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Let σ1 and σ2 be commuting involutions of a connected reductive algebraic group
G with g= Lie(G). Let

g=
⊕

i, j=0,1

gi j

be the corresponding Z2 × Z2-grading. If {α, β, γ } = {01, 10, 11}, then [ , ]
maps gα × gβ into gγ , and the zero fiber of this bracket is called a Eσ -commuting
variety. The commuting variety of g and commuting varieties related to one
involution are particular cases of this construction. We develop a general theory
of such varieties and point out some cases, when they have especially good
properties. If G/Gσ1 is a Hermitian symmetric space of tube type, then one can
find three conjugate pairwise commuting involutions σ1, σ2, and σ3 = σ1σ2. In
this case, any Eσ -commuting variety is isomorphic to the commuting variety of
the simple Jordan algebra associated with σ1. As an application, we show that if
J is the Jordan algebra of symmetric matrices, then the product map J× J→ J is
equidimensional, while for all other simple Jordan algebras equidimensionality
fails.
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Introduction

The ground field k is algebraically closed and char k = 0. Let G be a connected
reductive algebraic group with Lie(G) = g. Richardson [1979] proved that any
pair of commuting elements of g can be approximated by pairs of commuting
semisimple elements. More precisely, if t⊂ g is a Cartan subalgebra (CSA), then

{(x, y) ∈ g× g | [x, y] = 0} = G·(t× t), (0-1)

where a bar indicates the Zariski closure. The left-hand side is called the commuting
variety of g, denoted E(g). That is, E(g) is the zero fiber of the multiplication map

g× g
[ , ]
−→ g.

It follows from (0-1) that E(g) is irreducible and dimE(g) = dim g+ rk g. For
arbitrary Lie algebras, for example, for Borel subalgebras of g, the commuting
variety can be reducible [Vasconcelos 1994, p. 237].

There are several directions to take in generalizing Richardson’s work.

First, for given subvarieties U, V ⊂ g, one can consider the restriction of [ , ] to
U × V and study properties of E(g)∩ (U × V ). For instance:

– Let σ be an involution of g with the corresponding Z2-grading g = g0⊕ g1.
Taking U = V = g1 yields the commuting variety E(g1) := E(g)∩ (g1× g1),
which was considered first in [Panyushev 1994b]. Here the structure of E(g1)

heavily depends on σ . If g1 contains a CSA of g, then E(g1) is an irreducible
normal complete intersection [Panyushev 1994b]. At the other extreme, if
the symmetric space G/G0 is of rank 1, then E(g1) is often reducible. In
[Panyushev and Yakimova 2007], the question of irreducibility of E(g1) is
resolved for all but three involutions of simple Lie algebras, and the remaining
cases are settled in [Bulois 2011]. It seems, however, that there is no simple
rule to distinguish the involutions for which E(g1) is irreducible.

– Another natural possibility is to take U=V =N , whereN is the set of nilpotent
elements of g. This leads to the nilpotent commuting variety of g, E(N ), which
is often reducible. However, E(N ) is equidimensional, dimE(N ) = dim g,
and the structure of irreducible components is well understood [Premet 2003].

– An interesting situation with U 6= V occurs if g =
⊕

i∈Z g(i) is Z-graded,
U = g(i), and V = g(−i), see [Panyushev 1999, §3].

Second, one may look at commuting varieties related to other types of algebras.
If A is any algebra, then E(A) is defined to be the zero fiber of the multiplication
map A×A→A. It is a natural task to study the commuting variety of a simple
Jordan algebra. As far as I know, this problem has not been addressed before.
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In this article, we elaborate on both directions outlined above. We study certain
“commuting varieties” associated with Z2×Z2-gradings of g (the first direction). It
turns out that, for some gradings, these new commuting varieties are isomorphic to
the commuting variety of simple Jordan algebras (the second direction). To describe
our results more precisely, we need some notation. Let σ1 and σ2 be different
commuting involutions of a connected reductive algebraic group G. This yields a
Z2×Z2-grading of g:

g=
⊕

i, j=0,1

gi j , where gi j = {x ∈ g | σ1(x)= (−1)i x and σ2(x)= (−1) j x}. (0-2)

Then σ1, σ2, and σ3 = σ1σ2 are pairwise commuting involutions, and following
[Vergne 1995] we say that (0-2) is a quaternionic decomposition of g. For, if
(α, β, γ ) is any permutation of the set of indices {01, 10, 11}, then [g00, gα] ⊂ gα
and [gα, gβ] ⊂ gγ . The conjugacy classes of pairs of commuting involutions are
classified, see [Kollross 2009] and references therein. Therefore, it is not difficult
to write down explicitly all the quaternionic decompositions of simple Lie algebras.
This article is a continuation of [Panyushev 2013], where we developed some theory
on Cartan subspaces related to (0-2) and studied invariants of degenerations of
isotropy representations involved.

Set Eσ = (σ1, σ2, σ3), and let G00 denote the connected subgroup of G with
Lie algebra g00. A Eσ-commuting variety is the zero fiber of the bracket [ , ] :
gα × gβ → gγ . Associated with (0-2), one has three essentially different such
varieties that are parameterized by the choice of γ ∈{01, 10, 11}. All these mappings
are G00-equivariant, and all Eσ-commuting varieties are G00-varieties. The above-
mentioned varieties E(g1) can be obtained as a special case of this construction,
see Example 3.1. We usually stick to one particular choice of the commutator,
ϕ : g10×g11→ g01, and try to realize what assumptions on Eσ imply good properties
of E := ϕ−1(0) and other fibers of ϕ. Clearly, ϕ can be regarded as a quadratic
map from g1? := g10⊕ g11 to g01. Let c1? be a Cartan subspace (CSS) in g1?. Say
that c1? is homogeneous if it is σ2-stable (or, equivalently, σ3-stable), that is, if
c1? = a10⊕ a11 with a1 j ⊂ g1 j . We prove:

• If c1? is a homogeneous CSS, then the closure of G00·c1? is an irreducible
component of E (Theorem 3.4). (Such irreducible components are said to
be standard). However, there can be several standard components, of dif-
ferent dimensions, and there can also exist some “nonstandard” irreducible
components.

• All homogeneous CSS in g1? are G00-conjugate (that is, E has only one
standard component) if and only if dim c1? = dim c10+ dim c11, where c1 j are
CSS in g1 j (Theorem 3.7).
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• The commutator map ϕ is dominant if and only if there exist x ∈ g10 and
y ∈ g11 such that zg(x)01 ∩ zg(y)01 = {0}.

However, one cannot expect really good properties for ϕ and E without extra
assumptions. One natural assumption is that some of involutions in Eσ are conjugate.
Another possibility is that some of the σi possess prescribed properties. Our more
specific results are:

(1) If σ1 and σ2 are conjugate, then ϕ is surjective and dimϕ−1(ξ) > dim g11 for
all ξ ∈ g01 (Proposition 3.8). We also provide a method for detecting subvarieties
of E whose dimension is larger than dim g11. This exploits certain restricted root
systems related to decomposition (0-2), see Section 5.

(2) If σ1 and σ2 are involutions of maximal rank (hence they are conjugate), then
ϕ is surjective and equidimensional, each irreducible component of E is standard,
and the scheme ϕ−1(0) is a reduced complete intersection (Theorem 4.1).

(3) Let g be simple and σ a Hermitian involution (that is, gσ is not semisimple). If
the Hermitian symmetric space G/Gσ is of tube type, then there exists a commuting
triple Eσ such that each σi is conjugate to σ , and in this case E is isomorphic to the
commuting variety of the corresponding simple Jordan algebra, see Section 6.

(4) The relationship with Eσ-commuting varieties implies that the multiplication map
J× J

◦
→ J is equidimensional if and only if J is the Jordan algebra of symmetric

matrices. The commuting variety of a simple Jordan algebra J is reducible, since
J×{0} and {0}×J are always irreducible components, and there are certainly some
other components.

(5) The results stated in (2) rely on an interesting property of Z2-gradings. For any
e ∈ g0, its centralizer in g is also Z2-graded: ge

= ge
0⊕ ge

1. Then we prove that

dim ge
0+ rk g> dim ge

1

and the equality occurs only if e = 0 and σ is of maximal rank. However, the
proof of this inequality (Theorem 4.4) is not quite uniform, and a better proof is
welcome! The required case-by-case calculations are lengthy and tedious, so not
all of them are actually presented, and a part is placed in the Appendix. We hope
that an a priori proof of this inequality might be related to a geometric property of
centralizers of nilpotent elements in g0, see Conjecture 4.6.

– Throughout, G is a connected reductive algebraic group and g= Lie(G). Then
zg(a) is the centralizer of a subspace a ⊂ g, and the centralizer of x ∈ g is
denoted by zg(x) or gx .

– R(λ) is a simple finite-dimensional G-module with highest weight λ.

– Algebraic groups are denoted by capital Roman letters and their Lie algebras
are denoted by the corresponding lower-case Gothic letters.
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1. Preliminaries on involutions and commuting varieties

The set of all involutions of g is denoted by Inv(g). The group of inner automor-
phisms Int(G)' G/Z(G) acts on Inv(g) by conjugation. Two involutions are said
to be conjugate if they lie in the same Int(G)-orbit. If σ ∈ Inv(g), then g= g0⊕ g1

is the corresponding Z2-grading of g, where gi = {x ∈ g | σ(x) = (−1)i x}. We
also say that (g, g0) is a symmetric pair. Whenever we wish to stress that g0 and
g1 are determined by σ , we write gσ and g(σ )1 for them. We assume that σ is
induced by an involution of G, which is denoted by the same letter. The connected
subgroup of G with Lie algebra g0 is denoted by G0. Hence G0 is the identity
component of Gσ

= {g ∈ G | σ(g) = g}. The representation of G0 in g1 is the
isotropy representation of the symmetric space G/G0.

