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Albanese varieties with
modulus over a perfect field

Henrik Russell

Let X be a smooth proper variety over a perfect field k of arbitrary characteristic.
Let D be an effective divisor on X with multiplicity. We introduce an Albanese
variety Alb(X, D) of X of modulus D as a higher-dimensional analogue of the
generalized Jacobian of Rosenlicht and Serre with modulus for smooth proper
curves. Basing on duality of 1-motives with unipotent part (which are introduced
here), we obtain explicit and functorial descriptions of these generalized Albanese
varieties and their dual functors.

We define a relative Chow group of zero cycles CHy(X, D) of modulus D and
show that Alb(X, D) can be viewed as a universal quotient of CHy(X, D)°.

As an application we can rephrase Lang’s class field theory of function fields
of varieties over finite fields in explicit terms.

0. Introduction

The generalized Jacobian variety with modulus of a smooth proper curve X over
a field is a well-established object in algebraic geometry and number theory and
has shown to be of great benefit, for instance, for the theory of algebraic groups,
ramification theory and class field theory. In this work we extend this notion from
[Serre 1959, V] to the situation of a higher-dimensional smooth proper variety X
over a perfect field k. The basic idea of this construction comes from [Russell 2008]
and is accomplished in [Kato and Russell 2012], both only for the case that k is of
characteristic 0. Positive characteristic however requires distinct methods and turns
out to be the difficult part of the story.

To arational map ¢ : X --» P from X to a torsor P under a commutative algebraic
group G we assign an effective divisor mod(¢), the modulus of ¢ (Definition 3.11).
Our definition from [Kato and Russell 2010] coincides with the classical definition
in the curve case as in [Serre 1959, III, Section 1]. For an effective divisor D on X
the generalized Albanese variety Alb'" (X, D) of X of modulus D and the Albanese
map albgfl’)D : X --» AIb (X, D) are defined by the following universal property:
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For every torsor P under a commutative algebraic group G and every rational map
¢ from X to P of modulus < D, there exists a unique homomorphism of torsors
h: AlbV(X, D) — P such that g = ho albg(l’)D. Every rational map to a torsor
for a commutative algebraic group admits a modulus, and the effective divisors on
X form an inductive system. Then the projective limit l(iLnAlb(l)(X , D) over all
effective divisors D on X yields a torsor for a proalgebraic group that satisfies the
universal mapping property for all rational maps from X to torsors for commutative
algebraic groups.

The Albanese variety with modulus (Theorem 0.2) arises as a special case of a
broader notion of generalized Albanese varieties defined by a universal mapping
property for categories of rational maps from X to torsors for commutative algebraic
groups. As the construction of these universal objects is based on duality, a notion
of duality for smooth connected commutative algebraic groups over a perfect field
k of arbitrary characteristic is required. For this purpose we introduce so called
1-motives with unipotent part (Definition 1.18), which generalize Deligne 1-motives
[1971, Définition (10.1.2)] and Laumon 1-motives [1996, Définition (5.1.1)]. In
this context, we obtain explicit and functorial descriptions of these generalized
Albanese varieties and their dual functors (Theorem 0.1).

In a geometric way we define a relative Chow group of O-cycles CHy(X, D) with
respect to the modulus D (Definition 3.27). Then we can realize AV (X, D) as a
universal quotient of CHp (X, D)Y the subgroup of CHy (X, D) of cycles of degree 0
(Theorem 0.3), in the case that the base field is algebraically closed. The relation of
CHy(X, D) to the K-theoretic idele class groups from [Kato and Saito 1983] gives
rise to some future study, but is beyond the scope of this paper. Using these idele
class groups, Onsiper [1989] proved the existence of generalized Albanese varieties
for smooth proper surfaces in characteristic p > 0.

Lang’s class field theory of function fields of varieties over finite fields [Serre
1959, V] is written in terms of so called maximal maps, which appeared as a purely
theoretical notion, apart from their existence very little seemed to be known about
which. The Albanese map with modulus allows us to replace these black boxes by
concrete objects (Theorem 0.4).

We present the main results by giving a summary of each section.

0.1. Leitfaden. Section 1 is devoted to the following generalization of 1-motives:
A I-motive with unipotent part (Definition 1.18) is roughly a homomorphism
[ — G] in the category of sheaves of abelian groups over a perfect field k from
a dual-algebraic commutative formal group & to an extension G of an abelian
variety A by a commutative affine algebraic group L. Here a commutative formal
group ¥ is called dual-algebraic if its Cartier-dual ¥ = Hom(%, Gy, ) is algebraic.
I-motives with unipotent part admit duality (Definition 1.21). The dual of [0 — G]
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is given by [LY — AY], where LY = Hom(L, G,) is the Cartier-dual of L and
AY = Picg =Ext' (A, Gp,) is the dual abelian variety of A, and the homomorphism
between them is the connecting homomorphism associatedto0 - L — G — A — 0.
In particular, every smooth connected commutative algebraic group over k has a
dual in this category. Moreover, these 1-motives may contain torsion.

Section 2: Let X be a smooth proper variety over a perfect field k. In the
framework of categories of rational maps from X to torsors for commutative
algebraic groups (Definition 2.8), we ask for the existence of universal objects
(Definition 2.14) for such categories, that is, objects having the universal mapping
property with respect to the category they belong to. Assume for the moment k
is an algebraically closed field. Then a torsor can be identified with the algebraic
group acting on it. A necessary and sufficient condition for the existence of such
universal objects is given in Theorem 2.16, as well as their explicit construction,
using duality of 1-motives with unipotent part. (This was done in [Russell 2008]
for char(k) = 0.) We pass to general perfect base field in Theorem 0.1.

In particular we show the following: Let Div be the sheaf of relative Cartier
divisors, that is, the sheaf of abelian groups that assigns to any k-algebra R the
group Divy (R) of all Cartier divisors on X ®; R generated locally on Spec R
by effective divisors which are flat over R. Let Picy be the Picard functor and
Pic};™ the Picard variety of X. Then let Divy™® be the inverse image of Picy"
under the class map cl : Divy — Picy. A rational map ¢ : X --» G, where G is
a smooth connected commutative algebraic group with affine part L, induces a
natural transformation 7, : LY — m(}(’red (Section 2.2.1). If & is a formal subgroup
of D_ivg)(’red, denote by Mrg(X) the category of rational maps for which the image
of this induced transformation lies in %. If & is an arbitrary perfect base field, we
define Mrg(X) via base change to an algebraic closure k (Definition 2.13).

Theorem 0.1. Let F be a dual-algebraic formal k-subgroup of Divy"™". The cate-

gory Mrg(X) admits a universal object alby’ : X ——» Alb} (X). Here Alby (X)
is a torsor for an algebraic group Alb;g)(X), which arises as an extension of the
classical Albanese Alb(X) by the Cartier-dual of &. The algebraic group Albg) (X)
is dual to the 1-motive [% — Pic?(’red], the homomorphism induced by the class map

¢l : Div, — Pic,.

Theorem 0.1 results from (the stronger) Theorem 2.16, which says that a category
of rational maps to algebraic groups (over an algebraically closed field) admits a
universal object if and only if it is of the shape Mrg(X) for some dual-algebraic
formal subgroup & of D_iv())(’red, and Galois descent (Theorem 2.21). The generalized
Albanese varieties Alb;) (X) (i =1, 0) satisfy an obvious functoriality property

(Proposition 2.22).
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Section 3 is the main part of this work, where we establish a higher-dimensional
analogue to the generalized Jacobian with modulus of Rosenlicht and Serre. Let X
be a smooth proper variety over a perfect field k. We use the notion of modulus from
[Kato and Russell 2010], which associates to a rational map ¢ : X --+ P an effective
divisor mod(¢) on X (Definition 3.11). If D is an effective divisor on X, we define
a formal subgroup Fx p = (Fx, p)et Xk (Fx, p)int of Divy (Definition 3.14) by the
conditions

(Fx,p)e = { B € Divy (k) | Supp(B) C Supp(D)},
and for char(k) =0,
(Fx.p)int = exp(Gy ®; T(X, 0x (D — Dreq) /Ox)),

and for char(k) = p > 0,

(@ x.0dint = Exp(3 W @wiay T (X, il _p, W, () /W, (0)), 1),

r>0

where Di.q is the underlying reduced divisor of D, Exp denotes the Artin—Hasse
exponential, W is the kernel of the r-th power of the Frobenius on the completion
W of the Witt group W at 0 and ﬁlf) W, (X x) is a filtration of the Witt group
(Definition 3.2). Let

Fx'p = Fx.p XDiv, Divy"™

be the intersection of Fx p and Div())(’red. The formal groups Fx p and Gf?grgi are

dual-algebraic (Proposition 3.15).
Then mod(¢) < D if and only if im(z,) C F%"5, (Lemma 3.16). This yields (see
Theorem 3.18 and Theorem 3.19):

Theorem 0.2. The category Mr(X, D) of those rational maps ¢ : X --+ P such
that mod(¢) < D admits a universal object albg(l’)D X --» Alb(l)(X, D), called
the Albanese of X of modulus D. The algebraic group Alb® (X, D) acting on

ALY (X, D) is dual to the 1-motive [@(})(”r;d — Pic())(’red].

The Albanese varieties with modulus Alb®¥) (X, D) for i = 1, 0 are functorial
(Proposition 3.22). In the case that X = C is a curve, our Albanese with modulus
AIb®(C, D) coincide with the generalized Jacobians with modulus J @ (C, D) of
Rosenlicht and Serre (Theorem 3.25 and Galois descent).

A relative Chow group CHy (X, D) of modulus D is introduced in Definition 3.27.
We say a rational map ¢ : X --» P to a torsor P under a commutative algebraic
group G factors through CHp(X, D)? if the associated map Zo(U)? — G(k),
> Lipi— > Lip(p;) on O-cycles of degree 0 (where U is the open set on which ¢ is
defined) factors through a homomorphism of abstract groups CHg(X, D)0 — G (k).
We show (see Theorem 3.29):
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Theorem 0.3. Assume k is algebraically closed. A rational map ¢ : X --+ P factors
through CHo(X, D) if and only if it factors through Alb'"VY (X, D). In other words,
AL (X, D) is a universal quotient of CHp(X, D)°.

The theory of Albanese varieties with modulus has an application to the class
field theory of function fields of varieties over finite fields. Let X be a geometrically
irreducible projective variety over a finite field k =[F,. Let k be an algebraic closure
of k. Let Ky denote the function field of X, and K;‘}’ be the maximal abelian
extension of Kx. From Lang’s class field theory one obtains:

Theorem 0.4. The geometric Galois group Gal(K&)‘}3 / Kx k) is isomorphic to the
projective limit of the k-rational points of the Albanese varieties of X with modu-
lus D
Gal(K® / Ky k) = 1im A (X, D)(k),
D

where D ranges over all effective divisors on X rational over k.

The proof of Theorem 0.4 is analogous to the proof of Lang’s class field theory
given in [Serre 1959, VI, §4, nos. 16-19], replacing maximal maps by the universal
objects albg(l)D : X --» AIbV (X, D) for the category of rational maps to k-torsors
of modulus 5 D from Theorem 0.2.

1. 1-motives

The aim of this section is to construct a category of generalized 1-motives that
contains all smooth connected commutative algebraic groups over a perfect field
and provides a notion of duality for them.

