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Weil representation and transfer factor
Teruji Thomas

This paper concerns the Weil representation of the semidirect product of the
metaplectic and Heisenberg groups. First we present a canonical construction of
the metaplectic group as a central extension of the symplectic group by a subquo-
tient of the Witt group. This leads to simple formulas for the character, for the
inverse Weyl transform, and for the transfer factor appearing in J. Adams’s work
on character lifting. Along the way, we give formulas for outer automorphisms of
the metaplectic group induced by symplectic similitudes. The approach works
uniformly for finite and local fields.

1. Introduction

1.1. This paper presents some calculations related to the character of the Weil
representation. This representation has a fundamental role in the representation
theory of the symplectic group and in many related contexts. Before explaining the
results, let us recall the classical theory as explained by Lion and Vergne [1980].

Let V be a finite-dimensional vector space, with symplectic form ω. The ground
field may be any finite or local field F of characteristic not 2; for example, most
classically, F could be the real numbers. Let Sp(V ) be the corresponding symplectic
group, that is, the group of automorphisms of V preserving ω. Choose a nontrivial,
continuous group homomorphism ψ : F→U (1)⊂C×; for example, in the case of
the real numbers, one may take ψ(x)= ei x . Choose also a Lagrangian subspace
`⊂ V . From the data (ψ, `), one constructs a central extension

1→ Z F →Mpψ,`(V )→ Sp(V )→ 1. (1)

Mpψ,`(V ) is known as “the” metaplectic group; as we will see, it is essentially
independent of ψ and `. In the special case when F is C or a finite field,1 the
central factor Z F is trivial, so that Mpψ,`(V ) is nothing but the symplectic group
Sp(V ); in all other cases, Z F = Z2 = {±1}, and the extension is nontrivial. For
example, when F = R, Mpψ,`(V ) is the unique connected double cover of Sp(V ).

MSC2010: primary 11F27; secondary 20C15.
Keywords: metaplectic group, Weil representation, Weyl transform, transfer factor, Cayley transform,

Maslov index.
1See Section 1.5.2 for more simplifications in these cases.
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The construction of Mpψ,`(V ) goes hand-in-hand with the construction of a
unitary representation ρψ,`Mp , known as the Weil representation (also as the oscillator
or metaplectic representation). One starts from the Heisenberg group H(V ), which
is a central extension of V by F as additive groups; thus

H(V )= V × F (as a set).

Associated to the data (ψ, `) is an irreducible unitary representation ρψ,`H of H(V )
whose restriction to the center F ⊂ H(V ) is ψ (it is, up to nonunique isomorphism,
the unique such representation, but its construction depends also on `). Meanwhile,
the natural action of Sp(V ) on V defines a semidirect product Sp(V ) n H(V ).
The central extension Mpψ,`(V ) is defined so that ρψ,`H naturally extends to a
representation ρψ,` of the covering group Mpψ,`(V )n H(V ). Its restriction to
Mpψ,`(V ) is the Weil representation ρψ,`Mp .

1.2. A number of people have recently studied the character Tr ρψ,`, defined to be
the generalized function on Mpψ,`(V )n H(V ) whose integral against any smooth,
compactly supported measure h on Mpψ,`(V )n H(V ) is∫

h ·Tr ρψ,` = Tr
(∫

h · ρψ,`
)
. (2)

(The right-hand side is the trace of a trace-class operator — see Remark 5.3.1.) The
studies mentioned make some restrictions, focusing on Mpψ,`(V ) (e.g., [Thomas
2008]), or on some open subset (e.g., [Maktouf 1999; Gurevich and Hadani 2007]),
and/or making a particular choice of field (e.g., [de Gosson and Luef 2009] for
the reals, [Gurevich and Hadani 2007; Prasad 2009] for finite fields). This article
completes the project in the following ways.

(A) The different metaplectic groups Mpψ,` corresponding to varying data (ψ, `)
are canonically isomorphic. The first task is to construct an extension

1→ Z F →Mp(V )→ Sp(V )→ 1 (3)

isomorphic to (1), but defined without any reference to ψ and `. Using this
canonical construction, we give explicit formulas for the isomorphisms between
the various groups Mpψ,`(V ). As a by-product, we find explicit formulas for
the conjugation action of GSp(V ) on Mp(V ) and Mpψ,`(V ).

(B) Because of (A), every Weil representation ρψ,` can be considered as a represen-
tation of the single group Mp(V )n H(V ). We give a formula for the character
Tr ρψ,` as a generalized function on Mp(V ) n H(V ). The isomorphisms
described in (A) allow easy translation of this character formula to other
versions of the metaplectic group.
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(C) The answer to (B) also yields explicit formulas for the “invariant presentation”,
or inverse Weyl transform, of ρψ,`Mp ; this is (roughly speaking) a homomorphism
from Mp(V ) into the ψ-coinvariant group algebra of H(V ).

(D) Writing ρψ,`Mp = ρ
ψ,`
+ ⊕ρ

ψ,`
− as the direct sum of two irreducibles, we calculate

the character of the virtual representation ρψ,`+ − ρ
ψ,`
− (which then determines

the characters of ρψ,`+ and ρψ,`− separately). This is a generalized function
on Mp(V ). Over a finite field, the method leads naturally to a “geometric”
version of this virtual character, in the sense of Grothendieck’s sheaf-function
dictionary.

The virtual character in (D) plays a key role in Jeff Adams’s theory [1998] of
character lifting between metaplectic and orthogonal groups, which provides one
of my main motivations for studying this subject.

Remark 1.2.1. The method for (B) is closely related to Roger Howe’s wonderful
unpublished notes [1973], and some similar ideas have been exploited by Gurevich
and Hadani [2007] over finite fields, and de Gosson and Luef [2009] over the reals.
In particular, the work of de Gosson ([op. cit.] and references therein) gives a very
nice, and closely related, character formula in terms of the Conley–Zehnder index
of paths in the real symplectic group.

1.3. Results. (A) The construction of the canonical metaplectic extension (3) pro-
ceeds in two steps, which make sense for any field F of characteristic not 2. The
details are given in Section 2; here we outline the basic features, to fix our notation.
First we define a central extension

0→W (F)/I 3
→ M(V )→ Sp(V )→ 1

where W (F) is the Witt ring of quadratic spaces over F , and I ⊂ W (F) is the
ideal of even-dimensional quadratic spaces (see Section A.1 in the Appendix). This
construction is by means of a cocycle, so that

M(V )= Sp(V )×W (F)/I 3 as a set.

Second, we define Mp(V ) to be a certain subgroup of M(V ). In short, Mp(V ) is
the unique subgroup extending Sp(V ) by I 2/I 3:

0→ I 2/I 3
→Mp(V )→ Sp(V )→ 1. (4)

It turns out (see Theorem A.2) that, for a finite or local field, we can identify
I 2/I 3 with the group Z F , thus obtaining (3) as a special case. Concretely, for each
g ∈ Sp(V ), define a bilinear form σg on (g− 1)V by the formula

σg((g− 1)x, (g− 1)y)= ω(x, (g− 1)y) for all x, y ∈ V .
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Then σg is nondegenerate as a bilinear form, but, in general, asymmetric. It
nonetheless has a rank dim σg = dim(g−1)V and discriminant det σg ∈ F×/(F×)2.
This is enough to determine a class [σg] in W (F)/I 2 — the class of quadratic
spaces with the same rank modulo 2 and the same signed discriminant as σg (see
Section A.1). The definition of Mp(V ) is as follows:

Mp(V )= {(g, q) ∈ M(V ) | q = [σg] mod I 2/I 3
}.

In Proposition 2.4 we show that this definition makes Mp(V ) into a subgroup of
M(V ), and therefore obviously an extension of Sp(V ) by I 2/I 3.

In Section 2.6 we also recall the construction of Mpψ,`(V ) from [Lion and Vergne
1980] — this construction requires F to be finite or local. In Section 3 we describe
canonical isomorphisms Mp(V )→Mpψ,`(V ). They are “canonical” in the sense
of being unique as isomorphisms of central extensions; see Section 3.1.

Remark 1.3.1. The idea of constructing an extension by I 2/I 3 comes from [Pari-
mala et al. 2000] (using, however, a choice of Lagrangian `⊂ V ; see Section 2.7.1
for a synopsis). It also follows from the work of Suslin [1987] that these extensions
can be characterized by a universal property; see Remark 2.5.1.

Remark 1.3.2. The Weil representation (which, again, is defined only when F is
a finite or local field) can be extended very naturally to a representation of M(V )
rather than Mp(V ), and practically all the results stated herein for Mp(V ) hold
also for M(V ). However, we will continue to refer primarily to Mp(V ), to connect
better with the literature.

(B) For the rest of this introduction, we take F to be a finite or local field, so that ρψ,`

is defined (we recall the definition in Section 4). We consider it as a representation
of Mp(V )n H(V ). To describe its character, we need some further notation.

Notation. Let γψ :W (F)/I 3
→ C× be the Weil index (see Section A.3, especially

A.4.1(d)). For any g∈Sp(V ), let Qg be the associated Cayley form: it is a symmetric,
usually degenerate, bilinear form on (g− 1)V defined by

Qg((g− 1)x, (g− 1)y) := 1
2ω((g+ 1)x, (g− 1)y) for all x, y ∈ V .

Some further comments about the Cayley form are given in Section A.6.
Finally, let µσg be the Haar measure on (g−1)V self-dual with respect to ψ ◦σg,

and µV the Haar measure on V self-dual with respect to ψ ◦ω (see Section A.3.1 for
conventions on measures). Define a generalized function Dψ

g on V by the equation∫
V

f Dψ
g µV =

∫
(g−1)V

f µσg (5)

for all compactly supported, smooth functions f on V .
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If F is a finite field, then this definition amounts to the following: Dψ
g is the

function on V supported on (g−1)V and equal there to the constant
√

# ker(g− 1).
When F is infinite, we just have Dψ

g (v)= ‖det(g− 1)‖−1/2 if det(g− 1) 6= 0 (and,
as standard, we choose the norm ‖ · ‖ on F× such that d(ax) = ‖a‖ dx for any
translation-invariant measure dx on F).

Theorem B (character formula). For fixed (g, q) ∈Mp(V ), the character

Tψ

(g,q)(v, t) := Tr ρψ,`(g, q; v, t)

is a well-defined generalized function of (v, t) ∈ H(V ), supported on (g−1)V × F ,
and given by

Tψ

(g,q)(v, t)= ψ
( 1

2 Qg(v, v)
)
· Dψ

g (v) · γψ(q) ·ψ(t).

The main part of the proof, using the Weyl transform, is given in Section 5. Note
that the right-hand side is manifestly independent of `, reflecting the independence
of ρψ,` up to nonunique isomorphism.

Theorem B can be read as a formula for a locally integrable function2 on

Mp(V )n H(V )

representing Tr ρψ,`, but it says something more precise. The point is that, when F
is infinite, Tr ρψ,` is smooth almost everywhere, but “blows up” on the locus where
det(g − 1) = 0. Theorem B gives a natural extension of Tr ρψ,` to that singular
locus — “natural” in the sense that it satisfies Theorem C below.

If we are only interested in the representation ρψ,`Mp of Mp(V ) then Theorem B
takes on the following simple form. Let

D0(g) :=
√

#V g or D0(g) := ‖det(g− 1)‖−1/2

depending on whether F is finite or infinite. Here V g
:= ker(g− 1).

Corollary 1.4 (restriction to Mp(V )). As generalized functions of (g, q) ∈Mp(V ),

Tr ρψ,`Mp (g, q)= D0(g) · γψ(q).

The extreme simplicity of this formula suggests that the cocycle we have used to
define Mp(V ) is the natural one in this context. In particular, it is much better than
the formula we developed in [Thomas 2008]. (In Remark 2.8.2 we explain how the
thing called Mp(V ) in that work is related to the present one.)

2That is, for F infinite, Dψg (v) = ‖det(g − 1)‖−1/2 for almost all (g, v) ∈ Sp(V ) × V , and
(g, q, v, t) 7→ψ( 1

2 Qg(v, v))·‖det(g−1)‖−1/2
·γψ (q)·ψ(t) is locally integrable on Mp(V )nH(V ):

the modulus is just ‖det(g − 1)‖−1/2, so that the singularities of order k/2 lie in subspaces of
codimension at least k.
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(C) The formula of Theorem B also makes explicit the “invariant presentation” of
the Weil representation emphasized, for example, in [Gurevich and Hadani 2007].
Let us recall that description. Let Aψ be the L2-completion of the ψ-coinvariant
group-algebra of H(V ). In more detail, we consider functions on H(V ) that
transform by ψ under the action of the center F ⊂ H(V ); these can be identified
(by restriction) with functions on V . With that in mind, we define Aψ to consist
of all complex L2 functions on V , equipped with the “convolution” multiplication
induced by the multiplication on H(V ):

( f1 ? f2)(x) :=
∫
v∈V

f1(v) ψ
( 1

2ω(v, x)
)

f2(x − v)µV .

(Here µV again denotes the Haar measure on µV that is self-dual with respect
to ψ ◦ ω.) It is well known, and we prove in Proposition 5.2, that there is an
isomorphism Wψ,` from Aψ to the algebra of Hilbert–Schmidt operators on the
representation space of ρψ,`. This Wψ,` is called the Weyl transform.

Theorem C. For any f ∈Aψ , the convolution Tψ

(g,q) ? f is well-defined and lies in
Aψ , and

Wψ,`(Tψ

(g,q) ? f )= ρψ,`(g, q) ◦Wψ,`( f ).

Theorem C may be restated more transparently when F is a finite field: it says
that the map (g, q) 7→ Tψ

(g,q) is a multiplicative homomorphism Mp(V )→Aψ , and
Wψ,`(Tψ

(g,q))= ρ
ψ,`(g, q).

Versions of Theorem C are well known (see for example [Gurevich and Hadani
2007, §1.2; Howe 1973, Theorem 2.9]), so the new aspect is the explicit formula
provided by Theorem B; nonetheless, we will find it convenient and easy to prove
Theorem C in Section 6.

(D) The representation space of ρψ,` can be understood as the space of L2 functions
on V/`. One has a decomposition

ρ
ψ,`

Mp = ρ
ψ,`
+ ⊕ ρ

ψ,`
−

into irreducibles, where ρψ,`+ acts on the subspace of even functions, and ρψ,`− on
the subspace of odd ones. In Section 7 we give two proofs of the following result.

Theorem D. As generalized functions of (g, q) ∈Mp(V ),

Tr
(
ρ
ψ,`
+ − ρ

ψ,`
−

)
(g, q)= γψ(Qg) ·Tr ρψ,`Mp (−g, q).

Again, the right-hand side in Theorem D is manifestly independent of `.

Remark 1.4.1. One knows on general grounds that the characters Tr ρψ,`± are well-
defined (see [Harish-Chandra 1954] for the real case and [Sliman 1984, Theorem
1.2.3] for admissibility in the nonarchimedean case).
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Geometrization. Suppose that F = Fq is a finite field.3 In this situation, the cen-
tral extension (7) is split, so that we may consider ρψ,` as a representation of
Sp(V )n H(V ). We can also consider Sp(V )n H(V ) as the Fq-points of a group
scheme G = Sp(V )n H(V ). Gurevich and Hadani [2007] have constructed an
irreducible perverse sheaf K on G corresponding (under Grothendieck’s sheaf-
function dictionary) to the character Tr ρψ,`. The proof of Theorem D (specifically
(33)) shows that there is, as well, an irreducible perverse sheaf K′ on G whose pull-
back to Sp(V ) corresponds to the virtual character Tr

(
ρ
ψ,`
+ − ρ

ψ,`
−

)
; namely, K′ is

just the Fourier–Deligne transform of K along V with respect to the pairing ψ ◦ 1
2ω.

Remark 1.4.2. The fact (33) that Tr
(
ρ
ψ,`
+ −ρ

ψ,`
−

)
is related to Tr ρψ,` by a Fourier

transform explains the relationship between Theorem B and Theorem D: recall
(Theorem A.4) that the γψ(Qg) appearing in Theorem D is itself related by Fourier
transform to the ψ ◦ 1

2 Qg appearing in Theorem B.

1.5. Remarks.

1.5.1. Dependence on ψ . Let us briefly clarify the dependence of our results on the
character ψ . For any chosen ψ , any other nontrivial additive character is uniquely
of the form ψa(x)=ψ(ax), with a ∈ F×. The isomorphism class of ρψa,`

Mp depends
only on the class of a modulo (F×)2. For (g, q) ∈Mp(V ), we have

γψa (q)= γψ(q) · (γψ(a)/γψ(1))
dim(g−1)V (a, det σg)H

where ( · , · )H is the Hilbert symbol (see Lemma 3.13 and Section A.1.2). Moreover,
Dψa

g = Dψ
g · ‖a‖−(dim V g)/2 (see Section A.3.1).

1.5.2. Special fields. The framework presented here gives a uniform treatment for
any choice of field F . However, some simplifications are possible, case by case.

When F =C, the central factor Z F is trivial, and both γψ and the Hilbert symbol
always equal 1. When F is finite, Z F is again trivial. This means that for each g,
there is a unique q ∈W (F)/I 3 with (g, q) ∈Mp(V ). One has

γψ(q)= γψ(1)dim(g−1)V−1γψ(det σg).

Moreover, the Hilbert symbol always equals 1, γψ takes values in the fourth roots of
unity Z4 (or even Z2 if −1 is a square), and the common expression γψ(a)/γψ(1)
equals 1 if a is a square, and −1 if not.

2. Metaplectic cocycles

In this section we construct the canonical metaplectic extension (4), which exists
for any field of characteristic not 2. We also recall the traditional construction (1)

3Lafforgue and Lysenko [2009] have also considered a geometric version of the even part of the
Weil representation over a local field Fq ((t)).
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in Section 2.6, which makes sense only for a finite or local field, and depends on
the choice of a Lagrangian ` and a character ψ . In Section 2.7 we examine these
choices more closely. This will allow us to give explicit isomorphisms between all
these various incarnations of the metaplectic group in Section 3.

The key tools are the Maslov index τ and the Weil index γψ . The relevant facts
and notation concerning these objects are recalled in Appendix A.

2.1. Generalities. Suppose that G is a group and A an abelian group, written
additively; by a 2-cocycle c : G×G→ A we mean a function such that

c(g, g′)− c(g, g′g′′)+ c(gg′, g′′)− c(g′, g′′)= 0 and c(1, 1)= 0. (6)

Given such a 2-cocycle, define G̃ = G× A as a set, with a multiplication operation

(g, a)(g′, a′) := (gg′, a+ a′+ c(g, g′)).

Then it follows from (6) that G̃ is a group, with A as a central subgroup, and
G = G̃/A. In other words, we have constructed a central extension

0→ A→ G̃→ G→ 1.

Now let us apply this construction to various 2-cocycles, with G = Sp(V ).

2.2. The canonical cocycle. Here we allow F to be any field (but always of char-
acteristic not 2). Let V be the symplectic vector space (V,−ω). Then for each
g ∈ Sp(V ), the graph 0g = {(x, gx) ∈ V ⊕ V } is a Lagrangian subspace of V ⊕ V .
Define

c(g, h)= τ(01, 0g, 0gh)

for g, h ∈ Sp(V ).

Lemma 2.3. The function c : G×G→W (F) is a 2-cocycle.

Proof. The left-hand side of (6) is

τ(01, 0g, 0gg′)− τ(01, 0g, 0gg′g′′)+ τ(01, 0gg′, 0gg′g′′)− τ(01, 0g′, 0g′g′′).

The last term is −τ(0g, 0gg′, 0gg′g′′), applying A.5(d) to 1 ⊕ g ∈ GL(V ⊕ V ).
Thus the sum is a sum over the faces of the following tetrahedron, with each
face contributing the Maslov index of its vertices, in the manner explained in
Section A.5.2.

01 0g

0gg′ 0gg′g′′ .

The sum therefore vanishes. �
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From now on we reduce the values of c modulo I 3, where (as explained in
Section A.1), I ⊂W (F) is the ideal of even-dimensional quadratic spaces.4 Thus
we obtain the following definition.

Definition 2.3.1. Let M(V ) be the central extension

0→W (F)/I 3
→ M(V )→ Sp(V )→ 1 (7)

defined by the cocycle c.

Remark 2.3.2. When F is a local field, M(V ) has a natural topology, as described
in Remark 2.8.3 below.

2.3.3. Reduction to I 2/I 3. We now construct Mp(V ) as a subgroup of M(V ),
fitting into a central extension

0→ I 2/I 3
→Mp(V )→ Sp(V )→ 1. (8)

When F is a finite or local field, I 2/I 3
= Z F (see Theorem A.2), yielding the central

extension (3).

Definition 2.3.4. Let σg be the nondegenerate bilinear form on (g− 1)V defined5

by
σg((g− 1)x, (g− 1)y)= ω(x, (g− 1)y) for all x, y ∈ V .

Let [σg] be the class in W (F)/I 2 generated by quadratic spaces with the same
rank mod 2 and the same signed discriminant as σg; see Remark A.1.1. Let
Mp(V )⊂ M(V ) be the subset of pairs (g, q) such that q = [σg] mod I 2/I 3.

We will have constructed a central extension (8) if we can prove this:

Proposition 2.4. Mp(V ) is a subgroup of M(V ).

Proof. We use the calculation of the rank and discriminant of the Maslov index
described in Section A.5.1. Write αg = (1, g) : 01 → 0g. Choose a nonzero
o1 ∈ det(01), and let og = αg(o1) ∈ det(0g). Let us calculate Q(0g, og;01, o1),
as defined in Section A.5.1. Using α = α−1

g , this is the class in W (F)/I 2 of the
bilinear form

q(x, gx; y, gy)= ω(x, gy)−ω(x, y)= ω(x, (g− 1)y)

4The reduction modulo I 3 is not crucial. We could deal with extensions of Sp(V ) by W (F) and
I 2 rather than W (F)/I 3 and (as below) I 2/I 3. However, it is convenient that for finite and local
fields, we can identify I 2/I 3 with the group Z F (see Theorem A.2; in fact, I 3

= 0 for all finite or
local fields other than R). The reduction modulo I 3 is also necessary for Proposition 3.16.

5To see that σg is well defined, suppose that (g− 1)x = 0. The claim is that ω(x, (g− 1)y)= 0.
By direct calculation, ω(x, (g − 1)y) = −ω((g − 1)x, gy) = −ω(0, gy) = 0. To see that σg is
nondegenerate, observe that if, for some (g− 1)y and all (g− 1)x , σg((g− 1)x, (g− 1)y)= 0, then
ω(x, (g− 1)y)= 0 for all x , whence (g− 1)y = 0 by the nondegeneracy of ω.
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pairing (x, gx) and (y, gy) ∈ 0g/0g ∩01. But (x, gx) 7→ (g− 1)x is an isometry
between (0g/0g ∩01, q) and ((g− 1)V, σg). Therefore

Q(0g, og;01, o1)= [σg] ∈W (F)/I 2.

Now, according to (34) and the preceding discussion,

τ(01,0g,0gg′)= Q(0gg′,ogg′;01,o1)+ Q(01,o1;0g,og)+ Q(0g,og;0gg′,ogg′)

= Q(0gg′,ogg′;01,o1)− Q(0g,og;01,o1)− Q(0g′,og′;01,o1)

(all modulo I 2) and therefore, by our calculation,

τ(01, 0g, 0gg′)= [σgg′] − [σg′] − [σg] mod I 2. (9)

This is exactly the condition for Mp(V ) to be closed under multiplication. �

2.4.1. Uniqueness. Before proceeding, note that in fact Mp(V ) is the unique sub-
group of M(V ) such that the projection to Sp(V ) makes it a central extension of
Sp(V ) by I 2/I 3. Indeed, the following general statement applies.

Lemma 2.5. Suppose that G̃ is a central extension of Sp(V ) by an abelian group
A. For any subgroup B ⊂ A such that A/B has no 3-torsion, there is at most one
subgroup G̃ ′ ⊂ G̃ such that the given projection G̃ ′ → Sp(V ) is surjective with
kernel B.

In our case, A =W (F)/I 3 and B = I 2/I 3; the lemma applies because A/B =
W (F)/I 2 has only 2-primary torsion (being isomorphic to the group W0(F) de-
scribed in Section A.1). In fact, W (F) itself, and therefore any subquotient, has
only 2-primary torsion; see [Lam 2005, Chapter 8, Theorem 3.2].

Proof of Lemma 2.5. Suppose that G̃ ′ and G̃ ′′ are two such subgroups. Then for
each g ∈Sp(V ) there exists f (g)∈ A such that (g, a)∈ G̃ ′ ⇐⇒ (g, a+ f (g))∈ G̃ ′′.
Moreover, f (g) is unique modulo B, and f is a homomorphism Sp(V )→ A/B.
Thus it is enough to prove that there is no nontrivial homomorphism Sp(V )→ A/B.
In fact, Sp(V ) is perfect unless V ∼= F2

3; see [Grove 2001, Propositions 3.7–3.8].
In that exceptional case, the abelianization of Sp(V ) is cyclic of order 3 (one can
compute that Sp(V )∼= SL2(F3) has 24 elements, and that the commutator subgroup
is the unique subgroup of order 8). Since, by assumption, A/B has no 3-torsion,
any homomorphism Sp(V )→ A is trivial. �

Remark 2.5.1. The metaplectic extension Mp(V ) of Sp(V ) by I 2/I 3 also has a
universal property, which can be deduced from the work of Suslin [1987]. Namely,
the metaplectic extension of Sp2n(F) is the universal central extension that extends
to SL2n(F) and splits over SLn(F).
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2.6. The traditional cocycle. Now we assume that F is finite or local, which allows
us to use the Weil index γψ (see Section A.3).

That is, for chosen Lagrangian subspace `⊂ V and nontrivial additive character
ψ : F→ C×, define

cψ,`(g, g′)= γψ(τ (`, g`, gg′`)).

Then cψ,` is a 2-cocycle with values in the group Z8 ⊂ C× of eighth roots of unity
(as can be proved in parallel to Lemma 2.3).

Definition 2.6.1. Define a central extension

1→ Z8→ Mψ,`(V )→ Sp(V )→ 1 (10)

using the cocycle cψ,`.

2.6.2. Reduction to Z F . We now construct Mpψ,`(V ) as a subgroup of Mψ,`(V ),
fitting into a central extension

1→ Z F →Mpψ,`(V )→ Sp(V )→ 1. (11)

We use the notation of Section A.5.1. Choose an orientation o ∈ det(`), and,
for each g ∈ Sp(V ), let go be the corresponding orientation of g`. The class
Q(g`, go; `, o) ∈W (F)/I 2 is independent of the choice of o.

Definition 2.6.3. Let Mpψ,`(V )⊂ Mψ,`(V ) be the subset of pairs (g, ξ) with

ξ = γψ(Q(g`, go; `, o)) mod Z F .

(Recall that Q(g`, go; `, o) is defined modulo I 2, and that γψ(I 2) = Z F ; see
Property A.4.1(d).)

It follows easily from (34) that Mpψ,`(V ) is a subgroup of Mψ,`(V ); indeed, by
Lemma 2.5, it is the unique subgroup yielding a central extension of Sp(V ) by Z F .

Remark 2.6.4. The definition of Mpψ,`(V ) can be unwound a bit to give a standard
formula, as follows. For each g ∈ Sp(V ), choose a basis (q1, . . . , qn) of ` and
a basis (p1, . . . , pm, qm+1, . . . , qn) of g`, such that (qm+1, . . . , qn) is a basis for
`∩ g` and ω(pi , q j )= δi j . Let θ`(g) ∈ F× be the scalar such that

gqq ∧ · · · ∧ gqn = θ
`(g)(p1 ∧ · · · ∧ pm ∧ qm+1 ∧ · · · ∧ qn)

in det(g`). The class of θ`(g) in F×/(F×)2 is independent of the bases. Then
Mpψ,`(V )⊂ Mψ,`(V ) is the subset of pairs (g, ξ) with

ξ = γψ(1)dim(`/`∩g`)−1γψ(θ
`(g)) mod Z F .

Indeed, this follows from Section A.4.1(c): dim(`/` ∩ g`) and θ`(g) are just
the rank and discriminant of the quadratic form used to define Q(g`, go; `, o) in
Section A.5.1.
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Remark 2.6.5. For a brief history of this construction of the metaplectic group and
the related calculation of the cocycle of the Weil representation, see the bibliograph-
ical note in [Lion and Vergne 1980].

2.7. Intermediate cocycles. The transition from Mp(V ) to Mpψ,`(V ) involves two
choices: that of the Lagrangian ` ⊂ V , and that of the character ψ . To clarify
the relationship between the different versions of the metaplectic group, we now
examine these choices separately.

2.7.1. Choice of Lagrangian. The definitions follow the same pattern as before,
and make sense for any F .

Definition. Let M`(V ) be the central extension

0→W (F)/I 3
→ M`(V )→ Sp(V )→ 1 (12)

defined by the cocycle
c`(g, h)= τ(`, g`, gh`).

Definition [Parimala et al. 2000]. Let Mp`(V ) ⊂ M`(V ) be the subset of pairs
(g, q) such that q = Q(g`, go; `, o) mod I 2 (in the notation of Definition 2.6.3).
In other words, q has rank n := dim(`/` ∩ g`) mod 2 and signed discriminant
(−1)n(n−1)/2θ`(g) (in the notation of Remark 2.6.4).

With this definition, one can show that Mp`(V ) is a subgroup of M`(V ), and,
indeed, it is the unique (cf. Section 2.4.1) subgroup of M`(V ) yielding a central
extension

0→ I 2/I 3
→Mp`(V )→ Sp(V )→ 1. (13)

Remark 2.7.2. The following relationship is crucial to the proof of Theorem B.
As in Section 2.2, let V be the symplectic vector space (V,−ω). Then the map
M(V )→ M01(V ⊕V ) given by (g, q) 7→ (1⊕ g, q) is a homomorphic embedding
(and, by Section 2.4.1, it embeds Mp(V ) into Mp01(V ⊕ V )). All of what we have
said about Mp(V ) can thereby be reduced to facts about Mp01(V ⊕ V ).

2.7.3. Choice of an additive character. Here we assume that F is finite or local.

Definition. Define a central extension

1→ Z8→ Mψ(V )→ Sp(V )→ 1 (14)

using the cocycle
cψ(g, g′)= γψ(τ (01, 0g, 0gg′)).

We again construct a subgroup Mpψ(V )⊂Mψ(V ) fitting into a central extension

1→ Z F →Mpψ(V )→ Sp(V )→ 1 (15)
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and this subgroup is again unique, by Lemma 2.5.

Definition. Let Mpψ(V )⊂ Mψ(V ) be the subgroup consisting of pairs (g, ξ) with
ξ = γψ([σg]) mod Z F . Equivalently (using Section A.4.1(c)), the requirement is
that

ξ = γψ(1)dim(g−1)V−1γψ(det σg) mod Z F .

2.8. Remarks.

Remark 2.8.1. Given the existence of a unique isomorphism I 2/I 3
→ Z F (Theorem

A.2) when F is finite or local, the introduction of a character ψ may seem entirely
extraneous to the construction of the metaplectic group. Indeed, its use is motivated
by the Weil representation, which may be considered as a representation of Mψ(V )
(or Mψ,`(V )) in which the central factor Z8 acts by scalar multiplication.

Remark 2.8.2. Let us explain the relationship between the present constructions
and the version of the metaplectic group used in [Thomas 2008] (which considered
only finite and local fields). Let Gr(V ) be the set of all Lagrangian subspaces
` ⊂ V . As we explain in the next section, there is a canonical isomorphism
δ
ψ

``′ :Mpψ,`(V )→Mpψ,`
′

(V ) for every pair `, `′ ∈ Gr(V ). Then

G =
{
(g`) ∈

∏
`∈Gr(V )

Mpψ,`(V )
∣∣∣∣ δψ``′(g`)= g`′ for all `, `′ ∈ Gr(V )

}
is a group under component-wise multiplication, with the obvious projections
making G isomorphic to each Mpψ,`(V ). This G is essentially what was called
Mp(V ) in [Thomas 2008, Definition 5.2]. By construction, it does not depend on
any particular choice of ` ∈ Gr(V ); one could, of course, remove the apparent
dependence on ψ by a similar trick.

Remark 2.8.3. Suppose that F is a local field. It is well-known that Mpψ,`(V ) is
naturally a topological covering group of Sp(V )— the topology is the one that makes
the Weil representation continuous. Since, as explained in the next section, Mp(V )
and Mpψ,`(V ) are canonically isomorphic, this defines a topology on Mp(V ), which
can be extended in a unique way to M(V ), making M(V ) a covering group of
Sp(V ) as well. It is interesting to describe this topology more explicitly, by giving
an open neighborhood U of the identity (1, 0)∈M(V ) that maps homeomorphically
onto its image in Sp(V ). It turns out we can take

U = {(g, q) ∈ M(V ) | ker(g+ 1)= 0, q =−Qg mod I 3
}.

For example, this means that the formula in Theorem D is continuous at (1, 0).
For an analogous description of the topology of Mpψ,`(V ), see [Thomas 2008,
Proposition 5.3].



1548 Teruji Thomas

3. Isomorphisms between metaplectic groups

In this section, we describe isomorphisms between the different versions of the
metaplectic group that were introduced in Section 2. First we consider the choice
of Lagrangian, describing canonical (see Section 3.1) isomorphisms that fit into a
commutative diagram (omitting V from the notation):

M`
α`ψ
//

δ``′

��

Mψ,`

δ
ψ

``′

��

M

αψ

@@

α` 77

α`′

''

Mψ .

α
ψ
`hh

α
ψ

`′

vv

M`′
α`
′

ψ
// Mψ,`′

(The dotted arrows are homomorphisms, not isomorphisms, but all the maps shown
restrict to isomorphisms between the various groups Mp•(V ).) Next we consider
the choice of additive character, describing a commutative diagram of canonical
isomorphisms:

Mψ
α
ψ

`
//

δψψ ′

��

Mψ,`

δ`
ψψ ′

��

M

α`

??

αψ 77

αψ ′

''

M`

α`ψhh

α`
ψ ′

vv

Mψ ′
α
ψ ′

`
// Mψ ′,`.

Finally, we describe canonical actions of GSp(V ) on M(V ) and Mψ,`(V ) that
cover the action by conjugation on Sp(V ).

As in Section 2, objects labeled by the character ψ are defined only when F is a
finite or local field; objects that do not involve ψ make sense more generally.

3.1. In the above overview, we used the word “canonical” to mean “unique” in the
following sense. If G̃ and G̃ ′ are central extensions of a group G by an abelian
group A, then “an isomorphism of central extensions” is an isomorphism G̃→ G̃ ′

which covers the identity G→ G and restricts to the identity A→ A. The claim is
that all the isomorphisms are unique as isomorphisms of central extensions. This
uniqueness is guaranteed by the following lemma.

Lemma 3.2. Let G̃ and G̃ ′ be central extensions of Sp(V ) by an abelian group
A with no 3-torsion. Then there exists at most one isomorphism G̃ → G̃ ′ of
central extensions.

