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The numerical dimension is a numerical measure of the positivity of a pseu-
doeffective divisor L . There are several proposed definitions of the numerical
dimension due to Nakayama and Boucksom et al. We prove the equality of these
notions and give several additional characterizations. We also prove some new
properties of the numerical dimension.

1. Introduction

Suppose that X is a smooth complex projective variety and L is an effective divisor.
An important principle in birational geometry is that the geometry of L is captured
by the asymptotic behavior of the spaces H 0(X,OX (mL)) as m increases. When L
is a big divisor, this asymptotic behavior has close ties to the cohomological and
numerical properties of L . These connections have been applied profitably in many
situations in birational geometry, most notably in the minimal model program.

However, when L is an effective divisor that is not big, these close relationships no
longer hold. In order to understand the interplay between numerical and asymptotic
properties, Kawamata [1985] defined the numerical dimension of a nef divisor.
Nakayama [2004] and Boucksom et al. [2012] proposed several different extensions
of this notion to pseudoeffective divisors. Our goal is to give a unifying framework
for the numerical dimension by proving the equality of these definitions and giving
other natural descriptions as well. We also describe some new properties of the
numerical dimension. The crucial perspectives are the following:

(1) The numerical dimension measures the asymptotic behavior of L when it is
perturbed by adding a small ample divisor εA.

(2) The numerical dimension measures the largest dimension of a subvariety W ⊂ X
such that L is positive along W . An important subtlety is that one should not
simply consider L|W but should “remove” contributions of the base locus of L .
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Since some of the definitions used in the main theorem are rather technical, we
simply give references here. We will describe in Section 1A the intuition behind
the theorem. The notation B−(L) denotes the diminished base locus defined in
Section 2A, volX |W denotes the restricted volume defined in Section 2D, Pσ (−)
denotes the divisorial Zariski decomposition defined in Section 3, and 〈−〉 denotes
the restricted positive product defined in Section 4.

Theorem 1.1. Let X be a normal projective variety over C, and let L be a pseu-
doeffective R-Cartier R-Weil divisor. In the following, A will denote some fixed
sufficiently ample Z-divisor, and W will range over all subvarieties of X not
contained in B−(L)∪Supp(L)∪Sing(X). The following quantities coincide:

Perturbed growth condition:

(1) max{k ∈ Z≥0 | limsupm→∞ h0(X,OX (bmLc+ A))/mk > 0}.

Volume conditions:

(2) max{k ∈ Z≥0 | ∃C > 0 such that Ctn−k < vol(L + t A) for all t > 0}.

(3) max{dim W | limε→0 volX |W (L + εA) > 0}.

(4) max{dim W | infφ:Y→X volW̃ (Pσ (φ
∗L)|W̃ ) > 0}, where φ varies over all bira-

tional maps such that no exceptional center contains W and W̃ denotes the
strict transform of W .

Positive product conditions:

(5) max{k ∈ Z≥0 | 〈Lk
〉 6= 0}.

(6) max{dim W | 〈Ldim W
〉X |W > 0}.

Seshadri-type condition:

(7) min{dim W | φ∗L− εE is not pseudoeffective for any ε > 0}, where φ denotes
the blow-up φ : BlW X→ X and E denotes the Cartier divisor on BlW X such
that OBlW X (−E)= φ−1IW ·OBlW X . (By convention, if L is big, we interpret
this expression as returning dim X .)

This common quantity is known as the numerical dimension of L and is denoted ν(L).
It only depends on the numerical class of L.

The definitions κσ and κν of [Nakayama 2004, pp. 174 and 181] are listed
as (1) and (7), respectively; the definition ν of [Boucksom et al. 2012] is listed
as (5). When L is numerically effective, this definition agrees with the definition of
[Kawamata 1985].

Remark 1.2. The numerical dimension also admits a natural interpretation with
respect to separation of jets, reduced volumes, and the other invariants considered
in [Ein et al. 2009].
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The numerical dimension is natural from the viewpoint of birational geometry.
It is established in [Nakayama 2004] that for a pseudoeffective divisor L ,

• 0≤ ν(L)≤ dim X ,

• ν(L)= dim X if and only if L is big and ν(L)= 0 if and only if Pσ (L)≡ 0,

• κ(L)≤ ν(L), and

• if φ : Y → X is a surjective morphism, then ν(φ∗L)= ν(L).

We prove two additional basic properties, answering a question of Nakayama:

• We have ν(L)= ν(Pσ (L)).

• Fix some sufficiently ample Z-divisor A. Then there are positive constants C1

and C2 such that

C1mν(L) < h0(X,OX (bmLc+ A)) < C2mν(L)

for every sufficiently large m.

The properties of ν(L) will be discussed in more depth in Section 6.

1A. Intuitive description. We now turn to an intuitive description of several of the
definitions in Theorem 1.1. Classically, one measures the positivity of a divisor
using the rate of growth of sections of H 0(X,OX (mL)) as m increases. More
precisely, the Iitaka dimension is defined as

κ(L)=max
{

k ∈ Z≥0

∣∣∣∣ lim sup
m→∞

h0(X,OX (bmLc))
mk > 0

}
.

(If H 0(X,OX (bmLc))= 0 for every m, we set κ(L)=−∞.) To obtain a numerical
invariant, we must instead consider sections of mL+ A for some sufficiently ample
divisor A. Thus, definition (1) indicates that ν(L) can be viewed as a numerical
analogue of the Iitaka dimension.

Another way to calculate the positivity of L is to use intersection products.
[Kawamata 1985] defined the numerical dimension of a numerically effective
divisor L as

ν(L) :=max{ k ∈ Z≥0 | Lk
· An−k

6= 0 }

for some (thus any) ample divisor A. The naïve extension of this definition to
pseudoeffective divisors does not work as the diminished base locus of L might
contribute positively to this intersection and distort the measurement. The positive
product of [Boucksom et al. 2012] gives a precise method of taking intersection
products while discounting these contributions. Definition (5) shows that ν(L) can
be defined as in [Kawamata 1985] by replacing the intersection product by the
positive product.
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A third way to measure the positivity of a divisor is the volume: if n = dim X ,

vol(L) := lim sup
m→∞

h0(X,OX (mL))
mn/n!

.

Conceptually, we can view the volume as a loose analogue of the top self-intersection
of L . While this latter quantity does not usually yield geometric information, the
volume is a useful alternative that still shares many of the desirable properties of
intersection products. It is shown in [Lazarsfeld and Mustat,ă 2009; Boucksom et al.
2009] that vol is a differentiable function on the space of big R-Cartier divisors.
Definition (2) demonstrates that ν(L) controls the derivative of vol near L .

1B. Restricted numerical dimension. It is useful to study not only numerical in-
variants on X but also restricted versions that measure positivity along a subvariety V .
We will define a restricted numerical dimension of L along a subvariety V of X .
Just as in the nonrestricted case, the restricted numerical dimension should measure
the maximal dimension of a very general subvariety W ⊂ V such that the “positive
restriction” of L is big along W .

Definition 1.3. Let X be a smooth variety, V a subvariety, and L a pseudoeffective
R-divisor such that V 6⊂ B−(L). Fix an ample divisor A. We define the restricted
numerical dimension νX |V (L) to be

νX |V (L) :=max
{

dim W
∣∣ lim
ε→0

volX |W (L + εA) > 0
}
,

where W ranges over smooth subvarieties of V not contained in B−(L). The
restricted numerical dimension is an invariant of the numerical class of L .

The restricted numerical dimension satisfies (slightly weaker) analogues of
Theorems 1.1 and 6.7. For numerically effective divisors, we obtain nothing new
because νL|V (L)= νV (L|V ). Nevertheless, the restricted numerical dimension plays
an important role in understanding the geometry of a pseudoeffective divisor L .

1C. Organization. The paper is organized as follows. Section 3 is devoted to the
study of the divisorial Zariski decomposition, giving the technical background for
the rest of the paper. Sections 4 and 5 prove some basic facts about the invariants
of Theorem 1.1. We then turn to the proof of Theorem 1.1 in Section 6. Section 7
is devoted to a discussion of the restricted numerical dimension.

2. Preliminaries

All schemes will lie over the base field C. A variety will always be an irreducible
reduced projective scheme. The ambient variety X is assumed to be normal unless
otherwise noted. The term “divisor” will always refer to an R-Cartier R-Weil divisor.
Let N p(X) denote the R-vector space of codimension-p cycles quotiented out by
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those numerically equivalent to 0, and CD(X) will denote the R-vector space of
Cartier divisors quotiented out by those that have degree 0 along every irreducible
curve.

2A. Base loci. Let L be a pseudoeffective divisor. The R-stable base locus of L is
defined to be

BR(L) :=
⋂
{Supp(D) | D ≥ 0 and D ∼R L }.

When L is not R-linearly equivalent to an effective divisor, we use the convention
that BR(L)= X . The R-stable base locus is always a Zariski-closed subset of X ;
we do not associate any scheme structure to it.

We obtain a much better behaved invariant by perturbing by an ample divisor.
This approach to invariants was first considered in [Nakamaye 2000] and was
studied systematically in [Ein et al. 2006].

Definition 2.1. Let L be a pseudoeffective divisor. The augmented base locus of L is

B+(L) :=
⋂

A ample
BR(L − A).

Note that B+(L) ⊃ BR(L). [Ein et al. 2006, Corollary 1.6] verifies that the
augmented base locus is equal to BR(L − A) for any sufficiently small ample
divisor A. Thus, B+(L) is a Zariski-closed subset of X , and it only depends on the
numerical class of L .

For the second variant, we add on a small ample divisor.

Definition 2.2. Let L be a pseudoeffective divisor. The diminished base locus of L is

B−(L) :=
⋃

A ample
BR(L + A).

Remark 2.3. Although Nakayama [2004] uses a different definition, it is equivalent
to ours by his Theorem V.1.3.

Proposition 1.15 of [Ein et al. 2006] checks that the diminished base locus
only depends on the numerical class of L . Unlike the augmented base locus, the
diminished base locus is probably not a Zariski-closed subset (although no examples
are known of such pathological behavior). However, it is a countable union of
closed subsets by the following theorem:

Theorem 2.4 [Nakayama 2004, Theorem V.1.3]. Let X be a smooth variety, and
let L be a pseudoeffective divisor. There is an ample divisor A such that

B−(L)=
⋃
m

Bs(dmLe+ A),

where Bs denotes the (set-theoretic) base locus.
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From [Nakayama 2004] we know B−(L) is invariant under surjective morphisms.

Proposition 2.5. Let φ : Y → X be a surjective morphism from a normal variety Y
onto a normal variety X. Suppose that L is a pseudoeffective divisor on X. Then
we have an equality of sets

φ−1B−(L)∪φ−1 Sing(X)= B−(φ∗L)∪φ−1 Sing(X).

Proof. Fix an ample divisor H on Y and an ample divisor A on X . We have

φ−1B−(L)= φ−1
(⋃

m
BR

(
L + 1

m A
))

by [Ein et al. 2006, Remark 1.20]

=

⋃
m

BR

(
φ∗
(
L + 1

m A
))

⊃

⋃
m

BR

(
φ∗
(
L + 1

m A
)
+

1
m H

)
= B−(φ∗L) by [Ein et al. 2006, Remark 1.20].

