = sφL (k)v for all k ∈ K .

Proof. Assume first that the bijection φR exists, and write w = s j1 · · · s j`v, where
the product is reduced and ji ∈ J . Then,

w = s j1 · · · s j`v = s j1 · · · s j`−1vsφR( j`) = vsφR( j1) · · · sφR( j`),

where the last product is reduced. Therefore v ≤R w.
Assume conversely that v = Jw ≤R w, write the reduced expression w =

vsk1 · · · sk` ≥R v, and set K = {k1, . . . , k`}. By Lemma 3.1, the sequence

v = Jv, J(vsk1), . . . ,
J(vsk1 · · · sk`)= Jw = v

preserves right order, and therefore is constant. Hence, at each step i

J(vsk1 · · · ski )= J(J(vsk1 · · · ski−1)ski )= J(vski )= v.
Applying Lemma 3.1 again, it follows that there is a subset J ′ ⊆ J , and a bi-
jective map φR : J ′ → K such that s jv = vsφR( j) for all j ∈ J ′. Then, w =
sφ−1

R (k1)
· · · sφ−1

R (k`)v, and, since J is left reduced, J = J ′.
The second part is the symmetric statement. �

By Lemma 3.1, for any w ∈W and J ⊆ I we have [1, w]R ⊆ [1, wJ ]R[1, Jw]R
and similarly for any K ⊆ I we have [1, w]L ⊆ [1,wK ]L [1, Kw]L .
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Lemma 3.4. Take w ∈W , K ⊆ I , and assume that siw=wsk for i ∈ I and k ∈ K ,
where the products are reduced. Then, there exists k ′ ∈ K such that siw

K =wK sk′ ,
where the products are again reduced.

Proof. We have wK = (wsk)
K = (siw)

K = (siw
K )K . Hence, by Lemma 3.1(ii)

there exists k ′ ∈ K such that wK sk′ = siw
K , as desired. �

3b. Definition and characterizations of blocks and cutting points. We now come
to the definition of blocks of Coxeter group elements and associated cutting points.
They will lead to a new poset on the Coxeter group W , which we coin the cutting
poset in Section 3d.

Definition 3.5 (blocks and cutting points). Letw∈W . We call K ⊆ I a right block
(or J ⊆ I a left block) of w, if there exists J ⊆ I (respectively K ⊆ I ) such that

WJw = wWK .

In that case, v := wK is called a cutting point of w, which we denote by v v w.
Furthermore, K is proper if K 6= ∅ and K 6= I ; it is nontrivial ifwK 6= w (or
equivalently Kw 6= 1); analogous definitions are made for left blocks.

We denote by BR(w) the set of all right blocks for w, and by RBR(w) the set
of all (right) reduced (see Definition 3.2) right blocks for w. The sets BL(w) and
RBL(w) are similarly defined on the left.

Here is an equivalent characterization of blocks, which also shows that cutting
points can be equivalently defined using Jw instead of wK .

Proposition 3.6. Let w ∈W and J, K ⊆ I . Then, the following are equivalent:

(i) WJw = wWK .

(ii) There exists a bijection φ : K→ J such that wK sk = sφ(k)wK (or equivalently
wK (αk)= αφ(k)) for all k ∈ K .

Furthermore, when any, and therefore all, of the above hold then,

(iii) wK = Jw.

Proof. Suppose (i) holds. Then WJ
Jw = wK WK . Since Jw has no left descents

in J and wK has no right descents in K , we know that on both sides Jw and wK

are the shortest elements and hence have to be equal: Jw = wK ; this proves (iii).
Furthermore, every reduced expression wK sk with k ∈ K must correspond to some
reduced expression s j

Jw for some j ∈ J , and vice versa. Hence there exists a
bijection φ : K → J such that wK sk = sφ(k) Jw = sφ(k)wK . Therefore point (ii)
holds.

Suppose now that point (ii) holds. Then, for any expression sk1 · · · sk` ∈WK , we
have

wK sk1 · · · sk` = sφ(k1)w
K sk2 · · · sk` = · · · = sφ(k1) · · · sφ(k`)wK .
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It follows that
wK WK =WJw

K .

In particular w ∈WJw
K and therefore

WJw =WJw
K = wK WK = wWK . �

In general, condition (iii) of Proposition 3.6 is only a necessary, but not sufficient
condition for K to be a block. See Example 3.12.

Proposition 3.7. If K is a right block of w (or more generally if wK = wK ′ with
K ′ a right block), then the bijection

W K × K W →W, (v, u) 7→ vu

restricts to a bijection [1,wK ]L ×[1, Kw]L → [1, w]L .
Similarly, if J is a left block (or more generally if Jw= J ′w with J ′ a left block),

then the bijection
WJ × JW →W, (u, v) 7→ uv

restricts to a bijection [1, wJ ]R ×[1, Jw]R→ [1, w]R (see Figure 1).

Proof. By Proposition 3.6 we know that, if K is a right block, then there exists a
bijection φ : K→ J such that wK sk = sφ(k)wK . Hence the map y 7→wK y induces
a skew-isomorphism between [1, Kw]L and [wK , w]L , where an edge k is mapped
to edge φ(k). It follows in particular that uv ≤L w

K v ≤L w
K

Kw = w for any
u ∈ [1, wK ]L and v ∈ [1, Kw]L , as desired.

Assume now that K is not a block, but wK = wK ′ with K ′ a block. Then,
[1, wK ]L =[1, wK ′]L and [1, Kw]L =[1, K ′w]L and we are reduced to the previous
case.

The second statement can be proved in the same fashion. �

Due to Proposition 3.7, we also say that [1, v]R tiles [1, w]R if v= Jw for some
left block J (or equivalently v =wK for some right block K ).

Proposition 3.8. Let w ∈ W and K be right reduced with respect to w. Then, the
following are equivalent:

(i) K is a reduced right block of w.

(ii) wK ≤L w.

The analogous statement can be made for left blocks.

See also Proposition 6.7 for yet another equivalent condition of reduced blocks.

Proof of Proposition 3.8. If K is a right block, then by Proposition 3.6 we have
wK = Jw, where J is the associated left block. In particular,wK = Jw ≤L w.

The converse statement follows from Lemma 3.3 and Proposition 3.6. �
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Example 3.9. Forw=w0, any K ⊆ I is a reduced right block; of coursewK
0 ≤L w0

and Kw0 is the maximal element of the parabolic subgroup WK = K W . The cutting
pointwK vw is the maximal element of the right descent class for the complement
of K .

The associated left block is given by J = φ(K ), where φ is the automorphism
of the Dynkin diagram induced by conjugation by w0 on the simple reflections.
The tiling corresponds to the usual decomposition of W into right WK cosets, or
of W into left WJ cosets.

3c. Blocks of permutations. In this section we illustrate the notion of blocks and
cutting points introduced in the previous section for type A. We show that, for a
permutation w ∈Sn , the blocks of Definition 3.5 correspond to the usual notion of
blocks of the permutation matrix of w (or unions thereof), and the cutting points
wK for right blocks K correspond to putting the identity in those blocks.

A matrix-block of a permutationw is an interval [k ′, k ′+1, . . . , k] that is mapped
to another interval. Pictorially, this corresponds to a square submatrix of the ma-
trix of w that is again a permutation matrix (that of the associated permutation).
For example, the interval [2, 3, 4, 5] is mapped to the interval [4, 5, 6, 7] by the
permutation w = 36475812 ∈ S8, and is therefore a matrix-block of w with
associated permutation 3142. Similarly, [7, 8] is a matrix-block with associated
permutation 12:

•
•

•
•

•
•

•
•

For any permutation w, the singletons [i] and the full set [1, 2, . . . , n] are always
matrix-blocks; the other matrix-blocks of w are called proper. A permutation
with no proper matrix-block, such as 58317462, is called simple. See [Nozaki
et al. 1995; Albert et al. 2003; Albert and Atkinson 2005] for a review of simple
permutations. Simple permutations are also strongly related to dimension 2 posets.

A permutation w ∈ Sn is connected if it does not stabilize any subinterval
[1, . . . , k] with 1 ≤ k < n, that is, if w is not in any proper parabolic subgroup
Sk ×Sn−k . Pictorially, this means that there are no diagonal matrix-blocks. A
matrix-block is connected if the corresponding induced permutation is connected.
In the example above, the matrix-block [2, 3, 4] is connected, but the matrix-block
[7, 8] is not.

Proposition 3.10. Let w ∈Sn . The right blocks of w are in bijection with disjoint
unions of (nonsingleton) matrix-blocks for w; each matrix-block with column set
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[i, i+1, . . . , k] contributes {i, i+1, . . . , k−1} to the right block; each matrix-block
with row set [i, i + 1, . . . , k] contributes {i, i + 1, . . . , k− 1} to the left block.

In addition, trivial right blocks correspond to unions of identity matrix-blocks.
Also, reduced right blocks correspond to unions of connected matrix-blocks.

Proof. Suppose w ∈ Sn with a disjoint union of matrix-blocks with consecutive
column sets [i1, . . . , k1] up to [i`, . . . , k`]. Set K j = {i j , . . . , k j −1} for 1≤ j ≤ `
and K = K1 ∪ · · · ∪ K`. Define similarly J according to the rows of the blocks.

Then multiplyingw on the right by some element of WK permutes some columns
of w, while stabilizing each block. Therefore, the same transformation can be
achieved by some permutation of the rows stabilizing each block, that is, by mul-
tiplication of w on the left by some element of WJ . Hence, using symmetry,
WJw = wWK , that is, J and K are corresponding left and right blocks for w.

Conversely, if K is a right block of w, then wK maps each αk with k ∈ K to
another simple root by Proposition 3.6. But then, splitting K = K1∪ · · ·∪ K` into
consecutive subsets with K j = {i j , . . . , k j − 1}, the permutation wK must contain
the identity permutation in each matrix-block with column indices [i j , . . . , k j ].
This implies that w itself has matrix-blocks with column indices [i j , . . . , k j ] for
1≤ j ≤ `.

Note that, in the described correspondence, wK = w if and only if all matrix-
blocks contain the identity. This proves the statement about trivial right blocks.

A reduced right block K has the property that wK ′ 6= wK for every K ′ ⊂ K .
This implies that no matrix-block is in a proper parabolic subgroup, and hence they
are all connected. �

Example 3.11. As in Figure 1, consider the permutation 4312, whose permutation
matrix is

•
•
•
•

The reduced (right)-blocks are K = {}, {1}, {2, 3}, and {1, 2, 3}. The cutting points
are 4312, 3412, 4123, and 1234, respectively. The corresponding left blocks are
J ={}, {3}, {1, 2} and {1, 2, 3}, respectively. The nonreduced (right) blocks are {3}
and {1, 3}, as they are respectively equivalent to the blocks {} and {1}. The trivial
blocks are {} and {3}.
Example 3.12. In general, condition (iii) of Proposition 3.6 is only a necessary, but
not sufficient condition for K to be a block. For example, for w = 43125 (similar
to 4312 of Example 3.11, but embedded in S5), J ={3, 4}, and K ={1, 4}, one has
Jw=wK yet neither J nor K are blocks. On the other hand (iii) of Proposition 3.6
becomes both necessary and sufficient for reduced blocks.
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1234

1324

3124 1342

3142

3412

1243

1423

4123 1432

4132

4312

1234

1324 1243

3124 1342 1423

3142 1432 4123

3412 4132

4312

Figure 1. Two pictures of the interval [1234, 4312]R in right order
in S4 illustrating its proper tilings, for J := {3} and J := {1, 2},
respectively. The thick edges highlight the tiling. The circled
permutations are the cutting points, which are at the top of the
tiling intervals. Blue, red, green lines correspond to s1, s2, s3,
respectively. See Section 6d for the definition of the orientation of
the edges (this is G(4312)); edges with no arrow tips point in both
directions.

Remark 3.13. It is obvious that the union and intersection of overlapping (possibly
with a trivial overlap) matrix-blocks in Sn are again matrix-blocks; we will see in
Proposition 3.22 that this property generalizes to all types.

Problem 3.14. Fix J ⊆ {1, 2, . . . , n−1} and enumerate the permutations w ∈Sn

for which J is a left block.

3d. The cutting poset. In this section, we show that (W,v) indeed forms a poset.
We start by showing that for a fixed u ∈W , the set of elements w such that u vw
admits a simple description. Recall that for J ⊆ I , we denote by sJ the longest
element of WJ . Proposition 3.6 suggests the following definition.

Definition 3.15. Let u ∈ W . We call k ∈ I a short right nondescent (or j ∈ I a
short left nondescent) of u if there exists j ∈ I (respectively k ∈ I ) such that

s j u = usk,

where the product is reduced (that is, j and k are nondescents). An equivalent con-
dition is that u maps the simple root αk to a simple root (respectively the preimage
of α j is a simple root).

Set further

Uu := uWK = [u, usK ]R =WJ u = [u, sJ u]L ,



The biHecke monoid of a finite Coxeter group 619

where K := K (u) and J := J (u) are the sets of short right and left, respectively,
nondescents of u.

Pictorially, one takes left and right order on W and associates to each vertex u the
translate Uu above u of the parabolic subgroup generated by the short nondescents
of u, which correspond to the simultaneous covers of u in both left and right order.

Example 3.16. In type A, i is short for u ∈ Sn if u(i + 1) = u(i)+ 1, that is,
there is a 2×2 identity block in columns (i, i +1) of the permutation matrix of u.
Furthermore Uu is obtained by looking at all identity blocks in u and replacing
each by any permutation matrix.

The permutation 4312 of Example 3.11 has a single nondescent 3 that is short,
and U4312 = {4312, 4321}.
Proposition 3.17. Uu is the set of all w such that u v w.

In particular, it follows that

• if u ≤R v ≤R w and u v w, then u v v; and

• if u v w and u v w′, then u v w∨R w
′.

Proof. Note that w is in Uu if and only if there exists K such that K ⊆ K (u) and
wK = u. By Proposition 3.6, this is equivalent to the existence of a block K such
that wK = u, that is, u v w. �

The following related lemma is used to prove that (W,v) is a poset.

Lemma 3.18. If u v w, then the set of short nondescents of w is a subset of the
short nondescents of u, namely K (w)⊆ K (u).

Proof. Let k ∈ K (w), so that wsk = s jw for some j ∈ I and both sides are reduced.
It follows from Lemma 3.4 that there exists k ′ ∈ K (w) such that s j u = usk′ and
both sides are reduced. Hence k ′ ∈ K (u). Since the map k 7→ k ′ is injective it
follows that K (w)⊆ K (u). �

Theorem 3.19. (W,v) is a subposet of both left and right order.

Proof. The relation v is reflexive since v is a cutting point of v with right block ∅;
hence vv v. Applying Proposition 3.6, it is a subrelation of left and right order: If
vvw then v=wK ≤R w for some K and v= Jw≤L w for some J . Antisymmetry
follows from the antisymmetry of left (or right) order.

For transitivity, let v vw and w v z. Then v =wK and w = zK ′ for some right
block K of w and K ′ of z. We claim that v = zK∪K ′ with K ∪ K ′ a right block
of z. Certainly k 6∈DR(v) for k ∈ K since v =wK . Since w= zK ′ with K ′ a block
of z, all k ′ ∈ K ′ are short nondescents of w and hence by Lemma 3.18 also short
nondescents of v. This proves the claim. Therefore v v z. �
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Example 3.20. The cutting poset for S3 and S4 is given in Figure 2. As we can
see on those figures, the cutting poset is not the intersection of the right and left
order since w0 is maximal for left and right order but not for cutting poset.