We freely use the invariant-theoretic results on the G0-action on g1 obtained in
[Kostant and Rallis 1971]. A Cartan subspace (CSS) is a maximal subspace of g1

consisting of pairwise commuting semisimple elements. The Cartan subspaces are
characterized by the following property:

Suppose that a subspace a⊂ g1 consists of pairwise commuting semisim-
ple elements. Then a is a CSS if and only if zg(a)∩ g1 = a [Kostant and
Rallis 1971, Chapter I].

(1-1)

An element x ∈ g1 is called G0-regular if the orbit G0·x is of maximal dimension.
Let c be a CSS of g1. Below, we summarize some basic properties of the Cartan
subspaces and isotropy representations:

– All CSS of g1 are G0-conjugate and G0·c is dense in g1.

– Every semisimple element of g1 is G0-conjugate to an element of c.

– A semisimple element x ∈ g1 is G0-regular ⇐⇒ zg(x)∩ g1 is a CSS.

– The orbit G0·x is closed if and only if x is semisimple.

– The closure of G0·x contains the origin if and only if x is nilpotent.

– The number of nilpotent G0-orbits in g1 is finite.

We say that σ ∈ Inv(g) is of maximal rank if g1 contains a Cartan subalgebra of g.

The following facts are well known:

(1) dim g1− dim g0 6 rk g for any σ , and the equality holds if and only if σ is of
maximal rank.

(2) All involutions of maximal rank are conjugate.

(3) The involutions of maximal rank are inner if and only if all exponents of g are
odd.
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Lemma 1.1 [Kostant and Rallis 1971, Proposition 5]. For any x ∈ g1, one has
dim g0 − dim gx

0 = dim g1 − dim gx
1 . Equivalently, dim G·x = 2 dim G0·x for all

x ∈ g1.

Consequently, if σ is of maximal rank, then

dim gx
1 = dim gx

0 + rk g. (1-2)

The property of having maximal rank is inheritable in the following sense.

Lemma 1.2. Let σ be of maximal rank and x ∈ g1 semisimple. Then the restriction
of σ to gx and [gx , gx

] is also of maximal rank.

The commuting variety associated with σ is

E(g1)= {(x, y) ∈ g1× g1 | [x, y] = 0}. (1-3)

That is, E(g1) is the zero fiber of the commutator map [ , ]1 : g1× g1→ g0. The
following is known:

• G0·(c× c) is always an irreducible component of E(g1) [Panyushev 1994b,
Proposition 3.7].

• If σ is of maximal rank, then G0·(c× c)= E(g1) and g1× g1→ g0 is equidi-
mensional [Panyushev 1994b, Theorem 3.2]; moreover, all the fibers of [ , ]1
are irreducible and normal [Panyushev 1994b, Corollary 4.4].

• E(g1) can be reducible [Panyushev 1994b, Example 3.5].

Example 1.3. Suppose that g̃= g⊕ g and σ(x, y)= (y, x). Then g̃0 =1(g) and
g̃1 = {(x,−x) | x ∈ g}. Here the commutator g̃1× g̃1→ g̃0 coincides with the usual
commutator g× g→ g and E(g̃1) is isomorphic to the usual commuting variety of
a semisimple Lie algebra g. By a result of Richardson [1979], E(g) is irreducible
and dimE(g)= dim g+ rk g.

A torus S of G is called σ-anisotropic if σ(s)= s−1 for all s ∈ S. All maximal
σ-anisotropic tori are G0-conjugate, and if C ⊂ G is a maximal σ-anisotropic torus,
then Lie(C) is a CSS in g1. Recall that a restricted root of C is any nontrivial weight
in the decomposition of g into the sum of weight spaces of C . Write 9C(G/G0)

or just 9(G/G0) for the set of all restricted roots. Then

g= gC
⊕

( ⊕
γ∈9(G/G0)

gγ

)
. (1-4)

We use additive notation for the operation in X(C), the character group of C , and
regard 9(G/G0) as a subset of the vector space X(C)⊗Z R. The set 9(G/G0)

satisfies the usual axioms of finite root systems [Helgason 1978]. The notable
difference from the structure theory of split semisimple Lie algebras is that the
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root system 9(G/G0) can be nonreduced and that multiplicities mγ = dim gγ
(γ ∈9(G/G0)) can be greater than 1.

For all involutions of simple Lie algebras, the restricted root systems and the
respective multiplicities are known, see [Helgason 1978, Chapter X, Table VI].

2. Commuting involutions and quaternionic decompositions

Let σ1 and σ2 be different commuting involutions of g. Then the corresponding
Z2×Z2-grading of g is

g=
⊕

i, j=0,1

gi j , where gi j = {x ∈ g | σ1(x)= (−1)i x and σ2(x)= (−1) j x}. (2-1)

We also say that it is a quaternionic decomposition of g (determined by σ1 and σ2).
Set σ3 := σ1σ2 and Eσ = (σ1, σ2, σ3). The pairwise commuting involutions σ1, σ2,
and σ3 are said to be big. The induced involutions on the fixed-point subalgebras gσ1 ,
gσ2 , and gσ3 are said to be little. The same terminology applies to the corresponding
Z2-gradings, isotropy representations, and CSS. Thus, associated with (2-1), one
has three big and three little Z2-gradings. It is convenient for us to organize the
summands of (2-1) in a 2× 2 “matrix”:

g=
g00 g01

g10 g11
⊕

σ2

σ1. (2-2)

Here the horizontal (resp. vertical) dotted line separates the eigenspaces of σ1

(resp. σ2), whereas two diagonals of this matrix represent the eigenspaces of σ3.
Hence the first row, first column, and main diagonal represent the three little
Z2-gradings (of gσ1 , gσ2 , and gσ3 , respectively).

We repeatedly use the following notation for the eigenspaces of σ1 and σ2:

gσ1 = g0? := g00⊕g01, g1? := g10⊕g11, gσ2 = g?0 := g00⊕g10, g?1 := g01⊕g11.

Likewise, G0? (resp. G?0) is the connected subgroup of G corresponding to g0? (resp.
g?0), G00 is the connected subgroup of G corresponding to g00, etc. If q is a Eσ-stable
subalgebra of g, then q=

⊕
i, j qi j is the induced quaternionic decomposition of q,

and Q and Q00 are the corresponding connected subgroups.
Following [Vinberg 2005, 0.3], we say that a triple {σ1, σ2, σ3} ⊂ Inv(g) is a

triad if all three involutions are conjugate and σ1σ2 = σ3. A complete classification
of triads is obtained in [Vinberg 2005, §3]. The triads lead to the “most symmetric”
quaternionic decompositions. In [Panyushev 2013], we considered less restrictive
conditions on the σi . We say that {σ1, σ2} ⊂ Inv(g) is a dyad if σ1 and σ2 are
conjugate and σ1σ2 = σ2σ1 (no conditions on σ3!).
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The product of two conjugate involutions (not necessarily commuting) is al-
ways an inner automorphism of g. For, if σ2 = Int(g)·σ1· Int(g−1), then σ1σ2 =

Int(σ1(g)g−1). Therefore, any triad consists of inner involutions. (But not every
inner involution gives rise to a triad!) Any involution can be a member of a dyad
[Panyushev 2013, Proposition 2.4]. But the third involution, σ3, is then necessarily
inner.

Proposition 2.1 (see [Panyushev 2013, Proposition 2.2(1)]). Suppose that µ ∈
Inv(g) is inner. Then there are commuting involutions of maximal rank, σ1 and σ2,
such that µ = σ1σ2. Moreover, σ1 and σ2 induce an involution of maximal rank
of gµ.

For (i j) 6= (00), let ci j be a CSS of gi j ; that is, a little CSS related to the little
Z2-grading g00⊕ gi j . There are also big CSS in the (−1)-eigenspaces of three big
involutions:

c1? ⊂ g1?, c?1 ⊂ g?1, c?,1−? ⊂ g?,1−? := g01⊕ g10.

Each little CSS can be included in two big CSS. For example, because g10⊂ g1? and
g10⊂ g?,1−?, one can choose Cartan subspaces c1? and c?,1−? such that c10⊂ c1? and
c10 ⊂ c?,1−?. If at least one equality occurs among all such inclusions, then this will
be referred to as a coincidence of CSS (for a given quaternionic decomposition).

In [Panyushev 2013], we obtained two sufficient conditions for a coincidence of
CSS:

Theorem 2.2 (see [Panyushev 2013, Theorems 3.3 and 3.7]).

(1) Suppose that σ1 is of maximal rank. Then
• any little CSS c11 ⊂ g11 is also a CSS in g?1, that is, for σ2, and
• any little CSS c10 ⊂ g10 is also a CSS in g10⊕ g01, that is, for σ3.

(2) Suppose that {σ1, σ2} is a dyad. Then any little CSS c11 ⊂ g11 is also a CSS in
g1? or g?1, that is, for σ1 or σ2.