This proves the inclusion ⊃. Furthermore, the same argument shows that it suffices
to prove the reverse inclusion ⊂ after replacing Y by any higher birational model.

We next reduce to the case where X and Y are smooth. Let ψ : X̃→ X denote
a resolution that is an isomorphism away from Sing(X). Suppose that the closed
point x̃ /∈ B−(φ∗L)∪ φ−1 Sing(X). Fix an ample divisor Ã on X̃ , and choose an
ample divisor A on X so that φ∗A− Ã is an effective divisor E . Since x̃ is not
contained in the ψ-exceptional locus, we may also ensure that x̃ /∈ Supp(E). Then

x̃ /∈ BR(φ
∗(L)+ εH + εE)= φ−1BR(φ

∗(L + εA))

for any ε > 0, showing that

ψ−1B−(L)∪ψ−1 Sing(X)= B−(ψ∗L)∪ψ−1 Sing(X).

As discussed earlier, we may verify the desired equality of sets by replacing Y by
a smooth birational model that dominates X̃ . Thus, we have reduced to the case
when both X and Y are smooth.

[Nakayama 2004, Lemmas III.2.3 and III.5.15] together show that for a smooth
variety Z and a pseudoeffective divisor M on Z , a closed point z ∈ Z is contained
in B−(M) if and only if, for every birational map ψ : W → Z from a smooth
variety W and everyψ-exceptional divisor E withψ(E)= z, we have E⊂B−(ψ∗L).
This immediately implies the inclusion ⊂ when both X and Y are smooth. �

2B. V-pseudoeffective cone and V-big cone. The perturbed base loci can be used
to describe when a divisor L sits in “general position” with respect to a subvariety V .
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Definition 2.6. Suppose that V ⊂ X is a subvariety. We define the V -pseudoeffective
cone PsefV (X) to be the cone in CD(X) generated by classes of divisors L with
V 6⊂B−(L). We define the V -big cone BigV (X) to be the cone generated by classes
of divisors L with V 6⊂ B+(L).

It is easy to verify that PsefV (X) is closed and BigV (X) is its interior. Note
also that L|V is pseudoeffective whenever L has numerical class in PsefV (X). The
following perspective will sometimes be useful:

Definition 2.7. Suppose that V ⊂ X is a subvariety. If L is an effective divisor
such that Supp(L) 6⊃ V , we say L ≥V 0.

The relationship with the earlier criteria is given by a trivial lemma.

Lemma 2.8. Suppose that V ⊂ X is a subvariety. If L is a V -big divisor, then
L ∼R L ′ for some L ′ ≥V 0.

2C. Admissible and V-birational models. Suppose that X is a normal variety
and V is a subvariety. In order to study how V -pseudoeffective divisors behave
under birational pullbacks, we need to be careful about how V intersects the
exceptional centers of the map. The most general situation is the following:

Definition 2.9. Let X be a normal variety and V a subvariety of X . Suppose that
φ : Y → X is a birational map and that W is a subvariety of Y such that the induced
map φ|W :W→ V is generically finite. We say that (Y,W ) or φ : (Y,W )→ (X, V )
is an admissible model for (X, V ). When both Y and W are smooth, we say that
(Y,W ) is a smooth admissible model.

The disadvantage of admissible models is that in many circumstances we need to
keep track of the degree of φ|W . Since we want to focus on the birational geometry
of V , we will usually restrict ourselves to the following situation:

Definition 2.10. Let X be a normal variety and V a subvariety not contained
in Sing(X). Suppose that φ : X̃→ X is a birational map from a normal variety X̃
such that V is not contained in any φ-exceptional center. Let Ṽ denote the strict
transform of V . We say that (X̃ , Ṽ ) or φ : X̃→ X is a V -birational model for (X, V ).
When both X̃ and Ṽ are smooth, we say that (X̃ , Ṽ ) is a smooth V -birational model.

Suppose that V is a subvariety not contained in Sing(X) and φ : (Y,W )→ (X, V )
is an admissible model. By Proposition 2.5, the pullback of a V -pseudoeffective
divisor under φ is W -pseudoeffective. If φ is a V -birational model, then more is true.

Proposition 2.11. Let X be a normal variety and V a subvariety not contained
in Sing(X). Suppose that φ : X̃ → X is a V -birational model. If L is a V -big
divisor, then φ∗L is a Ṽ -big divisor.
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Proof. The V -pseudoeffectiveness of L implies that φ∗L is Ṽ -pseudoeffective. By
openness of the Ṽ -big cone, it suffices to check that φ∗H is Ṽ -big for an ample
divisor H on X . Let ψ : Ỹ → X̃ be a smooth model such that ψ is an isomorphism
away from Sing(X̃). Note that for some sufficiently small ε,

ψ−1B+(φ∗H)= ψ−1BR((1− ε)φ∗H) by [Ein et al. 2006, Corollary 1.6]

= BR((1− ε)ψ∗φ∗H)

⊂ B+(ψ∗φ∗H).

But clearly B+(ψ∗φ∗H) is contained in the (φ ◦ ψ)-exceptional locus. Thus,
B+(φ∗H) is contained inside the union of the φ-exceptional locus and Sing(X̃). In
particular, it does not contain Ṽ . �

2D. Restricted volume. Just as the volume measures the asymptotic rate of growth
of sections, the restricted volume measures the rate of growth of restrictions of
sections to a subvariety V . This notion originated in the work of Hacon–McKernan
and Takayama and is systematically developed in [Ein et al. 2009].

Definition 2.12. Suppose that X is a normal variety, V is a d-dimensional subvariety
of X , and L is a divisor. We define

H 0(X |V,OX (bLc)) := Im
(
H 0(X,OX (bmLc))→ H 0(V,OV (bmLc))

)
and h0(X |V,OX (bLc)) to be the dimension of this space. We then define the
restricted volume volX |V (L) to be

volX |V (L) := lim sup
m→∞

h0(X |V,OX (bmLc))
md/d!

.

Remark 2.13. Although this definition of volX |V is formulated differently from
that of [Ein et al. 2009], the two definitions agree (whenever the restricted volume
is defined in [Ein et al. 2009]). An elementary argument proves that volX |V is
homogeneous of degree d so that Definition 2.12 agrees with the definition in
[Ein et al. 2009] for Q-divisors. In particular, volX |V is a continuous function on
the space of V -big Q-divisors. Using this fact, one readily checks that volX |V is
continuous on the set of V -big R-divisors by perturbing by ample divisors and thus
coincides with the definition of [Ein et al. 2009].

As with the other quantities we consider, the restricted volume is a numerical
and birational invariant. More precisely, [Ein et al. 2009, Theorem A] shows that
if L and L ′ are numerically equivalent V -big divisors, then volX |V (L)= volX |V (L ′).
Furthermore, [Ein et al. 2009, Proposition 2.4] proves that the restricted volume
remains unchanged upon pulling back to an admissible model.
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2E. Twisted linear series. It was observed by Iitaka that linear series of the form
|bmLc+ A| play an important role in governing the numerical behavior of L . Due
to the presence of the auxiliary divisor A, we call these “twisted” linear series.
In this section, we recall the work of Nakayama [2004] analyzing the asymptotic
behavior of twisted linear series.

Definition 2.14. Let X be a normal variety, L a pseudoeffective R-divisor, and A any
divisor. If H 0(X,OX (bmL + Ac)) is nonzero for infinitely many values of m, we
define

κσ (L; A) :=max
{

k ∈ Z≥0

∣∣∣∣ lim sup
m→∞

h0(X,OX (bmL + Ac))
mk > 0

}
.

Otherwise, we define κσ (L; A)=−∞. The σ -dimension κσ (X, L) is defined to be

κσ (L) :=max
A
{κσ (L; A)}.

Note that this maximum will be computed by some sufficiently ample divisor A.
Thus, we restrict our attention to the case when A is an ample Z-divisor from now on.

Remark 2.15. As we increase m, the class of the divisor dmLe−bmLc is bounded.
Thus, if we replace b−c by d−e in the definition of κσ (L), the result is unchanged
as the difference can be absorbed by the divisor A.

Remark 2.16. Nakayama asks whether κσ (L) coincides with

• κ−σ (L), where we replace the lim sup by a lim inf, and

• κ+σ (L), where we replace > 0 by <∞.

The equality of these three notions is a consequence of Theorem 6.7(7).

Nakayama shows that κσ is a birational and numerical invariant. In fact, since
κσ is one of the many equivalent definitions of the numerical dimension, it satisfies
all of the properties of Theorem 6.7. The following key result shows that κσ is
nonnegative for pseudoeffective divisors:

Proposition 2.17 [Nakayama 2004, Corollary V.1.4]. Let X be a smooth variety
of dimension n. Fix a big basepoint-free divisor B on X. Then a divisor L is
pseudoeffective if and only if h0(X,OX (K X+(n+2)B+dmLe))>0 for every m≥0.

Proof. Nakayama’s Corollary V.1.4 is actually a similar statement for B very ample.
We explain how to extend the argument to the case when B is big and basepoint-free.
The main point is to show that there is an effective divisor D≡ (n+1)B+dmLe such
that J(D) has an isolated point. There is an effective divisor E≡ B+dmLe. Choose
a general point x that does not lie in Supp(E)∪B+(B). Let B1, . . . , Bn2 ∈ |B| be
irreducible smooth divisors going through x . Since B is big, by choosing the Bi

sufficiently general, we may ensure the intersections of any collection of at most n
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of them has the expected dimension. Thus, D :=
∑ 1

n Bi + E has multiplicity n at
x and less than 1 in a neighborhood of x . By [Lazarsfeld 2004, Propositions 9.3.2
and 9.5.13], J(D) has an isolated point. The proof then proceeds as in [Nakayama
2004, Corollary V.1.4]. �

3. Divisorial Zariski decomposition

The divisorial Zariski decomposition is a higher dimension analogue of the classical
Zariski decomposition on surfaces. It was introduced by Nakayama [2004] and by
Boucksom [2004] in the analytic setting.

Definition 3.1. Let X be a smooth variety, and let L be a pseudoeffective divisor.
Fix an ample divisor A on X . For any prime divisor 0 on X , we define

σ0(L)= lim
ε→0+

inf{mult0(L ′) | L ′ ∼R L + εA and L ′ ≥ 0 }.

By Lemma III.1.5 of [Nakayama 2004], this is independent of the choice of A.

Lemma III.1.7 of the same reference says that for any pseudoeffective divisor L
there are only finitely many prime divisors 0 with σ0(L) > 0. Thus, we can define
the following:

Definition 3.2. Let X be a smooth variety and L a pseudoeffective divisor. Define

Nσ (L)=
∑

σ0(L)0 and Pσ (L)= L − Nσ (L).

The decomposition L = Nσ (L)+ Pσ (L) is called the divisorial Zariski decomposi-
tion of L .

The following proposition records the basic properties of the divisorial Zariski
decomposition. The key point is that Pσ (L) captures all of the interesting geometric
information about L .