1.1. Algebraic groups and formal groups. 1 will use the language of group func-
tors, algebraic groups and formal groups. References for algebraic groups are
[Demazure and Gabriel 1970; Waterhouse 1979], and for formal groups and Cartier
duality are [SGA3 1970, VIIg; Demazure 1972, II; Fontaine 1977, I].

By algebraic group and formal group 1 will always mean a commutative (algebraic
and formal, respectively) group.

Let k£ be a ring (that is, associative, commutative and with unit). Set denotes the
category of sets, Ab the category of abelian groups. Alg/k denotes the category of
k-algebras, and Art/k the category of finite k-algebras (that is, of finite length). A
k-functor is by definition a covariant functor from Alg/k to Set. A formal k-functor
is by definition a covariant functor from Art/k to Set. A (formal) k-functor with
values in Ab is called a (formal) k-group functor.

A k-group (or k-group scheme) is by definition a k-group functor with values
in Ab whose underlying set-valued k-functor is represented by a k-scheme. The
category of k-groups is denoted by %/k, and the category of affine k-groups by
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%a/k. An algebraic k-group (or just algebraic group) is a k-group whose underlying
scheme is separated and of finite type over k. The category of algebraic k-groups is
denoted by a‘§/k, and the category of affine algebraic k-groups by a%a/k.

Now let k be a field. A formal k-scheme is by definition a formal k-functor with
values in Set that is the limit of a directed inductive system of finite k-schemes. Let
A be a profinite k-algebra. The formal spectrum of s is the formal k-functor that
assigns to R € Art/k the set of continuous homomorphisms of k-algebras from the
topological ring 54 to the discrete ring R: Spf A(R) = Homif’zﬁtg (A, R).

A formal k-group (or just formal group) is a formal k-group functor with values
in Ab whose underlying set-valued formal k-functor is represented by a formal
k-scheme, or equivalently is isomorphic to Spf & for some profinite k-algebra «.
The category of formal k-groups is denoted by 4f /k.

Remark 1.1. A formal k-group & : Art/k — Ab extends in a natural way to a
k-group functor % : Alg/k — Ab, by defining &(R) for R € Alg/k as the inductive
limit of the % (S), where S ranges over the finite k-subalgebras of R. If & = Spf sl

for some profinite k-algebra s, then @(R) = Homz?;lﬁb, (s, R) for every R € Alg/k.

Theorem 1.2. A formal k-group F is canonically an extension of an étale formal
k-group F& by an infinitesimal (= connected) formal k-group (that is, the formal
spectrum of a local ring) Fins. Here

Fe(R) = F(Rrea) and  Finr(R) =ker(F(R) — F(Rrea))

for R € Art/k, where Rq = R/ Nil(R). If the base field k is perfect, there is a
unique isomorphism F = Fins Xy Fg.

Proof. See [Demazure 1972, 1, No. 7, Proposition on p. 34] or [Fontaine 1977, I,
7.2, p. 46]. O

Let R be aring. An R-sheaf is a sheaf (of sets) on Alg/R for the topology fppf.
An R-sheaf with values in Ab is called an R-group sheaf. The category of R-group
sheaves is denoted by #b/R.

Let k be a field. The category of k-groups %/k and the category of formal
k-groups 9f /k are full subcategories of s{b/k. This can be seen as follows: A
k-functor that is represented by a scheme is a sheaf; see [Demazure and Gabriel
1970, 111, §1, 1.3]. This gives the sheaf property for %§/k by definition. For 4f/k
we can reduce to this case by Remark 1.1 and the fact that a formal k-group is the
direct limit of finite k-schemes.

1.1.1. Linear group associated to a ring. Let k be a field.

Definition 1.3. Let R be a k-algebra. The linear group associated to R is the Weil
restriction Lg :=Ilg/xGm g := Gm (- ® R) of Gy, g from R to k.
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If S is a finite k-algebra, then Lg is an affine algebraic k-group, according to
[Demazure and Gabriel 1970, 1, §1, 6.6].

Lemma 1.4. Let k be a perfect field. Every affine algebraic k-group L is isomorphic
to a closed subgroup of Lg for some S € Art/k.

Proof. By Galois descent we can reduce to the case that k is algebraically closed.
Every affine algebraic k-group L is isomorphic to a closed subgroup of GL, for
some r € N; see [Waterhouse 1979, 3.4 Theorem, p. 25]. Let p : L — GL, be
a faithful representation. Define S to be the group algebra of p(L), that is, the
k-subalgebra of the algebra of (r x r)-matrices Mat, (k) generated by p(L) (k).
In particular, S is finite-dimensional. Here we may assume that L is reduced, hence
determined by its k-valued points; otherwise embed the multiplicative part into
(Gp)' for some t € N (see [Demazure and Gabriel 1970, 1V, §1, 1.5]) and the
unipotent part into (W,)" for some r, n € N (see [ibid., V, §1, 2.5]), and replace
L by (Gp)" X (W,)". Then p(L)(k) is contained in the unit group of S, and
p:L— Gn(- ®S)=Lgs is a monomorphism from L to Lg. O

1.1.2. Cartier duality. Let k be a field. We will use the functorial description of
Cartier-duality as in [Demazure 1972, II, No. 4]. We may consider formal groups as
objects of sdb/k; see Remark 1.1. Let G be a k-group sheaf. Let Hom g (G, Gp,)
be the k-group functor defined by R + Homy,/ g (G r, G ), which assigns to a
k-algebra R the group of homomorphisms of R-group sheaves from Gg to Gy, g.

Theorem 1.5. If G is an affine group or formal group), the k-group functor
Homy,i (G, Gy, is represented by a formal group or affine group, respectively, GV,
which is called the Cartier dual of G.

Cartier duality is an antiequivalence between the category of affine groups 4a/k
and the category of formal groups 4f /k. The functors L — LY and ¥ — %" are
quasiinverse to each other.

Proof. See [SGA3 1970, VIIg, 2.2.2] or [Fontaine 1977, 1, 5.4, p. 37] for a
description of Cartier duality via bialgebras. See [Demazure 1972, II, No. 4,
Theorem, p. 27] for one direction of the functorial description of Cartier duality (it
is only one direction since formal groups and affine groups are not considered as
objects of the same category there). According to Section 1.1 and the properties of
the group functor Hom (G, Gy,) as described in [Demazure and Gabriel 1970,
I, §1, 2.10], it is an easy exercise to invert the given direction L > LY of the
functorial description (one has to replace affine groups by formal groups, ®; by

St Hom{5}, by Homy.aig and Spf by Spec). O

Lemma 1.6. Let L be an affine group and R a k-algebra. The R-valued points of
the Cartier-dual of L are given by LY (R) = Hom (L, Lg).
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Proof. The statement is due to the fact that Weil restriction is right-adjoint to base
extension

LY (R) =Homyp/r(Lg, Gm g) = Homyp (L, G g (- ® R)). O

Cartier dual of a multiplicative group.

Proposition 1.7 [Demazure 1972, 11, No. 8]. Let L be an affine k-group. Then L is
multiplicative if and only if the Cartier-dual L" is an étale formal k-group.

Example 1.8. In particular, the Cartier-dual of a split torus 7 = (Gy,)" is a lattice
of the same rank: TV = 7', that is, a torsion-free étale formal group.

Proposition 1.9 [Demazure and Gabriel 1970, 1V, §1, 1.2]. Let L be a multiplicative
k-group. Then L is algebraic if and only if L (k) is of finite type.

Cartier dual of a unipotent group.

Proposition 1.10 [Demazure 1972, 1I, No. 9]. Let L be an affine k-group. Then L
is unipotent if and only if the Cartier-dual L" is an infinitesimal formal k-group.

Example 1.11 (Cartier duality of Witt vectors). Suppose char(k) = p > 0. Let W
denote the k-group of Witt-vectors, W, the k- -group of Witt-vectors of finite length r.
Let W be the completion of W at 0, that is, W is the subfunctor of W that associates
to R € Alg/k the set of (wg, wi,...) € W(R) such that w, € Nil(R) for all v e N
and w, = 0 for almost all v € N. Moreover let rW = ker(F" : W — W(”r)) be the
kernel of the r-th power of the Frobenius F. Let A denote the affine k-group that
associates with R € Alg/k the multiplicative group 1+ ¢ R[[¢]] of formal power series
in R. Let E be the series

E(t):exp(—z ) [T a-mmor,

r>0 r>1
(r,p)=1

where u denotes the Mobius function. The Artin—Hasse exponential is the homo-
morphism of k-groups Exp: W — A defined by

Exp(w, t) := Exp(w)(t) := [ [ Ew,t7").
r>0

For details see for instance [Demazure 1972, III, Nos. 1 and 2].
Then W and ,W are Cartier-dual to W and W,, respectively, and the pairings
(-, Y:WxW—>Gpand (-,-):,Wx W, > Gy, are given by

(v, w) =Exp-w, 1) =] [ E@ w!).

r>0
s>0

See [Demazure and Gabriel 1970, V, §4, Proposition 4.5 and Corollary 4.6].
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Proposition 1.12. Suppose char(k) = p > 0. Let L be an affine k-group. The
following conditions are equivalent:

(1) L is unipotent algebraic.

(1) There is a monomorphism L — (W,)" for some r,n € N.
(iii) There is an epimorphism (rVT/)" —» LY for somer,n € N.
(Here we use the notation from Example 1.11.)

Proof. (1) = (ii) [Demazure and Gabriel 1970, V, §1, 2.5].

(il)) = (i) The underlying k-scheme of W, is the affine space A"; thus W, is
algebraic. 0 = Wy C Wy C W, C --- C W, is a filtration of W, with quotients
W,/ W,_1 = W = G,; hence W, is unipotent, according to [ibid., IV, §2, 2.5]. Prod-
ucts of unipotent groups and closed subgroups of a unipotent group are unipotent
by [ibid., IV, §2, 2.3]. Since L is isomorphic to a closed subgroup of (W,)", it is
unipotent and algebraic.

(ii) <= (iii) This is due to Cartier duality of Witt vectors; see Example 1.11. [J

1.1.3. Dual abelian variety. Let k be a field. Let A be an abelian variety over k.
The dual of A is given by AY =Pic A. According to the generalized Barsotti—Weil
formula (see [Oort 1966, I11.18]), the dual abelian variety A" represents the k-group
sheaf E_xt;gb/k(A, Gp) associated to R +— Ext}ﬂb/R(AR, Gm,r)-

Proposition 1.13. Let A be an abelian k-variety and S a finite k-algebra. There is
a canonical isomorphism

Extiy (A, Ls) => Bxtly, s(As, Gu,s).
Thus the S-valued points of the dual abelian variety are given by
AY(S) =Ext!,, (A, Ls).
Proof. Consider the following composition of functors on sdb/S:
Homgp (A, -) o Tls/x : G — Homyp (A, G (- ® §)) = Homyy/s(As, G).

Since Extégb/k(A, Lg) and Extiﬁb /s (As, Gpy, s) are identified with the sets of primitive
elements in H!' (A, Ls(04)) and H! (Ag, G (04y)), (see [Serre 1959, VII, no. 15,
théoreme 5] and [Oort 1966, I11.17.6], respectively), we may compute these Ext-
groups using the étale site instead of the flat site, according to [Milne 1980, III,
Theorem 3.9]. As § is a finite k-algebra, the Weil restriction ITg/x : G— G (- ® S)
is exact for the étale topology (see [Milne 1980, II, Corollary 3.6]). Then the
exact sequence of low degree terms of the Grothendieck spectral sequence yields a
canonical isomorphism

(R Homygpi (A, -))(Ts/k (Gi)) —> R (Homggpi (A, -) 0 /1) (Grn)
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(see [Milne 1980, Appendix B, Corollary 2]), showing the statement. U
1.1.4. Extensions of formal groups. Let k be a field.
Lemma 1.14. E—Xt;ib/k(% Gm) = 0 for any dual-algebraic formal k-group F

Proof. Let L be the affine algebraic group dual to &. Let R be a k-algebra. We
show that Ext;qb /R (L%, Gm.r) = 0 flat locally over Spec R. As L has a filtration
0=LoCL;C---CL, =L with quotients equal to Gy,, G, or a finite k-group, it
suffices to show the statement for L = Gp,, G, or a finite group.

