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We prove that a conjecture of Chai on the additivity of the base change conductor
for semiabelian varieties over a discretely valued field is equivalent to a Fubini
property for the dimensions of certain motivic integrals. We prove this Fubini
property when the valued field has characteristic zero.

1. Introduction

Let R be a henselian discrete valuation ring with quotient field K and perfect
residue field k. Let G be a semiabelian variety over K , i.e., an extension of an
abelian K -variety by a K -torus. Then G can be canonically extended to a smooth
separated commutative group scheme G over R, the so-called Néron lft-model of G
[Bosch et al. 1990, 10.1.1]. We say that G has semiabelian reduction if the identity
component of the special fiber of G is a semiabelian k-variety.

Chai [2000] introduced the base change conductor c(G) of G, a positive rational
number that measures the defect of semiabelian reduction of G. Its precise definition
is recalled in Definition 2.3.1. The base change conductor vanishes if and only
if G has semiabelian reduction. For algebraic tori, this invariant had previously
been defined and studied by Chai and Yu [2001]. They proved the deep result that
the base change conductor of a K -torus T is invariant under isogeny. Applying an
argument from [Gross and Gan 1999], they deduced that c(T ) equals one half of the
Artin conductor of the cocharacter module of T . For semiabelian varieties, however,
no similar cohomological interpretation is known to hold in general; in fact, the
base change conductor is not even invariant under isogeny [Chai 2000, §6.10], and
many of its properties remain mysterious. One of the main open questions is the
following conjecture:
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Conjecture 1.1 [Chai 2000, §8.1]. Let G be a semiabelian K -variety that fits into
an exact sequence of algebraic K -groups

0→ T → G→ A→ 0

with T a K -torus and A an abelian K -variety. Then we have

c(G)= c(A)+ c(T ).

The fundamental difficulty underlying this conjecture is that an exact sequence
of semiabelian varieties does not give rise to an exact sequence of Néron lft-models
in general. Chai proved the conjecture if k is finite, using Fubini’s theorem for
integrals with respect to the Haar measure on the completion of K . He also proved
the conjecture when K has mixed characteristic, using a different method and
applying the property that c(T ) only depends on the isogeny class of T . If k has
characteristic zero (more generally, if G obtains semiabelian reduction after a tame
finite extension of K ), Chai’s conjecture can be proven in an elementary way; see
[Halle and Nicaise 2011, 4.23].

In the first part of the present paper, we show that, in arbitrary characteristic,
Chai’s conjecture is equivalent to a Fubini property for the dimensions of certain
motivic integrals (Equation (4.2-1) in Theorem 4.2.1). We then prove in the second
part of the paper that this Fubini property holds when K has characteristic zero
(Theorem 4.2.3). This yields a new proof of the conjecture in that case, which is
close in spirit to Chai’s proof of the finite residue field case.

The strength of our approach lies in the fact that we combine insights of two
theories of motivic integration, namely, the geometric theory of motivic integration
on rigid varieties of Loeser and Sebag [2003] and the model-theoretic approach of
Cluckers and Loeser [2008; 2012]. Let us emphasize that the Fubini property in
(4.2-1) is not an immediate corollary of the Fubini results from [Cluckers and Loeser
2012]; see Remark 4.2.5. We need to combine the theory in [Cluckers and Loeser
2012] with a new result (Theorem 5.2.1 and its corollary), which roughly states
that the virtual dimension of a motivic integral over a fixed space only depends on
the dimensions of the values of the integrand. This theorem may be of independent
interest.

We hope that our reformulation of Chai’s conjecture in terms of motivic integrals
will also shed new light on the open case of the conjecture, when k is infinite, K
has positive characteristic and G is wildly ramified.

2. Preliminaries

2.1. Notation. Throughout this article, R denotes a henselian discrete valuation
ring with quotient field K and perfect residue field k. We denote by m the maximal



Chai’s conjecture and Fubini properties of dimensional motivic integration 895

ideal of R, Rsh a strict henselization of R and K sh its field of fractions. The residue
field ks of Rsh is an algebraic closure of k. We denote by R̂ the m-adic completion
of R and K̂ its field of fractions.

For every ring A, we denote by (Sch/A) the category of A-schemes. We consider
the special fiber functor

( · )k : (Sch/R)→ (Sch/k) : X 7→ Xk = X ×R k

and the generic fiber functor

( · )K : (Sch/R)→ (Sch/K ) : X 7→ XK = X×R K .

A variety over a ring A is a reduced separated A-scheme of finite type.

2.2. Néron models and semiabelian reduction. A semiabelian variety over a field
F is an extension of an abelian F-variety by an algebraic F-torus. Let G be a
semiabelian variety over K . It follows from [Bosch et al. 1990, 10.2.2] that G
admits a Néron lft-model G in the sense of [Bosch et al. 1990, 10.1.1]. It is the
minimal extension of G to a smooth separated group scheme over R. We say that
G has semiabelian reduction if the identity component Go

k of the special fiber of G

is a semiabelian k-variety. There always exists a finite separable extension L of K
such that G×K L has semiabelian reduction. If G is an abelian variety, then this is
Grothendieck’s semistable reduction theorem [Grothendieck et al. 1972, IX.3.6]. If
G is a torus, then one can take for L the splitting field of G. The general case is
easily deduced from these special cases; see [Halle and Nicaise 2010, 3.11].

Let K ′ be a finite separable extension of K , and denote by R′ the integral closure
of R in K ′. We set G ′ = G×K K ′, and we denote by G′ the Néron lft-model of G ′.
By the universal property of the Néron lft-model, there exists a unique morphism
of R′-schemes

h : G×R R′→ G′ (2.2-1)

that extends the natural isomorphism between the generic fibers. If G has semi-
abelian reduction, then h is an open immersion [Grothendieck et al. 1972, 3.1(e)],
which induces an isomorphism

(G×R R′)o→ (G′)o

between the identity components of G×R R′ and G′ [Demazure and Grothendieck
1970a, VIB.3.11].

2.3. The base change conductor. Let G be a semiabelian variety over K . Let
K ′ be a finite separable extension of K such that G ′ = G×K K ′ has semiabelian
reduction, and denote by e(K ′/K ) the ramification index of K ′ over K . The
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morphism (2.2-1) induces an injective morphism

Lie(h) : Lie(G)⊗R R′→ Lie(G′) (2.3-1)

of free R′-modules of rank dim(G).

