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Shuffle algebras, homology,
and consecutive pattern avoidance

Vladimir Dotsenko and Anton Khoroshkin

Shuffle algebras are monoids for an unconventional monoidal category structure
on graded vector spaces. We present two homological results on shuffle algebras
with monomial relations, and use them to prove exact and asymptotic results on
consecutive pattern avoidance in permutations.

1. Introduction

The goal of this paper is twofold. First of all, it is intended to develop some
homological algebra tools for shuffle algebras defined by Maria Ronco [2011]
(called also permutads in a recent paper [Loday and Ronco 2011]). Namely, our
main result can be viewed as the computation of appropriate Tor groups for shuffle
algebras with monomial relations (the case of nonmonomial relations may be
handled in a usual way by Gröbner bases and homological perturbation [Dotsenko
and Khoroshkin 2010]). This generalizes for the case of shuffle algebras a celebrated
construction of Anick [1986].

On the other hand, our result has a transparent combinatorial meaning. Shuffle
algebras with monomial relations have bases that can be naturally described via
(generalized colored) permutations avoiding given consecutive patterns. A per-
mutation τ is said to occur in a permutation σ as a consecutive pattern if there
exists a subword of σ which is order-isomorphic to τ . Free resolutions that we
construct allow us to give combinatorial formulae for inverses of the corresponding
exponential generating functions. A simple example one can have in mind is
as follows. Permutations avoiding the consecutive pattern 12 are precisely the
decreasing permutations; there is exactly one such permutation of each length n.
“On the dual level”, the space of generators of the corresponding free resolution is
spanned by permutations where all the subwords of length two are order-isomorphic
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to 12, that is increasing permutations. There is also exactly one such permutation
of each length n. This leads to the inversion formula∑

n≥0

tn

n!
=

1
1−t+

∑
q≥2

(−1)q
q! tq

,

where one recognizes an elementary formula

exp(t)= 1
exp(−t)

.

One particular application of our approach for longer patterns is a proof of a
conjecture of Elizalde [2004] on patterns without self-overlaps. When we prepared
the first draft of this paper, we learned that this conjecture was independently
proved by Adrian Duane and Jeffrey Remmel [2011] based on methods developed
in [Mendes and Remmel 2006].

The example above, as well as many similar ones, fits into a very simple combi-
natorial proof using the inclusion-exclusion principle. The combinatorial formalism
for that is called the cluster method of Goulden and Jackson [1979]; see also
[Noonan and Zeilberger 1999]. However, the formulas provided in that way have
many terms canceling for somewhat trivial reasons. In contrast, our approach gives
formulas free from those trivial cancellations. Further progress in algorithmic and
computational approaches to consecutive pattern avoidance is presented in recent
preprints [Baxter et al. 2011; Nakamura 2011]. We also wish to mention a follow-up
[Khoroshkin and Shapiro 2011] to an earlier version of this paper showing the
relevance of homological methods for studying consecutive patterns.

The paper is organized as follows. In Section 2 we give the definition of a shuffle
algebra, and explain how shuffle algebras can be used to study consecutive pattern
avoidance. Then, before constructing our free resolutions in full detail, we begin
with exploring the low homological degrees in Section 3. It turns out that they can
be used to obtain various asymptotic results on consecutive pattern avoidance, in
the spirit of the approach of Golod and Shafarevich [1964]. We re-prove several
results in that direction previous obtained by Elizalde [2006], and derive various
new ones. Finally in Section 4, we construct a free resolution of the trivial module
over a shuffle algebra with monomial relations, and discuss applications of this
resolution. A reader primarily interested in applications to combinatorics should
refer to Sections 3.2 and 4.2; though these sections contain references to results
proved in more algebraic parts of the paper, they are close to being self-contained
in all other respects.

All vector spaces throughout this work are defined over an arbitrary field k of
zero characteristic. We adopt the usual notation [n] for the set {1, 2, . . . , n}. The
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group of permutations of a finite set I is denoted by Sym(I ). In case I = [n], we
use a more concise notation Sn for the permutation group.

2. Shuffle algebras

2.1. Nonsymmetric collections and shuffle products. In this section, we shall
recall the definition of a shuffle algebra, as defined by Ronco [2011]; see also
[Loday and Ronco 2011]. Our definitions and methods, though equivalent to the
original definition of Ronco (and the subsequent definition of Loday and Ronco),
are different, and rather follow the approach of [Dotsenko and Khoroshkin 2010].

We denote by Ord+ the category whose objects are finite ordered sets (with
order-preserving bijections as morphisms). Also, we denote by Vect the category
of vector spaces (with linear operators as morphisms).

Definition 1. (1) A (nonsymmetric) collection is a contravariant functor from the
category Ord+ to the category Vect.

(2) Let P and Q be two nonsymmetric collections. Define their shuffle tensor
product P�Q by the formula

(P�Q)(I ) :=
⊕

JtK=I

P(J )⊗Q(K ),

where the sum is taken over all partitions of I into two disjoint subsets J
and K .

Remark 2. (1) Nonsymmetric collections are in one-to-one correspondence with
(nonnegatively) graded vector spaces (for a functor F, the graded component
Fn of the corresponding graded vector space F is F([n])). However, the
functorial definition makes the monoidal structure much easier to handle, with
one exception: To define a nonsymmetric collection, it is sufficient to define
the spaces F([n]), with all other spaces defined automatically because of
functoriality. We shall use this observation many times throughout the paper.

(2) If we define the tensor product of two nonsymmetric collections by a similar-
looking formula

(P⊗Q)(I ) :=
⊕

J+K=I

P(J )⊗Q(K ),

where the sum is taken over all partitions of I into two consecutive inter-
vals J and K , this would indeed give the standard tensor product of graded
vector spaces.

The following proposition is straightforward; we omit the proof.
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Proposition 3. The shuffle tensor product endows the category of nonsymmetric
collections with a structure of a monoidal category. The unit object in each case
is the functor I that vanishes on all nonempty sets and is one-dimensional for the
empty set.

The following proposition shows that the shuffle tensor product provides a
“categorification” of the product of exponential generating functions in the same
way as the usual tensor product provides a categorification of the product of “normal”
generating functions.

Proposition 4. For a nonsymmetric collection P, let us define its exponential
generating series fP(t) as the power series∑

n≥0

dim P([n])
n!

tn.

Then we have
fP�Q(t)= fP(t) · fQ(t). (1)

Proof. Indeed, the number of ways to split [n] into a disjoint union [n] = J t K
with |J | = j and |K | = k is equal to(n

j

)
=

n!
j !(n− j)!

=
n!

j ! k!
,

so
dim((P�Q)([n]))=

∑
0≤ j≤n

n!
j ! k!

dim(P([ j])) dim(Q([k])),

and the result follows. �

2.2. Shuffle algebras.

Definition 5. A shuffle (associative) algebra is a monoid in the category of nonsym-
metric collections with the monoidal structure given by the shuffle tensor product.