The coincidences of CSS in Theorem 2.2(2) can formally be expressed as c11= c1?

or c11=c?1, and likewise in all other possible cases. In view of (1-1), any coincidence
of CSS can be restated as certain property of the little CSS in question. For instance,
the first coincidence in Theorem 2.2(1) means that if x ∈ g11 is a generic semisimple
element (that is, x belong to a unique little CSS), then zg(x)?1 = zg(x)11 = c11, and
hence zg(x)01 = 0.

3. Commuting varieties and homogeneous Cartan subspaces

Consider a quaternionic decomposition (2-2). For any permutation (α, β, γ ) of the
set {01, 10, 11}, there is the commutator mapping ϕγα,β : gα × gβ → gγ . Clearly,
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ϕ
γ

α,β is G00-equivariant. As our main interest is in fibers of this mapping, we do
not distinguish ϕγα,β and ϕγβ,α. We concentrate on the following problems:

• When is ϕγα,β dominant?

• What is the dimension of (ϕγα,β)
−1(0)?

• How to describe the irreducible components of (ϕγα,β)
−1(0)?

• When is ϕγα,β equidimensional?

The variety E
γ

α,β = (ϕ
γ

α,β)
−1(0) is said to be a Eσ-commuting variety. For general

quaternionic decompositions, one has three such varieties, and their properties can
be rather different. We mainly restrict ourselves to considering the test case:

ϕ = ϕ01
10,11 : g10× g11→ g01. (3-1)

and also write E in place of E01
10,11. Note that we can regard ϕ as a quadratic map

from g1? to g01, and E as subvariety of g1?. The following example shows that the
commuting variety in (1-3) is a particular case of this construction.

Example 3.1. Let g be a reductive Lie algebra and σ an involution of g with the
corresponding Z2-grading g= g0⊕ g1. Set g̃= g⊕ g and define three involutions
of g̃ as follows:

σ1(x1, x2)= (σ (x1), σ (x2)), σ2(x1, x2)= (x2, x1), σ3 = σ1σ2.

Then g̃σ1 = g0⊕g0; g̃σ2 =1(g), the diagonal in g⊕g; and g̃σ3 = {(x, σ (x)) | x ∈ g}.
Set1−(M) := {(m,−m) |m ∈M} for any subspace M ⊂g. Then the corresponding
quaternionic decomposition is

g̃=
1(g0) 1−(g0)

1(g1) 1−(g1)
⊕

σ2

σ1.

Upon the obvious identifications 1(g1)'1−(g1)' g1, etc., our test commutator
map g̃10 × g̃11 → g̃01 becomes the commutator g1 × g1 → g0 associated with
σ ∈ Inv(g); whereas two other commutator maps are identified with the bracket
g0×g1→ g1. Therefore, the concept of a Eσ-commuting variety provides a uniform
setting for studying the fibers of both g1× g1→ g0 and g0× g1→ g1.

Lemma 3.2. The commutator map (3-1) is dominant if and only if there exist x ∈g10

and y ∈ g11 such that zg(x)01 ∩ zg(y)01 = {0}.

Proof. A morphism of irreducible varieties is dominant if and only if its differential at
some point is onto. As ϕ is bilinear, an easy computation shows that dϕ(x,y)(ξ, η)=
[x, η] + [ξ, y], ξ ∈ g10, η ∈ g11. Hence Im dϕ(x,y) = [g11, x] + [g10, y], and taking
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the orthogonal complement with respect to the restriction of the Killing form to g01

yields (Im dϕ(x,y))⊥ = zg(x)01 ∩ zg(y)01. �

As we see below, certain CSS in g1? play an important role in describing irre-
ducible components of E.

Definition 1. A big CSS c1? ⊂ g1? is said to be homogeneous if it is σ2-stable (or,
equivalently, σ3-stable). In other words, if one has c1? = a10⊕ a11 with a1 j ⊂ g1 j .

Remark. A coincidence of CSS means that there is a homogeneous CSS of special
form. For instance, if c11 = c1?, then c11 is a homogeneous CSS in g1?, with trivial
g10-component.

Lemma 3.3. (1) Homogeneous CSS always exist.

(2) Moreover, if x ∈ g10 and y ∈ g11 are commuting semisimple elements, then
there exists a homogeneous CSS in g1? containing both of them.

Proof. (1) Take a little CSS c10 and consider the Eσ-stable reductive subalgebra
zg(c10). If ã11 is a little CSS in zg(c10)11, then c10⊕ ã11 is a homogeneous CSS in
g1?.

(2) Consider the Eσ-stable reductive subalgebra l= zg(x)∩ zg(y). By the previous
part, there exists a homogeneous CSS in l1?, say c̃1?. Since x and y are central in l,
we have x, y ∈ c̃1?. It is also clear that c̃1? is a CSS in g1?. �

If c1?= a10⊕a11 is a homogeneous CSS, then [a01, a11]= 0 and hence G00·c1?⊂

E. However, a stronger result is true.

Theorem 3.4. (i) Let c1? be a homogeneous CSS in g1?. Then G00·c1? ⊂ E is an
irreducible component of E.

(ii) If two homogeneous CSS in g1? are not G00-conjugate, then the corresponding
irreducible components are different.

Proof. (i) The centralizer of c1? is Eσ-stable. Hence zg(c1?)=
⊕

i, j=0,1 ai j , and here
c1?= a10⊕a11. Recall that G0?·c1?= g1?. Therefore, dim c1?+dim G0?−dim a00−

dim a01 = dim g1?. It follows that

dim G00·c1? = dim c1?+dim G00−dim a00 = dim g1?−dim g01+dim a01. (3-2)

On the other hand, let x + y ∈ c1? (x ∈ g10, y ∈ g11). The proof of Lemma 3.2
shows that dim(Im dϕ(x,y))= dim g01−dim(zg(x)01∩zg(y)01). Now, if x+ y ∈ c1?

is generic, then zg(x) ∩ zg(y) = zg(x + y) = zg(c1?). Hence dim(Im dϕ(x,y)) =
dim g01 − dim a01. This means that any irreducible component of E containing
(x, y) has dimension at most

dim g1?− dim(Im dϕ(x,y))= dim g1?− dim g01+ dim a01.
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Comparing with (3-2) shows that G00·c1? is an irreducible component of E contain-
ing (x, y), and (x, y) is a smooth point of G00·c1?.

(ii) As we have just shown, if x + y ∈ c1? is generic, then it belongs to a unique
irreducible component of E (and to a unique CSS in g1?). �

Claim 3.5. The number of G00-orbits of homogeneous CSS in g1? is finite.

First proof. Since the number of irreducible components is finite, this readily follows
from Theorem 3.4. However, it can also be proved in a different way. As the second
proof has its own merits, we provide it below.

Second proof. Recall that G00 ⊂ G0? are connected reductive groups and all big
CSS in g1? form a single G0?-orbit. Let c1? be a homogeneous CSS. Set

N = {g ∈ G0? | g·c1? = c1?}, M= {g ∈ G0? | g·c1? is homogeneous }.

Note that N is reductive, but not connected, since N is mapped onto the (finite)
little Weyl group associated with c1?. If g ∈M, s ∈ G00, and z ∈ N , then sgz ∈M.
Therefore, M is a union of (G00, N )-cosets, and our task is to prove that G00\M/N
is finite.

If g ∈M, then g·c1? = σ2(g)c1?. Hence g−1σ2(g) ∈ N . Since G00 ⊂ Gσ2 , the
map

ψM : G00\M→ N , G00g 7→ g−1σ2(g),

is well defined. Note that N is σ2-stable and the range of ψM belongs to the closed
subset

Q= Q(N )= {g ∈ N | σ2(g)= g−1
}.

The twisted N -action on N is defined by z ? x = zxσ2(z)−1. Obviously, Q is stable
under the twisted action of N . Moreover, ψM(gz) = z−1ψM(g)σ2(z). Hence
Im(ϕM)⊂ Q is the union of twisted N -orbits, and each twisted N -orbit gives rise
to a G00-orbit of homogeneous CSS. It follows from [Richardson 1982, §9] that Q
is a finite union of twisted N -orbits, which is sufficient for our purpose. (See also
the remark below.) �

Remark 3.6. Richardson’s results on twisted orbits [Richardson 1982, §9], specifi-
cally Proposition 9.1, are stated for a connected reductive group G, whereas we
apply them to the reductive nonconnected group N (in place of G). But his argument
can easily be adjusted to cover the case of nonconnected reductive groups. That is,
one can give a version of Richardson’s Proposition 9.1 for nonconnected groups G.

Definition 2. For a homogeneous CSS c1?⊂g1?, the irreducible component G00·c1?

of E is said to be standard.
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Since all big CSS in g1? are G0?-conjugate, their centralizers in g0? are essen-
tially “the same”. The centralizer in g0? of a homogeneous CSS splits, and these
splittings can be quite different. That is, dim zg(c1?)01 can be different for different
homogeneous CSS, and this leads to a new phenomenon that standard irreducible
components of E may have different dimensions, see (3-2). Moreover, there can
also be some “nonstandard” irreducible components of E that contain no semisimple
elements at all.

By Theorem 3.4, a necessary condition for E to be irreducible is that all homoge-
neous CSS in g1? are G00-conjugate, that is, there is only one standard component.
If c1? = a10⊕ a11 is a homogeneous CSS with dim a1i = di , then (d0, d1) is called
the dimension vector. Obviously, two homogeneous CSS with different dimension
vectors are not G00-conjugate.