Definition 2.3.1 [Chai 2000, §1]. The base change conductor of G is defined by

c(G)=
1

e(K ′/K )
· lengthR′(coker(Lie(h))).

This definition does not depend on the choice of K ′. The base change conductor
is a positive rational number that vanishes if and only if G has semiabelian reduction
[Halle and Nicaise 2011, 4.16]. One can view c(G) as a measure for the defect of
semiabelian reduction of G.

2.4. A generalization of Chai’s conjecture. Chai [2000, 8.1] asks whether one
can generalize Conjecture 1.1 as follows.

Question 2.4.1. Do we have c(G2)= c(G1)+ c(G3) for every exact sequence of
semiabelian K -varieties

0→ G1→ G2→ G3→ 0?

If G1, G2 and G3 are tori, this can be easily deduced from the deep fact that
the base change conductor of a torus is one half of the Artin conductor of the
cocharacter module [Chai and Yu 2001] in the following way:

Proposition 2.4.2. Let

0→ G1→ G2→ G3→ 0

be an exact sequence of K -tori. Then c(G2)= c(G1)+ c(G3).

Proof. The sequence of cocharacter modules

0→ X•(G1)→ X•(G2)→ X•(G3)→ 0

is exact. Tensoring with Q, we get a split exact sequence of Q[Gal(L/K )]-modules

0→ X•(G1)⊗Z Q→ X•(G2)⊗Z Q→ X•(G3)⊗Z Q→ 0

where L is the splitting field of G2. Thus, the Artin conductor of X•(G2)⊗Z Q is
the sum of the Artin conductors of X•(G1)⊗Z Q and X•(G3)⊗Z Q. Since the base
change conductor of a torus is one half of the Artin conductor of the cocharacter
module [Chai and Yu 2001], we find that c(G2)= c(G1)+ c(G3). �

Corollary 2.4.3. If Conjecture 1.1 holds, then Question 2.4.1 has a positive answer
when G1 is a torus.
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Proof. Assume that G1 is a torus. For every semiabelian K -variety G, we denote
by G tor its maximal subtorus and Gab = G/G tor its abelian part. We consider the
closed subgroup G̃2 = (G3)tor×G3 G2 of G2. We have a short exact sequence of
K -groups

0→ G1→ G̃2→ (G3)tor→ 0 (2.4-1)

so that G̃2 is an extension of K -tori and thus a torus. Moreover, the morphism

G2/G̃2→ G3/(G3)tor = (G3)ab

is an isomorphism so that G̃2 = (G2)tor and (G2)ab ∼= (G3)ab. By Conjecture 1.1,
we have c(Gi )= c((Gi )tor)+ c((Gi )ab) for i = 2, 3. Applying Proposition 2.4.2 to
the sequence (2.4-1), we find that c((G2)tor)= c(G1)+ c((G3)tor). It follows that
c(G2)= c(G1)+ c(G3). �

Below, we will follow a different approach. We will use the invariance of the
base change conductor of a torus under isogeny to reduce Question 2.4.1 to the case
where the maximal split subtorus (G3)sp of G3 is trivial (of course, this is always
the case if G3 is an abelian variety as in Conjecture 1.1). Then we prove that, if G1

is a torus and (G3)sp is trivial, the additivity property of the base change conductor
in Question 2.4.1 is equivalent to a certain Fubini property for motivic integrals.
We prove this Fubini property when K has characteristic zero. These arguments do
not use the invariance of the base change conductor of a torus under isogeny.

3. Motivic Haar measures on semiabelian varieties

3.1. The Grothendieck ring of varieties. Let F be a field. We denote by K0(VarF )

the Grothendieck ring of varieties over F . As an abelian group, K0(VarF ) is defined
by the following presentation:

generators: isomorphism classes [X ] of separated F-schemes of finite type X ,

relations: if X is a separated F-scheme of finite type and Y is a closed subscheme
of X , then

[X ] = [Y ] + [X \ Y ].

These relations are called scissor relations.

By the scissor relations, one has [X ] = [Xred] for every separated F-scheme of
finite type X , where Xred denotes the maximal reduced closed subscheme of X . We
endow the group K0(VarF ) with the unique ring structure such that

[X ] · [X ′] = [X ×F X ′]

for all separated F-schemes of finite type X and X ′. The identity element for the
multiplication is the class [Spec F] of the point. To any constructible subset C of a
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separated F-scheme of finite type X , one can associate an element [C] in K0(VarF )

by choosing a finite partition of C into subvarieties C1, . . . ,Cr of X and setting
[C] = [C1] + · · · + [Cr ]. The scissor relations imply that this definition does not
depend on the choice of the partition. For a detailed survey on the Grothendieck
ring of varieties, we refer to [Nicaise and Sebag 2011a].

We denote by K mod
0 (VarF ) the modified Grothendieck ring of varieties over F

[Nicaise and Sebag 2011a, §3.8]. This is the quotient of K0(VarF ) by the ideal IF

generated by elements of the form [X ] − [Y ] where X and Y are separated F-
schemes of finite type such that there exists a finite, surjective, purely inseparable
F-morphism Y → X . If F has characteristic zero, then it is easily seen that IF is
the zero-ideal [Nicaise and Sebag 2011a, 3.11] so that K0(VarF ) = K mod

0 (VarF ).
It is not known if IF is nonzero if F has positive characteristic. In particular, if
F ′ is a nontrivial finite purely inseparable extension of F , it is not known whether
[Spec F ′] 6= 1 in K0(VarF ).

There exists a canonical isomorphism from K mod
0 (VarF ) to the Grothendieck

ring K0(ACFF ) of the theory ACFF of algebraically closed fields over F [Nicaise
and Sebag 2011a, 3.13]. One may also consider the semiring variant K+0 (ACFF )

of the ring K0(ACFF ), defined as follows. Let Lring(F) be the ring language
with coefficients from F . As a semigroup, K+0 (ACFF ) is the quotient of the free
commutative semigroup generated by a symbol [X ] for each Lring(F)-definable set,
with zero-element [∅], and divided out by the following relations:

• if X and Y are Lring(F)-definable subsets of a common Lring(F)-definable set,
then

[X ∪ Y ] + [X ∩ Y ] = [X ] + [Y ],

• if there exists an Lring(F)-definable bijection X → Y for the theory ACFF ,
then [X ] = [Y ].