In other words, to define a shuffle algebra structure on a nonsymmetric collec-
tion A, one has to define the structure maps

µJ,K : A(J )⊗A(K )→A(J t K )

satisfying the obvious associativity conditions.

Remark 6. Shuffle algebras are closely related to twisted associative algebras (see
for instance [Stover 1993]), namely, they are in the same relationship with them as
shuffle operads are with symmetric operads. Also, the category of shuffle algebras
admits an embedding into the category of shuffle operads, and this embedding is
behind some of the constructions of this paper. We shall not discuss these topics in
detail here.
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Example 7. Every graded associative algebra V gives rise to a shuffle algebra Ṽ
with Ṽ (I )=V|I |, where for every partition I = JtK the corresponding product map

µJ,K : Ṽ (J )⊗ Ṽ (K )= V|J |⊗ V|K |→ V|J |+|K | = Ṽ (I )

is given by the product in V .

Example 8. Consider the shuffle algebra AM R with AM R(I )= k Sym(I ), where
for every partition I = J t K the corresponding product map

µJ,K : AM R(J )⊗AM R(K )= k Sym(J )⊗ k Sym(K )→ k Sym(I )=AM R(I )

is somewhat tautological: The product of two permutations is the permutation of
I = J t K obtained from the respective permutations of J and K by concatenation.

As shown in [Ronco 2011], the algebra from the previous example is isomorphic
to the free shuffle algebra with one generator of degree 1. This shuffle algebra
gives a refinement of (the underlying graded algebra of) the Malvenuto–Reutenauer
Hopf algebra of permutations [Malvenuto and Reutenauer 1995]. Many other Hopf
algebras of combinatorial nature, for example, the Hopf algebra of quasisymmetric
functions, the Hopf algebra of parking functions, the Hopf algebra of set partitions,
etc. (for definitions, see [Loday and Ronco 2010] and references therein), are shuffle
algebras as well, with the associative product being the sum over all possible shuffle
products.

Let us give the combinatorial construction of a free algebra generated by a given
nonsymmetric collection. Let M be a nonsymmetric collection with M(∅)= {0},
and let B be a nonsymmetric collection of finite ordered sets (that is, a functor from
the category Ord+ to itself) such that for every ordered set I the set B(I ) is a basis
of M(I ). We shall describe a nonsymmetric collection of finite ordered sets that
will form a bases in components of the free shuffle algebra. By definition, elements
of B(I ) correspond to the following combinatorial data:

(1) an ordered partition of I into subsets, I =
⊔m

j=1 I j ,

(2) a “monomial” c1c2 · · · cm with c j ∈ B(I j ) for every j = 1, . . . ,m.

The shuffle product µJ,K concatenates both the ordered partitions and the monomi-
als.

Note that if we assume that M(I )= {0} for |I | 6= 1 and dim M(I )= 1 for |I | = 1,
we see that every subset I j has to consist of one element, and therefore any ordered
partition that contributes is just a permutation (and the monomials do not carry
additional information, capturing the lengths of the permutations). Therefore, we
recover the free algebra with one generator of degree 1 from Example 8 above.

The following proposition is straightforward.
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Proposition 9. The collection F〈M〉 with F〈M〉(I )= span B(I ) is (isomorphic to)
the free shuffle algebra generated by M.

2.2.1. Shuffle ideals and modules. Since shuffle algebras are monoids in a monoidal
category, the usual definitions of ideals, quotients, modules, etc. can be immediately
given in this context. To make the article self-contained, we present them here. All
shuffle algebras in this paper are assumed to be connected, that is having k as the
empty set component.

Definition 10. Let A be a shuffle algebra with the product µ : A�A→A.

• A right module over A is a nonsymmetric collection M together with a structure
map γ : M�A→M satisfying the associativity condition

γ(γ� idA)= γ(idM �µ).

• The trivial right module over A is the collection I that has k as the empty set
component and zero for all other components, where the only nonzero part of
the structure map is

I(∅)⊗A(∅)= k⊗ k' k= I(∅).

• The regular right module over A is the collection A itself, with the structure
map γ = µ.

• A right ideal of A is a subcollection of the regular right module that is closed
under the structure map.

• For a subcollection R of A, the right ideal (R) generated by R is the minimal
right ideal of A that contains R.

• The free right module over A generated by the nonsymmetric collection V

is the collection V � A with the structure map γ = idV �µ. A free module
is said to be finitely generated if all components V(I ) are finite-dimensional,
and moreover they vanish for |I | sufficiently large.

The respective definitions of left modules, left ideals, bimodules, and two-sided
ideals are completely analogous.

The following is an example of how graded associative algebras can be pre-
sented as shuffle algebras with generators and relations, that is, as quotients of free
shuffle algebras.

Example 11. Let us take the algebra AM R discussed in Example 8, and compute
its quotient modulo the two-sided ideal generated by the difference 12− 21 ∈ kS2.
This quotient is isomorphic to the algebra Ṽ from Example 7 with V = k[x].
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2.2.2. Consecutive patterns. In this section, we shall explain how our definitions
are related to the combinatorial concept of consecutive pattern avoidance.

Let us recall some definitions and notation. To every sequence s of length k
consisting of k distinct numbers, we assign a permutation st(s) of length k called
the standardization of s; it is uniquely determined by the condition that si < s j

if and only if st(s)i < st(s) j . For example, st(153) = 132. In other words, st(s)
is a permutation whose relative order of entries is the same as that of s. We say
that a permutation σ of length n avoids the given permutation τ of length j as a
consecutive pattern if for each j < n − i + 1 we have st(σiσi+1 · · · σi+ j−1) 6= τ ;
otherwise we say that σ contains τ as a consecutive pattern. Throughout this
paper, we only deal with consecutive patterns, so the word “consecutive” will be
omitted. For historical information on pattern avoidance in general and the state of
the art for consecutive patterns, we refer the reader to [Kitaev and Mansour 2003;
Steingrímsson 2010].

The central question arising in the theory of pattern avoidance is that of enumera-
tion of permutations of given length that avoid the given set of forbidden patterns P
or, more generally, contain exactly l occurrences of patterns from P . This question
naturally leads to the following equivalence relations. Two sets of patterns P and
P ′ are said to be Wilf equivalent (notation: P 'W P ′) if for every n, the number
of P-avoiding permutations of length n is equal to the number of P ′-avoiding
permutations of length n. This notion (in the case of one pattern) is due to Wilf
[2002]. More generally, P and P ′ are said to be equivalent (notation: P ' P ′)
if for every n and every k ≥ 0, the number of permutations of length n with k
occurrences of patterns from P is equal to the number of permutations of length n
with k occurrences of patterns from P ′.

While studying the equivalence classes of patterns, sometimes it is possible to
replace the set of forbidden patterns by a Wilf equivalent one with fewer patterns
in it. Namely, we have a partial ordering on the set of all permutations (of all
possible lengths): τ < σ if σ contains τ as a consecutive pattern. Given a set P of
“forbidden” patterns, to enumerate the permutations avoiding all patterns from P ,
we may assume that P is an antichain with respect to this partial ordering. Indeed,
ignoring all patterns from P that contain a smaller forbidden subpattern does not
change the set of P-avoiding permutations. Therefore, further on we shall assume
that forbidden patterns do indeed form an antichain.