Proof. If f1, f2 : G̃→ G̃ ′ are isomorphisms of central extensions, then

(g, a) 7→ f1(g, a) · f2(g, a)−1
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is given by a homomorphism Sp(V )= G̃/A→ A ⊂ G̃ ′. But, as explained in the
proof of Lemma 2.5, any such homomorphism is trivial. �

As we noted after Lemma 2.5, the Witt group W (F) has only 2-primary torsion,
so Lemma 3.2 applies to all the central extensions of interest.

3.2.1. Coboundary description. We will repeatedly use the following basic ob-
servation. If G̃ and G̃ ′ are defined by 2-cocycles c and c′, then an isomorphism
f : G̃ → G̃ ′ of central extensions is equivalent to giving a function s : G → A
such that

c′(g, g′)− c(g, g′)= s(gg′)− s(g)− s(g′).

(This expresses c′− c as the coboundary of s.) Namely, f (g, a)= (g, a+ s(g)).

3.3. Choice of Lagrangian.

Proposition 3.4. There is a unique isomorphism α` : M(V )→ M`(V ) of central
extensions, and it is given by

α`(g, q)= (g, q + τ(`⊕ `, 01, 0g, `⊕ g`)). (16)

It restricts to an isomorphism Mp(V )→Mp`(V ), also unique.

Proof. For α` to be an isomorphism, it suffices, by Section 3.2.1, to check

c`(g, g′)− c(g, g′)+ s(g)+ s(g′)− s(gg′)= 0 (17)

where s(g) := τ(`⊕ `, 01, 0g, `⊕ g`). Observe that τ(`, `, `)= 0: according to
Section A.5(e), it is represented by the zero bilinear form on `. Therefore

c`(g, g′)= τ(`, g`, gg′`)= τ(`⊕ g`, `⊕ gg′`, `⊕ `)

by A.5(c). Moreover, s(g′) = τ(`⊕ g`, 0g, 0gg′, `⊕ gg′`) by A.5(d) applied to
(1, g)∈GL(V⊕V ). Graphically, then, (17) is a sum over the faces of the polyhedron

01

`⊕ ` 0gg′ 0g

`⊕ gg′` `⊕ g`

and therefore vanishes, as explained in Section A.5.2.
The fact that α` maps Mp(V ) to Mp`(V ) follows from the uniqueness property

of Mp`(V ) (Section 2.4.1), or by direct computation, using (34); the uniqueness of
α` follows from Lemma 3.2. �
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Corollary 3.5. There is a unique isomorphism α
ψ

` : M
ψ(V )→ Mψ,`(V ) of central

extensions, and it is given by

α
ψ

` (g, ξ)= (g, ξ · γψ(τ (`⊕ `, 01, 0g, `⊕ g`))). (18)

It restricts to an isomorphism Mpψ(V )→Mpψ,`(V ), also unique.

3.6. Change of Lagrangian.
Proposition 3.7. There is a unique isomorphism δ``′ : M`(V )→ M`′(V ) of central
extensions, given by

δ``′(g, q)= (g, q + τ(`, g`, g`′, `′)).

It restricts to an isomorphism Mp`(V )→Mp`
′

(V ), also unique.

Proof. The proof is very similar to that of Proposition 3.4. The main difference is
that we must now show

c`′(g, g′)− c`(g, g′)+ s(g)+ s(g′)− s(gg′)= 0 (19)

where now s(g) := τ(`, g`, g`′, `′). Observe that s(g′) = τ(g`, gg′`, gg′`′, g`′)
by Section A.5(d). Thus (19) is a sum over the faces of the polyhedron

`

`′ gg′` g`

gg′`′ g`′

and again vanishes by Section A.5.2. �

Corollary 3.8. There is a unique isomorphism δ
ψ

``′ : Mψ,`(V ) → Mψ,`′(V ) of
central extensions, given by

δ
ψ

``′(g, ξ)= (g, ξ · γψ(τ (`, g`, g`′, `′))).

It restricts to an isomorphism Mpψ,`(V )→Mpψ,`
′

(V ), also unique.

3.9. Choice of additive character. There are obvious homomorphisms

αψ : M(V )→ Mψ(V ), α`ψ : M
`(V )→ Mψ,`(V ),

each given by (g, q) 7→ (g, γψ(q)).

Proposition 3.10. The maps αψ , α`ψ are the unique homomorphisms that cover the
identity on Sp(V ) and restrict to γψ : W (F)/I 3

→ Z8. Moreover, they restrict to
isomorphisms

αψ :Mp(V )→Mpψ(V ), α`ψ :Mp`(V )→Mpψ,`(V ),

that are unique as isomorphisms of central extensions.
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Proof. Uniqueness is a simple variation on Lemma 3.2. The fact that Mp(V ) and
Mp`(V ) map to Mpψ(V ) and Mpψ,`(V ) is immediate from the definitions. The
fact that the restricted maps are isomorphisms follows from the fact that

γψ : I 2/I 3
→ Z F

is an isomorphism (Section A.4.1(d)). �

3.11. Change of additive character. Suppose that ψ , ψ ′ are nontrivial additive
characters of F . Let a ∈ F× be the unique scalar such that ψ ′(x)= ψ(ax) for all
x ∈ F . In the next proposition, ( · , · )H : F×⊗Z F×→ Z F is the Hilbert symbol
(defined in Section A.1.2).

Proposition 3.12. There is a unique isomorphism δψψ ′ : Mψ(V )→ Mψ ′(V ) of
central extensions, and it is given by

δψψ ′(g, ξ)= (g, ra(g)ξ)

where ra(g) := (γψ(a)/γψ(1))dim(g−1)V (a, det σg)H . It restricts to an isomorphism
Mpψ(V )→Mpψ

′

(V ), also unique.

To prove Proposition 3.12, we first study the dependence of γψ on ψ .

Lemma 3.13. For any quadratic space (A, q),

γψ ′(q)= γψ(q) (γψ(a)/γψ(1))dim A(a, det q)H .

Proof. Both sides of the equation define homomorphisms W (F)→ C×. Since any
quadratic space is the perpendicular sum of one-dimensional ones, we can reduce to
the case where A= F and q(x, y)= bxy. Then γψ ′(q)= γψ(ab) and the statement
amounts to the standard formula Section A.4.1(b). �

Proof of Proposition 3.12. To get an isomorphism, by Section 3.2.1 we must check

γψ ′(τ (01, 0g, 0gg′))= γψ(τ (01, 0g, 0gg′)) ·
ra(gg′)

ra(g)ra(g′)
.

The right-hand side simplifies to

γψ(τ (01, 0g, 0gg′)) · (γψ(a)/γψ(1))d(a, δ)H ,

where

d=dim(gg′−1)V−dim(g−1)V−dim(g′−1)V and δ=det σgg′/(det σg det σg′).

Comparing this to Lemma 3.13, we are reduced to checking that τ(01, 0g, 0gg′)

has rank d mod 2 and signed discriminant (−1)d(d−1)/2δ. This is equivalent to (9).
We therefore have an isomorphism; uniqueness follows from Lemma 3.2, and

the fact that Mpψ(V ) maps to Mpψ
′

(V ) follows from Lemma 2.5. �

Here is the analogue of Proposition 3.12 for Mψ,`(V ).
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Proposition 3.14. There is a unique isomorphism δ`ψψ ′ : M
ψ,`(V )→ Mψ ′,`(V ) of

central extensions, and it is given by

δ`ψψ ′(g, ξ)= (g, r
`
a(g)ξ)

where r`a(g) := (γψ(a)/γψ(1))
dim(`/`∩g`) (a, θ`(g))H . It restricts to an isomorphism

Mpψ,`(V )→Mpψ
′,`(V ), also unique.

3.15. Outer automorphisms. We return to the general setting where F is any field
of characteristic not 2. Let GSp(V )⊂GL(V ) be the group of symplectic similitudes,
that is, linear transformations f ∈GL(V ) such that there exists λ( f )∈ F× satisfying
ω( f x, f y) = λ( f )ω(x, y) for all x, y ∈ V . Then GSp(V ) contains Sp(V ) as a
normal subgroup, and so acts on it by conjugation. (In fact, according to [Hua
1948], any automorphism of Sp(V ) can be written as a composition ϕ ◦Ad f with
f ∈ GSp(V ) and ϕ a field automorphism of F .)

The goal of this section is to describe explicitly an action of GSp(V ) on the
metaplectic group, lifting the conjugation action on Sp(V ). This lifting is unique.

First let us define a function

Sp(V )× F×→W (F)/I 3.

Given (g, a) ∈ Sp(V )× F×, let bg ∈W (F) be represented by a quadratic space of
rank dim(g− 1)V and discriminant det σg (thus bg = [σg] modulo I 2). Now let
qg,a = (qa − 1)⊗ bg. The class of qg,a in W (F)/I 3 is independent of choices.

Proposition 3.16. For any f ∈ GSp(V ) there is a unique automorphism N f of
M(V ) covering Ad f and restricting to the identity on W (F)/I 3. It is given
by N f (g, q)= (Ad f (g), q + qg,λ( f )).

Proof. Simple variations on Lemma 3.2 and Section 3.2.1 show that N f will be a
unique isomorphism so long as

τ(01, 0Ad f (g), 0Ad f (gg′))− τ(01, 0g, 0gg′)= qgg′,λ( f )− qg,λ( f )− qg′,λ( f ) (20)

modulo I 3. Now,

0Ad f (g) = {(v, f g f −1v)} = {( f v, f gv)} = ( f, f ) ·0g ⊂ V ⊕ V .

This and Section A.5(d) imply that

τ(01, 0Ad f (g), 0Ad f (gg′))= qλ( f )⊗ τ(01, 0g, 0gg′). (21)

Thus the left-hand side of (20) is (qλ( f )− 1)⊗ τ(01, 0g, 0gg′). By the definition
of qg,λ( f ), to establish (20), it suffices to show that

τ(01, 0g, 0gg′)= bgg′ − bg − bg′ mod I 2.

But this is equivalent to (9). �
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Remark 3.16.1. Proposition 3.16 is stated for M(V ), but the uniqueness of Mp(V )
(Section 2.4.1) implies that N f restricts to an automorphism of that subgroup, which
is again the unique automorphism covering Ad f .

A description of the automorphisms of M`(V ), Mψ(V ), and Mψ,`(V ) covering
the action of GSp(V ) is easily deduced in parallel to Proposition 3.16, using the
isomorphisms of Sections 3.6–3.11. For example, we have:

Proposition 3.17. For any f ∈ GSp(V ) there is a unique automorphism Nψ,`

f of
Mψ,`(V ) covering Ad f and restricting to the identity on Z8. It is given by

Nψ,`

f (g, ξ)= (Ad f (g), γψ(τ (`, g`, g f −1`, f −1`)) · r f −1`

λ( f ) (g) · ξ).

Proof. Put a := λ( f ), ψ ′(x)= ψ(ax), and `′ = f −1`. By Section A.5(d), we have

cψ,`(Ad f (g),Ad f (g′))= γψ(τ (`, f g f −1`, f gg′ f −1`)

= γψ ′(τ (`
′, g`′, gg′`′))= cψ ′,`′(g, g′).

It follows that s : (g, ξ) 7→ (Ad f (g), ξ) is an isomorphism Mψ ′,`′(V )→ Mψ,`(V )
and thence that Nψ,`

f (g, ξ)= s ◦ δ`
′

ψψ ′ ◦ δ
ψ

``′ is an automorphism of Mψ,`(V ) of the
required kind. �

Remark 3.17.1. Proposition 3.17 is related to Proposition 3.16 in the sense that
we must have Nψ,`

f ◦ α
`
ψ ◦ α` = α

`
ψ ◦ α` ◦ N f . (One can even use this to deduce

Proposition 3.17 from Proposition 3.16, but the proof we have presented is much
easier, given what we already know.)

4. Heisenberg group and Weil representation

Henceforth F is a finite or local field with characteristic not 2.
In this section we recall the definition and basic properties of the Weil represen-

tation ρψ,`. A more detailed exposition can be found in [Lion and Vergne 1980,
§1.2–1.4 and Appendix].

4.1. Hilbert spaces and norms. In describing representations, we use natural Hil-
bert spaces of half-densities, with the notation laid out in Section A.3.1. Thus if
X is a finite-dimensional vector space over F then L2(X) denotes the space of L2

functions X→�1/2(X).

4.2. The Heisenberg group. The Heisenberg group H(V ) based on V is, as a set,
the direct product H(V )= V × F , equipped with the multiplication

(v, s)(w, t)=
(
v+w, s+ t + 1

2ω(v,w)
)
.

The center of H(V ) is the factor F . We are interested in representations of
H(V ) with fixed central character ψ (so again ψ is a continuous homomorphism
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F → U (1)). To avoid always writing the action of the center, note that such a
representation ρ is determined by the family of operators {ρ(v)}v∈V , which satisfy

ρ(v)ρ(w)= ψ
( 1

2ω(v,w)
)
· ρ(v+w).

Theorem 4.3 (Stone and von Neumann). H(V ) has, for each nontrivial central
character ψ , a unique isomorphism class of unitary, continuous, irreducible repre-
sentations. (The notion of continuity is that of the strong operator topology.)

The proof over R can be found in [Lion and Vergne 1980, §1.3], and a general
exposition is in [Prasad 2011]. The main step is Proposition 5.2(a) below.

4.4. Formulas for its representation. For chosen ` ∈ Lagr(V ), the representation
from Theorem 4.3 is realized by

ρ
ψ,`

H := IndH
`×F (ψ̃)

where ψ̃ is the composition `× F → F
ψ
→ C×. One has the following explicit

description of the corresponding Hilbert space Hψ,`. It is the completion of the
space of smooth functions φ : V →�1/2(V/`) that satisfy

φ(v+w)= φ(v)ψ
( 1

2ω(v,w)
)

for all w ∈ ` (22)

and that are finite under the norm

|φ|2 :=

∫
v∈V/`

φ(v)φ(v).

The action of H(V ) on Hψ,` is given, for φ ∈Hψ,` and v ∈ V , by

ρ
ψ,`

H (v)φ(x)= φ(x − v)ψ
( 1

2ω(v, x)
)
. (23)

4.4.1. Transverse Lagrangians. For any Lagrangian `′ transverse to `, the isomor-
phism V/`→ `′ yields an isometry

Res`′ :Hψ,`
→ L2(`′).

The action of H(V ) on L2(`′) is described by the formula(
Res`′ ◦ ρ

ψ,`

H (v+ v′) ◦Res−1
`′

)
(φ)(x ′)= φ(x ′− v′) ·ψ

(
ω
(
v, x ′− 1

2v
′
))

(24)

for all v ∈ ` and v′, x ′ ∈ `′.

4.5. The Weil representation. Since Sp(V ) is the group of automorphisms of H(V )
preserving the center, one obtains a projective representation ρψ,`Sp of Sp(V ) acting
on Hψ,`, characterized by

ρ
ψ,`

Sp (g) ◦ ρ
ψ,`

H (v) ◦ ρ
ψ,`

Sp (g)
−1
= ρ

ψ,`

H (gv).
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In detail, (ρψ,`H )g : v 7→ ρ
ψ,`

H (gv) defines a representation of H(V ) on Hψ,` with
central character ψ . By Theorem 4.3, there is a unique-up-to-scale operator ρψ,`Sp (g)
on Hψ,` intertwining from ρ

ψ,`

H to (ρψ,`H )g.
The next result is due to Lion and Perrin.

Theorem 4.6 [Perrin 1981]. There is a true representation ρψ,`Mp of Mpψ,`(V ),
uniquely characterized by the formulas

ρ
ψ,`

Mp (g, ξ) ◦ ρ
ψ,`

H (v) ◦ ρ
ψ,`

Mp (g, ξ)
−1
= ρ

ψ,`

H (gv), ρ
ψ,`

Mp (1, ξ)= ξ · id.

The operators ρψ,`Mp (g, ξ) :H
ψ,`
→Hψ,` are given on Schwartz functions φ by

ρ
ψ,`

Mp (g, ξ)φ(x) := ξ ·
∫

y∈(g−1`)/(`∩g−1`)

φ(g−1x + y) ψ
( 1

2ω(y, g−1x)
)
µψ,`g

where µψ,`g ∈ �1
(
(g−1`)/(` ∩ g−1`)

)
is the unique invariant measure such that

ρ
ψ,`

Mp (g, ξ) is unitary.

Remark 4.6.1. More concretely, µψ,`g is characterized by the following property.
First, g−1`/(`∩ g−1`) and `/(`∩ g−1`) are Pontryagin-dual abelian groups under
the pairing ψ ◦ω. Let µ be the measure on `/(`∩ g−1`) dual to µψ,`g . Choose a
measure µ0 on `∩ g−1`. Then µψ,`g ⊗µ0 and µ⊗µ0 are measures on g−1` and `,
respectively. The property is that these measures correspond under the isomorphism
g : g−1`→ `.

4.7. Definition. Let ρψ,` be the representation of Mpψ,`(V )n H(V ) defined by

ρψ,`(g, ξ ; v, t)= ρψ,`Mp (g, ξ) ◦ ρ
ψ,`

H (v, t).

We also use ρψ,` to denote the corresponding representation of Mp(V )n H(V ),
defined using the canonical isomorphism α`ψ ◦α` = α

ψ

` ◦αψ :Mp(V )→Mpψ,`(V ).
Thus for q ∈W (F)/I 3,

ρ
ψ,`

Mp (g, q) := ρψ,`Mp (g, ξ), with ξ := γψ(q + τ(`⊕ `, 01, 0g, `⊕ g`)) ∈ Z8.

5. The character: Proof of Theorem B

The goal of this section is to prove Theorem B. There are two main ideas involved:
first, the Weyl transform, developed in Section 5.1, and second, the homomorphism
Sp(V )→ Sp(V ⊕V ), studied in Section 5.4. We conclude the proof of Theorem B
in Section 5.6.
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5.1. Weyl transform. Let S(V )⊂ L2(V ) be the subspace of Schwartz-class half-
densities.6 Let End0 Hψ,` ∼= S(V/` × V/`) be the algebra of operators on the
Hilbert space Hψ,` ∼= L2(V/`) that can be represented by Schwartz-class integral
kernels. It is dense in the algebra End Hψ,` ∼= L2(V/`× V/`) of Hilbert–Schmidt
operators (that is, those with L2 integral kernels).

The following proposition is well-known (it is the heart of the Stone–von Neu-
mann Theorem, 4.3). As usual, µV denotes the measure on V self-dual with respect
to ψ ◦ω.

Proposition 5.2. For h ∈ S(V ), let Wψ,`(h) be the operator on Hψ,` defined by

Wψ,`(h)(φ)(x)=
∫
v∈V

ρ
ψ,`

H (v)φ(x) · h(v) µ1/2
V . (25)

(a) Wψ,` is an isomorphism S(V )→ End0(H
ψ,`) and extends to an isometry

Wψ,`
: L2(V )→ End(Hψ,`).

(b) If we equip L2(V ) with the multiplication

( f1 ? f2)(x) :=
∫
v∈V

f1(v) ψ
( 1

2ω(v, x)
)

f2(x − v)µ
1/2
V

then Wψ,` becomes an algebra isomorphism Wψ,`
: L2(V )→ End(Hψ,`).

(c) For h ∈ S(V ), the operator Wψ,`(h) is trace class, and

Tr Wψ,`(h) ·µ1/2
V = h(0).

Proof. Choose `′ transverse to `, and identify L2(V )= L2(`× `′). Let F0 be the
Fourier transform L2(`)→ L2(`′) with respect to the pairing ψ ◦ 1

2ω:

F0 f (a′) := ‖2‖−
dim V

4

∫
a∈`

f (a)ψ
( 1

2ω(a, a′)
)
µ

1/2
V .

(There is a canonical isomorphism �1/2(`)⊗�1/2(V )=�1(`)⊗�1/2(`
′) which

allows us to interpret F0 as a map from half-densities on ` to half-densities on `′.)
Let A ∈ GL(`′× `′) be the isomorphism A(a′, x ′) = (x ′+ a′, x ′− a′). Write A∗

for the corresponding isometry f 7→ ‖2‖(dim V )/4 ( f ◦ A) of L2(`× `′).

Lemma 5.3. Wψ,` factors as a composition of isometries

L2(V )= L2(`× `′)
F0⊗id
−−−→ L2(`′× `′)

A∗
−→ L2(`′× `′)= End(Hψ,`).

6 Our exposition here differs slightly from the sketch in Section 1.3(C) in that we use half-densities
rather than complex-valued functions; the square root µ1/2

V of the self-dual measure for ψ ◦ω can be
used to pass between the two.
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Proof. By (25) and (24), we have

Wψ,`(h)φ(x ′)=
∫

(a,a′)∈V

φ(x ′− a′) ·ψ
(
ω
(
a, x ′− 1

2a′
))
· h(a, a′) µ1/2

V

=

∫
a′∈`′

φ(a′)
∫

a∈`

ψ
( 1

2ω(a, x ′+ a′)
)
· h(a, x ′− a′) µ1/2

V (26)

with a change of variables a′ 7→ x ′− a′; this is exactly what the lemma claims. �

Part (a) of the proposition follows from the fact that Fourier transforms preserve
the Schwartz class. In part (b), the ?-product is just the product induced on L2(V )
by viewing it as the ψ-coinvariants of the group algebra L2(H(V )); thus the fact
that Wψ,` is a homomorphism is just due to the fact that ρψ,`H is a representation.

As for part (c), formula (26) expresses Wψ,`(h) as a smooth integral kernel; we
calculate the trace by integrating along the diagonal x ′ = a′ to find

Tr Wψ,`(h) ·µ1/2
V =

∫
a′∈`′

∫
a∈`

ψ(ω(a, a′)) · h(a, 0) µV = h(0),

the last equality being Fourier inversion. �

Remark 5.3.1. Since trace-class operators form an ideal among bounded opera-
tors, we conclude from Proposition 5.2(c) that for any (g, q) ∈Mp(V ) and any h
smooth and compactly supported (or even Schwartz) on V , the composed operator
ρ
ψ,`

Mp (g, q) ◦Wψ,`(h) is also trace-class; its trace is the integral of Tψ

(g,q) against
h (this is the defining property of Tψ

(g,q) in Theorem B). Moreover, if h is now
compactly supported on Mpψ,`(V )n H(V ), we can see why Tr ρψ,`(h)— that is,
the right-hand side of (2) — is well-defined. For let hg,ξ,t be the restriction of h to

{(g, ξ)}× V ×{t} ⊂Mpψ,`(V )n H(V ).

Then (g, ξ, t) 7→ ψ(t)ρψ,`Mp (g, ξ) ◦ Wψ,`(hg,ξ,t) is a continuous, compactly sup-
ported, hence integrable function from Mpψ,`(V )× F to trace-class operators, and
the trace of its integral is Tr ρψ,`(h).

5.4. Doubling. The metaplectic group Mp(V ) acts on L2(V ) in two ways. First
we have a representation A1,

A1(g, q)(h) := (Wψ,`)−1(ρ
ψ,`

Mp (g, q) ◦Wψ,`(h)).

(The right-hand side makes sense — ρ
ψ,`

Mp (g, q)◦Wψ,`(h) is in the image of Wψ,` —
because Hilbert–Schmidt operators form an ideal.) An integral formula for A1 will
be given in Proposition 6.2. Second, let us identify Sp(V ) with the subgroup of
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Sp(V ⊕ V ) acting trivially on V . The subgroup of Mp01(V ⊕ V ) over Sp(V ) is
precisely Mp(V ) (see Remark 2.7.2). We have an isomorphism

b : V → 0−1, b(x)= (−x/2, x/2) (27)

and the restriction map Res0−1 :H
ψ,01 → L2(0−1) as in Section 4.4.1. Define

R :Hψ,01 → L2(V ), R := b∗ ◦Res0−1 (28)

so that Mp(V ) acts on L2(V ) by A2(g, q) := R ◦ ρψ,01
Mp (g, q) ◦ R−1.

Proposition 5.5. A1 = A2.

Proof. Consider the representations B1, B2 of H(V ⊕ V ) on L2(V ) defined by

B1(v̄, v)h(x)= (Wψ,`)−1(ρ
ψ,`

H (v) ◦Wψ,`(h) ◦ ρψ,`H (v̄)−1)

B2(v̄, v)h(x)= R ◦ ρψ,01
H (v̄, v) ◦ R−1(h)(x)

for all (v̄, v) ∈ V ⊕ V . We have

Ai (g, q) ◦ Bi (v̄, v) ◦ Ai (g, q)−1
= Bi (v̄, gv), Bi (1, q)= γψ(q) · id

for i = 1, 2, and, as in Theorem 4.6, A2 is uniquely characterized by these equations.
We show that in fact B1 = B2, from which it follows that A1 = A2.

Write b′(v) := (v/2, v/2) for v ∈ V , so that (v̄, v)= b(v− v̄)+b′(v+ v̄). Then

B2(v̄, v)h(x)=
(
R ◦ ρψ,01

H (v̄, v) ◦ R−1)(h)(x)
=
(
ρ
ψ,01
H (b(v− v̄)+ b′(v+ v̄)) ◦ R−1)(h)(b(x))

=
(
R−1(h)

)
(b(x)− b(v− v̄)) ·ψ(ω(b′(v+ v̄), b(x − (v− v̄)/2)))

= h(x + v̄− v) ·ψ
( 1

2ω(v+ v̄, x + v̄)
)

using (24) for the third equality. On the other hand,

ρ
ψ,`

H (v) ◦Wψ,`(h) ◦ ρψ,`H (v̄)−1

=

∫
x∈V

h(x)ρψ,`H (v)ρ
ψ,`

H (x)ρψ,`H (v̄)−1 µ
1/2
V

=

∫
x∈V

h(x)ψ
( 1

2ω(v+ v̄, x + v)
)
ρ
ψ,`

H (v+ x − v̄) µ1/2
V

=

∫
x∈V

h(x + v̄− v)ψ
( 1

2ω(v+ v̄, x + v̄)
)
ρ
ψ,`

H (x) µ1/2
V

using the multiplication law of H(V ) and then a change of variables. It follows
that B1(v)h(x)= h(x + v̄− v) ·ψ

( 1
2ω(v+ v̄, x + v̄)

)
= B2(v)h(x) as claimed. �
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5.6. Proof of Theorem B. By the definition of Tψ

(g,q), we have∫
V

Tψ

(g,q) h µ1/2
V = Tr(ρψ,`Mp (g, q) ◦Wψ,`(h))µ1/2

V

for any h ∈ S(V ). According to Proposition 5.2(c), the right-hand side equals
A1(g, q)h(0). Therefore, by Proposition 5.5 and Theorem 4.6, we have∫

V
Tψ

(g,q) h µ1/2
V = (R ◦ ρ

ψ,01
Mp (g, q) ◦ R−1)(h)(0)

= γψ(q) ·
∫

y∈0
(R−1h)(y) µψ,01

g (29)

where, for brevity, 0 := 0g−1/01 ∩0g−1 . As in the proof of Lemma A.7, define
P : V ⊕ V → V by P(v,w)= w− v; it restricts to an isomorphism

P : 0→ (g−1
−1)V = (g−1)V, P(x, g−1x) := (g−1

−1)x = (g−1)(−g−1x).

We use P to rewrite (29) as an integral over (g− 1)V .
Let p : 0→ 0−1 be the projection along 01, and b : V → 0−1 as in (27). Then

P = b−1
◦ p. By (28) and (22) we have, for y ∈ 0,

(R−1h)(y)= (Res−1
0−1
◦ (b∗)−1h)(y)= h(P(y))ψ

( 1
2ω(p(y), y− p(y))

)
= h(P(y))ψ

( 1
2ω(p(y), y)

)
.

Now (36) gives ω(p(y), y)=−Qg−1(P(y), P(y)). Moreover, it is easy to verify
from the definition (35) that −Qg−1 = Qg. We therefore have∫

V
Tψ

(g,q) h µ1/2
V = γψ(q) ·

∫
v∈(g−1)V

h(v) ψ
( 1

2 Qg(v, v)
)

P∗µψ,01
g

and it only remains to argue that P∗µ
ψ,01
g = µσg .

To do so, note that the natural action of g on (the second factor of) V ⊕ V fixes
0g−1∩01 point-wise. Therefore, following Remark 4.6.1, we conclude that µψ,01

g is
the measure on 0 that is self-dual with respect to ψ ◦q , where q is the bilinear form
q(x, y)= ω(x, gy). On the other hand, it is elementary to check that P intertwines
the forms q and σg, that is, σg(P(x), P(y)) = q(x, y). Since µσg is self-dual for
ψ ◦ σg, we must have P∗µg,01 = µσg as desired.

6. Invariant presentation: Proof of Theorem C

6.1. Now we deduce Theorem C. Here is a reformulation of it, in terms of the
representation A1 of Mp(V ) on L2(V ) defined in Section 5.4. (As noted in footnote
6, we continue to deal with Hilbert spaces of half-densities rather than functions.)
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Proposition 6.2. For any (g, q) ∈Mp(V ) and h ∈ S(V ),

A1(g, q)(h)(x)=
∫
v∈V

Tψ

(g,q)(v) ψ
( 1

2ω(v, x)
)

h(x − v)µ1/2
V

=:
(
Tψ

(g,q)µ
1/2
V ? h

)
(x). (30)

Proof. Suppose h is Schwartz. Setting h̃ := A1(g, q)(h), we want to calculate h̃(x).
For any f ∈ S(V ) one has Wψ,`( f ) ◦ ρψ,`H (x)=Wψ,`( fx), where

fx(v) := f (v− x)ψ
( 1

2ω(v, x)
)
.

According to Proposition 5.2(c),

h̃(x)= h̃−x(0)= Tr(Wψ,`(h̃−x)) ·µ
1/2
V .

Unraveling the definitions, we find

h̃(x)= Tr(Wψ,`(h̃) ◦ ρψ,`H (−x)) ·µ1/2
V

= Tr(ρψ,`Mp (g, q) ◦Wψ,`(h) ◦ ρψ,`H (−x)) ·µ1/2
V

=

∫
V

Tψ

(g,q) h−x µ
1/2
V =

∫
v∈V

Tψ

(g,q)(v) ψ(
1
2ω(v,−x)) h(v+ x) µ1/2

V .

Since Tψ

(g,q) is an even function on V , we obtain the right-hand side of (30). �

7. Transfer factor: Proof of Theorem D

7.1. First, in Section 7.2, we give a purely algebraic proof, using the central
characters to distinguish between ρψ,`+ and ρψ,`− . Then, in Section 7.4, we sketch
an alternative argument, because it emphasizes the structure of the Weyl transform,
and leads naturally to the geometrization mentioned in Section 1.3. Both methods
rely on the following observation.

The decomposition ρψ,`Mp = ρ
ψ,`
+ ⊕ ρ

ψ,`
− into irreducible representations corre-

sponds to the decomposition of the representation space Hψ,` ∼= L2(`′) into even
and odd functions. Let 5 :Hψ,`

→Hψ,` be the parity operator defined by

(5 f )(x)= f (−x).

Then, as generalized functions on Mp(V ),

Tr ρψ,`± (g, q)= 1
2 Tr(ρψ,`Mp (g, q)± ρψ,`Mp (g, q) ◦5),

whence

Tr(ρψ,`+ − ρ
ψ,`
− )(g, q)= Tr

(
ρ
ψ,`

Mp (g, q) ◦5
)
. (31)
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7.2. “Algebraic” proof. The representations ρψ,`+ and ρψ,`− have different central
characters, and this can be used to distinguish them. Concretely, the central ele-
ment (−1, 1) ∈Mpψ,`(V ) acts as 5 on Hψ,`. Given (g, ξ) ∈Mpψ,`(V ), one has
(g, ξ)(−1, 1)= (−g, ξ) ∈Mpψ,`(V ), and therefore(

Tr ρψ,`+ −Tr ρψ,`−
)
(g, ξ)= Tr ρψ,`Mp (−g, ξ).

On the other hand, if in the notation of Section 3.3 we have α`(g, q)= (g, ξ), then
α−1
` (−g, ξ)= (−g, q + εg) as elements of Mp(V ), where

εg := τ(`⊕ `, 01, 0g, `⊕ g`)− τ(`⊕ `, 01, 0−g, `⊕ (−g)`).

Since the central factor W (F)/I 3
⊂Mp(V ) acts through γψ , we have

(Tr ρψ,`+ −Tr ρψ,`− )(g, q)= Tr ρ(−g, q + εg)= Tr ρψ,`(−g, q) · γψ(εg).

Thus it remains to prove the following lemma, which relies on the combinatorics of
the Maslov index.

Lemma 7.3. One has εg = Qg in W (F).

Proof. Consider the polyhedron with two triangular and two quadrilateral faces:

`⊕ `

01 `⊕ g`

0−g 0g

As explained in Section A.5.2, the sum of the Maslov indices of the faces vanishes.
The sum over the two quadrilateral faces is εg (note that (−g)`= g`); therefore

εg = τ(0−g, 01, 0g)+ τ(0g, `⊕ g`, 0−g).

The second term must vanish, since

τ(0g, `⊕ g`, 0−g)=−τ(0−g, `⊕ g`, 0g)=−τ(0g, `⊕ g`, 0−g)

by Section A.5(a) and (d) applied to

1⊕ (−1) ∈ GL(V ⊕ V ).

The first term τ(0−g, 01, 0g) equals τ(01, 0g, 0−1) by Section A.5(d) applied to
(x, y) 7→ (g−1 y, x), with λ=−1; but Lemma A.7 says that τ(01, 0g, 0−1) is the
class of Qg. �
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7.4. “Analytic” proof.

Lemma 7.5. For any h ∈ S(V ), we have Wψ,`(h) ◦5=Wψ,`(Fh), where

F : L2(V )→ L2(V )

is the Fourier transform

(Fh)(x) := ‖2‖−
dim V

2

∫
v∈V

h(v) ψ
( 1

2ω(v, x)
)
µV .

Moreover, 5 ◦Wψ,`(h) ◦5=Wψ,`(5h) where 5h(v) := h(−v).

Proof. The last statement follows directly from (26). From there, too, one sees
that Wψ,`(h) ◦ 5 is represented by the kernel A∗ ◦ B∗ ◦ (F0 ⊗ id)(h), where
B(a, b)= (b, a). The result then follows from the commutativity of the diagram

L2(V )

Wψ,`
◦F

��

L2(`× `′)
F0⊗id

// L2(`′× `′)
id⊗F−1

0
//

B∗
��

L2(`′× `) L2(V )

End(Hψ,`) L2(`′× `′) L2(`′× `′)
A∗

oo L2(`× `′)
F0⊗id

oo L2(V ).