The semigroup K+0 (ACFF ) carries a structure of semiring, induced by taking
Cartesian products, [X ][Y ] = [X × Y ].

If R has equal characteristic, then we put

K R
0 (Vark)= K0(Vark).

If R has mixed characteristic, then we put

K R
0 (Vark)= K mod

0 (Vark).

We denote by L the class of the affine line A1
k in K R

0 (Vark) and also in K+0 (ACFk).
We will write MR

k for the localization of K R
0 (Vark) with respect to L and M+k for the

localization of K+0 (ACFk) with respect to L and the elements Li
− 1 for all i > 0.
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For every element α of K R
0 (Vark), we denote by P(α) its Poincaré polynomial

[Nicaise and Sebag 2011a, 4.13]. This is an element of Z[T ], and the map

P : K R
0 (Vark)→ Z[T ] : α 7→ P(α)

is a ring morphism. Hence, the map

P+ : K+0 (ACFk)→ Z[T ],

obtained by composing P with the canonical morphism

K+0 (ACFF )→ K0(ACFF )∼= K R
0 (Vark),

is a morphism of semirings. When α is the class of a separated k-scheme of finite
type X , then for every i ∈ N, the coefficient of T i in P(α) is (−1)i times the i-th
virtual Betti number of X . The degree of P(α) is twice the dimension of X [Nicaise
2011, 8.7].

We have P(L)= T 2 so that P localizes through a ring morphism

P :MR
k → Z[T, T−1

]

and P+ localizes through a semiring morphism

P+ :M+k → Z[T, T−1, (T 2i
− 1)−1

]i>0.

Definition 3.1.1. Let α be an element of MR
k or M+k . We define the virtual dimension

of α as 1/2 times the degree of the Poincaré polynomial P(α) or P+(α), respectively,
where the degree of the zero-polynomial is −∞ and (1/2) · (−∞) = −∞ by
convention. We denote the virtual dimension of α by dim(α).

By definition, the virtual dimension is an element of (1/2) ·Z∪{−∞}. For every
separated k-scheme of finite type X and every integer i , we have

dim([X ]Li )= dim(X)+ i.

3.2. Motivic integration on K-varieties. Let X be a K -variety. We say that X is
bounded if X (K sh) is bounded in X in the sense of [Bosch et al. 1990, 1.1.2]. If X
is a smooth K -variety, then by [Bosch et al. 1990, 3.4.2 and 3.5.7], X is bounded
if and only if X admits a weak Néron model X. This means that X is a smooth
R-variety endowed with an isomorphism XK → X such that the natural map

X(Rsh)→ X (K sh)

is a bijection.
The theory of motivic integration on rigid varieties was developed in [Loeser and

Sebag 2003] and further extended in [Nicaise and Sebag 2008; Nicaise 2009]. We
refer to [Nicaise and Sebag 2011b] for a survey; see in particular [Nicaise and Sebag
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2011b, §2.4] for an erratum to the previous papers. One of the main results can be
reformulated for algebraic varieties as follows. Let X be bounded smooth K -variety
of pure dimension, and let ω be a gauge form on X , i.e., a nowhere-vanishing
differential form of degree dim(X). Let X be a weak Néron model for X . For
every connected component C of Xk =X×R k, we denote by ordC ω the order of ω
along C . If $ is a uniformizer in R, then ordC ω is the unique integer n such that
$−nω extends to a generator of �dim(X)

X/R at the generic point of C .

Theorem-Definition 3.2.1. The object∫
X
|ω| = L− dim(X)

∑
C∈$0(Xk)

[C]L− ordC ω ∈MR
k (3.2-1)

only depends on X and ω and not on the choice of a weak Néron model X. We call
it the motivic integral of ω on X.

Proof. By [Nicaise 2011, 4.9], the formal m-adic completion of X is a formal weak
Néron model of the rigid analytification X rig of X ×K K̂ so that the result follows
from [Halle and Nicaise 2011, 2.3]. �

It is clear from the definition that the motivic integral of ω on X remains invariant
if we multiply ω with a unit in R.

Remark 3.2.2. In the literature, the factor L− dim(X) in the right-hand side of (3.2-1)
is sometimes omitted (for instance in [Nicaise and Sebag 2011b]); this depends on
the choice of a normalization for the motivic measure.

3.3. Motivic Haar measures. Consider a semiabelian K -variety G of dimension g.
We denote by G the Néron lft-model of G and �G the free rank-one R-module
of translation-invariant differential forms in �g

G/R(G). Note that �G ⊗R K is
canonically isomorphic to the K -vector space of translation-invariant differential
forms of maximal degree on G so that we can view �G as an R-lattice in this vector
space. We denote by ωG a generator of �G . It is unique up to multiplication with a
unit in R.

Let K ′ be a finite separable extension of K such that G ′ = G×K K ′ has semi-
abelian reduction, and let d be the ramification index of K ′ over K . Denote by R′ the
normalization of R in K ′. Dualizing the morphism (2.3-1) and taking determinants,
we find a morphism of free rank-one R′-modules

det(Lie(h))∨ :�G ′→�G ⊗R R′

that induces an isomorphism

�G ′ ⊗R′ K ′ ∼=�G ⊗R K ′



Chai’s conjecture and Fubini properties of dimensional motivic integration 901

by tensoring with K ′. Thus, we can view �G as a sub-R-module of �G ′ ⊗R′ K ′.
This yields the following alternative description of the base change conductor:

Proposition 3.3.1. Let$ ′ be a uniformizer in R′. The base change conductor c(G)
of G is the unique element r of Z[1/d] such that

($ ′)rdωG

generates the R′-module �G ′ .