2.2.3. Shuffle algebras and consecutive patterns. The following result, however
simple, provides a bridge between algebra and combinatorics, defining for each
forbidden set P of patterns a shuffle algebra whose exponential generating series
is precisely the exponential generating function for the numbers of permutations
avoiding P . Let us denote by a P

n the number of permutations of length n that avoid
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all patterns from P , and by gP(t) the corresponding exponential generating function,

gP(t) := 1+
∑
n≥1

a P
n

n!
tn.

Theorem 12. For every set P of forbidden patterns, let us define the shuffle algebra
AP

M R as the quotient of the algebra AM R modulo the two-sided ideal generated by
all patterns from P. Then the (classes of ) permutations avoiding all patterns from
P form a basis of the quotient. Consequently,

fAP
M R
(t)= gP(t).

Proof. Since the products in AM R are defined via concatenations, it is clear that
the ideal generated by P consists precisely of permutations containing patterns
from P . This means that we may identify classes in the quotient AM R/(P) with
permutations avoiding patterns from P . We shall use this identification throughout
the paper. �

A similar result for the free shuffle algebra with more than one generator provides
technical tools to deal with pattern avoidance in colored permutations [Mansour
2001/02], and more general consecutive pattern avoidance where, for instance, each
occurrence of a rise of length 2 may or may not be colored. We shall not discuss
the corresponding applications in this paper, but want to draw the reader’s attention
that all our methods generalize immediately to those settings.

2.2.4. Modules over the associative operad. This short section is intended for
readers whose intuition, as ours does, comes from operad theory. Essentially, it
retells the shuffle algebra approach in a slightly different way, explaining also the
place for classical pattern avoidance in the story (recall that classical patterns are
those occurring as subsequences rather than as factors in permutations).

Studying varieties of algebras, that is, algebras satisfying certain identities, goes
back to work of Specht [1950]. The notions of T -ideals and T -spaces formalize the
ways to derive identities from one another. One natural way to study identities is to
define an analogue of a Gröbner basis for an ideal of identities. This approach is
taken in works of Latyshev [2005; 2008], who suggested a combinatorial approach
to studying associative algebras with additional identities via standard bases of
the corresponding T -spaces. His approach can be described as follows. For each
“T -space” (in other words, right ideal in the associative operad), he defines a
version of a Gröbner basis; such a basis would allow to study arbitrary relations
via monomials avoiding certain patterns. Here, for once, by a pattern we mean
a classical pattern (its occurrence does not have to be as a consecutive subword,
but rather a subsequence). This approach has a slight disadvantage. Namely,
even though the actual Gröbner bases of relations are expected to be finite (at
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least, the famous result of Kemer [1988] states that in principle there exists a
finite set of generating identities), they are difficult to compute, as there is no
algorithm comparable to the one due to Buchberger in the associative algebra case
[Ufnarovskij 1995]. Remarkably, this trouble disappears if we study left ideals
in the associative operad. In terms of combinatorics, studying left ideals also has
a very clear meaning: The corresponding notion of divisibility corresponds to
consecutive pattern avoidance! For consecutive patterns, the intuition of [Dotsenko
and Khoroshkin 2010; 2012] for Gröbner bases and resolutions applies directly,
and it turns out to be possible to describe the relevant resolutions explicitly, in fact
the level of complexity here being closer to the case of associative algebras than to
the case of operads.

2.3. Shuffle homological algebra. One of the central concepts of homological
algebra is that of a derived functor. Computing derived functors relies on being able
to construct “nice” (free, projective, injective etc.) resolutions of objects to that we
want to apply our derived functors. The category of objects of primary interest to
us is the category of left modules over the given shuffle algebra A, and a typical
functor we want to derive is “shuffle torsion groups”, that is, the derived functor
of the shuffle tensor product over A with a given module, for instance with the
trivial right module. This paper is focused on combinatorial applications of shuffle
algebras, so in the view of Theorem 12 the shuffle algebras of main interest for us
are quotients of the algebra AM R modulo the ideal generated by several patterns. In
the following sections, we shall present two results of homological algebra for such
shuffle algebras, and derive from these results various statements on enumerative
combinatorics of consecutive patterns. One technical result that we shall be using
to translate between the two languages is the following standard statement on Euler
characteristics, applied to nonsymmetric collections.

Proposition 13. Let · · · → Cn → · · · → C2 → C1 → C0 be a chain complex
of nonsymmetric collections with homology groups H0,H1, . . . ,Hn, . . .. Then
we have

fC0(t)− fC1(t)+ · · ·+ (−1)n fCn (t)+ · · ·

= fH0(t)− fH1(t)+ · · ·+ (−1)n fHn (t)+ · · · ,

provided that the sums on the left and on the right make sense (for every integer l
only finitely many summands have nonzero coefficients of t l).

3. Golod–Shafarevich-type complex and its applications

3.1. Golod–Shafarevich-type inequality. In this section, we shall exhibit a very
simple application of homological algebra philosophy to combinatorics, mimicking



682 Vladimir Dotsenko and Anton Khoroshkin

the idea used by Golod and Shafarevich [1964] in their study of the class field tower,
which has been used a lot in algebra and combinatorics since then; see for instance
[Piotkovskii 1993] and the later papers [Bell and Small 2002; Bell and Goh 2007;
Etingof and Ginzburg 2007; Rampersad 2011]. Namely, we shall construct the
low homological degree part of the minimal resolution of the trivial right module
over the shuffle algebra AP

M R by free modules. More precisely, we shall prove the
following theorem.

Theorem 14. Let V be the one-dimensional space generating the free algebra AM R ,
and P be the subcollection of AM R spanned by forbidden patterns. There exists a
chain complex

P�AP
M R→ V�AP

M R→AP
M R→ I→ 0, (2)

which is exact everywhere except for the leftmost term.

Proof. The boundary maps are as follows:

(1) AP
M R→ I is the augmentation, mapping all permutations of positive length to

zero,

(2) V�AP
M R→AP

M R is the product in the algebra AP
M R (generated by V),

(3) P�AP
M R→ V�AP

M R is the composition of the inclusion

P�AP
M R→ V�AM R �AP

M R

(which exists because V generates the algebra AM R), the projection

V�AM R �AP
M R→ V�AP

M R �AP
M R,

and the product in the algebra AP
M R .

