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We study the number of nonzero coefficients of cyclotomic polynomials 8m ,
where m is the product of two distinct primes.

1. Presentation of the results

Let m ≥ 1 be an integer, and let 8m be the cyclotomic polynomial defined by

8m(X) :=
m∏

j=1
( j,m)=1

(X − exp(2π i j/m)).

This monic polynomial belongs to Z[X ], and its degree is equal to ϕ(m), the Euler
function of the integer m. Let θ(m) be the number of nonzero coefficients of 8m .
Of course, θ(m) satisfies the trivial inequalities

2≤ θ(m)≤ ϕ(m)+ 1,

which are optimal when one considers the case m = 1 or m = p, a prime number.
In these cases, all of the coefficients of 8m are equal to 1.

We reserve the letters p and q for prime numbers. We call an integer m binary
if it is of the form m = pq , with p and q distinct. Let B= {6, 10, 14, 15, 21, . . . }
be the set of binary integers. For m ∈ B, we say that the associated cyclotomic
polynomial 8m is binary. The coefficients of the binary cyclotomic polynomial
8m are equal to 0, 1 or −1. Furthermore, in that particular case, the function θ(m)
has an explicit expression in terms of p and q that can be exploited by analytic
number theory. More precisely:

Proposition A. Let m = pq be a binary integer with p 6= q. Then we have

θ(m)= 2pqq p − 1, (1)

where pq is the unique integer satisfying

pq p ≡ 1 mod q and 1≤ pq < q

and q p is defined similarly.
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For a proof of this basic result, see [Carlitz 1966, Theorem; Bzdęga 2012], and
for an interesting characterization of the nonzero coefficients of 8pq , see [Lam and
Leung 1996] for instance.

Recently Bzdęga [2012] started the study of the distribution function of the map

m ∈B 7→ θ(m).

Let us review his results. Let γ and x be real numbers satisfying 0< γ < 1
2 and

x ≥ 6, and let Hγ (x) be the counting function

Hγ (x) := #
{

m : m ∈B,m ≤ x, θ(m)≤ m
1
2+γ

}
(2)

(because of the inequality (12) below, it is useless to study Hγ for γ ≤ 0). With
these conventions, Bzdęga [2012, Theorem] proved the following:

Theorem A. For every 0< γ < 1
2 and every ε > 0, there exist C(γ ), c(ε, γ ) > 0

and x0 = x0(ε, γ ) such that for x ≥ x0 one has the inequalities

c(ε, γ )x
1
2+γ−ε ≤ Hγ (x)≤ C(γ )x

1
2+γ . (3)

The idea of Bzdęga is to relate the integers m = pq contributing to Hγ (x) to the
solutions of the equations

`q − np = 1, (4)

where ` and n are integers satisfying some inequalities depending on p, q and γ .
Write t = np. By (4) and by ingenious considerations, he is led to counting
integers t such that t and t + 1 both have a large prime factor. Appealing to a deep
result of Hildebrand [1985] on p-stable subsets of integers, Bzdęga deduces the
inequalities (3).

Our plan is to study (4) in the context of prime number theory and to get three
different types of results according to the size of γ . These results suggest that this
investigation becomes more and more intricate as γ decreases to 0. The first result
gives an asymptotic formula when γ is large. Its proof is mainly based on bounds
for Kloosterman–Ramanujan sums over primes (see Lemmas 2 and 3 below) and
on the Bombieri–Vinogradov theorem (see Lemma 5).

Theorem 1. For 0< γ < 1
2 , let

C(γ ) := 2
1+2γ

log 1+2γ
1−2γ

. (5)

Then for every γ0 > 0, uniformly for γ satisfying 12
25 + γ0 ≤ γ ≤

1
2 − γ0, we have

Hγ (x)∼ C(γ ) x
1
2+γ

log x
as x→∞.
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The second result produces a universal upper bound for Hγ (x) and is a rather
direct consequence of the two-dimensional sieve (see Lemma 4).

Theorem 2. For every γ0 > 0, there exists C+(γ0) such that, for every γ satisfying
γ0 ≤ γ ≤

1
2 − γ0 and for every x ≥ 6, the following inequality holds:

Hγ (x)≤ C+(γ0)
x

1
2+γ

log x
.