Proposition 3.3 [Nakayama 2004, Lemma III.1.4, Corollary III.1.9, Theorem V.1.3].
Let X be a smooth variety and L a pseudoeffective divisor. Then

(1) Nσ (L) depends only on the numerical class of L ,

(2) Nσ (L)≥ 0 and κ(Nσ (L))= 0,

(3) Supp(Nσ (L)) is precisely the divisorial part of B−(L), and

(4) H 0(X,OX (bm Pσ (L)c))→H 0(X,OX (bmLc)) is an isomorphism for all m≥0.

Note that Nσ (L)= 0 if and only if B−(L) has no divisorial components. This
simple observation leads to a different perspective on the divisorial Zariski decom-
position.
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Definition 3.4. Let X be a smooth variety. The movable cone Mov1(X)⊂ CD(X)
is the cone consisting of the classes of all pseudoeffective divisors L such that
B−(L) has no divisorial components.

The positive part Pσ (L) of the divisorial Zariski decomposition can be understood
as a “projection” of L onto the movable cone. We will need a slightly modified ver-
sion of [Nakayama 2004, Proposition III.1.14] that takes into account a subvariety V .

Proposition 3.5. Let X be smooth, V a subvariety, and L a V -pseudoeffective
divisor. If M is a movable divisor, then L ≥V M if and only if Pσ (L) ≥V M.
Thus, L −M is V -big or V -pseudoeffective if and only if Pσ (L)−M is V -big or
V -pseudoeffective, respectively.

Proof. First suppose that Pσ (L)≥V M . Since L is V -pseudoeffective, no component
of Nσ (L) contains V . Thus, L≥V M . Conversely, suppose L=M+E with E ≥V 0.
Since M is movable, Nσ (L)≤ E by [Nakayama 2004, Proposition III.1.14]. Thus,
E − Nσ (L) is still effective and does not contain V in its support, showing that
Pσ (L)≥V M .

Suppose now that L−M is V -big. Choose an ample divisor A sufficiently small
so that L−M−A is V -big. By Lemma 2.8, there is some D∼R L−M−A such that
D≥V 0. Applying the first step to L−D shows that Pσ (L)−L+D≡ Pσ −M− A
is V -pseudoeffective so that Pσ (L)−M is V -big. The converse is straightforward.
The analogous statement for V -pseudoeffectiveness follows by taking limits. �

3A. Birational properties. Although the divisorial Zariski decomposition is not a
birational invariant, its birational behavior is relatively nice.

Proposition 3.6 [Nakayama 2004, Theorem III.5.16]. Let φ : Y → X be a bira-
tional map of smooth varieties, and let L be a pseudoeffective divisor on X. Then
Nσ (φ∗L)−φ∗Nσ (L) is effective and φ-exceptional.

We say L admits a Zariski decomposition if there is a birational map φ : Y → X
from a smooth variety Y such that Pσ (φ∗L) is numerically effective. An important
example due to Nakayama [2004, Section IV.2] shows that Zariski decompositions
do not always exist. Nevertheless, there is a sense in which the positive part Pσ (φ∗L)
becomes “more numerically effective” as we pass to higher models φ : Y → X . We
will give two versions of this fact. In the first, we consider a V -big divisor L .

Proposition 3.7. Let X be smooth, V a subvariety, and L a V -big divisor with
L ≥V 0. Then there is an effective divisor G so that for any sufficiently large m there
is a model φm : X̃m → X centered in B+(L) and a big and numerically effective
divisor Nm on X̃m such that, with Ṽm denoting the strict transform of V on X̃m ,

Nm ≤Ṽm
Pσ (φ∗m L)≤Ṽm

Nm +
1
mφ
∗

mG.



1076 Brian Lehmann

The second version handles V -pseudoeffective divisors L . Although the state-
ment is slightly more technical, the additional flexibility will be useful later on.

Proposition 3.8. Let X be smooth, and let L be a pseudoeffective divisor. There
are birational maps φm : X̃m→ X centered in B−(L), an ample Z-divisor A, and
an effective divisor G satisfying the following condition. Suppose that V is a
subvariety of X not contained in B−(L). Then there is some GV ∼Q G, and for
every m, there is an effective divisor Dm ∼ dmLe+ A and a big and numerically
effective divisor Mm,Dm such that

Mm,Dm ≤Ṽm
Pσ (φ∗m Dm)≤Ṽm

Mm,Dm +φ
∗

mGV ,

where Ṽm denotes the strict transform of V on X̃m . We may furthermore assume that
A+D is ample for every D supported on Supp(L) with coefficients in the set [−3, 3].

Proposition 3.7 is equivalent to the following comparison between asymptotic
multiplier ideals and base loci. It is the analogue for R-divisors of [Lazarsfeld
2004, Theorem 11.2.21]. Note that the theory of asymptotic multiplier ideals for
big R-divisors works just as in the case of Q-divisors.

Lemma 3.9. Let X be smooth, and let L be a big divisor on X. Fix a very ample Z-
divisor H on X such that H+D is ample for every divisor D supported on Supp(L)
with coefficients in the set [−3, 3]. Suppose that b is a sufficiently large positive
integer so that bbLc− (K X + (n+ 1)H) is numerically equivalent to an effective
Z-divisor G. Then for every m ≥ b, we have

J(‖mL‖)⊗OX (−G)⊆ b(|bmLc|).

Proof. The condition on H guarantees that for m ≥ b, we can write

bmLc−G ≡ bmLc− bbLc+ K X + (n+ 1)H

≡ ((m− b)L + A)+ K X + nH

for some ample R-divisor A. By applying Nadel vanishing and Castelnuovo–
Mumford regularity, we find that

OX (bmLc)⊗ (OX (−G)⊗J(‖(m− b)L‖))

is globally generated for m ≥ b. Then J(‖mL‖)⊂ J(‖(m− b)L‖). �

Proof of Proposition 3.7. Fix a very ample Z-divisor H and an integer b as in
Lemma 3.9. Thus, for any m ≥ b, we have

J(‖mL‖)⊗OX (−G)⊆ b(|bmLc|).

Recall that G can be chosen to be any effective Z-divisor numerically equivalent to
bbLc− (K X + (n+1)H). In particular, for b large enough, the base locus of |G| is
contained in B+(L). Since this set does not contain V , we may ensure that G ≥V 0.
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Let φm : X̃m→ X be a resolution of the ideals b(|bmLc|) and J(‖mL‖). Note
that each φm is centered in B+(L). We write φ−1

m b(|bmLc|) ·OYm = OYm (−Em) and
φ−1

m J(‖mL‖) ·OYm = OYm (−Fm). We also define the big and numerically effective
divisor Mm := mφ∗m L − Em −φ

∗
m{mL}.

We know that Fm+φ
∗
mG≥Em for all sufficiently large m. Let M=

∑
D⊂Supp(L) D

be the sum of the components of Supp(L). Replacing G by G +M allows us to
take into account the fractional part of mL so that

Fm +φ
∗

mG ≥ Em +φ
∗

m{mL}.

Note that still G ≥V 0. Since L is V -big, we know that Fm ≥Ṽm
0. Thus, the in-

equality in the equation above is a Ṽm-inequality. Furthermore, Nσ (mφ∗m L)≥Ṽm
Fm

by [Ein et al. 2006, Proposition 2.5]. In all, we get Pσ (mφ∗m L)≤Ṽm
Mm +φ

∗
mG.

Dividing by m and setting Nm := Mm/m yields Pσ (φ∗m L) ≤Ṽm
Nm +

1
mφ
∗
mG.

The inequality Nm ≤Ṽm
Pσ (φ∗m L) follows from Proposition 3.5 and the fact that

Em +φ
∗
m{mL} ≥Ṽm

0. �

Proof of Proposition 3.8. Fix very ample divisors H and G. By Theorem 2.4, there
is an ample Z-divisor A such that Bs(|dmLe + A|) ⊂ B−(L) for every positive
integer m. We may assume that A is sufficiently ample so that

• dmLe+A−K X−(n+1)H is numerically equivalent to an effective divisor Gm

for every m > 0 and

• A+D is ample for every D supported on Supp(L) with coefficients in [−3, 3].

Choose Dm ∼ dmLe+ A so that Dm ≥V 0. Note that we can apply Proposition 3.7
to Dm using Gm as our choice of effective divisor (since Dm is an integral divisor,
there is no need to set conditions on the ampleness of H along the components
of Dm). In particular, for every positive integer m, choose an εm > 0 such that
G− εmGm is ample. Proposition 3.7 constructs a birational map φm : Xm→ X and
big and numerically effective divisors Mm,Dm such that

Mm,Dm ≤Ṽm
Pσ (φ∗m Dm)≤Ṽm

Mm,Dm + εmφ
∗

mGm .

Since G − εmGm is V -big, we may replace G by some Q-linearly equivalent
divisor GV so that

Mm,Dm ≤Ṽm
Pσ (φ∗m Dm)≤Ṽm

Mm,Dm +φ
∗

mGV . �

4. The restricted positive product

Fujita realized that one can study the asymptotic behavior of sections of a big
divisor L by analyzing the ample divisors sitting beneath L on higher birational
models. The positive product (developed in [Boucksom 2004; Boucksom et al.
2012]) is a construction that encapsulates this approach to asymptotic behavior.
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In this section, we discuss the restricted positive product 〈L1 · L2 · ··· · Lk〉X |V

of Boucksom, Favre, and Jonsson [Boucksom et al. 2009]. Unlike the usual inter-
section product L1 · L2 · ··· · Lk ·V , the restricted positive product throws away the
contributions of the base loci of the L i . The result is a numerical equivalence class
of cycles on V that gives a more precise measure of the positivity of the L i along V .

4A. Definition and basic properties. We start by reviewing the construction of
the restricted positive product in [Boucksom et al. 2009]. Throughout, we will use
the intersection product of [Fulton 1984]. We will use the following notation:

Definition 4.1. Let X be a normal variety. Suppose that V is a subvariety of X and
that [L] ∈ CD(X). We will let [L]|V denote the image under the restriction map
CD1(X)→ CD1(V ).

Note that if L is a divisor such that Supp(L) 6⊃ V , then [L|V ] = [L]|V .

Definition 4.2. Let X be a normal variety of dimension n. Suppose that K and K ′

are two classes in N k(X). We write K � K ′ if K − K ′ is contained in the closure
of the cone generated by effective cycles of dimension n− k.

Lemma 4.3 [ibid., Proposition 2.3, Definition 4.4]. Let X be a smooth variety and
V a subvariety of X. Suppose that N1, . . . , Nk and N ′1, . . . , N ′k are numerically
effective divisors on X satisfying Ni ≥V N ′i . Then

N1 · ··· · Nk · V � N ′1 · ··· · N
′

k · V .

Theorem 4.4 [ibid., Lemmas 2.6 and 2.7]. Let X be a normal variety, V a sub-
variety not contained in Sing(X), and L1, . . . , Lk V -big divisors. Consider the
classes

φ∗(N1 · N2 · ··· · Nk · Ṽ ) ∈ N k(V ),

where φ : (X̃ , Ṽ )→ (X, V ) varies over all smooth V -birational models, the Ni

are numerically effective, and Ei := φ
∗L i − Ni is a Q-divisor satisfying Ei ≥Ṽ 0.

These classes form a directed set under the relation � and admit a unique maximum
under this relation.