Theorem 3.7. (1) If c1? = a10⊕ a11 is a homogeneous CSS with dimension vector
(d0, d1), then d0 6 dim c10 and d1 6 dim c11; hence dim c1? 6 dim c10+ dim c11.

(2) All homogeneous CSS in g1? are G00-conjugate if and only if dim c1?=dim c10+

dim c11.

Proof. (1) Being a toral subalgebra of g1 j , a1 j is contained in a little CSS in g1 j .

(2) “If” part. Let c1? and c̃1? = ã10⊕ ã11 be two homogeneous CSS. By part (1),
dim a01 = dim ã01 = dim c10. Therefore, both a01 and ã01 are little CSS, they are
both G00-conjugate, and we may assume that a01 = ã01. Consider then the Eσ-stable
reductive algebra zg(a10). As a10 is a central toral subalgebra, zg(a10) = a10⊕ s,
where s is reductive and Eσ-stable. By construction, s10 = {0} and a11, ã11 ⊂ s11.
Moreover, these are little CSS in s11 (otherwise, c1? or c̃1? wouldn’t be maximal).
Therefore, a01 and ã01 are S00-conjugate, which implies that c1? and c̃1? and G00-
conjugate.

“Only if” part. Assuming that dim c1? < dim c10 + dim c11, we construct two ho-
mogeneous CSS with different dimension vectors. First, let us take a little CSS
c10 and choose a little CSS in zg(c10)11, say ã11. This yields a homogeneous CSS
with dimension vector (dim c10, dim c1?−dim c10). On the other hand, one can start
with a little CSS c11, etc., which yields a homogeneous CSS with dimension vector
(dim c1?− dim c11, dim c11). �

Note that dim ci j > 0 whenever gi j 6= {0}. Therefore, a coincidence of CSS of
the form c11 = c1? or c10 = c1? certainly excludes the possibility of having a unique
standard component of E. For our test commutator (3-1), one may envisage several
examples of good behavior (not necessarily all together):

(1) All irreducible components of E are standard (possibly of different dimension).

(2) ϕ is surjective and equidimensional, and hence flat.

(3) E has a unique standard component, but there may be other components too.
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Property (3) always holds in the setting of Example 3.1, with any σ ; and for σ of
maximal rank, one gets a rare situation, where all three properties are satisfied. All
quaternionic decompositions of simple Lie algebras can be written out explicitly,
and then the presence of (3) amounts to a routine verification of the equality in
Theorem 3.7(2).

Proposition 3.8. Let {σ1, σ2} be a dyad. Then dim g10=dim g01 and ϕ :g10×g11→

g01 is onto. (Therefore, dimϕ−1(ξ)> dim g11 for all ξ ∈ g01.) Moreover, {0}× g11

is a standard irreducible component of E of minimal dimension.

Proof. Since dim gσ1 = dim gσ2 , we have dim g10 = dim g01. By Theorem 2.2(2),
any little CSS c11 ⊂ g11 is also a big CSS in g1?. Therefore, c11 is a homogeneous
CSS and G00·c11 = g11 is an irreducible component of E. Furthermore, if x ∈ c11 is
generic, then zg(x)∩ g1? = c11, that is, zg(x)∩ g10 = {0}. Therefore, dim[g10, x] =
dim g10, that is, [g10, x] = g01. �

4. Dyads of maximal rank and commuting varieties

Let {σ1, σ2} be a dyad of maximal rank, that is, both σ1 and σ2 are of maximal
rank. Recall that this implies that σ3 = σ1σ2 is inner, dim g01 = dim g10, and, by
Proposition 2.1, gσ3 = g00⊕ g11 is a Z2-grading of maximal rank. In particular, g11

contains a CSA of g and any CSS in g1? or g?1 is a CSA. The main result of this
section is the following.

Theorem 4.1. Let {σ1, σ2} be a dyad of maximal rank. Then

(i) the commutator mapping ϕ : g10×g11→ g01 is surjective and equidimensional,

(ii) each irreducible component of E= ϕ−1(0) is standard, that is, is the closure
of the G00-saturation of a homogeneous CSS in g1?, and

(iii) the ideal of E is generated by quadrics ϕ#(g∗01), where ϕ#
: k[g01]→ k[g10]⊗

k[g11] is the comorphism (that is, the scheme ϕ−1(0) is a reduced complete
intersection).

Proof. If q is a Eσ-stable reductive subalgebra of g, then Eq stands for the zero
fiber of the commutator q10 × q11 → q01. Clearly, Eq ⊂ E = Eg. Since σ1 and
σ2 are of maximal rank, the center of g, z(g), is contained in g11. Consequently,
Eg'E[g,g]×z(g) and without loss of generality, we may assume that g is semisimple.

By Proposition 3.8, ϕ is onto and dimE > dim g11. In this situation, ϕ is
equidimensional if and only if dimE= dim g11. If c1? is a homogeneous CSS, then
it is necessarily a CSA of g. That is, zg(c1?)01 = 0 for all homogeneous CSS and
dim G00·c1? = dim g11. Hence all the standard components of E have the same
(expected) dimension, and for (i) and (ii) it suffices to prove that there are no other
irreducible components.

To this end, we argue by induction on rk g= dim c11.
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– If dim c11 = 1, then g= sl2 and the assertion is true.

– Suppose that rk g> 1 and the assertion holds for all dyads of maximal rank
for semisimple algebras of rank smaller than rk g.

(1) Take (x, y) ∈ E and y ∈ g11, and let y = ys + yn be the Jordan decomposition.
Then [x, ys] = 0. If ys 6= 0, then yn ∈ s := [zg(ys), zg(ys)] and rk s < rk g. By
Lemma 1.2, σi |s, i = 1, 2, are again involutions of maximal rank. Let z denote the
center of zg(ys), so that zg(ys)= z⊕s and ys ∈ z. Since both σ1 and σ2 are of maximal
rank, z⊂ g11 and hence x ∈ s. By the induction assumption, (x, yn) ∈ s10⊕ s11 lies
in a standard irreducible component of Es. Obviously, adding a central summand
does not affect this property, hence (x, y) lies in a standard component of Ezg(ys).
As rk zg(ys)= rk g, this also means that (x, y) lies in a standard component of E.

(2) Hence it suffices to consider the case in which y = yn . Write N11 for the closed
set of all nilpotent elements in g11. Let K be an irreducible component of E, hence
dim K > dim g11. Then K1 := K ∩ (g10 ×N11) is a closed subvariety of K. If
K1 6= K, then, by part (1), all the points in K \ K1 belong to standard irreducible
components. Consequently, K must be one of the standard components.

(3) The next possibility is that K = K1. Let p : g10× g11→ g11 be the projection.
Then p(K) ⊂ N11, and therefore p(K) = G00·y is the closure of a nilpotent
G00-orbit.

If y=0, then K=g10×{0}. Let c10 be a little CSS. The fact that G00·(c10×{0})=
g10 × {0} is an irreducible component of E implies that zg(c10)11 = {0}, whence
c10 is also a CSS in g1?. That is, c10 is a CSA of g. (Incidentally, this means that
the (-1)-eigenspace of σ3 contains a CSA, that is, {σ1, σ2, σ3} is actually a triad.)
Anyway, we see that if y = 0, then such K appears to be a standard component.

(4) Finally, we prove that the case in which K = K1 and y 6= 0 is impossible.
Assuming the contrary, we would have

dim g11 6 dim K 6 dim G00·y+ dim p−1(y)

= dim g00− dim zg(y)00+ dim zg(y)10 = dim g11− dim zg(y)11+ dim zg(y)10.

The last equality uses Lemma 1.1. Hence, the existence of such a component K
would imply that dim zg(y)11 6 dim zg(y)10 for some nonzero y ∈N11 ⊂ g11. One
can rewrite the last condition so that it will only depend on the (inner) involution
σ3. Since {σ1, σ2} is a dyad, we have dim zg(y)10 = dim zg(y)01; and since σ3 is
inner and gσ3 = g00⊕ g11 is a Z2-grading of maximal rank, we have dim zg(y)11 =

dim zg(y)00+ rk gσ3 = dim zg(y)00+ rk g, see (1-2). Then

dim zg(y)11+ dim zg(y)00+ rk g= 2 dim zg(y)11 6 2 dim zg(y)10

= dim zg(y)10+ dim zg(y)01.
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In other words, if the assumption were true, we would have

dim(zg(y)∩ gσ3)+ rk g6 dim(zg(y)∩ g
(σ3)
1 ) (4-1)

for some nonzero nilpotent y ∈ g11. (Note that since gσ3 = g00⊕g11 is a Z2-grading
of maximal rank, g11 meets all nilpotent orbits in gσ3 [Antonyan 1982]. Therefore,
a priori, y can be any nonzero nilpotent element of gσ3 .) However, Theorem 4.4
shows that (4-1) is never satisfied if y 6= 0. This completes the proof of parts (i)
and (ii).

For (iii), it suffices to prove that each irreducible component of E contains a
point (x, y) such that dϕ(x,y) is onto, that is, Im dϕ(x,y) = g01, see [Richardson
1981, Lemma 2.3]. Since each irreducible component of E is the closure of the
G00-saturation of a homogeneous CSA, it contains a point (x, y) such that zg(x)01∩

zg(y)01 = {0} and then dϕ(x,y) is onto, as shown in the proof of Lemma 3.2. �

Remark 4.2. (1) For any inner σ ∈ Inv(g), there exist commuting involutions of
maximal rank σ1 and σ2 such that σ = σ1σ2, see Proposition 2.1. Therefore, there
are sufficiently many quaternionic decompositions, where Theorem 4.1 applies.