The exactness of this complex in the terms I and AP
M R is obvious. Let us show

the exactness in the term V � AP
M R . Since the relations of the algebra AP

M R are
monomial, the kernel of the boundary map is spanned by “monomials” j �ρ with j
being an element of degree 1 and ρ being a permutation avoiding patterns from P .
Such an element belongs to the kernel of the boundary map if jρ = 0; therefore,
jρ contains a pattern from P . Such a pattern has to be an initial segment of jρ,
otherwise ρ would contain a pattern from P itself. This instantly implies that our
element is in the image of the boundary map from P�AP

M R . �

Corollary 15. Let P =
⊔

n≥2 Pn be a collection of forbidden consecutive patterns
in permutations. Then the following coefficient-wise inequality holds(

1− t +
∑
k≥2

|Pk |

k!
tk
)

gP(t)≥ 1. (3)
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Proof. Let us denote by H3 the only nontrivial piece of homology of the chain
complex (2). Computing Euler characteristics according to Proposition 13, we
see that

fI(t)− fAP
M R
(t)+ fV(t) fAP

M R
(t)− fP(t) fAP

M R
(t)=− fH3(t),

or
1− gP(t)+ tgP(t)−

(∑
k≥2

|Pk |

k!
tk
)

gP(t)=− fH3(t),

which implies (
1− t +

∑
k≥2

|Pk |

k!
tk
)

gP(t)= 1+ fH3(t)≥ 1. �

3.2. Applications to consecutive pattern avoidance. The following contains on
key application of Corollary 15.

Corollary 16. Assume that the power series

f (t)= 1− t +
∑
k≥2

|Pk |

k!
tk

has a root α > 0. Then a P
n ≥ α

−nn! .

Proof. Let ∑
l≥0

bl t l
:=

1

1− t +
∑

k≥2
|Pk |
k! tk

,

so that b0 = 1 and

bn − bn−1+

n∑
k=2

|Pk |

k!
bn−k = 0.

Let us prove by induction that bn ≥ α
−1bn−1. Indeed, for n = 1 this statement is

obvious (α ≥ 1 because otherwise f (α) is evidently positive), and for n > 1 we
note that by the induction hypothesis bn−1 ≥ α

1−kbn−k , so

bn = bn−1−

n∑
k=2

|Pk |

k!
bn−k ≥ bn−1−

n∑
k=2

|Pk |

k!
αk−1bn−1

≥ bn−1−
∑
k≥2

|Pk |

k!
αk−1bn−1 = α

−1bn−1

(
α−

∑
k≥2

|Pk |

k!
αk
)
= α−1bn−1,

which proves the step of induction. Therefore bn ≥ α
−n , and the series

1

1− t +
∑

k≥2
|Pk |
k! tk
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has positive coefficients. Hence multiplying the inequality (3) by that series pre-
serves the inequality, and we obtain

gP(t)≥
1

1− t +
∑

k≥2
|Pk |
k! tk

, so
a P

n

n!
≥ α−n. �

Using the corollary above, one can obtain good asymptotic results on enumeration
of permutations avoiding the given set of consecutive patterns, thus rediscovering a
result of Elizalde [2006] in the case of one pattern, but also recovering some much
stronger results. Let use give several examples.

Corollary 17. The number of permutations of length n avoiding the given single
pattern τ of length k is at least α−n

k n! , where αk is the smallest positive root of the
equation

1− t + tk

k!
= 0.

(For example, α4 ≈ 1.050800769, α5 ≈ 1.008702295, α6 ≈ 1.001400601.)

Corollary 18. Let the set of forbidden patterns P contain one pattern of each
length l ≥ 4. Then the number of permutations of length n avoiding P is at least
α−nn! , where α ≈ 1.068290263 is the root of the equation

et
− 2t − 1

2 t2
−

1
6 t3
= 0.

In particular, there are infinitely many permutations avoiding P regardless of the
actual choice of patterns in P.

Proof. In this case, |Pn| = 1 for all n ≥ 4, so

1− t +
∑
k≥2

|Pk |

k!
tk
= 1− t + et

− 1− t − 1
2 t2
−

1
6 t3
= et
− 2t − 1

2 t2
−

1
6 t3. �

4. Anick-type resolution and its applications

4.1. Anick-type resolution. In this section, we shall explain how to extend the
complex we constructed above to a resolution of the trivial right module by free
AP

M R-modules. The generators of those modules are defined combinatorially. Once
the set P of forbidden patterns is fixed, we define, for each nonnegative integer q ,
the notion of a q-chain and the tail of a given q-chain associated to P inductively
as follows:

• The empty permutation is a 0-chain on the empty set; it coincides with its tail.

• The only permutation of a one-element set I is a 1-chain on I ; it also coincides
with its tail.
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• Each q-chain is a permutation σ represented as a concatenation σ ′τ , where τ
is the tail of σ , and σ ′ is a (q−1)-chain on its underlying set.

• If we denote by τ ′ the tail of σ ′ in the representation above, then τ ′τ contains
exactly one occurrence of a pattern from P , and this occurrence is a terminal
segment of τ ′τ .

The way we define the chains here is slightly different from the original approach
of Anick [1986]; the reader familiar with the excellent textbook of Ufnarovskii
[1995] will rather notice similarities with the approach to Anick resolution adopted
there.

Informally, a q-chain is a “minimal” way to form a permutation by linking
together (q − 1) prohibited patterns. The word “minimal” is justified by the
following:

Lemma 19. No proper beginning of a q-chain is a q-chain.

Proof. We shall prove this by induction on q, the basis of induction (q = 0, 1, 2)
being obvious.

Assume there is a q-chain σ = σ ′τ that has a proper beginning that is a q-chain
as well, so τ = µν, and σ ′µ is a q-chain. By the induction hypothesis, no proper
beginning of a (q−1)-chain is a (q−1)-chain, which implies that µ is the tail of
the q-chain σ ′µ. However, this immediately shows that (in the notation of the
definition of chains and tails above) τ ′τ contains at least two different occurrences
of patterns from P , which is a contradiction. �

One more fact about chains that makes the definition above more transparent is
that, even though we defined a chain as a permutation together with a factorization,
in fact the factorization carries no additional information:

Lemma 20. If σ is a q-chain, the way to link (q−1) patterns from P to one another
to form σ is unique.

Proof. Assume that there are two ways to link q patterns to form σ . Obviously,
for each m < q, the endpoints of the m-th (from left to right) patterns in these
two linkages should coincide, otherwise we shall find an m-chain whose proper
beginning is an m-chain as well, which is not the case by the previous lemma. Once
we know that the endpoints of the m-th patterns are the same, the beginnings have
to be the same because P is assumed to be an antichain (and so patterns from P
cannot be contained in one another). �

Let us give some examples clarifying the notion of a chain. For example, if
P = {12}, the only q-chain for each q is 12 · · · q , while if P = {123}, we can easily
see that 123 is the only 1-chain, and 1234 is the only 2-chain, but 12345 is not a
2-chain because it starts from a 2-chain 1234, and it is not a 3-chain because in the
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only way to cover this permutation by three copies of our pattern, the first and the
third occurrences overlap:

1 2 3︸ ︷︷ ︸︷ ︸︸ ︷
4 5 .

Theorem 21. Denote by Cq the subcollection of the free algebra AM R spanned by
all q-chains. There exists a chain complex

· · ·Cq �AP
M R→ Cq−1 �AP

M R→ · · · → C1 �AP
M R→AP

M R→ I→ 0, (4)

which is exact in every term.