If L is a finite k-group, the Cartier dual L" is again a finite k-group F, and
Ext&gh/R(FR, m,r) = 0 flat locally according to [Milne 1980, III, §4, Lemma 4.17].

If L =Gy, then LY =7, and Ext&qb R(Z Gn) =0 is clear.

If L =G, and char(k) =0, then LY = Ga We have

Extly x (G, Gm) = Extlyy 2 (Ga, G) = 0

see [Barbieri-Viale and Bertapelle 2009, Lemma A.4.6].

If L =G, = W and char(k) = - P > O then LY = 1‘7[7 (with notation from
Example 1.11). Since lW ker(F : W— W) is annihilated by the Frobenius F and
since ker(F : Gy, — Gp) = ), is the group of p-th roots of unity over Spec R (this
group is finite, and hence both an algebraic group and a formal group) any extension
Ee Ext&(lb/R(lw Gm) is the push-out of an extension F € Ext&qb/R(lw wp). As i,
and |W are base changes of formal k-groups, the affine algebra O(u,,) of ), is a
free R-module of finite rank and the affine algebra O( 1VT/) of |W is the projective
limit of free R-modules of finite rank; I will refer to those algebras as free pro-
finite-rank R-algebras. The underlying 11 ,-bundle of F is flat locally trivial and
hence flat locally the affine algebra of F is O(F) = O(u),) ®r @(IW), and this is
a free pro-finite-rank R-algebra as well. In this case Cartier duality works in the
same way as for formal k-groups,' so the exact sequence

0= pp—>F—> W0
is turned into the exact sequence
0> Gy, —>F —7Z/pZ—0

of R-groups, where " = Hom, r(%, Gm). Applying Hom g, r(-, Gm) to the
push-out diagram Gy, <— , — % of E shows that E" := Hom g, ¢ (E, Gp) is the
pull-back of the diagram Z — Z/pZ < %". In particular, since ¥ — Z/pZ is
surjective, EY — Z is surjective as well. Thus we obtain an exact sequence

0> G,— EY—>7Z—0,

I The category of flat locally free pro-finite-rank R-algebras is not abelian. The references for
Cartier duality listed in the proof of Theorem 1.5 make additional assumptions on the base ring R in
order to achieve that the category of R-formal groups is abelian.
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which is obviously split. Dualizing again gives the split exact sequence
0— Gy — EYY — W -0,

where EYY = Hom, z(E", G). The canonical map of any abelian sheaf o to
its double dual s4VV yields the following commutative diagram with exact rows:

0 G E W 0
0 Gy EVV W 0,

where the vertical arrow in the middle is an isomorphism by the Five Lemma. Thus
E = EYY is split. O

1.2. I-motives with unipotent part. Let k be a field.

1.2.1. Definition of a 1-motive with unipotent part.

Definition 1.15. A formal k-group % is called dual-algebraic if its Cartier-dual F"
is algebraic. The category of dual-algebraic formal k-groups is denoted by d‘§f/k.

Proposition 1.16. A formal k-group ¥ is dual-algebraic if and only if the following
conditions are satisfied:

(1) F(k) is of finite type,
(2) for char(k) =0, Lie (%) is finite-dimensional, and
for char(k) > 0, Fiyr is a quotient of (,W)" for some r,n € N
(see Example 1.11 for the definition of ,\W).

Proof. The decomposition of F into étale part and infinitesimal part gives the
decomposition of the affine group %" into multiplicative part and unipotent part,
according to Propositions 1.7 and 1.10. Then that statement follows directly from
Propositions 1.9 and 1.12 for char(k) > 0. For char(k) = 0, the claim in (2) follows
since the Lie functor yields an equivalence between the category of commutative
infinitesimal formal k-groups and the category of k-vector spaces; see [SGA3 1970,
Vg, 3.2.2]. O

Lemma 1.17. Let & be a dual-algebraic formal group. Then any formal group §
that is a subgroup or a quotient of & is also dual-algebraic.

Proof. By Cartier-duality, this is equivalent to the dual statement about affine
algebraic groups; see [Demazure 1972, 11, No. 6, Corollary 4 of Theorem 2, p. 32].
O

Definition 1.18. A I-motive with unipotent part is a tuple M = (%, L, A, G, ),
where
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(a) ¥ is a dual-algebraic formal group (Definition 1.15),

(b) L is an affine algebraic group,

(c) A is an abelian variety,

(d) G is an extension of A by L,

() u:% — G is a homomorphism in Ab/k.
A homomorphism between 1-motives with unipotent part M = (¥, L, A, G, ) and
N = (¢, A, B, H,v) is a tuple h = (¢, A, @, y) of homomorphisms ¢ : € — F,
AL — A,a:A— B,y :G— H, compatible with the structures of M and N as
1-motives with unipotent part, that is, giving an obvious commutative diagram.

For convenience, we will refer to a /-motive with unipotent part only as a
1-motive.

If G is a smooth connected algebraic group, it admits a canonical decomposition
0— L —- G — A — 0 as an extension of an abelian variety A by a connected affine
algebraic group L, according to the theorem of Chevalley. Thus a homomorphism
W% — G in db/k gives rise to a 1-motive M = (&, L, A, G, p) that we will
denote just by M = [F A Gl.

1.2.2. Duality of 1-motives.

Theorem 1.19. Let L be an affine algebraic group and A an abelian variety. There
is a canonical isomorphism of abelian groups

@ : Ext!), (A, L) => Homypu(LY, AY).
Proof. Consider the following left exact functor on b/k:

F : G — Bilingpi(A, LY; G) = Homyp (A, Homgpi (LY, G))

= Hom(L", Homypi (A, G)),

where Bilingi (A, LY; G) is the group of Z-bilinear maps A x LY — G of sheaves
of abelian groups. The two ways of writing F as a composite yield the following
two spectral sequences:

Extl), (A, Bxt!, (LY, G)) = RPT F(G),
Extfy, (LY, Ext!, . (A, G)) = R" F(G).

For G = Gy, the associated exact sequences of low degree terms are

0 — Ext' (A, Hom(L", Gp)) — R! F(G,,) — Hom(A, Ext' (LY, Gy)) =0,
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where the last term vanishes due to Lemma 1.14, and

0 =Ext! (LY, Hom(A, G,)) — R! F(G,,) — Hom(L", AY)
— Ext’(LY, Hom(A, Gp)) =0

Putting these together we obtain isomorphisms
Extlyy (A, L) = R' F(Gp) => Hompi(L", A”) O

Remark 1.20 (explicit description of Ext'(A, L) = Hom(L", AY)). The iso-
morphism & in Theorem 1.19 sends G € Ext!(A, L) to the connecting homo-
morphism Hom gy (L, Gy) — E_xtldb/k(A, Gp) in the long exact cohomology
sequence obtained from applying Homgk (-, Gy) to the short exact sequence
0— L - G — A — 0. Explicitly, this is the map ®(G) : A — A, G, which sends
A € LY(R) = Homy, (L, Lg) to the push-out 1, G € Ext;gb,k(A, Lgr) =AY (R) of
the diagram Lg <— L — G.

If L = 1Lg for some S € Art/k, the inverse map of & is given by the map
®~!': 9 > 9(idz), which sends a homomorphism & : LY — AV to the image
¥ (dy) € Extklﬂb/k(A, L) = AY(S) of the identity id;, € Homypy (L, L) = LY (S).
In general, a given homomorphism ¢ € Homg (LY, AY) can be written as an
element [LY — AY] € €719 (sb/k) of the category of two-term complexes in
Ab/k, with LY placed in degree —1 and A" in degree 0. Then

() = Extyio g (LY = AY], Gw),

and this k-group sheaf is represented by an algebraic group: The short exact
sequence 0 — AY — [LY — AY] — LY[1] — 0 gives rise to the exact se-
quence 0 — Hom(L", G,,) — Ext!([LY — AV], Gy,) — Ext!(AY, G,,) — 0 since
E_xt;gb/k(Lv Gm) = 0 by Lemma 1.14. Thus Extcgl X UJ(&db/k)([Lv — AY], Gy) is an
extension of A by L.

Definition 1.21. The dual of a I-motive M = (%, L, A, G, u) is the 1-motive
V=(LY,%Y,AY, H,n), where

H = Exty 01 g (F = Al Gi) = 7' (D)

for i : F5 G Athe composite, and 1 : LY — H the connecting homomorphism
Homyp (L, Gn) — E_xt%[,m](%b/k)([f — A], G) in the long exact cohomology
sequence associated with 0 — [0 > L] — [ — G] — [F — A] — 0.

Remark 1.22. The double dual M"Y of a 1-motive M is canonically isomorphic
to M. If M is of the form [0 — G]:= (0, L, A, G, 0), then the dual is
v 2O,

[ AY]:=(LY,0,AY, AY, ®(G)).
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If M is of the form [F 5 A]:= (F,0, A, A, u), the dual is
[0— & ()] := (0, F, A", d~'(w), 0).

This is clear by Theorem 1.19, and these “pure 1-motives” are the only ones that
we are concerned with in this note. For the general case, the proof carries over
literally from [Laumon 1996, (5.2.4)].

Proposition 1.23. Duality of 1-motives is functorial, that is, duality assigns to a
homomorphism of 1-motives h : M — N a dual homomorphism h” : N¥Y — M".

Proof. Let M = (¥,L, A, G, ) and M' = (¥, L', A’, G, ') be 1-motives and
h: M — M’ a homomorphism of 1-motives. Applying Hom 1.0y (- » Gm) to
the commutative diagram with exact rows

00— 0—>L]——=[F>GCG]——[F—> A]——0

l ] |

00— 0—>L]—[F —>G]—=[F - A]——=0
yields the homomorphism 42" : [(L")Y — H'] — [LY — H], where

H =Ext F —> A],G,) and H' =Ext

1 1
_:@[—LOJ(&gb/k)([ _c@[—l‘OJ(&gb/k)([g/ - A/], q:—?‘7m)

Applying Hom 1.0/ 5k ( - » Gm) to the commutative diagram with exact rows

0——= 0> Al ——=[F—> A] ——=[F—> 0 ——=0

! | J

0—=[0—>Al—[F > Al —[F -0 —=0

shows that the image of (%)Y under /" is contained in %, which implies that
hY :(M')Y — M is a homomorphism of 1-motives. O

2. Universal rational maps

The classical Albanese variety Alb(X) of a variety X over a field k (as in [Lang
1959, 11, §3]) is an abelian variety, defined together with the Albanese map alb :
X --» Alb(X) by the following universal mapping property: For every rational map
¢: X --» A to an abelian variety A there is a unique homomorphism 4 : Alb(X) — A
such that ¢ = h o alb up to translation by a constant @ € A(k). Now we replace in
this definition the category of abelian varieties by a subcategory C of the category
of commutative algebraic groups. A result of Serre [1958-1959, No. 6, Théoreme 8,
p. 10—14] says that if the category C contains the additive group G, and X is a variety
of dimension > 0, there does not exist an Albanese variety in C that is universal for
all rational maps from X to algebraic groups in C. One is therefore led to restrict
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the class of considered rational maps. This motivates the concept of categories
of rational maps from X to commutative algebraic groups, or more generally,
categories of rational maps from X to torsors under commutative algebraic groups
(Definition 2.8), and to ask for the existence of universal objects for such categories.