3e. Lattice properties of intervals. In this section we show that the set of blocks
and the set of cutting points {u | u v w} of a fixed w ∈ W are endowed with the
structure of distributive lattices (see Theorem 3.26).

We begin with a lemma that gives some properties of blocks that are contained
in each other.

Lemma 3.21. Fix w ∈W . Let K ⊆ K ′ be two right blocks of w and J ⊆ J ′ be the
corresponding left blocks, so that

WJw = wWK , WJ ′w = wWK ′,
Jw = wK v w, and J ′w = wK ′ v w.

Then,

(i) wK ′ ≤R w
K and wK ′ ≤L w

K ,

(ii) K ′ is a right block of wK and wK ′ v wK ,

(iii) K is a right block of K ′w and K ′w
K v K ′w.

Furthermore K is reduced for K ′w if and only if it is reduced for w.

The same statements hold for left blocks.

Proof. Part (i) holds becausewK ′ = (wK )K ′ ≤R w
K ≤R w, and similarly on the left.

Part (ii) is a trivial consequence of (i) and Proposition 3.17.
For (iii), first note that (K ′w)

K = K ′(w
K ), so that the notation K ′w

K is unam-
biguous. Consider the bijection φ from K ′ to J ′ of Proposition 3.6, and note that
WJw

K ′ = wK ′Wφ−1(J ). Therefore,

wK ′
K ′wWK = wWK =WJ w =WJ w

K ′
K ′w = wK ′Wφ−1(J ) K ′w.

Simplifying by wK ′ on the left, one obtains that

K ′w WK =Wφ−1(J ) K ′w,

proving that K is also a block of K ′w. The reduction statement is trivial. �

We saw in Remark 3.13 that the set of blocks is closed under unions and inter-
sections in type A. This holds for general type.

Proposition 3.22. The set BR(w) (or BL(w)) of right (respectively left) blocks is
stable under union and intersection. Hence, it forms a distributive sublattice of the
Boolean lattice P(I ).
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Proof. Let K and K ′ be right blocks for w ∈W , and J and J ′ be the corresponding
left blocks, so that

wWK =WJw and wWK ′ =WJ ′w.

Take u∈WK∩K ′=WK∩WK ′ . Then,wuw−1 is both in WJ and WJ ′ and therefore
in WJ ∩ WJ ′ = WJ∩J ′ . This implies wWK∩K ′w

−1 ⊆ WJ∩J ′ . By symmetry, the
inclusion w−1WJ∩J ′w⊆WK∩K ′ holds as well, and therefore WJ∩J ′w=wWK∩K ′ .
In conclusion, K ∩ K ′ is a right block, with J ∩ J ′ as corresponding left block.

Now take u ∈WK∪K ′ =〈WK ,WK ′〉, and write u as a product u1u′1u2u′2 · · · u`u′`,
where ui ∈WK and u′i ∈WK ′ for all 1≤ i ≤ `. Then, for each i , wuiw

−1 ∈WJ and
wu′iw

−1 ∈ WJ ′ . By composition, wuw−1 ∈ WJ WJ ′WJ WJ ′ · · ·WJ WJ ′ ⊆ WJ∪J ′ .
Using symmetry as above, we conclude that wWK∪K ′ = WJ∪J ′w. In summary,
K ∪ K ′ is a right block, with J ∪ J ′ as corresponding left block.

Finally, since blocks are stable under union and intersection, they form a sublat-
tice of the Boolean lattice. Any sublattice of a distributive lattice is distributive. �

Next we relate the union and intersection operation on blocks with the meet and
join operations in right and left order. We start with the following general statement
which must be classical, though we have not found it in the literature.

Lemma 3.23. Take w ∈W and J, J ′, K , K ′ ⊆ I . Then

wK∩K ′ = wK ∨R w
K ′ and J∩J ′w = Jw∨L

J ′w.

Proof. We include a proof for the sake of completeness. By Lemma 3.21(i),
wK , wK ′ ≤R w

K∩K ′ , and therefore v ≤R w
K∩K ′ , where v =wK ∨R w

K ′ . Suppose
that v has a right descent k ∈ K ∩ K ′. Then vsk is still bigger than wK and wK ′ in
right order, a contradiction to the definition of v. Hence wK∩K ′ = wK ∨R w

K ′ , as
desired. The statement on the left follows by symmetry. �

Corollary 3.24. Takew∈W . Let K , K ′⊆ I be two right blocks ofw and J, J ′⊆ I
the corresponding left blocks. Then, for the right block K∩K ′ and left block J∩ J ′,

wK∩K ′ = J∩J ′w = wK ∨R w
K ′ = Jw∨L

J ′w.

The analogous statement of Lemma 3.23 for unions fails in general: Take for
examplew=4231 and K ={3} and K ′={1, 2}, so thatwK =4213 andwK ′=2341;
then wK∪K ′ = 1234, but wK ∧R w

K ′ = 2134. However, it holds for blocks:

Lemma 3.25. Take w ∈W . Let K , K ′ ⊆ I be two right blocks of w and J, J ′ ⊆ I
the corresponding left blocks. Then, for the right block K∪K ′ and left block J∪ J ′,

wK∪K ′ = J∪J ′w = wK ∧R w
K ′ = Jw∧L

J ′w.

Furthermore, K ∪ K ′ is reduced whenever K and K ′ are reduced, and similarly
for the left blocks.
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Proof. By symmetry, it is enough to prove the statements for right blocks.
By Lemma 3.21(i), wK∪K ′ ≤R w

K , wK ′ , and therefore wK∪K ′ ≤R w
K ∧R w

K ′ .
Note that the interval [wK∪K ′, w]R contains all the relevant points: wK , wK ′ ,

and wK ∧Rw
K ′ . Consider the translate of this interval obtained by dividing on the

left by wK∪K ′ , or equivalently by using the map u 7→ K∪K ′u. By Lemma 3.21(iii),
K and K ′ are still blocks of K∪K ′w. From now on, we may therefore assume
without loss of generality that wK∪K ′ = 1. It follows at once that [1, w]R lies in
the parabolic subgroup WK∪K ′ and that J ∪ J ′ = K ∪ K ′.

IfwK∧Rw
K ′ =1=wK∪K ′ , then we are done. Otherwise, let i ∈ K∪K ′= J∪ J ′

be the first letter of some reduced word for wK ∧R w
K ′ . Since wK ∧R w

K ′ is in
the interval [1, wK ]R , i cannot be in J ; by symmetry i cannot be in J ′ either, a
contradiction.

Assume further that K and K ′ are reduced. Then, any k ∈ K appears in any
reduced word for Kw, and therefore in any reduced word for K∪K ′w since Kw ≤L

K∪K ′w. By symmetry, the same holds for k ′ ∈ K ′. Hence K ∪ K ′ is reduced. �

Theorem 3.26. The map K 7→ wK (or J 7→ Jw) defines a lattice antimorphism
from the lattice BR(w) (respectively BL(w)) of right (respectively left) blocks of
w to both right and left order on W .

The set of cutting points for w, which is the image set

{wK | K ∈BR(w)} = {Jw | J ∈BL(w)}
of the previous map, is a distributive sublattice of right (respectively left) order.

Proof. The first statement is the combination of Lemmas 3.23 and 3.25. The
second statement follows from Proposition 3.22, since the quotient of a distributive
sublattice by a lattice morphism is a distributive lattice. �

Corollary 3.27. Every interval of (W,v) is a distributive sublattice and an in-
duced subposet of both left and right order.

Proof. Take an interval in (W,v); without loss of generality, we may assume that
it is of the form [1, w]v= {wK | K ∈RBR(w)}. The interval [1, w]v is not only a
subposet of left (respectively right) order, but actually the induced subposet; indeed
for K and K ′ right reduced blocks, and J and J ′ the corresponding left blocks,

wK ≤L w
K ′ ⇐⇒ wK ≤R w

K ′ ⇐⇒ J ′ ⊆ J ⇐⇒ K ′ ⊆ K ⇐⇒ wK ≤v wK ′ .

Therefore, using Theorem 3.26, it is a distributive sublattice of left (respectively
right) order. �

Let us now consider the lower covers in the cutting poset for a fixedw∈W . They
correspond to nontrivial blocks J that are minimal for inclusion, and in particular
reduced.
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Lemma 3.28. Each minimal nontrivial (left) block J for w ∈ W contains at least
one element which is in no other minimal nontrivial block for w.

Proof. Assume otherwise. Then, J is the union of its intersections with the other
nontrivial blocks. Each such intersection is necessarily a trivial block, and a union
of trivial blocks is a trivial block. Therefore, J is a trivial block, a contradiction. �

Corollary 3.29. The semilattice of unions of minimal nontrivial blocks for a fixed
w ∈W is free.

Proof. This is a straightforward consequence of Lemma 3.28. Alternatively, this
property is also a direct consequence of Corollary 3.27, since it holds in general
for any distributive lattice. �

3f. Index sets for cutting points. Recall that by Theorem 3.26 the cutting points
of w form a distributive lattice. Hence, by Birkhoff’s representation theorem, they
can be indexed by some collection of subsets closed under unions and intersections.
We therefore now aim at finding a suitable choice of indexing scheme for the cutting
points of w. More precisely, for each w, we are looking for a pair (K(w), φ(w)),
where K(w) is a subset of some Boolean lattice (typically P(I )) such that K(w)

ordered by inclusion is a lattice, and

φ(w) : K(w)→ [1, w]v
is an isomorphism (or antimorphism) of lattices.

Here are some of the desirable properties of this indexing:

(1) The indexing gives a Birkhoff representation of the lattice of cutting points of
w. Namely, K(w) is a sublattice of the chosen Boolean lattice, and unions and
intersections of indices correspond to joins and meets of cutting points.

(2) The isomorphism φ(w) is given by the map J 7→ Jw. In that case the choice
amounts to defining a section of those maps.

(3) The indexing generalizes the usual combinatorics of descents.

(4) The indices are blocks: K(w) ⊆BL(w).

(5) We may actually want to have two indexing sets K(w) and K(w), one on the
left and one on the right, with a natural isomorphism between them.

(6) The index of u in K(w) does not depend on w (as long as u is a cutting point
of w). One may further ask for this index to not depend on W , so that the
indexing does not change through embedding of parabolic subgroups.

Unfortunately, there does not seem to be an ideal choice satisfying all of these
properties at once, and we therefore propose several imperfect alternatives.
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3f1. Indexing by reduced blocks. The first natural choice is to take reduced blocks
as indices; then, K(w)=RBR(w) (and similarly J(w)=RBL(w) on the left). This
indexing scheme satisfies most of the desired properties, except that it does not
provide a Birkhoff representation, and depends on w.

Remark 3.30. By Lemma 3.25, if K , K ′ ⊆ I are reduced right blocks for w, then
K ∪ K ′ is also reduced. However, this is not necessarily the case for K ∩ K ′:
consider for example the permutation w = 4231, K = {1, 2} and K ′ = {2, 3}; then
K ∩ K ′ = {2} is a block which is equivalent to the reduced block {}: 4231{2} =
4231= 4231{}.

The union K ∪ K ′ of two blocks may be reduced even when the blocks are not
both reduced. Consider for example the permutation w = 4312 as in Figure 1.
Then K = {1, 3} and K ′ = {2, 3} are blocks and their union K ∪ K ′ = {1, 2, 3} is
reduced, yet K is not reduced.

Proposition 3.31. The poset (RBR(w),⊆) of reduced right blocks is a distributive
lattice, with the meet and join operation given respectively by

K ∨ K ′ = K ∪ K ′ and K ∧ K ′ = red(K ∩ K ′) ,

where, for a block K , red(K ) is the unique largest reduced block contained in K .
The map φ(w) : K 7→ wK restricts to a lattice antiisomorphism from the lattice

BR(w) of reduced right blocks of w to [1, w]v.
The same statements hold on the left.

Proof. By Proposition 3.22 and Lemma 3.25, RBR(w) is a dual Moore family of
the Boolean lattice of I , or even of BR(w). Therefore, using Section 2a, it is a
lattice, with the given join and meet operations.

The lattice antiisomorphism of property follows from Lemma 3.25 and the co-
incidence of right order and v on [1, w]v (Theorem 3.26). �

3f2. Indexing by largest blocks. The indexing by reduced blocks corresponds to
the section of the lattice morphism K 7→ wK by choosing the smallest block K
in the fiber of a cutting point u. Instead, one could choose the largest block in
the fiber of u, which is given by the set of short nondescents of u. This indexing
scheme is independent of w. Also, by the same reasoning as above, the indexing
sets J(w) come endowed with a natural lattice structure. However, it does not give
a Birkhoff representation: The meet is given by intersection, but the join is not
given by union (take w= 2143; its cutting points are 1234, 1243, 2134, and 2143,
indexed respectively by {1, 2, 3}, {1}, {3}, and {}).
3f3. Birkhoff’s representation using nonblocks. We now relax the condition for
the indices to be blocks. That is, we consider K 7→ wK as a function from the
full Boolean lattice P(I ) to the minimal coset representatives of w. Beware that
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this map is no longer a lattice antimorphism; yet, the fiber of any u still admits a
largest set K =DR(u)⊆ I , which is the complement of the right descent set of u.
One can define a similar indexing on the left by J = DL(u). These indexings are
independent of w and provide a Birkhoff representation for the lattice of cutting
points (see Proposition 3.34). Define

DBL(w)= {DL(u) | u v w} and DBR(w)= {DR(u) | u v w} . (3-1)

Remark 3.32. Since DL(u) and DR(u) are not necessarily blocks anymore, the
bijection between DL(u) and DR(u) is no longer induced by a bijection at the level
of descents: For example, for u = 3142, one has DL(u)= {1, 3} and DR(u)= {2}.
Remark 3.33. Using DR(u) instead of DR(u) would give an isomorphism instead
of an antiisomorphism, and make the indexing further independent of W , at the
price of slightly cluttering the notation wK for cutting points.

Proposition 3.34 (Birkhoff representation for the lattice of cutting points). The
set DBR(w) of Equation (3-1) is a sublattice of the Boolean lattice, and the maps
K 7→ wK and u 7→ DR(u) form a pair of reciprocal lattice antiisomorphisms with
the lattice of cutting points of w. The same statement holds on the left.

The proof of this proposition uses the following property of left and right order
(recall that [1, w]v is a sublattice thereof).

Lemma 3.35 [Le Conte de Poly-Barbut 1994, Lemme 5]. The maps

(W,≤L)→ P(I ), w 7→ DR(w), and (W,≤R)→ P(I ), w 7→ DL(w)

are surjective lattice morphisms.

Proof of Proposition 3.34. By construction, DL is a section of K 7→wK , and these
maps form a pair of reciprocal bijections between DBL(w) and the cutting points
of w. Using Lemma 3.35, the map DL is a lattice antimorphism. Therefore its
image set DBR(w) is a sublattice of the Boolean lattice. The argument on the left
is the same. �

3g. A w-analogue of descent sets. For each w ∈W , we now provide a definition
of aw-analogue on the interval [1, w]R of the usual combinatorics of (non)descents
on W . From now on, we assume that we have chosen an indexation scheme so that
the cutting points of w are given by (wK )K∈K(w) or equivalently by (Jw)J∈J(w) .

Lemma 3.36. Take a cutting point of w, and write it as wK = Jw for some
J, K ⊆ I , which are not necessarily blocks. Then

(i) for u ∈ [1, w]R , u ∈ [1, Jw]R if and only if DL(u)∩ J =∅;

(ii) for u ∈ [1, w]L , u ∈ [1, wK ]L if and only if DR(u)∩ K =∅.
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Proof. This is a straightforward corollary of Proposition 3.7: Any element u of
[1, w]R can be written uniquely as a product u′v with u′ ∈ WJ and v ∈ [1, Jw]R .
So u is in [1, Jw]R if and only if u′ = 1, which in turn is equivalent to v having no
descents in J . This proves (i). The argument for (ii) is analogous. �

Example 3.37. For w = w0, Jw is the maximal element of a left descent class,
and [1, Jw]R gives all elements of W whose left descent set is a subset of the left
descent set of w.