This result is a direct generalization of the one in Theorem 14 since C2 =P and
C1 = V.

Proof. The boundary map Cq �AP
M R→ Cq−1 �AP

M R is defined as a composition
of the inclusion

Cq �AP
M R→ Cq−1 �AM R �AP

M R

(which exists because we can factorize a q-chain as a product of a (q−1)-chain
and a tail), the projection

Cq−1 �AM R �AP
M R→ Cq−1 �AP

M R �AP
M R,

and the product in the algebra AP
M R .

Let us prove the exactness of this complex in the term Cq � AP
M R . Since the

relations of the algebra AP
M R are monomial, the kernel of the boundary map is

spanned by “monomials” σ ⊗ ρ, where σ is a q-chain and ρ is a permutation
avoiding patterns from P . Such an element belongs to the kernel of the boundary
map if σ ′⊗ τρ = 0, where τ is the tail of σ and σ = σ ′τ . Therefore, τρ contains
a pattern from P . Since ρ avoids patterns from P , this means that there exists a
decomposition ρ = ρ ′ρ ′′ such that τρ ′ contains a pattern from P as its terminal
segment, and this is the only occurrence of a pattern from P in τρ ′ (take for ρ ′ the
smallest initial segment of ρ with this property). This immediately implies that σρ ′

is a (q+1)-chain with the tail ρ ′, so our element is the image under the boundary
map of the element σρ ′⊗ ρ ′′. �

Let us denote by cn,q the number of q-chains that are permutations of length n.

Corollary 22. We have

gP(t)=
1

1−t+
∑

q≥2,n≥1

(−1)q cn,q
n! tn

. (5)

Proof. Computing Euler characteristics according to Proposition 13, we see that

fI(t)− fAP
M R
(t)+ fC1(t) fAP

M R
(t)− fC2(t) fAP

M R
(t)+ fC3(t) fAP

M R
(t)− · · · = 0
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or

1− gP(t)+ tgP(t)−
(∑

k≥2

(−1)qcn,q

n!
tn
)

gP(t)= 0,

which implies

gP(t)=
1

1−t+
∑

q≥2,n≥1

(−1)q cn,q
n! tn

. �

Let us give a simple example in which both the left hand side and the right hand
side of the (5) can be easily computed (we already mentioned it in the introduction).
Let P consist of a single pattern 12. Then, for each q we have one q-chain 12 · · · q
of length q. Also, for every m the only permutation of length m avoiding 12 is
m(m− 1) · · · 21. Therefore, the inversion formula above becomes∑

n≥0

tn

n!
=

1
1−t+

∑
q≥2

(−1)q
q! tq

,

and we recognize the well-known formula exp(t) exp(−t)= 1.
Equation (5) bears a striking resemblance to a celebrated result of Goulden and

Jackson [1979] expressing the inverses of generating functions for consecutive
pattern avoidance in terms of clusters:

gP(t)=
1

1− t +
∑

q≥2,n≥1

(−1)q cln,q
n! tn

, (6)

where cln,q is the number of q-clusters of length n. A q-cluster is, roughly speaking,
an indecomposable covering of a permutation by patterns from the forbidden set P ,
but, unlike chains, without any minimality condition. As a consequence, the number
of chains is potentially much smaller than the number of clusters, and our result is
a strengthening of the result of Goulden and Jackson. A good way to think of it is
to say that many “obvious” cancellations happen in the cluster formula (6), and our
approach takes care of these ”obvious” cancellations.1 For example, we already
saw that for P = {123} the permutation 12345 is not a chain. However, it can be
covered by two copies of 123 as well as by three copies of 123, and these coverings
give it a structure of a 2-cluster and a 3-cluster respectively. The contributions of
these two clusters in (6) occur with opposite signs, and the total contribution of
this permutation is equal to zero, exactly as (5) suggests. Among the applications
below, for some of the examples it does not really matter if we are dealing with
chains or clusters, whereas for other ones chains give more compact formulas.

1We want to note, however, that our approach can be used to prove the cluster inversion formula
too, if one adapts the method of [Dotsenko and Khoroshkin 2012] for constructing free resolutions.
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4.2. Applications to consecutive pattern avoidance. Before moving on to partic-
ular results, let us state a general remark. Our results suggest that the class of
power series that contains all inverses of pattern avoidance enumerators is related
to some nice combinatorics. Results of Elizalde and Noy [2003] that we re-prove
below describe some of these series as solutions to particular differential equations.
Our formulas for other cases we considered can be rewritten as more complicated
functional equations. What can be said about other series of that sort? So far we
have not able to describe a reasonable class of series that cover all of these. A
wild guess is that all these series satisfy algebraic differential equations, that is, if
f (x) is such a series, then P(x, f (x), f ′(x), . . . , f (d)(x))= 0 for some nonzero
polynomial P(x, t0, t1, . . . , td).

4.2.1. Patterns without self-overlaps, linking schemes, and posets. In this section,
we shall enumerate chains in one particular case, namely, the case of an arbitrary
pattern without self-overlaps, which will allow us to prove a conjecture of Elizalde
[2004]. In fact, in this case chains coincide with clusters, so one could refer to
results of Goulden and Jackson instead of Theorem 21.

Definition 23. A pattern τ is said to have no self-overlaps if every permutation of
length at most 2m− 2 has at most one occurrence of τ . (Clearly, there always exist
permutations of length 2m− 1 with two occurrences of τ .)

For example, the pattern 132 is of that form: Clearly, we can only link it with
itself using the last entry. A more general example studied in [Elizalde and Noy
2003] is 12 · · · a τ (a+1) ∈6n , where a+1< n, and τ is an arbitrary permutation
of the numbers a+ 2, . . . , n.

For a pattern τ without self-overlaps, there exists a simple way to reformulate
the enumeration problem for chains in terms of total orderings on posets. The first
author used this method in [Dotsenko and Vejdemo Johansson 2012] in a similar
setting, dealing with tree monomials in the free shuffle operad. To a q-chain σ
obtained by linking q−1 copies of τ , let us assign a “linking scheme” of the shape
that we expect, replacing each entry in σ by the symbol • (a bullet), and marking
the segments of consecutive bullets that are “traces” of (occurrences of) τ . For
example, for the pattern 1243 and 4-chains we get

• • • •︸ ︷︷ ︸︷ ︸︸ ︷
• • • • • •︸ ︷︷ ︸ .

For such a linking scheme, let us define a partial ordering on bullets as follows: For
each j , we equip the j-th trace of τ with a total ordering identical to the ordering
of the corresponding entries of τ . Let us denote by 5q,τ the thus-defined poset.
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Example 24. Let us take the linking scheme above, and replace bullets by letters,
to make it easier to distinguish between different bullets:

a b c d︸ ︷︷ ︸︷ ︸︸ ︷e f g h i j︸ ︷︷ ︸ .
Then the orderings inherited from 1243 are a < b < d < c, d < e < g < f , and
g < h < i < j , so we obtain the poset 54,1243:

a

b

d

c e

g

f h

i

j

(the covering relation of the poset is, as usual, represented by edges; v is covered
by w if w is the top vertex of the corresponding edge).