For k an algebraically closed field with char(k) = 0, in [Russell 2008, Section 2]
I gave a criterion for which categories Mr of rational maps from a smooth proper
variety X over k to algebraic groups there exists a universal object Alby,(X), as
well as an explicit construction of these universal objects via duality of 1-motives.
In this section we prove similar results for categories of rational maps, defined
over a perfect field, from a smooth proper variety X to torsors for commutative
algebraic groups.

2.1. Relative Cartier divisors. The construction of such universal objects as above
involves the functor Divy, : Alg/k — Ab of families of Cartier divisors, given by

Cartier divisors % on X x; Spec R
Divy (R) = { whose fibers %, define Cartier divisors on X x; {p}
for all p € Spec R

for each k-algebra R, and for a homomorphism # : R — § in Alg/k the induced
homomorphism Divy (h) : Divy (R) — Divy(S) in Ab is the pull-back of Cartier
divisors on X x; Spec R to those on X x; Spec S. The elements of Divy (R) are
called relative Cartier divisors. See [Russell 2008, No. 2.1] for more details on
Divy.

We will be mainly concerned with the completion D/_IV\X : Art/k — Ab of Divy,
which is given for every finite k-algebra R by

Divy(R) = '(X ® R, (x & R)*/(Ox & R)*).
We will regard D/_IV\X as a subsheaf of Divy; see Remark 1.1.
Proposition 2.1. D/_lv\X is a formal k-group.

Proof. According to [Demazure 1972, I, No. 6; Fontaine 1977, I, §4] it suffices to
show that i\vx is left-exact (that is, commutes with finite projective limits). We
are going to show that E is the composition of left-exact functors.

Let R be a finite k-algebra. 5_1\VX (R)=T (X , Q(R)) is the abelian group of global
sections of the sheaf 2(R) := (pry)« (X x®R)*/(Ox®R)*), where pry : X®R — X
is the projection. The global section functor I'(X, -) is known to be left-exact. We
show that the formal k-group functor 9 : Art/k — sdb/ X (with values in the category
of sheaves of abelian groups over X) commutes with finite projective limits (hence
is left-exact):
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Let (R;) be a projective system of local finite k-algebras, with homomorphisms
hij : Rj — R; for i < j. We have projections pr; :1<i£1R,~ — R; for each j,
which commute with the £;;. Functoriality of 2 in R € Art/k induces homomor-
phisms 2.(h;;) : 2(R;) — 2(R;) and Q(prj) : SZ(LiLn R;) — 2(R;), which commute.
The universal property of l(ir_n&(RQ yields a unique homomorphism of sheaves
Ql(l(i£1 R) — l(ir_nQ(Ri). A homomorphism of sheaves is an isomorphism if and
only if it is an isomorphism on stalks. Therefore it remains to show that the stalks
94 : Art/k — Ab for g € X are left-exact in R € Art/k. We have

Slq = Gm((j{X,q Qf - )/Gm(GX,q Qf - )

The tensor product over a field o ®y - : Art/k — Alg/k is exact for any k-algebra .
Also the sheaf G, : Alg/k — Ab is left-exact. Therefore the formal k-group functors
Gm(Ix g Qr -) and G, (Ox 4 ®y -) are formal k-groups. Since the category 9f /k
of formal k-groups is abelian (see [SGA3 1970, VlIg, 2.4.2]), the quotient 9, of
these two formal k-groups is again a formal k-group. ([

Definition 2.2. Let R be a finite k-algebra. If D € (i\vx)ét(R), then Supp(D)
denotes the locus of zeroes and poles of local sections (fy)y Of Gy (Hx ® Rieq)
representing

D e 1—‘(G’m(S]{X ® Rred)/Gm(@X ® Rred))-

Ifée (ﬁ_iV\X)inf(R), then Supp(8) denotes the locus of poles of local sections (gy )«
of Ur(¥Hx) representing § € I'(Ugr(Hx)/Ur(Ox)) = (Divy)inr(R), where Ug =
ker(Gp (- ® R) = G, (- ® Rieq)) is the unipotent part of Lg from Section 1.1.1

Definition 2.3. Let & be a formal subgroup of Divy. The support of & is defined
to be
Supp(# = | J Supp(@)
ReArt/k
BEF(R)
where we use the decomposition & = Fg X Fiye and Definition 2.2.

Suppose now that X is a geometrically irreducible smooth proper variety over a
perfect field k. Then the Picard functor Picy is represented by a separated algebraic
space Picy, whose identity component Picgf is a proper scheme over k (see [Bosch
et al. 1990, No. 8.4, Theorem 3]). The underlying reduced scheme Pic())(’reel of Pic())(
is an abelian variety, called the Picard variety of X. The subfunctor of Picy that is
represented by Picy™* will be denoted by Pic’y"™.

There is a natural transformation

cl:Divy — Picy .
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We define D_iv())(’red to be the subfunctor of Div, given by

m())(,red =D_iVX X pic, P_iC())(’red )

2.2. Categories of rational maps to torsors. Let X be a smooth proper variety
over a perfect field k. Let k be an algebraic closure of k. In this note, algebraic
groups and formal groups are commutative by definition (Section 1.1), and torsors
are always torsors for commutative algebraic groups.

2.2.1. Induced transformation. Let G be a smooth connected algebraic group, and
let0 - L - G — A — 0 be the canonical decomposition of G, where A is an
abelian variety and L an affine smooth connected algebraic group (theorem of
Chevalley). Write L =T x; U where T is a torus and U is unipotent; see [SGA3
1970, XVII, 7.2.1]. If k is algebraically closed, T = (Gp,)" for some 7 € N. If k is
of characteristic 0, one has U = ((G,)* for some s € N [Demazure and Gabriel 1970,
IV, §2, 4.2]. If k is of characteristic p > 0, the unipotent group U is embedded into
a finite direct sum (W,)* of Witt vector groups for some r, s € N [ibid., V, §1, 2.5].

Since Hg, ((Spec(Ox 4), Gm) = 0 and Hy +(Spec(Ox 4), U) = 0 for any point ¢
of X, we have exact sequences

0— L(Hx,q) — GUHxy) — AXx 4) — 0,
0— L(Ox4) — G(Ox,4) — A(Ox4) — 0.
Since a rational map to an abelian variety is defined at every smooth point (see

[Lang 1959, II, §1, Theorem 2]), we have A(¥x ,) = A(Ox ,) for every point g
of X. Hence the canonical map

L(Kx,4)/L(Ox,q) > G(Hx,q)/G(Ox4)
is bijective. By Cartier-duality, we have a pairing
(+,) LY xT(LHx)/L(Ox) = T'(GmHx)/Gm(0x)),
where J{x :=Hx ® - and Oy :=0x ® -.

Definition 2.4. Let ¢ : X --» G be a rational map to a smooth connected alge-
braic group G, let L be the affine part of G. Then 7, : LY — D/_IV\X denotes the
induced transformation given by (-, £,), where £, is the image of ¢ € G(J{x) in
(G x)/G(Ox)) = I'(L(¥x)/L(Ox)). By construction, 7, is a homomorphism
of formal k-group functors.

Lemma 2.5. Let G be a smooth connected algebraic group, let L be the affine part
of G. Let ¢ : X --» G be a rational map. Let t, : LY — Div, be the induced
transformation. Then im(zy) is a dual-algebraic formal group.
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Proof. E is a formal group by Propos/igi\on 2.1, and 9f /k is a full subcategory of
Fctr(Art/k, Ab). Therefore 7, : L — Divy is a homomorphism of formal groups.
Since 9f /k is an abelian category, kernel and image of the homomorphism 7, are
formal groups. Since L is algebraic, L" is dual-algebraic and hence im(z,), as a
quotient of LY, is dual-algebraic (Lemma 1.17). O

Lemma 2.6. Let G € Extéqb/k(A, L) bea smooLh\connected algebraic group. Let
¢ : X --» G be a rational map. Let T, : LY — Divy be the induced transformation.
Then im(7y) is contained in the completion of D_iv())(’red.

Proof. As A is an abelian variety, the composition X %5 G L A extends to a
morphism ¢ : X — A. The description of the induced transformation 7, in terms of
local sections into principal fiber bundles as given in [Russell 2008, No. 2.2] shows
that the composition

T 1
v Te . c .
L — Div, — Picy

is given by A — A.Gyx, where 1,G is the push-out of G € Ext;ib/k(A, L) via
A€ LY(R) =Homy (L, Lg), and Gx = G x 4 X is the fiber-product of G and X
over A. Hence it comes down to showing that for each R € Art/k, each A € LY (R)
the Lg-bundle A,G x yields an element of Pic?(’red(R).

The universal mapping property of the classical Albanese Alb(X) yields that @
factors through Alb(X). Hence the pull-back Gx = G x4 X over X is a pull-back
of Gap = G x4 AIb(X) over Alb(X). Then for each A € LY(R) the Lg-bundle
A+Gap over Alb(X) is an element of Ext;db/k(Alb(X ), Lr), and hence gives an
element of Picglb( x)(R). Since Alb(X) = (Pic(;(’md)v is the dual abelian variety of

. 0,red . .
Pic Xre , we have an isomorphism

Pich ) <> Picy™, P> Py =P xam) X.
As 1,Gx = 4G aip XAb(x) X, we have A, Gx € Picy™ (R). 0

Lemma 2.7. Let L be an affine algebraic group and T : LV — D_iv())(’reul a homomor-

phism of formal groups. Let G € Ext}ﬂb/k (AlIb(X), L) be the extension corresponding
to
clot: LY — Divg)(’red — P_ic(;(’re‘1

under the bijection ® from Theorem 1.19. There is a rational map ¢ : X --» G
whose induced transformation is T, and ¢ is determined uniquely up to translation
by a constant g € G (k).

Proof. By Lemma 1.4 we may choose an embedding A : L < Lg for some finite ring
S € Art/k. Let @ € Divy™(S) be the image of idy, € Homp(Ls, Ls) = LY(S)
under the composition 7 o AV : Ly — LY — Divy. Remark 1.20 shows that
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Oxes(@) € Picy™!(S) is the line bundle corresponding to G € Ext!,, , (AIb(X), L)
under the map

Extly, (AIb(X), L) — Extl,, (AIb(X), Ls) = Pic)yx, (S) => PicE™(S).