(2) For an arbitrary dyad {σ1, σ2}, it can happen that all irreducible components of
E are standard, but they have different dimensions. That is, ϕ : g10× g11→ g01 is
not equidimensional, but still any pair of commuting elements in g10× g11 can be
approximated by a pair of commuting semisimple elements.

Example 4.3. Let σ1 be an involution of g = son such that gσ1 = son−1. This
can be included in a dyad {σ1, σ2} such that gσ3 = son−2× so2. The quaternionic
decomposition is

g=
son−2 R($1)

R($1) R(0)
⊕

σ2

σ1,

where the trivial son−2-module R(0) is just the central torus so2 in gσ3 . Here
dim c10 = dim c11 = 1 and the zero fiber of multiplication g10× g11→ g01 consists
of two irreducible components, g10×{0}'kn−2 and {0}×g11'k. Both components
are standard.

The following auxiliary result does not refer to quaternionic decompositions; it
concerns the case of a sole involution.

Theorem 4.4. Let σ be an arbitrary involution of g and g = g0 ⊕ g1 the corre-
sponding Z2-grading. For any nonzero x ∈ g0, we have

dim gx
0 + rk g− dim gx

1 > 0. (4-2)
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More precisely, one always has dim gx
0 + rk g− dim gx

1 > 0 and the equality only
occurs if x = 0 and σ is of maximal rank.

Remark 4.5. For application to Theorem 4.1, we only need the case when x is
nilpotent and σ is inner. But, surprisingly, the assertion appears to be absolutely
general. Unfortunately, our proof is not conceptual, after all. Having successfully
reduced the problem to noneven nilpotent elements of g0, we then resort to case-
by-case considerations. Certainly, there must be a better proof!

Proof. Note that dim G·x is even and, therefore, the left-hand side in (4-2) is always
even; hence the more accurate assertion is that dim gx

0 + rk g− dim gx
1 > 2 for all

nonzero x ∈ g0.

(1) If x = 0, then we have dim g0+ rk g− dim g1 > 0, and the equality holds if and
only if σ is of maximal rank.

(2) If x is nonzero semisimple, then gx is a σ-stable reductive subalgebra and x is a
central element of gx that belongs to gx

0 . Write gx
= z⊕ s, where s= [gx , gx

] and
z is the center. Then dim z0 > 0 and

dim gx
0 + rk g− dim gx

1 = (dim s0+ rk s− dim s1)+ 2 dim z0 > 2.

(3) If x is nonnilpotent, then using the Jordan decomposition x = xs + xn , we
reduce the problem to the same property for the nilpotent element xn in the σ-stable
reductive subalgebra zg(xs).

(4) From now on, we assume that x = e ∈ g0 is nonzero and nilpotent. Choose an
sl2-triple {e, h, f } ⊂ g0. Suppose that e is even in g, that is, the eigenvalues of ad h
in g are even. Then dim gh

= dim ge and dim gh
0 = dim ge

0. Thus, the assertion is
reduced to the same assertion for h ∈ g0 and we are again in the setting of part (2).

(5) Suppose that e is even in g0, but not in g. That is, the eigenvalues of ad h in g0

are even, but ad h has also some odd eigenvalues in g1. Decomposing g into the
sum of σ-stable ideals, we may assume that either g is simple or g= s⊕ s, where s

is simple and σ is the permutation involution. In the second case, if e is even in
g0 =1(s), then e is also even in g. Therefore, without loss of generality, we may
assume that g is simple.

Let us decompose g1 according to the parity of ad h-eigenvalues: g1=godd
1 ⊕g

even
1 .

By assumption, godd
1 6= 0. Then g̃ := [godd

1 , godd
1 ]⊕godd

1 is an ideal of g that does not
meet geven

1 . Therefore, g̃= g and geven
1 = 0. Hence ge

0 = (g
e)even and ge

1 = (g
e)odd.

Consider the Z-grading of g determined by the eigenvalues of h, g=
⊕

i∈Z g(i). The
sl2-theory shows that dim(ge)even

= dim g(0) and dim(ge)odd
= dim g(1). Hence

dim ge
0= dim g(0) and dim ge

1= dim g(1). Finally, it follows from Vinberg’s lemma
[Vinberg 1976, §2.3] that the group G(0) has finitely many orbits in g(1), whence
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dim g(1) 6 dim g(0). Thus, in this case the stronger inequality dim ge
0 > dim ge

1
holds.

(6) Thus, it remains to handle the case in which a nilpotent element e ∈ g0 is not
even. Here we do not know an a priori argument and resort to the case-by-case
considerations.

(7) If g is a classical Lie algebra, then the nilpotent orbits in g and g0 are param-
eterised by partitions, and we use the explicit formulae for dim ge and dim ge

0 in
terms of partitions. Some of these calculations are presented in the Appendix.

(8) If g is an exceptional simple Lie algebra, then, for any noneven nilpotent element
e ∈ g0, we determine the corresponding nilpotent orbit in g and then compare the
dimensions of ge

0 and dim ge. While rather boring, the verification is, however, not
very difficult.

For σ inner, we use the seminal work [Dynkin 1952, Tables 16–20], in which
Dynkin computed, for all simple three-dimensional subalgebras in exceptional
Lie algebras, the “minimal including regular semisimple subalgebras” and the
corresponding weighted Dynkin diagrams. See also comments on this article in
[Dynkin 2000, pp. 309–312], where a few errors occurring in [Dynkin 1952] are
corrected.

To convey the idea, consider some examples related to an (inner) involution of
g= E8 with g0 = D8 = so16. There are 33 noneven nilpotent orbits in g0. (Recall
that e ∈ so16 is noneven if and only if the partition of e contains both odd and even
parts.)

(a) Let e ∈ so16 be a nilpotent element corresponding to the partition (11, 2, 2, 1).
Using [Hesselink 1976, Corollary 3.8(a)] or [Kraft and Procesi 1982, Proposi-
tion 2.4], we obtain dim ge

0= 16. This partition also shows that a minimal including
regular semisimple subalgebra of D8 containing e is of type D6+A1. (Here (11, 1)
is the partition of the regular nilpotent element of D6 and any pair of equal parts
(n, n) gives rise to the simple summand An−1.) Then using [Dynkin 1952, Table 20],
we detect the simple three-dimensional subalgebra in E8 with minimal including
regular semisimple subalgebra of type D6+A1. The corresponding nilpotent orbit
has the modern label E7(a3) and here dim ge

= 28. Hence dim ge
1 = 12 and (4-2)

holds.

(b) Let e ∈ so16 correspond to the partition (7, 5, 2, 2). By [Hesselink 1976, Corol-
lary 3.8(a)], dim ge

0 = 22. Here a minimal including regular semisimple subalgebra
is of type D6(a2)+A1, because the partition (7, 5) determines the distinguished
nilpotent orbit in D6, which is denoted by D6(a2). Using [Dynkin 1952, Table 20],
we detect the corresponding nilpotent orbit in g. This orbit is denoted nowadays by
E7(a5) and here dim ge

= 42.
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(c) Let e ∈ so16 correspond to the partition (7, 4, 4, 1). By [Hesselink 1976, Corol-
lary 3.8(a)], dim ge

0 = 22. Here a minimal including regular semisimple subalgebra
is of type D4+A3. Using [Dynkin 1952, Table 20], we detect the corresponding
nilpotent orbit in g. This orbit is denoted nowadays by D6(a2) and here dim ge

= 44.

If σ is outer, then g is of type E6. In the respective two cases, we use the information
on e ∈ g0 for decomposing g1 as a 〈e, h, f 〉-module, which allows us to compute
dim ge

1. �

A case-free proof of Theorem 4.4 might be derived from the following conjectural
invariant-theoretic property of centralizers. Recall that g= g0⊕ g1 and e ∈ g0. Let
Ge

0 be the connected subgroup of G0 with Lie algebra ge
0. Then Ge

0 acts on (ge
1)
∗

and we write k((ge
1)
∗)G

e
0 for the field of Ge

0-invariant rational functions on (ge
1)
∗.

Conjecture 4.6. For any e ∈ g0 ∩N , we have trdeg k((ge
1)
∗)G

e
0 6 rk g.

By Rosenlicht’s theorem [Brion 2000, Chapter I.6],

trdeg k((ge
1)
∗)G

e
0 = dim ge

1− max
ξ∈(ge

1)
∗

dim Ge
0·ξ.

If e 6= 0, then the one-dimensional unipotent group exp(te), t ∈ k, acts trivially on
ge

1 and hence maxξ∈(ge
1)
∗ dim Ge

0·ξ 6 dim ge
0− 1. Therefore, if the conjecture were

true, we would obtain dim ge
1− dim ge

0+ 16 rk g, as required. Perhaps, this can be
related to the Elashvili conjecture, which asserts that trdeg k((ge)∗)G

e
= rk g for all

e ∈N .

Remark 4.7. Inequality (4-2) can be written as dim gx
0 > dim Bx , where Bx is the

variety of Borel subalgebras of g containing x (the Springer fiber of x). (Recall that
dim Bx = (dim gx

− rk g)/2.)