The following proposition is obvious.

Proposition 25. The set of q-chains for P = {τ }, where τ has no self-overlaps, is
in one-to-one correspondence with the set of all total orderings on posets 5q,τ .

Now we shall see how this approach can be applied in some cases.

4.2.2. Case of the pattern 12 · · · a τ (a+ 1). Let a < m, and let 12 · · · a τ (a+ 1)
be a permutation of length m + 1 that starts with the increasing run 1, 2, . . . , a,
followed by some permutation τ of (a+ 2), . . . ,m + 1, followed by the number
(a+ 1). Clearly, this pattern has no self-overlaps, so to enumerate chains we may
count total orderings of posets. Note that every (q+1)-chain for q ≥ 0 is of length
q(m+ 1)− (q − 1)= qm+ 1.

Proposition 26. For P = {12 · · · a τ (a + 1)}, the number of (q+1)-chains is
equal to

q∏
j=1

( jm−a
m−a

)
.

Proof. This proof serves as a starting example of how to use posets to study chains.
The poset 5q,τ in this case looks like a tree of height m+ 1 with the only branch
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growing on the height a+1, this branch being of length m+1 and having a smaller
branch growing at the distance a + 1 from the starting point, etc. (An example
of such a poset for the case of the permutation 1243 with a = 2, m = 3 is given
above.) To extend such a partial ordering to a total ordering, we should make the
lowest a+ 1 elements for such a tree the smallest elements 1, 2, . . . , a+ 1 of the
resulting ordering. Then, there are

(qm−a
m−a

)
ways to choose (m+1)−(a+1)=m−a

remaining elements forming the stem of our tree, and we are left with the same
question for a smaller tree, where we may proceed by induction. �

Corollary 27 (see [Elizalde and Noy 2003; Kitaev 2005] for t = 0). For a < m,
the multiplicative inverse of the generating function gP(t) of permutations avoiding
12 · · · a τ (a+ 1) ∈ Sm+1 is given by the formula

1− t −
∑
q≥1

(−1)q+1tqm+1

(qm+ 1)!

q∏
j=1

( jm−a
m−a

)
. (7)

In particular, all these patterns, for different τ , are Wilf equivalent to each other.

Except for the case of the pattern 123'W 321, this covers all patterns of length 3,
because 132'W 312'W 231'W 213 (the equivalence provided by either reversing
the order of entries in the pattern from the left to the right, or reversing the relative
order of entries in the pattern). We shall deal with the pattern 123 and, more
generally, 12 · · · a, in further sections.

4.2.3. Case of one arbitrary pattern without self-overlaps. Generalizing the previ-
ous result, let us consider an arbitrary pattern τ of length m+1 without self-overlaps.
For such a pattern, every (q+1)-chain for q ≥ 0 is still of length qm + 1. The
following result was conjectured in [Elizalde 2004], where it was proved in some
particular cases. Another proof in the general case was, as we discovered after the
first version of this paper got in circulation, obtained by Adrian Duane and Jeffrey
Remmel [2011]; it is based on entirely different techniques developed in [Mendes
and Remmel 2006].

Theorem 28. For a pattern τ of length m+ 1 without self-overlaps, the number of
permutations of length n with k occurrences of τ depends only on n, k, m, τ(1), and
τ(m+ 1). In other words, two non-self-overlapping permutations of length m+ 1
are equivalent if their first and last entries are the same.

Proof. Since for patterns without self-overlaps clusters coincide with chains, and
cluster inversion can be used to count permutations with a given number of oc-
currences of forbidden patterns [Goulden and Jackson 1979], it is enough to show
that the number of (q+1)-chains depends only on the first and the last entry of τ .
This result is also very easy to derive using posets. To make formulas compact, let
us put a = τ(1)− 1 and b = τ(m+ 1)− 1. The poset 5q,τ whose total orderings
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enumerate q-chains is obtained from q totally ordered sets of cardinality m+ 1 as
follows: The element a+ 1 of the second set is identified with the element b+ 1 of
the first set, the element a+1 of the third set is identified with the element b+1 of
the second set, etc. Clearly, this poset depends only on m, a, and b.

The actual number of q-chains in this case can be computed as follows. Let us
denote by fk(p) the number of q-chains σ whose first element is p+ 1. Then it is
easy to see that the following recurrence relation holds (here we assume, without
the loss of generality, that a < b):

fk(p)=
∑

q

( p
a

)(km−q
m−b

)(q− p−1
b−a−1

)
fk−1(q − b). (8)

Writing q+1= σ(m+1), there are
(p

a

)
ways to choose elements less than p+1 in

the first pattern in the chain,
(km−q

m−b

)
ways to choose elements greater than σ(m+1)

there,
(q−p−1

b−a−1

)
to fill the space between these elements, and fk−1(q − b) ways to

choose the remaining (k−1)-chain. �

Example 29. Theorem 28 shows that the two patterns 23154 and 21534 are equiv-
alent to each other. Computing the first ten cluster numbers and inverting the
corresponding series, we get the first ten entries 1, 1, 2, 6, 24, 119, 708, 4914,
38976, 347776 of the sequence counting permutations that avoid either of them.

4.2.4. Case of one pattern of length 4. Let us now consider the case of a single
pattern of length 4. The equivalence classes of these are as follows [Elizalde 2004]:

I. 1234' 4321.

II. 2413' 3142.

III. 2143' 3412.

IV. 1324' 4231.

V. 1423' 3241' 4132' 2314.

VI. 1342' 2431' 4213' 3124' 1432' 2341' 4123' 3214.

VII. 1243' 3421' 4321' 2134.

The case I will be considered later. In each of the cases VI and VII, the pattern
has no self-overlaps, so Corollary 27 applies.

A very special feature of all patterns of length 4 (except for the case I) is that they
have self-overlaps of length at most 2, so however we try to link several patterns
together, it will be automatically true that only neighbors overlap. Moreover, even
if we are dealing with a pattern τ with self-overlaps, every labeling of a linking
scheme that is compatible with ordering of each of the patterns gives a genuine
chain. Assume that γ is a linking scheme for q copies of τ . By induction, we may
assume that the linking scheme provided by the first q − 1 traces of τ only gives
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chains, and we only need to check the chain condition for the terminal segment, for
which the statement follows from the fact that if two patterns of length 4 overlap by
a segment of length 1 or 2, then every pattern of length 4 overlapping with the both
of them overlaps with at least one of them by a segment of length 3. Guided by this
observation, we compute all the exponential generating functions of consecutive
pattern avoidance. Since in this case chains coincide with clusters, our results can be
easily adapted for enumeration of permutations with a given number of occurrences
of a given pattern.

Theorem 30. The numbers cn,l for the pattern 1324 satisfy the recurrence relations

cn,l =
∑

4≤2k+2≤n

1
k+1

(2k
k

)
cn−2k−1,l−k (9)

with initial conditions c1,l = δ0,l (the Kronecker delta symbol), c2,l = 0, c3,l = 0.
Consequently, the generating function for avoidance of 1324 is(

1− t −
∑

n≥2,l≥1

cn,l tn(−1)l

n!