Let Gy (%) be the image of G in Ext;gb/k(Alb(X ), Ls). Then the fiber product
Pi (D) := Gi(D) Xamx) X is the Lg-bundle on X associated to Oxgs(%), and
G and P := G Xax) X are reductions of the Lg-bundles Gy (%) and Py (%) to
the fiber L. The canonical 1-section of Oxgs (%) yields a section X --+ P, and
composition with P — G yields the desired rational map ¢ : X --+ G, which by
construction satisfies 7, = . Then

ly e T(GOx)/G(Ox)) =T (L(Xx)/L(Ox))
CT(Ls(x)/Ls(0x)) =T (Gn(Hx ® $)/Gm((0x ® 5))

corresponding to & is uniquely determined by t. The rational map ¢ € G(Kx), as
a lift of £, is determined up to a constant g € G (k) =I'(G(Ox)), according to the
exact sequence 0 - I'(G(0x)) —» I'(G(¥Hx)) — I'(G(Hx)/G(Ox)). O

2.2.2. Definition of a category of rational maps.

Definition 2.8. A category Mr of rational maps from X to torsors is a category
satisfying the following conditions: The objects of Mr are rational maps ¢ : X --+ P,
where P is a torsor for a smooth connected algebraic group. The morphisms of Mr
between two objects ¢ : X --» P and ¢ : X --» Q are given by the set of those
homomorphisms of torsors & : P — Q such that hop = .

Remark 2.9. Let ¢ : X --» P and ¢ : X --» Q be two rational maps from X to
torsors. Then Definition 2.8 implies that for any category Mr of rational maps from
X to torsors containing ¢ and i as objects the set of morphisms Homy, (¢, ¥) is
the same. Therefore two categories Mr and Mr” of rational maps from X to torsors
are equivalent if every object of Mr is isomorphic to an object of Mr’.

Remark 2.10. If a k-torsor P for an algebraic k-group G admits a k-rational point,
then P may be identified with G. Thus for a rational map ¢ : X --+ P it makes
sense to consider the base changed map ¢ ®x k: X ®ik--» P ®;k as a rational
map from X ®; k = X to an algebraic k-group P ®; k = G ®x k.

Definition 2.11. The category of rational maps from X to abelian varieties is
denoted by Mav.

Remark 2.12. The objects of Mav are in fact morphisms from X to abelian varieties,
since a rational map from a smooth variety X to an abelian variety A extends to a
morphism from X to A; see [Lang 1959, I, §1, Theorem 2].
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Definition 2.13. Let & be a dual-algebraic formal k-subgroup of Divy. If k is
algebraically closed, then Mrg(X) denotes the category of all those rational maps
¢ : X --» G from X to algebraic k-groups for which the image of the induced
transformation 7, : LY — Div, (Definition 2.4) lies in %, that is, which induce a
homomorphism of formal groups LY — %, where L is the affine part of G. For
general k, Mrg(X) denotes the category of all those rational maps ¢ : X --» P from
X to k-torsors for which the base changed map ¢ ® k is an object of Mrg i (Here
we use Remark 2.10.)

2.3. Universal objects. Let X be a smooth proper variety over a perfect field k.
Algebraic groups are always assumed to be smooth and connected, and torsors are
those for smooth connected algebraic groups, unless stated otherwise.

2.3.1. Existence and construction.

Definition 2.14. Let Mr be a category of rational maps from X to torsors. Then
(u : X --» ) € Mr is called a universal object for Mr if it admits the universal
mapping property in Mr: For all (¢: X --+ P) € Mr there is a unique homomorphism
of torsors i :U — P such that ¢ =hou.

Remark 2.15. Universal objects are uniquely determined up to (unique) isomor-
phism.

Now assume that the base field & is algebraically closed. (Arbitrary perfect base
field is considered from Section 2.3.2 on.) In this case we may identify a torsor with
the algebraic group acting on it (Remark 2.10), and a homomorphism of torsors
becomes a homomorphism of algebraic groups composed with a translation (which
is an isomorphism of torsors).

For the category Mav of morphisms from X to abelian varieties (Definition 2.11)
there exists a universal object, the Albanese mapping to the Albanese variety,
denoted by alb : X — Alb(X). This is a classical result; see [Lang 1959; Matsusaka
1952; Serre 1958-1959]. The Albanese variety Alb(X) is an abelian variety, dual
to the Picard variety Picy".

In the following we consider categories Mr of rational maps from X to algebraic

groups satisfying the following conditions:

(1°) Mr contains the category Mav.

Q) If (p: X --»G) e Mrand h: G — H is a homomorphism of torsors for
smooth connected algebraic groups, then 4 o ¢ € Mr.

Theorem 2.16. Let Mr be a category of rational maps from X to algebraic groups
that satisfies (1°) and (2°) Then the following conditions are equivalent:

(1) For Mr there exists a universal object (u : X --+AU) € Mr.
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(1) There is a dual-algebraic formal subgroup ¥ of D_iv())(’red such that Mr is equiv-
alent to Mrg(X).
(iii) The formal group Fy, C D_i\f?(’red generated by | ) im(zy) is dual-algebraic
and Mr = Mrg,, (X). pEMr
Here Mrg:(X) is the category of rational maps that induce a homomorphism of
formal groups to F (Definition 2.13).

Proof. (ii) = (i) Assume that Mr is equivalent to Mrg(X), where & is a dual-
algebraic formal group in D_iv())(’red. The first step is the construction of an algebraic
group AU and a rational map u : X --+ AU. In a second step the universality of

u:X --+9 for Mrg(X) will be shown.

Step 1: Construction of u : X --» 9. X is a smooth proper variety over k; thus the
functor m(}( is represented by an algebraic group Pic())( whose underlying reduced

scheme Pic())(’red, the Picard variety of X, is an abelian variety. The class map
Divy — Picy induces a homomorphism % — Picg(’red.

We obtain a 1-motive M = [F — Pic%red]. Since Picg)(’re‘1 is an abelian variety,

the dual 1-motive of M is of the form MY = [0 — G], where G is a smooth
connected algebraic group. Then define AU to be this algebraic group. The canonical

decomposition 0 - £ — U — A — 0 is the extension of A = Alb(X) = (Pic())(’red)v

by £ = %" induced by the homomorphism F — Pic())(’recl (Theorem 1.19).

Define the rational map u : X --» AU by the condition that the induced trans-
formation 7, : ¥ — D_iv())(’red from Definition 2.4 is the inclusion. According to
Lemma 2.7, u : X --» U is determined up to a constant ¢ € U(k).

Note that u : X --» U generates U: Let H be the subgroup generated by the
image of u, and let A C & be the affine part of H. Since u : X — U factors
through H, the induced transformation 7, : £V — E_IV\X factors through the quotient
Y — AY. Since 1, is injective, this yields AY = £Y; hence A = £. Since the
composition X o generates o, the abelian quotient of H is &{. These
two conditions imply that H = 9 by the five lemma.

Step 2: Universality of u : X --+U. Let ¢ : X --» G be a rational map to a smooth
connected algebraic group G with canonical decomposition

0—>L—>Gﬁ>A—>O,

inducing a homomorphism of formal groups 7, : LY — & C D_iv())(’red, A (A, L)

(Definition 2.4). Let [ := (7,)" : £ — L be the dual homomorphism of affine groups.
The composition
x-%65 4

extends to a morphism from X to an abelian variety. Translating ¢ by a constant
g € G(k), if necessary, we may assume that p o ¢ factors through s = Alb(X). We
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are going to show that we have a commutative diagram

§E—> L L
a I U /?G
“ l ' L: S0
=z ¢ p
d =
X—>&ﬁ d——A,

where G4 = G x 4 4 is the fiber product, [, U = U L L is the amalgamated sum
and h : U — L, U is the map obtained from the amalgamated sum.

Denoting by [ : T'(£(Hx)/$(0x)) — I'(L(¥x)/L(Ox)) the map induced by
l:% — L, we have €0, =[(¢,). This yields

Thou = (++ Lhou) = (-, 1(£)) = (- o1, ) =1, 01" =1,

since 7, : F — Dlvg)(rEd is the inclusion by construction of u.

This implies that /, WUy and G x are isomorphic L-bundles over X. Then [, U and
G 4 are isomorphic as extensions of & by L, using the isomorphism Pic())( = Picgq.
Thus 7,0, = 7, shows that 7 ou and ¢y coincide up to translation. Since u : X — AU
generates AU, each 4’ : U — G4 fulfilling A’ o u = @y coincides with h. Hence A is
unique.

(1) = (iii) Assume u : X --+ 9 is universal for Mr. Let0 > £ > U — A — 0
be the canonical decomposition of AU, and let & be the image of the induced
transformation 7, : ¥V — Dlvg)(red For A € £Y(R) the uniqueness of the homo-
morphism 4, : U — i, U fulfilling u; = h;, o u implies that the rational maps
u; : X --» A, U are nonisomorphic to each other for distinct A € £V (R). Hence
divg(uyx,y) # divg(ux ;) for v # A € £Y(R). Therefore £V — F is injective and
hence an isomorphism.

Let ¢ : X --+ G be an object of Mr and 0 - L — G — A — 0 be the canonical
decomposition of G. Translating ¢ by a constant g € G (k), if necessary, we may
assume that ¢ : X --» G factors through a unique homomorphism % : U — G. The
restriction of & to & gives a homomorphism of affine groups / : & — L. Then the
dual homomorphism [V : LY — % yields a factorization of LY — Dlvg)(red through %.
The properties (1), (2°) and the existence of a universal object guarantee that Mr
contains all rational maps that induce a transformation to &; hence Mr is equal to
Mrg(X).

(iii)) = (ii) is evident. [l
Notation 2.17. If & is a dual-algebraic formal subgroup of Dlv())(red
versal object for Mrg(X) is denoted by albg : X --+ Albg(X).

then the uni-
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Remark 2.18. By construction, Albg(X) is generated by X. Since X is reduced,
Albg(X) is reduced as well and thus smooth. In the proof of Theorem 2.16 we
have seen that Albg(X) is an extension of the abelian variety Alb(X) by the affine
group F". More precisely, [0 — Albg(X)] is the dual 1-motive of [F — Pic(;(’red].
The rational map (albg : X --+ Albz (X)) € Mrg(X) is characterized by the fact
that the transformation typ, : LY — D_iv())(’red is the identity X,

2.3.2. Descent of the base field. Let k be a perfect field. Let k be an algebraic
closure of k. Let X be a smooth proper variety defined over k, and write X = X ®; k.
Let & be a formal k-subgroup of D_ivg)(, and write F = F Q k.

The wish is to show that the universal object albz : X --» Albg()_( ) for the
category Mrgz can be defined over k. This will be accomplished by a Galois descent,
as described in [Serre 1959, V, §4]. Due to Cartier duality between formal groups
and affine groups (Theorem 1.5), Galois descent applies to formal groups as well.

When one does not assume that X is endowed with a k-rational point, one is led
to two different descents of Albg()? ):

First: The universal mapping property of albz : X --» Albg()_( ) gives for every
o € Gal(k/k) transformations A% : Albz(X) — Albz(X)® between Albz(X) and
its conjugate Albg()_( )?, which are homomorphisms of torsors. Therefore the
descent of Albg()_( ) by means of the h((,l) yields a k-torsor Albg)(X ).

Second: To avoid translations or the reference to base points, one may reformulate
the universal mapping property, replacing rational maps ¢ : X --» G from X
to algebraic groups by its associated “difference maps” ¢ : X x X --» G,
(p,q) — ¢(q) — ¢(p). In this way translations are eliminated and one obtains
transformations A : Albz(X) — Albz(X)? that are homomorphisms of algebraic
groups. Then the descent of Albg(}? ) by means of the hY yields an algebraic
k-group Albg} ) (X). This is the k-group acting on the k-torsor Albg) (X).

Notation 2.19. If ¢ : X --» P is a rational map to a torsor P for an algebraic
group G, then (™) : X x X --» G denotes the rational map to the algebraic group
G that assigns for S € Alg/k to (p, g) € X(§) x X(S) the unique g € G(S) such
that g - ¢(p) = ¢(q).