Here the top row composes to F and the bottom row to Wψ,` by Lemma 5.3. �

Now to deduce Theorem D. For brevity, we detail only the case when F is finite,
but the infinite case is parallel. Applying the formula for Tr ρψ,`Mp from Corollary 1.4,
the claim is that

Tr(ρψ,`+ − ρ
ψ,`
− )(g, q)=

√

#V−g · γψ(q)γψ(Qg). (32)

By Theorem C, ρψ,`Mp (g, q) is the Weyl transform Wψ,`(Tψ

(g,q) µ
1/2
V ), so (31), Lemma

7.5, and Proposition 5.2(c) give

Tr
(
ρ
ψ,`
+ − ρ

ψ,`
−

)
(g, q)= Tr

(
ρ
ψ,`

Mp (g, q) ◦5
)

= Tr Wψ,`(F(Tψ

(g,q)µ
1/2
V ))= F(Tψ

(g,q))(0). (33)

The result now follows from Theorem B and the definition of γψ in Section A.3. In
detail:

F(Tψ

(g,q))(0)= γψ(q) ·
∫
v∈V

ψ
(1

2 Qg(v, v)
)
· Dψ

g ·µV (by Thm B)

= γψ(q) ·
∫
v∈(g−1)V

ψ
( 1

2 Qg(v, v)
)
·µσg (by def. of Dψ

g )

= γψ(q) ·M
∫
v∈(g−1)V/V−g

ψ
( 1

2 Qg(v, v)
)
·µQg (see below)

= Mγψ(q)γψ(Qg) (by def. of γψ ).
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To explain the third line, there is a unique measure µ on V−g such that µσg is a
product measure µσg = µ⊗ µQg , and then M :=

∫
V−g µ. However, a self-dual

measure on a vector space X is always 1/
√

#X times counting measure; this implies
that M =

√
#V−g, and the proof of (32) is complete.

Appendix: Witt, Weil, Maslov, Cayley

A.1. Witt group. (The basic reference is [Lam 2005].) Let F be a field of charac-
teristic not 2. A quadratic space is a pair (W, q), where W is a finite-dimensional
vector space over F and q : W ⊗W → F is a nondegenerate symmetric bilinear
form. The perpendicular direct sum and the tensor product of two quadratic spaces
can be defined in an obvious way. With these operations, the set of isomorphism
classes of quadratic spaces forms a commutative semiring. The Witt group (or ring)
W (F) is the commutative ring defined by imposing the relation

(W, q)+ (W,−q)= 0.

The dimension (or rank) of a quadratic space (W, q) is dim W ∈Z. The discriminant
of (W, q) is defined as follows. First, q defines a symmetric map 8 : W → W ∗

such that q(x, y)=8(x)(y). Suppose e1, . . . , en is a basis for W , and e∗1, . . . , e∗n
the dual basis for W ∗: e∗i (e j )= δi j . Then det q ∈ F is the scalar such that

8e1 ∧ · · · ∧8en = (det q)(e∗1 ∧ · · · ∧ e∗n) ∈ ∧
nW ∗.

The class of det q in F×/(F×)2 is well defined, and is called the disciminant of
(W, q). The signed discriminant sdet q of (W, q) is (−1)n(n−1)/2 det q ∈ F×/(F×)2.

Define a commutative ring W0(F) to be Z/2Z× F×/(F×)2 as a set, with the
operations

(d1,11)+ (d2,12) := (d1+ d2, (−1)d1d21112),

(d1,11)(d2,12) := (d1d2,1
d2
1 1

d1
2 ).

The dimension and signed discriminant together define a surjective homomorphism

Q̃ = (dim, sdet) :W (F)→W0(F).

Let I ⊂ W (F) be the kernel I = ker(dim). Then ker Q̃ = I 2; see [Lam 2005,
Chapter 2, Proposition 2.1]. In other words, Q̃ identifies W (F)/I 2 with W0(F).

Remark A.1.1. The dimension and signed discriminant make sense for any non-
degenerate bilinear form, symmetric or not. Such a form q therefore defines a class
[q] in W0(F)=W (F)/I 2.
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A.1.2. Finite and local fields. We want to describe W (F)/I 3, in case F is a finite
or local field. For a, b ∈ F×, the Hilbert symbol (a, b)H is defined to equal 1 if a
is a norm from F(

√
b), and to equal −1 if not. Let Z F be the image of the Hilbert

symbol; it is either Z F = {±1} (when F is real or nonarchimedean) or Z F = {1}
(when F is finite or complex). The Hasse invariant s(q)∈ {±1} of a quadratic space
(W, q) over F can be defined inductively by s(q ⊕ q ′)= s(q)s(q ′)(det q, det q ′)H ,
and s(q)= 1 if dim q = 1.

Theorem A.2. Let F be any finite or local field of characteristic not 2. Two classes
in W (F) are equal modulo I if and only if they can be represented by quadratic
spaces of the same rank. Two quadratic spaces of the same rank have the same class
modulo I 2 if and only if they have the same discriminant. Two quadratic spaces of
the same rank and discriminant have the same class modulo I 3 if and only if they
have the same Hasse invariant; moreover, I 2/I 3 is canonically isomorphic to Z F .

Proof. For the first statement, every class in W (F) is represented by some quadratic
space; see, e.g., [Lam 2005, Chapter 2, Proposition 1.4(1)]. If our two classes are
represented by (W, q) and (W ′, q ′), with dim W − dim W ′ = 2m ≥ 0, let (W0, q0)

be any quadratic space of rank m. Then q ′ ⊕ q0 ⊕ (−q0) has the same class as
q ′ and the same rank as q. The second statement follows from the isomorphism
Q̃ :W (F)/I 2

→W0(F). (The argument so far does not use the assumption that F
is finite or local.)

For the third statement, we use the fact that two quadratic spaces of the same
dimension have the same class in W (F) if and only if they are isometric [Lam
2005, Chapter 2, Proposition 1.4(3)]. There are four cases.

First, suppose F is nonarchimedean local. Then two quadratic spaces are iso-
metric if and only if they have the same rank, discriminant, and Hasse invariant
[Lam 2005, Chapter 6, Theorem 2.12]; moreover, I 3

= 0 [Lam 2005, Chapter 6,
Corollary 2.15]. So two quadratic spaces of the same rank have the same class
in W (F) = W (F)/I 3 if and only if they have the same discriminant and Hasse
invariant.

Second, suppose F = Fq . This time quadratic spaces are isometric if and only if
they have the same rank and discriminant [Lam 2005, Chapter 2, Thdorem 3.5];
the Hasse invariant (like the Hilbert symbol) always equals 1. From this it follows
that I 3

= I 2
= 0, and we can argue as for the nonarchimedean local case.

Third, suppose F = C. Now two quadratic spaces are isometric if and only if
they have the same rank; the discriminant and Hasse invariant (like the Hilbert
symbol) always equal 1. This time I 3

= I = 0, and we can argue as before.
Fourth, suppose F = R. Isomorphism classes of quadratic spaces are classified

by pairs (n+, n−) of nonnegative integers, n± being the dimension of the largest
positive/negative-definite subspace. The “signature” sig : (n+, n−) 7→ n+ − n−
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defines an isomorphism W (F)→ Z, identifying I with 2Z and I 3 with 8Z. (For
all this see [Lam 2005, Chapter 2, Proposition 3.2]. One finds that the rank is
dim(n+, n−)= n++ n−, det(n+, n−)= (−1)n− , and s(n+, n−)= (−1)n−(n−−1)/2.
It follows that the rank and signed discriminant determine the signature mod 4, and
that for fixed rank and discriminant, the two choices of Hasse invariant correspond
to the two choices of signature mod 8.

For the last statement, it is formally only necessary to show that I 2/I 3 and Z F

have the same number of elements, which follows from the above considerations;
however, we will explain the isomorphism using the Weil index — see A.4.1(d)
below. �

A.3. Weil index. In this section, let F be a finite or local field of characteristic not
2. The Weil index is a homomorphism γψ : W (F)→ Z8, where Z8 ⊂ C× is the
group of eighth roots of unity. It is defined using Fourier transforms.

A.3.1. Densities and measures. First let us recall some facts about measures and
densities that will be useful both here and in the main text. A nice introduction to
densities can be found in [Woodhouse 1980, §5.9].

For s ∈ R, and X any finite-dimensional vector space over F , let �s(X) denote
the space of complex translation-invariant s-densities on X ; it is a one-dimensional
complex vector space, the complexification of the space of real translation-invariant
s-densities. In particular, there is a canonical isomorphism

�1/2(X)⊗C�1/2(X)→�1(X),

and every positive invariant density (that is, Haar measure) µ ∈ �1(X) has a
canonical square root µ1/2

∈�1/2(X). The space of functions X→�1/2(X) has a
natural Hermitian inner product:

( f1, f2) :=

∫
X

f1 f2

considering f1 f2 : X→�1/2(X)⊗�1/2(X)=�1(X) as a density on X . Let L2(X)
denote the corresponding Hilbert space.

A perfect pairing B : X ⊗F Y → U (1) (making X the Pontryagin dual of Y )
associates to each nonzero µ ∈ �1(X) a dual measure µ∗ ∈ �1(Y ). It can be
usefully characterized by the Fourier inversion formula (Fµ

∗

B∗F
µ
B f )(z)= f (−z) for

all Schwartz functions f : X→ C. Here

(F
µ
B f )(y)=

∫
x∈X

f (x)B(x, y) µ

and B∗(y, x) := B(x, y) for all (x, y) ∈ X × Y .
If Y = X then there is a unique self-dual µ ∈ �1(X) such that µ∗ = µ. Of

particular interest is the situation where B = Bψq := ψ ◦ q for some nontrivial,
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continuous homomorphism ψ : F→U (1) and some nondegenerate bilinear form
q : X ⊗F X → F . It is easy to see from the Fourier inversion formula that if
µ
ψ
q is self-dual for Bψq , then the measure that is self-dual for Bψaq , a ∈ F×, is
µ
ψ
aq = ‖a‖(dim X)/2 µ

ψ
q .

A.3.2. Definition. Suppose now that (X, q) is a quadratic space (that is, q is from
now on symmetric). We fix a nontrivial, continuous homomorphism ψ : F→U (1)
and write f ψq for the function f ψq (x)= ψ

( 1
2q(x, x)

)
.

Theorem A.4 [Weil 1964, Theorem 2 and Proposition 3]. There exists a number
γψ(q) ∈ Z8 such that

F
µ
ψ
q

Bψq
f ψq = γψ(q) · f ψ−q

as generalized functions on X. Moreover, (X, q) 7→ γψ(q) defines a character
γψψ :W (F)→ Z8.

Note that f ψq is not Schwartz, but its Fourier transform can be defined in the
sense of distributions.

A.4.1. Properties. The following properties of γψ are used in this paper, and go
back to [Weil 1964]. For a ∈ F×, let qa be the bilinear form qa(x, y)= axy on F ,
and write γψ(a) := γψ(qa). We again write ( · , · )H for the Hilbert symbol, Z F for
its image, and s(q) ∈ Z F for the Hasse invariant of any quadratic space (W, q) (see
Section A.1.2).

(a) If ψ ′(x)= ψ(ax), then γψ(qa ⊗ q)= γψ ′(q).

(b) γψ(a) γψ(b)= γψ(1) γψ(ab) (a, b)H .

(c) γψ(q)= γψ(1)dim q−1γψ(det q)s(q).

(d) γψ is trivial on I 3
⊂W (F), and γψ restricts to an isomorphism I 2/I 3

→ Z F .

Proofs. Statement (a) follows easily from the definition of γψ in Theorem A.4 (note
that f ψqa⊗q = f ψ

′

q , Bψqa⊗q = Bψ
′

q , µψqa⊗q = µ
ψ ′

q ). Statement (b) is equivalent to the
last formula on p. 176 of [Weil 1964]. Statement (c) follows from (b) by induction
on the dimension (that is, if we decompose q as a perpendicular sum of two smaller
spaces). The first part of statement (d) follows from Theorem A.2: if two classes in
W (F) are equal modulo I 3, then they can be represented by spaces of the same
rank, discriminant, and Hasse invariant, and so by (c) have the same Weil index. For
the second part of (d), set qa,b = (q1⊕ q−a)⊗ (q1⊕ q−b)= q1⊕ q−a ⊕ q−b⊕ qab,
for any a, b ∈ F×; I 2 is generated by forms of this type [Lam 2005, Chapter 2,
Proposition 1.2]. By (b), γψ(qa,b)= (a, b)H , so indeed γψ(I 2)= Z F . To see that
I 3 is the kernel of γψ on I 2, recall from Theorem A.2 that any two classes in
I 2 can be represented by quadratic spaces (W, q), (W ′, q ′) of the same rank and
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discriminant; according to (c), γψ(q)= γψ(q ′) if and only if s(q)= s(q ′), in other
words (again according to Theorem A.2) if and only if q = q ′ mod I 3. �

A.5. Maslov index. In this section, let F be any field of characteristic not 2. Let
(V, ω) be a finite-dimensional symplectic vector space over F . The Maslov index
τ associates to each arbitrary sequence `1, . . . , `n ⊂ V of Lagrangian subspaces, a
class τ(`1, . . . , `n) in W (F). It is characterized by the following properties:

(a) Dihedral symmetry:

τ(`1, . . . , `n)=−τ(`n, . . . , `1)= τ(`n, `1, . . . , `n−1).

(b) Chain condition: For any j , 1< j < n,

τ(`1, `2, . . . , ` j )+ τ(`1, ` j , . . . , `n)= τ(`1, `2, . . . , `n).

(c) Additivity: If V, V ′ are symplectic spaces, `1, . . . , `n ∈Lagr(V ), `′1, . . . , `
′
n ∈

Lagr(V ′), so that `i ⊕ `
′

i ∈ Lagr(V ⊕ V ′), then we have

τ(`1⊕ `
′

1, . . . , `n ⊕ `
′

n)= τ(`1, . . . , `n)+ τ(`
′

1, . . . , `
′

n).

(d) Invariance: Suppose g∈GL(V ) satisfies ω(gx, gy)=λω(x, y) for all x, y∈V .
Then

τ(g`1, . . . , g`n)= qλ⊗ τ(`1, . . . , `n)

where qλ ∈W (F) is the bilinear form on F defined by (x, y) 7→ λxy.

(e) τ(`1, `2, `3) can be represented by the (possibly degenerate) bilinear form on
`2 ∩ (`1+ `3) given by (x, y) 7→ ω(x, y3) (where y = y1+ y3 with yi ∈ `i ).

For a definition and proofs of (a) and (b), see [Thomas 2006]; (c), (d), and (e) are
simple consequences of the definition given there.

A.5.1. Rank and discriminant. The rank and discriminant were calculated in [Pari-
mala et al. 2000, Proposition 2.1], with the following result. For each Lagrangian
`, choose an “orientation” o, that is, a nonzero element of det(`), the top exterior
power of `. Given (`, o), (`′, o′), choose an isomorphism α : `→ `′ such that α is
the identity on `∩ `′, and α∗(o) = o′. Consider the nondegenerate bilinear form
q(x, y)= ω(α(x), y) on `/`∩ `′. Set

Q(`, o; `′, o′)= [q] ∈W (F)/I 2

(in the notation of Remark A.1.1). It is easy to check that Q(`, o; `′, o′), unlike
q, is independent of the choice of α; moreover, Q(`′, o′; `, o) = −Q(`, o; `′, o′).
What [Parimala et al. 2000] show is that, for any choice of orientations oi ∈ det `i ,

τ(`1, . . . , ln)=
∑

i∈Z/nZ

Q(`i , oi ; `i+1, oi+1) mod I 2. (34)
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A.5.2. Polygons and polyhedra. Properties (a) and (b) deserve further comment.
Suppose given an oriented n-sided polygon F with vertices `1, . . . , `n . The dihedral
symmetry (a) allows us to unambiguously define τ(F)= τ(`1, . . . , `n); reversing
the orientation of the polygon reverses the sign of τ(F). The chain condition (b)
has the following interpretation: suppose that P is a closed, oriented polyhedron
with vertices `1, . . . , `n . Then (b) implies that∑

F

τ(F)= 0

where the sum is over the faces F of P .

A.6. Cayley transform. We continue with any field F of characteristic not 2. Let
(V, ω) be a finite-dimensional symplectic vector space over F .

A.6.1. Formulas. For all g ∈ Sp(V ) there is a symmetric form Q on V given by

Q(x, y)= 1
2ω((g+ 1)x, (g− 1)y).

The kernel is V g
+ V−g (a direct sum in V ). The corresponding map

Sp(V )→ Sym2(V ∗)= sp(V )

is the Cayley transform (usually defined without the factor 1
2 ); it is traditionally

formulated [Cayley 1846] as a bijection between the open subsets of Sp(V ) and
sp(V ) defined (in both cases) by the condition det(g− 1) 6= 0.

The canonical isomorphism V/V g
→ (g−1)V transfers Q to a symmetric form

Qg on (g− 1)V , with kernel V−g. This is the form used in the main text:

Qg((g− 1)x, (g− 1)y) := 1
2ω((g+ 1)x, (g− 1)y) for all x, y ∈ V . (35)

It is easy to check that Qg =−Qg−1 = Q−g−1 .

A.6.2. The Cayley form as a Maslov index. Let V be the same vector space V , but
equipped with symplectic form −ω. For g ∈ Sp(V ), we write 0g for the graph
0g = {(v, gv) | v ∈ V } considered as a Lagrangian subspace of the symplectic
vector space V ⊕ V .

Lemma A.7. The class of Qg in the Witt group W (F) equals the Maslov in-
dex τ(01, 0g, 0−1).

Proof. Let p : V ⊕ V → 0−1 be the projection along 01. According to Section
A.5(e), τ(01, 0g, 0−1) can be represented by the degenerate symmetric bilinear
form on 0g defined by

q(x, y)= ω(x, p(y)).
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Now consider the map P : V ⊕ V → V given by P(v,w)= w− v. We have the
following more precise claim, which is easy to check: P induces an isomorphism
0g/01 ∩0g→ (g− 1)V that is an isometry between q and Qg. In particular,

Qg(P(x), P(y))= ω(x, p(y)). (36)

This concludes the proof. �
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Analytic families of finite-slope
Selmer groups

Jonathan Pottharst

We develop a theory of Selmer groups for analytic families of Galois representa-
tions, which are only assumed “ordinary” on the level of their underlying (ϕ, 0)-
modules. Our approach brings the finite-slope nonordinary case of Iwasawa
theory onto an equal footing with ordinary cases in which p is inverted.

Introduction

This paper provides new foundations for the algebraic side of Iwasawa theory. We
develop a theory of Galois representations and Galois cohomology over p-adic
analytic spaces. In the classical case, where one works over a complete Noetherian
local ring, this amounts to passing to the generic fiber of the associated formal
scheme (or, what amounts to the same here, inverting p). Moreover, we develop
a parallel theory for (ϕ, 0)-modules varying in families of the same type. The
upshot is that we may mimic Greenberg’s “ordinary” Iwasawa theory for Galois
representations that look ordinary only on the level of their associated (ϕ, 0)-
module. Although our work was originally motivated by examples coming from
eigenvarieties, we have more recently found significant applications even to the
classical case of cyclotomic deformations, to be explained in [Pottharst 2012].

This article is rather technical by nature, so we must remain imprecise in the
following outline of our results. First, we develop a theory of group cohomology of
a profinite group G with coefficients in families of representations over a p-adic
analytic space X over Qp. By a family of G-representations over X , we mean
a locally finitely generated, flat OX -module M , equipped with a continuous map
G→ Autcont

OX
(M). In Section 1, we prove the following results:

Theorem. Assume G has finite cohomology on all discrete G-modules of finite, p-
power order, vanishing in degrees greater than e. Then the continuous cohomology
with values in 0(Y,M), where Y ⊆ X ranges over affinoid subdomains, gives
rise to a perfect complex of coherent OX -modules, vanishing in degrees greater
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than e. If f : X ′ → X is a morphism, then there is a canonical isomorphism
L f ∗R0cont(G,M) ∼→ R0cont(G, f ∗M).

In the case where X is quasi-Stein, we show that 0(X,R0cont(G,M)) is com-
puted by R0cont(G, 0(X,M)). In the case where X is the generic fiber of the formal
scheme Spf(A, I ) and M is the analytification of the I -adic G-representation M,
we show that R0cont(G,M)⊗L

A OX
∼
→ R0cont(G,M), thus providing the link with

the classical case.
With these tools in hand, it is straightforward to translate into our context the

theory of Selmer complexes (and hence Selmer groups) and show that our theory
receives the analytification of the classical theory as in the preceding paragraph.

In Section 2, we turn to the case where G = G K is the absolute Galois group of
a finite extension K of Qp. We formulate a notion of families of (ϕ, 0)-modules
over X as above, define their Galois cohomology, and give their basic functorial
properties. One important ingredient was conspicuously lacking in a prior version
of this paper: we did not know that the Hi (G K , D) are finitely generated. This
has recently been proven; see [Kedlaya et al. 2012]. As for the relation to the
cohomology of Galois representations, we prove the following result:

Theorem. There is a functorial isomorphism R0cont(G K ,M) ∼→ R0(G K ,D(M)),
where D(M) is the family of (ϕ, 0K )-modules associated to M.

The essential image of the functor D is poorly understood at present (see [Hell-
mann 2012a] for an example of the nontrivial complications that arise), so we note:

Corollary. Let 0→ D′ → E → D → 0 be a short exact sequence of families
of (ϕ, 0K )-modules over X as in the preceding theorem. If D and D′ arise from
families of Galois representations, then so does E.

In Section 3, we study the p-adic Hodge theory of (ϕ, 0K )-modules, extending to
them well-known notions and results for Galois representations. We define ordinary
(ϕ, 0K )-modules and formulate the (strict) ordinary local condition in their Galois
cohomology and then compare the latter to the Bloch–Kato local conditions. We
note that our notion of ordinariness is extremely broad; for example, in the case of
modular forms, it includes all cases “of finite slope” (that is, having nonzero Up-
eigenvalue up to p-stabilization and twisting) or, on the automorphic side, having
local Weil–Deligne representation at p that is nonsupercuspidal and of nonscalar
Frobenius (the latter condition being conjecturally automatic).

We conclude with a semicontinuity result on the ranks of Selmer groups in an
ordinary (in our sense) family, which was also observed by Bellaïche [2012]. Various
recent works [Hellmann 2012b; Kedlaya et al. 2012; Liu 2012] show that ordinary
families are abundant: in particular, any family that is refined in the sense of Bel-
laïche and Chenevier [2009], such as an eigenvariety, is automatically ordinary away
from a proper Zariski-closed subset. Thus, our hypotheses are not very restrictive.
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Background. The practice of p-adically interpolating Selmer groups goes back to
the seminal work of Mazur [1972], where abelian varieties at good ordinary primes
are treated; it is suggested there that “the situation is remarkably different” for nonor-
dinary primes. That one definitively cannot integrally interpolate the usual Selmer
groups in a naïve way was confirmed by work of Schneider [1987]. For motives
satisfying an “ordinary” hypothesis, Greenberg [1989; 1994a] found a purely Galois-
cohomological replacement for the p-adic Hodge-theoretic local conditions that is
amenable to interpolation. The latter approach was axiomatized by Nekovář [2006].

The above left open the question of what happens in the nonordinary setting.
Work of Amice and Vélu [1975] and Višik [1976] showed that the analytic p-adic
L-functions of modular forms belong to OX , and not to 3[1/p] as in the ordinary
case, where3 is the Iwasawa algebra and X is the generic fiber of Spf(3,m). Then,
heavily using Fontaine’s tools of p-adic Hodge theory, Perrin-Riou [1994b; 2000]
constructed algebraic p-adic L-functions (i.e., would-be characteristic ideals), also
belonging to 3∞. Somewhat surprisingly, her construction eschewed the Selmer
groups with finer local conditions although it recovered their characteristic ideals in
the ordinary case. Using her language, in the case of modular forms, Kato [2004]
used his Euler system to prove a divisibility in an Iwasawa main conjecture and in
the ordinary case deduced a statement about Selmer groups.

The next advance came when Kisin [2003] made a Galois-theoretic study of the
eigencurve, identifying the relevant two-dimensional p-adic Galois representations
as those admitting a crystalline period after twist. Colmez [2005; 2008; 2010] fol-
lowed the analogy between these representations and principal series, reformulated
Kisin’s condition in terms of (ϕ, 0)-modules (terming it “trianguline”), and made a
rigorous p-adic local Langlands correspondence for them. These two works have
influenced, e.g., Bellaïche and Chenevier [2009], who refine the methods to make
a detailed study of Selmer groups in the infinitesimal neighborhoods of classical
points on eigenvarieties.

We briefly mention that somewhat recently there has been progress in nonor-
dinary cyclotomic Iwasawa theory employing similar tools to ours but resulting
in mysteriously different outputs. The theory was initiated by R. Pollack and
S. Kobayashi (building on work of M. Kurihara) and generalized by F. Sprung,
A. Lei, D. Loeffler, and S. Zerbes. See [Pottharst 2012] for references and more
commentary on this direction.

Future directions. Our theory is incomplete in that we have direct access to no
integral information, having chosen to exchange it for major simplifications in p-
adic Hodge theory when working only up-to-isogeny. The remedy for this is likely
to be the use of Euler–Poincaré formulas to construct integral isogeny invariants,
following [Bloch and Kato 1990; Fontaine and Perrin-Riou 1994; Perrin-Riou 2000].
Still, the theory has several applications. It essentially subsumes Perrin-Riou’s
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cyclotomic Iwasawa theory, as explained in [Pottharst 2012]. Nekovář’s work on
the parity of Selmer groups in families, as well as the parity conjecture for ordinary
Hilbert modular forms of parallel weight, readily generalizes to our setting. In joint
work with K. S. Kedlaya, L. Xiao, and the author [Kedlaya et al. 2012], a perfectness
and duality result for the Galois cohomology of families of (ϕ, 0K )-modules is
applied to give a general construction of triangulations of eigenvarieties as well as
a classification of rank-one families of (ϕ, 0K )-modules; for other recent progress
on triangulations, see [Chenevier 2010; Hellmann 2012b; Kedlaya et al. 2012;
Liu 2012]. Bellaïche has also used our Selmer groups to prove an Iwasawa main
conjecture for Eisenstein series using their nonordinary choice of p-stabilization
(personal communication). Finally, Benois [2011; 2009] has used methods similar
to ours to study L-invariants of Perrin-Riou’s Iwasawa L-functions.

This paper is intended as the first step of an Iwasawa theory within the p-adic
Langlands program. Namely, Galois-theoretic eigenvarieties for reductive groups H
over Q should be moduli of ordinary filtrations on the (ϕ, 0)-modules of universal
Galois deformations with values in L H . For each ι : L H → GLd preserving the
ordinariness of the filtration, the Galois-theoretic eigenvariety will then have a
natural Selmer module. First steps in this direction have been made by Chenevier
[2010] and Hellmann [2010; 2012b]. The automorphic (i.e., usual) eigenvariety
associated to H will map to the Galois-theoretic one by virtue of its family of Galois
representations. A generalization à la Kisin of the ordinary “R = T ” conjectures
would predict this map to be an isomorphism, and Iwasawa theory would relate the ι-
Selmer module to the p-adic L-function interpolating the ι-L-values of automorphic
representations on H .

Notation. Throughout, we fix a prime p and a finite extension E of Qp with ring
of integers OE .

Let a ≤ b be integers. For ∗ ∈ {[a, b], b,+,−,∅}, we say that a complex or
graded module is ∗-bounded if it is, respectively, concentrated in degrees [a, b],
bounded, bounded above, bounded below, or is arbitrary.

If (Z ,OZ ) denotes a ringed topos and ?∈{∅, ft}, we write K∗?(Z) for the category
of complexes of OZ -modules, each of whose cohomologies is ∗-bounded and, if
?= ft, satisfies a finiteness condition to be made precise as it arises. We write D∗?(Z)
for its derived category, and we write Gr∗?(Z) for the category of ∗-bounded graded
OZ -modules, each of whose components satisfies ?. Denote by [ · ] :K∗?(Z)→D∗?(Z)
and H∗ :D∗?(Z)→Gr∗?(Z) the obvious functors. Denote also D[a,b]perf (Z)⊆D[a,b]ft (Z)
the strictly full subcategory consisting of objects X quasi-isomorphic to complexes
C• concentrated in degrees [a, b] consisting of ft and flat modules. On the latter
category, X 7→ X∗ = R HomOZ (X,OZ ) is in each case under consideration an
anti-involution, and for X ∼= [C•] as above, X∗ is represented by HomOZ (C

•,OZ ).
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1. Group cohomology

1A. Continuous cochains: local calculations. We will say that an OE -module M
is linearly topologized if it is equipped with a topology with basis around the
identity consisting of a decreasing sequence Mn of OE -submodules. We will say
that an OE -algebra R is linearly topologized (as an algebra) if the system of
submodules Rn can be chosen so that Rn · Rn ⊆ Rn . For such R, we will say
that an R-module M is linearly topologized compatibly with R if the systems Rn

and Mn of open submodules can be chosen so that Rn ·Mn ⊆ Mn; in particular, the
multiplication map R×M→ M is bicontinuous.

Let G be a profinite group. A continuous G-module is a linearly topologized OE -
module M endowed with a continuous map G→ Autcont

OE
(M), the latter equipped

with the compact-open topology. Given a linearly topologized OE -algebra R, a
continuous R[G]-module is an R-module M that is linearly topologized compatibly
with R endowed with a continuous map G→Autcont

R (M), the latter again equipped
with the compact-open topology. We define the complex C•cont(G,M) ∈K+(R) of
continuous cochains on G with values in M to be Ci

cont(G,M)=Mapcont(Gi ,M)
with the usual differential (see, e.g., [Nekovář 2006, 3.4.1.2]). We denote its image
in D+(R) by R0cont(G,M) and its cohomology by H∗cont(G,M) ∈ Gr+(R). The
latter defines a functor that, of course, turns short exact sequences into long exact
sequences provided the usual existence of continuous (though not necessarily group-
theoretic) sections. The reader may check that, under our hypotheses below, one
always has the necessary continuous sections for turning short exact sequences into
long exact sequences.

In order to get reasonable behavior, we will need to impose some hypotheses.
The following are sufficient for our applications:

Hypotheses A. (1) G is a profinite group having finite p-cohomological dimen-
sion e, and #Hi

cont(G, T ) <∞ for all finite discrete Fp[G]-modules T and all
i ≥ 0.

(2) A is a Noetherian OE -algebra, separated and complete with respect to a proper
ideal I containing a power of p and equipped with the I -adic topology.

(3) M is a finite-type A-module, considered with its I -adic topology and equipped
with a continuous A[G]-module structure.

(4) The A-module M is flat.

We say that an A-module satisfies the condition “ft” if it is of finite type.
Note that, under Hypotheses A(1)–(3), since A/I N has the discrete topology for

N > 0, the stabilizer of any element of M/I N is open in G; since M is finitely
generated, we see that G acts on M/I N through a finite quotient.

The following is the main result of this section:
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Theorem 1.1. Assume Hypotheses A.

(1) The complexes C•cont(G,M/I N ) and C•cont(G,M) consist of flat A/I N -modules
and A-modules, respectively.

(2) The inverse system {H∗cont(G,M/I N )}N satisfies Mittag-Leffler.

(3) The natural map H∗cont(G,M)→ lim
←−N

H∗cont(G,M/I N ) is an isomorphism.

(4) The Hi
cont(G,M) are finitely generated A-modules and vanish for i > e.

The above theorem shows that C•cont(G,M) ∈ K[0,e]ft (A). In fact, copying the
proof of [Nekovář 2006, 4.2.9] verbatim (in the case a = b = 0, S = {1}), one
obtains the following strengthening:

Corollary 1.2. Assume Hypotheses A. Then R0cont(G,M) ∈ D[0,e]perf (A).

Lemma 1.3. Assume Hypotheses A(1)–(3).

(1) For any compact topological space X , the natural maps

Mapcont(X,M)/I N
→Mapcont(X,M/I N )

are isomorphisms.

(2) The natural maps

C•cont(G,M)/I N
→ C•cont(G,M/I N )

are isomorphisms of complexes.

(3) One has Hi
cont(G,M)= 0 for i > e.

(4) If M is annihilated by a power of I , then H∗cont(G,M) is a finitely generated
A-module.

(5) If Hypothesis (4) holds too, then for each N >0 the complexes C•cont(G,M/I N )

and C•cont(G,M) consist of flat A/I N -modules and A-modules, respectively.

Proof. For (1), the main fact we will use is that the continuous maps from a compact
topological space to a discrete topological space are precisely the locally constant
ones.

The map of the claim is surjective by the discreteness of M/I N ; that it is injective
amounts to the claim that the natural map I N

·Mapcont(X,M)→Mapcont(X, I N M)
is surjective. As the source of this map is complete and I N M ∼

→ lim
←−k

I N M/I N+k M ,
it suffices to show that the maps I N

·Mapcont(X,M)→Mapcont(X, I N M/I N+k M)
for k ≥ 0 are surjective. But the I N M/I N+k M are discrete, so the latter claim is
obvious.

For (2), the maps are clearly compatible with differentials, so we must check
that they are isomorphisms term-by-term. For the i-th term, this results from (1)
with X = Gi .
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To prove (3), observe that by the universal property of the inverse limit one has
C•cont(G,M) = lim

←−N
C•cont(G,M/I N ) with surjective transition maps; hence, for

each i , we have short exact sequences

0→ R1 lim
←−

N

Hi−1
cont(G,M/I N )→ Hi

cont(G,M)→ lim
←−

N

Hi
cont(G,M/I N )→ 0.

Since each M/I N is a discrete p-primary G-module, the claim for i > e+1 follows.
For i = e+ 1, the inverse system {Hi−1

cont(G,M/I N )}N has surjective maps because
each Hi

cont(G, I N M/I N+k M) = 0. This implies that the R1 lim
←−N

-term vanishes,
giving the claim in this case too.

Next we treat (4). We may perform a dévissage to reduce to the case where
(I, p)M = 0, and then we choose an open normal subgroup H ⊆G with M H

= M .
Since M is Fp-flat, the natural map H∗cont(H,Fp)⊗Fp M→ H∗cont(H,M) is an iso-
morphism. By Hypothesis (1), the term H∗cont(H,Fp) is finite; hence, H∗cont(H,M)
is finitely generated over A. Now consider the spectral sequence

Hi
cont(G/H,H j

cont(H,M))H⇒ Hi+ j
cont(G,M).

The terms on the left are finitely generated over A because G/H is finite. This
forces H∗cont(G,M) to be finitely generated.

Finally, for (5), it follows from (2) that for any ideal J of A one has

J ⊗A C•cont(G,M) ∼→ J ⊗A lim
←−

N

C•cont(G,M)/I N .

But A is Noetherian, so J is finitely presented, and ⊗A J commutes with taking
inverse limits of surjective systems. Therefore, one has

J ⊗A C•cont(G,M) ∼→ lim
←−

N

(J ⊗A C•cont(G,M))/I N ,

and the right-hand side is clearly I -adically separated. This verifies that C•cont(G,M)
is “I -adically ideal separated”. Hence, by the well-known local criterion for flatness,
e.g., [Matsumura 1989, Theorem 22.3(1, 5)], this complex consists of flat A-modules
if and only if each of its respective reductions modulo I N is A/I N -flat. But since
M is A-flat, it follows that the M/I N are A/I N -flat, and indeed so are the complexes
C•cont(G,M/I N )= lim

−→H EG open
(M/I N )⊕(G/H)•. We conclude by again using (2).�

Proof of Theorem 1.1. The claim (1) follows immediately from Lemma 1.3(5), and
the last part of the claim (4) is Lemma 1.3(3).