5. Commuting varieties and restricted root systems

Here we assume that {σ1, σ2} is a dyad. As above, we consider the commutator map
ϕ : g10×g11→ g01 and the Eσ-commuting variety E=ϕ−1(0). Then dimE> dim g11

and E has a standard irreducible component of expected dimension dim g11; namely,
{0}× g11, see Proposition 3.8.

In this section, we describe a method for detecting subvarieties of E of large
dimension. This method is based on comparing restricted root systems for little and
big symmetric spaces related to the quaternionic decomposition in question.

Take a little CSS c11 ⊂ g11. Then, by Theorem 2.2(2), c11 is also a CSS in g1?

and g?1, which is equivalent to that zg(c11)10 = zg(c11)01 = {0} and zg(c11)11 = c11.
Our idea is to replace c11 with a proper subspace c̃ such that

c̃ still contains G00-regular elements. (5-1)
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Then we consider ĉ := zg(c̃)10× c̃⊂ E and compute the dimension of G00·ĉ. Since
G00·c11 = g11, we have

dim G00+ dim c11− dim zg(c11)00 = dim g11.

Set T00(ĉ)= {g ∈ G00 | g·y ∈ ĉ for generic y ∈ ĉ}, and likewise for c11. In view of
(5-1), we have dim T00(ĉ)= dim TT00(c11)= dim zg(c11)00. Then

dim G00·ĉ= dim G00+ dim ĉ− dim T00(ĉ)

= (dim G00+dim c11−dim zg(c11)00)+(dim zg(c̃)10−dim c11+dim c̃)

= dim g11+ (dim ĉ− dim c11). (5-2)

Thus, we obtain a subvariety of larger dimension, if dim zg(c̃)10+dim c̃> dim c11.
Of course, it is not always possible to construct such a c̃. Our sufficient condition
exploits restricted root systems. Set h= gσ3 , and let H denote the corresponding
connected (reductive) subgroup of G. Write σ̄ for the restriction to H of σ1 or σ2.

Let C11= exp(c11)⊂ H ⊂G be the corresponding torus. The coincidence of CSS
means that C11 is a maximal σ1-anisotropic torus in G and a maximal σ̄-anisotropic
torus in H . Accordingly, one obtains the inclusion of two restricted root systems
relative to C11:

9(H/G00)⊂9(G/G0?).

Identifying restricted roots and their differentials, one may consider restricted roots
as linear forms on c11. Then the set of G00-regular elements of c11 is

{x ∈ c11 | µ(x)6=0 for all µ ∈9(H/G00)}

and the set of G0?-regular elements is {x ∈ c11 | µ(x)6=0 for all µ ∈9(G/G0?)}.

Proposition 5.1. Assume that µ ∈9(G/G0?) and rµ 6∈9(H/G00) for any r ∈Q.
If mµ > 1, then dimE> dim g11+mµ− 1> dim g11.

Proof. Under this assumption, c̃ :=Ker(µ)⊂ c11 still contains G00-regular elements,
and dim c̃=dim c11−1. Furthermore, zg(c̃) is Eσ-stable and zg(c̃)= zg(c11)⊕gµ⊕g−µ.
Recall that zg(c11) is contained in g00⊕ g11. Clearly, gµ⊕ g−µ is also Eσ-stable and
is contained in g01⊕ g10.

Since {σ1, σ2} is a dyad, dim(gµ ⊕ g−µ) ∩ g10 = dim(gµ ⊕ g−µ) ∩ g01 = mµ.
Hence dim zg(c̃)10 = mµ, and the assertion follows from (5-2). �

Remark 5.2. (1) Such a construction gives nothing, if all root multiplicities in
9(G/G0?) are equal to 1. For instance, if σ1 is of maximal rank.

(2) The procedure described in the previous proof admits obvious modifications.
Roughly speaking, if there are linearly independent roots µ1, µ2, . . . , in9(G/G0?),
with large multiplicities, such that Q− span{µ1, µ2, . . . } ∩9(H/G00)=∅, then
one can take c̃= Ker(µ1, µ2, . . . ), see Proposition 6.5.
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Although it is convenient to stick to one specific Eσ-commuting variety in theoret-
ical considerations, it may happen that in concrete examples different Eσ-commuting
varieties exhibit different good (or bad) properties.

Example 5.3. Let σ1 be an outer involution of g = sl2n with gσ1 = sp2n . In
[Panyushev 2013, §2], we gave a method for describing all the dyads including
σ1, which exploits the restricted root system 9(G/Gσ1). This implies that one can
find σ2 conjugated σ1 such that the inner involution σ3 = σ1σ2 has the fixed-point
subalgebra h=sl2m⊕sl2n−2m⊕t1. The corresponding quaternionic decomposition is

sl2n =
sp2m ⊕ sp2n−2m R($1)R($

′

1)

R($1)R($
′

1) R($2)+R($
′

2)+R(0)
⊕

σ2

σ1,

where $i (resp. $ ′i ) are fundamental weights of sp2m (resp. sp2n−2m), and R(λ) is
a simple module of the respective simple Lie algebra with highest weight λ.

• Here G = SL2n , G0? = Sp2n , H = SL2m × SL2(n−m) × T1, and G00 = Sp2m ×

Sp2(n−m). According to [Helgason 1978, Chapter X, Table VI], we have 9(G/G0?)

= An−1, 9(H/G00) = Am−1+An−m−1, and all root multiplicities in 9(G/G0?)

equal 4. Since 9(H/G00) has fewer roots, Proposition 5.1 implies that E has an
irreducible component of dimension greater than dim g11+ (4−1) and our test map
ϕ : g10× g11→ g01 is not equidimensional.

• Here dim c01 = dim c10 = min{m, n − m} and any big CSS in g10 ⊕ g01 is of
dimension 2 min{m, n−m}. By Theorem 3.7(2), this means that all homogeneous
CSS in g10⊕ g01 are G00-conjugate, and therefore the Eσ-commuting variety related
to the commutator g10⊕ g01→ g11 has a unique standard component.

Example 5.4. Let σ be an involution of g = E7 with gσ = D6 × A1. It can be
included in two nonconjugate triads [Kollross 2009]. One of them has g00=D4×A3

1,
with quaternionic decomposition

E7 =
D4×A3

1 R($4)R($)R($
′′)

R($3)R($)R($
′) R($1)R($

′)R($ ′′)
⊕

σ2

σ1,

where $ , $ ′, and $ ′′ are the fundamental weights of the simple factors of A3
1, and

$i are fundamental weights of D4. Here dim gi j = 32 for (i j) 6= (00) and our test
commutator map is

ϕ : R($3)R($)R($
′)×R($1)R($

′)R($ ′′)→ R($4)R($)R($
′′).
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Using [Helgason 1978, Chapter X, Table VI], we find that rk(E7/D6 ×A1) = 4
and the restricted root system 9(E7/D6 × A1) is of type F4; whereas rk(D6 ×

A1/D4×A3
1)= rk(D6/D4×A2

1)= 4 and the corresponding root system is of type
B4. The long (resp. short) roots of B4 are also long (resp. short) roots of F4, and
the multiplicities are mlong = 1 and mshort = 4. However, the root system B4 has
fewer short roots than F4. Therefore, Proposition 5.1 applies here, and E has an
irreducible component of dimension at least mshort− 1+ dim g11 = 35.
Example 5.5. Let σ be an involution of g = F4 with gσ = B4 = so9. Up to
conjugacy, this involution can be included in a unique triad [Kollross 2009], with
quaternionic decomposition

F4 =
D4 R($4)

R($3) R($1)
⊕

σ2

σ1,

where dimR($i ) = 8 and the main diagonal represents the little involution of
gσ3 = B4 = so9. Our test commutator is the bilinear D4-equivariant mapping
R($3) × R($1)→ R($4). Here rk(F4/B4) = 1 and the restricted root system
9(F4/B4) is of type BC1. The restricted root system 9(B4/D4) is of type C1.
Since all little and big CSS are one-dimensional, Proposition 5.1 does not help here.
Actually, the only standard components of E are g10×{0} and {0}× g11, both of
dimension eight. Below, we describe an “intermediate” nonstandard irreducible
component of dimension eleven.

Let x ∈ g11 ' R($1) be a nonzero nilpotent element. All such elements form
a sole seven-dimensional SO8-orbit. By Lemma 1.1, dim SO9·x = 2·7 = 14 and
hence dim(so9)

x
= 22. The only nilpotent SO9-orbit of dimension fourteen in so9

is the orbit of short root vectors. The short roots of gσ3 = B4 are also short roots
of g= F4. Therefore, a minimal including regular semisimple subalgebra is Ã1 in
Dynkin’s notation. This implies that dim zg(x)= 30 and completely determines the
dimension matrix of the spaces zg(x)i j :

21 4

4 1
.

Here the one-dimensional space g11 is just the line kx . Then dim G00·(zg(x)10⊕ kx)
= 4+7= 11. Using the projection E→ g11, one can prove that G00·(zg(x)10⊕ kx)
is the only new irreducible component of E. It is contained in N10×N11. Thus, E
has three irreducible components.

6. Triads of Hermitian involutions and simple Jordan algebras

In this section, g is assumed to be simple. We say that σ ∈ Inv(g) is Hermitian if g0

is not semisimple. All these involutions are associated with Z-gradings of g with
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only three nonzero terms (short gradings), that is, with parabolic subalgebras with
abelian nilpotent radical. Let g= g(−1)⊕g(0)⊕g(1) be a short grading. Then p=

g(0)⊕ g(1) is a (maximal) parabolic subalgebra with abelian nilpotent radical, and
one defines a Hermitian involution σ by letting gσ = g(0) and g(σ )1 = g(−1)⊕g(1).