Remark 4.5. Although [Boucksom et al. 2009] only proves this when V is a prime
divisor in X , the proof works without change in this more general situation.

The restricted positive product is defined as the maximum class occurring in the
previous theorem.

Definition 4.6. Let X be a normal variety, and let V be a subvariety not contained
in Sing(X). Let L1, L2, . . . , Lk be V -big divisors. We define the cycle

〈L1 · L2 · ··· · Lk〉X |V ∈ N k(V )

as the maximum under � of φ∗(N1 · N2 · · ·· · Nk · Ṽ ), where φ : (X̃ , Ṽ )→ (X, V )
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runs over smooth V -birational models, the Ni are numerically effective and Ei :=

φ∗L i − Ni is a Q-divisor satisfying Ei ≥Ṽ 0. In the special case X = V , we write
〈L1 · L2 · ··· · Lk〉X .

In fact, [ibid., Proposition 2.13] shows that the definition is unchanged if we allow
Ei to be a V -pseudoeffective R-divisor. The restricted positive product satisfies a
number of important properties.

Proposition 4.7 [ibid., Proposition 4.6]. As a function on the k-fold product of the
V -big cone, the restricted positive product is continuous, symmetric, homogeneous
of degree 1, and superadditive in each variable in the sense that

〈(L + L ′) · L2 · ··· · Lk〉X |V � 〈L · L2 · ··· · Lk〉X |V +〈L ′ · L2 · ··· · Lk〉X |V .

Since the product is continuous, this allows us to define a limit as we approach
the pseudoeffective cone.

Definition 4.8. Let X be a normal variety, V a subvariety not contained in Sing(X),
and L1, L2, . . . , Lk V -pseudoeffective divisors. For each i , fix a sequence of V -big
divisors Bi, j converging to 0 as j increases. We define the class

〈L1 · L2 · ··· · Lk〉X |V = lim
j→∞

〈
(L1+ B1, j ) · (L2+ B2, j ) · ··· · (Lk + Bk, j )

〉
X |V .

Note that this limit is independent of the choice of the Bi, j since by superadditivity
any two choices are comparable under �.

We will sometimes abuse notation by allowing the restricted positive product to
take numerical classes as arguments rather than actual divisors. Since the restricted
positive product is compatible under pushforward, we can extend the definition to
arbitrarily singular varieties in the following way:

Definition 4.9. Let X be an integral variety, and let φ : Y → X be a smooth model.
For [L1], . . . , [Lk] ∈ CD(X), we define

〈[L1] · ··· · [Lk]〉X := φ∗〈φ
∗
[L1] · ··· ·φ

∗
[Lk]〉Y .

Even though the restricted positive product is continuous along the V -big cone,
it is only semicontinuous along the V -pseudoeffective boundary in the sense that
if L i, j is a sequence of V -pseudoeffective divisors whose limit is L i , then

〈L1 · ··· · Lk〉X |V � lim
j→∞
〈L1, j · ··· · Lk, j 〉X |V .

As noted in [Boucksom et al. 2009], it is most natural to consider the restricted
positive product as the set of classes {〈φ∗L1 · · ·· · φ

∗Lk〉X̃ |Ṽ } on all smooth V -
birational models φ : X̃→ X or, in other words, as a class on the Riemann–Zariski
space of V . Although we will not develop this principle systematically, this idea
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appears implicitly as some theorems will only hold upon taking a limit over all
sufficiently high birational models.

Since the restricted positive product should be considered as a birational object,
the class in N k(V ) may not be closely related to the geometry of L and V . The
class 〈L1 · ·· · · Lk〉X |V seems to be most interesting in the following two situations:

Example 4.10. When X is smooth, 〈L〉X is the numerical class of Pσ (L). It suffices
to check this when L is big. Recall that for any birational map φ : Y → X from
a smooth variety Y , we have φ∗Pσ (φ∗L) = Pσ (L). Thus, choosing an effective
divisor G as in Proposition 3.7, the result of the proposition implies that for any ε>0,
we have 〈L〉X � [Pσ (L)] � 〈L + εG〉X . Letting ε→ 0 demonstrates the equality.

Example 4.11. Consider 〈L1 · ·· · · Ld〉X |V , where d = dim V . Since the restricted
positive product is compatible under pushforward, deg〈φ∗L1 · · ·· · φ

∗Ld〉X̃ |Ṽ is
independent of the choice of V -birational model (X̃ , Ṽ ) by the projection formula.
In fact, we have the following:

Proposition 4.12 [Ein et al. 2009, Proposition 2.11, Theorem 2.13]. Let X be
a smooth variety, V a d-dimensional subvariety, and L a V -big divisor. Then
deg〈Ld

〉X |V = volX |V (L).

4B. Properties of the restricted positive product. In this section, we study the
properties of the restricted positive product. The main goal of the section is to
show that the restricted positive product can be interpreted as the usual intersection
product of Pσ (φ∗L i ) if we take a limit over all birational models φ. The advantage
of this viewpoint is that it gives us a natural interpretation of the restricted positive
product along the boundary of the pseudoeffective cone.

We first show that the restricted positive product has a natural compatibility with
the divisorial Zariski decomposition.

Proposition 4.13. Let X be a smooth variety, V a subvariety, and L1, . . . , Lk

V -pseudoeffective divisors. Then

〈L1 · ··· · Lk〉X |V = 〈Pσ (L1) · ··· · Pσ (Lk)〉X |V .

Proof. First suppose that the L i are V -big. Since any numerically effective divisor
is movable, Proposition 3.5 shows that for any of the Ni as in Definition 4.6, we
have Pσ (φ∗L i )≥Ṽ Ni . We also know that Nσ (φ∗L i )≥Ṽ φ

∗Nσ (L i ) since V is not
contained in B−(L i ). Combining the two inequalities yields

φ∗Pσ (L i )≥Ṽ Ni .

Thus, the classes 〈L1 · ··· · Lk〉X |V and 〈Pσ (L1) · ··· · Pσ (Lk)〉X |V are computed by
taking a maximum over the same sets, showing that they are equal.
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Now suppose that the L i are only V -pseudoeffective. Fix an ample divisor A
on X . Note that

Pσ (L + εA)− Pσ (L)= εA+ (Nσ (L)− Nσ (L + εA))

is V -big. As ε goes to 0, these V -big classes also converge to 0. Thus,

〈Pσ (L1) · ··· · Pσ (Lk)〉X |V = lim
ε→0
〈Pσ (L1+ εA) · ··· · Pσ (Lk + εA)〉X |V .

Applying the V -big case to the right-hand side finishes the proof. �

The following proposition compares the restricted positive product of the L i

along V with the positive product of the restrictions L i |V . The statement is proved
in [Boucksom et al. 2009] only when the L i are V -big, but the proposition extends
to the V -pseudoeffective case by taking limits.

Proposition 4.14 [Boucksom et al. 2009, Remark 4.5]. Let X be a smooth variety,
V a subvariety, and L1, . . . , Lk V -pseudoeffective divisors. Then

〈L1 · ··· · Lk〉X |V � 〈[L1]|V · ··· · [Lk]|V 〉V .

By combining Propositions 4.13 and 4.14, we obtain

〈L1 · ··· · Lk〉X |V � φ∗
〈
[Pσ (φ∗L1)]|Ṽ · ··· · [Pσ (φ

∗Lk)]|Ṽ
〉
Ṽ ,

where φ : (X̃ , Ṽ )→ (X, V ) is any V -birational model. The main theorem of this
section states that by taking a limit over all birational models, the right-hand side
approaches the left.

Theorem 4.15. Let X be a smooth variety, V a subvariety, and L1, . . . , Lk V -
pseudoeffective divisors. Fix an ample divisor A. Then for any ε, there is some
V -birational map φ : (X̃ , Ṽ )→ (X, V ) such that

φ∗
〈
[Pσ (φ∗L1)]|Ṽ · ··· · [Pσ (φ

∗Lk)]|Ṽ
〉
Ṽ � 〈L1 · ··· · Lk〉X |V + εAk

· V .

Proof. First suppose the L i are V -big. By Lemma 2.8, we may replace the L i by
some R-linearly equivalent divisors to ensure that L i ≥V 0. Proposition 3.7 then
yields an effective divisor Gi such that for any m there is a V -birational model
φ : X̃m→ X with

Nm,i ≤Ṽ Pσ (φ∗m L i )≤Ṽ Nm,i +
1
mφ
∗

mGi

for some numerically effective divisors Nm,i . Fix some ample divisor A on X
such that A− L i and A−Gi are ample for every i . By Lemma 4.3, there is some
constant C such that

φm∗
〈
[Pσ (φ∗m L1)]|Ṽm

· ·· · · [Pσ (φ∗m Lk)]|Ṽm

〉
Ṽm
� φ∗(Nm,1 · ·· · · Nm,k · Ṽ )+

C
m

Ak
·V .
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Now suppose that the L i are only V -pseudoeffective. We first choose an ample
divisor H so that

〈(L1+ H) · ··· · (Lk + H)〉X |V � 〈L1 · ··· · Lk〉X |V +
ε
2 Ak
· V .

Construct a model φ by applying the V -big case to the L i + H and ε/2. Since
Pσ (φ∗(L i + H))− Pσ (φ∗L) is Ṽ -pseudoeffective, the conclusion follows. �

Corollary 4.16. Let X be a smooth variety, and let L1, . . . , Lk be pseudoeffective
divisors. There is a sequence of birational maps φm : Xm→ X centered in ∪i B−(L i )

such that for any subvariety V not contained in ∪i B−(L i ), we have

〈L1 · ··· · Lk〉X |V = lim
m→∞

φm∗
〈
[Pσ (φ∗m L1)]|Ṽm

· ··· · [Pσ (φ∗m Lk)]|Ṽm

〉
Ṽm
.

Proof. Fix a sequence of birational maps φm , an ample divisor A, and an effective
divisor G as in Proposition 3.8 for each of the L i simultaneously. The proposition
constructs divisors Dm,i ≡ dmL ie+ A and big and numerically effective divisors
Mm,i,Dm,i such that

Mm,i,Dm,i ≤Ṽm
Pσ (φ∗m Dm,i )≤Ṽm

Mm,i,Dm,i +φ
∗

mGV .

Just as in the previous proposition, we have

lim
m→∞

1
mk φm∗(Mm,1,Dm,1 · ··· ·Mm,k,Dm,k · Ṽm)

� lim
m→∞

1
mk 〈Dm,1 · ··· · Dm,k〉X |V

� lim
m→∞

1
mk φm∗

〈
[Pσ (φ∗m Dm,1)]|Ṽm

· ··· · [Pσ (φ∗m Dm,k)]|Ṽm

〉
Ṽm

� lim
m→∞

1
mk φm∗

(
(Mm,1,Dm,1 +φ

∗

mGV ) · ··· · (Mm,k,Dm,k +φ
∗

mGV ) · Ṽm
)
.

Arguing as in the previous proof, we see that the leftmost and rightmost expressions
converge as m increases. Recall that by our choice of A we have dmL ie+ A−mL i

is V -big for every m. Thus,

〈L1 · ··· · Lk〉X |V = lim
m→∞

〈 1
m Dm,1 · ··· ·

1
m Dm,k

〉
X |V

so that the sequence converges to the restricted positive product as desired. �

We extract a useful feature of the previous arguments as a definition.