The last result is a lower bound when γ is large enough. Judging by the tools
involved, it is certainly the deepest of our three results (see Lemma 7).

Theorem 3. For every γ0> 0, there exist C−(γ0)> 0 and x(γ0) such that, for every
γ satisfying 15

98 +γ0 ≤ γ ≤
1
2 −γ0 and for every x ≥ x(γ0), the following inequality

holds:

Hγ (x)≥ C−(γ0)
x

1
2+γ

log x
.

When γ = 1
2 , Hγ (x) counts the number of binary integers less than x , and this

number is asymptotic to x(log log x)(log x)−1. This explains why the asymptotic
formula in Theorem 1 cannot be uniform for γ < 1

2 . Finally, we postpone to
Section 7 a discussion on a conjectural value of Hγ (x).

2. Tools

2.1. Notation.

• We reserve the letters p and q for distinct prime numbers. For brevity, we
replace the symbols pq and q p (defined in Proposition A) by p and q .

• For x ≥ 1, L denotes log 2x , and ξ := 1+L−1.

• For N ≥ 1, the notation n ∼ N and n ≈ N respectively replaces the conditions
N < n ≤ 2N and N < n ≤ ξN .

• For N ≥ 1, the notation n � N means that n satisfies c1 N < n ≤ c2 N , where
0< c1 < c2 are absolute constants that are useless to specify.

• For x ≥ 1, π(x) is the number of primes less than x .

• For integers r and s, π(x; r, s) is the number of ps less than x and congruent
to s modulo r .

• For a real number t , e(t) is the additive character exp(2π i t).

• The number of positive divisors of the integer n is denoted by τ(n).
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2.2. Trigonometric sums. To detect the oscillations of the fractional part of the
quotient q/p, we shall appeal to the following well known lemma of Vinogradov,
which is stated in different ways in the literature:

Lemma 1 [Vinogradov 1954, Lemma 12, page 32]. Let r ≥ 1 be an integer, and
let β and 1 be real numbers satisfying 0<1< β/2< 1/4. Then there exist two
functions ψ± with period 1 satisfying

ψ+(t)= 1 for 0≤ t ≤ β,

0≤ ψ+(t)≤ 1 for −1≤ t ≤ 0 or β ≤ t ≤ β +1,

ψ+(t)= 0, if t (mod 1) /∈ [−1,β +1],

(6)


ψ−(t)= 1 for 1≤ t ≤ β −1,

0≤ ψ−(t)≤ 1 for 0≤ t ≤1 or β −1≤ t ≤ β,

ψ−(t)= 0, if t (mod 1) /∈ [0, β],

(7)

and

ψ±(t)=
∞∑

m=−∞

c±me(mt) for every real t . (8)

The coefficients c±m satisfy the equalities c±0 = β ±1 and the inequalities

|c±m | ≤ 2 min
{
β ±1,

1
π |m|

,
1

π |m|

( r
π |m|1

)r}
, m 6= 0.

2.3. Kloosterman–Ramanujan sums over primes. For real y ≥ x ≥ 1 and for a a
nonzero integer, we introduce the following trigonometric sum over primes:

Sp(a; x, y) :=
∑

x<q<y

e
(

a q
p

)
. (9)

This sum differs from a classical Kloosterman–Ramanujan sum by the fact that the
summation is restricted to prime values. We will benefit from oscillations of the
function q 7→ e(a(q/p)) under the form of the two following lemmas extracted
from [Fouvry and Shparlinski 2011]. The proofs of these two lemmas are based on
the method of Garaev [2010]. For more general results on sums of this type, see
[Fouvry and Michel 1998].

The first of these two lemmas considers the case where p is small compared
with x and y.

Lemma 2 [Fouvry and Shparlinski 2011, Theorem 3.2]. The bound

Sp(a; x, y)� p−
1
2 xL2

+ p
1
4 x

4
5 L

3
2

holds uniformly for every prime p ≥ 2, for every integer a not divisible by p and
for every 1≤ x ≤ y ≤ 2x.
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This bound is interesting for p ≤ x
4
5 only. We will have to deal with sums

Sp(a; x, y) for p slightly less than x . Still based on the method of Garaev, we
have the following average bound of this sum, which is Theorem 3.3 of [Fouvry
and Shparlinski 2011] for the choices x p = x and x ′p = 2x ; the extension to the
statement given is straightforward.