Notation 2.20. If ¢ : X --» P is a rational map to a torsor, then set ¢! := ¢,
0 .— ,=
" =7,

Theorem 2.21. There exists a k-torsor Albg ) (X) for an algebraic k-group Albgj? ) (X)
and rational maps defined over k

alb§) : X271 -5 AIbS)(X) fori=1,0,

satisfying the following universal property:
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If o : X ——» G is a rational map defined over k to a k-torsor GV for an
algebraic k-group G© that is an object of Mrg(X), then there exist unique homo-
morphisms of k-torsors and algebraic k-groups

AV ALY (X) — GV and  h O ADBY (X) - GO,

respectively, defined over k, such that 9 = hV o alb;) fori=1,0.
The algebraic group Albg}) (X) is dual to the 1-motive [% — Pic())(’red].

Proof. Galois descent. The same arguments as given in [Serre 1959, V, no. 22]
work in our situation. O

2.3.3. Functoriality. Let % C Divy™ be a dual-algebraic formal k-group. Let

¥ 1Y — X be a k-morphism of smooth proper k-varieties, such that no irreducible
component of ¥ (Y) is contained in Supp(%). For each dual-algebraic formal
k-group % C D_iv(l)/’red containing ¥ *% the pull-back of relative Cartier divisors and
of line bundles induces a homomorphism [4 — Pic());red] ~ [F - Picg)(’red] of
I-motives.

According to the construction of universal objects over k (Remark 2.18), we

obtain via dualization of 1-motives and by Galois descent:

Proposition 2.22. Using the assumptions above, VW induces for every formal group
Y C m(})},red containing Y*%F a homomorphism of k-torsors Alb(l)g(w) and a
homomorphism of algebraic k-groups Alb(o)gg W),

A (y) : A (V) — AIbS (X) for i =1,0.

3. Albanese with modulus

Let X be a smooth proper variety over a perfect field k. Let D be an effective
divisor on X (with multiplicity). The Albanese Alb(l)(X , D) of X of modulus
D is a higher-dimensional analogue of the generalized Jacobian with modulus of
Rosenlicht and Serre. AIb™" (X, D) is defined by the universal mapping property for
morphisms from X \ D to torsors of modulus < D (Definition 3.11). Our definition
of the modulus of rational maps coincides with the classical definition from [Serre
1959, 111, §1] in the curve case. Therefore the Albanese with modulus agrees with
the Jacobian with modulus of Rosenlicht and Serre for curves, which we review in
Section 3.3.

In Section 3.4 we consider a Chow group CHy(X, D)° of O-cycles relative to the
modulus D (Definition 3.27). We give an alternative characterization of Alb(X, D)
as a universal quotient of CHy (X, D), when the base field is algebraically closed
(Theorem 3.29).
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3.1. Filtrations of the Witt group. Here we present a global version of some basic
notions from [Kato and Russell 2010] that are needed for the construction of the
Albanese with modulus.

Let (K, v) be a discrete valuation field of characteristic p > 0 with residue field %.
The group of Witt vectors of length r is denoted by W, (Example 1.11).

Definition 3.1. Let fil, W, (K) be the subgroup of W, (K) from [Brylinski 1983,
Section 1, Proposition 1]:

fil, W, (K) = {(fr—1, ..., fo) | fi € K.v(f;) = —n/p' forall 0 <i <r—1}.

Let ﬁl,Fl W, (K) be the subgroup of W, (K) generated by fil, W, (K) by means of the
Frobenius F (see [Kato and Russell 2010, 2.2]):

il W, (K) = Y " F* fil, W, (K).

v>0

Let X be a variety over k, regular in codimension 1. Let D = > qes lqDg be
an effective divisor on X, where § is a finite set of points of codimension 1 in X,
where D, are the prime divisors associated to ¢ € S and n, are positive integers
forg € S.

Definition 3.2. Let filp W, (¥ x) and ﬁlg W, (X x) be the sheaves of subgroups of
W, (Hx) formed by the groups

(filp W, (Hx))(U) = {w € W, (¥x)

w e ﬁlnq W,(Hx ) forallge SNU,
w e W,(0x ) forall peU\S |’
w € fil, W,(Hx,q) forallg e SNU, }

F —
(filp, W, (Hx)(U) = {w W ew,(0x,)  forall peU\S

respectively, for open U € X, where fil, W, (¥x ;) and ﬁlEWr (Hx.4) denote the
filtrations associated to the valuation v, attached to the point g € S.

Proposition 3.3. Suppose X is a projective variety over k and D an effective divisor
on X. Then I'(X, ilpW, (K x)) is a finite W, (k)-module.

Proof. The Verschiebung V : W,._; — W, yields an exact sequence
0—filpW,_1(Hx) = filpW,(Hx) — ﬁlLD/I,HJ Wi(Hx) — 0,
where |D/p'!| = qus an/p’_lj D,. This induces the exact sequence
0— TC(flpW,_1(Hx)) — TfilpW, (Hx)) — Uil p/pr-1 W1 (Hx)).

By induction over r > 1 and since W;(k) = k is noetherian, it is sufficient to show
the statement for r = 1. Now filp W; (¥ x) = Ox (D) is a coherent sheaf, and hence
I'X, filpW;(Ix)) is a finite module over Wi (k) = k. [l
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Definition 3.4. Let R be a commutative ring over [,. We let R[F] be the noncom-
mutative polynomial ring defined by

R[F] = {Xn:Ff ri

i=1

rieR,neN}, where Fr=r”F forall r € R.

Definition 3.5. If Q3;, = Qg /4 is the module of differentials of Iy over k, we let
4 be the homomorphism

r—1 )
8 Wo(IHx) = Qi (footoenn f) > O T A
i=0

Definition 3.6. If E is a reduced effective divisor on X with normal crossings, we
let Qx (log E) be the sheaf of differentials on X with log-poles along E, that is, the
Ox-module generated locally by d f for f € Ox and dlog? = t~'dt, where ¢ is a
local equation for E.

Proposition 3.7. Suppose Dyeq is a normal crossing divisor. The homomorphism §
from Definition 3.5 induces injective homomorphisms

op il W, (K x) /6l W (I x) = Db,
op <l W, (x) /il W, (Hx) > Dp,
where © p and D p are the Ox-modules

Dp = k[F] ® (x (log Drea) ®oy Ox(D)/0x(LD/p))),
Dp = k[F] &k (Rx (10 Drea) ®cy Ox (D) /0x (D — Dreq)),

and | D/ p| means the largest divisor E such that pE < D.
Proof. This is the global formulation of [Kato and Russell 2010, 4.6]. ([l

Definition 3.8. Let "D, be the image in D p of the Ox-module
k[F] ®x (Rx ®oy Ox(D)/0x (D — Dyeq))
(without log-poles). Then
"D p = k[F] ®k (R, B0, Ox(D)/Ox (D — Dreg))

since ¢t "¢dt = tl_"qdlogt vanishes in © p for any local equation ¢ of D;eq. Then
we let bﬁlf) W, (Hx) C ﬁlf) W, (¥ x) be the inverse image of *® p under the map 0p
from Proposition 3.7. According to [Kato and Russell 2010, 4.7], this is a global
version of the following alternative definition:
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Definition 3.9. Let "fil, W, (K) be the subgroup of fil, W, (K) consisting of all
elements (fr—1, ..., fo) satisfying the following condition: If the p-adic order v of
n is less than r, then p” v(f,) > —n. Then bﬁlSW,(K) is the subgroup of W, (K)
generated by °fil, W, (K) by means of the Frobenius F,

PRIFW,(K) =) F"fil, W, (K).
v>0
Lemma 3.10. Let v : Y — X be a morphism of varieties over k, such that ¥ (Y)
intersects Supp(D) properly. Let D -Y denote the pull-back of D to Y. Suppose that
Dyeq and (D - Y)req are normal crossing divisors. There is a commutative diagram
of homomorphisms with injective rows

Ox.p

filly Wy () /il Wr (i x) Dx.p

| |

Oy, Dy

il y W, (Ky) /Bl .y, Wi (Hy) —— Dy Doy,

where the vertical arrows are the obvious pull-back maps from X to Y.

Proof. Straightforward. ([

3.2. Albanese with modulus.

3.2.1. Existence and construction. Let X be a smooth proper variety over a perfect
field k.

Definition 3.11. First assume k is algebraically closed. Let ¢ : X --» G be a
rational map from X to a smooth connected algebraic group G. Let L be the affine
part of G and U the unipotent part of L. The modulus of ¢ from [Kato and Russell
2010, §3] is the following effective divisor

mod(p) = Z mod, (¢) D,
ht(g)=1
where g ranges over all points of codimension 1 in X, and D, is the prime
divisor associated to g. For each ¢ € X of codimension 1, the canonical map
L(Xx 4)/L(Ox4) — G(Hx 4)/G(Ox ) is bijective; see Section 2.2.1. Take an
element [, € L(J{x 4) whose image in G(Xx 4)/G(Ox 4) coincides with the class
of ¢ € G(Hx,4). If char(k) =0, let (u, ;)1<i<s be the image of [, in G,(Hx 4)°
under L — U = (G,)*. If char(k) = p > 0, let (ug4,;)1<i<s be the image of [, in
W, (Kx,4)® under L — U C (W,)".

0 if p € G(Ox,),

d =
mod, (¢) {1 +max{n,(ug, ;) | 1 <i <s} ifp¢G(Ox,),
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where for u € G,(Hy 4) if char(k) =0, or W, (¥ x ) if char(k) = p > 0, we denote

— vy (u) if char(k) =0,

g () = {min{n €N |u e fil;W,(Hxq)} if char(k)=p > 0.

Note that mod, (¢) is independent of the choice of the isomorphism U = (G,)*
or, respectively, of the embedding U C (W,)’; see [Kato and Russell 2010, Theo-
rem 3.3].

For arbitrary perfect base field k and G a torsor for a smooth connected algebraic
group we obtain mod(¢) by means of a Galois descent from mod(¢ ®j k), where k
is an algebraic closure of k; see [Kato and Russell 2010, No. 3.4] and Remark 2.10.

Definition 3.12. Let D be an effective divisor on X. Then Mr(X, D) denotes the
category of those rational maps ¢ from X to torsors such that mod(¢) < D. The
universal object of Mr(X, D) (if it exists) is called the Albanese of X of modulus
D and denoted by AV (X, D), or just Alb(X, D), if it admits a k-rational point
(cf. Remark 2.10).

Remark 3.13. In the definition of mod(¢) (Definition 3.11) we used, instead of
the original filtration fil, W of Brylinski, the saturation fill W of fil, W with respect
to the Frobenius. This is motivated as follows: Let mod”(¢) be the modulus of
a rational map ¢ using the filtration fil, W instead of ﬁll:W. Ifo:X--+G,yisa
nonconstant rational map, that is, the multiplicity of mod(¢) =: D is greater than 1,
then mod”(F" o @) = p"(D — Dred) + Dred, Where Dieq is the reduced part of D.
On the other hand, if u : X --» AU is a universal object for a certain category of
rational maps Mr, then clearly u satisfies the universal mapping property as well
for all maps of the form F” o ¢, ¢ € Mr (cf. condition (2) before Theorem 2.16).
This shows that mod~(¢) is not compatible with the notion of universal objects.