Definition 3.38 (w-nondescent sets). For u ∈ [1, w]R , define J (w)(u) to be the in-
dex J ∈J(w) of the lowest cutting point Jw such that u ∈ [1, Jw]R (or the equivalent
condition of Lemma 3.36). Define similarly K (w)(u) as the index in K(w) of this
cutting point.

Example 3.39. When w = w0, J (w0)(u) and K (w0)(u) are respectively the sets
DL(u) and DR(u) of left and right nondescents of u.

Problem 3.40. Given J , describe all the elements w ∈ W such that J is a left
block. This essentially only depends on Jw.

3h. Properties of the cutting poset. In this section we study the properties of the
cutting poset (W,v) of Theorem 3.19 for the cutting relation v introduced in
Definition 3.5 (see also Figure 2). The following theorem summarizes the results.

Theorem 3.41. (W,v) is a meet-distributive meet-semilattice with 1 as minimal
element, and a subposet of both left and right order.

Every interval of (W,v) is a distributive sublattice and a sublattice of both left
and right order.

Let w ∈ W and denote by Pred(w) the set of its v-lower covers. Thanks to
meet-distributivity, the meet-semilattice Lw generated by Pred(w) using ∧v (or
equivalently ∧L , ∧R if viewed as a sublattice of left or right order) is free, that is,
isomorphic to a Boolean lattice.

In particular, the Möbius function of (W,v) is given by µ(u, w) = (−1)r(u,w)

if u ∈ Lw and 0 otherwise, where r(u, w) := |{v ∈ Pred(w) | u v v}|.
This Möbius function is used in Section 6d to compute the size of the simple

modules of KM .
Since (W,v) is almost a distributive lattice, Birkhoff’s representation theorem

suggests that we embed it in the distributive lattice O(I ((W,v))) of the lower sets
of its join-irreducible elements (note that a block is join-irreducible if there is only
one minimal nontrivial block below it).

Problem 3.42. Describe the set I (W,v) of join-irreducible elements of (W,v).
Problem 3.43. Determine the distributive lattice associated with the cutting poset
from the join-irreducibles, via Birkhoff’s theory.
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The join-irreducible elements of (Sn,v), for n small, are counted by the se-
quence 0, 1, 4, 16, 78, 462, 3224. Figure 2 seems to suggest that they form a tree,
but this already fails for n = 5. We now briefly comment on the simplest join-
irreducible elements, namely the immediate successors w of 1 in the cutting poset.
Equivalent statements are that w admits exactly two reduced blocks {} and B,
possibly with B = I , or that the simple module Sw is of dimension |[1, w]R| − 1.
For a Coxeter group W , we denote by S(W ) the set of elements w 6= 1 having no
proper reduced blocks, and T (W ) those having exactly two reduced blocks. Note
that T (W ) is the disjoint union of the S(WJ ) for J ⊆ I .

Example 3.44. In type A, a permutationw∈ S(Sn) is uniquely obtained by taking
a simple permutation, and inflating each 1 of its permutation matrix by an identity
matrix. An element of T (Sn) has a block diagonal matrix with one block in S(Sm)

for m≤n, and n−m 1×1 blocks. This gives an easy way to construct the generating
series for S(Sn)n∈N and for T (Sn)n∈N from that of the simple permutations given
in [Albert and Atkinson 2005].

We now turn to the proof of Theorem 3.41.

Lemma 3.45. (W,v) is a partial join-semilattice. That is, when the join exists, it
is unique and given by the join in left and in right order:

v∨v v′ = v∨L v
′ = v∨R v

′.

Proof. Take v and v′ with at least one common successor. Applying Corollary 3.27
to the interval [1, w]v for any such common successor w, one obtains v, v′ v
v ∨R v

′ = v ∨L v
′ v w. Therefore, v ∨R v

′ = v ∨L v
′ is the join of v and v′ in the

cutting order. �

Lemma 3.46. (W,v) is a meet-semilattice. That is, for v, v′ ∈W

v∧v v′ =
∨

uvv,v′
u,

where
∨

is the join for the cutting order (or equivalently for left or right order). If
further v and v′ have a common successor, then

v∧v v′ = v∧R v
′ = v∧L v

′.

Proof. The first part follows from a general result. Namely, for any poset, the fol-
lowing statements are equivalent (see for example [Pouzet 2013, Proposition 7.3]):

(i) Any bounded nonempty part has an upper bound.

(ii) Any bounded nonempty part has a lower bound.
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Here we prove again this fact for the sake of self-containment. Take u and u′ two
common cutting points for v and v′. Then, using Lemma 3.45, their join exists and
u∨v u′ = u∨R u′ = u∨L u′ is also a cutting point for v and v′. The first statement
follows by repeated iteration over all common cutting points.

Now assume that v and v′ have a common successor w. Then by applying
Corollary 3.27 to the interval [1, w]v, we find that v∧R v

′ = v∧L v
′ is the meet of

v and v′ in the cutting order. �

Proof of Theorem 3.41. (W,v) is a meet-semilattice by Lemma 3.46. Meet-
distributivity follows from Corollary 3.29. The argument is in fact general: Any
poset with a minimal element 1 such that all intervals [1, x] are distributive lattices
and such that any two elements admit either a join or no common successor is
a meet-distributive meet-semilattice (see [Edelman 1986] for literature on such).
The end of the first statement is Theorem 3.19.

The statement about intervals is Corollary 3.27.
The v-lower covers of an element w correspond to the nontrivial blocks of w

that are minimal for inclusion. The top part Lw of an interval [1, w]v is further
described in Corollary 3.29, through the bijection φ(w) between blocks of w and
the interval [1, w]v of Proposition 3.31. The value of µ(u, w) depends only on this
interval. The remaining statements follow using Rota’s crosscut theorem [1964] on
Möbius functions for lattices; see also [Blass and Sagan 1997, Theorem 1.3]. �

4. Combinatorics of M(W)

In this section we study the combinatorics of the biHecke monoid M(W ) of a finite
Coxeter group W . In particular, we prove in Sections 4a and 4b that its elements
preserve left order and Bruhat order, and derive in Section 4c properties of their
image sets and fibers. In Sections 4d and 4e, we prove the key combinatorial
ingredients for the enumeration of the simple modules of KM(W ) in Section 7:
M(W ) is aperiodic and its J-classes of idempotents are indexed by W . Finally, in
Section 4f we study Green’s relations as introduced in Section 2e and involutions
on M(W ) in Section 4g.

4a. Preservation of left order. Recall that M(W ) is defined by its right action on
elements in W by (1-5) and (1-6). The following key proposition, illustrated in
Figure 3, states that it therefore preserves properties on the left.

Proposition 4.1. Take f ∈ M(W ), w ∈ W , and j ∈ I . Then, (s jw). f is either
w. f or s j (w. f ).

The proof of Proposition 4.1 is a consequence of the associativity of the 0-
Hecke monoid and relies on the following lemma, which is a nice algebraic (partial)
formulation of the exchange property [Björner and Brenti 2005, Section 1.5].
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Figure 3. A partial picture of the graph of the element f :=
π1π3π2 of the monoid M(S4). On both sides, the underlying
poset is left order of S4 (with 1 at the bottom, and the same color
code as in Figure 1); on the right, the bold dots depict the image
set of f . The arrows from the left to the right describe the image
of each point along some chain from 1 to w0.

Lemma 4.2. Let w ∈W and i, j ∈ I such that j 6∈ DL(w). Then

(s jw).πi =
{
w.πi if j ∈ DL(w.πi ),
s j (w.πi ) otherwise.

The same result holds with πi replaced by π i .

Proof. Recall that w.πv = 1 .(πwπv) for any w, v ∈W . Set w′ = w.πi . Then

(s jw).πi = 1.(πs jwπi )= 1.((π jπw)πi )= 1 .(π j (πwπi ))= 1 .(π jπw′)

=
{

1 .πw′ = w′ if j ∈ DL(w
′),

1 .πs jw′ = s jw
′ otherwise.

The result for π i follows from Remark 1.1 and the fact that w0s j = s j ′w0 for some
j ′ ∈ I by Example 3.9 and Lemma 3.3 with w = w0 and K = { j}. �

Proof of Proposition 4.1. Any element f ∈ M(W ) can be written as a product of
πi and π i . Lemma 4.2 describes the action of πi and π i on the Hasse diagram of
left order. By induction, each πi and π i in the expansion of f satisfies all desired
properties, and hence so does f (the statement holds trivially for the identity). �

Proposition 4.3. For f ∈ M(W ), the following holds.

(i) f preserves left order:

w ≤L w
′ implies w. f ≤L w

′ . f for w,w′ ∈W .

(ii) Take w ≤L w
′ in W , and consider a maximal chain

w. f = v1
i1−→ v2

i2−→ · · · ik−1−−→ vk = w′ . f.
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Then, there is a maximal chain

w = u1,1→ · · · → u1,`1

i1−→ u2,1→ · · · → u2,`2

i2−→ · · ·
· · · ik−1−−→ uk,1→ · · · → uk,`k = w′, (4-1)

such that u j,l . f = v j for all 1≤ j ≤ k and 1≤ l ≤ ` j .

(iii) f is length contracting; that is, for w ≤L w
′

`(w′ . f )− `(w. f )≤ `(w′)− `(w).
Furthermore, when equality holds, (w′ . f )(w. f )−1 = w′w−1.

(iv) Let J = [a, b]L be an interval in left order. Then the image of J under f
denoted by J . f has a . f and b . f as minimal and maximal element, respec-
tively. Furthermore, J . f is connected. If `(b . f )− `(a . f ) = `(b)− `(a),
then J . f is isomorphic to J , that is, x . f = (xa−1)(a . f ) for x ∈ J .

Proof. Parts (i) and (ii) are direct consequences of Proposition 4.1, using induction.
Part (iii) follows from (ii).
Part (iv) follows from (i), (ii), and (iii) applied to a ≤L x for all x ∈ [a, b]L . �

4b. Preservation of Bruhat order. Recall the following well-known property of
Bruhat order of Coxeter groups.

Proposition 4.4 (lifting property [Björner and Brenti 2005, p. 35]). Suppose u <B

v and i ∈ DR(v) but i 6∈ DR(u). Then, u ≤B vsi and usi ≤B v.

The next proposition is a consequence of the lifting property.

Proposition 4.5. The elements f of M(W ) preserve Bruhat order. That is, for
u, v ∈W

u ≤B v implies u . f ≤B v . f.

Proof. It suffices to show the property for πi and π i since they generate M(W ).
For these, the claim of the proposition is trivial if i is a right descent of u, or i is
not a right descent of v. Otherwise, we can apply the lifting property:

u .πi = usi ≤B v = v .πi ,

u .π i = u ≤B vsi = v .π i . �

Remark 4.6. By Lemma 2.3, the preimage of a point is a convex set, but need
not be an interval. For example, the preimage of s1s3 ∈ S4 (or 2143 in one-line
notation) of f = π1π2π1π3π2π3π1π2 is

{2413, 2341, 4213, 3412, 3241, 2431, 4312, 4231, 3421, 4321},
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which in Bruhat order has two maximal elements 2413 and 2341 and hence is not
an interval.

Corollary 4.7 (of Proposition 4.3). Let f ∈ M(W ).

(i) If 1 . f = 1, then f is regressive for Bruhat order: w. f ≤B w for all w ∈W .

(ii) If w0 . f =w0, then f is extensive for Bruhat order: w. f ≥B w for all w ∈W .

Proof. First suppose that 1 . f =1. Letw. f = sik · · · si1 be a reduced decomposition
of w. f . This defines a maximal chain

1 . f = 1= v0
i1−→ · · · ik−2−−→ vk−2

ik−1−−→ vk−1
ik−→ vk = w. f

in left order. By Proposition 4.3(ii) there is a larger chain from 1 to w so that
there is a reduced word for w which contains sik · · · si1 as a subword. Hence by the
subword property of Bruhat order w. f ≤B w. This proves (i).

Now letw0 . f =w0. By arguments similar to the above, constructing a maximal
chain from w. f to w0 . f in left order, one finds that w0(w. f )−1 ≤B w0w

−1.
By [Björner and Brenti 2005, Proposition 2.3.4], the map v 7→ w0v is a Bruhat
antiautomorphism and by the subword property v 7→v−1 is a Bruhat automorphism.
This implies w ≤B w. f as desired for (ii). �

4c. Fibers and image sets. Viewing elements of the biHecke monoid M(W ) as
functions on W , we now study properties of their fibers and image sets.

Proposition 4.8. (i) The image set im( f ) for any f ∈ M(W ) is connected (see
Definition 2.1) with a unique minimal and maximal element in left order.

(ii) The image set of an idempotent in M(W ) is an interval in left order.

Proof. Part (i) follows immediately from Proposition 4.3(iv) with J = [1, w0]L .
For part (ii), we let e ∈ M(W ) be an idempotent with image set im(e). By

Proposition 4.3(iv) with J = [1, w0]L , we have that 1 .e and w0 .e are the minimal
and maximal, respectively, elements of im(e). Then by Proposition 4.3(ii), for
every maximal chain in left order between 1 .e and w0 .e, there is a maximal chain
in left order of preimage points. Since e is an idempotent, there must be such a
chain that contains the original chain. Hence all chains in left order between 1 .e
and w0 .e are in im(e), proving that im(e) is an interval. �

Note that the proof above, in particular Proposition 4.3(ii), heavily uses the fact
that the edges in left order are colored.

Definition 4.9. For any f ∈ M(W ), we call the set of fibers of f , denoted by
fibers( f ), the (unordered) set-partition of W associated by the equivalence relation
w ≡ w′ if w. f = w′ . f .
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Proposition 4.10. Take f ∈ M(W ), and consider the Hasse diagram of left order
contracted with respect to the fibers of f . Then, this graph is isomorphic to left
order restricted on the image set.

Proof. See Appendix A on colored graphs. �

Proposition 4.11. Any f ∈ M(W ) is characterized by its set of fibers and 1 . f .

Proof. Fix a choice of fibers. Contract the left order with respect to the fibers. By
Proposition 4.10 this graph has to be isomorphic to the left order on the image set.

Once the lowest element in the image set 1 . f is fixed, this isomorphism is
forced, since by Proposition 4.8(i) the graphs are (weakly) connected, have a
unique minimal element, and there is at most one arrow of a given color leaving
each node. �

Proposition 4.11 makes it possible to visualize nontrivial elements of the monoid
(see Figure 4).
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Figure 4. The elements f = π1, π2, π1π3π2 and π2π1π2π3 of
M(S4). As in Figure 3, the underlying poset on both sides is
left order on S4, and the bold dots on the right sides depict the
image set of f . On the left side, an edge between two elements
of W is thick if they are not in the same fiber. This information
completely describes f ; indeed u = 1 on the left is mapped to the
lowest element of the image set on the right; each time one moves
u up along a thick edge on the left, its image u . f is moved up
along the edge of the same color on the right.
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Recall that a set-partition 3 = {3i } is said to be finer than the set-partition
3′ = {3′i } if for all i there exists a j such that 3i ⊆ 3′j . This is denoted by
3�3′. The refinement relation is a partial order.

For f ∈ M(W ), define the type of f by

type( f ) := type([1 . f, w0 . f ]L)= (w0 . f )(1 . f )−1. (4-2)

The rank of f ∈ M(W ) is the cardinality of the image set im( f ).