Lemma 3. For every ε > 0, the inequality∑
p∼P

max
(a,p)=1

∣∣Sp(a; x p, x ′p)
∣∣�ε

(
x

3
5 P

13
10 + x

5
6 P

13
12
)
Pε

holds uniformly for P
3
2 ≥ x ≥ 1 and for any sequences of integers (x p)p∼P and

(x ′p)p∼P satisfying x ≤ x p ≤ x ′p ≤ 2x.

2.4. The two-dimensional sieve. The following lemma can be obtained by Brun’s
sieve and will be used in the proof of Theorem 2 since it produces an upper bound
for the number of solutions to (4) with a large uniformity over ` and n:

Lemma 4 [Friedlander and Iwaniec 2010, Proposition 6.22]. Let a, b and h be
positive integers satisfying

(a, b)= (ab, h)= 1 and 2 | abh.

Let Nabh(x, z) be the number of pairs of positive integers m and n satisfying am≤ x ,
(mn, h)= 1, am+h = bn and mn has no prime factors less than z. Then, for z ≥ 2
and

x ≥ τ(h)abz(log z)4, (10)

we have the inequality

Nabh(x, z)� hx
ϕ(abh)

(log z)−2,

where the implied constant is absolute.

2.5. The Bombieri–Vinogradov theorem. We now recall this cornerstone of cur-
rent analytic number theory. It gives the average behavior of the function π(x; r, s)
and replaces the assumption of the Generalized Riemann Hypothesis for Dirichlet
L-functions in many applications. Among the numerous possible references, we
give here the version in [Iwaniec and Kowalski 2004, Theorem 17.1, (17.24)].

Lemma 5. For every A ≥ 0, there exists C(A) such that, for every x ≥ 1 and for
R := x

1
2 L−2A−6, one has the inequality∑

r≤R

max
(s,r)=1

∣∣∣π(x; r, s)− π(x)
ϕ(r)

∣∣∣≤ C(A)xL−A−1.
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2.6. A variant of the Brun–Titchmarsh theorem. The proof of Theorem 3 heavily
depends on lower bounds for the function π(x; r, s) in cases that are not covered
by Lemma 5, which means r is larger than x

1
2 . We first recall the original statement

of Mikawa [2001, Theorem].

Lemma 6. Let L > 32
17 and A, B > 0 be given. Let s be an integer and R be

large with 0< |s| ≤ (log R)B . Then, except possibly for O(R(log R)−A) integers r
satisfying (r, s)= 1 and r ∼ R, we have

inf{ p : p ≡ s mod r } � r L ,

where the implied constants depend only on A, B and L.

This result can be interpreted as an average version of Linnik’s famous theorem
concerning the least prime in an arithmetic progression. Actually, Mikawa’s proof
gives more. For instance, it instantly gives a lower bound with the correct order of
magnitude for the function π(r L

; r, s) for almost all r as above. Due to the value
of L , this result can be viewed as a lower bound of the function π(x; r, s) for almost
all r coprime with s and slightly larger than

√
x . As far as we know, the first result of

that type was due to Rousselet [1988] following techniques of Fouvry [1985], who
was dealing with upper bounds of the function π(x; r, s) (Brun–Titchmarsh theorem
on average). The problem of giving both upper and lower bounds for π(x; r, s)
for almost r in the interval [x

1
2 , x

1
2+δ], where δ is a small positive constant, was

then treated in several remarkable papers [Bombieri et al. 1987; 1989; Baker and
Harman 1996].

We give an improved version of Lemma 6 where we count primes in the interval
]x, 2x] with some uniformity over the congruence class s̄ mod r (as above, s̄ is
the multiplicative inverse of s mod r). Such a generalization is necessary for our
application and is possible by the structure of the proof of Lemma 6 based on
bounds for Kloosterman sums on average (see [Habsieger and Sivak-Fischler 2010,
Theorem 1.5] for another reference where this extension is made).

Lemma 7. For every K < 17
32 , there exist αK > 0, βK > 0 and xK such that for

every x > xK , every R satisfying 2≤ R < x K and every s such that 1≤ |s| ≤ xβK ,
the inequality

π(2x; r, s)−π(x; r, s)≥ αK
x

ϕ(r) log x
,

holds for every r ∼ R coprime with s with at most R(log R)−2 exceptions.