Since g is simple, the center of g(0) is one-dimensional and there is a unique
h ∈ g(0) such that g(i) = {x ∈ g | [h, x] = 2i x}. By [Vinberg 1976, §2.3], the
reductive group G(0) has finitely many orbits in g(1). Let O be the dense G(0)-orbit
in g(1) and e ∈ O. Set g(i)e = g(i)∩ ge.

For future reference, we provide a proof of the following well-known assertion.

Lemma 6.1. h ∈ [g, e] ⇐⇒ g(0)e is reductive.

Proof. (1) If h ∈ [g, e], then h = [e, f ] for some f ∈ g(−1) and therefore, {e, h, f }
is an sl2-triple. Then g(0)e = zg(e, h, f ), which is reductive.

(2) For e∈O, we have dim g(0)e=dim g(0)−dim g(1). Using the Kirillov–Kostant
form associated with e, we see that dim g(−1)−dim g(−1)e=dim g(0)−dim g(0)e.
Hence g(−1)e = 0 and ge

= g(0)e ⊕ g(1). Set k = g(0)e, and let ( )⊥ denote
the orthocomplement with respect to the Killing form. Then [g, e] = (ge)⊥ =

g(1)⊕ (k⊥∩g(0)). Now, if k is reductive, then the restriction of the Killing form to
k is nondegenerate and m := k⊥ ∩ g(0) is a k-stable complement to k in g(0). Since
dim[g(−1), e] = dim g(1) = dim g(0)− dim k, we conclude that m = [g(−1), e].
Thus, e acts on g as follows:{

g(−1)−→∼ m−→∼ g(1)→ 0

k→ 0.
(6-1)

Let {e, h̃, f } be an sl2-triple with h̃∈g(0) and f ∈g(−1). Such a triple always exists,
see [Vinberg 1979, §2]. Then (6-1) shows that g is a sum of three-dimensional and
one-dimensional sl2-modules, and that gh̃

= k⊕m. Since g(0) has a one-dimensional
center, one must have h̃ = h. Thus, h ∈ [g, e]. �

Theorem 6.2. Suppose that a Hermitian involution σ = σ1 has the property that
g(0)e is reductive. Then σ1 can be included in a triad.

Proof. Using the notation of the previous proof, we set k=g(0)e and take (the unique)
f ∈ g(−1) such that h = [e, f ]. Then {e, h, f } is an sl2-triple, [e, g(−1)] =:m is
a complementary k-submodule to k in g(0), and [e, [e, g(−1)]] = g(1). This also
shows that g(−1), m, and g(1) are isomorphic k-modules.

In this case, k is the fixed-point subalgebra of an involution of g(0) and for
this involution the (−1)-eigenspace is m (see [Panyushev 1994a, proof of Proposi-
tion 3.3]). Let σ2 denote this involution of g(0). Then σ2(h)=−h. We extend σ2 to
the whole of g by letting σ2(e)= f . Then σ2([x, e])= [−x, f ] for all x ∈m, which
defines σ2 on g(1) and shows that σ2(g(1))⊂ g(−1). Clearly, σ1 and σ2 commute.
Furthermore, σ1 and σ2 are different involutions of the three-dimensional simple
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subalgebra 〈e, h, f 〉. This implies that σ1, σ2, and σ3 = σ1σ2 are already conjugate
with respect to PSL2 = Aut〈e, h, f 〉. In particular, {σ1, σ2, σ3} is a triad. �

This theorem can be derived from the classification of triads, but our direct
construction allows us to visualize the resulting quaternionic decomposition rather
explicitly. We have

g=
k m

[m, e− f ] [m, e+ f ]
⊕

σ2

σ1. (6-2)

Here h ∈ m= g01, e+ f ∈ [m, e− f ] = g10, and e− f ∈ [m, e+ f ] = g11. Note
also that k⊕m= g(0) and [m, e− f ]⊕ [m, e+ f ] = g(1)⊕ g(−1).

Remark. If g(0)e is not reductive, then such a triad may not exist. For instance, if
g= sl2n and g0= slm×sl2n−m×t1 with n 6=m and m odd, then there is no respective
triad, see [Vinberg 2005, 3.2].

As is well known, if g(0)e is reductive, then g(−1) has a structure of a simple
Jordan algebra. Namely, for x, y ∈ g(−1), we set

x ◦ y = [x, [e, y]] ∈ g(−1).

Then {g(−1), ◦} is a simple Jordan algebra [Tits 1962; Kantor 1964]. (See also
[Kac 1980, §4] for possible generalizations). Here k = g00 is the Lie algebra of
derivations of {g(−1), ◦}. The triad constructed in Theorem 6.2 is called a Jordan
triad.

Definition 3. The commuting variety of a Jordan algebra {J, ◦} is

E(J)= {(x, y) | x ◦ y = 0} ⊂ J× J.

The Jordan triad (6-2) provides a link between the commutator mapping ϕ :
g10× g11→ g01 and the commuting variety of the simple Jordan algebra g(−1).

Theorem 6.3. The commuting variety of the Jordan algebra {g(−1), ◦} is isomor-
phic to the zero fiber of the commutator mapping ϕ : g10 × g11 = [m, e − f ] ×
[m, e+ f ] →m= g01.

Proof. Any element of m can uniquely be written as [x, e] with x ∈ g(−1). So, if
[x, e], [y, e] ∈m are arbitrary, then [[x, e], e− f ] ∈ g10 and [[y, e], e+ f ] ∈ g11 are
arbitrary and ϕ takes the corresponding pair to

[
[[x, e], e− f ], [[y, e], e+ f ]

]
∈

m= g01. It is a good exercise in the Jacobi identity to check that[
[[x, e], e− f ], [[y, e], e+ f ]

]
= 2

[
[[x, e], y], e

]
.
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(One should use the fact that h = [e, f ] is the defining element of the short grading.
Hence [[x, e], f ] = 2x , etc.) Since a = [[x, e], y] ∈ g(−1) and ge

∩g(−1)= 0, we
have [a, e] = 0 if and only if a = 0. Therefore,

([[x, e], e− f ], [[y, e], e+ f ]) ∈ ϕ−1(0) ⇐⇒ [[x, e], y] = 0

⇐⇒ (x, y) ∈ E(g(−1)). �

If J is a simple Jordan algebra, then the operator L x : J→ J, L x(y) = x ◦ y,
is invertible for almost all x . Therefore, J× {0} and {0} × J are two irreducible
components of E(J). Clearly, there are some other irreducible components. It is an
interesting problem to determine all the components of E(J) and their dimensions.

The list of Hermitian involutions leading to Jordan triads and simple Jordan
algebras is given in Table 1. We point out the semisimple subalgebra s=[g(0), g(0)]
and the structure of g(1) as a s-module. Here the $i are the fundamental weights
of s.

Remark. The Jordan multiplication in the space Skew2n of usual skew-symmetric
matrices is defined as follows. If A, B, J ∈ Skew2n and J is nondegenerate, then
A ◦ B = 1

2 (AJ B+ B J A).

There are some coincidences for small n. Namely,

Item 1 (n = 1)' Item 2 (n = 1), Item 1 (n = 2)' Item 4 (n = 3).

Furthermore, if n = 1 in Item 3, then g is not simple. This explains the conditions
on n given in the last column. For Item 2, the Hermitian involution (of sp2n) is of
maximal rank and the respective Jordan algebra is the algebra Symn of symmetric
n× n matrices. Therefore, by Theorems 4.1 and 6.3, the multiplication morphism
◦ : Symn × Symn→ Symn is equidimensional, that is, dimE(Symn)= dim Symn =

(n2
+ n)/2.

In all other cases, the multiplication morphism J×J→ J is not equidimensional,
see Proposition 6.5. Before checking this, we give an “elementary” explanation for
the Jordan algebra of all matrices (Item 1).

g s g(1) k J

1 sl2n sln⊕sln R($1)⊗R($
′

1) sln n×n matrices n>1
2 sp2n sln R(2$1) son symmetric n×n matrices n>2
3 so4n sl2n R($2) sp2n skew-symm. 2n×2n matrices n>2
4 son+2 son R($1) son−1 spin-factor n>4
5 E7 E6 R($1) F4 the Albert algebra

Table 1. List of Hermitian involutions leading to Jordan triads and
simple Jordan algebras.
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Example 6.4. Let M be the associative (and also Lie and Jordan) algebra of all
n × n matrices. That is, we exploit the usual matrix product, the Lie bracket
[A, B] = AB− B A, and the Jordan product A ◦ B = (AB+ B A)/2. Let χ(B)=
det(λI − B)=

∑
i χn−i (B)λi be the characteristic polynomial of a matrix B. Let

zJ(B) and zLie(B) denote the Jordan and Lie centralizers of B, respectively. Consider
the subvariety

M〈2〉 = {B ∈M | χ2i+1(B)= 0 for all i}.

It is an irreducible complete intersection and codimM〈2〉 = [n+1/2] (see [Richard-
son 1987, Lemma 5.3]). We also need the dense open subset Mreg of regular
elements (in the Lie algebra sense) and the subvariety

Mev
= {B ∈M | B is conjugate to −B}.

If B ∈Mev and AB A−1
= −B, then A ∈ zJ (B) and the mapping C ∈ zLie(B) 7→

AC ∈ zJ(B) is a linear isomorphism. In particular, dim zJ(B)= dim zLie(B). The
following is clear:

• M〈2〉 ∩Mreg
6=∅ (it contains a regular nilpotent element).