Lemma 4.12. Fix f ∈ M(W ). For h = f g ∈ f M(W ),

(1) fibers( f )� fibers(h),

(2) type(h)≤B type( f ),

(3) rank(h)≤ rank( f ).

Furthermore, the following are equivalent:

(i) fibers(h)= fibers( f ),

(ii) rank(h)= rank( f ),

(iii) type(h)= type( f ),

(iv) `(w0 .h)− `(1 .h)= `(w0 . f )− `(1 . f ).

If any, and therefore all, of the above hold, then h is completely determined (within
f M(W )) by 1 .h.

Proof. For f, g ∈ M(W ), the statement fibers( f )� fibers( f g) is obvious.
By Proposition 4.3(iii) and (iv), we know for f, g∈M(W ) that either type( f g)=

type( f ) or `(w0.( f g)) − `(1 .( f g)) < `(w0 . f ) − `(1 . f ). In the latter case by
Proposition 4.5, type( f g) <B type( f ). The second case occurs precisely when
fibers( f ) is strictly finer than fibers( f g), or equivalently rank( f g) < rank( f ).

The last statement, that if fibers(h) = fibers( f ) then h is determined by 1 .h,
follows from Proposition 4.11. �

4d. Aperiodicity. Recall from Section 2e that a monoid M is called aperiodic if
for any f ∈ M , there exists k > 0 such that f k+1 = f k . Note that, in this case,
f ω := f k = f k+1 = · · · is an idempotent.

Proposition 4.13. The biHecke monoid M(W ) is aperiodic.

Proof. From Proposition 4.3(iv), we know that im( f k) has a minimal element ak =
1 . f k and a maximal element bk =w0 . f k in left order. Since im( f k+1)⊆ im( f k),
we have ak+1 ≥L ak and bk+1 ≤L bk . Therefore, both sequences ak and bk must
ultimately be constant.

This implies that, for N big enough, aN and bN are fixed points. Applying
Proposition 4.3(iii) yields that all elements in [aN , bN ]L are fixed points under f .
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It follows successively that im( f N )= [aN , bN ]L , f N = f N+1= · · · , and fix( f )=
[aN , bN ]L . �

Corollary 4.14. The set of fixed points of an element f ∈ M(W ) is an interval in
left order.

Proof. The set of fixed point of f is the image set of f ω, which is an interval in
left order by Proposition 4.8(ii). �

4e. Idempotents. We now study the properties of idempotents in M(W ).

Proposition 4.15. (i) For w ∈W

ew := πw−1w0πw0w

is the unique idempotent such that 1 .ew = 1 and w0 .ew = w. Its image set is
[1, w]L , and it satisfies

u.ew =max≤B

([1, u]B ∩ [1, w]L
)
.

(ii) Similarly, for w ∈W ,
ẽw := πw−1πw

is the unique idempotent with image set [w,w0]L , and it satisfies a dual for-
mula.

(iii) Furthermore,
ea,b := πa−1eba−1πa

is an idempotent with image set [a, b]L .

Proof. (i) Clearly, the image of ew is a subset of [1, w]L . Applying Remark 2.7
shows that [1, w]L is successively mapped bijectively to [w−1w0, w0]L and back to
[1, w]L . So ew is an idempotent with image set [1, w]L . Reciprocally, let f be an
idempotent such that 1 . f =1 andw0 . f =w. Then, by Proposition 4.5, f preserves
Bruhat order and by Corollary 4.7(i), u . f ≤B u for all u ∈ W . Furthermore, by
Proposition 4.8, the image set of f is the interval [1, w]L . Using Proposition 2.4,
uniqueness and the given formula follow.

Statement (ii) is dual to (i) and is proved similarly.
(iii) The image set of eba−1 is [1, ba−1]L ; hence the image set of ea,b is a subset

of [a, b]L . We conclude by checking that [a, b]L is mapped bijectively at each step
πa−1 , eba−1 and πa (see also Remark 2.7), and therefore consists of fixed points. �

Remark 4.16. For f ∈ M(W ), f ev = f eu.ev , where u = w0 . f .

Proof. Use the formula of Proposition 4.15(i). �
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Corollary 4.17. For u, w ∈ W , the intersection [1, u]B ∩ [1, w]L is a ≤L -lower
set with a unique maximal element v in Bruhat order. The maximum is given by
v = u .ew.

4f. Green’s relations. We have now gathered enough information about the com-
binatorics of M(W ) to give a partial description of its Green’s relations, which will
be used in the study of the representation theory of M(W ).

As an example, Figure 5 completely describes Green’s relations L, R, and J for
M(S3). The vertices are the 23 elements of M(S3), each drawn as in Figure 4.
The edges give both the left and right Cayley graph of M(S3); for example, there
are arrows

f
×π1−−→ g if g = f π1 and f

π1×π1−−−→ g if g = f π1 = π1 f.

The picture also highlights the J-classes of M(S3), and the corresponding eggbox
pictures (that is, the decomposition of the J-classes into L and R-classes); namely,
from top to bottom, there is one J-class of size 1 = 1× 1, two J-classes of size
2= 1×2, two J-classes of size 6= 2×3, and one J-class of size 6= 1×6, where
n×m gives the dimension of the eggbox picture. In other words the J-class splits
into n R-classes of size m and also into m L-classes of size n. This example is
specific in that all J-classes are regular.

In the sequel, we describe R-classes for general elements, as well as J-order
on regular elements. In particular, we obtain that the J-classes of idempotents
are indexed by the elements of W , and that J-order on regular classes is given
by left-right order <L R on W . Note that the latter is not a lattice, unlike for the
variety DA (which consists of all aperiodic monoids all of whose simple modules
are dimension 1; see for example [Ganyushkin et al. 2009]).

Proposition 4.18. Two elements f, g ∈ M(W ) are in the same R-class if and only
if they have the same fibers. In particular, the R-class of f is given by

R( f )={h ∈ f M(W ) | rank(h)= rank( f )}= { fu | u ∈ [1, type( f )−1w0]R}, (4-3)

where fu is the unique element of M(W ) such that fibers( fu) = fibers( f ) and
1 . fu = u.

Proof. It is a general easy fact about monoids of functions that elements in the same
R-class have the same fibers (see also Lemma 4.12). Reciprocally, if g has the same
fibers as f , then one can use Remark 2.7 to define g′ = gπ (1 .g)−1π1 . f such that
fibers(g′)=fibers( f ) and 1 .g′= 1 . f . Also by Proposition 4.11, f = g′ ∈ gM(W ),
and similarly, g ∈ f M(W ).

Equation (4-3) follows using Lemma 4.12 and Remark 2.7. �
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Figure 5. The graph of J-order for M(S3), as described on page 636.

Lemma 4.19. Let e and f be idempotents of M(W ) with respective image sets
[a, b]L and [c, d]L . Then, f ≤J e if and only if dc−1 ≤L R ba−1.

In particular, two idempotents e and f are J-equivalent if and only if the inter-
vals [a, b]L and [c, d]L are of the same type: dc−1 = ba−1.
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The properties above extend to any two regular elements (elements whose J-
class contains an idempotent).

Proof. First note that an interval [c, d]L is isomorphic to a subinterval of [a, b]L
if and only dc−1 ≤L R ba−1. This follows from Proposition 2.5 and the fact that
[c, d]L is a subinterval of [a, b]L if and only if [ca−1, da−1]L is a subinterval of
[1, ba−1]L . But then dc−1 is a subfactor of ba−1.

Assume first that dc−1 ≤L R ba−1, and let [c′, d ′]L be a subinterval of [a, b]L
isomorphic to [c, d]L . Using Proposition 2.5, take u, v ∈ M(W ) that induce re-
ciprocal bijections between [c, d]L and [c′, d ′]L . Then, f = f uev, so that f is
J-equivalent to e.

Reciprocally, assume that f =uev with u, v∈M(W ). Without loss of generality,
we may assume that u = ue so that im(u) ⊆ [a, b]L . Set c′ = c .u and d ′ = d .u.
Since f = f f = f uv, and using Proposition 4.3, the functions u and v must
induce reciprocal isomorphisms between [c, d]L and [c′, d ′]L , the latter being a
subinterval of [a, b]L . Therefore, dc−1 ≤L R ba−1.

To conclude, note that a regular element has the same type as any idempotent
in its J-class. �

Corollary 4.20. The idempotents (ew)w∈W form a complete set of representatives
of regular J-classes in M(W ).

Example 4.21. Forw∈W , the idempotents ew and ẽw−1w0 are in the same J-class.
This follows immediately from Lemma 4.19, or by direct computation using the
explicit expressions for ew and ẽw−1w0 in Proposition 4.15:

ew = e2
w = πw−1w0πw0wπw−1w0πw0w = πw−1w0 ẽw−1w0πw0w,

ẽw−1w0 = ẽ2
w−1w0

= πw0wπw−1w0πw0wπw−1w0 = πw0wewπw−1w0 .

Corollary 4.22. The image of a regular element is an interval in left order.

Proof. A regular element has the same type, and same size of image set as any
idempotent in its J-class. �

Remark 4.23. The reciprocal is false: In type B3, the element π1π3π2π1π3π2π1

has the interval [1, s2s3s2]L as image set, but it is not regular. The same holds in
type A4 with the element π2π1π4π3π2π1π3π4π2π3π4.

Problem 4.24. Describe L-classes in general, and L-order, R-order, as well as
J-order on nonregular elements.

4g. Involutions and consequences. Define an involution ∗ on W by

w 7→ w∗ := w0w,
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where w0 is the maximal element of W . Moreover, define the bar map M(W )→
M(W ) as the conjugacy by ∗: For a given f ∈ M(W )

w. f̄ := (w∗ . f )∗ for all w ∈W .

Proposition 4.25. The bar involution is a monoid endomorphism of M(W ) that
exchanges πi and π i .

Proof. This is a consequence of the general fact that for any permutation φ of W ,
conjugation by φ is an automorphism of the monoid of maps from W to itself.
Moreover, it is easy to see that bar exchanges πi and π i , so that it fixes M(W ). �

The previous proposition has some interesting consequences when applied to
idempotents: For any w ∈ W , the bar involution is a bijection from ewM(W ) to
ewM(W ). But ew fixes w0 and sends 1 = w∗0 to w∗, so that ew = ew∗,w0 = ẽw0w.
The latter is in turn J-equivalent to ew0w−1w0 by Example 4.21. This implies the
following result.

Corollary 4.26. The ideals ewM(W ) and ew0w−1w0 M(W ) are in bijection.

5. The Borel submonoid M1(W) and its representation theory

In the previous section, we outlined the importance of the idempotents (ew)w∈W .
A crucial feature is that they live in a “Borel” submonoid M1(W ) ⊆ M(W ) of
elements of the biHecke monoid M(W ) that fix the identity:

M1(W ) := { f ∈ M(W ) | 1 . f = 1}.
In this section we study this monoid and its representation theory, as an inter-

mediate step toward the representation theory of M(W ) (see Section 6). For the
representation theory of M(W ), it is actually more convenient to work with the
submonoid fixing w0 instead of 1:

Mw0(W ) := { f ∈ M(W ) | w0 . f = w0}.
However, since both monoids M1(W ) and Mw0(W ) are isomorphic under the in-
volution of Section 4g and since the interaction of M1(W ) with Bruhat order is
notationally simpler, we focus on M1(W ) in this section.

Note. In the remainder of this paper, unless explicitly stated, we fix a Coxeter
group W and use the shorthand notation M := M(W ), M1 := M1(W ) and Mw0 :=
Mw0(W ).

From the definition it is clear that M1 is indeed a submonoid that contains the
idempotents (ew)w∈W . Furthermore, by Proposition 4.5 and Corollary 4.7 its ele-
ments are both order-preserving and regressive for Bruhat order. In fact, a bit more
can be said.
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Remark 5.1. For w ∈W , w.M1 is the interval [1, w]B in Bruhat order.

Proof. By Corollary 4.7, for f ∈ M1, we have w. f ≤B w. Take reciprocally
v ∈ [1, w]B . Then, using Proposition 4.15, w.ev = v. �

As a consequence of the preservation and regressiveness on Bruhat order, M1

is an ordered monoid with 1 on top. Namely, for f, g ∈ M1, define the relation
f ≤ g if w. f ≤B w.g for all w ∈W . Then, ≤ defines a partial order on M1 such
that f ≤ 1, f g ≤ f and f g ≤ g for all f, g ∈ M1. In other words, M1 is B-trivial
(see [Denton et al. 2010/11, Proposition 2.2], as well as Section 2.5 there) and in
particular J-trivial.

In the next two subsections, we study the combinatorics of M1 and then apply
the general results on the representation theory of J-trivial monoids of [Denton
et al. 2010/11] to M1.

5a. J-order on idempotents and minimal generating set. Recall from Section 2e
that J-order is the partial order ≤J defined by f ≤J g if there exists x, y ∈ M1

such that f = xgy. The restriction of J-order to idempotents has a very simple
description:

Proposition 5.2. For u, v ∈W , the following are equivalent:

euev = eu, u ≤L v,

eveu = eu, eu ≤J ev.

Moreover, (euev)ω = eu∧Lv, where u ∧L v is the meet (or greatest lower bound) of
u and v in left order.

Proof. This follows from [Denton et al. 2010/11, Theorem 3.4, Lemma 3.6] and
Proposition 4.15. �

As a consequence the following definition, which plays a central role in the
representation theory of J-trivial monoids [Denton et al. 2010/11], makes sense.

Definition 5.3. For any element x ∈ M1, define

lfix(x) :=min≤L
{u ∈W | eu x = x} and rfix(x) :=min≤L

{u ∈W | xeu = x} =w0 .x,

the min being taken for the left order.

Interestingly, M1 can be defined as the submonoid of M generated by the idem-
potents (ew)w∈W , and in fact the subset of these idempotents indexed by Grassman-
nian elements (an element w ∈W is Grassmannian if it has at most one descent).

Theorem 5.4. M1 has a unique minimal generating set that consists of the idem-
potents ew where w−1w0 is right Grassmannian.
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In type An−1 this minimal generating set is of size 2n−n (which is the number of
Grassmannian elements in this case [Manivel 2001]).

Proof. Define the length `( f ) of an element f ∈ M as the length of a minimal ex-
pression of f as a product of the generators πi and π i . We now prove by induction
on the length that M1 is generated by {ew | w ∈W }.

Take an element f ∈ M1 of length l. If l = 0 we are done. Otherwise, since
1 . f = 1, an expression of f as a product of the πi and π i contains at least one π i .
Write f =gh where g=πwπ i for somew∈W and h∈M so that `(w)+1+`(h)= l.

Claim. f = ew0(wsi )−1πwh and πwh ∈ M1.

It follows from the claim that `(πwh) < l, and hence since πwh ∈ M1 we can
apply induction to conclude that M1 is generated by {ew | w ∈W }.

Let us prove the claim. By minimality of l, i is not a descent of w (otherwise,
we would obtain a shorter expression for f : f = πwπ i h = πw′πiπ i h = πw′π i h,
where `(w′) < `(w)). Therefore, 1 .g = 1 .(πwπ i ) = w. Since f ∈ M1 it follows
that w.h = 1 and therefore πwh ∈ M1. It further follows that πw−1πw acts trivially
on the image set [w,w0]L of g, and therefore f = gπw−1πwh. Note that gπw−1 =
πwπ iπw−1 = πwπiπ iπw−1 = ew0(wsi )−1 .