Definition 3.14. Let D be an effective divisor on X, and let D4 be the reduced
part of D. Then Fx p denotes the formal subgroup of Divy characterized by
(Fx.p)& = {B € Divy (k) | Supp(B) C Supp(D)},
and for char(k) =0,
(Fx.p)int = exp(Ga ® T(Ox (D — Drea) /Ox)),

for char(k) = p > 0,

(Fx.0lint = Exp( Y W @, T (6 _p, , W, () W, (0x)), 1)

r>0

Let 9?())(”%(1 = Fx.D XDivy Div())(’red be the intersection of Fy, p and Div())(’red.

Proposition 3.15. The formal groups Fx p and ?g{%d are dual-algebraic.
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Proof. The statement is obvious for char(k) = 0, so we suppose char(k) = p > 0.
The proof is done in two steps. Let @; p be the formal subgroup of Divy de-
fined in the same way as &y p, but using the filtration filp_p_ , W, (¥x) instead
of ﬁlgf Doy Wr (Hx). In the first step, we show that for any effective divisor D the
formal group @i p is dual-algebraic. In the second step, we show that for any D
there exists D’ > D such that Fx p is contained in the image of @i, p I Fx pr.
Thus &y p is a formal subgroup of a quotient of a dual-algebraic formal group,
and hence dual-algebraic by Lemma 1.17. Then also the formal subgroup @())(’fgj of
Fx p is dual-algebraic.

Step 1. Let D be an effective divisor on X. Write D = th( g=1"9Dq; where ¢
ranges over all points of codimension 1 in X, and D, is the prime divisor associated
to g. Let S be the finite set of those ¢ with n, > 0. Let

m=min{r | p" > ny, —1forall g € S}.

Hence forr > m, if (f,—1, ..., fo) €filp_p W, (Hx), then f; € Ox forr > i > m,
according to Definition 3.2. Then the Verschiebung V"™ : W, (i x) — W, (¥x)
yields a surjective homomorphism

filp_poy Win(Kx)/ Wn(Ox) — filp_p, W, x)/ W, (0x).

Thus (%ff’ p)inf 18 already generated by a finite sum via Exp:

Ty 0o =Exp( D W @,y T (ilp- g W () W, (01)), 1).
1<r<m

Each I'(X, filp_p,., W, (I x) / W, (Ox)) is a finitely generated W, (k)-module, by
the same proof as for Proposition 3.3. Hence (9?;’ p)inf 18 a quotient of the direct
sum of finitely many W

Moreover, (@i’ p)é = (Fx,plg is an abelian group of finite type, since D
has only finitely many components. Thus @§ p 1s dual-algebraic, according to
Proposition 1.16.

Step 2. We show that for any effective divisor D there exists an effective divisor
D’ > D such that Fx p is generated by @; p- We will find an effective divisor
D’ > D such that T’ (ﬁllg_ Dy Wr Fx) / W, (0x)) is generated by

Y F'T(filppy, Wr(3x) /Wi (Ox)).

v>0

This is sufficient because

Exp(v® 3 F" w;, 1) =Exp(¥; V' v®@a;, 1).
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Since the homomorphism
VI W () Wi (Ox) — il ), W, (Ix)/ Wy (Ox)

is surjective for r > m, we only need to consider r = m.
The exact sequence

0— W,(0x) = W, (x) — W, (Hx)/W,(0x) — 0
yields the exact sequence
(W, (¥x)) = T'(W,(%x) /W, (0x)) - H' (W,(0x)) — 0.

Here H' (W, (¥%x)) = 0 since W, (¥x) is a flasque sheaf. Since H'(W,(0x)) is a
finite W, (k)-module, there is an effective divisor E such that the map

T (filg W, (Hx)/ W, (Ox)) — H' (W, (0x))
is surjective. Hence for any o € F(ﬁlll:)_ Dy Wr(Ix)/ W (Ox)) there is
p € T(filgW,(Kx)/W,(0Ox))

such that 0 — p lies in the image of I'(W,(¥x)), and hence in the image of
(il W, (¥ x)), where E' = max {E, D — Dyeq}. Therefore we are reduced to
showing that for any D there exists D’ > D such that F(ﬁllfj W, (K x)) is generated
by

> F'I(filp W, (¥x)).

v>0

Consider the exact sequence

0 — @D filypp) Wi (Ix) — @D filp W, (Hx) — fill W, (x) > 0

v>0 v=>0

where the third arrow is (w,), — Y_, F’ w,, and the second arrow is (w,), >
(Fw, —wy_1),, where we set w_; = 0. Here | D/p| means the largest divisor E
such that pE < D. This yields an exact sequence

@ T(filp W, (Kx)) — T (AL W, (Hx)) — EB H' (il p, p W, (Hx)).
v>0 v=>0

W, (X x) is the inductive limit of fily W, (¥ x), where E ranges over all effective
divisors on X, and hence
0 =H'(W, (¥x)) = H' (lim fil s W, (3 x)) = lim H' (filg W, (¥ x)).

—
E E
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AsH! (fil p/p) Wr (I x)) is a finite W, (k)-module, there is an effective divisor D’ > D
such that the image of Hl(ﬁlLD/pJ W, (Hx)) in Hl(ﬁlLD//pJ W,.(Hx)) is 0. Thus the
image of I'(filY W, (¥x)) in T'(fil¥, W, (¥ x)) is contained in

ZF” T (filp W, (Fx)). O
v>0

Lemma 3.16. Let ¢ : X --+ G be a rational map from X to a smooth connected
algebraic group G. Then the following conditions are equivalent:

(1) mod(¢) < D.
(i) im(t,) C Fx.p.

Proof. Write D = th( g)=1"1qDq, where g ranges over all points in X of codimen-
sion 1, and D, is the prime divisor associated to g. Condition (i) is thus expressed
by the condition that for all ¢ € X of codimension 1 we have

(i) mod, (p) < ny.

Using the canonical splitting of a formal group into an étale and an infinitesimal
part, condition (ii) is equivalent to the condition that the following (ii)¢ and (ii)inf
are satisfied:

(i)ge  im(7y &) C (Fx,p)é-
(iD)inf 1M(Ty,inf) C (FX,D)in-

Let L be the eiﬁie part of G. Remember from Section 2.2.1 that the transforma-
tion 7, : LY — Divy is given by (-, £,), where £, is the image of ¢ € G(¥x) in
'(GHx)/GOx)) = I'(L(Ix)/L(0x)), and the pairing

(+,-) 1 LY X T(L(Hx)/L(0x)) = T'(Gn(Hx)/Gm(0Ox)).

is obtained from Cartier duality. Write L = T x; U as a product of a torus T
and a unipotent group U. Fix an isomorphism 7 = (Gp,)" and an isomorphism
U = (G,)* if char(k) = 0, or an embedding U C (W,)* if char(k) = p > 0.

Let (¢;)1<j<m be the image of £, under

C'(L(Jx)/L(Ox)) — T(T (Hx)/T(O0x)) = I'(Gn(Hx)/Gm(0x))"
and (u;)1<i<q be the image of £, under

['(Ga(Hx)/Ga(0x)),

M(L(Hx)/L(Ox)) — T(UHx)/U(Ox)) > {F(W,(%X)/W,(Gx))“-
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The étale part of 7, is

Tp et L" — T(Gm(Ix)/Gm(0x)),
m
(ej)lsjsm = 1_[[;'/.
j=1
The image of the infinitesimal part of 7, is given by the image of
- (G
Tpinf © V/S)“ = I'(Gntx ®-)/6m(0x®-)),
l_Ila:] exp(vi ui)7
[T721 Exp(; - uz, D

see Example 1.11 for the pairing W x W, = Gy,. For each q € X of codimension 1
let (;,;)1<j<m be a representative in Gy, (Jx 4,)™ of the image of (¢;)1<;<, under

F(GmIx)/Gm(0x)™ = Gm(Hx,g)" /Gm(Ox,9)",

(Vi)1<i<a P> {

and let (u4,;)1<i<q be a representative in G, (K y 4)* or W, (Hx ,) of the image of
(#;)1<i<q under

F(Ga(Xx)/Ga(0x))* = Ga(Hx,4)*/Ga(0x,9)*

or
F(Wr(fj{X)/Wr(@X))a — Wr(g{X,q)a/Wr(GX,q)ay

respectively. Then (ii)g is equivalent to the following condition being satisfied for
every point ¢ € X of codimension 1:
(i)¢r,g Ifng =0, thenty ; € Gn(Ox4) for 1 < j <m.

On the other hand, condition (ii)iyr is equivalent to the following condition being
satisfied for every point ¢ € X of codimension 1, according to Definition 3.14 of
¥ X,D:

(iD)inf,qg If ng =0, then u,; € G,(Ox 4) or W, (Ox 4) for 1 <i <a.
If n, > 0, then ny (ugy ;) <n, — 1.

Note that ¢ € G(Ox ) if and only if 7, ; € Gy(Oxy) for 1 < j < m and
ug,i € Ga(0x 4) or W, (Ox ) for 1 <i < a. By Definition 3.11, for each g € X of
codimension 1

()g mody(p) <ng
if and only if (ii)¢;,, and (ii)inf,4 are satisfied. O

Now assume k is algebraically closed. Arbitrary perfect base field is considered
in Sections 3.2.2 and 3.2.3.
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Theorem 3.17. The category Mr(X, D) of rational maps of modulus < D is equiv-
alent to the category Mrg, ,(X) of rational maps that induce a transformation
toF X.D-

Proof. According to the definitions of Mr(X, D) and Mrg, , (X), the statement is
due to Lemma 3.16. O

Theorem 3.18. The Albanese Alb(X, D) of X of modulus D exists and is dual (in

the sense of 1-motives) to the 1-motive [@%rf)d — Pic())(’red].

Proof. By Theorem 3.17, Alb(X, D) is the universal object of Mrg, ,(X) (if it
exists). A rational map from X to an algebraic group induces a transformation to
Fx, p if and only if it induces a transformation to %%fgl, by Lemma 2.6. Since %"y
is dual-algebraic (Proposition 3.15), the category Mrg, ,(X) admits a universal
object (Theorem 2.16), and this universal object is dual to [%%fgi — Picg)(’red]

(Remark 2.18). O

3.2.2. Descent of the base field. Let k be a perfect field. Let k be an algebraic
closure of k. Let X be a smooth proper variety defined over &, and let D be an
effective divisor on X rational over k.

Theorem 3.19. There exists a k-torsor AIb)(X, D) for an algebraic k-group
AL (X, D) and rational maps defined over k

alby ) : x> ——» Ab? (X, D)

fori = 1,0, satisfying the following universal property:

Ifo: X --» GW is a rational map defined over k to a k-torsor GV for an alge-
braic k-group G, such that mod(¢) < D, then there exist a unique homomorphism
of k-torsors RV : AIbV (X, D) — GV and a unique homomorphism of algebraic
k-groups h© : AIb©® (X, D) — G©, defined over k, such that ¢ = h® o albg?D
fori=1,0.

Here Alb(O)(X, D) is dual to the 1-motive [@(})(”r%d — Pic())(’red].

Proof. Tt follows directly from Theorem 2.21 and the definition of the modulus via
Galois descent (Definition 3.11). U

Corollary 3.20. For every rational map ¢ : X --+ P from X to a torsor P there
exists an effective divisor D, namely D = mod(¢), such that ¢ factors through
ALY (X, D).

Proposition 3.21. Let & be a formal k-subgroup of D_iv())(’red. Then ¥ is dual-
algebraic if and only if there exists an effective divisor D, rational over k, such that
F C %X, D-
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Proof. (=) A formal subgroup of a dual-algebraic group is also dual-algebraic,
according to Lemma 1.17.