)−1
.

Proof. As we discussed above, counting chains is reduced to counting total orderings
of the corresponding posets. Let us assume that the first k+ 1 patterns have two-
element overlaps, and the following overlap involves just one element. For a chain
σ = a1a2 · · · a2k+1a2k+2a2k+3 · · · , this means that

a1 < a3 < a2 < a4, a3 < a5 < a4 < a6, . . . , a2k−1 < a2k+1 < a2k < a2k+2, (10)

that {a1, . . . , a2k+2} = {1, . . . , 2k + 2}, and that st(a2k+2a2k+3 · · · ) is an (l − k)-
chain. To prove (9), we notice that the number of permutations a1a2 · · · a2k+2 of
{1, . . . , 2k+ 2} for which the conditions (10) are satisfied is given by the number
of standard Young tableaux of size 2× k: Clearly, a1 = 1, a2k+2 = 2k+ 2, and

a2, a3, a4, . . . , a2k+1 ←→
a3 a5 a7 · · · a2k+1

a2 a4 a6 · · · a2k

gives a bijection with standard Young tableaux. The number of such tableaux is
equal to the Catalan number 1

k+1

(2k
k

)
(see, for example [Stanley 1999]), and the

recurrence relation (9) follows. �

Example 31. Computing the first ten of those numbers and inverting the corre-
sponding series, we get the first ten entries 1, 1, 2, 6, 23, 110, 632, 4229, 32337,
278204 of the sequence, which is indeed counting permutations that avoid 1324
(A113228 in [Sloane 2010]).
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Theorem 32. The numbers cn,l for the pattern 1423 satisfy the recurrence relations

cn,l =
∑

4≤2k+2≤n

(n−k−2
k

)
cn−2k−1,l−k (11)

with initial conditions c1,l = δ0,l , c2,l = 0, c3,l = 0. Consequently, the generating
function for avoidance of 1423 is(

1− t −
∑

n≥2,l≥1

cn,l(−1)l

n!

)−1
.

Proof. Similarly to the proof of Theorem 30, counting chains is reduced to counting
total orderings of the corresponding posets. Let us assume that the first k+1 patterns
have two-element overlaps, and the following overlap involves just one element.
For a chain σ = a1a2 · · · a2k+1a2k+2a2k+3 · · · , this means that

a1 < a3 < a4 < a2, a3 < a5 < a6 < a4, . . . , a2k−1 < a2k+1 < a2k+2 < a2k, (12)

so
a1 < a3 < · · ·< a2k−1 < a2k+1 < a2k+2 < a2k < · · ·< a4 < a2, (13)

{a1, a3, . . . , a2k+1} = {1, 2, . . . , k+1}, a2k+2= k+2, and st(a2k+2a2k+3 · · · ) is an
(l−k)-chain. To prove (11), we notice that the number of ways to distribute numbers
between the increasing sequence (13) and the (l − k)-chain st(a2k+2a2k+3 · · · ) is
equal to the number of way to choose the k numbers a2k, . . . , a2. The latter is
clearly the binomial coefficient

(n−k−2
k

)
, and the recurrence relation (11) follows. �

Example 33. Computing the first ten of those numbers and inverting the corre-
sponding series, we get the first ten entries 1, 1, 2, 6, 23, 110, 631, 4218, 32221,
276896 of the sequence counting permutations that avoid 1423.

Theorem 34. The numbers cn,l for the pattern 2143 satisfy the recurrence relations

cn,l =
∑

2≤p<n−2

cn,l(p),

where the numbers cn,l(p) satisfy the recurrence relations

cn,l(p)=
∑

4≤2k+2≤q≤n

(q− p−1
2k−2

)
(p− 1)(n− q)cn−2k−1,l−k(q − 2k) (14)

with initial conditions c1,l(p)= δ0,lδ1,p, c2,l(p)= 0, c3,l(p)= 0. Consequently,
the generating function for avoidance of 2143 is(

1− t −
∑

n≥2,l≥1

cn,l tn(−1)l

n!

)−1
.
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Proof. Similarly to the proof of Theorem 30, counting chains is reduced to counting
total orderings of the corresponding posets. Let cn,l(p) be the number of l-chains
σ of length n with σ(1)= p. Let us assume that the first k+ 1 copies of 2143 in σ
have two-element overlaps, and the following overlap involves just one element.
For a chain σ = a1a2 · · · a2k+1a2k+2a2k+3 · · · , this means that

a2 < a1 < a4 < a3, a4 < a3 < a6 < a5, . . . , a2k < a2k−1 < a2k+2 < a2k+1, (15)

so
a2 < a1 < a4 < a3 < · · ·< a2k < a2k−1 < a2k+2 < a2k+1, (16)

and st(a2k+2a2k+3 · · · ) is an (l − k)-chain. Assume that a1 = p. To prove (14),
we notice that if a2k+2 = q, then there are

(q−p−1
2k−2

)
ways to pick the numbers

a3, . . . , a2k , p− 1 ways to pick a2, (n− q) ways to pick a2k+1, and cn−2k−1,l−k

ways to pick the remaining (l − k)-chain (where the entry q is the (q − 2k)-th
biggest). This completes the proof. �

Example 35. Computing the first ten of those numbers and inverting the corre-
sponding series, we get the first ten entries 1, 1, 2, 6, 23, 110, 631, 4223, 32301,
277962 of the sequence counting permutations that avoid 2143.

In the last remaining case 2413' 3142 (II in the list above), we have no trick
like above that would simplify the computations, so we shall use the most general
strategy for chain enumeration, which allows us to compute the chain numbers
rather fast (polynomially in n) for all sets of forbidden patterns. There is an obvious
similarity with the approach in [Kitaev and Mansour 2005].

Theorem 36. The numbers cn,l for the pattern 2413 are given by the formulas

cn,l =
∑

1<p<q−1<n

cn,l(p, q),

where the numbers cn,l(p, q) satisfy the recurrence relations

cn,l(p, q)=
∑

r<p<s<q

cn−2,l−1(r, s− 1)

+

∑
p<r<s<q

(p−1)cn−3,l−1(r−1, s−1)+
∑

p<r<q<s

(p−1)cn−3,l−1(r−1, s−2) (17)

with initial conditions c2,l(p, q) = 0, c3,l(p, q) = 0, c4,l(p, q) = δl,1δp,2δq,4.
Consequently, the generating function for avoidance of 2143 is(

1− t −
∑

n≥2,l≥1

cn,l tn(−1)l

n!