Definition 4.17. Let X be a smooth variety, V a subvariety, and L1, . . . , Lk V -big
divisors. Choose L ′i ∼Q L i satisfying L ′i ≥V 0. Suppose that φm is a countable
sequence of maps that satisfy the conclusion of Proposition 3.7 for every L ′i simul-
taneously. We say that the φm compute the restricted positive product of the L i .
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Note that for any finite set of subvarieties V1, . . . , Vr , we can choose φm and Nm

to simultaneously compute the restricted positive product for each V j . The key
property of Definition 4.17 is that only countably many maps are needed to compute
the restricted positive product.

The restricted positive product reduces to the usual product for numerically
effective divisors.

Lemma 4.18. Let X be a smooth variety, V a subvariety, and L1, . . . , Lk V -
pseudoeffective divisors.

(1) Suppose N is a numerically effective divisor. Then

〈L1 · L2 · ··· · Lk · N 〉X |V = 〈L1 · L2 · ··· · Lk〉X |V · N |V .

(2) If H is a very general element of a basepoint-free linear system, then

〈L1 · L2 · ··· · Lk〉X |V · H = 〈L1 · L2 · ··· · Lk〉X |V∩H .

(3) If f : X→ Z is a morphism and F is a very general fiber, then

〈L1 · L2 · ··· · Lk〉X |V · F = 〈L1 · L2 · ··· · Lk〉X |V∩F .

Proof. For each of these properties, it is enough to check the case when the L i are
V -big.

The first property is shown in [Boucksom et al. 2009, Proposition 4.7]; one simply
notes that for an ample divisor A the pullback φ∗A is already numerically effective
so that one may take φ∗A to be the numerically effective divisor in Definition 4.6.
By taking limits as A approaches N , we obtain the statement.

To show the second property, consider a countable set of smooth V -birational
models φm : X̃m → X that compute the restricted positive product. Choose H
sufficiently general so that it does not contain any φm-exceptional center. Then the
strict transform of V ∩ H is a cycle representing the class φ∗m H · Ṽ . Thus, we can
identify the classes

φm∗(N1 · N2 · ··· · Nk · Ṽ ) · H = φm∗(N1 · N2 · ··· · Nk ·φ
∗

m H · Ṽ )

= φm∗(N1 · N2 · ··· · Nk · Ṽ ∩ H).

The third property can be proved by a similar argument. One uses the second
property inductively by pulling back very ample divisors from Z . �

Corollary 4.19. Let X be a normal variety, V a subvariety not contained in Sing(X),
and L1, . . . , Lk V -pseudoeffective divisors. Suppose φ : (X̃ , Ṽ )→ (X, V ) is a
smooth V -birational model. If 〈φ∗L1 · ··· ·φ

∗Lk〉X̃ |Ṽ 6= 0, then 〈L1 · ··· ·Lk〉X |V 6= 0.
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Proof. Let A be an ample divisor on X̃ , and let H be an ample divisor on X such
that φ∗H ≥ A. Since φ is V -birational, we may ensure that Supp(φ∗H − A) does
not contain Ṽ . Setting d = dim V , we have

〈L1 · ··· · Lk〉X |V · H d−k
= 〈φ∗L1 · ··· ·φ

∗Lk〉X̃ |Ṽ ·φ
∗H d−k

= 〈φ∗L1 · ··· ·φ
∗Lk ·φ

∗H d−k
〉X̃ |Ṽ

≥ 〈φ∗L1 · ··· ·φ
∗Lk · Ad−k

〉X̃ |Ṽ

= 〈φ∗L1 · ··· ·φ
∗Lk〉X̃ |Ṽ · A

d−k > 0. �

We next consider how the restricted positive product behaves when passing to
an admissible model.

Proposition 4.20. Let X be a smooth variety, V a subvariety, and L1, . . . , Lk V -
pseudoeffective divisors. Suppose f : (Y,W )→ (X, V ) is an admissible model. Then

f∗〈 f ∗L1 · ··· · f ∗Lk〉Y |W = deg( f |W )〈L1 · ··· · Lk〉X |V .

Note that f ∗L i is W -pseudoeffective by Proposition 2.5.

Proof. It suffices to consider the case when the L i are V -big. By Lemma 2.8, we
may suppose that L i ≥V 0. Let φm : Xm→ X be a sequence of V -birational models
that computes 〈L1 · ·· · ·Lk〉X |V , and let ψm : Ym→ Y be a sequence of W -birational
models that computes 〈 f ∗L1 · ·· · · f ∗Lk〉Y |W . Since the natural map φ−1

m ◦ f ◦ψm

is a morphism on the generic point of W , by passing to higher W -birational models,
we may assume that Ym admits a morphism fm : Ym→ Xm . Note that

f ∗m Ni,m ≤W̃m
Pσ (ψ∗m f ∗m L i )≤W̃m

f ∗m Pσ (φ∗m L i )≤W̃m
f ∗m Ni,m +

1
m f ∗mφ

∗

mGi .

By construction, the pushforwards

φm∗ fm∗( f ∗m N1,m · ··· · f ∗m Nk,m · W̃m)

converge to deg( f |W )〈L1 · ·· · · Lk〉X |V . The same is true for the terms on the
right-hand side. Thus, f∗ψm∗〈Pσ (ψ∗m f ∗L1) · ··· · Pσ (ψ∗m f ∗Lk)〉Y |W̃m

converges to
the same thing, and Theorem 4.15 finishes the proof. �

It is worth pointing out that Proposition 4.20 does not contradict the invariance
of volX |V (L) under passing to admissible models. Even if L is V -big, φ∗L will not
be W -big when deg( f |W ) > 1, so Proposition 4.12 does not apply to W .

Proposition 4.21. Let X be a smooth variety, V a subvariety of dimension d,
and L a V -pseudoeffective divisor. Suppose that deg(〈Ld

〉X |V ) > 0. Then for a
very general intersection of very ample divisors W of dimension d, we also have
deg(〈Ld

〉X |W ) > 0.
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Proof. Fix a sequence of maps φm : X̃m → X for L as in Corollary 4.16. By
choosing very ample divisors H1, . . . , Hn−d very general in their linear systems,
we may ensure that no Hi contains any φm-exceptional center and the intersection
W = H1 ∩ · · · ∩ Hn−d is smooth of the expected dimension.

For each i = 1, 2, . . . , n−d , choose a positive integer ci so that IV (ci Hi ) is gen-
erated by global sections, and set C =

∏
i c−1

i . Note that for any V -birational model
φ : (Y, Ṽ )→ (X, V ), there are Di ∈ |ciφ

∗Hi | such that each Di has multiplicity at
least 1 along Ṽ and D1 ∩ · · · ∩ Dn−k has dimension k. In particular for φm ,

[W̃ ] = C[φ∗mc1 H1] ∩ [φ
∗

mc2 H2] ∩ · · · ∩ [φ
∗

mcn−d Hn−d ]

� C[Ṽ ],

where W̃ and Ṽ denote the strict transforms of W and V on X̃m . In particular, for
any numerically effective divisor N on X̃m , we have N d

· W̃ ≥ N d
· Ṽ , and the

conclusion follows. �

5. Nakayama constants

Suppose that L is an ample divisor and V is a subvariety in X . Let φ : Y → X
be a smooth resolution of the ideal IV , and define the divisor E by the equation
OY (−E)= φ−1IV ·OY . The Seshadri constant

ε(L , V ) :=max{ τ | φ∗L − τ E is numerically effective }

measures “how ample” L is along the subvariety V . Seshadri constants play an
important role in understanding the positivity properties of ample divisors. We will
be interested in a related notion that can be defined for an arbitrary pseudoeffective
divisor L . It first appears in connection with the numerical dimension in [Nakayama
2004].

Definition 5.1. Let X be a normal variety, I an ideal sheaf on X , and L a pseudo-
effective divisor. Choose a smooth resolution φ : Y → X of I, and define E by
setting OY (−E)= φ−1I ·OY . We define the Nakayama constant

ς(L ,I) :=max{ τ | φ∗L − τ E is pseudoeffective }.

Of course, ς is independent of the choice of resolution. When I is the ideal sheaf
of a subvariety V , ς(L , V ) will denote the Nakayama constant.

One advantage of ς(L , V ) is that it can be positive even when L is pseudoeffective
but not big. Thus, the Nakayama constant is a more sensitive measure of positivity
than the moving Seshadri constant of [Nakamaye 2003], which always vanishes as
we approach the pseudoeffective boundary. It turns out that the Nakayama constant
is closely related to the other notions of positivity we have considered.
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Remark 5.2. Nakayama [2004] works with a slightly different formulation of this
concept. His definition is equivalent to ours; the equivalence is demonstrated in the
first paragraph of the proof of Proposition 5.3.

There is a useful criterion for nonvanishing of ς that is closer in spirit to
Nakayama’s original formulation.

Proposition 5.3. Let X be a normal variety, I an ideal sheaf , and L a pseudoef-
fective divisor. Then ς(L ,I) > 0 if and only if there is an ample divisor A on X so
that for any q

h0(X,Iq ⊗OX (dmLe+ A)) > 0

for sufficiently large m, where Iq denotes the integral closure of Iq .

Note that we can replace d−e by b−c by absorbing the difference into A.

Proof. Let φ : Y → X denote a smooth resolution of I and OY (−E)= φ−1I ·OY

define E . Suppose that ς(L ,I)= 0 so that mφ∗L − E is not pseudoeffective for
any m. Let p : N 1(Y )→ V denote the cokernel of the inclusion R[φ∗L]→ N 1(Y ).
Note that p(−E) is disjoint from p(N E1(Y )). Thus, there is a small ample divisor
H on Y so that p(−E + H) is still disjoint from p(N E1(Y )). In other words,
mφ∗L − E + H is not pseudoeffective for any m.

Let A be any ample divisor on X . Choose q so that q H−φ∗A is pseudoeffective.
Then mφ∗L − q E +φ∗A is not pseudoeffective for any m. Thus, for any A there
is a q so that

h0(Y,OY (φ
∗(bmLc+ A)− q E))= 0

for every m. Since the class of dmLe−bmLc is bounded as m varies, by absorbing
the difference into A, the condition using dmLe also fails.

Conversely, suppose that ς(L ,I) > 0. Then for any real number b > 0,
aφ∗L − bE is pseudoeffective for any a ≥ b/ς(L ,I). By Proposition 2.17 (and
Remark 2.15), there is an ample divisor H on Y (independent of b) so that

h0(Y,OY (bc(aφ∗L − bE)c+ H)) > 0

for every c > 0 and every a ≥ b/ς(L ,I). Choose an ample Z-divisor A ≥ φ∗H .
Then φ∗A ≥ φ∗φ∗H ≥ H so that

h0(Y,OY (φ
∗(dacLe+ A)−bbcEc)) > 0.