(«<=) By Galois descent (possible for formal groups due to Cartier duality) we
may assume that k is algebraically closed. Let D = mod(albg) be the modulus of
the universal rational map albg : X — Albg(X) associated to & C mg(’md. Then
by Lemma 3.16, we have &% = im(Tab;) C Fx, p. O

3.2.3. Functoriality. We specialize the results from Section 2.3.3 to the case of
Albanese varieties with modulus.

Proposition 3.22. Let i : Y — X be a morphism of smooth proper varieties. Let
D be an effective divisor on X intersecting yr(Y) properly. Then v induces a

homomorphism of torsors Alb(l)fy’g (¥) and a homomorphism of algebraic groups
AILO -2 (y),

AIDD YL () - AbD (Y, E) — AP (X, D),

for each effective divisor E on Y satisfying E > (D — Dyeq) - Y + (D - Y)1eq, Where
B - Y denotes the pull-back of a Cartier divisor Bon X to'Y.

Proof. According to Proposition 2.22, for the existence of Alb;(’ ’bl? () it is sufficient
to show Fy g D Fx p - Y. Definition 3.14 of Fx p implies that this is the case if
and only if Supp(E) D Supp(D -Y) and E — Ereqg = (D — Dyeq) - Y. But this is
equivalent to £ > (D — Dieq) - Y + (D - Y )reqd- O

Corollary 3.23. If D and E are effective divisors on X with E > D, then there
are canonical surjective homomorphisms Alb(i)(X ,E) —» Alb(i)(X , D) fori=1,0,
given by Alb(i)))g:g(idx).

Proof. If E > D, it is evident that Alb(i)(X , E) generates Alb(i)(X , D); thus
AIb® 3P (idy) is surjective. O

3.3. Jacobian with modulus. Let C be a smooth proper curve over a perfect field &,
which we assume to be algebraically closed for convenience. Let D =) ges a4
be an effective divisor on C, where § is a finite set of closed points on C and n,
are positive integers for g € S. The Jacobian J (C, D) of C of modulus D is by
definition the universal object for the category of those morphisms ¢ from C \ S
to algebraic groups such that ¢(div(f)) = 0 for all f € ¢ with f =1 mod D.
Here we used the definition ¢(3_1;jc;) =) ljp(c;) for adivisor ) _/jc; on C with
c;jeC\S,and “f =1 mod D” means v, (1 — f) > n, for all ¢ € S, where v, is
the valuation attached to the point g € C.

Theorem 3.24. The generalized Jacobian J (C, D) of C of modulus D is an exten-
sion

0—-L({C, D)= J(C,D)y=J(C)—0
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of the classical Jacobian J (C) = Pic% of C, which is an abelian variety, by the
affine algebraic group L (C, D), which is characterized by

qusk(Q)* % l—[ 1+mq

L(C.D) (k)= —1= i~
q

qges
where k(q) denotes the residue field and w, the maximal ideal at q € C.
Proof. [Serre 1959, V, §3]; see also the summary [ibid., I, no. 1]. O

Theorem 3.25. The Jacobian with modulus J (C, D) is dual (in the sense of 1-
motives) to the 1-motive [9'7% D~ Picc] where 9'7%’ D= %%’reDd is the formal
subgroup of DIVC Jfrom Deﬁnmon 3.14, and %%’ D= Picg is the homomorphism

induced by the class map mc — mc-

Proof. We have to ensure that the category for which J (C, D) is universal is
characterized by the formal group ¢ p. The Jacobian J (C, D) of modulus D
is by definition the universal object for morphisms ¢ from C \ S to algebraic
groups satisfying

(1) e(div(f)) =0 for all f € H¢ with f =1 mod D.
Condition (i) is equivalent to
(i) (¢, f)g=0forallg € S, forall f € Hc with f =1 mod D at g,

where (@, ). : H x C — G(k) is the local symbol associated to the morphism
¢ :C\S — G, according to [Serre 1959, I, no. 1, theoréme 1 and III, §1]. It is shown
in [Kato and Russell 2010, Sections 6.1-6.3] that condition (ii) is equivalent to

(iii)) mod(¢) < D.

Then the assertion is due to Theorems 3.17 and 3.18. |

3.4. Relative Chow group with modulus. Let X be a smooth proper variety over
an algebraically closed field k, and let D be an effective divisor on X and Dy¢q the
reduced part of D.

Notation 3.26. If C is a curve in X, then v : C — C denotes the normalization. For
f €%c, we write f := v* f for the image of f in He If ¢ 0 X --» G is a rational
map, we write ¢|z := @|c o v for the composition of ¢ and v. If B is a Cartier
divisor on X intersecting C properly, then B - C denotes the pull-back of B to C.

Definition 3.27. Let Zo(X \ D) be the group of O-cycles on X \ D, set

Ro(X, D)={(C, Wy

C acurve in X intersecting Supp(D) properly, feX;
such that f =1 mod (D — Dyeq) - C+ (D - C)red
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and let Ro(X, D) be the subgroup of Zy(X \ D) generated by the elements div(f)¢
with (C, f) € Ro(X, D). Then define

CHo(X, D) =Zy(X \ D)/ Ro(X, D).

Let CHo(X, D) be the subgroup of CHy(X, D) of cycles ¢ with deg ¢ |w = 0 for
all irreducible components W of X \ D.

Definition 3.28. Let Mr“" (X, D) be the category of rational maps from X to
algebraic groups defined as follows: The objects of M (X, D) are morphisms
¢ : X\ D — G whose associated map on 0-cycles of degree zero,

Zo(X\ D) = G(k), Y lipi— Y Lig(pi), wherel; €Z,

factors through a homomorphism of groups CHy (X, D)? — G(k). The morphisms
are the ones as in Definition 2.8. We refer to the objects of Mr“H (X, D) as rational
maps from X to algebraic groups factoring through CHo(X, D)°.

Theorem 3.29. The category Mr(X, D) of rational maps of modulus < D is equiv-
alent to the category Mr®(X, D) of rational maps factoring through CHo(X, D)°.
In particular, the Albanese Alb(X, D) of X of modulus D is the universal quotient
of CHo(X, D)°.

Proof. According to the definitions of Mr(X, D) and MrCH(X, D) the task is to
show that for a morphism ¢ : X \ D — G from X \ D to a smooth connected
algebraic group G the following conditions are equivalent:

(i) mod(gp) = D,
(ii) (div(f)c) =0 for all (C, ) € Ro(X, D).

Since ¢(div(f)c) = ¢l (div( f )&) (see [Russell 2008, Lemma 3.32]), condition
(ii) is equivalent to the condition

(ii1) mod(¢|z) < (D — Dreq) - C + (D - c )red for all curves C in X intersecting
Supp(D) properly,

as was seen in the proof of Theorem 3.25, substituting D by (D — Dieq)- c +(D-5 Vred-
The equivalence of (i) and (iii) is the content of Lemma 3.30. O

Lemma 3.30. Let ¢ : X --» G be a rational map from X to a smooth connected
algebraic group G. Then the following conditions are equivalent:

(i) mod(p) < D,

(i1) mod(¢|z) < (D — Dreq) - C + (D - G)red for all curves C in X intersecting
Supp(D) properly.
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Proof. (i) = (ii) Let C be a curve in X 1ntersect1ng D properly. As ¢ is regular
away from D, the restriction ‘/’|c of ¢ to C is regular away from D - C. Hence
Supp(mod(g|z)) C Supp(D - C) = Supp((D — Dreq) - C + (D - C)req). According to
Definition 3.11 of the modulus, it is easy to see that mod(¢) < D = (D — Dyeq) + Dred
implies mod(¢|#) < (D — Dreq) - € + (D - C)req.

(il) = (i) Let E :=mod(¢) and g € Supp(E) be a point of codimension 1 in X.
We are going to construct a family of smooth curves {C,}, intersecting E at a fixed
point x € E, = {g} such that

lim mod, (¢|c,)
e>00 (1 ((E — Ereq) - C D+l

9

where u, (E - C) denotes the intersection multiplicity of £ and C at x.

After the construction we will show that the existence of such a family of curves
for each g € Supp(FE) of codimension 1 in X yields the implication (ii) = (i).

If char(k) = 0, it is easy to see that a general curve C in X intersecting E, at a
point x satisfies mod, (¢|c) = i, ((E — Ereq) - C) + 1. Therefore we suppose that
char(k) = p > 0. Using the notation of Definition 3.11, let (uy,;)1<i<a € W, (Jx ¢)*
be a representative of the unipotent part of the class of ¢ € G(¥x ;) in

G(Hx,9)/G(Ox,q) = L(Hx,4)/L(Ox,q).

Then mod, (¢) = 1+n,(uy ;) for some 1 <i <a. Setn:=n,(u, ;). Lett e my 4
be a uniformizer at g. Let

Y F'®w,®1™" € kIFI @ Qux.q(l0gq) @c,, my,
%
be a representative of 5nq (ug,i) € 5‘3nq (Proposition 3.7). Choose a regular closed
point x € E; such that 7 is a local equation for E,; at x and w, is regular and nonzero
at x for some v. We may assume that dim X = 2 via cutting down by hyperplanes
through x transversal to E,. Let s € my , be a local parameter at x that gives a
uniformizer of Og, . Define a curve C, locally around x by the equation 7 = s* for
e > 1. Note that E — E.q is locally defined by the equation " = 0. Then

. 0
py((E — Ereq) - C) = dimy (t"tX—xs‘U ne.
We can write w, = gds+hdlogt with g, h € Oy , and the values at x are g(x) #0
if 0g (g 1) € "Dy, and h(x) # 0if 0y (uy.i) € Dy \"Dyy and x in general position
(what we assume), for some v. The restriction of t "w, to C, is

1—ne

“wylc, =s"gds +s"hdlogs®=s'"gdlogs +es "hdlogs,
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and the class of 1" w,|c, is nonzero in

{ch,x(logx)(g)@c L me x/ml T i Dy (g 1) € Dug \"Dng and pte,
ch,x(logx)(g)@cﬂmlc ne /m2 " i Vg (i) € "Dy

Lemma 3.10 assures that the modulus of ¢|c, is computed from the restriction (of
a representative) of 5,2q (ug,i) to C,, for e large enough such that ne — 1 > |ne/p|
(this is satisfied for ¢ > 2). Thus we have

1D = hne— 1 i3y €D
{ne + 1 if 0 (ug.i) € Dpg \"Dpg and p1e,

d = _ _
mo x(§0|ce) if anq(uq’i) c bCD,,

Then
mod, (¢|c,)

lim
e—}oo Mx((E Ereq) - Ce) + 1

Now we show that “not (i) implies not (ii)”. Suppose E :=mod(¢) £ D. Then
there is a point g € Supp(E) of codimension I in X such that p,(E) > p,(D),
where 1, is the multiplicity at g. By the construction above there is a sequence of
curves {C.}, in X intersecting E at a fixed point x € E, such that

lim mod, (¢|c,)
M (B = Erea) - € D+l

If u, (D) # 0, then since

,be((D - Dred) : Ce) +1
sup <
e>0 N’x((E - Ered) : Ce) +1

’

there is e such that mod, (¢|c,) > (D — Dreq) - Co) + 1. If pq (D) =0, then

0+# mOd(WICE)x > va((D — Dred)  Co+ (D Co)red) =0

Thus mOd((MCg) Z (D —Dreq)  Co+ (D - Ce)red- ]
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