Proof. Denote by G′ the Néron lft-model of G ′. By definition, the length of the
cokernel of the natural morphism

Lie(h) : Lie(G×R R′)→ Lie(G′)

from (2.3-1) is equal to c(G)d. Writing Lie(h) in Smith normal form, it is easily
seen that the cokernel of

det(Lie(h))∨ :�G ′→�G ⊗R R′

is isomorphic to R′/($ ′)c(G)d . �

Proposition 3.3.2. Let R→ S be a flat local homomorphism of discrete valuation
rings of ramification index one (in the sense of [Bosch et al. 1990, 3.6.1]), and
denote by L the quotient field of S. We denote by GL the Néron lft-model of G×K L.

(1) The natural morphism
G×R S→ GL

is an isomorphism. In particular, it induces an isomorphism of S-modules

�G ⊗R S ∼=�G×K L .

(2) We have c(G×K L)= c(G).

This applies in particular to the case S = R̂sh.

Proof. (1) The formation of Néron lft-models commutes with the base change
R→ S by [Bosch et al. 1990, 3.6.1].

(2) This follows easily from (1). �

The semiabelian K -variety G is bounded if and only if its Néron lft-model G is
of finite type over R [Bosch et al. 1990, 10.2.1]. In that case, G is called the Néron
model of G. If G is bounded, then for every gauge form ω on G, we can consider
the motivic integral ∫

G
|ω| ∈MR

k .

In particular, we can consider the motivic integral of the “motivic Haar measure”
|ωG | associated to G. It does not depend on the choice of ωG since ωG is unique
up to multiplication with a unit in R.
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Proposition 3.3.3. Let G be a bounded semiabelian K -variety of dimension g with
Néron model G. Let $ be a uniformizer in R. Then for every integer γ , we have∫

G
|$ γωG | = L−γ−g

[Gk] (3.3-1)

in MR
k . In particular, the virtual dimension of this motivic integral is equal to −γ .

Proof. Since ωG generates �G , we have

ordC($
γωG)= γ

for every connected component C of Gk . Thus, formula (3.2-1) becomes∫
G
|$ γωG | = L−γ−g

∑
C∈$0(Gk)

[C] = L−γ−g
[Gk]

in MR
k , where the last equality follows from the scissor relations in the Grothendieck

ring. �

3.4. Split subtori and bounded varieties. We mentioned in Section 3.3 that a semi-
abelian K -variety G is bounded if and only if the Néron lft-model G of G is
quasicompact. If R is excellent (e.g., complete) and k algebraically closed, then
this is also equivalent to the property that G does not contain a split torus [Bosch
et al. 1990, 10.2.1]. Since the boundedness condition plays an important role in the
definition of the motivic integral, we’ll now take a closer look at split subtori of semi-
abelian varieties. The results in this section will allow us to establish an equivalence
between Question 2.4.1 and a Fubini property of motivic integrals (Theorem 4.2.1).

Let F be any field. We denote by (SpT/F) the category of split F-tori and
(SAb/F) the category of semiabelian F-varieties (the morphisms in these categories
are morphisms of algebraic F-groups).

For every semiabelian F-variety G, we denote by Gsp the maximal split subtorus
of G [Halle and Nicaise 2010, 3.6]. If T is a split F-torus, then every morphism of
F-groups T → G factors through Gsp by [Halle and Nicaise 2010, 3.5]. Thus, we
can define a functor

( · )sp : (SAb/F)→ (SpT/F) : G 7→ Gsp.

For every semiabelian F-variety G, we put Gb
= G/Gsp. Then (Gb)sp is trivial

by the remark after [Halle and Nicaise 2010, 3.6]. It follows that every morphism of
semiabelian F-varieties f :G→ H induces a morphism of semiabelian F-varieties

f b
: Gb
→ H b

so that we obtain a functor

( · )b : (SAb/F)→ (SAb/F) : G 7→ Gb.
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Lemma 3.4.1. Let F be a field, and let f : G → H be a smooth morphism of
semiabelian K -varieties. Then the morphism fsp : Gsp→ Hsp is surjective.

Proof. The identity component of G ×H Hsp is a smooth and connected closed
subgroup of G and thus a semiabelian F-variety [Halle and Nicaise 2011, 5.2]. The
morphism

(G×H Hsp)
o
→ Hsp

is still smooth. Therefore, we may assume that H is a split torus. It follows from
[Demazure and Grothendieck 1970a, VIB.1.2] that the image of f is closed in H ,
and it is also open by flatness of f . Thus, f is surjective.

We denote by I the schematic image of the morphism g : Gsp → H . This
is a closed subgroup of the split torus H . The quotient H/I is again a split F-
torus (it is geometrically connected because Gsp is geometrically connected, and it
is smooth [Demazure and Grothendieck 1970a, VIB.9.2(xii)] and diagonalizable
[Demazure and Grothendieck 1970b, IX.8.1] so that it is a split torus). The quotient
Q = G/Gsp is an extension of an abelian F-variety and an anisotropic F-torus so
that the morphism of F-groups Q→H/I induced by f is trivial. But this morphism
is surjective by surjectivity of f so that H/I must be trivial and H = I . Since
the image of Gsp→ H is closed [Demazure and Grothendieck 1970a, VIB.1.2], it
follows that Gsp→ H is surjective. �

Proposition 3.4.2. Let F be a field, and let

0→ G1→ G2→ G3→ 0

be an exact sequence of semiabelian F-varieties.

(1) The schematic image of (G1)
b
→ (G2)

b is a semiabelian subvariety H of G2,
and the morphism (G1)

b
→ H is an isogeny. Moreover, the sequence

0→ H → (G2)
b
→ (G3)

b
→ 0 (3.4-1)

is exact.

(2) If (G3)sp is trivial, then

0→ (G1)
b
→ (G2)

b
→ (G3)

b
→ 0 (3.4-2)

is exact.

Proof. Dividing G1 and G2 by (G1)sp, we may assume that (G1)sp is trivial (here we
use that Gb

= (G/T )b for every semiabelian F-variety G and every split subtorus T
of G). Then (G1)

b
= G1.