By Proposition 5.2, the idempotents of M1 are generated by the meet-irreducible
idempotents ew in J order. Here x is meet-irreducible if and only if x = a or x = b
whenever x = a ∧ b for some a, b ∈ M1. These meet-irreducible elements are
indexed by the elements w of W that are meet-irreducible in left order (or equiva-
lently that have at most one left nondescent, that is, w0w

−1 is right Grassmannian).
The uniqueness of the minimal generating set holds for any J-trivial monoid

with a minimal generating set [Doyen 1984, Theorem 2; Doyen 1991, Theorem 1].
�

Actually one can be much more precise:

Proposition 5.5. Any element f ∈ M1 can be written as a product ew1 · · · ewk ,
where

• w1 >B · · · >B wk is a chain in Bruhat order such that any two consecutive
terms wi and wi+1 are incomparable in left order;

• wi = rfix(ew1 · · · ewi )= lfix(ewi · · · ewk ).

Proof. Start from any expression ew1 · · · ewk for f . We show that if any of the
conditions of the proposition is not satisfied, the expression can be reduced to a
strictly smaller (in length, or in Bruhat, term by term) expression, so that induction
can be applied.

• If u 6>B v, then by Remark 4.16 euev = eueu.ev with u .ev <B v.

• If u <L v, then euev = eu , and similarly on the right.
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• If the left symbol eu for ewi · · · ewk is not ewi , then u <L wi and

ewi · · · ewk = euewi · · · ewk = euewi+1 · · · ewk .

Similarly on the right. �

Corollary 5.6. For f ∈ M1, lfix( f ) ≥B rfix( f ), with equality if and only if f is
an idempotent.

Lemma 5.7. If v ≤B u in Bruhat order and u′ = lfix(euev), then

v ≤B u′ and u′ ≤L u.

Proof. By Definition 5.3, u′ ≤L u since eu(euev)= euev and for M1 the minimum
is measured in left order. Also by Proposition 4.15

v = w0 .euev = w0 .eu′euev ≤B u′ . �

Lemma 5.8. If u covers v in Bruhat order and u′ = lfix(euev), then either u′ = u,
or u′ = v and euev = eveu .

Proof. By Lemma 5.7, we have that either u′ = u or u′ = v, since u covers v in
Bruhat order. When u′ = v, we have again by Lemma 5.7 that v ≤L u. Hence
euev = ev = eveu . �

5b. Representation theory. In this subsection, we specialize general results about
the representation theory of finite J-trivial monoids to describe some of the repre-
sentation theory of the Borel submonoid M1, such as its simple modules, radical,
Cartan invariant matrix and quiver. The description also applies to Mw0 , mutatis
mutandis. We follow the presentation of [Denton et al. 2010/11] (also see this paper
for the proofs), though many of the general results have been previously known; see
for example [Almeida et al. 2009; Clifford and Preston 1961; Ganyushkin et al.
2009; Lallement and Petrich 1969; Rhodes and Zalcstein 1991] and references
therein.

5b1. Simple modules and radical. For each w ∈ W define S1
w (written Sw0

w for
Mw0) to be the one-dimensional vector space with basis {εw} together with the
right operation of any f ∈ M1 given by

εw . f :=
{
εw if w. f = w,
0 otherwise.

The basic features of the representation theory of M1 can be stated as follows:

Theorem 5.9. The radical of KM1 is the ideal with basis f ω − f for f ∈ M1

nonidempotent. The quotient of KM1 by its radical is commutative. Therefore, all
simple KM1-modules are one-dimensional. In fact, the family {S1

w}w∈W forms a
complete system of representatives of the simple KM1-modules.
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5b2. Cartan matrix and projective modules. The projective modules and Cartan
invariants can be described as follows:

Theorem 5.10. There exists an explicit basis (bx)x∈M1 of KM1 such that, for all
w ∈W ,

• the family {bx | x ∈ M1 with lfix(x)= w} is a basis for the right indecompos-
able projective module P1

w associated to S1
w;

• the family {bx | rfix(x) = w}x∈M1 is a basis for the left indecomposable pro-
jective module associated to S1

w.

Moreover, the Cartan invariant of KM1 defined by cu,v := dim(euKM1ev) for
u, v ∈W is given by cu,v = |Cu,v|, where

Cu,v := { f ∈ M1 | lfix( f )= u and rfix( f )= v}.
In particular, the Cartan matrix of KM1 is upper-unitriangular with respect to

Bruhat order.

Proof. Apply [Denton et al. 2010/11, Section 3.4] and conclude with Corollary 5.6.
�

Remark 5.11. In terms of characters, the previous theorem can be restated as

[P1
u ] =

∑

f ∈M1,lfix( f )=u

[S1
w0 . f ], (5-1)

which gives the following character for the right regular representation:

[KM1] =
∑

f ∈M1

[S1
w0 . f ]. (5-2)

Problem 5.12. Describe the Cartan matrix and projective modules of KM1 more
explicitly, if at all possible in terms of the combinatorics of the Coxeter group W .

5b3. Quiver. We now turn to a description of the quiver of KM1 in terms of the
combinatorics of left and Bruhat order. Recall that M1 is a submonoid of the
monoid of regressive and order preserving functions. As such, it is not only J-
trivial but also ordered with 1 on top, that is B-trivial; see [Denton et al. 2010/11,
Section 2.5 and Proposition 2.2]. By [Denton et al. 2010/11, Theorem 3.35 and
Corollary 3.44] we know that the vertices of the quiver of a J-trivial monoid gen-
erated by idempotents are labeled by its idempotents (ex)x and there is an edge
from vertex ex to vertex ez , if q := ex ez is not idempotent, has lfix(q) = x and
rfix(q)= z, and does not admit any factorization q = uv that is nontrivial: eu 6= e
and v f 6= f . By [Denton et al. 2010/11, Proposition 3.31] the condition that q has a
nontrivial factorization is equivalent to q having a compatible factorization q= uv,
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meaning that u, v are nonidempotents and lfix(q) = lfix(u), rfix(u) = lfix(v) and
rfix(v)= rfix(q).

Let ex , ey, ez ∈ M1 be idempotents. Call ey an intermediate factor for q := ex ez

if ex eyez = ex ez . Call further ey a nontrivial intermediate factor if ex ey 6= ex , and
eyez 6= ez .

Lemma 5.13. The quiver of KM1 is the graph with W as vertex set and edges
(x, z) for all x 6= z such that q := ex ez satisfies lfix(q) = x and rfix(q) = z and
admits no nontrivial intermediate factor ey with y ∈W .

Proof. Take q := ex ez admitting a nontrivial intermediate factor ey . Then q admits
a nontrivial factorization q = (ex ey)(eyez) in the sense of [Denton et al. 2010/11,
Definition 3.25], and is therefore not in the quiver.

Reciprocally, assume that q admits a compatible factorization, that is q = uv
with lfix(u) = x , rfix(u) = lfix(v) and rfix(v) = z. By [Denton et al. 2010/11,
Lemma 3.29], this factorization is nontrivial: ex u 6= ex and vez 6= ez . Using
Proposition 5.5, write u and v as u = ex ey1 · · · eyk and v = eyk · · · ey`ez , with
x >B y1 >B · · · >B y` >B z. Then, ex eyi ez = ex ez for any i ; indeed, since M1 is
B-trivial,

ex ez = ex ey1 · · · ey`ez ≤B ex eyi ez ≤B ex ez.

If any eyi is a nontrivial intermediate factor for q , we are done by setting y = yi .
Otherwise, eyi ez = ez for any i (ex eyi = ex is impossible since x >B yi ). But then,
v = eyk · · · ey`ez = ez , a contradiction. �

Problem 5.14. Can Lemma 5.13 be generalized to any B-trivial monoid? Its state-
ment has been tested successfully on the 0-Hecke monoid in type A1−A6, B3−B4,
D4− D5, H3− H4, G2, I135, F4.

Lemma 5.13 admits a combinatorial reformulation in terms of the combinatorics
of W . For x, y, z ∈W such that x >B z, call y ∈W an intermediate factor for x, z
if [1, y]L intersects all intervals [c, a]B with a ∈ [1, x]L and c∈ [1, z]L nontrivially.
Call further y a nontrivial intermediate factor if x >B y >B z and y 6>L z.

Theorem 5.15. The quiver of KM1 is the graph with W as vertex set, and edges
(x, z) for all x >B z and x 6>L z admitting no nontrivial intermediate factor y.
Each such edge can be associated with the element q := ex ez of the monoid.

In particular, the quiver of KM1 is acyclic and every cover x �B z in Bruhat
order that is not a cover in left order contributes one edge to the quiver.

Proof. Consider a nonidempotent product ex ez . Using Proposition 5.5, we may
assume without loss of generality that x >B z and x 6>L z, and furthermore that
lfix(ex ez)= x and rfix(ex ez)= z.
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We now show that the combinatorial definition of intermediate factor on an
element of y ∈ W is a reformulation of the monoidal one on the idempotent ey

of M1.
Assume that ey is an intermediate factor for ex ez , that is, ex eyez = ex ez . Take

a ∈ [1, x]L and c ∈ [1, z]L with a ≥B c, and write b = a.ey ∈ [1, y]L . Using
Proposition 4.15, a ≥B b and a .ez ≥B c. Furthermore, since a is in the image set
of ex , one has b .ez = a .ey .ez = a .ez ≥B c. Therefore, [1, y]L intersects [c, a]B at
least in b. Hence, y is an intermediate factor for x, z.

For the reciprocal, take any a ∈ [1, x]L . Since M1 preserves Bruhat order and is
regressive, a .ey .ez ≤B a .ez . Set c = a .ez , and take b in [c, a]B ∩ [1, y]L . Using
Proposition 4.15,

a .ey .ez ≥B b .ez ≥B c = a .ez,

and equality holds. Hence, ey is an intermediate factor for ex , ey : ex eyez = ex ez .
The combinatorial reformulation of nontriviality for intermediate factors is then

straightforward using Proposition 5.5. �

Problem 5.16. Exploit the interrelations between left order and Bruhat order to
find a more satisfactory combinatorial description of the quiver of KM1.

5b4. Connection with the representation theory of the 0-Hecke monoid. Recall
that the 0-Hecke monoid H0(W ) is a submonoid of Mw0(W ). As a consequence any
KMw0(W )-module is a H0(W )-module and one can consider the decomposition
map G0(Mw0(W ))→ G0(H0(W )). It is given by the following formula:

Proposition 5.17. For w ∈W , let Sw0
w be the simple KMw0(W )-module defined by

εw . f :=
{
εw if w. f = w,
0 otherwise.

Furthermore, for J ⊆ I , let SH0
J be the simple H0(W )-module defined by

µJ .πi :=
{
µI if i ∈ J ,
0 otherwise.

Then, the restriction of Sw0
w to H0(W ) is isomorphic to SH0

DR(w)
. The decomposition

map is therefore given by

G0(Mw0(W ))→ G0(H0(W )), [Sw0
w ] 7→ [SH0

DR(w)
].

Proof. By definition of the action, w.πi = w if and only if i ∈ DR(W ). �

5b5. The tower of M1(Sn) monoids (type A).

Problem 5.18. The monoids M1(Sn), for n ∈ N, form a tower of monoids with
the natural embeddings M1(Sn)×M1(Sm) ↪→ M1(Sm+n). Due to the involution
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of Section 4g, one has also embeddings Mw0(Sn)× Mw0(Sm) ↪→ Mw0(Sm+n).
As outlined in the introduction, it would hence be interesting to understand the
induction and restriction functors in this setting, and in particular to describe the
bialgebra obtained from the associated Grothendieck groups. This would give a
representation theoretic interpretation of some bases of FQSym.

In this context, Proposition 5.17 provides an interpretation of the surjective
coalgebra morphism FQSym�QSym, through the restriction along the following
commutative diagram of monoid inclusions (see [Duchamp et al. 2002] for more
details):

H0(Sn)× H0(Sm) Mw0(Sn)×Mw0(Sm)

H0(Sn+m) Mw0(Sn+m).

6. Translation modules and w-biHecke algebras

The main purpose of this section is to pave the ground for the construction of the
simple modules Sw of the biHecke monoid M := M(W ) in Section 7a.

As for any aperiodic monoid, each such simple module is associated with some
regular J-class D of the monoid, and can be constructed as a quotient of the span
KR( f ) of the R-class of any idempotent f in D, endowed with its natural right
KM-module structure (see Section 2g).

In Section 6a, we endow the interval [1, w]R with a natural structure of a combi-
natorial KM-module Tw, called translation module, and show that, for any f ∈M ,
regular or not, the right KM-module KR( f ) is always isomorphic to some Tw.

The translation modules will play an ubiquitous role for the representation the-
ory of KM in Section 7: indeed Tw can be obtained by induction from the simple
modules Sw of KM , and the right regular representation of KM admits a filtration
in terms of the Tw that mimics the composition series of the right regular represen-
tation of KMw0 in terms of its simple modules Sw. Reciprocally Tw, and therefore
the right regular representation of KM , restricts naturally to Mw0 . Finally, Tw is
closely related to the projective module Pw of KM (Corollary 7.4).

By taking the quotient of KM through its representation on Tw, we obtain a
w-analogue HW (w) of the biHecke algebra HW . This algebra turns out to be
interesting in its own right, and we proceed by generalizing most of the results of
[Hivert and Thiéry 2009] on the representation theory of HW .

As a first step, we introduce in Section 6b a collection of submodules P (w)J of
Tw, which are analogues of the projective modules of HW . Unlike for HW , not
any subset J of I yields such a submodule, and this is where the combinatorics
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of the blocks of w as introduced in Section 3 enters the game. In a second step,
we derive in Section 6c a lower bound on the dimension of HW (w); this requires
a (fairly involved) combinatorial construction of a family of functions on [1, w]R
that is triangular with respect to Bruhat order. In Section 6d we combine these
results to derive the dimension and representation theory of HW (w): projective
and simple modules, Cartan matrix, quiver, etc. (see Theorem 6.17).

6a. Translation modules and w-biHecke algebras. In this section we study the
combinatorics of the right class modules for the biHecke monoid, in particular a
combinatorial model for them. Indeed, we show that the right class modules corre-
spond to uniform translations of image sets, hence the name “translation modules”.

Fix f ∈ M . Recall from Definition 2.12 that the right class module associated
to f is defined as the quotient

KR( f ) := K f M/KR<( f ).

The basis of KR( f ) is the right class R( f ) described in Proposition 4.18. Recall
from there that fu denote the unique element of M(W ) such that fibers( fu) =
fibers( f ) and 1 . fu = u.

Proposition 6.1. Setw= type( f )−1w0. Then ( fu)u∈[1,w]R forms a basis of KR( f )
such that

fu .πi =




fu if i ∈ DR(u),
fusi if i 6∈ DR(u) and usi ∈ [1, w]R,
0 otherwise;

fu .π i =




fusi if i ∈ DR(u),
fu if i 6∈ DR(u) and usi ∈ [1, w]R,
0 otherwise.

(6-1)

In particular, the action of any g ∈ M on a basis element fu of the right class
module either annihilates fu or agrees with the usual action on W : fu .g = fu .g.

Proof. By Definition 2.12 and Proposition 4.18, ( fu)u∈[1,w]R forms a basis of
KR( f ).

The action of πi agrees with right multiplication, except when the index v of the
new fv is no longer in [1, w]R , in which case the element is annihilated. The action
of π i also agrees with right multiplication. However, due to the relations πiπ i =π i

and π iπi = πi , we need that π i annihilates fu if i 6∈ DR(u) and usi 6∈ [1, w]R .
The last statement follows by induction writing f ∈M in terms of the generators

πi and π i and using (6-1). �

Proposition 6.1 gives a combinatorial model for right class modules. It is clear
that two functions with the same type yield isomorphic right class modules. The
converse also holds:
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Proposition 6.2. For any f, f ′ ∈ M , the right class modules KR( f ) and KR( f ′)
are isomorphic if and only if type( f )= type( f ′).