Fix an integer q and choose c so that bcbEc ≥ q E . Then for any m > bc/ς(L ,I),

h0(X,Iq ⊗OX (dmLe+ A)) > 0. �

If we are only interested in whether ς(L ,I) > 0, we can replace the condition of
Proposition 5.3 by several alternatives. We have Iq

⊂Iq ⊂I〈q〉, and by the compar-
ison theorems for symbolic powers (for example, [Swanson 2000, Theorem 3.1]),
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there is some k independent of q so that I〈kq〉
⊂ Iq . When X is smooth, we have

Iq
⊂ J(Iq), and by Skoda’s theorem, J(Iq)⊂ Iq−dim X+1 for sufficiently large q .

Thus, the nonvanishing of ς(L ,I) is equivalent to the statement that for any q

h0(X, ∗q ⊗OX (dmLe+ A)) > 0

for sufficiently large m, where ∗q can be

• Iq ,

• I〈q〉, or

• J(Iq) when X is smooth.

Applying the statement for symbolic powers, we immediately get the following:

Proposition 5.4. Let X be a normal variety, V a subvariety not contained in
Sing(X), and L a divisor. If (X̃ , Ṽ ) is a smooth V -birational model for (X, V ),
then ς(φ∗L , Ṽ ) > 0 if and only if ς(L , V ) > 0.

The following proposition indicates that the Nakayama constant satisfies the
usual compatibility relations:

Proposition 5.5. Let X be a smooth variety, let L be a pseudoeffective divisor, and
let I be an ideal such that no associated prime of I is centered in B−(L). Then

(1) ς(L ,I)= ς(Pσ (L),I), and

(2) if L is big, then ς(L ,I)=maxφ∗L≥A ς(A, φ−1I·OY ), where φ :Y→ X varies
over all birational maps and A is big and numerically effective.

Proof. (1) It suffices to show the inequality ≤. Let φ : Y → X denote a smooth
resolution of I, and let E denote the divisor satisfying OX (−E) = φ−1I · OY .
Suppose that φ∗L − τ E is pseudoeffective. Fix an ample A on Y . For any ε > 0,
we find that φ∗L + εA ∼R τ E + F for some effective F . Since Supp(E) is not
contained in the diminished base locus of φ∗L , we know that Nσ (φ∗L + εA)≤ F .
Subtracting, we find that Pσ (φ∗L + εA)− τ E is pseudoeffective. Taking a limit
over ε and noting that φ∗Pσ (L)≥ Pσ (φ∗L) completes the proof of the inequality.

(2) It suffices to show the inequality ≤. We may also replace L by some Q-
linearly equivalent divisor so that L ≥ 0. Fix an effective ample divisor H on X .
Proposition 3.7 indicates that there are birational maps φm and big and numerically
effective divisors Nm satisfying Nm ≤ Pσ (φ∗m L)≤ Nm +

1
mφ
∗
m H . The expression

on the right-hand side can be made arbitrarily close to ς(Pσ (L), φ−1I ·OY ). By (1),
this equals ς(L ,I). �

[Nakayama 2004] shows that ς(L , V ) is controlled by what happens to a very
general subvariety of dimension equal to dim V .
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Proposition 5.6 [Nakayama 2004, Lemma V.2.21]. Let X be a smooth variety
of dimension n, and let L be a pseudoeffective divisor. Suppose there is a d-
dimensional subvariety V such that ς(L , V ) = 0. Then there is a very ample
divisor H so that any complete intersection W of (n − d) very general elements
of |H | satisfies ς(L ,W )= 0.

6. The numerical dimension

Our goal in this section is to show that the different definitions of the numerical
dimension coincide. We start by giving an example of effective divisors that are
numerically equivalent but have different Iitaka dimensions.

Example 6.1. We give an example of a threefold X and effective divisors L and L ′

so that L≡ L ′ but κ(L) 6=κ(L ′). Fix an elliptic curve E , and consider S= E×E with
projection maps p1 and p2. Let F be a fiber of p1. Choose a degree-0 divisor T on E
that is nontorsion, and define N = p∗2 T . We have κ(F)= 1 and κ(F + N )=−∞.

Let X be the P1-bundle PS(OS ⊕ OS(F + N )) with the morphism π : X → S.
Define L to be the section PS(OS), and define L ′ = L −π∗N . Note that L and L ′

are numerically equivalent. By identifying the pushforwards of OX (mL) with
symmetric powers of OS ⊕ OS(F + N ), we see that κ(L) = 0. Similarly, since
OX (L ′) can be realized as the relative dualizing sheaf of PS(OS(−N )⊕OS(F)), we
see that κ(L ′)≥ κ(F)= 1.

We first prove Theorem 1.1 for smooth varieties X . For convenience, we arrange
the definitions in a more suitable order. Definition (1) in the following theorem is
the definition of numerical dimension in [Boucksom et al. 2012] while (5) and (6)
correspond to κσ (L) and κν(L) (by Remark 5.2) in [Nakayama 2004]. Note that we
allow varieties W ⊂ Supp(L) at the slight cost of using numerical restrictions in (4).

Theorem 6.2. Let X be a smooth variety, and let L be a pseudoeffective divisor.
Here A will denote some fixed sufficiently ample Z-divisor and W will range over all
subvarieties of X not contained in B−(L). Then the following quantities coincide:

(1) max{ k ∈ Z≥0 | 〈Lk
〉X 6= 0 }.

(2) max{ dim W | 〈Ldim W
〉X |W > 0 }.

(3) max{ dim W | limε→0 volX |W (L + εA) > 0 }.

(4) max{ dim W | infφ volW̃ ([Pσ (φ
∗L)]|W̃ ) > 0 }, where φ : (X̃ , W̃ )→ (X,W )

ranges over W -birational models.

(5) max{ k ∈ Z≥0
∣∣ lim supm→∞ h0(X, bmLc+ A)/mk > 0 }.

(6) min{ dim W | ς(L ,W ) = 0 } (by convention, if L is big we interpret this
expression as returning dim X ).

(7) max{ k ∈ Z≥0 | ∃C > 0 such that Ctn−k < vol(L + t A) for all t > 0 }.
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We call this common quantity the numerical dimension of L and denote it νX (L). It
only depends on the numerical class of L.

We will prove Theorem 6.2 using a cycle of inequalities. The equivalence of
(1)–(4) is an easy consequence of the properties of the positive product, and the
inequality (5)≤ (6) was proved in [Nakayama 2004, Proposition V.2.22]. The other
inequalities will require more work.

Proof. (1)= (2). Let H1, . . . , Hd−k represent very general elements of a very ample
linear system. Since 〈Lk

〉X is in the closure of the cone generated by effective
cycles, it is nonzero if and only if 〈Lk

〉X · H1 · · ·· · Hd−k > 0. By Lemma 4.18, this
is equivalent to 〈Lk

〉X |H1∩···∩Hd−k > 0. Thus, (1) ≤ (2). By Proposition 4.21, the
same argument in reverse shows that (2)≤ (1).

(2)= (3). Proposition 4.12 shows that the conditions set on W in (2) and (3) are
the same.

(3)= (4). Proposition 4.12 allows us to translate between restricted volume and
the restricted positive product in the V -big case. Thus, Theorem 4.15 implies that

volX |W (L + εA)= inf
φ:X̃→X

volW̃
(
[Pσ (φ∗(L + εA))]|W̃

)
,

where φ : (X̃ , W̃ )→ (X,W ) varies over W -birational models. Consider

lim
ε→0

volX |W (L + εA)= lim
ε→0

inf
φ:X̃→X

volW̃
(
[Pσ (φ∗(L + εA))]|W̃

)
.

Note that on any model volW̃ ([Pσ (φ
∗(L+εA))]|W̃ ) is nondecreasing and continuous

as a function of ε. Thus, on the right-hand side, we may commute the limit with
the infimum.

(4)≤ (5). The first step is to show that there is some ample divisor on W whose
pullback lies beneath each restriction Pσ (φ∗L)|W̃ . Using this ample divisor, we
find a lower bound for the growth of sections of a certain twisted linear series on W .
The last step is to prove a lifting theorem for twisted linear series to conclude that
h0(bmLc+ A) satisfies the necessary growth conditions.

Lemma 6.3. Let X be a smooth variety of dimension n, let L be a big divisor, and
let N be a general element of a big basepoint-free linear system. Then we have
vol(L − N )≥ vol(L)− n volX |N (L).

The easiest demonstration appeals to the results of [Boucksom et al. 2009].

Proof. Let α = supt∈[0,1]{L − t N is pseudoeffective}. Note 1 ≥ α, and since L is
big, 0< α. We will prove the stronger result vol(L− N )≥ vol(L)−nα volX |N (L).
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By [Boucksom et al. 2009, Corollary C], the function vol is continuously differ-
entiable on the big cone. More precisely, for t ∈ (0, α) we have

d
dt

vol(L − t N )=−n volX |N (L − t N ).

Note that volX |N (L − t N ) ≤ volX |N (L) for any t ≥ 0. Thus, for every t ∈ (0, α)
there is an inequality

d
dt

vol(L − t N )≥−n volX |N (L).

Integrating both sides over t ∈ [0, α], we get vol(L−αN )≥ vol(L)−nα volX |N (L).
But if α 6= 1, then vol(L −αN )= 0= vol(L − N ), finishing the proof. �

Lemma 6.4. Let W be a smooth variety. Suppose that for every smooth birational
model φ : W̃ → W we associate a divisor L W̃ so that for any birational map
ψ : Ŵ → W̃ we have ψ∗L W̃ ≥ L Ŵ . Suppose furthermore that

inf
W̃

vol(L W̃ ) > 0.

There is some ample divisor H on W and constant ε such that vol(L W̃ −φ
∗H) > ε

for every φ.

Note that vol(L W̃ )≥ vol(L Ŵ ) for every higher model Ŵ .

Proof. For convenience, set n = dim W and τ = inf vol(L W̃ ). Fix a very ample
divisor H on W . It suffices to show that there is some constant k such that for any
smooth model φ : W̃ →W , there is an H ′ ≡ H so that

vol(L W̃ −
1
kφ
∗H ′) > τ/2.

Choose a prime very ample divisor H ′ ≡ H sufficiently general so that ψ∗H ′ is
equal to the strict transform of H ′. Note that

volW̃ |φ∗H ′(L W̃ )≤ volW̃ |φ∗H ′(φ
∗LW ),

and by [Ein et al. 2009, Lemma 2.4], the latter quantity is equal to volW |H ′(LW ).
Choose some constant k so that

1
k volW |H ′(LW ) <

τ

2n
.

(Note that by [Boucksom et al. 2009, Proposition 4.8], k is independent of the
choice of H ′ and thus also independent of the choice of W̃ .) Lemma 6.3 implies

vol(kL W̃ −φ
∗H ′)≥ vol(kL W̃ )− n volW̃ |φ∗H ′(kL W̃ )

≥ vol(kL W̃ )− n volW̃ |φ∗H ′(kφ
∗LW ).
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Rescaling the above expression by k, we find

vol(L W̃ −
1
kφ
∗H ′)≥ vol(L W̃ )−

n
k

volW̃ |φ∗H ′(φ
∗LW ) > τ/2. �

In our situation, we find the following:

Corollary 6.5. Assume that W is a very general intersection of very ample divisors
such that infφ volW̃ (Pσ (φ

∗L)|W̃ ) > 0, where φ : (X̃ , W̃ )→ (X,W ) varies over
all W -birational models. Then there is an ample divisor H on W so that for any
W -birational model φ : X̃→ X , we have

volW̃ (Pσ (φ
∗L)|W̃ −φ

∗H) > 0.