First, we prove (1). The kernel of the morphism G1 → (G2)
b is the closed

subgroup G̃1 = G1×G2 (G2)sp of G1. It is also a closed subgroup of (G2)sp. By
[Demazure and Grothendieck 1970a, VIB.9.2(xii)], the quotient H = G1/G̃1 is
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smooth over F . Since (G2)sp is a split F-torus, we know that G̃1 is a diagonalizable
F-group [Demazure and Grothendieck 1970b, IX.8.1]. Since (G1)sp is trivial, the
F-group G̃1 must be finite so that the projection G1 → H is an isogeny. The
morphism G1→ G2 induces a morphism of F-groups H → (G2)

b that is a closed
immersion [Demazure and Grothendieck 1970a, VIB.1.4.2]. It identifies H with
the schematic image of G1→ (G2)

b. It follows from [Halle and Nicaise 2011, 5.2]
that H is a semiabelian F-variety because it is a connected smooth closed subgroup
of the semiabelian F-variety (G2)

b.
It is clear that (3.4-1) is exact at the right so that it remains to prove that this

sequence is also exact in the middle. By the natural isomorphism

(G2/G1)/((G2)sp/G̃1)∼= (G2/(G2)sp)/(G1/G̃1),

it is enough to show G̃2= (G2)sp/G̃1 is the maximal split subtorus of G3=G2/G1.
But (G2)sp→ (G3)sp is surjective by Lemma 3.4.1, and its kernel is precisely G̃1,
so we see that G̃2 = (G3)sp.

Now we prove (2). Assume that (G3)sp is trivial. Then the closed immersion
(G2)sp→ G2 factors through G1, and since (G1)sp is trivial, we find that (G2)sp

must be trivial. Thus, Gi = (Gi )
b for i = 1, 2, 3, and the result is obvious. �

If (G3)sp is not trivial, it can happen that the sequence

0→ (G1)
b
→ (G2)

b
→ (G3)

b
→ 0

in Proposition 3.4.2 is not left exact as is shown by the following:

Example 3.4.3. Let K be the field C((t)) of complex Laurent series, and put
K ′ = K ((

√
t)). The Galois group 0 = Gal(K ′/K ) is isomorphic to Z/2Z, and it is

generated by the automorphism σ that maps
√

t to −
√

t . Let G2 be the K -torus
with splitting field K ′ and character module

X (G2)= Z · e1⊕Z · e2

where σ permutes e1 and e2.
Let G1 be the maximal anisotropic subtorus of G2. Its character module is

X (G1) = X (G2)/X (G2)
0. We put G3 = G2/G1. This is a split K -torus with

character module X (G3)= X (G2)
0
= Z · (e1+ e2).

For every K -torus T that splits over K ′, we can consider the trace map

trT : X (T )→ X (T )0 : x 7→ x + σ · x .

It follows from the duality between tori and their character modules that the maximal
split subtorus of T has character module X (T )/ ker(trT ) and that T b is the K -torus
with character module ker(trT ). In this way, we see that (G1)sp is trivial and that
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(G2)
b is the K -torus with character module

ker(trG2)= Z · (e1− e2).

Thus, applying the functor ( · )b to the exact sequence of K -tori

0→ G1→ G2→ G3→ 0,

we obtain the sequence

0→ G1→ (G2)
b
→ 0→ 0 (3.4-3)

and the morphism of K -tori G1→ (G2)
b corresponds to the morphism of character

modules
α : Z · (e1− e2)→ X (G2)/X (G2)

0.

The morphism α is injective but not surjective; its cokernel is

X (G2)/(Z · (e1− e2)+Z · (e1+ e2))∼= Z/2Z

with trivial 0-action. Therefore, (3.4-3) is not exact. More precisely, the morphism

G1→ (G2)
b

is an isogeny with kernel µ2,K .

Proposition 3.4.4. Assume that R is excellent and that k is algebraically closed.
For every semiabelian K -variety G, the quotient Gb is a bounded semiabelian
K -variety.

Proof. Since (Gb)sp is trivial, this follows immediately from [Bosch et al. 1990,
10.2.1]. �

4. Chai’s conjecture and Fubini properties of motivic integrals

4.1. Chai’s conjecture and Haar measures. Let

0→ T → G→ A→ 0

be a short exact sequence of semiabelian K -varieties (as the notation suggests, the
main example we have in mind is the Chevalley decomposition of a semiabelian
K -variety G as in Conjecture 1.1, but we will work in greater generality). The
sequence of K -vector spaces

0→ Lie(T )→ Lie(G)→ Lie(A)→ 0

is exact, and by dualizing and taking determinants, we find a canonical isomorphism
of K -vector spaces

�G ⊗R K ∼= (�T ⊗R �A)⊗R K .
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In this way, we can view �T ⊗R �A as an R-lattice in �G ⊗R K .
The following proposition is implicit in the proof on pages 724–725 of [Chai

2000] (proof of Proposition 4.1 in [loc. cit.] when the residue field is finite):

Proposition 4.1.1. Assume that T is a torus. Let ωT and ωA be generators of �T

and �A, respectively. Let $ be a uniformizer of R, and denote by γ the unique
integer such that $−γ (ωT ⊗ωA) generates the R-module �G . Then

c(G)= c(T )+ c(A)+ γ.

In particular, c(G)− c(T )− c(A) belongs to Z.

Proof. By Proposition 3.3.2, we may assume that R is complete and that k is
algebraically closed. Suppose that

ωG :=$
−γ (ωT ⊗ωA)

generates �G . Let K ′ be a finite separable extension of K such that G ′ = G×K K ′

has semiabelian reduction, and denote by R′ the normalization of R in K ′. Then
A′ = A×K K ′ has semiabelian reduction and T ′ = T ×K K ′ is split [Halle and
Nicaise 2010, 4.1].