Remark. Of course, in this lemma, we can suppose that the functions K 7→ αK

and K 7→ βK are decreasing and K 7→ xK is increasing.
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3. Basic transformations

3.1. Properties of the function θ . We first write the expression of θ(pq) given
by Proposition A in an asymmetrical way. Actually, Bézout’s identity and the
inequalities 1≤ p < q and 1≤ q < p lead to the equality

p p+ qq = 1+ pq,

which transforms (1) into

θ(pq)= 2pq · q
p

(
1+ 1

pq
−

q
p

)
− 1. (11)

Now suppose that p < q. From the trivial inequalities

1
p
≤

q
p
≤ 1− 1

p

and from the properties of the function t 7→ t ((1+ 1/pq)− t), we deduce

θ(pq)≥ q > (pq)
1
2 , (12)

which implies that Hγ (x)= 0 for γ ≤ 0.
We now want to translate in an efficient manner the inequality

θ(pq)≤ (pq)
1
2+γ .

In order to control uniformity aspects, we will frequently assume that we have

γ0 ≤ γ ≤
1
2 − γ0, (13)

where γ0 is a fixed positive number.
For t ≥ T (γ0), let 0< θ0(t) < 1− θ1(t) < 1 be the solutions of the polynomial

equation of degree 2 in the unknown X

2t X
(

1+ 1
t
− X

)
− 1= t

1
2+γ .

For simplicity, we omit in the sequel the dependency on the parameter γ .

Lemma 8. We suppose that (13) holds. Let m = pq be a binary integer with p < q
and m ≥ T (γ0). Then

θ(m)≤ m
1
2+γ ⇐⇒ 0< q

p
≤ θ0(m) or 1− θ1(m)≤

q
p
< 1. (14)

The functions t 7→ θ0(t), θ1(t) are decreasing for t > T (γ0), are of C∞-class and
satisfy

θ0(t), θ1(t)=
tγ−

1
2

2
+ O(t2γ−1),

where the implied constant depends on γ0 only.
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Proof. The proof of (14) is easy; it is only a transcription of (11). Finally, the
asymptotic behaviors of the functions θi (t) are consequences of the exact formula

θ0(t), 1− θ1(t)=
1+ 1

t ∓

√(
1+ 1

t

)2
−2 t1/2+γ+1

t

2
. �

3.2. Decomposition of Hγ (x). We always suppose that (13) is true. Let T (γ0) be
defined as in Lemma 8. We use (14) to split the set contributing to Hγ (x){

(p, q) : p < q, T (γ0)≤ pq ≤ x, θ(pq)≤ (pq)
1
2+γ

}
into two disjoint subsets corresponding to 0<q/p≤θ0(pq) or 1−θ1(pq)≤q/p<1.
Let H 0

γ (x) and H 1
γ (x) be the corresponding cardinalities, which give the equality

Hγ (x)= H 0
γ (x)+ H 1

γ (x)+ O(T (γ0)). (15)

We shall concentrate our study on the case of H 0
γ (x) since the case of H 1

γ (x) is
quite similar because the functions θ0 and θ1 play the same role (see Lemma 8).

To control the order of magnitude of the variables p and q, we consider, for
P, Q ≥ 2 such that P Q ≥ T (γ0), the counting functions

Rγ (P, Q) := #
{
(p, q) : p < q, pq ≤ x, p ≈ P, q ≈ Q, 0< q

p
≤20

}
, (16)

where

20 = θ0(P Q). (17)

Since the function θ0 is decreasing, we obtain the inequality

H 0
γ (x)≤

∑
P

∑
Q

Rγ (P, Q), (18)

where the sum is over pairs (P, Q), where P and Q are of the form 2 · ξ k for
k = 0, 1, 2, . . . and satisfy the inequalities

T (γ0)≤ P Q ≤ x and P ≤ ξQ. (19)

Finally note that (12) implies that we can even restrict the summation to the cases

4(P Q)
1
2+γ ≥ Q (20)

since otherwise Rγ (P, Q)= 0. Combining (19) and (20), we deduce that P and Q
satisfy the inequalities

P ≤ ξQ and κ0 Q
1−2γ
1+2γ ≤ P ≤ x Q−1 with κ0 = 4−

2
1+2γ . (21)
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The inequality (18) can be easily transformed into a lower bound on H 0
γ (x) if

one replaces 20 by 2′0 with 2′0 := θ0(ξ
2 P Q) in the definition (16) of Rγ (P, Q).