Proof. By Proposition 6.1, it is clear that if type( f ) = type( f ′), then KR( f ) ∼=
KR( f ′).

Conversely, suppose type( f ) 6= type( f ′). Then we also have w 6= w′, where
w = type( f )−1w0 and w′ = type( f ′)−1w0. Without loss of generality, we may
assume that `(w) ≥ `(w′). Using the combinatorial model of Proposition 6.1, we
then have

f1 .πw = fw 6= 0 and f ′1 .πw = 0 ,

so that KR( f ) 6∼= KR( f ′). �

It is not obvious from the combinatorial action of πi and π i of Proposition 6.1
that the result indeed gives a module. However, since it agrees with the right action
on the quotient space as in Definition 2.12, this is true. By Proposition 6.2, we may
choose a canonical representative for right class modules.

Definition 6.3. The module Tw :=KR(ew,w0) for allw∈W is called the translation
module associated to w. We identify its basis with [1, w]R via u 7→ fu , where
f = ew,w0 .

For the remainder of this section for f ∈ M and u ∈ [1, w]R , unless otherwise
specified, u . f means the action of f on u in the translation module Tw.

Definition 6.4. The w-biHecke algebra HW (w) is the natural quotient of KM
through its representation on Tw. In other words, it is the subalgebra of End(Tw)
generated by the operators πi and π i of Proposition 6.1.

6b. Left antisymmetric submodules. By analogy with the simple reflections in the
Hecke group algebra, we define for each i ∈ I the operator si := πi +π i − 1. For
u ∈ [1, w]R , the action on the translation module Tw is given by

u.si =
{

usi if usi ∈ [1, w]R ,
−u otherwise.

(6-2)

These operators are still involutions, but do not always satisfy the braid relations.

Example 6.5. Take W of type A2 and w= s1. The translation module Tw has two
basis elements B = (1, s1) and the matrices for s1 and s2 on this basis are given by

s1 =
(

0 1
1 0

)
and s2 =

(−1 0
0 −1

)
.

It is not hard to check that then s1s2s1 6= s2s1s2.
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Similarly, one can define operators←−si acting on the left on the translation mod-
ule Tw:

←−si .u =
{

si u if si u ∈ [1, w]R ,
−u otherwise.

(6-3)

Definition 6.6. For J ⊆ I , set P (w)J := {v ∈ Tw | ←−si .v =−v for all i ∈ J }.
For w=w0, these are the projective modules PJ of the biHecke algebra [Hivert

and Thiéry 2009].

Proposition 6.7. Take w ∈W and J ⊆ I . Then, the following are equivalent:

(i) Jw is a cutting point of w;

(ii) P (w)J is an KM-submodule of Tw.

Furthermore, when any, and therefore all, of the above hold, P (w)J is isomorphic
to TJw, and its basis is indexed by [1, Jw]R , that is, assuming J ∈ J(w), we have
{v ∈ [1, w]R, J ⊂ J (w)(v)}.
Proof. (ii)⇒ (i): Set

vwJ :=
∑

u∈[1,wJ ]R
(−1)`(u)−`(wJ )u.

Up to a scalar factor, this is the unique vector in P (w)J with support contained in
[1, wJ ]R . Then,

vwJ .πJw =
∑

u∈[1,wJ ]R
s.t. u Jw∈[1,w]R

(−1)`(uv)−`(wJ v)u Jw,

vwJ .πvπv−1 =
∑

u∈[1,wJ ]R
s.t. u Jw∈[1,w]R

(−1)`(u)−`(wJ )u.

Therefore, if Jw 6≤R w, then vwJ .πJwπ Jw−1 is a nonzero vector with support strictly
included in [1, wJ ]R and therefore not in P (w)J . By Proposition 3.8 this proves that
(ii) implies (i).

(i)⇒ (ii): If (i) holds, then the action of πi (resp. π i ) on vwJ .πv either leaves
it unmodified, kills it (if vsi = s jv for some j) or maps it to vwJ .πvsi . The vectors
(vwJ .πv)v∈[1,Jw]R form a basis of P (w)J that is stable by M .

The last statement follows straightforwardly. �

It is clear from the definition that P (w)J1∪J2
= P (w)J1

∩ P (w)J2
for J1, J2 ⊆ I . Since

the set RBL(w) of left blocks of w is stable under union, the set of KM-modules
(P (w)J )J∈RBL(w) is stable under intersection. On the other hand, unless J1 and J2

are comparable, P (w)J1∪J2
is a strict subspace of P (w)J1

+ P (w)J2
. This motivates the

following definition.
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Definition 6.8. For J ∈ J(w), we define the module

S(w)J := P (w)J

/ ∑

J ′)J,J ′∈RBL(w)

P (w)J ′ . (6-4)

Remark 6.9. By the last statement of Proposition 6.7, and the triangularity of the
natural basis of the modules P (w)J ′ , the basis of S(w)J is given by

[1, Jw]R
∖ ⋃

v@Jw

[1, v]R = {v ∈ [1, w]R, J ⊂ J (w)(v)}. (6-5)

6c. A (maximal) Bruhat-triangular family of the w-biHecke algebra. Consider
the submonoid F in HW (w) generated by the operators πi , π i , and si , for i ∈ I .
For f ∈ F and u ∈ [1, w]R , we have u . f = ±v for some v ∈ [1, w]R . For our
purposes, the signs can be ignored and f be considered as a function from [1, w]R
to [1, w]R .

Definition 6.10. For u, v ∈ [1, w]R , a function f ∈ F is called (u, v)-triangular
(for Bruhat order) if v is the unique minimal element of im( f ) and u is the unique
maximal element of f −1(v) (all minimal and maximal elements in this context are
with respect to Bruhat order).

Recall the notion of maximal reduced right block K (w)(u) of Definition 3.38.

Proposition 6.11. Take u, v ∈ [1, w]R such K (w)(u)⊆ K (w)(v). Then, there exists
a (u, v)-triangular function fu,v in F.

For example, for w = 4312 in S4, the condition on u and v is equivalent to the
existence of a path from u to v in the digraph G(4312) (see Figure 1 and Section 6d).

The proof of Proposition 6.11 relies on several remarks and lemmas that are
given in the sequel of this section. The construction of fu,v is explicit, and the
triangularity derives from fu,v being either in M , or close enough to be bounded
below by an element of M . It follows from the upcoming Theorem 6.17 that the
condition on u and v is not only sufficient but also necessary.

Remark 6.12. If f is (u, v)-triangular and g is (v, v′)-triangular, then f g is (u, v′)-
triangular.

Remark 6.13. Take x ∈ [1, w]R and let i ∈ I . Then, x .π i ≤R x .si .
By repeated application, for S ⊆ I , and i1, . . . , ik ∈ S, x .π S ≤R x .si1 · · · sik ,

where recall that π S is the longest element in the generators {π j | j ∈ S}.
Lemma 6.14. Take u ∈ [1, w]R , and define fu,u := eu,w0 = πu−1πu . Then

(i) fu,u is (u, u)-triangular;

(ii) for v ∈ [1, w]R , either v . fu,u = 0 or v . fu,u ≥B v;

(iii) im( fu,u)= [u, w0]L ∩ [1, w]R .
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Proof. First consider the case w=w0. Then, (ii) and (iii) hold by Proposition 4.15.
Now take any w ∈W . By Proposition 6.1 the action of f ∈M on the translation

module Tw either agrees with the action on W or yields 0. Hence in particular
Proposition 4.5 still applies, which yields (ii). This also implies the inclusion
im( fu,u) \ {0} ⊂ [u, w0]L ∩ [1, w]R . The reverse inclusion is straightforward: If
u′= xu, then u′ . fu,u = xu .πu−1πu = xπu = xu= u′. Therefore (iii) holds as well.

Finally, (iii) implies that u is the unique minimal element of im( fu,u), and (ii)
implies that u is the unique maximal element in f −1

u,u (u); therefore (i) holds. �

Lemma 6.15. If u >R v, then fu,v := fu,uπu−1v is (u, v)-triangular.

Proof. By Lemma 6.14(iii), the image set of fu,u is a subset of [u, w0]L . Therefore,
by Remark 2.7, πu−1v translates it isomorphically to the interval [v,w0u−1v]L . In
particular, the fibers are preserved: f −1

u,v (v)= f −1
u,u (u), and the triangularity of fu,v

follows. �

Lemma 6.16. Take u ∈ [1, w]R . Then, either u is a cutting point of w, or there
exists a (u, v)-triangular function fu,v in F with u <R v ≤R w.

Proof. Let J be the set of short nondescents i of u, and set V := Uu ∩ [1, w]R
(recall from Definition 3.15 that Uu := uWJ ). By Proposition 3.17, V is the set of
w′ ∈ [1, w]R such that u v w′. Furthermore, V is a lattice (it is the intersection
of the two lattices (uWJ , <R) and [1, w]R) with u as unique minimal element; in
particular, V ⊂ [u, w]R .

If w ∈ V (which includes the case u = w and J = {}), then u is a cutting point
for w and we are done.

Otherwise, consider a shortest sequence i1, . . . , ik such that {i1, . . . , ik} does not
intersect DR(u), and v′= usi1 · · · sik 6∈ V . Such a sequence must exist since w 6∈ V .
Set S := {i1, . . . , ik}. Note that i1, . . . , ik−1 are in J but ik is not. Furthermore,
u 6v v′ while u = v′S because v′ ∈ uWS and S ∩DR(u)=∅.

Case 1: v′ ∈ im( fu,u). Then, u <L v
′. Combining this with u = v′S yields that

u v v′, a contradiction.
Case 2: v′ 6∈ im( fu,u). Set v := usi1 , and define fu,v := fu,uσπi1 , where

σ := si2 · · · sik−1sik sik−1 · · · si2 . (6-6)

Note that for k = 1, we have σ = 1. We now prove that fu,v is (u, v)-triangular.
First, we consider the fiber f −1

u,v (v). By minimality of k, and up to sign, sik

fixes all the elements of V at distance at most k − 2 of u. Hence, σ−1(u) = u.
Simultaneously,

v .σ−1 = v .si2 · · · sik−1sik sik−1 · · · si2 = v′ .sik−1 · · · si2 ∈ v′WJ . (6-7)
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Hence, v .σ−1 6∈ im( fu,u) because v′ 6∈ im( fu,u) and im( fu,u) is stable under right
multiplication by s j for j ∈ J . Putting everything together, we have

f −1
u,v (v)= f −1

u,u (σ
−1(π−1

i1
(v)))= f −1

u,u (σ
−1({u, v}))= f −1

u,u ({u})=[1, u]B∩[1, w]R.
Therefore, u is the unique length maximal element of f −1

u,v (v), as desired.
We take now x ∈ im( fu,u), and apply Proposition 4.5 repeatedly. To start with,

u = 1 . fu,u ≤B x . fu,u . (6-8)

Using Remark 6.13, we have

u = u .π S ≤B (x . fu,u).π S ≤B (x . fu,u).σ = x . fu,u .σ. (6-9)

It follows that
v = u .πi1 ≤B (x . fu,u .σ ).πi1 = x . fu,v. (6-10)

In particular, v is the unique Bruhat minimal element of im( fu,v), as desired. �

Proof of Proposition 6.11. Since W is finite, repeated application of Lemma 6.16
yields a finite sequence of triangular functions

fu,u1, . . . , fuk−1,uk , where u <R u1 <R · · ·<R uk

and uk is a cutting pointw J ofw. Since u<R w
J , one has J ⊂ K (w)(u)⊂ K (w)(v),

and therefore uk = w J >R v. Then, applying Lemma 6.15 one can construct a
(uk, v)-triangular function fuk ,v. Finally, by Remark 6.12, composing all these
triangular functions gives a (u, v)-triangular function fu,u1 · · · fuk−1,uk fuk ,v. �

6d. Representation theory of the w-biHecke algebra. Consider the digraph G(w)

on [1, w]R with an edge u 7→ v if u = vsi for some i and J (w)(u) ⊆ J (w)(v). Up
to orientation, this is the Hasse diagram of right order (see for example Figure 1).
The following theorem is a generalization of [Hivert and Thiéry 2009, Section 3.3].

Theorem 6.17. HW (w) is the maximal algebra stabilizing all modules P(w)J for
J ∈RBL(w)

HW (w) = { f ∈ End(Tw) | f (P (w)J )⊆ P (w)J }
The elements fu,v of Proposition 6.11 form a basis HW (w); in particular,

dim HW (w) = ∣∣{(u, v) | J (w)(u)⊆ J (w)(v)}∣∣. (6-11)

HW (w) is the digraph algebra of the graph G(w).
The family (P (w)J )J∈RBL(w) forms a complete system of representatives of the

indecomposable projective modules of HW (w).
The family (S(w)J )J∈RBL(w) forms a complete system of representatives of the

simple modules of HW (w). The dimension of S(w)J is the size of the corresponding
w-nondescent class.
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HW (w) is Morita equivalent to the poset algebra of the lattice [1, w]v. In par-
ticular, its Cartan matrix is the incidence matrix and its quiver the Hasse diagram
of this lattice.

Proof. From Proposition 6.11, one derives by triangularity that dim HW (w) ≥
|{(u, v) | K (w)(u)⊆ K (w)(v)}|. The stability of all the subspaces P (w)J imposes the
converse equality. Hence, HW (w) is exactly the subalgebra of End(Tw) stabilizing
each P (w)J . The remaining statements follow straightforwardly, as in [Hivert and
Thiéry 2009, Section 3.3]. See also for example [Denton et al. 2010/11, Section
3.7.4] for the Cartan matrix and quiver of a poset algebra. �

7. Representation theory of M(W)

In this section, we gather all results of the preceding sections in order to describe the
representation theory of M :=M(W ). The main result is Theorem 7.1, which gives
the simple modules of KM . We further relate the representation theory of KM to
the representation theory of KMw0 . In particular, we prove that the translation
modules are exactly the modules induced by the simple modules of KMw0 . We
then conclude by computing some characters and the decomposition map from
KM to KMw0 .

7a. Simple modules. We now study the simple modules of the biHecke monoid
KM and also show that the translation modules are indecomposable.

Theorem 7.1. (i) The biHecke monoid M admits |W | nonisomorphic simple
modules (Sw)w∈W (resp. projective indecomposable modules (Pw)w∈W ).

(ii) The simple module Sw is isomorphic to the top simple module

S(w){} = Tw
/∑

v@w

Tv

of the translation module Tw. Its dimension is given by

dim Sw =
∣∣∣[1, w]R

∖ ⋃

v@w

[1, v]R
∣∣∣.

In general, the simple quotient module S(w)J of Tw is isomorphic to SJw of M.

Proof. Since M is aperiodic (Proposition 4.13), we may apply the special form
of Clifford, Munn, and Ponizovskiı̌’s construction of the simple modules (see
Theorem 2.14). Namely, the simple modules are indexed by the regular J- classes
of M ; by Corollary 4.20, there are |W | of them. This yields (i), since for any finite-
dimensional algebra, the simple and indecomposable projective modules share the
same indexing set (see [Curtis and Reiner 1962, Corollary 54.14]).
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Clifford, Munn, and Ponizovskiı̌ further construct Sw as the top of the right
class modules, that is, in our case, of the translation module Tw. Our explicit
description of the radical of Tw as

∑
v@w Tv in (ii) is a straightforward application

of Theorem 6.17. The dimension formula follows using Remark 6.9. �

For a direct proof that rad Tw = ∑v@w Tv, without using Theorem 6.17, one
would want to show that

∑
v@w Tv is exactly the annihilator of J(ew,w0). One

inclusion is easy, thanks to the following remark.