We denote by $ ′ a uniformizer of R′ and d the ramification degree of the
extension K ′/K . By Proposition 3.3.1, the R′-module �G ′ is generated by

($ ′)c(G)dωG,

and the analogous property holds for A and T . We denote by G′, T′ and A′ the
Néron lft-models of G ′, T ′ and A′, respectively. By the universal property of the
Néron lft-model, the exact sequence

0→ T ′→ G ′→ A′→ 0

extends uniquely to a sequence of R′-group schemes

0→ T′→ G′→A′→ 0

and this sequence is exact by [Chai 2000, 4.8(a)]. It follows that

�G ′ =�T ′ ⊗R′ �A′ ⊂�G ′ ⊗R′ K ′

so that both ($ ′)c(G)dωG and

($ ′)(c(T )+c(A))d(ωT ⊗ωA)= ($
′)(c(T )+c(A))d$ γωG

are generators of the free R′-module �G ′ . Thus, we find that

($ ′)(c(G)−c(T )−c(A))d$−γ
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is a unit in R′. This means that its $ ′-adic valuation is zero so that

c(G)= c(T )+ c(A)+ γ. �

Remark 4.1.2. Let
0→ T → G→ A→ 0

be an exact sequence of semiabelian K -varieties, and let ωT and ωA be generators
of �T and �A, respectively. Chai [2000, §8.1] considers the following statement:

One has c(G)= c(T )+ c(A) if and only if ωT ⊗ωA generates �G . (∗)

If T is a torus, then this is a corollary of Proposition 4.1.1. However, if T is not a
torus, it is not clear to us how statement (∗) can be proven although Chai hints that
it may be implicit in the proof on pages 724–725 of [Chai 2000]. If G, T and A
have semiabelian reduction, then c(G) = c(T ) = c(A) = 0 so that statement (∗)
contains the following special case:

If G, T and A have semiabelian reduction, then ωT ⊗ωA generates �G . (∗∗)

Even this property does not seem obvious because the sequence of identity
components of Néron lft-models

0→ To
→ Go

→Ao
→ 0

might not be exact; see [Bosch et al. 1990, 7.5.8] for an example where T , G
and A are abelian varieties with good reduction and To

→ Go is not a mono-
morphism. If statement (∗∗) is true, then the proof of Proposition 4.1.1 shows that
Proposition 4.1.1, and thus statement (∗), are valid without the assumption that T
is a torus.

Lemma 4.1.3. Let G be a semiabelian K -variety, and let T be a split subtorus
of G. Then c(G)= c(G/T ). In particular, c(G)= c(Gb).

Proof. We set H = G/T . By [Chai 2000, 4.8(a)], the canonical sequence of group
schemes

0→ T→ G→H→ 0

is exact so that �T ⊗�H =�G . Now the result follows from Proposition 4.1.1 and
the fact that c(T )= 0 because T has semiabelian reduction. �

4.2. Main results. We can now state our main results.

Theorem 4.2.1. Let
0→ T → G→ A→ 0
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be an exact sequence of semiabelian K -varieties with T a torus. We put

G̃ = (G×K K̂ sh)b and Ã = (A×K K̂ sh)b,

and we denote by T̃ the schematic image of the morphism

(T ×K K̂ sh)b→ G̃.

Then T̃ is a K̂ sh-subtorus of G̃,

0→ T̃ → G̃→ Ã→ 0

is an exact sequence of bounded semiabelian K̂ sh-varieties and

c(G)= c(T )+ c(A)

if and only if

dim
∫

G̃
|ωT̃ ⊗ω Ã| = dim

∫
T̃
|ωT̃ | + dim

∫
Ã
|ω Ã| = 0. (4.2-1)

Proof. By Proposition 3.3.2, we may assume that K is complete and k algebraically
closed so that K̂ sh= K . By Proposition 3.4.2, we know that T b and T̃ are isogenous
K -tori so that c(T b) = c(T̃ ) by [Chai and Yu 2001, 11.3 and 12.1]. Thus, by
Proposition 3.4.2 and Lemma 4.1.3, we may assume that T̃ = T , G̃ =G and Ã= A.
Then T , G and A are bounded, by Proposition 3.4.4, so that we can take motivic
integrals of gauge forms on T , G and A.

Let $ be a uniformizer in R. It follows from Proposition 3.3.3 that

dim
∫

T
|ωT | + dim

∫
A
|ωA| = 0

and that

dim
∫

G
|ωT ⊗ωA|

is equal to the unique integer γ such that

$ γ (ωT ⊗ωA)

generates the R-module �G . By Proposition 4.1.1, we know that γ = 0 if and only
if c(G)= c(T )+ c(A). �

Remark 4.2.2. In Conjecture 1.1, T is a torus and A is an abelian variety. This
implies that Asp is trivial so that A = Ab and

0→ T b
→ Gb

→ A→ 0

is exact by Proposition 3.4.2. In this case, in the proof of Theorem 4.2.1, we do not
need the fact that the base change conductor of a torus is invariant under isogeny.



Chai’s conjecture and Fubini properties of dimensional motivic integration 909

Theorem 4.2.3. Assume that K is complete and of characteristic zero and that k is
algebraically closed. Let

0→ T → G→ A→ 0

be an exact sequence of bounded semiabelian K -varieties with T a torus. Then

dim
∫

G
|ωT ⊗ωA| = dim

∫
T
|ωT | + dim

∫
A
|ωA| = 0.

We will prove Theorem 4.2.3 in Section 5.4, using the model-theoretic approach
to motivic integration in [Cluckers and Loeser 2012] and a new result on dimensions
of motivic integrals (Theorem 5.2.1). As a corollary, we obtain a new proof of the
following theorem:

Theorem 4.2.4 (Chai). Let

0→ T → G→ A→ 0

be an exact sequence of semiabelian K -varieties with T a torus. Assume that K is
of characteristic zero. Then

c(G)= c(T )+ c(A).

Proof. This follows at once from Theorem 4.2.1 and Theorem 4.2.3. �

Remark 4.2.5. Theorem 4.2.3 is not a direct corollary of the Fubini theorem in
[Cluckers and Loeser 2012] and the above results. We need to combine the Fubini
result [Cluckers and Loeser 2012, 12.5] with the new result in Theorem 5.2.1 and
its corollary below, which compares dimensions of motivic parameter integrals
under rather general conditions. By the lack of a definable section for the morphism
G→ A as in Theorem 4.2.3, the motivic integral of |ωG | over G may not be equal
to the product of the integrals of |ωT | over T and of |ωA| over A. By the corollary to
Theorem 5.2.1 and by the change of variables in [Cluckers and Loeser 2012, 12.4],
this product survives at the rough level of virtual dimensions, which is sufficient to
prove Theorem 4.2.3.

5. A comparison result for the dimensions of motivic integrals

In this section, we will work with a specific context falling under [Cluckers and
Loeser 2012] and define the dimension of motivic constructible functions at each
point. These functions play an important role in motivic integration and in general
Fubini results of [Cluckers and Loeser 2012; 2008]. In order to control dimensions
as desired for Equation (4.2-1) in Theorem 4.2.1, we will compare the dimensions
of the integrals of possibly different functions F and G when we are given that
F and G have the same dimension in every point. Theorem 5.2.1 provides such
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a comparison result with parameters, and its corollary gives a similar comparison
result for integrals on an algebraic variety with a volume form.