Proof. Consider the set of divisors Pσ (φ∗L)|W̃ . Since Nσ (φ∗L)≥W̃ 0, they satisfy
the comparison condition of Lemma 6.4. By assumption, the infimum condition of
Lemma 6.4 also holds. The lemma yields an appropriate ample divisor H on W . �

Our next goal is a lifting theorem for twisted linear series.

Proposition 6.6. Let X be a smooth variety, and let L be an effective divisor.
Suppose that N is a big and numerically effective divisor satisfying 0 ≤ N ≤ L
such that N has simple normal crossing support. Let |B| be a basepoint-free linear
system defining a birational morphism on X. For sufficiently general elements
B1, . . . , Bk ∈ |B|, we have an inequality

h0(W,OW (KW+dN |W e+ A|W )
)
≤ h0(X |W,OX (K X+dLe+B1+· · ·+Bk+ A)

)
,

where W is the complete intersection B1∩· · ·∩Bk and A is any numerically effective
Z-divisor on X.

Proof. For convenience, define W j := B1 ∩ · · · ∩ B j and Mi := Bi+1 + · · · + Bk .
Note that since the Bi are sufficiently general, we may assume that each W j is
smooth, that N ≥W j 0, and that N |W j has simple normal crossing support. Note
furthermore that B is big and numerically effective so that Mi |W j is also a big and
numerically effective divisor for any i and j .

Kawamata–Viehweg vanishing implies that we have surjections

H 0(Wi ,OWi (KWi +dN |Wi e+ (A+Mi )|Wi )
)
→

H 0(Wi+1,OWi+1(KWi+1 +dN |Wi e|Wi+1 + (A+Mi+1)|Wi+1)
)
.

Furthermore, since N ≥Wi 0 for every i , we have dN |Wi e|Wi+1 ≥ dN |Wi+1e. Thus,
by induction we obtain

h0(X |Wi ,OX (dNe+ (K X + A+ B1+ · · ·+ Bk))
)

≥ h0(Wi ,OWi (dN |Wi e+ (K X + A+ B1+ · · ·+ Bk)|Wi )
)
.

When i = k, we obtain the desired statement. �
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We now finish the proof of the inequality (4)≤ (5). Set k to be the value of (4).
Fix an ample divisor A on X as in Theorem 2.4 so that for any m there is an
Lm ∼ dmLe+ A such that Lm ≥ 0.

For each Lm , we can apply Proposition 3.7 to find an effective divisor Gm , a
countable sequence of maps φi,m , and a big and numerically effective divisor Ni,m

satisfying
Ni,m ≤ Pσ (φ∗i,m Lm)≤ Ni,m +

1
i φ
∗

i,mGm .

We may of course assume that each Ni,m has simple normal crossing support and
each φi,n is a composition of blowups along smooth centers.

Note that the set of maps φi,m is countable as m and i vary. Fix a very ample
linear system |B| on X . We can choose very general elements B1, . . . , Bk ∈ |B|
so that the φ∗i,m B j satisfy the conditions of Proposition 6.6 for each X̃ i,m and Ni,m

simultaneously. We may also choose the B j sufficiently general so that the strict
transform of B j over φi,m is the same as the pullback for every i and m. Set
W = B1∩· · ·∩Bk . Then each φi,m is W -birational and W̃i,m, j =φ

∗

i,m B1∩· · ·∩φ
∗

i,m B j

is smooth for every j between 1 and k.
Choose an ample divisor H on W as in Corollary 6.5. For each Gm , choose a

sufficiently small εm > 0 so that H − εmGm |W is pseudoeffective. By choosing
i > 1/εm , we find models φm : X̃m→ X so that

Nm ≤W̃m
Pσ (φ∗m Lm)≤W̃m

Nm + εmφ
∗

mGm .

Thus,

Nm |W̃m
− (m− 1)φ∗m H ≥ (Pσ (φ∗m Lm)− εmφ

∗

mGm)|W̃m
− (m− 1)φ∗m H

≥ (Pσ (φ∗m Lm)− Pσ (φ∗mmL))|W̃m

+m(Pσ (φ∗m L)|W̃m
−φ∗m H)+φ∗m(H − εmGm |W ).

We analyze this last sum term by term. Since Lm − mL is W -pseudoeffective
and Nσ (φ∗m L) ≥W̃m

0, the first term is pseudoeffective by Proposition 3.5. The
conclusion of Corollary 6.5 is that the second term is big. The third term is also
pseudoeffective by construction. Thus, Dm := Nm |W̃m

− (m− 1)φ∗m H is big.
Fix a very ample divisor M on X . Then

h0(W̃m,OW̃m
(KW̃m

+ (k+ 2)φ∗m M |W +dNm |W̃m
e)
)

≥ h0(W̃m,OW̃m
(KW̃m

+ (k+ 2)φ∗m M |W +dDme+ b(m− 1)φ∗m Hc)
)

≥ h0(W, b(m− 1)Hc) by Proposition 2.17

≥ Cmk

for some constant C > 0 and for m sufficiently large.
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We conclude by applying Proposition 6.6. We have already chosen the divisors
B1, B2, . . . , Bk sufficiently general so that their pullbacks satisfy the conditions of
the theorem. For convenience, define A′ = B1+ · · ·+ Bk . Proposition 6.6 shows
that the dimensions of the spaces of restricted sections

h0(X̃m |W̃m,OX̃m
(K X̃m

+φ∗m(Lm + A′+ (k+ 2)φ∗M))
)
> Cmk

for some constant C>0 and for sufficiently large m. Since K X̃m/X is φm-exceptional,
these dimensions are equal to

h0(X |W,OX (K X + Lm + A′+ (k+ 2)φ∗M)
)

= h0(X |W,OX (K X +dmLe+ A+ A′+ (k+ 2)φ∗M)
)
.

Thus, h0(X,OX (K X + dmLe + A + A′ + (k + 2)φ∗M)) is also bounded below
by Cmk for sufficiently large m.

(5)≤ (6). This is proved in [Nakayama 2004, Proposition V.2.22].

(6)≤ (1). By Proposition 5.6, we may assume that W is a very general intersection
of very ample divisors. We need to consider the 0-case separately. Note that (1) is 0
precisely when Pσ (L) is numerically trivial. This means that (6) is also 0. Thus,
we can prove that (6)≤ (1) by considering the case where (6) is at least 2 and (1)
is at least 1.

Suppose for a contradiction that (1) is less than the value of (6). For convenience,
we set k to be the value of (1). Let W be a k-dimensional intersection of very
general, very ample divisors. Set τ = ς(L ,W ) > 0, and let φ : Y → X be the
blowup of W with exceptional divisor E .

Fix a very ample divisor H on Y . We first analyze φ∗L + εH . Choose models
ψi : Ỹi→Y computing positive products 〈(φ∗L+εH)k〉Y |E and 〈(φ∗L+εH)k+1

〉Y .
Choose big and numerically effective divisors Ai ≤ ψ

∗

i (φ
∗L + εH) on Ỹi that

compute the product. By Proposition 5.5, Pσ (ψ∗i (φ
∗L + εH))− τψ∗i E is always

pseudoeffective, so by choosing ψi appropriately, we may also assume Ai −
τ
2ψ
∗

i E
is pseudoeffective for each Ai . Thus, Ai −

τ
2 Ẽ is also pseudoeffective, where Ẽ

denotes the strict transform of E on Ỹi . Then

0≤ (Ai −
τ
2 Ẽ) · Ak

i ·ψ
∗

i H d−k−1.

By taking a limit over pushforwards on all such models, we find

0≤ 〈(φ∗L + εH)k+1
〉Y · H d−k−1

−
τ
2 〈(φ

∗L + εH)k〉Y |E · H d−k−1.

This is true for all sufficiently small ε, so

0≤ 〈φ∗Lk+1
〉Y · H d−k−1

−
τ
2 〈φ
∗Lk
〉Y |E · H d−k−1.
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By choosing sufficiently general elements H1, . . . , Hd−k−1 ∈ |H |, we may ensure
that E ∩ H1 ∩ · · · ∩ Hd−k−1 maps finitely onto W via φ. Letting the A1, . . . , Ad−k

denote the ample divisors whose intersection is W , we have

〈φ∗Lk
〉Y |E · H d−k−1

= 〈φ∗Lk
〉Y |E∩H1∩···∩Hd−k−1

= C〈Lk
〉X |W

= C〈Lk
〉X · A1 · ··· · Ad−k

for some positive constant C . By assumption, this latter quantity is positive, so

0< 〈φ∗Lk+1
〉Y · H d−k−1,

contradicting the fact that 〈Lk+1
〉X = 0.

(7)≤ (1). Let k denote the value of (1). Note that

tn−k
〈(L + t A)k〉 · An−k

= 〈(L + t A)k · (t A)n−k
〉

≤ 〈(L + t A)n〉.

The expression in (1) implies that there is some constant C such that C < 〈(L +
t A)k〉 · An−k for every t > 0. Thus, we obtain Ctn−k < vol(L+ t A) for every t > 0.

(1)≤ (7). Let k denote the value of (7). For every constant C , there is some t > 0
such that

〈(L + t A)n〉< Ctn−k−1.

This implies that

tn−k−1
〈(L + t A)k+1

〉 · An−k−1 < Ctn−k−1

so that for any C there is some t such that 〈(L + t A)k+1
〉 · An−k−1 < C . Note that

the left-hand side is increasing in t so that the inequality must hold for arbitrarily
small t . Thus, the value of (1) is at most k. �

The numerical dimension satisfies a number of natural properties. All of the
following are checked in [Nakayama 2004, Proposition V.2.7] except for (5) and (7):

Theorem 6.7 [Nakayama 2004, Proposition V.2.7]. Let X be a smooth variety, and
let L be a pseudoeffective R-divisor.

(1) We have 0≤ ν(L)≤ dim X and κ(L)≤ ν(L).

(2) We have ν(L) = dim X if and only if L is big and ν(L) = 0 if and only
if Pσ (L)≡ 0.

(3) If L ′ is pseudoeffective, then ν(L + L ′)≥ ν(L).

(4) If f : Y → X is any surjective morphism from a normal variety Y , then
ν( f ∗L)= ν(L).
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(5) We have ν(L)= ν(Pσ (L)).

(6) Suppose that f : X → Z has connected fibers and F is a very general fiber
of f . Then ν(L)≤ ν(L|F )+ dim Z.

(7) Fix some sufficiently ample Z-divisor A. Then there are positive constants C1

and C2 so that

C1mν(L) < h0(X,OX (bmLc+ A)) < C2mν(L)

for every sufficiently large m.

Proof. Part (5) follows from the invariance of the positive product under passing
to Pσ .