The remaining claims follow from the results of [Berthelot and Ogus 1978,
Appendix B], whose conventions for handling inverse limits in the derived category
we now recall. Namely, we consider the poset N of nonnegative integers as a
Grothendieck site with the discrete topology: only identity maps are coverings. A
sheaf on N is merely an inverse system, and the condition that a sheaf be flasque
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simply amounts to the Mittag-Leffler condition. We equip N with the sheaf A· of
rings given by N 7→ AN = A/I N+1 and work in the derived category D(N, A·) of
A·-modules on N.

Write MN = M ⊗A AN ; the Ci
cont(G,MN ) determine a complex C•

·
of sheaves

of A·-modules. Lemma 1.3(3) shows that [C•
·
] ∈ D−(N, A·), and Lemma 1.3(5)

implies that [C•N+1] ⊗
L
AN+1

AN is represented by the complex C•N+1 ⊗AN+1 AN ,
which by Lemma 1.3(2) is isomorphic to C•N . The latter two claims mean that
C•
·

is what in [Berthelot and Ogus 1978] is called a quasiconsistent complex.
Lemma 1.3(4) shows (in particular) that [C•0 ] ∈ D−ft (A0), and hence, the main
finiteness result [Berthelot and Ogus 1978, Proposition B.7]1 applies to C•

·
and

R lim
←−N
[C•
·
]. Finally, Lemma 1.3(2) shows that C•

·
is a complex of flasque sheaves,

and therefore, R lim
←−N
[C•
·
] = [lim
←−N

C•N ] = [C
•
cont(G,M)], allowing us to rephrase

the finiteness result as claims (2)–(4). �

We turn to base-changing properties. We say that B is an I -adic A-algebra if it is
a Noetherian A-algebra that is (I B)-adically separated and complete and equipped
with the (I B)-adic topology; when no confusion may arise, we abusively denote
by I the ideal I B of B.

Theorem 1.4. Assume Hypotheses A hold, and let B be an I -adic A-algebra.

(1) The natural map

R0cont(G,M)⊗L
A B→ R0cont(G,M ⊗A B)

is an isomorphism in D[0,e]perf (B).

(2) There is a canonical spectral sequence

Ei j
2 = TorA

−i (H
j
cont(G,M), B)H⇒ Hi+ j

cont(G,M ⊗A B).

(3) If B is flat over A or becomes flat after inverting p, then the natural map

H∗cont(G,M)⊗A B→ H∗cont(G,M ⊗A B)

is an isomorphism or becomes an isomorphism after inverting p, respectively.

Lemma 1.5. Assume Hypotheses A hold, and let B be an I -adic A-algebra.

(1) For any compact topological space X , the natural map

Mapcont(X,M) ⊗̂A B→Mapcont(X,M ⊗̂A B)

is an isomorphism.

1In the statement of this result, the hypothesis “D0 ∈ D−ft (N, A·)” should read “D0 ∈ D−ft (A0)”.
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(2) The natural map

C•cont(G,M) ⊗̂A B→ C•cont(G,M ⊗A B)

is an isomorphism of complexes.

(3) The natural map

C•cont(G,M)⊗A B→ C•cont(G,M) ⊗̂A B

is a quasi-isomorphism.

Proof. We treat (1). One has natural maps

Mapcont(X,M)⊗A B/I N
=Mapcont(X,M)/I N

⊗A B/I N

α
−→Mapcont(X,M/I N )⊗A B/I N

β
−→Mapcont(X,M ⊗A B/I N ).

The map α is an isomorphism by Lemma 1.3(2). One easily deduces that β is an
isomorphism from the fact that all of M/I N , B/I N , and M ⊗A B/I N are discrete.
Thus, we deduce the claim by passing to the inverse limit over N .

For (2), the map is clearly compatible with differentials, so we must check that
it is an isomorphism term-by-term. For the i-th term, this results from applying (1)
with X = Gi and noting that M ⊗̂A B = M ⊗A B because M is finitely generated
over A.

We now show (3). Choose a quasi-isomorphism D•→ C•cont(G,M)⊗A B with
D• a bounded-above complex of finitely generated, flat B-modules. Because both
D• and C•cont(G,M)⊗A B are B-flat, the induced maps

D•⊗B B/I N
→ C•cont(G,M)⊗A B/I N

are quasi-isomorphisms. On the other hand, both systems satisfy Mittag-Leffler
so that, applying lim

←−N
, the induced map D̂•→ C•cont(G,M) ⊗̂A B is also a quasi-

isomorphism. We conclude by tracing around the commutative diagram

D• ∼
//

∼

��

D̂•

∼

��

C•cont(G,M)⊗A B // C•cont(G,M) ⊗̂A B

where the top horizontal isomorphism is because the Di are finitely generated. �

Proof of Theorem 1.4. The claim (1) follows from Lemmas 1.3(5) and 1.5(2)–(3),
and (2) follows from (1) formally. To see (3), consider the spectral sequence of (2).
After inverting p if necessary, all terms with i 6= 0 vanish, yielding degeneracy
at E2, whence the desired isomorphism. �

Often, we are only given a finitely generated A[1/p]-module M equipped with
the structure of a continuous A[1/p][G]-module. If there exists a finitely generated,
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flat, G-stable A-submodule M0 ⊆ M such that M0[1/p] = M , then M0⊗A B plays
the same role inside M⊗A[1/p]B[1/p], and the preceding finiteness, perfectness, and
base-change results apply with A[1/p], B[1/p], and M in place of A, B, and M0,
respectively, and all objects occurring in it are independent of the choice of M0.

For any strictly E-affinoid space Y , we write AY for the set of unit balls of
Banach algebra norms on 0(Y,OY ). Any A ∈AY , equipped with I = (p), satisfies
Hypothesis (2). If M is a finitely generated, flat 0(Y,OY )-module equipped with the
structure of a continuous 0(Y,OY )[G]-module, then by [Chenevier 2009, Lemme
3.18] one has M=M0[1/p] for M0 a finitely generated, flat, G-stable A-submodule,
for some A ∈AY , and R0(G,M)=R0(G,M0)[1/p] belongs to D[0,e]perf (0(Y,OY )).
If f : Y ′→ Y is a morphism of affinoid spaces, then the image of A in 0(Y ′,OY ′)

is contained in some B ∈ AY ′ , and any such B is a p-adic A-algebra. Thus, by
the preceding paragraph, we may apply Theorem 1.4 with A and B replaced by
0(Y,OY ) and 0(Y ′,OY ′). In particular, if Y ′ is an affinoid subdomain of Y , then
B[1/p] = 0(Y ′,OY ′) is flat over A[1/p] = 0(Y,OY ), so Theorem 1.4(3) applies.

1B. General p-adic analytic spaces. Let X be a p-adic analytic space over E ,
and let U be an admissible affinoid covering that is quasiclosed under intersection,
meaning that whenever Y, Y ′ ∈U then Y ∩Y ′ has an admissible cover consisting
of elements of U. We consider U as a poset category and equip it with the discrete
Grothendieck topology: only identity maps are coverings, and all presheaves are
sheaves. Thus, homological algebra of sheaves on U is essentially carried out
independently over each affinoid. It is a ringed site via the rule 0(Y,OU)=0(Y,OY ),
and an OU-module M consists of the data of a 0(Y,OY )-module 0(Y,M) for each
Y ∈U together with a morphism 0(Y,M)→ 0(Y ′,M) of 0(Y,OY )-modules for
each Y, Y ′ ∈U with Y ′ contained in Y , satisfying the obvious compatibility law for
Y ′′ ⊆ Y ′ ⊆ Y . Similarly to the situation in [Berthelot and Ogus 1978, Appendix B],
we say that a complex C• of OU-modules is quasiconsistent if each induced map

0(Y,C•)⊗0(Y,OY ) 0(Y
′,OY ′)→ 0(Y ′,C•)

is a quasi-isomorphism. Since 0(Y ′,OY ′) is 0(Y,OY )-flat, we in fact have an
isomorphism

[0(Y,C•)]⊗L
0(Y,OY )

0(Y ′,OY ′)
∼
→ [0(Y ′,C•)]

in D(0(Y ′,OY ′)). We say that a quasiconsistent complex of OU-modules C• is of
finite type, or satisfies the condition “ft”, or is flat if, for all i ∈ Z and for all Y ∈U,
the 0(Y,OY )-module 0(Y,C i ) is of finite type or flat, respectively. Quasiconsistent
OU-modules form an abelian subcategory of all OU-modules that is closed under
extensions. Note that a complex of quasiconsistent OU-modules is a quasiconsistent
complex of OU-modules but not in general conversely.
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From now on, by a complex of OU-modules, we implicitly mean quasiconsistent
complex of OU-modules unless said otherwise. Especially, for ∗ ∈ {+,−, b,∅},
the notations K∗ft(U), D∗ft(U), D[a,b]perf (U), and Gr∗ft(U) denote categories of quasi-
consistent complexes or graded modules of finite type. We have the obvious
commutative diagram, where the vertical arrows denote taking sections over Y ∈U:

K∗ft(U)
[ · ]

//

��

D∗ft(U)
H∗

//

��

Gr∗ft(U)

��

K∗ft(0(Y,O))
[ · ]
// D∗ft(0(Y,O))

H∗
// Gr∗ft(0(Y,O))

(1-1)

By a family of G-representations over X , we mean a locally finitely generated, flat
OX -module M , equipped with a continuous map G→ Autcont

OX
(M). Then M deter-

mines by restriction a finitely generated, flat OU-module, which we also denote by M ,
whose group of sections over each Y ∈U is a continuous 0(Y,O)[G]-module. By the
discussion at the end of Section 1A, it follows from Theorem 1.4 that the OU-module
determined by the rule Y 7→ C•cont(G, 0(Y,M)) is quasiconsistent; combined with
Theorem 1.1(4), this rule hence determines an object of K[0,e]ft (U), which we denote
by C•cont(G,M). Its class R0cont(G,M) in the derived category belongs to D[0,e]perf (U),
and its cohomology H∗cont(G,M) belongs to Gr[0,e]ft (U). For any Y ∈U, we have

0(Y,C•cont(G,M))= C•cont(G, 0(Y,M)), (1-2)

and it follows from the commutativity of the diagram (1-1) that also

0(Y,R0cont(G,M))= R0cont(G, 0(Y,M)),

0(Y,H∗cont(G,M))= H∗cont(G, 0(Y,M)),

so all we really have is a compatible family of cohomology data over the affinoids
in question. Using Kiehl’s theorem, we may identify H∗cont(G,M) to an object
of Gr[0,e]coh (X), in which the subscript denotes coherent OX -modules. Since the latter
is invariant under passing between U and a refinement, we canonically associate
to M a coherent analytic sheaf on X whose sections over any affinoid domain Y
give the continuous cohomology of G with coefficients in the sections of M over Y .

We now state a general base-change theorem for group cohomology. Suppose
we are given a morphism f : X ′→ X of p-adic analytic spaces over E , and let
U′ be an admissible affinoid covering of X ′ that is quasiclosed under intersection
with the property that for each Y ′ ∈ U′ there exists Y ∈ U with f (Y ′) ⊆ Y . Any
object C• of K−ft (U) gives rise to an object L f ∗C• of D−ft (U

′) by the usual recipe.

Theorem 1.6. (1) The natural map

L f ∗R0cont(G,M)→ R0cont(G, f ∗M)
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is an isomorphism in D[0,e]perf (U
′).

(2) There exists a spectral sequence in coherent OX ′-modules

Ei j
2 = Tor f −1OX

−i ( f −1H j
cont(G,M),OX ′)H⇒ Hi+ j

cont(G, f ∗M).

(3) If f is flat, then the natural map

f ∗H∗cont(G,M)→ H∗cont(G, f ∗M)

is an isomorphism in Gr[0,e]coh (X
′).

Proof. After clearing away the abstract nonsense using (1-2), this is just an applica-
tion of Theorem 1.4 to A[1/p] = 0(Y,OY ) and B[1/p] = 0(Y ′,OY ′) for each pair
of affinoids Y ∈ U and Y ′ ∈ U′ with f (Y ′) ⊆ Y , using Kiehl’s theorem to patch
back up. �

1C. Quasi-Stein spaces. Continuing with X and M as in Section 1B, assume that
X is quasi-Stein: it admits an admissible covering U by an increasing union of
strictly E-affinoid subdomains Y1 ⊆ Y2 ⊆ · · · , each of whose restriction maps
0(Yn+1,OYn+1)→ 0(Yn,OYn ) has dense image.

Let Mn be the 0(Yn,OYn )-module 0(Yn,M). The ring A∞ = lim
←−n

0(Yn,OYn )=

0(X,OX ) is a commutative Fréchet–Stein algebra, and M∞ = lim
←−n

Mn =0(X,M)
is a coadmissible A∞-module in the sense of [Schneider and Teitelbaum 2003, §3].
“Theorem A” for such modules states that the natural maps M∞→ Mn have dense
image; they induce isomorphisms M∞⊗A∞0(Yn,OYn )

∼
→Mn . Also, this denseness

suffices for Mittag-Leffler considerations, whence “Theorem B” states that for all
i > 0 one has Ri lim

←−n
Mn = 0. We obtain an exact equivalence between coherent

sheaves on X and coadmissible modules over A∞. In particular, the subcategory of
all A∞-modules consisting of the coadmissible ones forms an abelian subcategory
that is closed under extensions. We say that an A∞-module satisfies condition “ft”
if its coadmissible.

Turning to cohomology, each of the maps C•cont(G,Mn+1) → C•cont(G,Mn)

has dense image, and C•cont(G,M∞)= lim
←−n

C•cont(G,Mn) by the definition of the
inverse limit, so Mittag-Leffler gives H∗cont(G,M∞)= lim

←−n
H∗cont(G,Mn). Hence,

C∗cont(G,M∞) is an object of K[0,e]ft (A∞), where the subscript means that the coho-
mology modules are required to be coadmissible.

The following theorem follows easily from the preceding discussion:

Theorem 1.7. The natural maps

R0cont(G,M∞)→ R lim
←−

n
[C•cont(G,Mn)],

H∗cont(G,M∞)→ lim
←−

n
H∗cont(G,Mn),

H∗cont(G,M∞)⊗A∞ 0(Yn,O)→ H∗cont(G,Mn)
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are isomorphisms.

Remark 1.8. The usual explicit construction shows that, for any M and M ′ and
n ≤ ∞, the group cohomology H1

cont(G,Hom0(Yn,O)(Mn,M ′n)) is in canonical
bijection with the Yoneda group Ext10(Yn,O)[G]-cont(Mn,M ′n) of extensions of M ′n
by Mn in the category of continuous 0(Yn,O)[G]-modules.

1D. Generic fibers of formal spectra. In this section, we let A and M satisfy
Hypotheses A. Assume for this discussion that A/I is a finitely generated OE -
algebra and that A is p-torsion-free. We now compare the group cohomology of M
to that of its generic fiber.

Let A0
n = A[I n/p], the A-subalgebra of A[1/p] generated by all i/p with i ∈ I n ,

and let An be its p-adic completion. Each An[1/p] is a strictly E-affinoid algebra,
and maps An+1[1/p]→ An[1/p] arising from the inclusions A0

n+1⊆ A0
n correspond

to inclusions Yn⊆Yn+1 of affinoid subdomains. The increasing system Y1⊆Y2⊆· · ·

forms an admissible affinoid covering of its union X . (See [de Jong 1995, §7.1]
for details.) It is clear that X is a quasi-Stein space so that Section 1C applies.

The powers of the ideals p A0
n, I A0

n ⊆ A0
n are cofinal so that An is also the I -adic

completion of A0
n . In particular, each An is an I -adic A-algebra. Each An[1/p] is

flat over A[1/p]. The following base-changing theorem now follows easily from
the preceding work:

Theorem 1.9. For n ≤∞, the natural maps

R0cont(G,M)⊗L
A An→ R0cont(G,M ⊗A An),

H∗cont(G,M)⊗A An[1/p] → H∗cont(G,M ⊗A An[1/p])

are isomorphisms.

Remark 1.10. By Remark 1.8 and Theorem 1.9, for n ≤∞, the map on Yoneda
groups Ext1A[G]-cont(M,M ′)→ ExtAn[1/p][G]-cont(M ⊗A An[1/p],M ′⊗A An[1/p])
determined by applying ⊗A An[1/p] to an extension class 0→ M ′→ E→ M→ 0
induces an isomorphism

Ext1A[G]-cont(M,M ′)⊗A An
∼
→ ExtAn[1/p][G]-cont(M⊗A An[1/p],M ′⊗A An[1/p]).

Morally, A[1/p]⊆ A∞ consists of the p-adically bounded functions on X , so calling
the image of Ext1A[G]-cont(M,M ′)[1/p] in Ext1A∞[G]-cont(M⊗A A∞,M ′⊗A A∞) the
bounded extension classes is reasonable.

1E. Selmer complexes. We now copy ideas of Nekovář [2006] into the context of
the preceding sections.

In the preceding sections, we describe a variety of situations all of the following
sort: one is given a profinite group G satisfying Hypothesis (1), a ringed topos Z
built from p-adic rings, and a locally finitely generated flat OZ -module M with
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continuous OZ [G]-module structure. In each situation, we show that the continuous
cohomology objects satisfy C•cont(G,M) ∈ K[0,e]ft (Z), R0cont(G,M) ∈ D[0,e]perf (Z),
and H∗cont(G,M) ∈ Gr[0,e]ft (Z) and that their formation commutes with (derived)
pullback along appropriate morphisms of topoi f : Z ′→ Z and in a certain case
pushforward as well. Specifically, we treat the following cases, using a tilde to
denote the associated ringed topos:

(1) (A, I ) and M satisfy Hypotheses A(2)–(4), and B is an I -adic A-algebra. We
define Z = (Spec A)∼ and Z ′= (Spec B)∼, and let f be the induced morphism.

(2) M = M0[1/p] where (A, I ) and M0 satisfy Hypotheses A (2)–(4), and B is an
I -adic A-algebra. We define Z = (Spec A[1/p])∼ and Z ′ = (Spec B[1/p])∼,
and let f be the induced morphism.

(3) X is a p-adic analytic space over E , M is a family of G-representations over X ,
U is an admissible affinoid covering of X that is quasiclosed under intersection,
f0 : X ′→ X is a morphism of p-adic analytic spaces over E , and U′ is an
admissible affinoid covering of X ′ that is quasiclosed under intersection with
the property that for each Y ′ ∈ U′ there exists Y ∈ U with f0(Y ′) ⊆ Y . We
define Z = (U,OU)

∼ and Z ′ = (U′,OU′)
∼, and let f = f̃0.

(4) X is a quasi-Stein p-adic analytic space over E , M is a family of G-represen-
tations over X , and U= {Yn}n≥1 is an increasing admissible affinoid covering
as in Section 1C. We define Z = (Spec0(X,OX ))

∼ and Z ′ = (U,OU)
∼, and

let f be the induced morphism, interpreting “finite type” over Z to mean
“coadmissible”. In this case, the formation of cohomology also commutes with
(derived) pushforward along f .

(5) (A, I ) and M satisfy Hypotheses A(2)–(4), and moreover, A is p-torsion-free
and A/I is a finitely generated OE -algebra. We define Z = (Spec A)∼, the
rings An for n ≤∞ as in Section 1D, and Z ′ = (Spec An[1/p])∼, and let f
be the induced morphism, in the case n =∞ interpreting “finite type” over Z ′

to mean “coadmissible”.

In this section, we specialize to the case of the group G = G K ,S defined in the
next paragraph and give analogous results in each of these scenarios where the
continuous cohomology objects have been replaced by Selmer complexes relative to
appropriate local conditions. We also give variants of Tate’s local and Poitou–Tate’s
global arithmetic duality theorems for these objects.

We let K be a finite extension of Q, and we let S be a finite set of finite places
of K containing all v dividing p. We choose a maximal algebraic extension KS

of K unramified outside S∪{∞}, and put G K ,S =Gal(KS/K ). We also choose, for
each v ∈ S, an algebraic closure K alg

v of Kv together with a K -algebra embedding
KS ↪→ K alg

v , and put Gv =Gal(K alg
v /Kv). Denote by Iv ⊂ Gv the inertia subgroup.
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We write resv for the map Gv → G K ,S given by restriction along our chosen
embedding as well as for the map C•cont(G K ,S,M)→ C•cont(Gv,M) it induces, via
pullback, on cocycles. Assume for simplicity that p 6= 2 or K is totally complex. By
arithmetic duality theory, the groups G K ,S and Gv for v ∈ S satisfy Hypothesis (1)
with e = 2 (see [Neukirch et al. 2008, 8.3.10, 8.3.17–19, and 7.1.8]). In the
exceptional case where p = 2 and K is not totally complex, one can get a similar
theory working with a little more care; see [Nekovář 2006, 5.7], and note that the
complication is annihilated by inverting 2 anyway.

We place ourselves in one of the scenarios (1)–(5) above, where the hypotheses are
made relative to the group G=G K ,S . By a (∗-bounded) local condition1v at v ∈ S,
we mean the data of an object U •v ∈K∗ft(Z) and a morphism iv :U •v→C•cont(Gv,M).
Assume we are given the data 1= {1v}v∈S of a local condition 1v for each v ∈ S.
We define the Selmer complex C̃•f (G K ,S,M;1) of M with respect to 1 to be the
complex

Cone
[

C•cont(G K ,S,M)⊕
⊕
v∈S

U •v

⊕
v∈S(resv −iv)
−−−−−−−−→

⊕
v∈S

C•cont(Gv,M)
]
[−1].

We denote by R0̃f(G K ,S,M;1) the image of the Selmer complex in the derived
category, and we denote its cohomology groups, which we call the (extended) Selmer
groups, by H̃∗f (G K ,S,M;1). For brevity, we usually suppress the dependence on1
from the notation. By the definition of the extended Selmer groups in terms of a
mapping cone, one has an exact triangle

R0̃f(G K ,S,M;1)→ R0cont(G K ,S,M)→
⊕
v∈S

Ev, (1-3)

where the objects Ev = Cone(iv) sit in exact triangles

Uv
iv
−→ R0cont(Gv,M)

jv
−→ Ev. (1-4)

Thus, the image of the extended Selmer group in Hi
cont(G K ,S,M) consists of those

classes that everywhere locally live in the image of the Hi (iv); this image is what
one more traditionally encounters in the literature, so we call it the nonextended
Selmer group Hi

f(G K ,S,M;1).
The following finiteness theorem is just an application to each of G = G K ,S and

G = Gv of the finiteness theorems of the preceding sections in light of the exact
triangles (1-3) and (1-4):

Theorem 1.11. The complex C̃•f (G K ,S,M;1) belongs to K∗ft(Z). In particular,
R0̃f(G K ,S,M;1) ∈D∗ft(Z) and H̃∗f (G K ,S,M;1) ∈Gr∗ft(Z). If for each v ∈ S one
has [Uv] ∈ D[0,2]perf (Z), then R0̃f(G K ,S,M;1) belongs to D[0,3]perf (Z).
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We turn to treat base change. If the local conditions are bounded above (up to
quasi-isomorphism), on the one hand we may form L f ∗C̃•f (G K ,S,M;1). On the
other hand, for v ∈ S, we may form the local condition f ∗1v for f ∗M by choosing
a representative in K−ft (Z

′) of the morphism

L f ∗Uv

L f ∗iv
−−−→ L f ∗R0cont(Gv,M) ∼→ R0cont(Gv, f ∗M),

and we write f ∗1= { f ∗1v}v∈S . The following theorem is similarly deduced from
the finiteness and base-changing theorems of the preceding sections:

Theorem 1.12. In the situations (1)–(5) above, assume the local conditions 1 are
bounded above. Then the natural map

L f ∗R0̃f(G K ,S,M;1)→ R0̃f(G K ,S, f ∗M; f ∗1)

is an isomorphism in D−ft (Z
′).

If for each v ∈ S one has [Uv] ∈ D[0,2]perf (Z), then the isomorphism takes place in
D[0,3]perf (Z

′).

In the case (4) above, so X is quasi-Stein with increasing admissible affinoid
covering U = {Yn}n≥1, there is also a pushforward result. Assume we are given,
instead of local conditions on the global sections 0(X,M) as in the preceding
theorem, local conditions on 1′ on M considered as a sheaf on U. Thus, we
have a quasiconsistent family of morphisms 0(Yn,U ′•v )→ 0(Yn,C•cont(G,M)) for
varying n. Assume that the maps 0(Yn+1,U ′•v )→ 0(Yn,U ′•v ) have dense image.
We form local conditions 1 for 0(X,M) using the morphisms

i•v :U
•

v = lim
←−

n
0(Yn,U ′•v )→ lim

←−
n
0(Yn,C•cont(Gv,M))= C•cont(Gv, 0(X,M))

for v ∈ S. Then H∗(U •v )= lim
←−n

H∗0(Yn,U ′•v ) by our dense image assumption and
Mittag-Leffler, and it follows that the 0(X,OX )-modules on the left-hand side are
coadmissible. The following theorem is again a consequence of the finiteness and
pushforward results of Section 1C:

Theorem 1.13. In the situation (4) above, assume the local conditions 1′ are
bounded above with transition maps having dense image. Then the natural map

R0̃f(G K ,S, 0(X,M);1)→ R f∗R0̃f(G K ,S,M;1′)

is an isomorphism in D−coadm(Z).
If for each v ∈ S one has [Uv] ∈ D[0,2]perf (Z

′), then the isomorphism takes place in
D[0,3]perf (Z).

Next we treat arithmetic duality. Recall the anti-involution on perfect complexes
X 7→ X∗ = R HomOZ (X,OZ ) = HomOZ (X,OZ ). What follows is the basic local
result, a variant in families of Tate’s local duality theorem.
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Theorem 1.14. (1) For any v ∈ S, there is a canonical isomorphism

τ≥2R0cont(Gv,OZ (1)) ∼→ OZ [−2]

given by base change of the local trace map.

(2) For any v ∈ S, the duality morphism

R0cont(Gv,M∗(1))→ R0cont(Gv,M)∗[−2]

adjoint to the pairing

R0cont(Gv,M∗(1))⊗L
OZ

R0cont(Gv,M)
∪
−→R0cont(Gv,M∗(1)⊗OZ M)

→ τ≥2R0cont(Gv,OZ (1)) ∼→OZ [−2],

given by cup product, evaluation and truncation, and (1) above, is an isomor-
phism in D[0,2]perf (Z).

Proof. To see (1), we note that, because Gv satisfies e= 2, the Tor-spectral sequence
shows that the rule M 7→ H2

cont(Gv,M) commutes with arbitrary base change in Z .
Thus, it suffices to take the composition

τ≥2R0cont(Gv,OZ (1))∼= H2
cont(Gv,OZ (1))[−2]

∼= (H2
cont(Gv,Zp(1))⊗Zp OZ )[−2]

∼= (Zp⊗Zp OZ )[−2] = OZ [−2],

the last identification coming from the trace isomorphism of local class field theory.
To treat (2), we observe that the formation of the duality morphism commutes

with arbitrary derived base change in Z , and all cases under consideration can be
reduced to local scenarios that are pullbacks of the situation (1) on page 1584; hence,
it suffices to assume we are in that specific case with (A, I ) the ring in question. A
morphism of perfect complexes is a quasi-isomorphism if and only if it becomes a
quasi-isomorphism after applying⊗L

A A/m for any maximal ideal m of A. By execut-
ing this base change and noting by [Matsumura 1989, Theorem 8.2(i)] that I ⊆m, we
are reduced to the case where A is a field of characteristic p with the discrete topol-
ogy. But then Gv acts on M via a finite quotient, and the situation arises as the base
change of a situation with coefficients in a finite field, where the result is known. �

The global result is more complicated to state. As a first approximation, we
introduce compactly supported cochains C•cont,c(G K ,S,M) as the complex

Cone
[

C•cont(G K ,S,M)
⊕

v∈S resv
−−−−−→

⊕
v∈S

C•cont(Gv,M)
]
[−1],
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denoting its image in the derived category by R0cont,c(G K ,S,M)∈D[1,3]perf (Z) and its
cohomology by H∗cont,c(G K ,S,M) ∈K[1,3]ft (Z). Following Nekovář [2006, 5.3.3.3],
one constructs cup product pairings

R0cont(G K ,S,M)⊗L
OZ

R0cont,c(G K ,S,M ′)→ R0cont,c(G K ,S,M ⊗OZ M ′),

and the following theorem is proved in the exact same way as the preceding one:

Theorem 1.15. (1) There is a canonical isomorphism

τ≥3R0cont,c(G K ,S,OZ (1)) ∼→ OZ [−3]

given by base change of the global trace map.

(2) For any v ∈ S, the duality morphism

R0cont(G K ,S,M∗(1))→ R0cont,c(G K ,S,M)∗[−3]

adjoint to the pairing

R0cont(G K ,S,M∗(1))⊗L
OZ

R0cont,c(G K ,S,M)
∪
−→ R0cont,c(G K ,S,M∗(1)⊗OZ M)

→ τ≥3R0cont,c(G K ,S,OZ (1)) ∼→ OZ [−3],

given by cup product, evaluation and truncation, and (1) above, is an isomor-
phism in D[0,2]perf (Z).

To treat duality of Selmer complexes, assume the local conditions 1 satisfy
[Uv] ∈ D[0,2]perf (Z) for all v ∈ S, and equip M∗(1) with local conditions 1∗(1) given
for v ∈ S by choosing a representative in K[0,2]perf (Z) of the morphism

E∗v [−2]
j∗v [−2]
−−−→ R0cont(Gv,M)∗[−2] ∼= R0cont(Gv,M∗(1)).

Then as in [Nekovář 2006, 6.3], one constructs cup product pairings

R0̃f(G K ,S,M∗(1);1∗(1))⊗L
OZ

R0̃f(G K ,S,M;1)

→ R0cont,c(G K ,S,M∗(1)⊗OZ M),

which, followed by evaluation and truncation, followed by the global trace map,
gives rise via adjoint to a duality morphism

R0̃f(G K ,S,M∗(1);1∗(1))→ R0̃f(G K ,S,M;1)∗[−3].

The general global result is as follows, with the same proof.

Theorem 1.16. Assume, for all v ∈ S, the local conditions satisfy [Uv] ∈ D[0,2]perf (Z).
Then the duality morphism above is an isomorphism in D[0,3]perf (Z).
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Remark 1.17. The preceding base-changing and duality theorems are cheating
because we have taken a narrow definition of “local condition”. Rather than a
particular morphism iv, the phrase usually means a rule that associates such a
morphism to a given M (perhaps equipped with additional data) as in the examples
below. The true base-changing and duality theorems are reduced by the above
theorems to the claim that the formation of the local conditions, as determined by
the rule, commutes with base change and duality, respectively.

Example 1.18. We give some examples of useful local conditions. Let v ∈ S.
The empty local condition means taking iv to be the identity map and results in

no modification being made to the cohomology. The full local condition, taking iv
to be the map from the zero object, results in cohomology that is “compactly
supported” at v. The formation of these conditions clearly commutes with arbitrary
base change. Excepting these two, a local condition often has the property that
H0(iv) is an isomorphism, H1(iv) is an injection, and Hn(Uv)= 0 for n 6= 0, 1. In
fact, given a subspace L⊆ H1

cont(Gv,M), there is a standard construction of such
a local condition with img H1(iv)= L, called the local condition associated to L,
namely by setting U 0

v = C0
cont(Gv,M),

U 1
v = {c ∈ C1

cont(Gv,M) | dc = 0, [c] ∈ L},

and U n
v = 0 for n 6= 0, 1 (and taking iv to be the inclusion map of complexes). On

the other hand, when H1(iv) fails to be injective, its kernel is considered a local
contribution to an “exceptional zero” of the related p-adic L-function.

For v ∈ S not dividing p, the unramified local condition is given by inflation

iv :U •v = C•cont(Gv/Iv,M Iv )→ C•cont(Gv,M).

(Note that Gv/Iv ≈ Ẑ satisfies Hypothesis (1) with e = 1.) It is isomorphic in
the derived category to the local condition associated to the image of inflation
H1

cont(Gv/Iv,M Iv ) ↪→ H1
cont(Gv,M). Whenever M Iv is flat over OZ , it obeys the

necessary hypotheses as a continuous OZ [Gv/Iv]-module. If f ∗(M Iv ) ∼→ ( f ∗M)Iv ,
then the formation of the unramified local condition commutes with (derived) base
change. When both M Iv and M∗(1)Iv are flat over OZ , it makes sense to ask whether
the unramified local conditions for M and M∗(1) are self-dual, and this seems to
be the case only generically: see, for example, [Nekovář 2006, 7.6 and 7.6.7(iii)]
for closely related statements in the situation (1) on page 1584 with I a maximal
ideal (where our ∗-operation has been replaced by Grothendieck duality, which is
not a change when A is Gorenstein).

We warn the reader that in general M Iv need not be flat, in which case its
finiteness and base-changing properties become much more subtle. There is no
problem for families of twists of a fixed global Galois representation; for example,
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in Example 1.19(1) below, one has M Iv = T Iv ⊗Zp A. But the complication does
arise in Hida theory, say in Example 1.19(2) below, when a p-ordinary eigenform
admits level lowering modulo p at a prime v = ` 6= p. Then there are `-old and
`-new branches of the Hida family, over which M Iv has generic rank, respectively,
two and strictly less than two. Since geometrically these branches meet in the
special fiber of Spec hord

∞
, the module M Iv cannot be locally free. This phenomenon

is related to the appearance of p in the Tamagawa number at ` because the latter
occurrence can be used to detect level-lowering.

For v dividing p, most local conditions are rather complicated; even the determi-
nation of a meaningful subspace L to which to associate them is rather delicate.
The best-behaved notion is the (strict) ordinary one: one assumes given a Gv-stable
locally direct summand M+v ⊆ M and takes 1v to be the data of the natural map

iv :U •v = C•cont(Gv,M+v )→ C•cont(Gv,M).

This local condition appears in work of Nekovář [2006, 6.7] as a derived variant
of the subspace L given by the image of H1

cont(Gv,M+v )→ H1
cont(Gv,M) used

by Greenberg [1989; 1994a; 1994b]; they are frequently isomorphic in the de-
rived category for example as in Proposition 3.7(3) below. The formation of the
ordinary local condition commutes with base change and is dual to the ordinary
local condition formed with the annihilator of M+v in M∗(1). The abstract base
change and duality theorems recover Greenberg’s control and duality theorems in
the situation (1), with A local with finite residue field, and gives analogues of it in
all cases. All this presupposes the existence of a useful choice of M+v to begin with;
the key observation of this article is that, after replacing the Gv-module M by its
associated (ϕ, 0Kv

)-module, one can still form an ordinary local condition, and one
gains access to subobjects of Dpst(M) that are not necessarily weakly admissible.