5.1. Dimensions of motivic constructible functions. In this section, we suppose R
is a complete discrete valuation ring of characteristic zero with quotient field K and
algebraically closed residue field k of characteristic p ≥ 0. We fix a uniformizer $
in K . We will use some terminology and results from [Cluckers and Loeser 2012]
with precise references. Let Lhigh(K ) be the Denef–Pas language Lhigh as in
[Cluckers and Loeser 2012, §2.3] enriched with coefficients from K and where the
angular component maps acn for n > 0 are given by acn(x)= x$− ord x mod ($)n

for nonzero x ∈ K . Let T be the Lhigh(K )-theory of K .
Since T falls under the combined Examples 1 and 4 of [Cluckers and Loeser

2012, §3.1], we can use the theory of motivic integration of [Cluckers and Loeser
2012]. Also, since T is a complete theory, any definable subassignment X is
uniquely determined by the definable set X (K ) with notation from [Cluckers and
Loeser 2012, §4.1]. We will sometimes say “definable set” instead of “definable
subassignment”.

We first define how to take (virtual) dimensions of several objects appearing in
[Cluckers and Loeser 2012]. Write Rn for the ring R/($ n) and $n for the image
of $ in Rn . Let Lr be the multisorted language with sorts Rn for integers n> 0, on
each Rn the ring language with coefficients from Rn , and with the natural projection
maps pn,m : Rn→ Rm for n ≥ m. It follows from the quantifier elimination results
of [Pas 1989; 1990] that any Lhigh(K )-definable set X ⊂

∏s
i=1 Rni is already Lr -

definable with parameters; see also [Cluckers and Loeser 2012, Theorem 3.10]. To
each Lr -definable set X ⊂

∏s
i=1 Rni , we associate an Lring(k)-definable set δ(X)

as follows. If R has mixed characteristic, the projection pn,1 induces a bijection
from the set of pn-th powers in Rn to k by Hensel’s lemma, Newton’s binomial
theorem and the hypotheses on K . Let us write Ppn for the set of pn-th powers
in Rn . Then any x in Rn can be written uniquely as

n−1∑
i=0

xi$
i
n,

with xi ∈ Ppn , yielding a bijection Rn → kn
: x 7→ (pn,1(xi ))i that is, in fact,

Lr -definable. If R has equal characteristic zero, we choose a retraction k→ R of
the ring morphism R→ k. This choice determines an isomorphism R→ k[[$ ]],
and we identify Rn ∼= k[$ ]/($ n) with the k-vector space kn by means of the basis
1,$, . . . ,$ n−1 of Rn . In both cases, we obtain a bijection

∏s
i=1 Rni → k N with

N =
∑s

i=1 ni . This identification maps the Lr -definable subset X of
∏s

i=1 Rni onto
an Lring(k)-definable subset of k N that we denote by δ(X).
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Recall from [Cluckers and Loeser 2012, §7.1] that C+(Point) is the Grothendieck
semiring of Lhigh(K )-definable subsets of Cartesian products of the form

∏s
i=1 Rni

up to definable isomorphisms with scissor relations, with zero-element [∅] and
localized with respect to L and the elements Li

− 1 for all i > 0, where L stands for
the class of the affine line over k. Clearly, δ induces a semiring morphism

C+(Point)→M+k ,

which we also denote by δ. Recall that objects in M+k have a dimension by
Definition 3.1.1.

For an Lhigh(K )-definable set Z , C+(Z) is a relative variant of C+(Point) over Z ;
see [Cluckers and Loeser 2012, §7.1]. An object ϕ ∈ C+(Z) is called a motivic
constructible function on Z . Moreover, for every z ∈ Z(K ), there is the evaluation
map i∗z : C+(Z)→ C+(Point) at z, and i∗z (ϕ) is called the evaluation of ϕ at z. For
an Lhigh(K )-definable set Z , a point z ∈ Z(K ) and a function ϕ in C+(Z), the
dimension of ϕ at z is defined as dim(δ(i∗z (ϕ))) and is denoted by dimz(ϕ). If Z is
the point and ϕ ∈ C+(Point), we write dim(ϕ) instead of dimPoint(ϕ).

5.2. A comparison result. In this section, definable will mean for the language
Lhigh(K ). Recall that, for definable sets X , Y and Z ⊂ X ×Y , under integrability
conditions in the fibers of the projection Z → X , called X -integrability, one can
integrate ϕ ∈ C+(Z) in the fibers of the projection Z → X to obtain a function
µ/X (ϕ) in C+(X); see [Cluckers and Loeser 2012, 9.1]. The method of [Cluckers
and Loeser 2008; 2012] for calculating integrals goes back to ideas by Denef [1984]
in the p-adic case and to Pas [1989; 1990] in a premotivic setting.

Now we can state and prove our comparison result, stating that the dimension of
a motivic integral only depends on the dimensions of the values of the integrand at
each point.

Theorem 5.2.1. Let F and G be in C+(Z), and suppose that Z ⊂ X × Y for some
definable sets X , Y and Z. Suppose that F and G are X-integrable and that

dimz(F)= dimz(G) for each point z on Z(K ).

Then one has

dimx(µ/X (F))= dimx(µ/X (G)) for each point x on X (K ).

Proof. For some integers n, r, s ≥ 0 and for some tuple m = (m1, . . . ,ms) of
nonnegative integers, Y is contained in K n

×
∏

1≤i≤s Rmi ×Zr . By projecting one
variable at a time and by iterating the one variable result, it suffices to consider the
case where two of the three values n, m and r are zero and either n = 1, r = 1 or
s = 1 and m1 = 1. By the cell decomposition theorem of [Pas 1989; 1990], we may
suppose that n = 0. Indeed, via cell decomposition, each integral over a valued
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field variable is precisely calculated as a sum over Z-variables and a subsequent
integral over residue ring variables; see [Cluckers and Loeser 2012, §8].