We note that
2′0−20 = O(20L−1), (22)

as a result of Lemma 8 and the fineness of the cutting of the sum H 0
γ (x) (see (18)).

4. Proof of Theorem 1

The first purpose of this section is to prove the following:

Proposition 1. Let γ0 > 0. Then uniformly for γ satisfying

12
25 + γ0 ≤ γ ≤

1
2 − γ0 (23)

and for (P, Q) satisfying the conditions (21), one has the equality

Rγ (P, Q)= 1
2(P Q)γ−

1
2 (1+O(L−1))

(∑
p≈P
pq≤x

∑
q≈Q
p<q

1
)
+O(x

1
2+γL−6)+O(QL−4).

Our proof depends on the size of P compared with Q.

4.1. When P is small. Let E(p,20) denote the set of congruence classes s mod p
such that 0< s/p ≤20. Of course, s is the multiplicative inverse of s mod p. By
the definition (17) and by Lemma 8, its cardinality satisfies

# E(p,20)= (
1
2 + O(L−1))P

1
2+γ Qγ− 1

2 + O(1). (24)

Let
yp :=max(Q, p) and z p :=min(ξQ, x/p). (25)

With this definition, we have the equality

Rγ (P, Q)=
∑
p≈P

yp≤z p

∑
s∈E(p,20)

(
π(z p; p, s)−π(yp; p, s)

)
. (26)

For (P, Q) satisfying (21), the trivial estimate(
π(z p; p, s)−π(yp; p, s)

)
≤ Q/p+ 1� Q/p

inserted in (26) gives the bound

Rγ (P, Q)� (P Q)
1
2+γ + Q� (P Q)

1
2+γ (27)

by (20). Hence, for the proof of Proposition 1, we may add the extra condition

P Q ≥ xL−12. (28)
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The equalities (24) and (26) and Lemma 5 allow us to improve (27) by

Rγ (P, Q)=
[
( 1

2 + O(L−1))P
1
2+γ Qγ− 1

2 + O(1)
](∑

p≈P
pq≤x

∑
q≈Q
p<q

1
ϕ(p)

)

+ O((P Q)
1
2+γL−6)+ O(QL−6) (29)

provided
P ≤ Q

1
2 L−100. (30)

The contribution of the O(1)-term to the right-hand side of (29) is bounded by
QL−4, up to a multiplicative constant. Recalling the restriction (28), we see that
the proof of Proposition 1 is complete in the particular case

P ≤ x
1
3 L−100. (31)

4.2. Medium values of P. We apply Lemma 1 with the choices

β =20, 1=20L−3, r = 4.

We then have the inequalities∑
p≈P
pq≤x

∑
q≈Q
p<q

ψ−
(q

p
)
≤ Rγ (P, Q)≤

∑
p≈P
pq≤x

∑
q≈Q
p<q

ψ+
(q

p

)
. (32)

We only study the upper bound of Rγ (P, Q) in (32). We recall the definitions (9)
and (25). We apply Lemma 1 (in a slightly weaker form) and decompose the sums
according to the values of m and whether p and m are coprime. This gives∑
p≈P
pq≤x

∑
q≈Q
p<q

ψ+
(q

p

)

≤ (β +1)
∑
p≈P
pq≤x

∑
q≈Q
p<q

1

+ 2
∑
p≈P

{ ∑
1≤|m|≤1−1

p-m

1
π |m|

+

∑
|m|>1−1

p-m

256
π5|m|514

+

∑
1≤|m|≤1−1

p|m

2
π |m|

+

∑
|m|>1−1

p|m

256
π5|m|514

}∣∣Sp
(
m; yp, z p

)∣∣. (33)

It remains to apply Lemma 2 when p -m, or the trivial inequality |Sp|≤Q otherwise,
and to sum over m to obtain the inequality
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p≈P
pq≤x

∑
q≈Q
p<q

ψ+
(q

p
)
≤ (β +1)