Remark 7.2. The submodule Tv is annihilated by J(ew,w0)= J(πw).

Proof. Fix w and take v such that v @ w. Then πw annihilates Tv ⊂ Tw. Indeed,
combining πw(w) = 1 with Propositions 6.1 and 4.5, one obtains that πw either
annihilates fu or maps it to f1. Take now x ∈ Tv, and write x .πw = λ f1. Since
Tv is a submodule, λ f1 lies in Tv; however the basis elements of Tv have disjoint
support and since v@w none of them are collinear to f1. Therefore x .πw = 0. �

Type |W | |Mw0 | |M | (dim Sw)w
∑

dim Sw

A0 1 1 1 1 1
A1 2 2 3 12 2
A2 = I2(3) 6 8 23 1422 8
A3 24 71 477 1824344652 62
A4 120 1646 31103 1162103841651666 · · · 206 770
A5 720 118929 7505009 132224320442538640

· · · 1202 13080
B2 = I2(4) 8 14 49 142232 14
B3 48 498 5455 182434465764748491

·102112122 246
B4 384 149622 6664553 116210310414517616 · · · 802 6984
G2 = I2(6) 12 32 153 1422324252 32
H3 120 87 1039 182434485667 · · · 362 1404
A1×A1 4 4 9 1212 4
I2(p) 2p p2−p+2 2

3 p3+ 4
3 p+1 1422 · · · (p−1)2 p2−p+2

Table 1. Statistics on the biHecke monoids M := M(W ) for the
small Coxeter groups. In column four, 1824 · · · 52 means that there
are 8 simple modules of dimension 1, 4 of dimension 2, and so on.
The sum in the last column is over w. The sequence p2−p+2 is
#A014206 in [OEIS Foundation 2012].
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Example 7.3. The simple module S4312 is of dimension 3, with basis indexed by
{4312, 4132, 1432} (see Figure 1). The other simple modules S3412, S4123, and
S1234 are of dimension 5, 3, and 1, respectively. See also Table 1.

In general, the two extreme cases are, on the one hand, when w is the maximal
element of a parabolic subgroup, in which case the simple module is of dimension 1
and, on the other hand, when w is an immediate successor of 1 in the cutting poset
(see Example 3.44), in which case the simple module is of dimension |Tw| − 1.
In the other cases, one can use Theorem 3.41 to calculate the dimension of Sw by
inclusion-exclusion from the sizes of the intervals [1, Jw]R , where Jw runs through
the free sublattice at the top of the interval [1, w]v of the cutting poset. Note that the
sizes of the intervals in W can also be computed by a similar inclusion-exclusion
(the Möbius function for right order is given by µ(u, w) = (−1)k if the interval
[u, w]R is isomorphic to some WJ with |J | = k, and 0 otherwise). This may open
the door for some generating series manipulations to derive statistics like the sum
of the dimension of the simple modules.

Corollary 7.4. The translation module Tw is an indecomposable KM-module,
quotient of the projective module Pw of KM.

Proof. Direct application of Corollary 2.15 �

7b. From Mw0(W) to M(W). In this section, we use our knowledge of Mw0 to
learn more about M .

Proposition 7.5. The translation module Tw is isomorphic to the induction to KM
of the simple module Sw0

w of KMw0 .

The proof of this proposition follows from the upcoming lemmas giving some
simple conditions on a general inclusion of monoids B ⊆ A under which the (reg-
ular) right class modules of K A are induced from those of KB.

Lemma 7.6. Let B ⊆ A be two finite monoids and f ∈ B. If

KRA
<( f )= KRB

<( f )A,

then the right class module KRA( f ) is isomorphic to the induction from KB to
K A of the right class module KRB( f ):

KRA( f )∼= KRB( f )↑K A
KB .

Proof. Recall that for a KB-module Y , the module Y↑K A
KB induced by Y from KB

to K A is given by Y↑K A
KB := Y ⊗KB K A.



656 Florent Hivert, Anne Schilling and Nicolas Thiéry

By construction of the right class modules (see Definition 2.12), we have the
following exact sequences:

0→ KRB
<( f )→ K f B→ KRB( f )→ 0, (7-1)

0→ KRA
<( f )→ K f A→ KRA( f )→ 0. (7-2)

Consider now the sequence obtained by tensoring (7-1) by K A:

0→ KRB
<( f )⊗KB K A→ K f B⊗KB K A→ KRB( f )⊗KB K A→ 0 . (7-3)

We want to prove that it is exact and isomorphic to (7-2).
First note that, since KB is a subalgebra of K A, we have b⊗ a = 1⊗ ba for

b ∈ B and a ∈ A. Therefore the product map

µ : K f B⊗KB K A→ K f A, f b⊗ a→ f ba

is an isomorphism of K A-modules.
Consider the restriction of µ to KRB

<( f )⊗KB K A. Its image set is KRB
<( f )A,

which is equal to KRA
<( f ) by hypothesis. Therefore, µ restricts to an A-module

isomorphism from KRB
<( f )⊗KB K A to KRA

<( f ). As a consequence, the following
diagram is commutative, all vertical arrows being isomorphisms (for short we write
here ⊗ for ⊗KB):

0 // KRB
<( f )⊗K A //

µ

��

K f B⊗K A //

µ

��

KRB( f )⊗K A //

id
��

0

0 // KRA
<( f ) // K f A // KRB( f )⊗K A // 0

It is a well-known fact that the functor ·⊗KB K A is right exact, so that the middle
and right part of the top sequence is exact. The left part of the bottom sequence is
clearly exact. Therefore they are both exact sequences.

Comparing with (7-2), we obtain that

KRA( f )∼= KRB( f )⊗KB K A,

where the latter is isomorphic to KRB( f )↑K A
KB by definition. �

In the next lemma we denote by <RA the strict right preorder on a monoid A;
that is, x <RA y if x ≤RA y but x /∈RA(y).

Lemma 7.7. Let B ⊆ A be two finite monoids and assume that:

(i) R-order on B is induced by R-order on A; that is, for all x, y ∈ B,

x <RA y ⇐⇒ x <RB y.

(ii) Any R-class of A intersects B.
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Then, for any f ∈ B, the equality KRB
<( f )A = KRA

<( f ) holds. In particular,

KRA( f )∼= KRB( f )↑K A
KB .

Moreover, condition (i) may be replaced by the stronger condition

(i′) x ≤RA y ⇐⇒ x ≤RB y.

Proof. Inclusion ⊆: Take b ∈ B with b<RB f and a ∈ A. Then, using (i), we have
ba ∈ KRA

<( f ), since
ba ≤RA b <RA f.

Inclusion ⊇: Take a ∈ A with a <RA f . Using (ii) choose an element b ∈ B
such that b RA a. Then b ≤RA a <RA f and therefore, by (i), b ∈ KRB

<( f ). It
follows that a ∈ KRB

<( f )A.
The statement KRA( f )∼= KRB( f )↑K A

KB follows from Lemma 7.6. �

Here is an example of what can go wrong when Condition (i) fails.

Example 7.8. Let A be the (multiplicative) submonoid of M2(Z) with elements
given by the matrices

1 := ( 1 0
0 1

)
, b11 :=

(
1 0
0 0

)
, b12 :=

(
0 1
0 0

)
, a21 :=

(
0 0
1 0

)
, b22 :=

(
0 0
0 1

)
, 0 := ( 0 0

0 0

)
.

Alternatively, A is the aperiodic Rees matrix monoids (see Definition 2.16) whose
nontrivial J-class is described by

(
b∗11 b12

a21 b∗22

)
,

where the ∗ marks the elements that are idempotent. In other words, A = M(P),
where P := ( 1 0

0 1

)
, and for convenience the matrix above specifies names for the

elements of the nontrivial J-class. Recall that the nontrivial left and right classes
of A are given respectively by the columns and rows of this matrix.

Let B be the submonoid {1, b11, b12, b22, 0}. Then B satisfies condition (ii) but
not condition (i): indeed b11 RA b12 whereas b11 <RB b12. Then, taking f = b11,
one obtains RB

<(b11)= {0, b12} so that RB
<(b11)A = {0, b11, b12}, and therefore

K{0} = KRA
<(b11)⊂ KRB

<(b11)A = K{0, b11, b12}.
Now KRB(b11)=K{0, b11, b12}/K{0, b12}, so that KRB(b11) is one-dimensional,
spanned by x := b11 mod (K{0, b12}). The action of B is given by x .1= x .b11= x
and x .m = 0 for any m ∈ B \ {1, b11}.

We claim that

KRB(b11)↑K A
KB = KRB(b11)⊗KB K A = 0.
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Indeed, x ⊗ 1= x .b11⊗ 1= x ⊗ b11 = x ⊗ b12a21 = x .b12⊗ a21 = 0. Thus

KRA(b11) 6∼= KRB(b11)↑K A
KB .

As shown in the following example, Condition (i′) may be strictly stronger than
Condition (i) because <R is only a preorder.

Example 7.9. Let A be the aperiodic Rees matrix monoid with nontrivial J-class
given by 


a∗11 b12 b13

a∗21 b∗22 a23

a∗31 a32 b∗33


 ,

Let B be the submonoid {1, b12, b13, b22, b33, 0}. Then B satisfies conditions (i)
and (ii), but not condition (i′): b12 and b13 are incomparable for ≤RB whereas they
are in the same right class for A.

We now turn to the proof of Proposition 7.5 by showing that Mw0(W )⊆ M(W )

satisfy the conditions of Lemma 7.7. We use the stronger condition (i′).

Lemma 7.10. The biHecke monoid and its Borel submonoid Mw0(W ) ⊆ M(W )

satisfy conditions (i′) and (ii) of Lemma 7.7.

Proof. By Proposition 4.18, for any f ∈ M there exists a unique f1 ∈ R( f ) ∩
M1. Using the bar involution of Section 4g, one finds similarly a unique f̄1 ∈
R( f )∩Mw0 . This proves condition (ii).

We now prove the nontrivial implication in condition (i′). Take f, g ∈ Mw0 with
f ≤RM g. Then, f = gx for some x ∈ M . Note that w0 . f = w0 .g = w0, which
implies that w0 .x = w0 as well. Hence x is in fact in Mw0 and f ≤RMw0 g. �

Proof of Proposition 7.5. Let gw := ew,w0 . By definition, the translation module
is the quotient Tw = KgwM/KR<(gw), whereas Sw0

w = KgwMw0/KRw0
< (gw). By

Lemma 7.10, Mw0 ⊆ M satisfy the two conditions of Lemma 7.7; Proposition 7.5
follows. �

Theorem 7.11. The right regular representation of KM admits a filtration with
factors all isomorphic to translation modules, and its character is given by

[KM] =
∑

f ∈Mw0

[T1 . f ]. (7-4)

Proof. As any monoid algebra, KM admits a filtration where each composition
factor is given by (the linear span of) an R-class of M . By Proposition 6.2, each
such composition factor is isomorphic to the translation module T1 . f , where f is
the unique element of the R-class that lies in Mw0 . The character formula follows.
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Alternatively, it can be obtained using Proposition 7.5 and the character formula
for the right regular representation of Mw0 (see Remark 5.11):

[KMw0]Mw0
=

∑

f ∈Mw0

[Sw0
1 . f ]Mw0

, (7-5)

which completes the proof. �

Proposition 7.12. For any w ∈ W , the translation module Tw is multiplicity-free
as an KMw0-module and its character is given by

[Tw]Mw0
=

∑

u∈[1,w]R
[Sw0

u ]Mw0
. (7-6)

Proof. Let f be an element in M that yields the translation module Tw, and define
fu as in Proposition 4.18.

Take some sequence u1, . . . , um (for m = |[1, w]R|) of the elements of [1, w]R
that is length increasing, and define the corresponding sequence of subspaces by
X i := K{u1, . . . , ui }. Using Lemma 6.14, each such subspace is stable by Mw0 ,
and X0 ⊂ · · · ⊂ Xm forms an Mw0-composition series of Tw since X i/X i−1 is of
dimension 1.

Consider now a composition factor X i/X i−1. Again, by Lemma 6.14, ev,w0

fixes ui if and only if v ≤L ui (that is, if the image set [ui , w
−1w0ui ]L of fui

is contained in the image set [v,w0]L of ev,w0), and kills it otherwise. Hence,
X i/X i−1 is isomorphic to Sw0

ui . �

Theorem 7.13. The decomposition map of KM over KMw0 is lower uni-triangular
for right order, with 0, 1 entries. More explicitly,

[Sw]Mw0
=

∑

u∈[1,w]R\⋃v@w[1,v]R
[Sw0

u ]Mw0
. (7-7)

Proof. Since Sw is a quotient of Tw, its composition factors form a subset of
the composition factors for Tw. Hence, using Proposition 7.12, the decomposition
matrix of M over Mw0 is lower triangular for right order, with 0, 1 entries. Further-
more, by construction (see Remark 6.9 and Theorem 7.1(ii)), Sw = Tw/

∑
v@w Tv;

using Proposition 7.12 the sum on the right hand side contains at least one com-
position factor isomorphic to Sw0

u for each u in [1, v]R with v @ w; therefore Sw
has no such composition factor. We conclude using the dimension formula of
Theorem 7.1(ii). �

Example 7.14. Following up on Example 7.3, the decomposition of the KM-
simple module S4312 over KMw0 is given by [S4312]Mw0

=[Sw0
4312]+[Sw0

4132]+[Sw0
1432].

See also Figure 1 and the decomposition matrices given in Appendix A.
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Figure 6. The left and right class modules indexed by w :=
s1s2s1s2 for the biHecke monoid M(Ip) with p ≥ 5. The left
picture also describes the left simple module Sw of M(Ip), and
the projective module Pw0

w of the Borel submonoid Mw0(Ip).

7c. Example: the rank 2 Coxeter groups. We now give a complete description
of the representation theory of the biHecke monoid for each rank 2 Coxeter group
Ip. The proofs are left as exercises for the reader.

Example 7.15. Let M be the biHecke monoid for the dihedral group W := Ip of
order 2p. Then, M is a regular monoid.

The right class module KRw := KR(ew,w0) is the translation module spanned
by [1, w]R . It is of dimension 2p for w = w0, and `(w) otherwise. The left class
modules KL1 and KLw0 are respectively the trivial module spanned by 1 and the
zero module spanned by w0. For w 6= 1, w0, the left class module KLw is of
dimension `(w)− 1, and its structure is as in Figure 6. In particular,

|M | = 2p+ 1+ 2
p−1∑

k=1

k(k+ 1)= 2
3 p3+ 4

3 p+ 1.

The simple right module Sw can be constructed from the cutting poset. Namely,
S1 is the trivial module spanned by 1, while Sw0 is the zero module spanned by w0

and, forw 6= 1, w0, Sw is the quotient of the right class module by the line spanned
by alternating sum of [1, w]R . The simple left module Sw is directly given by the
left class module Lw.

The quiver of M is given by the cutting poset (see Figure 7). The q-Cartan matrix
is given by the path algebra of this quiver; namely, there is an extra arrow from 1
to w0 with weight q2. In particular, it is upper unitriangular and of determinant 1.

Example 7.16. Let Mw0 be the Borel submonoid of the biHecke monoid for the
dihedral group W := Ip of order 2p.
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1

s1 s2s1s2 s2s1s1s2s1 s2s1s2w0s1 w0s2

w0

Figure 7. The Hasse diagram of the cutting poset for the dihedral
group W := I5. This is also the quiver of the biHecke monoid for
that group.