Consider the inequality of (7). The leftmost inequality was stated explicitly while
demonstrating the implication (4)≤ (5) in the proof of Theorem 6.2. To show the
rightmost inequality, let W be a subvariety of dimension ν(L) with ς(L ,W )= 0.
Proposition 5.3 (and the following discussion) shows that there is a positive integer q
with

h0(X,I
q
W ⊗OX (dmLe+ A))= 0

for sufficiently large m. Writing Wq for the subscheme defined by the ideal I
q
W ,

for sufficiently large m there is an injection

h0(X,OX (dmLe+ A))→ h0(Wq ,OWq (dmLe+ A)),

and the rate of growth of the latter is bounded by mdim(Wq ) = mν(L). �

It is interesting to note that ν is not lower semicontinuous as might be expected.
This is a consequence of the fact that the restricted positive product is only semi-
continuous on the boundary of the V -pseudoeffective cone.

Example 6.8 [Boucksom et al. 2009, Example 3.8]. Let X be any smooth surface
with infinitely many −1-curves. Take some compact slice of N E1(X). We can
choose a convergent sequence of distinct classes {αi } on this compact slice such that
each αi lies on a ray generated by a different−1-curve. Note that for any irreducible
curve C , there is at most one i for which αi ·C < 0. Thus, β := limi→∞ αi must be a
numerically effective class. A nontrivial numerically effective class β has ν(β)≥ 1
but ν(αi )= 0 for every i . Thus, ν is not lower semicontinuous.

Question 6.9. What properties does ν satisfy along the V -pseudoeffective bound-
ary?

6A. The numerical dimension for normal varieties. Since the numerical dimen-
sion is a birational invariant, we can extend the definition to any normal variety X .

Definition 6.10. Let X be a normal variety, and let L be an R-Cartier divisor on X .
We define ν(L) to be ν( f ∗L), where f : Y → X is any smooth model.
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We now complete the proof of Theorem 1.1 by showing that the criteria of
Theorem 6.2 can be applied directly to a normal variety. Note that the numbering
in the two theorems is different; we will use the numbering of Theorem 1.1.

Proof of Theorem 1.1. We have (1) = ν(L) since the arguments in the proof of
[Nakayama 2004, Proposition V.2.7] show that (1) is a birational invariant even for
normal varieties.

We next show that (3)= ν(L). We first claim there is a complete intersection W
of very general, very ample divisors that maximizes (3). Suppose that V ⊂ X is a k-
dimensional subvariety that achieves the maximum value in (3). Choose very ample
divisors A1, . . . , An−k whose (scheme-theoretic) complete intersection W0 contains
V and also has dimension k. Set P =PH 0(X,OX (A1))×· · ·×PH 0(X,OX (An−k)).

Let J be the ideal sheaf on X × P whose restriction to a fiber of the second
projection is the ideal sheaf of the corresponding complete intersection on X . Note
that J is flat over the locus on P representing intersections of the expected dimension.
By upper-semicontinuity, we find that for any fixed divisor D we have

h0(X,IW (bDc))≤ h0(X,IW0(bDc))

for a general complete intersection W . Thus,

h0(X |W,OX (bDc))≥ h0(X |W0,OX (bDc))

≥ h0(X |V,OX (bDc))

since the restriction map OX → OV factors through restriction to OW0 . In particular,
if we fix a countable collection of divisors Di , then for a very general complete
intersection W , we have volX |W (Di )≥volX |V (Di ) for every i . Setting Di := L+ 1

i A
yields the claim.

Let φ : Y → X be a smooth model of X . For any ample divisor A on Y , there
is an ample divisor H on X such that φ∗H ≥ A. Since W is not contained in any
φ-exceptional center, we may furthermore ensure that Supp(φ∗H − A) does not
contain W .

In particular, for any ample divisor A on Y there is some H on X such that

volX |W (L + εH)= volY |W̃ (φ
∗(L + εH))≥ volY |W̃ (φ

∗L + εA).

Similarly, for any ample divisor H on X there is an A on Y with A−φ∗H ample.
Thus, (3)= ν(L) is proved.

Then (2) = ν(L) follows from the arguments of the previous two paragraphs,
(4) = ν(L) since (4) remains unchanged upon passing to a smooth V -birational
model, both (5)= ν(L) and (6)= ν(L) follow from Corollary 4.19, and (7)= ν(L)
by Proposition 5.4. �
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7. The restricted numerical dimension

We now turn to the restricted numerical dimension. For a subvariety V , νX |V (L)
should measure the maximal dimension of a subvariety W ⊂ V such that the
“positive restriction” of L to W is big.

Theorem 7.1. Let X be a smooth variety, let V be a subvariety of X , and let L be a
V -pseudoeffective divisor. In the following, A denotes some fixed sufficiently ample
Z-divisor, and W will range over all subvarieties of V not contained in B−(L).
Then the following quantities coincide:

(1) max{ k ∈ Z≥0 | 〈Lk
〉X |V 6= 0 },

(2) max{ dim W | 〈Ldim W
〉X |W > 0 },

(3) max{ dim W | limε→0 volX |W (L + εA) > 0 }, and

(4) max{ dim W | lim infφ volW̃ ([Pσ (φ
∗L)]|W̃ )> 0 }, where φ : (X̃ , W̃ )→ (X,W )

ranges over W -birational models.

This common quantity is known as the restricted numerical dimension of L along V
and is denoted νX |V (L). It only depends on the numerical class of L.

The argument is the same as in the proof of the first four equivalences in
Theorem 6.2. One wonders whether the other equalities in Theorem 6.2 can be
extended to analogous notions for the restricted numerical dimension. Perhaps the
most important is the restricted version of κσ .

Definition 7.2. Let X be a smooth variety, let V be a subvariety, and let L be
a V -pseudoeffective divisor. Fix any divisor A. If H 0(X |V,OX (bmL + Ac)) is
nonzero for infinitely many values of m, we define

κσ (X |V, L; A) :=max
{

k ∈ Z≥0

∣∣∣ lim sup
m→∞

h0(X |V,OX (bmL + Ac))
mk > 0

}
.

Otherwise, define κσ (X |V, L; A) := −∞. The restricted σ -dimension κσ (X |V, L)
is defined to be

κσ (X |V, L) :=max
A
{κσ (X |V, L; A)}.

Arguing as in the proof of [Nakayama 2004, Proposition V.2.7], one can check
that the restricted σ -dimension is a numerical and birational invariant.

Question 7.3. Let X be a smooth variety, V a subvariety, and L a V -pseudoeffective
divisor. Does νX |V (L)= κσ (X |V, L)?

Since the restricted numerical dimension is invariant under passing to admissible
models, we can extend the definition to pairs with singularities.



1098 Brian Lehmann

Definition 7.4. Let X be a normal variety, V a subvariety not contained in Sing(X),
and L a V -pseudoeffective divisor. We define νX |V (L)= νY |W ( f ∗L), where (Y,W )

is any smooth V -birational model of (X, V ).

7A. Properties of the restricted numerical dimension. The restricted numerical
dimension satisfies similar properties to the numerical dimension. Since we know
less about νX |V , the statements are slightly weaker.

Theorem 7.5. Let X be a smooth variety, V a subvariety of X , and L a V -
pseudoeffective divisor.

(1) We have νX |V (L)≤ ν(L), and if V is normal, then νX |V (L)≤ ν(L|V ).

(2) We have νX |V (L)= νX |V (Pσ (L)).

(3) When L is numerically effective, νX |V (L)= νV (L|V ).

(4) If L ′ is also V -pseudoeffective, then νX |V (L + L ′)≥ νX |V (L).

(5) Suppose that νX |V (L) < dim V . If H is a very general, very ample divisor
on X , then νX |V (L)= νX |V∩H (L).

(6) If φ : (X̃ , Ṽ )→ (X, V ) is an admissible model with X̃ smooth, then we have
νX̃ |Ṽ (φ

∗L)= νX |V (L).

(7) Let φ : Y → X be a smooth birational model, and let W be a subvariety of Y
such that φ|W maps surjectively onto V . Then νY |W (φ

∗L)= νX |V (L).

Proof. (1) Note that if Z and Z ′ are subvarieties of X with Z ⊂ Z ′, then we have
volX |Z ′(L) ≥ volX |Z (L) since the restriction map on sections of L from X to Z
factors through the restriction map to Z ′.

Fix an ample divisor A on X , and let W be an intersection of very general,
very ample divisors on X . The two inequalities follow from the two facts that
volX |W (L + εA)≥ volX |V∩W (L + εA) and volX |V (L + εA)≥ volX |V∩W (L + εA).

(2) This follows from the fact that the restricted positive product is invariant under
passing to Pσ as demonstrated in Proposition 4.13.

(3) The restricted volume of an ample divisor can be calculated as an intersection
product, so the equality follows from characterization (3) in Theorem 7.1.

(4) Fix an ample divisor A. Then the inequality follows from the other inequality
volX |W (L + L ′+ 2εA)≥ volX |W (L + εA).

(5) Using characterization (1) in Theorem 7.1, we see that if k < dim V , then
〈Lk
〉X |V 6= 0 if and only if 〈Lk

〉X |V∩H = 〈Lk
〉X |V · H 6= 0.

(6) This is a consequence of Proposition 4.20 that describes how the restricted
positive product is compatible with admissible models.

(7) First suppose that dim W > dim V ; we show νY |W (φ
∗L) < dim W . Every fiber

of φ|W is covered by curves with φ∗L ·C = 0. Since B−(φ∗L)= φ−1B−(L), the
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general such curve avoids B−(φ∗L). In particular, for any W -birational model
ψ : Ỹ → Y , the subvariety W̃ is covered by curves satisfying Pσ (ψ∗φ∗L) ·C = 0.
Thus, νY |W (φ

∗L) < dim W by characterization (4) in Theorem 7.1.
Fix a very general, very ample divisor H on Y . Then νY |W (φ

∗L)= νY |W∩H (φ
∗L)

by property (5). Proceeding inductively, we reduce to the case dim W = dim V ,
which is (6). �

It is important to note we can have νX |V (L)= dim V even when L is not V -big.

Example 7.6. Let X be a smooth variety, V a smooth subvariety, and L a V -
big divisor. Let φ : (Y,W ) → (X, V ) be an admissible model such that some
φ-exceptional center contains V . Then φ∗L is W -pseudoeffective but not W -big.
Nevertheless, the invariance of νX |V (L) under passing to admissible models shows
that we still have νX |V (L)= dim V .

We next show that the nonvanishing of ν(L) can be detected by the restricted
numerical dimension νX |C(L) for a very general curve C .

Proposition 7.7. Let X be a smooth variety, and let L be a pseudoeffective divisor
on X. Then ν(L) > 0 if and only if there is a curve C on X defined as a very general
complete intersection of very ample divisors with νX |C(L) > 0.

Proof. If ν(L)= 0, then νX |C(L)= 0 by Theorem 7.5.
Conversely, suppose that C is a very general intersection of very ample divisors.

By choosing C appropriately, we may assume that it avoids every component
of B−(Pσ (L)). In particular, for any C-birational model φ : Y → X , we have

vol(Pσ (φ∗L)|C̃)= Pσ (φ∗L) · C̃ = φ∗Pσ (L) · C̃ = Pσ (L) ·C.

Thus, if νX |C(L)= 0, then Pσ (L) ·C = 0. But since C is an intersection of ample
divisors, this implies that Pσ (L)≡ 0 and ν(L)= 0. �
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