Example 1.19. Take K =Q for simplicity. The present results, notably situation (5),
apply to the following settings. Each A is local, we take I to be its maximal ideal,
and A/I is a finite field. We write X for the generic fiber of X= Spf(A, I ).

(1) A is the Iwasawa algebra Zp[[0]], where 0 =Gal(Q∞/Q) is the Galois group
of the cyclotomic Zp-extension Q∞/Q, and M = T ⊗Zp A with diagonal
GQ,S-action, where T is a continuous Zp[GQ,S]-module that is free over Zp.
Thus, M is the cyclotomic deformation of T , and the parameter space X is
commonly called the weight space.

(2) A is a Hida–Hecke algebra hord
∞

, and M is Hida’s 3-adic Galois representation
(with A assumed Gorenstein so that M is flat). Thus, X is commonly called
the ordinary locus of the Coleman–Mazur eigencurve.



Analytic families of finite-slope Selmer groups 1591

(3) A is any Zp-flat quotient of a Galois deformation ring Runiv(ρ), where ρ is an
absolutely irreducible mod p representation of GQ,S , and M is deduced from
the universal deformation of ρ.

Traditionally, the algebraic part of Iwasawa theory concerns the study of Selmer
groups over A in the above examples. Theorem 1.9 translates this study to X , with
the loss of only p-torsion information, as 0(X,OX ) is faithfully flat over A[1/p].
Since (ϕ, 0)-modules over the Robba ring (which we use to generalize Greenberg’s
“ordinary” theory) form families over X and not over X, this change of view makes
it now possible to treat nonordinary situations.

2. (ϕ, 0)-modules and Galois cohomology

In this section, we fix a finite extension K of Qp with ring of integers OK and residue
field k. We choose an algebraic closure K alg of K and set G =G K =Gal(K alg/K ).
(Several of the techniques discussed below will be valid if K is replaced by a
general complete, discretely valued field of mixed characteristic (0, p) and perfect
residue field, but beware that the group G satisfies Hypothesis (1) only when K is
finite over Qp, which gets in the way of certain base-change arguments.)

We let A′ be a Noetherian commutative E-Banach algebra, having A as its unit
ball, so that A′ = A[1/p] and A satisfies Hypothesis (2) when equipped with the
ideal I = (p). Finally, we let M satisfy Hypotheses A(3)–(4).

2A. Recall of ϕ- and (ϕ, 0)-modules. There are several variants of (ϕ, 0K )-mod-
ules, so we must recall several base rings. We only do this minimally since they
are defined in many places now (see, e.g., [Berger 2002]). For any field F , write
Fn = F(µpn ) for n ≤∞.

Let F =Frac W(k). If k ′ denotes the residue field of K∞, define F ′=Frac W(k ′)
and K ′=K .F ′. We set H =HK =Gal(K alg/K∞) and 0=0K =Gal(K∞/K ). The
group 0 is either procyclic or of the form {±1}× (procyclic); we let 1=1K ⊂ 0

be trivial in the first case and {±1} in the second case.
There is an increasing system of p-torsion-free, p-adically separated, and com-

plete W(kalg)-algebras Ã†,s equipped with a compatible action of G, indexed by
real numbers s > 0. This family is also equipped with an automorphism ϕ that
commutes with G and takes Ã†,s onto Ã†,ps . Each of the p-adic Banach algebras
B̃†,s
= Ã†,s

[1/p] admits a certain Fréchet completion B̃†,s
rig , to which both actions

extend uniquely by continuity, and these latter rings also fit into an increasing system.
One defines the systems Ã†,s

K = (Ã
†,s)H , B̃†,s

K = (B̃
†,s)H , and B̃†,s

rig,K = (B̃
†,s
rig )

H with
the induced topologies and actions of ϕ and 0.

The theory of the field of norms allows one to make a choice of a sort of
indeterminate πK belonging to all the Ã†,s

K and associates to K a constant eK > 0.
When K = F , there is an almost canonical choice that is written π , and one can
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calculate that eF = p/(p− 1). For s > 0, one has subrings

B†,s
K =

{
f (πK )=

∑
n∈Z

anπ
n
K

∣∣∣∣ an ∈ F ′, {|an|} bounded,
f (X) convergent for 0< ordp(X) < 1/eK s

}
,

B†,s
rig,K =

{
f (πK )=

∑
n∈Z

anπ
n
K

∣∣∣∣ an ∈ F ′,
f (X) convergent for 0< ordp(X) < 1/eK s

}
of B̃†,s

K and B̃†,s
rig,K , respectively, that do not depend on the choice of πK for s� 0.

They inherit topologies, and for s� 0, they are stable under 0, and ϕ sends B†,s
K

into B†,ps
K and B†,s

rig,K into B†,ps
rig,K . One knows that ϕ acts by Witt functoriality

on an ∈ F ′, and 0 acts on an through its quotient 0K /0K ′ = Gal(F ′/F). The
action on πK is generally not explicitly given (especially since there is some choice
in πK ) except when K = F , in which case ϕ(π)= (1+π)p

− 1 and γ ∈ 0 obeys
γ (π)= (1+π)χcycl(γ )−1. In any case, ϕ now induces a finite free algebra extension
of degree p for s � 0 instead of being an isomorphism. For such s, we obtain a
left inverse ψ : B†,ps

(rig,)K → B†,s
(rig,)K to ϕ by the formula p−1ϕ−1

◦TrB†,ps
(rig,)K /ϕB†,s

(rig,)K
.

For any of the above families of rings, we denote the result of applying lim
−→s

by
omitting the index s, e.g., B†

rig,K = lim
−→s

B†,s
rig,K . The result inherits the direct limit

topology, an action of G, a ring endomorphism ϕ, and a left inverse ψ . The ring B†
K

is the fraction field of a Henselian, mixed-characteristic discrete valuation ring
with imperfect residue field (although we never make use of the topology it would
provide). Although the rings B†(,s)

rig,K are non-Noetherian, they are Bézout domains.
For brevity, we will often denote an unspecified one of the rings A′ ⊗̂Qp B†(,s)

K ,
A′ ⊗̂Qp B̃†(,s)

K , or A′ ⊗̂Qp B†(,s)
rig,K simply by B(s), and when we must emphasize its

dependence on K , we will write B(s)K .
If L/K is a finite Galois extension inside K alg, then one can arrange for πL to

satisfy an Eisenstein polynomial over a subring of B†
K ⊗F ′ F ′L with respect to a suit-

able πK -adic valuation. (The term F ′L is the maximal absolutely unramified subfield
of L∞ analogous to F ′.) The constants eK and eL are normalized so that the growth
conditions on power series coincide. For s � 0, one gets functorial embeddings
B(s)K ↪→ B(s)L , which are finite free ring extensions (for s� 0) compatible with the
actions of ϕ and 0L , and thus an action of HK /HL on B(s)L with (B(s)L )

HK = B(s)K .
The series log(1+π)=

∑
n≥1

(−1)n−1

n πn converges in B†,s
rig,F for every s > 0, and

we call its limit t . By means of the above embedding process, t is an element of
every B†,s

rig,K . One has ϕ(t)= pt and γ (t)= χcycl(γ )t for all γ ∈ 0.
Given a Bs-module Ds , write D(s′)

= D⊗Bs B(s
′) for s ′≥ s. A ϕ-module over B(s)

is a finitely presented, projective B(s)-module D(s) equipped with a semilinear map
ϕ : D(s)

→ D(ps) such that the associated linear map ϕ′ : B(ps)
ϕ⊗B(s) D(s)

→ D(ps)

is an isomorphism. We write M(ϕ)/B(s) or M(ϕ) for the exact category of ϕ-modules
over B(s). A (ϕ, 0)-module over B(s) is a ϕ-module D(s) over B(s) equipped with
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a semilinear action of 0 that commutes with ϕ and is continuous for varying
γ ∈ 0. We write M(ϕ, 0)/B(s) or M(ϕ, 0) for the exact category of (ϕ, 0)-modules
over B(s); it has tensor products and internal homs. Ultimately, we are concerned
with (ϕ, 0)-modules over A′ ⊗̂Qp B†

rig,K because it is over this ring that the link
to p-adic Hodge theory is direct, and a finiteness theorem is known for Galois
cohomology in complete generality. But for technical reasons, we must make
use of the other variants at times; especially, the construction of the functor from
Galois representations to (ϕ, 0)-modules is documented in the literature in terms
of A′ ⊗̂Qp B†

K , and our proof of this functor’s compatibility of Galois cohomology
makes use of A′ ⊗̂Qp B̃†,s

K .
Suppose that s � 0 so that ψ : B†,ps

(rig,)K → B†,s
(rig,)K is defined and hence also a

left inverse 1 ⊗̂ψ : Bps
→ Bs to 1 ⊗̂ϕ : Bs

→ Bps , and let Ds be a ϕ-module over
A′ ⊗̂Qp B†,s

(rig,)Qp
. Then we obtain a left inverse to ϕ on Ds by the rule

D ps ∼
← Bps

⊗ϕ,Bs Ds (1⊗̂ψ)⊗1
−−−−−→ Bs

⊗Bs Ds
= Ds .

Upon taking lim
−→s

, one gets a map ψ : D→ D that is also left inverse to ϕ.
We will make use of the slope theory for ϕ-modules as in the following:

Theorem 2.1 [Kedlaya 2008]. There is a homomorphism deg : (B†
rig,K )

×
→ Q

extending ordp with the property that the rule deg(D)= deg(ϕ | det D) gives rise
to a theory of Harder–Narasimhan filtrations on M(ϕ)/B†

rig,K
.

One calls a ϕ-module over B†
rig,K étale if its only slope is 0. The full subcat-

egory of étale ϕ-modules is denoted by Mét(ϕ) ⊂M(ϕ). A (ϕ, 0)-module D is
called étale if its underlying ϕ-module is; the full subcategory of these is written
Mét(ϕ, 0)⊂M(ϕ, 0). Since the slope filtration is unique, it is 0-stable.

We write RepA(G) and RepA′(G) for the category of finitely generated, flat
A-modules and A′-modules, respectively, equipped with a continuous, linear action
of G.

Theorem 2.2. Let M ∈ RepA′(G). For s � 0, there exists a canonical ϕ- and
G-stable A ⊗̂Zp B†,s

K -submodule

D†,s(M)⊆ (M ⊗A′ (A′ ⊗̂Qp B̃†,s))H

that is projective of the same rank as M such that the natural map

(A′ ⊗̂Qp B̃†,s)⊗
(A′⊗̂Qp B†,s

K )
D†,s(M)→ M ⊗A′ (A′ ⊗̂Qp B̃†,s) (2-1)

is an isomorphism; D†,s(M) is a (ϕ, 0)-module over A′ ⊗̂Qp B†,s
K . (By “ϕ-stable”,

we mean that ϕD†,s(M)⊆ (A′ ⊗̂Qp B†,ps
K ) ·D†,s(M).) If M is of the form M0[1/p]

where M0 ∈ RepA(G) is free and such that G acts trivially on M0/12p, then
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D†,s(M) is in fact free over B†,s
K . If B is a p-adic A-algebra and B ′ = B[1/p], then

the natural maps
D(s)(M) ⊗̂A′ B ′→ D(s)(M ⊗A′ B ′)

are isomorphisms, provided s� 0 so that both sides exist.

Proof. Except for the final claim of compatibility with base change along A′→ B ′,
this follows from [Berger and Colmez 2008, Proposition 4.2.8 and Théorème 4.2.9]
when M is free and from [Kedlaya and Liu 2010, Theorem 3.11 and Definition
3.12] in general. The final claim follows directly from the constructions although
this is never explicitly stated in either reference. �

For M as in the theorem, we define

D̃†(,s)(M)= D†,s(M)⊗
(A⊗̂Zp B†,s

K )
(A ⊗̂Zp B̃†(,s)

K ),

D†(,s)
rig (M)= D†,s(M)⊗

(A⊗̂Zp B†,s
K )
(A ⊗̂Zp B†(,s)

rig,K ).

For brevity, we will often denote the above associated module corresponding to the
ring B(s) by D(s)(M) and a general B(s)-module by D(s).

Theorem 2.3. For each ring B(s), the rule M 7→D(M) determines an exact functor
RepA′(G)→M(ϕ, 0)/B respecting tensor and internal hom structures. Assuming
additionally that A′ is an affinoid algebra, this functor is fully faithful. When A is
finite over OE , the essential image of D†

rig is Mét(ϕ, 0)/B.

Proof. The full faithfulness of D† is given by [Kedlaya and Liu 2010, Proposition
2.7] and the comment of [ibid., Definition 3.12], and the full faithfulness of D̃†

follows by the same argument. The full faithfulness of D†
rig is given by [ibid.,

Proposition 6.5]. The remaining claims are straightforward. �

Let L/K be a finite Galois extension inside K alg. For a B(s)K -module D(s), we
use the shorthand D(s)

L = D(s)
⊗B(s)K

B(s)L . If D(s) has a ϕ-action, so does D(s)
L . If

D(s) has a 0K -action, then D(s)
L has a 0L -action. For M ∈ RepA′(G K ), one has

D(s)(M |GL )= D(s)(M)L .
The above results suggest the following (ad hoc) formalism. Let X be a p-adic an-

alytic space over E , and let U be an admissible affinoid covering that is quasiclosed
under intersections. For each choice of ring B(s) = B†(,s)

K , B̃†(,s)
K ,B†(,s)

rig,K , denote by
OU ⊗̂Qp B(s) the sheaf of rings on U (as always with the discrete Grothendieck
topology) determined by the rule

0(Y,OU ⊗̂Qp B(s))= 0(Y,OY ) ⊗̂Qp B(s),

equipped with the obvious actions of ϕ and 0. If Ds is a (OU ⊗̂Qp Bs)-module, then
D(s′), interpreted in the obvious manner, is naturally an OU ⊗̂Qp B(s

′)-module for
any s ′ > s. However, we warn that an OU ⊗̂Qp B-module need not conversely arise
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from any OU ⊗̂Qp Bs-module because the necessary s might not be bounded above
for varying Y ∈U. Similarly, the natural injection

lim
−→

s
0(U,OU ⊗̂Qp Bs)→ 0(U,OU ⊗̂Qp B)

need not be a bijection. By a family of ϕ-modules over X (of type B(s)), we mean a
quasiconsistent sheaf D(s) of finitely presented flat (OU⊗̂Qp B(s))-modules equipped
with a semilinear action of ϕ such that for each Y ∈U the associated linear map

ϕ′ : (0(Y,OY ) ⊗̂Qp B(ps))⊗1⊗̂ϕ,0(Y,OY )⊗̂Qp B(s) 0(Y, D(s))→ 0(Y, D(ps))

is an isomorphism. By a family of (ϕ, 0)-modules over X (of type B(s)), we mean a
family of ϕ-modules D(s) over X (of type B(s)) equipped with a semilinear action
of 0 that commutes with ϕ and is continuous for varying γ ∈ 0. Given a family M
of G-representations over X , the rule that associates to Y ∈U the (ϕ, 0)-module
D(0(Y,M)) determines a family D(M) of (ϕ, 0)-modules over X .

2B. Galois cohomology of (ϕ, 0)-modules. For D(s) a (ϕ, 0)-module over B(s),
we define its Herr complex [Herr 1998] or Galois cochain complex to be the object

R0(G, D(s))= R0cont
(
0,Cone

[
D(s) ϕ−1
−−→ D(ps)]

[−1]
)

∼= Cone
[
R0cont(0, D(s))

ϕ−1
−−→ R0cont(0, D(ps))

]
[−1]

of Db(A′) and its Galois cohomology H∗(G, D(s)) to be the associated graded in
Grb(A′). This object can be made explicit: 0/1 is procyclic, say topologically
generated by the image of γ ∈0, and R0cont(G, D(s)) is represented by the complex

C•ϕ,γ :
[
(D(s))1

(ϕ−1,γ−1)
−−−−−−→ (D(ps))1⊕ (D(s))1

(1−γ,ϕ−1)
−−−−−−→ (D(ps))1

]
(2-2)

in Kb(A′) concentrated in degrees 0, 1, and 2.

Remark 2.4. It is easy to check that Hi (G,HomB(s)(D(s), D′(s))) computes the
Yoneda group ExtiM(ϕ,0)/B(s)

(D(s), D′(s)), where D(s) and D′(s) are any two (ϕ, 0)-
modules over B(s), for i ≤ 1.

For two (ϕ, 0)-modules D(s) and D′(s) over B(s), we define cup products on
cochains as in [Liu 2007]. In the representation C•ϕ,γ , the map

Ci
ϕ,γ (D

(s))⊗A′ C j
ϕ,γ (D

′(s))→ Ci+ j
ϕ,γ (D

(s)
⊗B(s) D′(s))

is the obvious multiplication when i = 0 or j = 0, and otherwise, we have

C1
ϕ,γ (D

(s))⊗A′ C1
ϕ,γ (D

′(s))→ C2
ϕ,γ (D

(s)
⊗B(s) D′(s)),

(d1, d2)⊗ (d ′1, d ′2) 7→ d2⊗ γ (d ′1)− d1⊗ϕ(d ′2).
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The finite generation of the Galois cohomology of (ϕ, 0)-modules is now known
thanks to [Kedlaya et al. 2012], which appeared after the writing of this paper. We
state the result here and henceforth refer to it as the finiteness theorem when it is
invoked. We stress that K/Qp is assumed to be finite.

Theorem 2.5. For the (ϕ, 0)-module D over A′ ⊗̂Qp B†
rig,K , the Galois cohomology

R0(G, D) belongs to D[0,2]perf (A
′), and the morphism

R0(G, D∗(1))→ R0(G, D)∗[−2]

adjoint to the pairing given by cup product and evaluation, comparison (see
Theorem 2.8 below) and truncation, and the local trace map, namely

R0(G, D∗(1))⊗L
A′ R0(G, D)→ R0(G, A′ ⊗̂Qp B†

rig,K (1))
→ τ≥2R0cont(G, A′(1))∼= A′,

is an isomorphism.

The following proposition is proved without using the finiteness theorem and in
fact is an ingredient in its proof:

Proposition 2.6. Let D(s) be a (ϕ, 0)-module over B(s).

(1) D(s) is a flat A′-module.

(2) Suppose B ′ is an affinoid A′-algebra. Then the natural map in Db(B ′)

R0(G, D(s))⊗L
A′ B ′→ R0(G, D(s)

⊗̂A′ B ′)

is an isomorphism if B ′ is a finite A′ algebra or if the modules H∗(G, D(s))

and H∗(G, D(s)
⊗̂A′ B ′) are finitely generated over A′ and B ′, respectively.

Proof. Since D(s) is a projective B(s)-module and each appropriate ring B(s) is a
flat A′-algebra, (1) follows.

For (2), we use (1) to identify our map with

h : [C•ϕ,γ (D
(s))⊗A′ B ′] → [C•ϕ,γ (D

(s)) ⊗̂A′ B ′].

Under the first condition, we have ⊗A′B ′ = ⊗̂A′B ′, so the result is trivial. Under
the second condition, each Hi (h) is a map of finitely generated B ′-modules, so it
suffices to show that the induced map Hi (h)⊗B ′ B ′/mn is an isomorphism for each
maximal ideal m⊂ B and n ≥ 0. One has a morphism of spectral sequences

E i, j
2

��

TorB ′
−i (H

j (G, D⊗A′ B ′), B ′/mn) +3

��

Hi+ j (G, D⊗A′ B ′/mn)

∼

��

Ê i, j
2 TorB ′

−i (H
j (G, D ⊗̂A′ B ′), B ′/mn) +3 Hi+ j (G, D ⊗̂A′ B ′/mn)
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where the downward isomorphisms on the abutments are due to the fact that B ′/mn is
a finite A′-algebra. Using that H j

=0 for j>2 throughout, one deduces immediately
that H2(h) is an isomorphism and then proceeds by repeated application of the five
lemma to show that H1(h), and then H0(h), are isomorphisms. �

Given a finite Galois extension L/K inside K alg, for any (ϕ, 0)-module D(s),
we leave it to the reader to define restriction and corestriction maps

resL/K : R0(G K , D(s))→ R0(GL , D(s)
L ),

coresL/K : R0(GL , D(s)
L )→ R0(G K , D(s)),

whose composition coresL/K ◦ resL/K induces multiplication by [L :K ] on cohomol-
ogy. It follows that H∗(G K , D(s)) is functorially a direct summand of H∗(G K , D(s)

L )

and that, when B(s) = A′ ⊗̂Qp B†(,s)
K , this decomposition is respected by the maps

induced by D(s)
→ D̃†(,s) and D(s)

→ D†(,s)
rig .

If X is a p-adic analytic space over E and if D is a family of (ϕ, 0)-modules
over X of type B†

rig,K , then by the finiteness theorem and Proposition 2.6(2), the rule
0(Y,C•ϕ,γ (D))= C•ϕ,γ (0(Y, D)) determines an object C•ϕ,γ (D) of Kb

ft(U), whose
class R0(G, D) in the derived category belongs to D[0,2]perf (U).

2C. Galois cohomology of Galois representations. Throughout this section, let
M ∈ RepA′(G), and assume that A′ is an affinoid algebra.

Proposition 2.7. The natural maps

R0(G,D†(M))→ R0(G, D̃†(M)),

R0(G,D†(,s)(M))→ R0(G,D†(,s)
rig (M))

are isomorphisms in Db(A′).

Proof. In order to check whether the induced maps on cohomology are isomorphisms,
it suffices to check whether they become isomorphisms when restricted to the
members of an affinoid covering of A′. Thus, we reduce to the case where M is
free over A′. By replacing A by a different unit ball subalgebra of A′, we may
assume that M = M0[1/p] for a finitely generated, free A-lattice M0 that is G-
stable. Choose a finite Galois extension L/K inside K alg such that GL acts trivially
on M0/12p. Since the morphisms in question respect the direct sum decompositions
of the Galois cohomology over L coming from inflation and restriction relative
to L/K , it suffices to prove the theorem with K replaced by L , and thus, we may
assume that D†,s(M) is a free module.

Consider the first map. It suffices to show that the natural morphism

R0cont(0,D†(M))→ R0cont(0, D̃†(M))
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is an isomorphism in D(A). A standard fact in the Tate–Sen theory of (ϕ, 0)-
modules is that D̃†(M) admits a Galois-stable topological (A ⊗̂Zp B†

K )-direct sum
decomposition as D†(M)⊕ X such that γ −1 acts bijectively on X with continuous
inverse. (See [Andreatta and Iovita 2008, Theorem 7.16] for an explanation of the
method, taking d = 0 everywhere, and generalize it to A-valued M as in [Berger
and Colmez 2008, §3].) Since R0cont(0, X)∼= 0, the claim follows.

For the second map, in the case with superscripts, one copies the proof of
[Kedlaya 2008, Proposition 1.2.6] verbatim to obtain that the natural morphism of
complexes [

D†,s(M)
ϕ−1
−−→ D†,ps(M)

]
→
[
D†,s

rig (M)
ϕ−1
−−→ D†,ps

rig (M)
]

is a quasi-isomorphism; the claim follows from this and the definitions. One obtains
the case without superscripts from the former by taking lim

−→s
. �

When A is a finite Zp-algebra, the following main result is due to Liu [2007]:

Theorem 2.8. There is a functorial isomorphism

R0cont(G,M) ∼→ R0(G,D(M))

in Db(A′), which is compatible with cup products and in degrees i ≤ 1 agrees with
applying D to Yoneda extension classes.

The key to the proof is the following:

Lemma 2.9. The obvious maps

A′→ Cone
[
A′ ⊗̂Qp B̃†,s ϕ−1

−−→ A′ ⊗̂Qp B̃†,ps]
[−1],

A′ ⊗̂Qp B̃†,s
K → R0cont(H, A′ ⊗̂Qp B̃†,s)

are isomorphisms in D(A′).

Proof. In the case A′ =Qp, the lemma is well-known, so we have exact sequences

0→Qp→ B̃†,s ϕ−1
−−→ B̃†,ps

→ 0,

0→ B̃†,s
K → C0

cont(H, B̃†,s)→ C1
cont(H, B̃†,s)→ · · · .

To deduce the result, we simply note that the functor ⊗̂Qp S preserves exact se-
quences of Qp-Banach spaces whenever S is potentially orthonormalizable in the
sense of [Buzzard 2007, §2] (even though this functor does not commute with
formation of cohomology in general) and that any affinoid algebra has the latter
property. �

Proof of Theorem 2.8. By Proposition 2.7, it suffices to give a functorial isomorphism

R0cont(G,M)→ R0(G, D̃†,s(M)).
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The compatibility with cup products and operations on Yoneda extensions follows
from a routine trace through the definitions and hence is omitted.

It is easy to deduce from the preceding lemma a canonical isomorphism

R0cont(H,M)∼= Cone
[
D̃†,s(M)

ϕ−1
−−→ D̃†,ps(M)

]
[−1].

Combining this isomorphism with a standard argument involving the Hochschild–
Serre spectral sequence, the desired result follows. �

We may now shed some light on the essential image of D†
rig on families of Galois

representations, which at present is mysterious.

Corollary 2.10. Let 0 → D′ → E → D → 0 be a short exact sequence of
(ϕ, 0)-modules over A′ ⊗̂Qp B†,s

rig,K . If D and D′ arise from A′-valued Galois
representations, then so does E.

Proof. Note that D†,s
rig (HomA′(M,M ′))=HomA′⊗̂Qp B†,s

rig,K
(D, D′)with D=D†,s

rig (M)
and D′ = D†,s

rig (M
′). By Remarks 1.8 and 2.4, to see the claim, it suffices to apply

Theorem 2.8 to HomA′(M,M ′) and take H1 of the result. �

Let X be a p-adic analytic space over E , let M be a family of G-representations
over X , and let U be an admissible affinoid covering of X that is quasiclosed under
intersection. Then the functoriality of the isomorphisms in Theorem 2.8 gives rise
to a canonical isomorphism R0cont(G,M) ∼= R0(G,D(M)), which takes place
in D[0,2]perf (U) by the finiteness theorem.

3. Ordinary (ϕ, 0)-modules and Selmer groups

In this section, we put ourselves in the situation of Section 2, specializing to the
case where A′ =Qp and B(s) = B†(,s)

rig,K unless otherwise specified.

3A. p-adic Hodge theory of (ϕ, 0)-modules. This section describes the p-adic
Hodge theory of (ϕ, 0)-modules over the Robba ring. All the constructions and
results to be found here are extensions of well-known ones for p-adic Galois
representations, and many have explicitly appeared elsewhere; see, especially,
works of Benois [2011] and Bellaïche and Chenevier [2009, §2.2]. The reader may
check that every construction in this subsection holds with K replaced by a general
complete discretely valued field with the exception of the Euler–Poincaré formula.

There exists a sequence of 0-equivariant maps ιn : B†,pn

rig,K → Kn[[t]] for all
n ≥ n(K ), where t is the element of B†

rig,K defined in Section 2A, such that
ιn+1 ◦ ϕ = ιn . Given a ϕ-module D, we put D+dif = Ds

⊗B†,s
rig,K ,ιn

K∞[[t]], and
Ddif = Ds

⊗B†,s
rig,K ,ιn

K∞((t)), where Ds is uniquely determined for s > s(D) by
[Berger 2008, Théorème I.3.3] and is a model of D over B†,s

rig,K . Using the ϕ-
structure, one shows that these rules are independent of s and n satisfying s > s(D)
and pn

≥max(pn(K ), s). The rules D 7→ D(+)
dif are functorial and exact in D.
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If D is actually a (ϕ, 0)-module, then the D(+)
dif admit 0-actions (by perhaps

enlarging the s used), and we define D(+)
dR = (D

(+)
dif )

0 . These are K -vector spaces of
dimension at most rank D, and they carry a decreasing, separated, and exhaustive
filtration induced by the t-adic filtration on K∞((t)). One says that D is de Rham if
dimK DdR = rank D and denotes by MdR(ϕ, 0)⊂M(ϕ, 0) the full subcategory of
de Rham objects. For such D, we define its Hodge–Tate weights to be the h ∈Z with
Grh DdR 6= 0 with respective multiplicities dimK Grh DdR. (There is no standard
convention for the sign of the Hodge–Tate weight of the cyclotomic character; in
this paper, it is −1.)

We write for brevity

D[t−1
] = D⊗B†

rig,K
B†

rig,K [t
−1
],

D[logπ, t−1
] = D⊗B†

rig,K
B†

rig,K [logπ, t−1
],

where the element logπ is a free variable over B†
rig,K equipped with actions of ϕ

and 0 by the formulas

ϕ(logπ)= p logπ + log(ϕ(π)/π p) and γ (logπ)= logπ + log(γ (π)/π),

the series log(ϕ(π)/π p) and log(γ (π)/π) being convergent in B†
rig,Qp

. We associate
to D the modules

D+crys = D0, Dcrys = D[t−1
]
0, and Dst = D[logπ, t−1

]
0.

These three modules are semilinear ϕ-modules over F of dimension at most rank D.
The latter two are related via the so-called monodromy operator N . Namely,
consider the unique B†

rig,K -derivation N : B†
rig,K [logπ ] → B†

rig,K [logπ ] satisfying
N (logπ) = − p

p−1 . It satisfies Nϕ = pϕN and commutes with 0 and thus gives
rise to a nilpotent operator N on Dst with the property that Dcrys = DN=0

st .
We say that D is crystalline or semistable if Dcrys or Dst has the maximal F-

dimension, namely dimF Dcrys = rank D or dimF Dst = rank D, respectively. Upon
fixing a uniformizer for K , we can construct a canonical embedding Dst⊗F K ↪→DdR

so that D being semistable implies D being de Rham. We call D potentially
crystalline or potentially semistable if there exists a finite extension L/K inside
K alg such that DL is crystalline or semistable, respectively, when considered as
a (ϕ, 0L)-module. The following statement is known as Berger’s p-adic local
monodromy theorem:

Theorem 3.1 [Berger 2002]. Every de Rham (ϕ, 0)-module is potentially semistable.

Given a de Rham D, let L/K be a finite Galois extension inside K alg such that
DL is semistable. Then (DL)st is a (ϕ, N )-module over the maximal absolutely
unramified subfield FL of L , and (DL)st⊗FL L= (DL)dR is a filtered L-vector space.
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Essentially because these data arise via base change from K , they are naturally
equipped with a semilinear action of Gal(L/K ) that commutes with ϕ and N
and preserves the filtration. Such an object is called a filtered (ϕ, N ,Gal(L/K ))-
module. Given two extensions L i and filtered (ϕ, N ,Gal(L i/K ))-modules Di

(for i = 1, 2), we consider them equivalent if there exists an extension L containing
the L i such that the (Di )L are isomorphic. When we consider objects only up to
this equivalence, we call them filtered (ϕ, N ,G)-modules. We point out that if D
becomes semistable over both L1 and L2, then (DL1)st and (DL2)st are equivalent,
and we call this equivalence class Dpst. The rigid exact Qp-linear tensor category
of filtered (ϕ, N ,G)-modules is denoted MF(ϕ, N ,G).

The objects M of the category MF(ϕ, N ,G) admit a notion of degree, namely
the Newton slope minus the Hodge–Tate weight of M∧ rank(M), which gives rise to
a Harder–Narasimhan theory. One calls M (weakly) admissible if it is semistable
of slope 0 in the sense of Harder–Narasimhan theory. (See [Berger 2008, §I.1] for
details.)

Theorem 3.2 [Colmez and Fontaine 2000; Berger 2008]. The functor D 7→ Dpst is
an exact equivalence of categories

MdR(ϕ, 0) ∼→MF(ϕ, N ,G)

that matches their Harder–Narasimhan theories. In particular, a de Rham (ϕ, 0)-
module D is étale if and only if Dpst is (weakly) admissible.

Comparing notions of image and coimage, one deduces that the t-saturated (ϕ, 0)-
stable B†

rig,K -submodules of D are in a functorial, order-preserving correspondence
with subspaces of Dpst that are stable under the (ϕ, N ,G)-actions (equipped with
the filtration induced from Dpst). Furthermore, a t-saturated (ϕ, 0)-stable B†

rig,K -
submodule is actually a B†

rig,K -direct summand.
The following immediate consequence of the p-adic monodromy theorem is

usually stated for Galois representations, but the proof carries over without change
for (ϕ, 0)-modules. (As pointed out in [Berger 2002], the étale case was first proved
by O. Hyodo without use of the p-adic monodromy theorem, but the proof cited
below works for arbitrary complete discretely valued K .)

Corollary 3.3 [Berger 2002, Théorème 6.2]. Let 0→ D′→ D→ D′′→ 0 be a
short exact sequence of (ϕ, 0)-modules. If D′ and D′′ are semistable and D is de
Rham, then D is semistable.

As in Remark 2.4, the cohomology groups H1(G, D) coincide with Yoneda
groups: to every c ∈ H1(G, D), there corresponds a class of extensions

0→ D→ Ec→ 1→ 0,
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where 1 denotes the unit (ϕ, 0)-module. The rule [Ec] 7→ [(Ec)dif] determines a
map H1(G, D)→ H1

cont(0, Ddif), and the Bloch–Kato “g” local subspace is given
by

H1
g(G, D)= ker[H1(G, D)→ H1

cont(0, Ddif)].

When D is de Rham, one has

H1
g(G, D)= {c ∈ H1(G, D) | Ec is de Rham}

= {c ∈ H1(G, D) | Ec is potentially semistable} (3-1)

= Ext1MF(ϕ,N ,G)(1, Dpst).

Similarly, a map H1(G, D) → H1
cont(0, D[1/t]) is determined by forgetting

ϕ-structures and inverting t , and we define the Bloch–Kato “f” local subspace to be

H1
f (G, D)= ker[H1(G, D)→ H1

cont(0, D[t−1
])].

When D is crystalline, one has

H1
f (G, D)= {c ∈ H1(G, D) | Ec is crystalline}.

If D is de Rham, then under the isomorphism (3-1) one can compute H1
f (G, D) as

certain extensions of filtered (ϕ, N ,G)-modules, obtaining the exact sequence

0→ H0(G, D)→ Dcrys
(1−ϕ,1)
−−−−→ Dcrys⊕ DdR/D+dR→ H1

f (G, D)→ 0.

This computation can be enhanced to show that the local condition associated to
the subspace H1

f (G, D) is isomorphic in the derived category to the complex

C•f (G, D)= Cone
[
Dcrys

(1−ϕ,1)
−−−−→ Dcrys⊕ DdR/D+dR

]
[−1],

R0f(G, D)= [C•f (G, D)],

and one obtains the “Euler–Poincaré” formula

dimQp H1
f (G, D)= dimQp H0(G, D)+ dimQp DdR/D+dR. (3-2)

The next result follows from the (elementary) computation of 0-cohomology
of tn K∞[[t]] and that K∞[[t]] is a PID.