Recall that F is a finite sum of terms of the form ai ⊗ bi , with ai ∈ P+(Z) and
bi ∈ Q+(Z), and similarly for G with notation from [Cluckers and Loeser 2012,
§7.1]. (The semiring P+(Z) is related to the value group and Q+(Z) to the residue
field, and C+(Z) is a tensor product of both.)

If n = r = 0, then we may suppose that the ai lie in P+(X), and similarly for G,
by Proposition 7.5 of [Cluckers and Loeser 2012]. The result of the theorem now
follows from the definition in [Cluckers and Loeser 2012, §6] of µ/X in this case
and the following simple comparison property for dimensions of constructible sets
Ai ⊂ A

ni
k . If, for certain morphisms fi : A

ni
k → A

n3
k for i = 1, 2, one has that

f1(A1)= f2(A2) and, for each x ∈ A
n3
k (k), the dimension of f −1

1 (x)∩ A1 equals
the dimension of f −1

2 (x)∩ A2, then one has dim(A1)= dim(A2).
Let us finally consider the case that n = m = 0 and r = 1. In this case, we may

suppose that the bi lie in Q+(X), and similarly for G, again by Proposition 7.5 of
[Cluckers and Loeser 2012]. In the considered case, the theorem follows from the
definition of µ/X of [Cluckers and Loeser 2012] and the following two observations.
For any a ∈ A, where a = a(L) is thus a rational function in L of a specific kind,
one has that dim(a) equals the degree of the rational function a(L), where the
degree of a rational function is the degree of its numerator minus the degree of its
denominator and where the degree of 0 is defined as −∞. Secondly, there is the
following elementary comparison property for the degrees of rational functions.
Consider, for each i ∈ Z, an integer ni ≥ 0 and a polynomial ai (x) over Z in one
variable x such that ai (q)≥ 0 for each real q > 1. If there is a rational function r(x)
such that

∑
i∈Z ai (q)/qni converges and equals r(q) for each real q > 1, then

deg(r(x))=max
i

deg
(ai (x)

xni

)
,

where deg stands for the degree. Since summation of nonnegative functions over Z

in [Cluckers and Loeser 2012, §5] is calculated and defined by considering specific
sums of rational functions in L and by evaluating in real numbers q > 1, the result
follows. �

By working with affine charts over K , one may consider a variety V over K as
a definable subassignment, and one defines C+(V ) correspondingly; see [Cluckers
and Loeser 2012, §12.3]. Let us write

∫ CL for the integral as defined there, to
distinguish them from the integrals from Section 3.2 of this paper. The definition
of these integrals is based on finite affine covers of V over K , on finite additivity
for motivic integrals and on the change of variables formula.

Corollary 5.2.2. Let V be an algebraic variety over K with a volume form ωV . Let
F and G be integrable functions in C+(V ) such that, for each x ∈ V (K ), one has
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dimx(F)= dimx(G). Then their integrals have the same dimension:

dim
∫ CL

V
F |ωV | = dim

∫ CL

V
G|ωV |.

Proof. This follows immediately from Theorem 5.2.1 and the definition of the
integrals

∫ CL in [Cluckers and Loeser 2012, §12.3]. �

5.3. Gel′fand–Leray residues. Let f : X → Y be a smooth morphism between
smooth equidimensional varieties over K . Let m be the dimension of Y , and let
m + n be the dimension of X . Let ωX and ωY be differential forms of maximal
degree on X and Y , respectively. Assume that ωY is a gauge form, that is, a generator
of the line bundle �m

Y/K at each point of Y .
Since f is smooth, the fundamental sequence of locally free coherent OX -modules

0→ f ∗�1
Y/K →�1

X/K →�1
X/Y → 0

is exact [Grothendieck and Dieudonné 1967, 17.2.3]. Taking maximal exterior
powers, we obtain an isomorphism

f ∗�m
Y/K ⊗�

n
X/Y →�m+n

X/K .

Locally, this isomorphism is defined by

ϕ⊗ η 7→ ϕ ∧ η̃

where η̃ is any lift of η to �n
X/K . Since f ∗ωY generates the line bundle f ∗�m

Y/K ,
we obtain an isomorphism �n

X/Y →�m+n
X/K that is locally defined by

η 7→ f ∗ωY ∧ η̃.

The inverse image of ωX under this isomorphism is called the Gel′fand–Leray form
associated to ωX and ωY and denoted by ωX/ωY . It induces a differential form of
maximal degree on each of the fibers of f .

5.4. Proof of Theorem 4.2.3. It follows from Proposition 3.3.3 that

dim
∫

T
|ωT | = dim

∫
A
|ωA| = 0.

It is proven in Proposition 12.6 of [Cluckers and Loeser 2012] that the theory of
motivic integration developed there can be used to compute the motivic integrals
defined by the formula (3.2-1). In particular, the dimensions of the respective
motivic integrals are the same so that we can use the corollary of Theorem 5.2.1
and the results in [Cluckers and Loeser 2012] to prove Theorem 4.2.3.

We denote the projection morphism G→ A by f . Since H 1(K , T )= 0 by [Chai
2000, 4.3], the map f (K ) : G(K )→ A(K ) is surjective. For every a ∈ A(K ),
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we set Ga = f −1(a). If we choose a point x in Ga(K ), then the multiplication
by x defines an isomorphism τx : T → Ga . Since the relative differential form
(ωT ⊗ωA)/ωA on G is invariant under translation, the pullback through τx of its
restriction to Ga equals ωT . Thus, by the change of variables formula in [Cluckers
and Loeser 2012, 12.4], we have∫ CL

Ga

|(ωT ⊗ωA)/ωA| =

∫ CL

T
|ωT |

for each a in A(K ). Hence, by the Fubini property in [Cluckers and Loeser 2012,
12.5], we find that ∫ CL

G
|ωT ⊗ωA| =

∫ CL

A
ψ |ωA|

where ψ is a motivic constructible function on A such that dima(ψ)= 0 for each
a ∈ A(K ). Now Corollary 5.2.2 with V = A implies that

dim
∫ CL

A
ψ |ωA| = dim

∫ CL

A
|ωA| = 0.

Combining the above equations, we find

dim
∫

G
|ωT ⊗ωA| = dim

∫ CL

G
|ωT ⊗ωA| = 0,

which concludes the proof.
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