1

s1 s2

s1s2 s2s1

s1s2s1 s2s1s2

s1s2s1s2 s2s1s2s1

w0

Figure 8. The quiver of the Borel submonoid Mw0(I5) of the bi-
Hecke monoid for the dihedral group I5.

The projective module Pw of Mw0 is given by the left simple modules Sw, or
equivalently the left-class-module Lw of M . In particular,

|Mw0 | = 1+ 1+ 2
p−1∑

k=1

k = p2− p+ 2.

The quiver of Mw0 is given by the cover relations in Bruhat order (or equivalently
right order) that are not covers in left order (see Figure 8); this gives two chains of
length p− 1. The monoid algebra is isomorphic to the path algebra of this quiver,
which gives right away its radical filtration. Combinatorially speaking, every non-
idempotent element f of the monoid admits a unique minimal factorization eweu ,
with `(u) < `(w) and u 6≤L w; namely, u := f (1) and w is the smallest element
such that f (w)= 1.
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8. Research in progress

Our guiding problem is the search for a formula for the cardinality of the biHecke
monoid. Using a standard result of the representation theory of finite-dimensional
algebras together with the results of this paper, we can now write

|M(W )| =
∑

w∈W

dim Sw dim Pw,

where dim Sw is given by an inclusion-exclusion formula. It remains to determine
the dimensions of the projective modules Pw.

While studying the representation theory of the Borel submonoid M1 as an in-
termediate step, the authors realized that many of the combinatorial ingredients
that arose were well-known in the semigroup community (for example the Green’s
relations and related classes, automorphism groups, etc.), and hence the represen-
tation theory of M1 is naturally expressed in the context of J-trivial monoids; see
[Denton et al. 2010/11]. This sparked their interest in the representation theory of
more general classes of monoids, in particular aperiodic monoids.

At the current stage, it appears that the Cartan matrix of an aperiodic monoid
(and therefore the composition series of its projective modules, and by consequence
their dimensions) is completely determined by the knowledge of the composition
series for both left and right class modules. In other words, the study in this pa-
per of right class modules (that is, translation modules), whose original purpose
was to construct the simple modules using [Ganyushkin et al. 2009, Theorem 7],
turns out to complete half of this program. The remaining half, in progress, is the
decomposition of left class modules.

At the combinatorial level, this requires one to control L-order. Loosely speak-
ing, L-order is essentially given by left and right order in W ; however, within
L-classes the structure seems more elusive, in particular because fibers are more
difficult to describe than image sets. Another difficulty is that, unlike for R-class
modules, L-class modules are not all isomorphic to regular ones (that is, classes
containing idempotents).

Yet, the general theory gives that the decomposition matrix should be upper
triangular for left-right order for regular classes, and upper triangular for Bruhat
order for nonregular ones, with no left-right “arrow” for left-right order. Pushing
this further gives that the Cartan matrix has determinant 1.

We conclude by illustrating the above for W =S4 in Figure 9. The blue arrows
are the covering relations of the cutting poset, which encode the composition series
of the translation modules (that is, right class modules). Namely, the character of
Tw is given by the sum of qk[Su] for u below w in the cutting poset, with k the
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1234: 1 1 1

1423: 2 3 3 1342: 2 3 3 3412: 5 6 6 2341: 3 4 43124: 2 3 32314: 2 3 3 4123: 3 4 4 2413: 4 5 5 3142: 4 5 5

1432: 1 6 12 3214: 1 6 121243: 1 2 8 2431: 4 8 8 4312: 3 12 122134: 1 2 8 3241: 4 8 83421: 3 12 12 4231: 5 12 12 4132: 4 8 8 4213: 4 8 8

2143: 1 4 12 4321: 1 24 24 1324: 1 2 22

Figure 9. Graph encoding the characters of left and right class
modules, and therefore the Cartan invariant matrix for M(S4).
See the text for details.

distance from u to w in that poset. For example,

[T2143] = [S2143] + q[S1243] + q[S2134] + q2[S1234],
[T2341] = [S2341] + q[S1234],
[T4123] = [S4123] + q[S4123].

Similarly the black and red arrows encode the composition series of regular and,
respectively, nonregular left classes. In this simple example, the q-character of a
right projective module Pw is then given by

[Pw] = [Tw] +
∑

u

q[Tu],

where (u, w) is a black or red arrow in the graph. For example,

[P2143] = [T2143] + q[T2341] + q[T4123]
= [S2143] + q[S1243] + q[S2134] + q[S2341] + q[S4123] + 3q2[S1234].
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Appendix A. Monoid of edge surjective morphism of a colored graph

Let C be a set whose elements are called colors. We consider colored simple
digraphs without loops. More precisely, a C-colored graph is a triple G= (V, E, c),
where V is the set of vertices of G, E⊂V×V/{(x, x) | x ∈V } is the set of (oriented)
edges of G, and c : E→ C is the coloring map.

Definition A.1. Let G = (V, E, c) and G ′ = (V ′, E ′, c′) be two colored graphs.
An edge surjective morphism (or ES-morphism) from G to G ′ is a map f : V→ V ′
such that

• For any edge (a, b) ∈ E , either f (a) = f (b), or ( f (a), f (b)) ∈ E ′ and
c(a, b)= c′( f (a), f (b)).

• For any edge (a′, b′) ∈ E ′ with a′ and b′ in the image set of f there exists an
edge (a, b) ∈ E such that f (a)= a′ and f (b)= b′.

Note that by analogy to categories, instead of ES-morphism, we can speak about
full morphisms.

The following proposition shows that colored graphs together with edge surjec-
tive morphisms form a category.

Proposition A.2. For any colored graphs G,G1,G2,G3,

• the identity id : G→ G is an ES-morphism;

• for any ES-morphism f : G1→ G2 and g : G2→ G3 the composed function
g ◦ f : G1→ G3 is an ES-morphism.

Corollary A.3. For any colored graph G, the set of ES-morphisms from G to G is
a submonoid of the monoid of the functions from G to G.

Here are some general properties of ES-morphisms:

Proposition A.4. Let G1 and G2 be two colored graphs and f an ES-morphism
from G1 to G2. Then the image of any path in G1 is a path in G2.

In our particular case, we have some more properties:

(i) The graph is acyclic, with unique source and sink. In particular, it is (weakly)
connected.
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12 21 Proj.
12 1 . 1
21 . 1 1

Proj. 1 1

Table 2. q-Cartan invariant matrix of Mw0(S2) (type A1).

12
3

13
2

21
3

23
1

31
2

32
1

Proj.
123 1 . . . . . 1
132 . 1 . . q . 2
213 . . 1 q . . 2
231 . . . 1 . . 1
312 . . . . 1 . 1
321 . . . . . 1 1
Proj. 1 1 1 2 2 1

Table 3. q-Cartan invariant matrix of Mw0(S3) (type A2).

(ii) The graph is ranked by the integers, and edges occur only between two con-
secutive ranks.

(iii) The graph is C-regular, which means that for any vertex v

Remarks A.5. Proposition 4.1 gives that our monoid is a submonoid of the M(G)
monoid for left order.

Propositions 4.3 and 4.11 are generic, and would apply to any M(G). For the
latter, we just need that G is C-regular.

A natural source of colored graphs are crystal graphs. A question that arises is
what the G-monoid of a crystal looks like.

Appendix B. Tables

B1. q-Cartan invariant matrices. In Tables 2–7, we give the Cartan invariant ma-
trix for KMw0 and KM in types A1, A2 and A3. The q-parameter records the layer
in the radical filtration. The extra rows and columns entitled “Simp.” and “Proj.”
give the dimension of the simple and projective modules, on the right for right mod-
ules and below for left modules. When all simple modules are one-dimensional,
the column is omitted.

Using [Thiéry 2012], it is possible to go further, and compute for example the
Cartan invariant matrix for M in type A4 in about one hour (though at q = 1 only).
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12
34

12
43

13
24

13
42

14
23

14
32

21
34

21
43

23
14

23
41

24
13

24
31

31
24

31
42

32
14

32
41

34
12

34
21

41
23

41
32

42
13

42
31

43
12

43
21

Proj.
1234 1 . . . . . . . . . . . . . . . . . . . . . . . 1
1243 . 1 . . q . . . . . q q2 . . . . q . q2 . . . . . 6
1324 . . 1 q . . . . . q . . q q2 . q2 q3 . q q2 . q . . 10
1342 . . . 1 . . . . . . . . . q . . q2 . . q . . . . 4
1423 . . . . 1 . . . . . . . . . . . . . q . . . . . 2
1432 . . . . . 1 . . . . . . . . . . q . . q . . q2 . 4
2134 . . . . . . 1 . q q2 q . . . . . q . . . q2 . . . 6
2143 . . . . . . . 1 . q q q2 . . . . . . q . q2 q3 . . 7
2314 . . . . . . . . 1 q . . . . . . . . . . . . . . 2
2341 . . . . . . . . . 1 . . . . . . . . . . . . . . 1
2413 . . . . . . . . . . 1 q . . . . . . . . q q2 . . 4
2431 . . . . . . . . . . . 1 . . . . . . . . . q . . 2
3124 . . . . . . . . . . . . 1 q . q q2 . . . . . . . 4
3142 . . . . . . . . . . . . . 1 . . q . . . . . . . 2
3214 . . . . . . . . . . . . . . 1 q q q2 . . . . . . 4
3241 . . . . . . . . . . . . . . . 1 . q . . . . . . 2
3412 . . . . . . . . . . . . . . . . 1 . . . . . . . 1
3421 . . . . . . . . . . . . . . . . . 1 . . . . . . 1
4123 . . . . . . . . . . . . . . . . . . 1 . . . . . 1
4132 . . . . . . . . . . . . . . . . . . . 1 . . q . 2
4213 . . . . . . . . . . . . . . . . . . . . 1 q . . 2
4231 . . . . . . . . . . . . . . . . . . . . . 1 . . 1
4312 . . . . . . . . . . . . . . . . . . . . . . 1 . 1
4321 . . . . . . . . . . . . . . . . . . . . . . . 1 1
Proj. 1 1 1 2 2 1 1 1 2 5 4 4 2 4 1 4 9 3 5 4 4 6 3 1

Table 4. q-Cartan invariant matrix of Mw0(S4) (type A3).

12 21 Simp. Proj.
12 1 . 1 1
21 q 1 1 2

Simp. 1 1
Proj. 2 1

Table 5. q-Cartan invariant matrix of M(S2) (type A1).

B2. Decomposition matrices. Since Mw0 is a submonoid of M , any simple M-
module is also a simple Mw0-module. The matrices of Tables 8–10 give the (gen-
eralized) Mw0 character of the simple M-module. The table reads as follows: for
any two permutations σ, τ , the coefficient mσ,τ gives the Jordan–Hölder multiplic-
ity of the Mw0-module Sw0

τ in the M-module Sσ . In particular, since the simple
Mw0-modules are of dimension 1, summing each line one recovers the dimension
of the simple M-modules.
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12
3

13
2

21
3

23
1

31
2

32
1

Simp. Proj.
123 1 . . . . 1 1
132 q 1 . . . 1 2
213 q . 1 . . 1 2
231 q . . 1 . 2 3
312 q . . . 1 2 3
321 q2 . . q q 1 1 6

Simp. 1 1 1 2 2 1
Proj. 8 1 1 3 3 1

Table 6. q-Cartan invariant matrix of M(S3) (type A2).

12
34

12
43

13
24

13
42

14
23

14
32

21
34

21
43

23
14

23
41

24
13

24
31

31
24

31
42

32
14

32
41

34
12

34
21

41
23

41
32

42
13

42
31

43
12

43
21

Simp. Proj.
1234 1 . . . . . . . . . . . . . . . . . . . . . . . 1 1
1243 q2 + q 1 . . . . . . . . . . . . . . q . . . . . . . 1 8
1324 q3 + 2q2 + q . 1 . . . . . . q2 + q . . . . . . . . q2 + q . . q . . 1 22
1342 q . . 1 . . . . . . . . . . . . . . . . . . . . 2 3
1423 q . . . 1 . . . . . . . . . . . . . . . . . . . 2 3
1432 2q2 . . q q 1 . . . . . . . . . . q . . . . . . . 1 12
2134 q2 + q . . . . . 1 . . . . . . . . . q . . . . . . . 1 8
2143 3q2 q . . . . q 1 . q . . . . . . . . q . . . . . 1 12
2314 q . . . . . . . 1 . . . . . . . . . . . . . . . 2 3
2341 q . . . . . . . . 1 . . . . . . . . . . . . . . 3 4
2413 q . . . . . . . . . 1 . . . . . . . . . . . . . 4 5
2431 q2 . . . . . . . . q . 1 . . . . . . . . . . . . 4 8
3124 q . . . . . . . . . . . 1 . . . . . . . . . . . 2 3
3142 q . . . . . . . . . . . . 1 . . . . . . . . . . 4 5
3214 2q2 . . . . . . . q . . . q . 1 . q . . . . . . . 1 12
3241 q2 . . . . . . . . q . . . . . 1 . . . . . . . . 4 8
3412 q . . . . . . . . . . . . . . . 1 . . . . . . . 5 6
3421 q2 . . . . . . . . q . . . . . . q 1 . . . . . . 3 12
4123 q . . . . . . . . . . . . . . . . . 1 . . . . . 3 4
4132 q2 . . . . . . . . . . . . . . . . . q 1 . . . . 4 8
4213 q2 . . . . . . . . . . . . . . . . . q . 1 . . . 4 8
4231 q2 . . . . . . . . q . . . . . . . . q . . 1 . . 5 12
4312 q2 . . . . . . . . . . . . . . . q . q . . . 1 . 3 12
4321 q3 . . . . . . . . q2 . . . . . . q2 q q2 . . q q 1 1 24
Simp. 1 1 1 2 2 1 1 1 2 3 4 4 2 4 1 4 5 3 3 4 4 5 3 1
Proj. 71 2 1 3 3 1 2 1 3 23 4 4 3 4 1 4 16 4 23 4 4 7 4 1

Table 7. q-Cartan invariant matrix of M(S4) (type A3).
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12 21 Simp.
12 1 . 1
21 . 1 1

Table 8. Decomposition matrix of M(S2) on Mw0(S2) (type A1).

12
3

13
2

21
3

23
1

31
2

32
1

Simp.
123 1 . . . . . 1
132 . 1 . . . . 1
213 . . 1 . . . 1
231 . . 1 1 . . 2
312 . 1 . . 1 . 2
321 . . . . . 1 1

Table 9. Decomposition matrix of M(S3) on Mw0(S3) (type A2).

12
34

12
43

13
24

13
42

14
23

14
32

21
34

21
43

23
14

23
41

24
13

24
31

31
24

31
42

32
14

32
41

34
12

34
21

41
23

41
32

42
13

42
31

43
12

43
21

Simp.
1234 1 . . . . . . . . . . . . . . . . . . . . . . . 1
1243 . 1 . . . . . . . . . . . . . . . . . . . . . . 1
1324 . . 1 . . . . . . . . . . . . . . . . . . . . . 1
1342 . . 1 1 . . . . . . . . . . . . . . . . . . . . 2
1423 . 1 . . 1 . . . . . . . . . . . . . . . . . . . 2
1432 . . . . . 1 . . . . . . . . . . . . . . . . . . 1
2134 . . . . . . 1 . . . . . . . . . . . . . . . . . 1
2143 . . . . . . . 1 . . . . . . . . . . . . . . . . 1
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2341 . . . . . . 1 . 1 1 . . . . . . . . . . . . . . 3
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3124 . . 1 . . . . . . . . . 1 . . . . . . . . . . . 2
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3214 . . . . . . . . . . . . . . 1 . . . . . . . . . 1
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Table 10. Decomposition matrix of M(S4) on Mw0(S4) (type A3).
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