Proposition 3.4. Let 0 → D′ → D → D′′ → 0 be a short exact sequence of
(ϕ, 0)-modules with D′ and D′′ de Rham. If all the Hodge–Tate weights of D′ are
strictly less than all the Hodge–Tate weights of D′′, then the short exact sequence of
0-modules

0→ (D′)+dif→ D+dif→ (D′′)+dif→ 0

is split. In particular, D is de Rham.
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3B. The (strict) ordinary local condition. We briefly relax our hypothesis that
A′ =Qp; instead, A′ can be any E-affinoid algebra.

Let D be a (ϕ, 0)-module over A′ ⊗̂Qp B†
rig,K , or a family of (ϕ, 0)-modules of

type B†
rig,K over a p-adic analytic space X , endowed with an admissible affinoid cov-

ering U that is quasiclosed under intersection. By a nearly ordinary filtration on D,
we mean a decreasing partial flag F∗ ⊆ D, consisting of sub-(ϕ, 0)-modules that
are module-direct summands, or subfamilies of (ϕ, 0)-modules that are direct
summands over each Y ∈U, respectively, such that each GrαF has constant rank.

If M is either an object of RepA′(G) or a family of G-representations over X ,
then a nearly ordinary filtration for M is by definition one for D†

rig(M), and we
call it classically nearly ordinary if it arises from a partial flag of M consisting of
G-stable direct summands.

Example 3.5. When A′ =Qp, being nearly ordinary with a complete flag means
being (split) trianguline.

Given a sub-(ϕ, 0)-module F+ ⊆ D that is a module-direct summand or a
subfamily of (ϕ, 0)-modules that are module-direct summands over each Y ∈U,
we recall from Example 1.18 the (strict) ordinary local condition given by the
morphism

R0str(G, D)= R0(G, F+)→ R0(G, D).

In the case D = D†
rig(M), we get the local condition for M ,

R0str(G, D)= R0(G, F+)→ R0(G, D)∼= R0cont(G,M).

By the finiteness theorem, both the domain and codomain belong to D[0,2]perf (A
′),

and the formation of this local condition commutes with arbitrary base change by
Proposition 2.6(2) as well as with duality (in the same sense as does the classical
strict ordinary local condition as in Example 1.18) again by the finiteness theorem.
The image of the local condition in cohomology is clearly

img[H1(G, F+)→ H1(G, D)] = ker[H1(G, D)→ H1(G, D/F+)],

which is a generalization of the (strict) ordinary local subspace studied by Greenberg
[1994b] in conjunction with the nonstrict ordinary local subspace (introduced earlier
in [Greenberg 1989; 1994a])

ker
[
H1(G K , D)→ H1(G K̂ unr, (D/F+)⊗B†

rig,K
B†

rig,K̂ unr

)]
.

Although the nonstrict local subspace appears more often in the literature, we will
not use it essentially because a derived analogue, like R0str(G, D) in the strict
case, would involve Galois cohomology for the group G K̂ unr , which does not satisfy
p-cohomological finiteness, rendering the derived analogue pathological.
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We now resume our assumption that A′ =Qp.
Let L/K be a finite Galois extension inside K alg. We say a (ϕ, 0)-module D over

B†
rig,K is L-ordinary if it admits a nearly ordinary flag F∗ ⊆ D with the properties

that each (GrαF )L is semistable and if α < β then all Hodge–Tate weights of GrαF
are strictly greater than all Hodge–Tate weights of GrβF . We say that D is ordinary
if there exists some L for which it is L-ordinary. If V is a Galois representation,
we say that V is (L-)ordinary if D†

rig(V ) is and classically (L-)ordinary if there
exists a partial flag of V by G-stable direct summands giving rise via D†

rig to the
desired filtration.

Example 3.6. We will see in Section 3C that Greenberg’s notion of “ordinary”
translates to our classically K -ordinary with each GrαF having only one Hodge–Tate
weight (possibly with multiplicity). Thereafter, we will see examples of ordinary but
not classically ordinary Galois representations. It is possible that D be ordinary with
respect to more than one filtration even though ordinary filtrations in Greenberg’s
sense are unique when they exist.

Here are the main properties of ordinary (ϕ, 0)-modules:

Proposition 3.7. Let L/K be a finite Galois extension inside K alg, and let D be a
(ϕ, 0)-module that is L-ordinary with filtration F∗.

(1) D becomes semistable over L and hence is potentially semistable.

Suppose moreover that there exists a filtration step F+ with the property that all the
Hodge–Tate weights of F+ are negative and all the Hodge–Tate weights of D/F+

are nonnegative.

(2) One has H0(G, D/F+)=(D/F+)ϕ=1
crys and H0(G, (F+)∗(1))=((F+)∗(1))ϕ=1

crys .

(3) Suppose that all the spaces mentioned in part (2) vanish. Then the canonical
maps in the derived category are isomorphisms:

R0(G, F+) ∼← R0f(G, F+) ∼→ R0f(G, D),

hence the local conditions

R0str(G,D)∼= R0f(G,D) and H1(G,F+) ↪→ H1(G,D).

Remark 3.8. A variant of the proposition can be formulated for general K complete
discretely valued, but we omit it for brevity. Suppose D =D†

rig(V ) with V ordinary
in the sense of Greenberg. When K/Qp is finite, the claim (1) for V is due
to Fontaine [Perrin-Riou 1994a], and for general K , it is due to Berger [2002,
Corollaire 6.3]. When K =Qp, the claim (3) for V is essentially a result of Flach
[1990, Lemma 2]. Our formulation of parts (2)–(3) closely follows that of Fukaya
and Kato [2006, Lemma 4.1.7].
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Proof. For part (1), by restriction, we immediately reduce to the case where D is K -
ordinary. The first claim now follows by induction on the length of the filtration, the
case of length 1 being trivial and the inductive step being given by Proposition 3.4
and Corollary 3.3.

Part (2) follows from noting that both D/F and F∗(1) have only nonnegative
Hodge–Tate weights and applying to them the claim that for any (ϕ, 0)-module D
one has H0(G, D)= D+,ϕ=1

crys .
We now turn to part (3). For the first arrow, we have equality of cohomology

outside degrees 1 and 2. For degree 1, we compute that

dimQp H1(G, F+)= dimQp H0(G, F+)+ dimQp H2(G, F+)+ [K :Qp] rank F+

= dimQp H0(G, F+)+ dimQp(F
+)dR/(F+)+dR

= dimQp H1
f (G, F+),

using the local Euler–Poincaré formulas of [Liu 2007] and Equation (3-2) for F+,
the computation H2(G, F+)= H0(G, (F+)∗(1))∗ = 0 by local duality for (ϕ, 0)-
modules [Liu 2007], and that F+ has only negative Hodge–Tate weights. The
same local duality computation takes care of degree 2. For the second arrow, we
have equality of cohomology outside degrees 0 and 1. The long exact cohomology
sequence and the vanishing of H0(G, D/F+) give the result in degree 0 and the
injectivity of H1(G, F+)→ H1(G, D) and hence also of H1

f (G, F+)→ H1
f (G, D).

To conclude in degree 1, it suffices to compare the Euler–Poincaré formulas for the
two dimensions, noting that (F+)dR/(F+)+dR

∼
← (F+)dR

∼
→ DdR/D+dR. �

3C. Examples of ordinary representations. When discussing examples, the fol-
lowing equivalent formulation is helpful:

Alternate definition 3.9. We remind the reader that by Proposition 3.7(1), every
ordinary (ϕ, 0)-module is de Rham, so we assume this is the case from the outset.

Given a de Rham (ϕ, 0)-module D, by the discussion of Section 3A, the ordinary
filtrations F∗ ⊆ D are in a natural correspondence with filtrations F∗ ⊆ Dpst by
(ϕ, N ,G)-stable subspaces (each equipped with its Hodge filtration induced by Dpst)
such that for α < β all the jump indices of the induced Hodge filtration on (GrαF )dR

are strictly greater than all the jump indices of the induced Hodge filtration on
(GrβF )dR. Note the reversal of order of the jump indices: this feature is independent
of one’s normalizations of Hodge–Tate weights.

Example 3.10 (Greenberg’s ordinary representations). Let us see how ordinary
representations, defined by Greenberg [1989] when K =Qp, fit into our context.
We are given a Galois representation V so that D = D†

rig(V ) is étale. Greenberg’s
ordinary hypothesis is that V admits a decreasing filtration F∗ ⊆ V by G-stable
subspaces such that for each α the representation χ−nα

cycl ⊗ GrαF V is unramified
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for some integer nα, and the nα are strictly increasing. This means precisely
that each GrαF V is crystalline of all Hodge–Tate weights equal to −nα. Thus,
Greenberg’s ordinary hypothesis is a strengthening of our classically K -ordinary
hypothesis to require that each of the graded pieces be of a single Hodge–Tate weight.
In the language of filtered (ϕ, N ,G)-modules, a filtration F∗ ⊆ Dpst corresponds
to a Greenberg-ordinary filtration on V precisely when V is semistable, and each
GrαF Dpst is (weakly) admissibly filtered of a single Hodge–Tate weight, with the
weights strictly decreasing, which means here that each GrαF Dpst is of pure ϕ-slope
−nα and Hodge–Tate weight −nα and satisfies N = 0 and that nα > nβ for α < β.

The reader will notice in the examples below that although V admits at most one
Greenberg-ordinary filtration it may admit many different (ϕ, 0)-ordinary filtrations.
This is complementary to the existence of many p-adic L-functions.

Example 3.11 (Abelian varieties). Take an abelian variety B/K of dimension d ≥ 1
with semistable reduction over OK , and consider D = D†

rig(V ) with V = Tp B⊗Q
the p-adic Tate module up to isogeny. The Hodge filtration Hodge∗ ⊆ DdR satisfies
dimK Gr0

Hodge = dimK Gr−1
Hodge = d , and its Frobenius slopes h satisfy −1≤ h ≤ 0.

By weak admissibility, the ϕ-eigenspaces with nonzero slopes do not meet Hodge0.
A nontrivial ordinary filtration thus consists of a (ϕ, N )-stable subspace F ⊆ Dst

of rank d such that FdR is complementary to Hodge0 in DdR.

Example 3.12 (Elliptic modular eigenforms). This case is treated in detail in [Pot-
tharst 2012], the upshot being as follows. Let p>2, and let f be a normalized elliptic
modular cuspidal new eigenform of weight k ≥ 2 with associated cohomological
p-adic Galois representation V f . If necessary, extend the scalars of V f to contain
the eigenvalues of ϕ on Dpst(V f ). Then V f is ordinary in our sense, often with two
distinct ordinary filtrations, provided f has finite slope: the matrix of ϕ on Dpst(V f )

is nonscalar. For example, when ϕ on Dpst(V f ) is semisimple (as is conjecturally
always the case), this is equivalent to there being some twist f ⊗ ε by a Dirichlet
character ε that has an associated Up-eigenform with nonzero Up-eigenvalue. By
contrast, f is “ordinary” in the parlance of p-adic modular forms if this condition
is satisfied with ε = 1 and the Up-eigenvalue a p-adic unit. Proposition 3.7(3)
computes the Bloch–Kato local condition entering into the Selmer group of each
of the Tate twists V f (n) corresponding to critical L-values except perhaps where
exceptional zeroes (as in [Mazur et al. 1986]) occur.

3D. Ranks in families. We resume the assumptions of Section 1E, i.e., that K
is a finite extension of Q, that K alg is a fixed algebraic closure, and that S is a
fixed finite set of places v of K containing all v dividing p. Let M be a family of
G K ,S-representations over a p-adic analytic space X , endowed with an admissible
affinoid covering U that is quasiclosed under intersection. (For example, one can
have X affinoid with algebra A′ and M arising from a flat A′-module.) Suppose
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that, for each place v ∈ S dividing p, the restriction M |Gv
is equipped with a nearly

ordinary filtration F∗v ⊆ Dv = D†
rig(M |Gv

), and we have a distinguished index αv.
In order to get a reasonable theory, we must assume that for each v ∈ S not

dividing p the subobject M Iv is flat.
Using the strict ordinary local condition given by the Fαvv at places v ∈ S

dividing p and the unramified local condition at places v ∈ S not dividing p, we
build as in situation (3) of Section 1E the strict ordinary Selmer complex, denoted

R0̃str(G K ,M) ∈ D[0,3]perf (U).

One can check that it is invariant under enlarging S and hence is independent of S,
so we may omit it from the notation.

We wish to compare the above complex to those associated to the members of the
family. Namely, let x ∈ X (Ex) be a point with residue field Ex , and let fx denote
the inclusion of the point x . We set Mx = f ∗x M , Dv,x = f ∗x Dv, and F∗v,x = f ∗x F∗v
for v ∈ S, and we use the strict ordinary local condition determined by the Fαvv,x
at v ∈ S above p, and the unramified local condition at v ∈ S not dividing p, to
construct in the same way the Selmer complex

R0̃str(G K ,Mx) ∈ D[0,3]perf (Ex).

We study the natural specialization morphism

sx : L f ∗x R0̃str(G K ,M)→ R0̃str(G K ,Mx) (3-3)

and in particular H2(sx).
It follows from the finiteness theorem and Proposition 2.6(2) that the forma-

tion of the strict ordinary local conditions commutes with L f ∗x . We assume that
f ∗x (M

Iv ) ∼→ (Mx)
Iv so that the formation of the unramified local conditions com-

mutes with L f ∗x . Then the base-change theorem, situation (3) of Theorem 1.12,
shows the morphism (3-3) to be an isomorphism, giving rise to a short exact
sequence

0→ f ∗x H̃2
str(G K ,M)

H2(sx )
−−−→ H̃2

str(G K ,Mx)→ TorOX
1 (H̃3

str(G K ,M), Ex)→ 0.

Thus, H2(sx) is an isomorphism precisely when x avoids the support of the torsion
in H̃3

str(G K ,M).
On the other hand, we may relate H̃2

str(G K ,Mx) to an extended Selmer group
in degree 1 via duality. Namely, we equip M∗x (1) with the strict ordinary local
conditions at v ∈ S lying over p built from the (Fαvv,x)

⊥, and the unramified local con-
ditions at v ∈ S not dividing p, to construct the Selmer complex R0̃str(G K ,M∗x (1)).
The local conditions for Mx and M∗x (1) are dual to one another. At places v ∈ S
lying over p, this follows from the duality of Galois cohomology of (ϕ, 0)-modules
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contained in the finiteness theorem as previously mentioned. At places v ∈ S not
dividing p, there is a possible error in the integral self-duality of the unramified
local conditions (coming from nontrivial Tamagawa numbers), but this contribution
disappears after inverting p; see [Nekovář 2006, 7.6.7(iii)]. Thus, Theorem 1.16
gives

R0̃str(G K ,Mx)∼= R0̃str(G,M∗x (1))
∗
[−3]

in D[0,3]perf (Ex) and, in particular,

H̃2
str(G K ,Mx)∼= H̃1

str(G K ,M∗x (1))
∗.

Now we relate the H̃1
str(G K ,M∗x (1)) to Bloch–Kato Selmer groups for M∗x (1)

by computing the complexes Ev = Cone(iv) appearing in the exact triangles (1-3)
and (1-4). For v∈ S dividing p, one has Ev∼=R0(Gv, (Fαvv,x)

∗(1)), whereas for v∈ S
not dividing p one has

H0 Ev = 0 and H1 Ev ∼= H1
cont(Iv,M∗x (1))

Gv .

Thus, one has an exact sequence

· · · →

⊕
v∈S

dividing p

H0(Gv, (Fαvv,x)
∗(1))→ H̃1

str(G K ,M∗x (1))→ H1
cont(G K ,S,M∗x (1))

→

⊕
v∈S

dividing p

H1(Gv, (Fαvx,v)
∗(1))⊕

⊕
v∈S

not dividing p

H1
cont(Iv,M∗x (1))

Gv → · · · ,

and the image of H̃1
str(G K ,M∗x (1)) in H1

cont(G K ,S,M∗x (1)) is identified to a subgroup
cut out by local subspaces. For v not dividing p, these are the usual unramified
local subspaces, and for v dividing p, these are strict ordinary local spaces in
the sense of Section 3B. Therefore, assuming for each v ∈ S dividing p that the
hypotheses of Proposition 3.7(3) for M∗x (1)|Gv

hold, and in particular that each
H0(Gv, (Fαvx,v)

∗(1))= 0, we have H̃1
str(G K ,M∗x (1))

∼
→ H1

f (G K ,M∗x (1)), where the
right-hand side is Bloch–Kato’s Selmer group for M∗x (1).

Because the H̃i
str(G K ,M) are coherent sheaves on X , they have a reasonable

structure theory. It follows that for x varying over all points of X with values
in finite extensions Ex of E , the number dimEx f ∗x H̃i

str(G K ,M) is constant at its
minimum value outside of a locally (i.e., over each affinoid) Zariski-closed proper
subset. Further throwing away the support of the torsion in H̃3

str(G K ,M), which
only increases the resulting rank of H̃2

str(G K ,Mx), we thus obtain the following:

Theorem 3.13. Let M be a family of G K ,S-representations over X that is nearly
ordinary at each v ∈ S dividing p and for each v ∈ S not dividing p that M Iv is flat.

Let X0 be the set of points x with values in finite extensions Ex of E , for which
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• f ∗x (M
Iv ) ∼→ (Mx)

Iv if v does not divide p and

• the hypotheses of Proposition 3.7(3) for M∗x (1)|Gv
hold if v divides p.

Then the Bloch–Kato Selmer groups of the M∗x (1) at the x ∈ X0 have Ex -dimensions
that are equal to their minimum except possibly on a locally Zariski-closed proper
subset.

Remark 3.14. In the case where the family is over a reduced affinoid of dimension 1,
this statement is more or less equivalent to [Bellaïche 2012, Theorem 1].
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Multiplicative excellent families of elliptic
surfaces of type E7 or E8

Abhinav Kumar and Tetsuji Shioda

We describe explicit multiplicative excellent families of rational elliptic surfaces
with Galois group isomorphic to the Weyl group of the root lattices E7 or E8.
The Weierstrass coefficients of each family are related by an invertible polyno-
mial transformation to the generators of the multiplicative invariant ring of the
associated Weyl group, given by the fundamental characters of the corresponding
Lie group. As an application, we give examples of elliptic surfaces with mul-
tiplicative reduction and all sections defined over Q for most of the entries of
fiber configurations and Mordell–Weil lattices described by Oguiso and Shioda,
as well as examples of explicit polynomials with Galois group W (E7) or W (E8).

1. Introduction

For an elliptic curve E over a field K , determining its Mordell–Weil group is a
fundamental problem in algebraic geometry and number theory. When K = k(t)
is a rational function field in one variable, this problem becomes a geometrical
one of understanding sections of an elliptic surface with section. Lattice theoretic
methods of attack were described in [Shioda 1990]. In particular, when E→P1

t is
a rational elliptic surface given as a minimal proper model of

y2
+ a1(t)xy+ a3(t)y = x3

+ a2(t)x2
+ a4(t)x + a6(t)

with ai (t) ∈ k[t] of degree at most i , the possible configurations (types) of bad
fibers and Mordell–Weil groups were analyzed by Oguiso and Shioda [1991].

In [Shioda 1991a], the second author studied sections for some families of ellip-
tic surfaces with an additive fiber, by means of the specialization map, and obtained
a relation between the coefficients of the Weierstrass equation and the fundamental
invariants of the corresponding Weyl groups. Shioda and Usui [1992] expanded

Kumar was supported in part by NSF Career grant DMS-0952486, and by a grant from the Solomon
Buchsbaum Research Fund. Shioda was partially supported by JSPS Grant-in-Aid for Scientific
Research (C)20540051.
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Keywords: rational elliptic surfaces, multiplicative invariants, inverse Galois problem, Weyl group,
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this by studying families with a bad fiber of additive reduction more exhaustively.
They defined the formal notion of an excellent family (see Section 2) and found
excellent families for many of the “admissible” types.

The analysis of rational elliptic surfaces of high Mordell–Weil rank, but with a
fiber of multiplicative reduction, is much more challenging. However, understand-
ing this situation is arguably more fundamental, since if we write down a “random”
elliptic surface, then with probability close to 1 it will have Mordell–Weil lattice E8

and twelve nodal fibers (that is, of multiplicative reduction). To be more precise,
if we choose Weierstrass coefficients ai (t) of degree i , with coefficients chosen
uniformly at random from among rational numbers (say) of height at most N , then
as N→∞ the surface will satisfy the condition above with probability approach-
ing 1. One can make a similar statement for rational elliptic surfaces chosen to
have Mordell–Weil lattice E∗7 , E∗6 , etc.

In [Shioda 2012], this study was carried out for elliptic surfaces with a fiber
of type I3 and Mordell–Weil lattice isometric to E∗6 , through a “multiplicative ex-
cellent family” of type E6. We will describe this case briefly in Section 3. The
main result of this paper shows that two explicitly described families of rational
elliptic surfaces with Mordell–Weil lattices E∗7 or E8 are multiplicative excellent.
The proof involves a surprising connection with representation theory of the corre-
sponding Lie groups, and in particular, their fundamental characters. In particular,
we deduce that the Weierstrass coefficients give another natural set of generators
for the multiplicative invariants of the respective Weyl groups, as a polynomial ring.
Similar formulas were derived by Eguchi and Sakai [2003] using calculations from
string theory and mirror symmetry.

The idea of an excellent family is quite useful and important in number theory.
An excellent family of algebraic varieties leads to a Galois extension F(µ)/F(λ)
of two purely transcendental extensions of a number field F (say Q), with Galois
group a desired finite group G. This setup has an immediate number-theoretic
application, since one may specialize the parameters λ and apply Hilbert’s irre-
ducibility theorem to obtain Galois extensions over Q with the same Galois group.
Furthermore, we can make the construction effective if appropriate properties of the
group G are known (see Examples 8 and 19 for the case G=W (E7) or W (E8)). At
the same time, an excellent family will give rise to a split situation very easily, by
specializing the parameters µ instead. For examples, in the situation considered
in our paper, we obtain elliptic curves over Q(t) with Mordell–Weil rank 7 or
8 together with explicit generators for the Mordell–Weil group (see Examples 7
and 18). There are also applications to geometric specialization or degeneration
of the family. Therefore, it is desirable (but quite nontrivial) to construct explicit
excellent families of algebraic varieties. Such a situation is quite rare in general:
theoretically, any finite reflection group is a candidate, but it is not generally neatly
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related to an algebraic geometric family. Hilbert treated the case of the symmet-
ric group Sn , corresponding to families of zero-dimensional varieties. Not many
examples were known before the (additive) excellent families for the Weyl groups
of the exceptional Lie groups E6, E7 and E8 were given in [Shioda 1991a], using
the theory of Mordell–Weil lattices. Here, we finish the story for the multiplicative
excellent families for these Weyl groups.

2. Mordell–Weil lattices and excellent families

Let X
π
→ P1 be an elliptic surface with section σ : P1

→ X , that is, a proper
relatively minimal model of its generic fiber, which is an elliptic curve. We denote
the image of σ by O , which we take to be the zero section of the Néron model.
We let F be the class of a fiber in Pic(X) ∼= NS(X), and let the reducible fibers
of π lie over ν1, . . . , νk ∈ P1. The nonidentity components of π−1(νi ) give rise
to a sublattice Ti of NS(X), which is (the negative of) a root lattice (see [Kodaira
1963a; 1963b; Tate 1975]). The trivial lattice T is ZO ⊕ ZF ⊕ (

⊕
Ti ), and we

have the isomorphism MW(X/P1) ∼= NS(X)/T , which describes the Mordell–
Weil group. In fact, one can induce a positive definite pairing on the Mordell–Weil
group modulo torsion, by inducing it from the negative of the intersection pairing
on NS(X). We refer the reader to [Shioda 1990] for more details. In this paper,
we will call

⊕
Ti the fibral lattice.

Next, we recall from [Shioda and Usui 1992] the notion of an excellent family
with Galois group G. Suppose X→ An is a family of algebraic varieties, varying
with respect to n parameters λ1, . . . , λn . The generic member of this family Xλ is
a variety over the rational function field k0 = Q(λ). Let k = k0 be the algebraic
closure, and suppose that C(Xλ) is a group of algebraic cycles on Xλ over the
field k (in other words, it is a group of algebraic cycles on Xλ ×k0 k). Suppose
in addition that there is an isomorphism φλ : C(Xλ)⊗Q ∼= V for a fixed vector
space V , and C(Xλ) is preserved by the Galois group Gal(k/k0). Then we have
the Galois representation

ρλ : Gal(k/k0)→ Aut(C(Xλ))→ Aut(V ).

We let kλ be the fixed field of the kernel of ρλ, that is, it is the smallest extension of
k0 over which the cycles of C(λ) are defined. We call it the splitting field of C(Xλ).

Now let G be a finite reflection group acting on the space V .

Definition 1. We say {Xλ} is an excellent family with Galois group G if the fol-
lowing conditions hold:

(1) The image of ρλ is equal to G.

(2) There is a Gal(k/k0)-equivariant evaluation map s : C(Xλ)→ k.
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(3) There exists a basis {Z1, . . . , Zn} of C(Xλ) such that if we set ui = s(Zi ),
then u1, . . . , un are algebraically independent over Q.

(4) Q[u1, . . . , un]
G
=Q[λ1, . . . , λn].

As an example, for G=W (E8), consider the following family of rational elliptic
surfaces over k0 =Q(λ):

y2
= x3
+ x

( 3∑
i=0

p20−6i t i
)
+

( 3∑
j=0

p30−6 j t j
+ t5

)
,

with λ = (p2, p8, p12, p14, p18, p20, p24, p30). Shioda [1991a] shows that this is
an excellent family with Galois group G. The pi are related to the fundamental
invariants of the Weyl group of E8, as is suggested by their degrees (subscripts).

We now define the notion of a multiplicative excellent family for a group G.
As before, X → An is a family of algebraic varieties, varying with respect to
λ= (λ1, . . . , λn), and C(Xλ) is a group of algebraic cycles on Xλ, isomorphic (via
a fixed isomorphism) to a fixed abelian group M . The fields k0 and k are as before,
and we have a Galois representation

ρλ : Gal(k/k0)→ Aut(C(Xλ))→ Aut(M).

Suppose that G is a group acting on M .

Definition 2. We say {Xλ} is a multiplicative excellent family with Galois group
G if the following conditions hold:

(1) The image of ρλ is equal to G.

(2) There is a Gal(k/k0)-equivariant evaluation map s : C(Xλ)→ k∗.

(3) There exists a basis {Z1, . . . , Zn} of C(Xλ) such that if we set ui = s(Zi ),
then u1, . . . , un are algebraically independent over Q.

(4) Q[u1, . . . , un, u−1
1 , . . . , u−1

n ]
G
=Q[λ1, . . . , λn].

Remark 3. Though we use similar notation, the specialization map s and the ui

in the multiplicative case are quite different from the ones in the additive case.
Intuitively, one may think of these as exponentiated versions of the corresponding
objects in the additive case. However, we want the specialization map to be an
algebraic morphism, and so in general (additive) excellent families specified by
Definition 1 will be very different from multiplicative excellent families specified
by Definition 2.

In our examples, G will be a finite reflection group acting on a lattice in Eu-
clidean space, which will be our choice for M . However, what is relevant here is
not the ring of (additive) invariants of G on the vector space spanned by M . Instead,
note that the action of G on M gives rise to a “multiplicative” or “monomial” action
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of G on the group algebra Q[M], and we will be interested in the polynomials on
this space that are invariant under G. This is the subject of multiplicative invariant
theory (see, for example, [Lorenz 2005]). In the case when G is the automorphism
group of a root lattice or root system, multiplicative invariants were classically
studied by using the terminology of “exponentiated” roots eα (for instance, see
[Bourbaki 1968, Section VI.3]).

3. The E6 case

We now sketch the construction of multiplicative excellent family in [Shioda 2012].
Consider the family of rational elliptic surfaces Sλ with Weierstrass equation

y2
+ t xy = x3

+ (p0+ p1t + p2t2) x + q0+ q1t + q2t2
+ t3

with parameter λ = (p0, p1, p2, q0, q1, q2). The surface Sλ generically only has
one reducible fiber at t =∞, of type I3. Therefore, the Mordell–Weil lattice Mλ of
Sλ is isomorphic to E∗6 . There are 54 minimal sections of height 4/3, and exactly
half of them have the property that x and y are linear in t . If we have

x = at + b and y = ct + d,

then substituting these back in to the Weierstrass equation, we get a system of
equations, and we may easily eliminate b, c, d from the system to get a monic
equation of degree 27 (subject to a genericity assumption), which we write as
8λ(a)= 0. Also, note that the specialization of a section of height 4/3 to the fiber
at∞ gives us a point on one of the two nonidentity components of the special fiber
of the Néron model (the same component for all the 27 sections). Identifying the
smooth points of this component with Gm×{1} ⊂Gm×(Z/3Z), the specialization
map s takes the section to (−1/a, 1). Let the specializations be si = −1/ai for
1≤ i ≤ 27. We have

8λ(X)=
27∏

i=1

(X − ai )=

27∏
i=1

(X + 1/si )

= X27
+ ε−1 X26

+ ε−2 X25
+ · · ·+ ε4 X4

+ ε3 X3
+ ε2 X2

+ ε1 X + 1.

Here εi is the i-th elementary symmetric polynomial of the si and ε−i that of
the 1/si . The coefficients of 8λ(X) are polynomials in the coordinates of λ, and
we may use the equations for ε1, ε2, ε3, ε4, ε−1 and ε−2 to solve for p0, . . . , q3.
However, the resulting solution has ε−2 in the denominator. We may remedy this
situation as follows. Consider the construction of E∗6 as described in [Shioda 1995]:
let v1, . . . , v6 be vectors in R6 with 〈vi , v j 〉 = δi j+1/3, and let u = (

∑
vi )/3. The

Z-span of v1, . . . , v6, u is a lattice L isometric to E∗6 . It is clear that v1, . . . , v5, u
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forms a basis of L . Here, we choose an isometry between the Mordell–Weil lat-
tice and the lattice L , and let the specializations of v1, . . . , v6, u be s1, . . . , s6, r ,
respectively. These satisfy s1s2 . . . s6 = r3. The 54 nonzero minimal vectors of E∗6
split up into two cosets (modulo E6) of 27 each, of which we have chosen one.
The specializations of these 27 special sections are given by

{s1, . . . , s27} := {si : 1≤ i ≤ 6} ∪ {si/r : 1≤ i ≤ 6} ∪ {r/(si s j ) : 1≤ i < j ≤ 6}.

If
δ1 = r + 1

r
+

∑
i 6= j

si

s j
+

∑
i< j<k

( r
si s j sk

+
si s j sk

r

)
,

then δ1 belongs to the G=W (E6)-invariants of Q[s1, . . . , s5, r, s−1
1 , . . . , s−1

5 , r−1
],

and explicit computations in [Shioda 2012] show that

Q[s1, . . . , s5, r, s−1
1 , . . . , s−1

5 , r−1
]
G
=Q[δ1, ε1, ε2, ε3, ε−1, ε−2]

=Q[p0, p1, p2, q0, q1, q2].

The explicit relation showing the second equality is as follows:

δ1 =−2p1, ε−1 = p2
2 − q2,

ε2 = 13p2
2 + p0− q2, ε−2 =−2p1 p2+ 6p2+ q1,

ε1 = 6p2, ε3 = 8p3
2 + 2p0 p2+ p2

1 − 6p1− q0+ 9.

We make an additional observation. The six fundamental representations of the
Lie algebra E6 correspond to the fundamental weights in the following diagram,
which displays the standard labeling of these representations.

1 3 4 5 6

2

The dimensions of these representations V1, . . . , V6 are 27, 78, 351, 2925, 351, 27
respectively, and their characters are related to ε1, ε2, ε3, ε−1, ε−2, δ1 by the nice
transformation

χ1 = ε1, χ2 = δ1+ 6, χ3 = ε2,

χ4 = ε3, χ5 = ε−2, χ6 = ε−1.

This explains the reason for bringing in δ1 into the picture, and also why there
is a denominator when solving for p0, . . . , q2 in terms of ε1, . . . , ε4, ε−1, ε−2, as
remarked in [Shioda 2012]. The coefficients ε j are essentially the characters of∧j V , where V = V1 is the first fundamental representation, while ε− j are those of∧j V ∗, where V6 = V ∗. Note that

∧3V ∼=
∧3V ∗. Therefore, from the expressions
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for ε1, ε2, ε3, ε−1, ε−2, we may obtain p2, q2, p0, q1, q0, in terms of the remaining
variable p1, without introducing any denominators. However, representation V2

cannot be obtained as a direct summand with multiplicity 1 from a tensor product
of
∧j V (for 1≤ j ≤ 3) and

∧k V ∗ (for 1≤ k ≤ 2). On the other hand, we do have
the isomorphism

(V2⊗ V5)⊕ V5⊕ V1 ∼=
∧4V1⊕ (V3⊗ V6)⊕ (V6⊗ V6).

Therefore, we are able to solve for p1 if we introduce a denominator of ε−2, which
is the character of V5.

4. The E7 case

4.1. Results. Next, we exhibit a multiplicative excellent family for the Weyl group
of E7. It is given by the Weierstrass equation

y2
+ t xy = x3

+ (p0+ p1t + p2t2) x + q0+ q1t + q2t2
+ q3t3

− t4.

For generic λ = (p0, . . . , p2, q0, . . . , q3), this rational elliptic surface Xλ has a
fiber of type I2 at t =∞, and no other reducible fibers. Hence, the Mordell–Weil
group Mλ is E∗7 . We note that any elliptic surface with a fiber of type I2 can be
put into this Weierstrass form (in general over a small degree algebraic extension
of the ground field), after a fractional linear transformation of the parameter t , and
Weierstrass transformations of x and y.

Lemma 4. The smooth part of the special fiber is isomorphic to the group scheme
Gm ×Z/2Z. The identity component is the nonsingular part of the curve

y2
+ xy = x3.

The x- and y-coordinates of a section of height 2 are polynomials of degrees 2
and 3 respectively, and its specialization at t = ∞ is (limt→∞(y + t x)/y, 0) ∈
k∗×{0, 1}. A section of height 3/2 has x and y coordinates of the form

x = at + b and y = ct2
+ dt + e.

and specializes at t =∞ to (c, 1).