∑
p≈P
pq≤x

∑
q≈Q
p<q

1

+ O
(∑

p≈P

{
(L+ 1)(p−

1
2 Q+ p

1
4 Q

4
5 )L2
+ (p−1L+ p−1)Q

})
. (34)

Using the upper bound
∑

p≈P 1�γ0 PL−2, we see that the error term satisfies

error term�γ0

(
P

1
2 Q+ P

5
4 Q

4
5
)
L. (35)

By Lemma 8 and (28), we have the equality

20 =
1
2(P Q)γ−

1
2 + O((P Q)2γ−1)= 1

2(P Q)γ−
1
2 (1+ O(L−3)),

which, combined with (32), (34) and (35) gives the inequality

Rγ (P, Q)

=
1
2(P Q)γ−

1
2 (1+ O(L−3))

(∑
p≈P
pq≤x

∑
q≈Q
p<q

1
)
+ O

(
(P

1
2 Q+ P

5
4 Q

4
5 )L

)
. (36)

Recalling the restrictions (21), we see that (36) implies Proposition 1 as soon as P
satisfies the inequalities

P ≥ x1−2γL14 and P ≤ x
20
9 γ−

2
3 L−16. (37)

4.3. Large values of P. Actually, in (33) we may benefit from the summation over
p ≈ P by appealing to Lemma 3 instead of Lemma 2. By the same technique as in
Section 4.2, we arrive at the equality

Rγ (P, Q)=20(1+ O(L−3))

(∑
p≈P
pq≤x

∑
q≈Q
p<q

1
)
+ Oε

(
(P

13
10 Q

3
5 + P

13
12 Q

5
6 )xε

)
(38)

provided P
3
2 ≥ Q and ε is an arbitrary positive number. Hence, by (21) and (28),

we see that (38) implies Proposition 1 as soon as P satisfies the extra conditions

P ≥ x
2
5 , P ≤ x

10
7 γ−

1
7−2ε and P ≤ x4γ− 4

3−5ε . (39)

Suppose now that γ satisfies (23) and that P satisfies 1 ≤ P ≤ 2
√

x . Then we
see that P satisfies at least one of the sets of conditions (31), (37) or (39). This
completes the proof of Proposition 1. �
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4.4. Conclusion of the proof of Theorem 1. We insert the expansion of Rγ (P, Q)
given in Proposition 1 in the right-hand side of (18) and sum over (P, Q) satisfying
(21). Recall that the numbers P and Q are of the shape 2 · ξ k . We first consider the
contribution of the term O(QL−4). By (21), this contribution satisfies

O(QL−4) term� L−4
∑

Q

Q
∑

κ0 Q
1−2γ
1+2γ ≤P<x Q−1

1

� L−3
∑

Q≤( x
κ0
)

1
2+γ

Q
(

log
( x
κ0

Q−
2

1+2γ

)
+ 1

)

� L−3
{ ∑

Q≤( x
κ0
)

1
2+γL−1

QL+ log L
∑

( x
κ0
)

1
2+γL−1≤Q≤( x

κ0
)

1
2+γ

Q
}

� x
1
2+γL−

3
2 .

Since the number of (P, Q) satisfying (21) is O(L4), the contribution of the
term O(x

1
2+γL−6) (coming from Proposition 1) is O(x

1
2+γL−2). From the above

considerations, we deduce the inequality

H 0
γ (x)≤ (

1
2 + o(1))

∑
P

∑
Q

(P Q)γ−
1
2

(∑
p≈P
pq≤x

∑
q≈Q
p<q

1
)
+ O(x

1
2+γL−2),

where P and Q satisfy (21). We now want to drop the dissection parameters P and Q.
To do so, we remark that (P Q)γ−

1
2 = (1+ o(1))(pq)γ−

1
2 for p ≈ P and q ≈ Q.

We gather the rectangles of summation ]P, ξ P]×]Q, ξQ] to deduce the inequality

H 0
γ (x)≤ (

1
2 + o(1))

(∑∑
p<q≤x/p

(pq)γ−
1
2

)
+ O(x

1
2+γL−2). (40)

By the prime number theorem, we have

∑∑
p<q≤x/p

(pq)γ−
1
2 ∼

∫ x
1
2+γ

x
1
2

yγ−
1
2

log y
dy
∫ xy−1

3

zγ−
1
2

log z
dz (x→∞).