• Mev
⊂M〈2〉 and Mev

∩Mreg
6=∅.

Claim. We have M〈2〉 ∩Mreg
⊂ Mev. In particular, dim zJ (B) = n for almost all

B ∈M〈2〉.

Proof. If B ∈M〈2〉∩Mreg, then B and−B are both regular and have the same Jordan
blocks and the same eigenvalues. Hence B and −B are conjugate. �

Let EJ (M) denote the Jordan commuting variety and p : EJ (M) → M the
projection to the first factor. The previous analysis implies that

dim p−1(M〈2〉 ∩Mreg)= dimM〈2〉+ n = n2
+ [n/2].

Thus, dimEJ (M)>n2
+[n/2]>dimM. One can prove that this yields an irreducible

component of maximal dimension; that is, dimEJ (M)= n2
+ [n/2].

Table 2 contains information on the restricted root systems associated with Jordan
triads. For a Hermitian involution σ , we point out Lie algebras g, h= gσ , g00 = k,
the restricted root systems 9(G/H) and 9(H/G00), and the multiplicity of the
short roots in 9(G/H), denoted mshort. For all items in Table 2, the multiplicity
of long roots in 9(G/H) equals 1 and 9(H/G00) is embedded in 9(G/H) as a
subset of short roots.

The root system of type Cn has some short roots that are not roots of An−1.
Therefore, Proposition 5.1 guarantees the existence of a subvariety in E(J) of
dimension dim J+mshort− 1, which is larger than the dimension of a generic fiber
if mshort > 1. However, a clever choice of c̃⊂ c11 (see Remark 5.2(2)) allows us to
get a better lower bound on dimE(J):
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g h g00 9(G/H) mshort 9(H/G00)

1 sl2n sln ⊕ sln ⊕ t1 sln Cn 2 An−1

2 sp2n gln son Cn 1 An−1

3 so4n gl2n sp2n Cn 4 An−1

4 son+2 son ⊕ so2 son−1 C2 n− 2 A1

5 E7 E6⊕ t1 F4 C3 8 A2

Table 2. Restricted root systems associated with Jordan triads.

Proposition 6.5. For all items in Table 2, we have

dimE(J)> dim J+ (mshort− 1)[r/2],

where r is the rank of 9(G/H).

Proof. Using Theorem 6.3, we identify E(J) with the zero fiber of the quadratic
covariant g10× g11→ g10 and work in the setting of Section 5. Let ε1, . . . , εr be
the usual basis of X(C11)⊗Q such that the roots of 9(G/H) are ±εi ± ε j (i 6= j )
and ±2εi . The roots in 9(H/G00) are ±(εi − ε j ). Therefore, g10⊕ g01 is the sum
of root spaces corresponding to ±(εi + ε j ) and ±2εi . Set

c̃=
{

x ∈ c11
∣∣ (εi + εr+1−i )(x)= 0 for i = 1, 2, . . . ,

[r+1
2

]}
.

Then dim c̃ = [r/2], and we have 2[r/2] short roots of g10 ⊕ g01 vanishing on c̃.
Moreover, if r is odd, then the long roots ±2ε[r+1/2] also vanish on c̃. Therefore,

dim zg(c̃)10 =
1
2

dim(zg(c̃)∩ (g10⊕ g01))=

{
mshort·r/2 if r is even,
mshort·[r/2] + 1 if r is odd.

In both cases, this yields dim G00·(zg(c̃)10⊕ c̃)= dim g11+ (mshort− 1)[r/2]. �

For the Jordan algebra of all matrices (related to a Hermitian involution of
sl2n), the above construction of c̃ gives exactly the subvariety of Example 6.4. It
is plausible that the lower bound of Proposition 6.5 provides the exact value of
dimE(J).

Remark 6.6. It is curious that, for all Hermitian involutions leading to Jordan
triads, the restricted root system is of type Cn; whereas, for all other Hermitian
involutions, the restricted root system 9 is of type BCn . Namely, the symmetric
pairs gln+m ⊃ gln × glm × t1 (n < m) and so4n+2 ⊃ gl2n+1 lead to 9 ' BCn;
E6 ⊃ D5× t1 leads to 9 ' BC2.

Appendix: Computations in classical Lie algebras

Here we provide some computations related to the proof of Theorem 4.4 for nilpotent
elements in classical Lie algebras.
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Let λ= (λ1, . . . , λs) be a partition and e ∈ gln a nilpotent element corresponding
to λ, also denoted by e ∼ λ. Then

∑
λi = n and

dim(gln)
e
= n+ 2

∑
i< j

min{λi , λ j }, dim(sln)e = dim(gln)
e
− 1. (A.1)

If e is a nilpotent element in son or sp2n , with respective parity conditions on λ,
then

dim(sp2n)
e
=

dim(gl2n)
e
+ #{i | λi is odd}

2
, (A.2)

dim(son)
e
=

dim(gln)e− #{i | λi is odd}
2

. (A.3)

See [Hesselink 1976, (3.8); Kraft and Procesi 1982, 2.4]. Below, we consider several
symmetric pairs with classical g and check that (4-2) is satisfied for all nonzero
nilpotent elements of g0. There is no need to consider only noneven nilpotent
elements in g0, since the computations go through without this assumption.

A.1 (g,g0)= (sln, son). If e ∈ son and e ∼ λ, then using (A.1) and (A.3) yields

dim ge
0=

dim(gln)e− #{i | λi is odd}
2

, dim ge
1=

dim(gln)e+ #{i | λi is odd}
2

−1.

Therefore, dim ge
0−dim ge

1+(n−1)= n−#{i |λi is odd}. Here the parity condition
means that each even part of λ occurs an even number of times. Since e 6= 0, that
is, λ 6= (1, . . . , 1), the minimal value is 2, and it is attained for λ= (3, 1n−3).

A.2 (g,g0) = (sp2n,gln). If e ∈ gln and e ∼ λ, then the partition of e as an
element of sp2n is obtained by doubling λ, that is, each part λi is replaced with
(λi , λi ). Then dim ge

0 = dim(gln)e is given by (A.1), and using (A.2) yields

dim ge
1 = 2

∑
i

[
λi + 1

2

]
+ 2

∑
i< j

min{λi , λ j }.

Hence

dim ge
0− dim ge

1+ n = 2n− 2
∑

i

[
λi + 1

2

]
= n− #{i | λi is odd}.

For e 6= 0, the minimal value 2 is attained for λ= (2, 1n−2) or (3, 1n−3).

A.3 (g,g0)= (so2n,gln). If e ∈ gln and e∼ λ, then dim ge
0 = dim(gln)e is again

given by (A.1), using this time (A.3), and we obtain

dim ge
1 = 2

∑
i

[
λi

2

]
+ 2

∑
i< j

min{λi , λ j }.
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Hence the result is even better than in the previous case. Indeed, we have here
dim ge

0− dim ge
1 > 0.

A.4 (g,g0)= (sln+m, sln×slm×t1). Here n,m > 1. A nilpotent element e ∈ g0

is determined by two partitions, e ∼ (λ;µ)= ((λ1, . . . , λk); (µ1, . . . , µs)). Using
(A.1), we obtain

dim ge
0 = n+m− 1+ 2

∑
i< j

min{λi , λ j }+ 2
∑
i< j

min{µi , µ j },

dim ge
1 = 2

∑
i, j

min{λi , µ j }.

Therefore,

dim ge
0− dim ge

1+ (n+m− 1)

= 2
(

n+m− 1+
∑
i< j

min{λi , λ j }+
∑
i< j

min{µi , µ j }−
∑
i, j

min{λi , µ j }

)
.

Since n =
∑

i λi , m =
∑

j µ j , and
∑

i< j min{λi , λ j } =
∑

i>2(i − 1)λi , half of the
right-hand side equals

F(λ;µ) :=
k∑

i=1

iλi +

s∑
j=1

jµ j − 1−
k∑

i=1

s∑
j=1

min{λi , µ j }.

Arguing by induction, we prove that F(λ;µ)> 0 for all λ and µ, and if n+m > 3,
then F(λ;µ) > 0.

(1) First, F(1n
; 1m)= (n−m)2/2+(n+m)/2−1, which is positive if (n,m) 6= (1, 1).

(2) The inequality is easily verified, if λ or µ consists of only one part.

(3) Suppose that k > 2 and s > 2. Write λ= (λ1,λ
′) and µ= (µ1,µ

′). Then

F(λ;µ)=F(λ′;µ′)+max{λ1, µ1}+
∑
i>2

(λi−min{λi , µ1})+
∑
j>2

(µj−min{λ1, µj })

>F(λ′;µ′)+max{λ1, µ1}>max{λ1, µ1}.

Here max{λ1, µ1} arises as λ1+µ1−min{λ1, µ1}.
We omit the computations related to the remaining classical symmetric pairs

(sl2n, sp2n), (sp2n+2m, sp2n × sp2m), and (son+m, son × som).
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Nauk SSSR Ser. Mat. 40:3 (1976), 488–526. Translated as “The Weyl group of a graded Lie algebra”
in Math. USSR-Izv. 10 (1976), 463–495. MR 55 #3175 Zbl 0363.20035

[Vinberg 1979] È. B. Vinberg, “Klassifikaci� odnorodnyh nil~potentnyh �lementov
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