Vol. 7, No. 4, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11
Issue 6, 1243–1488
Issue 5, 1009–1241
Issue 4, 767–1007
Issue 3, 505–765
Issue 2, 253–503
Issue 1, 1–252

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Editorial Login
Author Index
To Appear
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Albanese varieties with modulus over a perfect field

Henrik Russell

Vol. 7 (2013), No. 4, 853–892

Let X be a smooth proper variety over a perfect field k of arbitrary characteristic. Let D be an effective divisor on X with multiplicity. We introduce an Albanese variety Alb(X,D) of X of modulus D as a higher-dimensional analogue of the generalized Jacobian of Rosenlicht and Serre with modulus for smooth proper curves. Basing on duality of 1-motives with unipotent part (which are introduced here), we obtain explicit and functorial descriptions of these generalized Albanese varieties and their dual functors.

We define a relative Chow group of zero cycles CH0(X,D) of modulus D and show that Alb(X,D) can be viewed as a universal quotient of CH0(X,D)0.

As an application we can rephrase Lang’s class field theory of function fields of varieties over finite fields in explicit terms.

Albanese with modulus, relative Chow group with modulus, geometric class field theory
Mathematical Subject Classification 2010
Primary: 14L10
Secondary: 11G45, 14C15
Received: 18 February 2011
Revised: 7 April 2012
Accepted: 17 May 2012
Published: 29 August 2013
Henrik Russell
Freie Universität Berlin
Mathematik und Informatik
Arnimallee 3
14195 Berlin