Write y := xu and z := xv to deduce∑∑
p<q≤x/p

(pq)γ−
1
2 ∼

∫ 1
2+γ

1
2

xu(γ+ 1
2 )

u
du
∫ 1−u

log 3
log x

xv(γ+
1
2 )

v
dv

∼

∫ 1
2+γ

1
2

xu(γ+ 1
2 )

u
·

x (1−u)(γ+ 1
2 )

(1−u)
(
γ+ 1

2

)
log x

du ∼ C(γ ) x
1
2+γ

log x
, (41)
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where C(γ ) is defined in (5).
The study of H 1

γ (x) defined in (15) is similar to the study of H 0
γ (x). Combining

(15), (40) and (41), we finally arrive at the inequality

Hγ (x)≤ (1+ o(1))C(γ ) x
1
2+γ

log 2x
. (42)

To produce a lower bound for H 0
γ (x), we follow the idea presented at the end of

Section 3.2, which consists of replacing the constant 20 by 2′0 in the definition of
Rγ (P, Q). By (22), we also obtain the inequalities

H 0
γ (x), H 1

γ (x)≥ (1− o(1))C(γ )
2
·

x
1
2+γ

log 2x

as x tends to infinity. Summing these two inequalities, we arrive at

Hγ (x)≥ (1− o(1))C(γ ) x
1
2+γ

log 2x
.

Combining with (42), this completes the proof of Theorem 1. �

5. Proof of Theorem 2

We still suppose that (13) is satisfied and that P Q is large enough, which means
P Q ≥ T (γ0), where T (γ0) is defined in Lemma 8. Since we are searching for an
upper bound, it is useless to work with a very thin cutting up as in (16). So let

S0
γ (P, Q) := #

{
(p, q) : p ∼ P, q ∼ Q, p < q, 0< q

p
≤20

}
, (43)

S1
γ (P, Q) := #

{
(p, q) : p ∼ P, q ∼ Q, p < q, 1−21 <

q
p
< 1

}
, (44)

where 20 is still defined by (17) and 21 = θ1(P Q). We then have the inequality

Hγ (x)≤
∑∑
(P,Q)

S0
γ (P, Q)+

∑∑
(P,Q)

S1
γ (P, Q)+ O(T (γ0)), (45)

where P and Q are powers of 2 and satisfy P ≤ 2Q and T (γ0)≤ P Q ≤ x . We will
focus our study on the case of S0

γ (P, Q).
Define

L := Pγ+
1
2 Qγ− 1

2 . (46)

If (p, q) contributes to S0
γ (P, Q), then we have the equality (4) for some ` satisfying

1≤ `� L . Hence, we have the inequality

S0
γ (P, Q)≤

∑
1≤`�L

∑
n�`Q/P

F(`, n, P, Q), (47)

where



1220 Étienne Fouvry

• the constants implicit in the symbols� and � depend on γ0 only and

• F(`, n, P, Q) is the number of solutions of the equation `q−np= 1 in primes
p ∼ P and q ∼ Q.

By Lemma 4, we have the inequality

F(`, n, P, Q)� `Q
ϕ(`n)

· log−2 z (48)

provided z ≤ P
1
2 and `Q ≥ `nz log4 z. By the order of magnitude of the parameters,

this last condition reduces to

P � `z log4 z.

However, since we have `� L , this inequality is satisfied as soon as

(P Q)
1
2−γ � z2.

Choose z := (P Q)
1
6−

γ
3 . With this choice of z inserted in (48) and by (47), we

obtain the inequality

S0
γ (P, Q)�γ0

Q
log2(P Q)

∑
1≤`�L

`
∑

n�`Q/P

1
ϕ(`n)

. (49)

Recall the inequality ϕ(`n)≥ ϕ(`)ϕ(n) and the bound
∑

t∼T ϕ
−1(t)� 1, which is

uniform in T ≥ 1. Then summing over ` and n in (49), we deduce the inequality

S0
γ (P, Q)�γ0 L Q log−2(P Q)�γ0 (P Q)γ+

1
2 log−2(P Q).

This bound also holds for S1
γ (P, Q). Inserting this bound in (45) and summing

over (P, Q) such that P Q ≤ x , we conclude the proof of Theorem 2. �

6. Proof of Theorem 3

We now suppose that
15
98 + γ0 ≤ γ ≤

13
27

since the case where γ takes large values is covered by Theorem 1. Define also

K0 :=
17−49γ0
32−4γ0

(< 17
32).