Proof. First, to get a local chart for the elliptic surface near t = ∞, we set x =
x̃/u2, y = ỹ/u3 and t = 1/u, and look for u near 0. Therefore, the special fiber
(before blow-up) is given by ȳ2

+ x̄ ȳ = x̄3, where x̄ = x̃ |u=0 and ȳ = ỹ|u=0 are
the reductions of the coordinates at u = 0, respectively. It is an easy exercise
to parametrize the smooth locus of this curve: It is given, for instance, by x̄ =
s/(s − 1)2, ȳ = s/(s − 1)3. We then check that s = (ȳ + x̄)/ȳ and the map
from the smooth locus to Gm that takes the point (x̄, ȳ) to s is a homomorphism
from the secant group law to multiplication in k∗. This proves the first half of
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the lemma. Note that we could just as well have taken 1/s to be the parameter
on Gm ; our choice is a matter of convention. To prove the specialization law for
sections of height 3/2, we may, for instance, take the sum of such a section Q
with a section P of height 2 with specialization (s, 0). A direct calculation shows
that the y-coordinate of the sum has top (quadratic) coefficient cs. Therefore the
specialization of Q must have the form κc, where κ is a constant not depending
on Q. Finally, the sum of two sections Q1 and Q2 of height 3/2 and having
coefficients c1 and c2 for the t2 term of their y-coordinates can be checked to
specialize to (c1c2, 0). It follows that κ = ±1, and we take the plus sign as a
convention. (It is easy to see that both choices of sign are legitimate, since the
sections of height 2 generate a copy of E7, whereas the sections of height 3/2 lie
in the nontrivial coset of E7 in E∗7 ). �

There are 56 sections of height 3/2, with x and y coordinates in the form above.
Substituting the formulas above for x and y into the Weierstrass equation, we get
the following system of equations.

c2
+ ac+ 1= 0,

q3+ ap2+ a3
= (2c+ a)d + bc,

q2+ bp2+ 3a2b = (2c+ a)e+ (b+ d)d,

q1+ bp1+ ap0+ 3ab2
= (2d + b)e,

q0+ bp0+ b3
= e2.

We solve for a and b from the first and second equations, and then e from the
third, assuming c 6=1. Substituting these values back into the last two equations, we
get two equations in the variables c and d. Taking the resultant of these two equa-
tions with respect to d , and dividing by c30(c2

−1)4, we obtain an equation of degree
56 in c, which is monic, reciprocal and has coefficients in Z[λ] = Z[p0, . . . , q3].
We denote this polynomial by

8λ(X)=
56∏

i=1

(X − s(P))= X56
+ ε1 X55

+ ε2 X54
+ · · ·+ ε1 X + ε0,

where P ranges over the 56 minimal sections of height 3/2. It is clear that a, b, d, e
are rational functions of c with coefficients in k0.

We have a Galois representation on the Mordell–Weil lattice

ρλ : Gal(k/k0)→ Aut(Mλ)∼= Aut(E∗7).

Here Aut(E∗7)∼=Aut(E7)∼=W (E7), the Weyl group of type E7. The splitting field
of Mλ is the fixed field kλ of Ker(ρλ). By definition, Gal(kλ/k0) ∼= Im(ρλ). The
splitting field kλ is equal to the splitting field of the polynomial 8λ(X) over k0,
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since the Mordell–Weil group is generated by the 56 sections of smallest height
Pi = (ai t+bi , ci t2

+di t+ei ). We also have kλ= k0(P1, . . . , P56)= k0(c1, . . . , c56).
We shall sometimes write eα, (for α ∈ E∗7 a minimal vector) to refer to the special-
izations of these sections c(Pi ), for convenience.

Theorem 5. Assume that λ is generic over Q, i.e., the coordinates p0, . . . , q3 are
algebraically independent over Q.

(1) ρλ induces an isomorphism Gal(kλ/k0)∼=W (E7).

(2) The splitting field kλ is a purely transcendental extension of Q, isomorphic to
the function field Q(Y ) of the toric hypersurface

Y ⊂ G8
m defined by s1 . . . s7 = r3.

There is an action of W (E7) on Y such that Q(Y )W (E7) = kW (E7)
λ = k0.

(3) The ring of W (E7)-invariants in the affine coordinate ring

Q[Y ] =
Q[si , r, 1/si , 1/r ]
(s1 . . . s7− r3)

∼=Q[s1, . . . , s6, r, s−1
1 , . . . , s−1

6 , r−1
]

is equal to the polynomial ring Q[λ]:

Q[Y ]W (E7) =Q[λ] =Q[p0, p1, p2, q0, q1, q2, q3].

In fact, we shall prove an explicit, invertible polynomial relation between the
Weierstrass coefficients λ and the fundamental characters for E7. Let V1, . . . , V7

be the fundamental representations of E7, and χ1, . . . , χ7 their characters (on a
maximal torus), as labeled below. For a description of the fundamental modules
for the exceptional Lie groups see [Carter 2005, Section 13.8].

1 3 4 5 6 7

2

Note that since the weight lattice E∗7 has been equipped with a nice set of genera-
tors (v1, . . . , v7, u)with

∑
vi =3u (as in [Shioda 1995]), the characters χ1, . . . , χ7

lie in the ring of Laurent polynomials Q[si , r, 1/si , 1/r ], where si corresponds to
evi and r to eu , and are obviously invariant under the (multiplicative) action of the
Weyl group on this ring of Laurent polynomials. Explicit formulas for the χi are
given in the auxiliary files.

We also note that the roots of 8λ are given by

si ,
1
si

for 1≤ i ≤ 7 and
r

si s j
,

si s j

r
for 1≤ i < j ≤ 7.
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Theorem 6. For generic λ over Q, we have

Q[χ1, . . . , χ7] =Q[p0, p1, p2, q0, q1, q2, q3].

The transformation between these sets of generators is

χ1 = 6p2+ 25,

χ2 = 6q3− 2p1,

χ3 =−q2+ 13p2
2 + 108p2+ p0+ 221,

χ4 = 9q2
3 − 6p1q3− q2− q0+ 8p3

2 + 85p2
2 + (2p0+ 300)p2+ p2

1 + 10p0+ 350,

χ5 = (6p2+ 26)q3+ q1− 2p1 p2− 10p1,

χ6 =−q2+ p2
2 + 12p2+ 27,

χ7 = q3,

with inverse

p2 = (χ1− 25)/6,

p1 = (6χ7−χ2)/2,

p0 =−(3χ6− 3χ3+χ
2
1 − 2χ1+ 7)/3,

q3 = χ7,

q2 =−(36χ6−χ
2
1 − 22χ1+ 203)/36,

q1 = (24χ7+ 6χ5+ (−χ1− 5)χ2)/6,

q0 = (27χ2
2 − 8χ3

1 − 84χ2
1 + 120χ1− 136)/108−(χ1+ 2)χ6/3−χ4+ (χ1+ 5)χ3/3.

Our formulas agree with those of Eguchi and Sakai [2003], who seem to derive
these by using an ansatz.

Next, we describe two examples through specialization, one of “small Galois”
(in which all sections are defined over Q[t]) and one with “big Galois” (which has
Galois group the full Weyl group).

Example 7. The values

p0 = 244655370905444111/(3µ2),

p1 =−4788369529481641525125/(16µ2),

q3 = 184185687325/(4µ),

p2 = 199937106590279644475038924955076599/(12µ4),

q2 = 57918534120411335989995011407800421/(9µ3),

q1 =−179880916617213624948875556502808560625/(4µ4),

q0 = 35316143754919755115952802080469762936626890880469201091/(1728µ6),
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where µ = 2 · 3 · 5 · 7 · 11 · 13 · 17 = 102102, give rise to an elliptic surface for
which we have r = 2, s1 = 3, s2 = 5, s3 = 7, s4 = 11, s5 = 13, s6 = 17, the simplest
choice of multiplicatively independent elements. The Mordell–Weil group has a
basis of sections for which c ∈ {3, 5, 7, 11, 13, 17, 15/2}. We write down their
x-coordinates below:

x(P1)=−(10/3)t − 707606695171055129/1563722760600,

x(P2)=−(26/5)t − 611410735289928023/1563722760600,

x(P3)=−(50/7)t − 513728975686763429/1563722760600,

x(P4)=−(122/11)t − 316023939417997169/1563722760600,

x(P5)=−(170/13)t − 216677827127591279/1563722760600,

x(P6)=−(290/17)t − 17562556436754779/1563722760600,

x(P7)=−(229/30)t − 140574879644393807/390930690150.

In the auxiliary files the x-and y-coordinates are listed, and it is verified that they
satisfy the Weierstrass equation.

Example 8. The value λ= λ0 := (1, 1, 1, 1, 1, 1, 1) gives rise to an explicit poly-
nomial f (X)=8λ0(X), given by

f (X)= X56
− X55

+ 40X54
− 22X53

+ 797X52
− 190X51

+ 9878X50
− 1513X49

+ 82195X48
− 17689X47

+ 496844X46
− 175584X45

+ 2336237X44

− 1196652X43
+ 8957717X42

− 5726683X41
+ 28574146X40

− 20119954X39
+ 75465618X38

− 53541106X37
+ 163074206X36

− 110505921X35
+ 287854250X34

− 181247607X33
+ 420186200X32

− 243591901X31
+ 518626022X30

− 278343633X29
+ 554315411X28

− 278343633X27
+ 518626022X26

− 243591901X25
+ 420186200X24

− 181247607X23
+ 287854250X22

− 110505921X21
+ 163074206X20

− 53541106X19
+ 75465618X18

− 20119954X17
+ 28574146X16

− 5726683X15
+ 8957717X14

− 1196652X13
+ 2336237X12

− 175584X11
+ 496844X10

− 17689X9
+ 82195X8

− 1513X7

+ 9878X6
− 190X5

+ 797X4
− 22X3

+ 40X2
− X + 1,

for which we can show that the Galois group is the full group W (E7), as follows.
The reduction of f (X) modulo 7 shows that Frob7 has cycle decomposition of
type (7)8, and similarly, Frob101 has cycle decomposition of type (3)2(5)4(15)2.
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This implies, as in [Shioda 1991b, Example 7.6], that the Galois group is the entire
Weyl group.

We can also describe degenerations of this family Xλ of rational elliptic surfaces
by the method of “vanishing roots”, where we drop the genericity assumption, and
consider the situation where the elliptic fibration might have additional reducible
fibers. Let ψ : Y → A7 be the finite surjective morphism associated to

Q[p0, . . . , q3] ↪→Q[Y ] ∼=Q[s1, . . . , s6, r, s−1
1 , . . . , s−1

6 , r−1
].

For ξ = (s1, . . . , s7, r) ∈ Y , let the multiset 5ξ consist of the 126 elements si/r
and r/si for 1 ≤ i ≤ 7, si/s j ((for 1 ≤ i 6= j ≤ 7) and si s j sk/r and r/(si s j sk)

for 1 ≤ i < j < k ≤ 7, corresponding to the 126 roots of E7. Let 2ν(ξ) be the
number of times 1 appears in 5ξ , which is also the multiplicity of 1 as a root of
9λ(X) (to be defined in Section 4.2), where λ=ψ(ξ). We call the associated roots
of E7 the vanishing roots, in analogy with vanishing cycles in the deformation of
singularities. By abuse of notation we label the rational elliptic surface Xλ as Xξ .

Theorem 9. The surface Xξ has new reducible fibers (necessarily at t 6=∞) if and
only if ν(ξ) > 0. The number of roots in the root lattice Tnew is equal to 2ν(ξ),
where Tnew :=

⊕
v 6=∞ Tv is the new part of the trivial lattice.

We may use this result to produce specializations with trivial lattice includ-
ing A1, corresponding to the entries in the table of [Oguiso and Shioda 1991,
Section 1]. Note that in earlier work [Shioda 1991a; Shioda and Usui 1992], ex-
amples of rational elliptic surfaces were produced with a fiber of additive type,
for instance, a fiber of type III (which contributes A1 to the trivial lattice) or a
fiber of type II. Using our excellent family, we can produce examples with the
A1 fiber being of multiplicative type I2 and all other irreducible singular fibers
being nodal (that is, I1). We list below those types that are not already covered by
[Shioda 2012]. To produce these examples, we use an embedding of the new part
Tnew of the fibral lattice into E7, which gives us any extra conditions satisfied by
s1, . . . , s7, r . The following multiplicative version of the labeling of simple roots
of E7 is useful (compare [Shioda 1995]).

s1

s2

s2

s3

s3

s4

s4

s5

s5

s6

s6

s7

r
s1s2s3

For instance, to produce the example in line 18 of the table (that is, with Tnew=D4),
we may use the embedding into E7 indicated by embedding the D4 Dynkin diagram
within the dashed lines in the figure above. Thus, we must force s2 = s3 = s4 = s5
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Type Fibral lattice MW group {s1, . . . , s6, r}

2 A1 E∗7 3, 5, 7, 11, 13, 17, 2
4 A2

1 D∗6 3, 3, 5, 7, 11, 13, 2
7 A3

1 D∗4 ⊕ A∗1 3, 3, 5, 5, 7, 11, 2
10 A1⊕ A3 A∗1⊕ A∗3 3, 3, 3, 3, 5, 7, 2
13 A4

1 D∗4 ⊕Z/2Z −1, 2, 3, 5, 7, 49/30, 7
14 A4

1 A∗41 3, 3, 5, 5, 7, 7, 2

17 A1⊕ A4
1
10

(
3 1 −1
1 7 3
−1 3 7

)
3, 3, 3, 3, 3, 5, 2

18 A1⊕ D4 A∗31 2, 3, 3, 3, 3, 5, 18
21 A2

1⊕ A3 A∗3⊕Z/2Z 3, 5, 60, 30, 30, 30, 900
22 A2

1⊕ A3 A∗21 ⊕〈1/4〉 3, 3, 5, 5, 5, 5, 2
24 A5

1 A∗31 ⊕Z/2Z 15/4, 2, 2, 3, 3, 5, 15
28 A1⊕ A5 A∗2⊕Z/2Z 2, 3, 6, 6, 6, 6, 36
29 A1⊕ A5 A∗1⊕〈1/6〉 2, 2, 2, 2, 2, 2, 3
30 A1⊕ D5 A∗1⊕〈1/4〉 2, 2, 2, 2, 2, 3, 8

33 A2
1⊕ A4

1
10

(
2 1
1 3

)
2, 2, 3, 3, 3, 3, 12

34 A2
1⊕ D4 A∗21 ⊕Z/2Z 2, 3, 3, 3, 3, 6, 18

38 A3
1⊕ A3 A∗1⊕〈1/4〉⊕Z/2Z 2, 2, 3, 3, 3, 4, 12

42 A6
1 A∗21 ⊕ (Z/2Z)2 6,−1,−1, 2, 2, 3, 6

47 A1⊕ A6 〈1/14〉 8, 8, 8, 8, 8, 8, 128
48 A1⊕ D6 A∗1⊕Z/2Z 1, 2, 2, 2, 2, 2, 4
49 A1⊕ E6 〈1/6〉 2, 2, 2, 2, 2, 2, 8
52 A2

1⊕ D5 〈1/4〉⊕Z/2Z 2, 2, 2, 2, 2, 4, 8
53 A2

1⊕ A5 〈1/6〉⊕Z/2Z 2, 2, 4, 4, 4, 4, 16
57 A3

1⊕ D4 A∗1⊕ (Z/2Z)2 −1, 2, 2, 2, 2,−2,−4
58 A1⊕ A2

3 A∗1⊕Z/4Z I, I, I, I, 2, 2, 2
60 A4

1⊕ A3 〈1/4〉⊕ (Z/2Z)2 2, 2, 2, 2,−1,−1, 4
65 A1⊕ E7 Z/2Z 1, 1, 1, 1, 1, 1, 1
70 A1⊕ A7 Z/4Z I, I, I, I, I, I, I
71 A2

1⊕ D6 (Z/2Z)2 1, 1, 1, 1, 1, 1,−1
74 A2

1⊕ A2
3 (Z/2Z)⊕ (Z/4Z) I, I, I, I,−1,−1,−1

Table 1. Examples of specializations of the E7 family (types are
from [Oguiso and Shioda 1991]).

and r = s1s2s3, and a simple solution with no extra coincidences is given in the
rightmost column (note that s7 = 183/(2 · 34

· 5)= 36/5).
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Here I =
√
−1.

Remark 10. For the examples in lines 58, 70 and 74 of the table, one can show
that it is not possible to define a rational elliptic surface over Q in the form we
have assumed, such that all the specializations si , r are rational. However, there
do exist examples with all sections defined over Q, not in the chosen Weierstrass
form.

The surface with Weierstrass equation

y2
+ xy+ 1

16(c
2
− 1)(t2

− 1)y = x3
+

1
16(c

2
− 1)(t2

− 1)x2

has a 4-torsion section (0, 0) and a nontorsion section(
(c+ 1)(t2

− 1)/8, (c+ 1)2(t − 1)2(t + 1)/32
)

of height 1/2, as well as two reducible fibers of type I4 and a fiber of type I2. It is
an example of type 58.

The surface with Weierstrass equation

y2
+ xy+ t2 y = x3

+ t2x2

has a 4-torsion section (0, 0), and reducible fibers of types I8 and I2. It is an
example of type 70.

The surface with Weierstrass equation

y2
+ xy−

(
t2
−

1
16

)
y = x3

−
(
t2
−

1
16

)
x2

has two reducible fibers of type I4 and two reducible fibers of type I2. It also has
a 4-torsion section (0, 0) and a 2-torsion section

(
(4t−1)/8, (4t−1)2/32

)
, which

generate the Mordell–Weil group. It is an example of type 74. This last example
is the universal elliptic curve with Z/4Z⊕Z/2Z torsion (compare [Kubert 1976]).

4.2. Proofs. We start by considering the coefficients εi of 8λ(X); we know that
(−1)iεi is simply the i-th elementary symmetric polynomial in the 56 specializa-
tions s(Pi ). One shows, either by explicit calculation with Laurent polynomials,
or by calculating the decomposition of

∧i V (where V = V7 is the 56-dimensional
representation of E7), and expressing its character as polynomials in the funda-
mental characters, the following formulas. Some more details are in Section 7 and
the auxiliary files in [Kumar and Shioda 2013].

ε1 =−χ7,

ε2 = χ6+ 1,

ε3 =−(χ7+χ5),

ε4 = χ6+χ4+ 1,
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ε5 =−(χ6+χ3−χ
2
1 +χ1+ 1)χ7+ (χ1− 1)χ5−χ2χ3,

ε6 = χ1χ
2
7 + (χ5− (χ1+ 1)χ2)χ7+χ

2
6 + 2(χ3−χ

2
1 +χ1+ 1)χ6

−χ2χ5− (2χ1+ 1)χ4+χ
2
3 + 2(2χ1+ 1)χ3

+χ1χ
2
2 − 2χ3

1 +χ
2
1 + 2χ1+ 1,

ε7 = (−(χ1+ 1)χ6+ 2χ4− 2(χ1+ 1)χ3+χ
3
1 − 3χ1− 1)χ7

− 2(χ5−χ1χ2)χ6− (χ3−χ
2
1 +χ1+ 2)χ5+ 3χ2χ4

− (χ1+ 3)χ2χ3−χ
3
2 + (2χ1− 1)χ1χ2.

On the other hand, we can explicitly calculate the first few coefficients εi of8λ(X)
in terms of the Weierstrass coefficients, obtaining the following equations. Details
for the method are in Section 6.

ε1 =−q3,

ε2 = p2
2+12p2−q2+28,

ε3 =−3(2p2+9)q3−q1+2p1(p2+5),

ε4 = 9q2
3−6p1q3−2q2−q0+8p3

2+86p2
2+2(p0+156)p2+p2

1+10p0+378,

ε5 = (8q2−20p2
2−174p2−7p0−351)q3−2p1q2+6(p2+4)q1

+14p1 p2
2+108p1 p2+2(p0+101)p1,

ε6 = 12(4p2+15)q2
3−(5q1+38p1 p2+140p1)q3+4q2

2

+(16p2
2+96p2−4p0+155)q2+2p1q1+3(4p2+17)q0+28p4

2+360p3
2

+(4p0+1765)p2
2+2(4p2

1+21p0+1950)p2+29p2
1+p2

0+88p0+3276,

ε7 =−36q3
3+42p1q2

3+(4q2−20q0−56p3
2−628p2

2−14(p0+168)p2−16p2
1

−46p0−2925)q3+(3q1+6p1 p2+20p1)q2+(21p2
2+162p2−p0+323)q1

+6p1q0+42p1 p3
2+448p1 p2

2+2(p0+799)p1 p2+2p3
1+6(p0+316)p1.

Equating the two expressions we have obtained for each εi , we get a system of
seven equations, the first being

−χ7 =−q3.

We label these equations (1) through (7). The last few of these polynomial equa-
tions are somewhat complicated, and so to obtain a few simpler ones, we may
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consider the 126 sections of height 2, which we analyze as follows. Substituting

x = at2
+ bt + c,

y = dt3
+ et2

+ f t + g

into the Weierstrass equation, we get another system of equations:

a3
= d2
+ ad,

3a2b = (2d + a)e+ bd,

a(p2+ 3ac+ 3b2)= (2d + a) f + e2
+ be+ cd + 1,

q3+ bp2+ ap1+ 6abc+ b3
= (2d + a)g+ (2e+ b) f + ce,

q2+ cp2+ bp1+ ap0+ 3ac2
+ 3b2c = (2e+ b)g+ f 2

+ c f,

q1+ cp1+ bp0+ 3bc2
= (2 f + c)g,

q0+ cp0+ c3
= g2.

The specialization of such a section at t = ∞ is 1 + a/d . Setting d = ar , we
may as before eliminate other variables to obtain an equation of degree 126 for r .
Substituting r = 1/(u− 1), we get a monic polynomial 9λ(X)= 0 of degree 126
for u. Note that the roots are given by elements of the form

si

r
,

r
si

for 1≤ i ≤ 7,

si

s j
for 1≤ i 6= j ≤ 7, and

si s j sk

r
,

r
si s j sk

for 1≤ i < j < k ≤ 7.

As before, we can write the first few coefficients ηi of 9λ in terms of λ =
(p0, . . . , q3), as well as in terms of the characters χ j , obtaining some more rela-
tions. We will only need the first two:

−χ1+ 7= η1 =−18− 6p2,

−6χ1+χ3+ 28= η2 = p0+ 72p2+ 13p2
2 − q2+ 99

which we call (1′) and (2′), respectively.
Now we consider the system of six equations (1) through (4), (1′) and (2′).

These may be solved for (p2, p0, q3, q2, q1, q0) in terms of the χ j and p1. Substi-
tuting this solution into the other three relations (5), (6) and (7), we obtain three
equations for p1, of degrees 1, 2 and 3, respectively. These have a single common
factor, linear in p1, which we then solve. This gives us the proof of Theorem 6.

The proof of Theorem 5 is now straightforward. Part (1) asserts that the image
of ρλ is surjective on to W (E7). This follows from a standard Galois-theoretic



Multiplicative excellent families for E7 or E8 1629

argument: Let F be the fixed field of W (E7) acting on kλ =Q(λ)(s1, . . . , s6, r)=
Q(s1, . . . , s6, r), where the last equality follows from the explicit expression of
λ = (p0, . . . , q3) in terms of the χi , which are in Q(s1, . . . , s6, r). Then we
have that k0 ⊂ F since p0, . . . , q3 are polynomials in the χi with rational co-
efficients, and the χi are manifestly invariant under the Weyl group. Therefore
[kλ : k0] ≥ [kλ : F] = |W (E7)|, where the latter equality is from Galois theory. Fi-
nally, [kλ : k0] ≤ |Gal(kλ/k0)| ≤ |W (E7)|, since Gal(kλ/k0) ↪→W (E7). Therefore,
equality is forced.

Another way to see that the Galois group is the full Weyl group is to show it for a
specialization, such as Example 8, and use [Serre 1989, Section 9.2, Proposition 2].

Next, let Y be the toric hypersurface given by s1 . . . s7 = r3. Its function field is
the splitting field of8λ(X), as we remarked above. We have seen that Q(Y )W (E7)=

k0=Q(λ). Since 8λ(X) is a monic polynomial with coefficients in Q[λ], we have
that Q[Y ] is integral over Q[λ]. Therefore Q[Y ]W (E7) is also integral over Q[λ],
and contained in Q(Y )W (E7) = k0 = Q(λ). Since Q[λ] is a polynomial ring, it is
integrally closed in its ring of fractions. Therefore Q[Y ]W (E7) ⊂Q[λ].

We also know Q[χ ] = Q[χ1, . . . , χ7] ⊂ Q[Y ]W (E7), since the χ j are invariant
under the Weyl group. Therefore, we have

Q[χ ] ⊂Q[Y ]W (E7) ⊂Q[λ]

and Theorem 6, which says Q[χ ] = Q[λ], implies that all these three rings are
equal. This completes the proof of Theorem 5.

Remark 11. This argument gives an independent proof of the fact that the ring
of multiplicative invariants for W (E7) is a polynomial ring over χ1, . . . , χ7. See
[Bourbaki 1968, Théorème VI.3.1 and Exemple 1] or [Lorenz 2005, Theorem 3.6.1]
for the classical proof that the Weyl-orbit sums of a set of fundamental weights are
a set of algebraically independent generators of the multiplicative invariant ring;
from there to the fundamental characters is an easy exercise.

Remark 12. Now that we have found the explicit relation between the Weier-
strass coefficients and the fundamental characters, we may go back and explore the
“genericity condition” for this family to have Mordell–Weil lattice E∗7 . To do this,
we compute the discriminant of the cubic in x , after completing the square in y, and
take the discriminant with respect to t of the resulting polynomial of degree 10.
A computation shows that this discriminant factors as the cube of a polynomial
A(λ) (which vanishes exactly when the family has a fiber of additive reduction,
generically type II), times a polynomial B(λ), whose zero locus corresponds to the
occurrence of a reducible multiplicative fiber. In fact, we calculate (for instance,
by evaluating the split case) that B(λ) is the product of (eα − 1), where α runs
over the 126 roots of E7. We deduce by further analyzing the type II case that the
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condition to have Mordell–Weil lattice E∗7 is that∏
(eα − 1)=9λ(1) 6= 0.

Note that this is essentially the expression that occurs in Weyl’s denominator for-
mula. In addition, the condition for having only multiplicative fibers is that 9λ(1)
and A(λ) both be nonzero.

Finally, the proof of Theorem 9 follows immediately from the discussion in
[Shioda 2010a; 2010b] — compare [Shioda 2010b, Section 2.3] for the additive
reduction case.

5. The E8 case

5.1. Results. Finally, we show a multiplicative excellent family for the Weyl group
of E8. It is given by the Weierstrass equation

y2
= x3
+ t2 x2

+ (p0+ p1t + p2t2) x + (q0+ q1t + q2t2
+ q3t3

+ q4t4
+ t5).

For generic λ = (p0, . . . , p2, q0, . . . , q4), this rational elliptic surface Xλ has no
reducible fibers, only nodal I1 fibers at twelve points, including t = ∞. We will
use the specialization map at ∞. The Mordell–Weil lattice Mλ is isomorphic to
the lattice E8. Any rational elliptic surface with a multiplicative fiber of type I1

may be put in the form above (over a small degree algebraic extension of the base
field), after a fractional linear transformation of t and Weierstrass transformations
of x, y.

Lemma 13. The smooth part of the special fiber is isomorphic to the group scheme
Gm . The identity component is the nonsingular part of the curve y2

= x3
+ x2. The

x- and y-coordinates of a section of height 2 are polynomials of degrees 2 and 3
respectively, and its specialization at t =∞ may be taken as

lim
t→∞

(y+ t x)/(y− t x) ∈ k∗.

The proof of the lemma is similar to that in the E7 case (and simpler!), and we
omit it.

There are 240 sections of minimal height 2, with x-and y-coordinates of the
form

x = gt2
+ at + b,

y = ht3
+ ct2

+ dt + e.

Under the identification with Gm of the special fiber of the Néron model, this
section goes to (h+ g)/(h− g). Substituting the formulas above for x and y into
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the Weierstrass equation, we get the following system of equations.

h2
= g3
+ g2,

2ch = 3ag2
+ 2ag+ 1,

2dh+ c2
= q4+ gp2+ 3bg2

+ (2b+ 3a2)g+ a2,

2eh+ 2cd = q3+ ap2+ gp1+ 6abg+ 2ab+ a3,

2ce+ d2
= q2+ bp2+ ap1+ gp0+ 3b2g+ b2

+ 3a2b,

2de = q1+ bp1+ ap0+ 3ab2,

e2
= q0+ bp0+ b3.

Setting h= gu, we eliminate other variables to obtain an equation of degree 240
for u. Finally, substituting in u= (v+1)/(v−1), we get a monic reciprocal equation
8λ(X) = 0 satisfied by v, with coefficients in Z[λ] = Z[p0, . . . , p2, q0, . . . , q4].
We have

8λ(X)=
240∏
i=1

(X − s(P))= X240
+ ε1 X239

+ · · ·+ ε1 X + ε0,

where P ranges over the 240 minimal sections of height 2. It is clear that a, . . . , h
are rational functions of v, with coefficients in k0.

We have a Galois representation on the Mordell–Weil lattice

ρλ : Gal(k/k0)→ Aut(Mλ)∼= Aut(E8).

Here Aut(E8) ∼= W (E8), the Weyl group of type E8. The splitting field of
Mλ is the fixed field kλ of Ker(ρλ). By definition, Gal(kλ/k0) ∼= Im(ρλ). The
splitting field kλ is equal to the splitting field of the polynomial 8λ(X) over k0,
since the Mordell–Weil group is generated by the 240 sections of smallest height
Pi = (gi t2

+ ai t + bi , hi t3
+ ci t2

+ di t + ei ). We also have

kλ = k0(P1, . . . , P240)= k0(v1, . . . , v240).

Theorem 14. Assume that λ is generic over Q, that is, the coordinates p0, . . . , q4

are algebraically independent over Q.

(1) ρλ induces an isomorphism Gal(kλ/k0)∼=W (E8).

(2) The splitting field kλ is a purely transcendental extension of Q, and is iso-
morphic to the function field Q(Y ) of the toric hypersurface Y ⊂ G9

m defined
by s1 · · · s8 = r3. There is an action of W (E8) on Y such that Q(Y )W (E8) =

kW (E8)
λ = k0.
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(3) The ring of W (E8)-invariants in the affine coordinate ring

Q[Y ] =Q[si , r, 1/si , 1/r ]/(s1 . . . s8− r3)∼=Q[s1, . . . , s7, r, s−1
1 , . . . , s−1

7 , r−1
]

is equal to the polynomial ring Q[λ]:

Q[Y ]W (E8) =Q[λ] =Q[p0, p1, p2, q0, q1, q2, q3, q4].

As in the E7 case, we prove an explicit, invertible polynomial relation be-
tween the Weierstrass coefficients λ and the fundamental characters for E8. Let
V1, . . . , V8 be the fundamental representations of E8, and χ1, . . . , χ8 their charac-
ters as labeled below.

1 3 4 5 6 7 8

2

Again, for the set of generators of E8, we choose (as in [Shioda 1995]) vectors
v1, . . . , v8, u with

∑
vi =3u and let si correspond to vi and r to u, so that

∏
si =r3.

The 240 roots of 8λ(X) are given by

si ,
1
si

for 1≤ i ≤ 8,
si

s j
for 1≤ i 6= j ≤ 8,

si s j

r
,

r
si s j

for 1≤ i < j ≤ 8, and
si s j sk

r
,

r
si s j sk

for 1≤ i < j < k ≤ 8.

The characters χ1, . . . , χ7 lie in the ring of Laurent polynomials Q[si , r, 1/si , 1/r ],
and are invariant under the multiplicative action of the Weyl group on this ring of
Laurent polynomials. The χi may be explicitly computed using the software LiE,
as indicated in Section 7 and the auxiliary files.

Theorem 15. For generic λ over Q, we have

Q[χ1, . . . , χ8] =Q[p0, p1, p2, q0, q1, q2, q3, q4].

The transformation between these sets of generators is

χ1 =−1600q4+ 1536p2+ 3875,

χ2 = 2(−45600q4+ 12288q3+ 40704p2− 16384p1+ 73625),

χ3 = 64(14144q2
4 − 72(384p2+ 1225)q4+ 11200q3− 4096q2+ 13312p2

2

+ 87072p2− 17920p1+ 16384p0+ 104625),
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χ4 =−91750400q3
4 + 12288(25600p2+ 222101)q2

4 − 256(4530176q3− 65536q2

+ 1392640p2
2 + 21778944p2− 8159232p1+ 2621440p0+ 34773585)q4

+ 32(4718592q2
3 + 384(80896p2− 32768p1+ 225379)q3− 29589504q2

+ 30408704q1− 33554432q0+ 4194304p3
2 + 88129536p2

2

− 64(876544p1− 262144p0− 4399923)p2+ 8388608p2
1 − 133996544p1

+ 65175552p0+ 215596227),

χ5 = 24760320q2
4 − 64(106496q3+ 738816p2− 163840p1+ 2360085)q4

+ 12288(512p2+ 4797)q3− 30670848q2+ 16777216q1+ 20250624p2
2

− 512(16384p1− 235911)p2− 45154304p1+ 13631488p0+ 146325270,

χ6 = 110592q2
4 − 1536(128p2+ 1235)q4+ 724992q3− 262144q2+ 65536p2

2

+ 1062912p2− 229376p1+ 2450240,

χ7 =−4(3920q4− 1024q3− 1152p2− 7595),

χ8 =−8(8q4− 31).

Remark 16. We omit the inverse for conciseness here; it is easily computed in a
computer algebra system and is available in the auxiliary files.

Remark 17. As before, our explicit formulas are compatible with those in [Eguchi
and Sakai 2003]. Also, the proof of Theorem 14 gives another proof that the mul-
tiplicative invariants for W (E8) are freely generated by the fundamental characters
(or by the orbit sums of the fundamental weights).

Example 18. Let µ= (2 · 3 · 5 · 7 · 11 · 13 · 17 · 19)= 9699690. Then

q4 =−2243374456559366834339/(25
·µ2),

q3 = 430800343129403388346226518246078567/(211
·µ3),

q2 = 72555101947649011127391733034984158462573146409905769/(222
· 32
·µ4),

q1 = (−12881099305517291338207432378468368491584063772556981164919245

30489)/(229
· 3 ·µ5),

q0 = (8827176793323619929427303381485459401911918837196838709750423283

443360357992650203)/(242
· 33
·µ6),

p2 = 146156773903879871001810589/(29
· 3 ·µ2),

p1 =−24909805041567866985469379779685360019313/(220
·µ3),

p0 = 14921071761102637668643191215755039801471771138867387/(223
· 3 ·µ4).
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These values give an elliptic surface for which we have r = 2, s1 = 3, s2 = 5,
s3 = 7, s4 = 11, s5 = 13, s6 = 17, s7 = 19, the simplest choice of multiplica-
tively independent elements. Here, the specializations of a basis are given by
v ∈ {3, 5, 7, 11, 13, 17, 19, 15/2}. Once again, we list the x-coordinates of the
corresponding sections, and leave the rest of the verification to the auxiliary files.

x(P1)= 3t2
−

99950606190359
620780160

t + 4325327557647488120209649813
2642523476911718400

,

x(P2)=
5
4

t2
−

153332163637781
1655413760

t + 5414114237697608646836821
5138596941004800

,

x(P3)=
7
9

t2
−

203120672689603
2793510720

t + 6943164348569130636788638639
7927570430735155200

,

x(P4)=
11
25

t2
−

8564057914757
147804800

t + 115126372233675800396600989
155442557465395200

,

x(P5)=
13
36

t2
−

347479008951469
6385167360

t + 157133607680949617374030405417
221971972060584345600

,

x(P6)=
17
64

t2
−

1327421017414859
26486620160

t + 5942419292933021418457517303
8901131711702630400

,

x(P7)=
19
81

t2
−

489830985359431
10056638592

t + 46685137201743696441477454951
71348133876616396800

,

x(P8)=
120
169

t2
−

30706596009257
440806080

t + 76164443074828743662165466409
55823308449760051200

.