)−1

.
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Proof. This statement is straightforward. Let us consider an n-chain σ = a1a2a3 · · · .
The first pattern in that chain intersects with its neighbor by either two or one
elements. In the first case, we have a3 < a2 < a4 < a1, so if we fix a1 and a2 and
forget about them, we are left with an (n−1)-chain, and we should sum over all
choices of a3 and a4 for its first entries. If, on the contrary, the first overlap uses
just one element, then there are (a1− 1) choices for a3, and we should distinguish
between the cases a5 > a2 and a5 < a2: In the first case a5 is the (a5−1)-st biggest
in the remaining cluster, while in the second case it is the (a5− 2)-nd biggest. �

Example 37. Computing the first ten of those numbers and inverting the corre-
sponding series, we get the first ten entries 1, 1, 2, 6, 23, 110, 632, 4237, 32465,
279828 of the sequence counting permutations that avoid 2413.

4.2.5. Case of two patterns {132, 231}.

Theorem 38. The number cn,l for P = {132, 231} is not equal to zero only for
n = 2l + 1, and in this case is equal to E2l+1, the tangent number [Stanley 1999],
so the generating function for avoidance of {132, 231} is

(1− tanh t)−1. (18)

Proof. This pair of patterns has no self-overlaps at all (both for a pattern with
itself, and two patterns with each other), so every linking scheme clearly provides
only chains. Clearly, chains are nothing but “up-down” permutations, that is,
permutations a1a2 · · · a2la2l+1 for which

a1 < a2 > a3 < a4 > · · ·< a2l > a2l+1.

It is well known that the number of such permutations is equal to the tangent
number. �

4.2.6. Case of the pattern 12 · · · k. The case we consider in this section is the
case of the single pattern 12 · · · k, which marks increasing runs of length k in
permutations. The enumeration result in this case is well known, however, we want
to show that it can also be obtained as a direct application of our results.

Theorem 39 [Elizalde and Noy 2003; Goulden and Jackson 1983; Kitaev 2005].
The multiplicative inverse of the exponential generating function for patterns avoid-
ing 12 · · · k is given by the formula∑

q≥0

xkq

(kq)!
−

∑
q≥0

xkq+1

(kq+1)!
. (19)

Proof. Indeed, q-chains for q ≥ 2 are as follows:

• the only 2-chain is 12 · · · k,

• the only 3-chain is 12 · · · (k+ 1),
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• the only 4-chain is 12 · · · (2k),

• the only 5-chain is 12 · · · (2k+ 1),

• · · ·

• the only (2l)-chain is 12 · · · (kl),

• the only (2l+1)-chain is 12 · · · (kl + 1),

• · · · . �

4.2.7. Case of the pattern λ(λ+m) · · · (λ+ (k− 1)m). The result of this section
gives one way to somewhat generalize both Theorem 28 and Theorem 39. Let λ
be a pattern of length m without self-overlaps. Denote by λ+ j the permutation
of numbers { j + 1, . . . , j + m} obtained by adding j to each entry of λ. Let
τ = τk,λ = λ(λ+m+ 1) · · · (λ+ (k− 1)m) be the “ordered sum” of k copies of λ.

Theorem 40. The number of permutations of length n avoiding τ depends only on
n, m, τ(1), τ(m), and k. In other words, for two non-self-overlapping patterns of
length m the corresponding k-fold ordered sums are Wilf equivalent if their first and
last entries are the same.

Proof. For the k-fold ordered sum of a pattern without self-overlaps, it is very
easy to exhibit the linking schemes that actually give rise to chains. Such a linking
scheme is a genuine mixture of linking schemes for patterns without self-overlaps
and linking schemes for the pattern 12 · · · k. Namely, for each l ≥ 2 there is one
basic “building block”, a linking scheme modeled on the l-chains

• λ(λ+m) · · · (λ+ (k− 1)m) for l = 2,

• λ(λ+m) · · · (λ+ (k− 1)m)(λ+ km) for l = 3,

• λ(λ+m) · · · (λ+ (2k− 2)m)(λ+ (2k− 1)m) for l = 4,

• λ(λ+m) · · · (λ+ (2k− 1)m)(λ+ 2km) for l = 5,

• · · ·

• λ(λ+m) · · · (λ+ (pk− 2)m)(λ+ (pk− 1)m) for l = 2p,

• λ(λ+m) · · · (λ+ (pk− 1)m)(λ+ pkm) for l = 2p+ 1,

• · · · ,

and every linking scheme producing a chain is a linkage of several building blocks
like that overlapping only by one element. The poset defined by such a linking
scheme obviously depends only on the first and the last element of τ but not on the
relative order of other elements. The corresponding recurrence relations can easily
be derived from this description as well. �
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4.2.8. Case of the pattern 12 · · · k and a pattern without self-overlaps. This section
gives another way to somewhat generalize both Theorem 28 and Theorem 39. Let
λ be a pattern of length m without self-overlaps. We shall study the enumeration
problem for avoidance of Pλ,k = {λ, 12 · · · k}. Let us introduce several parameters
important for enumeration. Denote by lI (λ) the length of the maximal initial
segment of λ that is an increasing rise, and by lT (λ) the length of the maximal
terminal segment of λ that is an increasing rise. Since we always assume patterns
of P to not contain one another, and we assume λ to have no self-overlaps, we
conclude that lI (λ), lT (λ) < k, lI (λ)+ lT (λ) < m and min(lI (λ), lT (λ))= 1.

Theorem 41. The number of permutations of length n avoiding Pλ,k depends only
on m, λ(1), λ(m), lI (λ), lT (λ), and k. In particular, if we adjoin to two non-self-
overlapping patterns λ1 and λ2 of the same length m an increasing rise of length k,
the corresponding two-element sets are Wilf equivalent if the first and last entries,
and the lengths of the initial and terminal increasing rises of λ1 and λ2 are the same.

Proof. Both reversing the direction in which we read permutations (left-to-right
becomes right-to-left) and reversing the order of entries (increasing becomes de-
creasing) in all permutations considered preserve Wilf classes, and doing both these
changes keeps the permutation 12 · · · k intact, we may assume that lT (λ)= 1.

It is easy to exhibit the linking schemes that actually give rise to chains. Basically,
there are two basic types of “building blocks” for the linking schemes: A linking
scheme modeled on a single copy of λ and linking schemes modeled on chains
for a single pattern 12 · · · k, as in the proof of Theorem 39. There is no freedom
in linking copies of λ together: Since λ has no self-overlaps, two copies of λ may
only overlap by a single element. Since we assume that lT (λ) = 1, we conclude
that an occurrence of λ can only overlap with a building block coming from an
overlap of several rises by a single element as well. For an overlap of several rises
followed by an occurrence of λ the situation is different. Namely, if we are talking
about the scheme modeled on the (2l)-chain 12 · · · (kl), it should overlap with the
following copy of λ by the initial increasing rise of that copy, that is, by the first
lI (λ) elements (since no proper beginning of a q-chain may be a q-chain). However,
for the scheme modeled on the (2l+1)-chain 12 · · · (kl+ 1), it should overlap with
the following copy of λ by a single element (since only neighboring patterns in a
chain may overlap). Similarly to the proof of Theorem 28, the posets defined by
such linking schemes are completely determined by the first and the last entry of λ,
and the lengths of its initial and terminal increasing rises. �
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