To deal with the lower bound of Hγ (x), we consider

T 0
γ (P, Q) := #

{
(p, q) : p ∼ P, q ∼ Q, 0< q

p
≤2

†
0

}
(50)

with
2

†
0 := θ0(4P Q),
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where θ0 is defined in Lemma 8. We have the inequality

Hγ (x)≥ H 0
γ (x)≥

∑
P

∑
Q

T 0
γ (P, Q), (51)

where H 0
γ (x) is defined in (15) and the sum is over the pairs (P, Q) of the form

(2k, 2`) with

P ≤ QK0, x/16≤ P Q ≤ x/4, P ≤ Q/2 and 1≤ L ≤ QβK0 , (52)

where L is defined in (46) and βK is the constant introduced in Lemma 7. If the
triple (`, p, q) is such that 1≤ `� L , p ∼ P and q ∼ Q and satisfies `q− np = 1
for some integer n, then it contributes to T 0

γ (P, Q). This leads to the inequality

T 0
γ (P, Q)≥

∑
p∼P

∑
1≤`�L

(
π(2Q; p, `)−π(Q; p, `)

)
.

Thanks to (52), we can apply Lemma 7, giving

T 0
γ (P, Q)≥ αK0

∑
p∼P

L · Q
ϕ(p) log 2Q

− O
( P

log2 2P
· L · Q

P log 2Q

)
,

which simplifies into

T 0
γ (P, Q)≥ αK0

2
·

L Q
log 2P log 2Q

(53)

for x ≥ x0 and (P, Q) satisfying (52).
In terms of P , the conditions (52) and L � 1 reduce to

P � x
K0

1+K0 and x
1
2−γ � P � x (

1
2+βK0−γ )/(1+βK0 ). (54)

The definition of K0 implies the inequality

K0
1+K0

−

(1
2
− γ

)
≥

K0
1+K0

−

(17
49
− γ0

)
�γ0 1.

Combining with the inequality βK0 > 0, we see that there are�γ0 L values of P
of the form P = 2k satisfying (54). Since we also have x/(16P) ≤ Q ≤ x/(4P),
we deduce that there are�γ0 L pairs (P, Q) satisfying (52). It remains to insert
the lower bound (53) in (51) and to sum over the suitable (P, Q) to deduce

H 0
γ (x)�γ0 x

1
2+γL−1.

This completes the proof of Theorem 3. �

Remark. Not using Lemma 7 but only Lemma 5, one proves Theorem 3 but under
the more restrictive condition 1

6 + γ0 ≤ γ ≤ 1− γ0.
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7. A conjectural formula

One may conjecture that for every γ0 > 0, one has

Hγ (x)∼ C(γ ) x
1
2+γ

log x
(55)

as x →∞ uniformly under the condition (13). This conjecture, if true, would
be an important extension of Theorem 1. However, (55) is a consequence of the
Elliott–Halberstam Conjecture (see [Friedlander and Iwaniec 2010, page 406] for
instance).

Conjecture 1. For any ε > 0 and any A > 0, one has∑
r≤x1−ε

max
(s,r)=1

∣∣∣π(x; r, s)− π(x)
ϕ(r)

∣∣∣= Oε,A(xL−A). (56)

This conjecture can be interpreted as a considerable improvement of Lemma 5
since it gives the average behavior of the function π(x; r, s) for almost all r ≤ x1−ε .

We now give some indications on how to deduce (55) from Conjecture 1. First of
all, one applies the formula (56) to evaluate Rγ (P, Q) as written in (26). This shows
that (29) is true uniformly for P ≤ Qx−ε (compare with (30)). Summing over all
these (P, Q), we see that their contribution to Hγ (x) is ∼ (C(γ )− O(ε))x

1
2+γL−1

by a computation analogous to (41) and (42) with uniformity given by (13).
For the remaining (P, Q) (those that satisfy Qx−ε ≤ P ≤ ξ · Q), we apply the

two-dimensional sieve as in Section 5. Then one shows that their contribution to
Hγ (x) is Oγ0(εx

1
2+γL−1). Summing up these two contributions and letting ε tend

to 0, we get (55).
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