Example 19. The value λ = λ0 := (1, 1, 1, 1, 1, 1, 1, 1) gives rise to an explicit
polynomial g(X) = 8λ0(X), for which we can show that the Galois group is
W (E8), as follows. The reduction of g(X) modulo 79 shows that Frob79 has cycle
decomposition of type (4)2(8)29, and similarly, Frob179 has cycle decomposition
of type (15)16. We deduce, as in [Jouve et al. 2008, Section 3] or [Shioda 2009],
that the Galois group is the entire Weyl group. Since the coefficients of g(X) are
large, we do not display it here, but it is included in the auxiliary files.

As in the case of E7, we can also describe degenerations of this family of ra-
tional elliptic surfaces Xλ by the method of “vanishing roots”, where we drop the
genericity assumption, and consider the situation where the elliptic fibration might
have additional reducible fibers. Let ψ : Y →A8 be the finite surjective morphism
associated to

Q[p0, . . . , q4] ↪→Q[Y ] ∼=Q[s1, . . . , s7, r, s−1
1 , . . . , s−1

7 , r−1
].

For ξ = (s1, . . . , s8, r) ∈ Y , let the multiset 5ξ consist of the 240 elements si and
1/si for 1≤ i ≤ 8, si/s j for 1≤ i 6= j ≤ 8, si s j/r and r/(si s j ) for 1≤ i < j ≤ 8,
and si s j sk/r and r/(si s j sk) for 1 ≤ i < j < k ≤ 8, corresponding to the 240
roots of E8. Let 2ν(ξ) be the number of times 1 appears in 5ξ , which is also the
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Type Fibral lattice MW group {s1, . . . , s6, r}

1 0 E8 3, 5, 7, 11, 13, 17, 19, 2
5 A3 D∗5 2, 2, 2, 2, 5, 7, 11, 3
8 A4 A∗4 2, 2, 2, 2, 2, 5, 7, 3
15 A5 A∗2⊕ A∗1 2, 2, 2, 2, 2, 2, 5, 3
16 D5 A∗3 2, 3, 3, 3, 3, 3, 5, 18

25 A6
1
7

(
4 −1
−1 2

)
2, 2, 2, 2, 2, 2, 2, 3

26 D6 A∗21 2, 3, 3, 3, 3, 3, 3, 18
35 A2

3 A∗21 ⊕Z/2Z 2,−1/2, 3, 3, 3, 1, 1,−3
36 A2

3 〈1/4〉 8, 8, 8, 8, 27, 27, 27, 1296
43 E7 A∗1 2, 2, 2, 2, 2, 2, 2, 8
44 A7 A∗1⊕Z/2Z 2, 2, 2, 2, 2, 2, 2,−8
45 A7 〈1/8〉 8, 8, 8, 8, 8, 8, 8, 256
46 D7 〈1/4〉 2, 4, 4, 4, 4, 4, 4, 32
54 A3⊕ D4 〈1/4〉⊕Z/2Z 2,−1,−1,−1,−1, 1, 1, 2
55 A3⊕ A4 〈1/20〉 16, 16, 16, 16, 32, 32, 32, 4096
62 E8 0 1, 1, 1, 1, 1, 1, 1, 1
63 A8 Z/3Z 1, 1, 1, 1, 1, 1, 1, ζ3

64 D8 Z/2Z 1, 1, 1, 1, 1, 1, 1,−1
67 A2

4 Z/5Z 1, 1, 1, 1, ζ5, ζ5, ζ5, ζ
3
5

72 A3⊕ D5 Z/4Z 1, 1, 1, I, I, I, I,−I

Table 2. Examples of specializations of the E8 family (types are
from [Oguiso and Shioda 1991]).

multiplicity of 1 as a root of 8λ(X), with λ = ψ(ξ). We call the associated roots
of E8 the vanishing roots, in analogy with vanishing cycles in the deformation of
singularities. By abuse of notation we label the rational elliptic surface Xλ as Xξ .

Theorem 20. The surface Xξ has new reducible fibers (necessarily at t 6= ∞) if
and only if ν(ξ) > 0. The number of roots in the root lattice Tnew is equal to 2ν(ξ),
where Tnew :=

⊕
v 6=∞ Tv is the new part of the trivial lattice.

We may use this result to produce specializations with trivial lattice correspond-
ing to most of the entries of [Oguiso and Shioda 1991], and a nodal fiber. We list
below those types which are not already covered by [Shioda 1991a; 2012] or our
examples for the E7 case, which have an I2 fiber.

Here ζ3, I and ζ5 are primitive third, fourth and fifth roots of unity.

Remark 21. As before, for the examples in lines 63, 67 and 72 of the table, one can
show it is not possible to define a rational elliptic surface over Q in the form we have
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assumed, such that all the specializations si and r are rational. However, there do
exist examples with all sections defined over Q, not in the chosen Weierstrass form.

The surface with Weierstrass equation

y2
+ xy+ t3 y = x3

has a 3-torsion point (0, 0) and a fiber of type I9. It is an example of type 63.
The surface with Weierstrass equation

y2
+ (t + 1)xy+ t y = x3

+ t x2

has a 5-torsion section (0, 0) and two fibers of type I5. It is an example of type 67.
The surface with Weierstrass equation

y2
+ t xy+

t2(t − 1)
16

y = x3
+

t (t − 1)
16

x2

has a 4-torsion section (0, 0), and two fibers of types I4 and I∗1. It is an example of
type 72.

Remark 22. Our tables and the one in [Shioda 2012] cover all the cases of [Oguiso
and Shioda 1991], except lines 9, 27 and 73 of the table, with trivial lattice D4,
E6 and D2

4 , respectively. Since these have fibers with additive reduction, examples
for them may be directly constructed using the families in [Shioda 1991a]. For
instance, the elliptic surface

y2
= x3
− xt2

has two fibers of type I∗0 and Mordell–Weil group (Z/2Z)2. This covers line 73 of
the table. For the other two cases, we refer the reader to the original examples of
additive reduction in [Shioda 1991a, Section 3].

5.2. Proofs. The proof proceeds analogously to the E7 case, with two differences:
We only have one polynomial 8λ(X) to work with (as opposed to having 8λ(X)
and 9λ(X)), and the equations are a lot more complicated.

We first write down the relation between the coefficients εi for 1 ≤ i ≤ 9, and
the fundamental invariants χ j ; as before, we postpone the proofs to the auxiliary
files and outline the idea in Section 7. Second, we write down the coefficients εi

in terms of λ = (p0, . . . , p2, q0, . . . , q4); see Section 6 for an explanation of how
this is carried out. In the interest of brevity, we do not write out either of these
sets of equations, but relegate them to the auxiliary computer files. Finally, setting
the corresponding expressions equal to each other, we obtain a set of equations (1)
through (9).

To solve these equations, proceed as follows: first use (1) through (5) to solve
for q0, . . . , q4 in terms of χ j and p0, p1, p2. Substituting these in to the remaining
equations, we obtain (6′) through (9′). These have low degree in p0, which we
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eliminate, obtaining equations of relatively small degrees in p1 and p2. Finally,
we take resultants with respect to p1, obtaining two equations for p2, of which the
only common root is the one listed above. Working back, we solve for all the other
variables, obtaining the system above and completing the proof of Theorem 15.
The deduction of Theorem 14 now proceeds exactly as in the case of E7.

Remark 23. As in the E7 case, once we find the explicit relation between the
Weierstrass coefficients and the fundamental characters, we may go back and ex-
plore the “genericity condition” for this family to have Mordell–Weil lattice iso-
morphic to E8. To do this we compute the discriminant of the cubic in x , after
completing the square in y, and take the discriminant with respect to t of the
resulting polynomial of degree 11. A computation shows that this discriminant
factors as the cube of a polynomial A(λ) (which vanishes exactly when the family
has a fiber of additive reduction, generically type II), and the product of (eα − 1),
where α runs over minimal vectors of E8. Again, the genericity condition to have
Mordell–Weil lattice exactly E8 is just the nonvanishing of

8λ(1)=
∏
(eα − 1),

the expression which occurs in the Weyl denominator formula. Furthermore, the
condition to have only multiplicative fibers is that 8λ(1)A(λ) 6= 0.

As before, the proof of Theorem 20 follows immediately from the results of
[Shioda 2010a; 2010b], by degeneration from a flat family.

6. Resultants, interpolation and computations

We now explain a computational aid, used in obtaining the equations expressing the
coefficients of 8λ (for E8) or 9λ (for E7) in terms of the Weierstrass coefficients
of the associated family of rational elliptic surfaces. We illustrate this using the
system of equations obtained for sections of the E8 family:

h2
= g3
+ g2,

2ch = 3ag2
+ 2ag+ 1,

c2
+ 2dh = q4+ gp2+ 3bg2

+ (2b+ 3a2)g+ a2,

2eh+ 2cd = q3+ ap2+ gp1+ 6abg+ 2ab+ a3,

2ce+ d2
= q2+ bp2+ ap1+ gp0+ 3b2g+ b2

+ 3a2b,

2de = q1+ bp1+ ap0+ 3ab2,

e2
= q0+ bp0+ b3.

Setting h = gu and solving the first equation for g, we have g = u2
− 1. We

solve the next three equations for c, d , e, respectively. This leaves us with three
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equations R1(a, b, u)= R2(a, b, u)= R3(a, b, u)= 0. These have degrees 2, 2, 3
respectively in b. Taking the appropriate linear combination of R1 and R2 gives us
an equation S1(a, b, u)= 0 which is linear in b. Similarly, we may use R1 and R3

to obtain another equation S2(a, b, u)= 0, linear in b. We write

S1(a, b, u)= s11(a, u)b+ s10(a, u),

S2(a, b, u)= s21(a, u)b+ s20(a, u),

R1(a, b, u)= r2(a, u)b2
+ r1(a, u)b+ r0(a, u).

The resultant of the first two polynomials gives us an equation

T1(a, u)= s11s20− s10s21 = 0,

while the resultant of the first and third gives us

T2(a, u)= r2s2
10− r1s10s11+ r0s2

11 = 0.

Finally, we substitute u = (v+ 1)/(v− 1) throughout, obtaining two equations
T̃1(a, v)= 0 and T̃2(a, v)= 0.

Next, we would like to compute the resultant of T̃1(a, v) and T̃2(a, v), which
have degrees 8 and 9 with respect to a, to obtain a single equation satisfied by v.
However, the polynomials T̃1 and T̃2 are already fairly large (they take a few
hundred kilobytes of memory), and since their degree in a is not too small, it is
beyond the current reach of computer algebra systems such as gp/PARI or Magma
to compute their resultant. It would take too long to compute their resultant, and
another issue is that the resultant would take too much memory to store, certainly
more than is available on the authors’ computer systems (it would take more than
16GB of memory).

To circumvent this issue, what we shall do is to use several specializations of λ
in Q8. Once we specialize, the polynomials take much less space to store, and the
computations of the resultants becomes tremendously easier. Since the resultant
can be computed via the Sylvester determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a8 . . . a2 a1 a0 0 0 . . . 0
0 a8 . . . a2 a1 a0 0 . . . 0
...
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 a8 . . . a2 a1 a0 0
0 . . . 0 0 a8 . . . a2 a1 a0

b9 b8 . . . b2 b1 b0 0 . . . 0

0 b9 b8 . . . b2 b1 b0
. . .

...
...
. . .

. . .
. . .

. . . 0
0 . . . 0 b9 b8 . . . b2 b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where T̃1(a, v) =
∑

ai (v)ai and T̃2(a, v) =
∑

bi (v)ai , we see that the resultant
is a polynomial Z(v) =

∑
ziv

i with coefficients zi being polynomials in the co-
efficients of the ai and the b j , which happen to be elements of Q[λ] (recall that
λ = (p0, . . . , p2, q0, . . . , q4)). Furthermore, we can bound the degrees mi ( j) of
zi (v) with respect to the j-th coordinate of λ, by using explicit bounds on the
multidegrees of the ai and bi . Therefore, by using Lagrange interpolation (with
respect to the eight variables λ j ) we can reconstruct zi (v) from its specializations
for various values of λ. The same method lets us show that Z(v) is divisible by v22

(for instance, by showing that z0 through z21 are zero), and also by (v+ 1)80 (by
first shifting v by 1 and then computing the Sylvester determinant, and proceeding
as before), as well as by (v2

+v+1)8 (this time, using cube roots of unity). Finally,
it is clear that Z(v) is divisible by the square of the resultant G(v) of s11 and s10

with respect to a. Removing these extraneous factors, we get a polynomial 8λ(v)
that is monic and reciprocal of degree 240. We compute its top few coefficients by
this interpolation method.

Finally, the interpolation method above is in fact completely rigorous. Namely,
let εi (λ) be the coefficient of vi in 8λ(v), with bounds (m1, . . . ,m8) for its mul-
tidegree, and ε′i (λ) the putative polynomial we have computed using Lagrange
interpolation on a set L1 × · · · × L8, where L i = {`i,0, . . . , `i,mi } for 1 ≤ i ≤ 8
are sets of integers chosen generically enough to ensure that G(v) has the correct
degree and that Z(v) is not divisible by any higher powers of v, v+1 or v2

+v+1
than in the generic case. Then since ε j (`1,i1, . . . , `8,i8)= ε

′

j (`1,i1, . . . , `8,i8) for all
choices of i1, . . . , i8, we see that the difference of these polynomials must vanish.

7. Representation theory, and some identities in Laurent polynomials

Finally, we demonstrate how to deduce the identities relating the coefficients of
8E7,λ(X) or 9E7,λ(X) to the fundamental characters for E7 (and similarly, the
coefficients of 8E8,λ(X) to the fundamental characters of E8).

Conceptually, the simplest way to do this is to express the alternating powers
of the 56-dimensional representation V7 or the 133-dimensional representation V1

in terms of the fundamental modules of E7 and their tensor products. We know
that the character χ1 of V1 is 7+

∑
eα, where the sum is over the 126 roots of E7.

Therefore we have (−1)η1 = χ1− 7. For the next example, we consider
∧2V1 =

V3⊕ V1. This gives rise to the equation

η2+ 7 · (−1)η1+

(
7
2

)
= χ3+χ1,

which gives the relation η2 = χ3− 6χ1+ 28.
A similar analysis can be carried out to obtain all the other identities used in our

proofs, using the software LiE [LiE 2000].
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A more explicit method is to compute the expressions for the χi as Laurent poly-
nomials in s1, . . . , s6, r (note that s7= r3/(s1 . . . s6)), and then do the same for the
εi or ηi . The latter calculation is simplified by computing the power sums

∑
(eα)i

(for α running over the smallest vectors of E∗7 or E7), for 1≤ i ≤ 7 and then using
Newton’s formulas to convert to the elementary symmetric polynomials, which
are (−1)iεi or (−1)iηi . Finally, we check the identities by direct computation in
the Laurent polynomial ring (it may be helpful to clear out denominators). This
method has the advantage that we obtain explicit expressions for the χi (and then
for λ by Theorem 6) in terms of s1, . . . , s6, r , which may then be used to generate
examples such as Example 7.
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Cohomological invariants
of algebraic tori

Sam Blinstein and Alexander Merkurjev

Let G be an algebraic group over a field F . As defined by Serre, a cohomological
invariant of G of degree n with values in Q/Z( j) is a functorial-in-K collection of
maps of sets TorsG(K )→ H n(K ,Q/Z( j)) for all field extensions K/F , where
TorsG(K ) is the set of isomorphism classes of G-torsors over Spec K . We study
the group of degree 3 invariants of an algebraic torus with values in Q/Z(2). In
particular, we compute the group H 3

nr(F(S),Q/Z(2)) of unramified cohomology
of an algebraic torus S.

1. Introduction

Let G be a linear algebraic group over a field F (of arbitrary characteristic). The
notion of an invariant of G was defined in [Garibaldi et al. 2003] as follows.
Consider the category FieldsF of field extensions of F and the functor

TorsG : FieldsF → Sets

taking a field K to the set TorsG(K ) of isomorphism classes of (right) G-torsors
over Spec K . Let

H : FieldsF → Abelian Groups

be another functor. An H-invariant of G is then a morphism of functors

i : TorsG→ H,

viewing H with values in Sets , that is, a functorial in K collection of maps of
sets TorsG(K )→ H(K ) for all field extensions K/F . We denote the group of
H -invariants of G by Inv(G, H).

An invariant i ∈ Inv(G, H) is called normalized if i(I )= 0 for the trivial G-torsor
I . The normalized invariants form a subgroup Inv(G, H)norm of Inv(G, H) and
there is a natural isomorphism
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Inv(G, H)' H(F)⊕ Inv(G, H)norm,

so it is sufficient to study normalized invariants.
Typically, H is a cohomological functor given by Galois cohomology groups

with values in a fixed Galois module. Of particular interest to us is the functor H
which takes a field K/F to the Galois cohomology group H n(K ,Q/Z( j)), where
the coefficients Q/Z( j) are defined as follows. For a prime integer p different from
the characteristic of F , the p-component Qp/Zp( j) of Q/Z( j) is the colimit over
n of the étale sheaves µ⊗ j

pn , where µm is the sheaf of m-th roots of unity. In the case
p= char(F) > 0, Qp/Zp( j) is defined via logarithmic de Rham–Witt differentials;
see Section 3b.

We write Invn(G,Q/Z( j)) for the group of cohomological invariants of G of
degree n with values in Q/Z( j).

The second cohomology group H 2(K ,Q/Z(1)) is canonically isomorphic to the
Brauer group Br(K ) of the field K . In Section 2c we prove (Theorem 2.4) that if
G is a connected group (reductive if F is not perfect), then

Inv(G,Br)norm ' Pic(G).

The group Inv3(G,Q/Z(2))norm for a semisimple simply connected group G has
been studied by Rost; see [Garibaldi et al. 2003].

An essential object in the study of cohomological invariants is the notion of a
classifying torsor: a G-torsor E → X for a smooth variety X over F such that
every G-torsor over an infinite field K/F is isomorphic to the pull-back of E→ X
along a K -point of X . If V is a generically free linear representation of G with a
nonempty open subset U ⊂ V such that there is a G-torsor π :U → X , then π is
classifying. Such representations exist (see Section 2b).

The generic fiber of π is the generic torsor over Spec F(X) attached to π .
Evaluation at the generic torsor yields a homomorphism

Invn(G,Q/Z( j))→ H n(F(X),Q/Z( j)), (1-1)

and in Section 3 we show that the image of this map is contained in the subgroup
H 0

Zar(X,Hn(Q/Z( j))) of H n(F(X),Q/Z( j)), where Hn(Q/Z( j)) is the Zariski
sheaf associated to the presheaf W 7→ H n(W,Q/Z( j)) of the étale cohomology
groups. In fact, the image is contained in the subgroup H 0

Zar(X,Hn(Q/Z( j)))bal of
balanced elements, that is, elements that have the same images under the pull-back
homomorphisms with respect to the two projections (U ×U )/G→ X . Moreover,
the balanced elements precisely describe the image and we prove (Theorem 3.4):

Theorem A. Let G be a smooth linear algebraic group over a field F. We assume
that G is connected if F is a finite field. Let E→ X be a classifying G-torsor with
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E a G-rational variety such that E(F) 6= ∅. Then (1-1) yields an isomorphism
Invn(G,Q/Z( j))' H 0

Zar(X,Hn(Q/Z( j)))bal.

At this point it is convenient to make use of a construction due to Totaro [1999]:
because the Chow groups are homotopy invariant, the groups CHn(X) do not
depend on the choice of the representation V and the open set U ⊂ V provided the
codimension of V \U in V is large enough. This leads to the notation CHn(BG),
the Chow groups of the so-called classifying space BG, although BG itself is not
defined in this paper.

Unfortunately, the étale cohomology groups with values in Qp/Zp( j), where
p = char(F) > 0, are not homotopy invariant. In particular, we cannot use the
theory of cycle modules of Rost [1996].

The main result of this paper is the exact sequence in Theorem 4.3 describing
degree 3 cohomological invariants of an algebraic torus T . Writing T̂sep for the
character lattice of T over a separable closure of F and T ◦ for the dual torus, we
prove our main result:

Theorem B. Let T be an algebraic torus over a field F. Then there is an exact
sequence

0→ CH2(BT )tors→ H 1(F, T 0)
α
−→ Inv3(T,Q/Z(2))norm

→ H 0(F,S2(T̂sep))/Dec→ H 2(F, T 0).

The homomorphism α is given by α(a)(b)= aK ∪ b for every a ∈ H 1(F, T 0) and
b ∈ H 1(K , T ) and every field extension K/F , where the cup-product is defined in
(4-5), and Dec is the subgroup of decomposable elements in the symmetric square
S2(T̂sep) defined in Section A-II.

In the proof of the theorem we compute the group of balanced elements in the
motivic cohomology group H 4(BT,Z(2)) and relate it, using an exact sequence of
B. Kahn and Theorem A, with the group of invariants Inv3(T,Q/Z(2))norm.

We also prove that the torsion group CH2(BT )tors is finite of exponent 2 (Theorem
4.7) and the last homomorphism in the sequence is also of exponent 2 (see the
discussion before Theorem 4.13).

Moreover, if p is an odd prime, the group Inv3(T,Qp/Zp(2))norm, which is the
p-primary component of Inv3(T,Q/Z(2))norm, splits canonically into the direct
sum of linear invariants (those that induce group homomorphisms from TorsT

to H 3) and quadratic invariants, that is, the invariants i such that the function
h(a, b) := i(a + b)− i(a)− i(b) is bilinear and h(a, a) = 2i(a) for all a and b.
Furthermore, the groups of linear and quadratic invariants with values in Qp/Zp(2)
are canonically isomorphic to H 1(F, T ◦){p} and (H 0(F,S2(T̂sep))/Dec){p}, re-
spectively.
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We also prove (Theorem 4.10) that the degree 3 invariants have control over the
structure of all invariants. Precisely, the group Inv3(TK ,Q/Z(2))norm is trivial for
all K/F if and only if T is special, that is, T has no nontrivial torsors over any
field K/F , which in particular means T has no nonconstant H -invariants for every
functor H .

Our motivation for considering invariants of tori comes from their connection
with unramified cohomology (defined in Section 5). Specifically, this work began as
an investigation of a problem posed by Colliot-Thélène [1995, p. 39]: for n prime to
char(F) and i≥0, determine the unramified cohomology group H i

nr(F(S), µ
⊗(i−1)
n ),

where F(S) is the function field of a torus S over F . The connection is provided
by Theorem 5.7 where we show that the unramified cohomology of a torus S is
calculated by the invariants of an auxiliary torus:

Theorem C. Let S be a torus over F and let 1→ T → P→ S→ 1 be a flasque
resolution of S, that is, T is flasque and P is quasisplit. Then there is a natural
isomorphism

H n
nr(F(S),Q/Z( j))' Invn(T,Q/Z( j)).

By Theorem B and Theorem C, we have an exact sequence

0→ CH2(BT )tors→ H 1(F, T 0)
α
−→ H 3

nr(F(S),Q/Z(2))

→ H 0(F,S2(T̂sep))/Dec→ H 2(F, T 0)

describing the reduced third cohomology group

H 3
nr(F(S),Q/Z(2))) := H 3

nr(F(S),Q/Z(2))/H 3(F,Q/Z(2)).

Moreover, for an odd prime p, we have a canonical direct sum decomposition of
the p-primary components:

H 3
nr(F(S),Qp/Zp(2))= H 1(F, T 0){p}⊕ (H 0(F,S2(T̂sep))/Dec){p}.

Note that the torus S determines T up to multiplication by a quasisplit torus. If X
is a smooth compactification of S, one can take the torus T with T̂sep = Pic(Xsep);
see [Colliot-Thélène and Sansuc 1977, §2].

In the present paper, F denotes a field of arbitrary characteristic, Fsep a separable
closure of F , and 0 the absolute Galois group Gal(Fsep/F) of F .

The word “scheme” over a field F means a separated scheme over F and,
following [Fulton 1984], a “variety” over F is an integral scheme of finite type
over F . If X is a scheme over F and L/F is a field extension then we write X L for
X ×F Spec L . When L = Fsep we write simply Xsep.

A “linear algebraic group over F” is an affine group scheme of finite type over
F , not necessarily smooth.
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2. Invariants of algebraic groups

2a. Definitions and basic properties. Let G be a linear algebraic group over a
field F . Consider the functor

TorsG : FieldsF → Sets

from the category of field extensions of F to the category of sets taking a field K
to the set TorsG(K ) of isomorphism classes of (right) G-torsors over Spec K . Note
that if G is a smooth group, then there is a natural bijection

TorsG(K )' H 1(K ,G) := H 1(Gal(Ksep/K ),G(Ksep)).

Let H : FieldsF → Abelian Groups be a functor. We also view H as a functor
with values in Sets . Following [Garibaldi et al. 2003], we define an H-invariant of
G as a morphism of functors TorsG→ H from the category FieldsF to Sets . All
the H -invariants of G form the abelian group of invariants Inv(G, H).

An invariant i ∈ Inv(G, H) is called constant if there is an element h ∈ H(F)
such that i(I ) = hK for every G-torsor I → Spec K , where hK is the image of
h under natural map H(F)→ H(K ). The constant invariants form a subgroup
Inv(G, H)const of Inv(G, H) isomorphic to H(F). An invariant i ∈ Inv(G, H) is
called normalized if i(I )= 0 for the trivial G-torsor I . The normalized invariants
form a subgroup Inv(G, H)norm of Inv(G, H) and we have the decomposition

Inv(G, H)= Inv(G, H)const⊕ Inv(G, H)norm ' H(F)⊕ Inv(G, H)norm,

so it suffices to determine the normalized invariants.

2b. Classifying torsors. Let G be a linear algebraic group over a field F . A G-
torsor E → X over a smooth variety X over F is called classifying if for every
field extension K/F , with K infinite, and for every G-torsor I → Spec K , there
is a point x : Spec K → X such that the torsor I is isomorphic to the fiber E(x)
of E→ X over x , that is, I ' E(x) := x∗(E)= Spec(K )×X E . The generic fiber
Egen→ Spec F(X) of a classifying torsor is called a generic G-torsor; see [ibid.,
Part 1, §5.3].

If V is a generically free linear representation of G with a nonempty open subset
U ⊂ V such that there is a G-torsor π :U → X , then π is classifying; see [ibid.,
Part 1, §5.4]. We will write U/G for X and call π a standard classifying G-torsor.
Standard classifying G-torsors exist: we can embed G into U :=GLn,F for some
n as a closed subgroup. Then U is an open subset in the affine space Mn(F) on
which G acts linearly and the canonical morphism U → X :=U/G is a G-torsor.
Note that U (F) 6=∅.

We say that a G-variety Y is G-rational if there is an affine space V with a
linear G-action such that Y and V have G-isomorphic nonempty open G-invariant
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subvarieties. Note that if U →U/G is a standard classifying G-torsor, then U is a
G-rational variety.

Let E→ X be a classifying G-torsor and let H : FieldsF → Abelian Groups be
a functor. Define the map

θG : Inv(G, H)→ H(F(X)), i 7→ i(Egen), (2-1)

by sending an invariant to its value at the generic torsor Egen.
Consider the following property of the functor H :

Property 2.1. The map H(K )→H(K ((t))) is injective for any field extension K/F .

The following theorem, due to M. Rost, was proved in [Garibaldi et al. 2003,
Part II, Theorem 3.3]. For completeness, we give a slightly modified proof in
Section A-I.

Theorem 2.2. Let G be a smooth linear algebraic group over F. If a functor
H : FieldsF → Abelian Groups has Property 2.1, then the map θG is injective, that
is, every H-invariant of G is determined by its value at the generic G-torsor.

Let G ′ be a (closed) subgroup of G over F . The map of sets

H 1(K ,G ′)→ H 1(K ,G)

for every field extension K/F yields the restriction map

res : Inv(G, H)→ Inv(G ′, H).

Choose standard torsors π : U → U/G and π ′ : U → U/G ′ (for example, with
U = GLn,F as above). The pull-back of π with respect to the natural morphism
α :U/G ′→U/G is the push-forward of π ′ via the inclusion G ′ ↪→ G. It follows
that the diagram

Inv(G, H)

θG

��

res // Inv(G ′, H)

θG′

��
H(F(U/G)) α∗ // H(F(U/G ′))

is commutative.

2c. The Brauer group invariants. Let G be a smooth connected linear algebraic
group over F . Every cohomological invariant of G of degree 1 is constant by [Knus
et al. 1998, Proposition 31.15]. In this section we study (degree 2) Br-invariants for
the Brauer group functor K 7→Br(K ). We assume that G is reductive if char(F)>0.

Lemma 2.3. For any field extension K/F such that F is algebraically closed in K ,
the natural map Pic(G)→ Pic(G K ) is an isomorphism.
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Proof. We may assume that G is reductive by factoring out the unipotent radical in
the case that F is perfect. There is an exact sequence (see [Colliot-Thélène 2004,
Theorem 1.2])

1→ C→ G ′→ G→ 1

with C a torus and G ′ a reductive group with Pic(G ′L)= 0 for any field extension
L/F . Let T be the factor group of G ′ by the semisimple part. The result follows
from the exact sequence [Sansuc 1981, Proposition 6.10] (note that G is reductive
if L is not perfect)

T̂ (L)→ Ĉ(L)→ Pic(GL)→ Pic(G ′L)= 0

with L = F and K since the groups T̂ (F) and Ĉ(F) don’t change when F is
replaced by K . �

Since for any G K -torsor E → Spec(K ) over a field extension K/F one has
[Sansuc 1981, Proposition 6.10] the exact sequence

Pic(E)→ Pic(G K )
δ
−→ Br(K )

ε
−→ Br(E), (2-2)

we obtain the homomorphism

ν : Pic(G)→ Inv(G,Br),

which takes an element α ∈ Pic(G) to the invariant that sends a G-torsor E over a
field extension K/F to δ(αK ). If E is a trivial torsor, that is, E(K ) 6=∅, then ε is
injective and hence δ = 0. It follows that the invariant ν(α) is normalized.

Theorem 2.4. Let G be a smooth connected linear algebraic group over F. Assume
that G is reductive if char(F) > 0. Then the map ν : Pic(G)→ Inv(G,Br)norm is
an isomorphism.

Proof. Choose a standard classifying G-torsor U → U/G. Write K for the
function field F(U/G) and let Ugen be the generic G-torsor over K . Consider the
commutative diagram

Pic(G)

j
��

ν // Inv(G,Br)norm

θG

��
Pic(Ugen) // Pic(G K )

δ // Br(K ) i // Br(K (Ugen)),

where the bottom sequence is (2-2) for the G-torsor Ugen → Spec(K ) followed
by the injection Br(Ugen)→ Br(K (Ugen)) (see [Milne 1980, Chapter IV, Corol-
lary 2.6]), and the map θG is evaluation at the generic torsor Ugen given in (2-1)
and is injective by Theorem 2.2. Since the generic torsor is split over K (Ugen),
Im(θG)⊂Ker(i)= Im(δ). By Lemma 2.3, j is an isomorphism, hence ν is surjective.
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Note that Ugen is a localization of U , hence Pic(Ugen) = 0 as Pic(U ) = 0. It
follows that ν is injective. �

An algebraic group G over a field F is called special if H 1(K ,G)={1} for every
field extension K/F , that is, all G-torsors over any field extension of F are trivial.

Corollary 2.5. If the group G is special, then Pic(G)= 0.

3. Invariants with values in Q/Z( j)

In this section we find a description for the group of cohomological invariants with
values in Q/Z( j) by identifying the image of the embedding θG in (2-1).

Let G be a linear algebraic group over a field F , let H ⊂ G be a subgroup and
let E → X be a G-torsor. Suppose that G/H is affine. Consider a G-action on
E × (G/H) by (e, g′H)g = (eg, g−1g′H). By [Milne 1980, Theorem I.2.23], the
affine G-equivariant projection E × (G/H)→ E descends to an affine morphism
Y→ X . The (trivial right) H -torsor E×G→ E× (G/H) descends to an H -torsor
E→ Y . We will write E/H for Y .

Example 3.1. Let G be a linear algebraic group over a field F and let E→ X be a
G-torsor. Then for every n > 0, En

:= E×F · · ·×F E (n times) is a Gn-torsor over
Xn . Viewing G as the diagonal subgroup of Gn , we have the G-torsor En

→ En/G.

3a. Balanced elements. Let G be a linear algebraic group over a field F . We
assume that G is connected if F is finite. Let E → X be a G-torsor such that
E(F) 6=∅. We write p1 and p2 for the two projections E2/G = (E×F E)/G→ X
(see Example 3.1).

Lemma 3.2. Let K/F be a field extension and x1, x2 ∈ X (K ). Then the G-torsors
E(x1) and E(x2) over K are isomorphic if and only if there is a point y∈(E2/G)(K )
such that p1(y)= x1 and p2(y)= x2.

Proof. “⇒”: By construction, we have G-equivariant morphisms fi : E(xi )→ E
for i = 1, 2. Choose an isomorphism h : E(x1) −→

∼ E(x2) of G-torsors over
K . The morphism ( f1, f2h) : E(x1)→ E2 yields the required point Spec K =
E(x1)/G→ E2/G.

“⇐”: The pull-back of E → X with respect to any projection E2/G → X
coincides with the G-torsor E2

→ E2/G, hence

E(x1)= x∗1 (E)= y∗ p∗1(E)' y∗(E2)' y∗ p∗2(E)= x∗2 (E)= E(x2). �

Let H be a (contravariant) functor from the category of schemes over F to the
category of abelian groups. We have the two maps p∗i : H(X)→ H(E2/G), i = 1, 2.
An element h∈H(X) is called balanced if p∗1(h)= p∗2(h). We write H(X)bal for the
subgroup of balanced elements in H(X). In other words, H(X)bal= h0(H(E•/G))
in the notation of Section A-IV.
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We can view H as a (covariant) functor FieldsF → Sets taking a field K
to H(K ) := H(Spec K ).

Lemma 3.3. Let h ∈ H(X)bal be a balanced element, K/F a field extension and I
a G-torsor over Spec(K ). Let x ∈ X (K ) be a point such that E(x)' I . Then the
element x∗(h) in H(K ) does not depend on the choice of x.

Proof. Let x1, x2 ∈ X (K ) be two points such that E(x1)' E(x2). By Lemma 3.2,
there is a point y ∈ (E2/G)(K ) such that p1(y)= x1 and p2(y)= x2. Therefore

x∗1 (h)= y∗(p∗1(h))= y∗(p∗2(h))= x∗2 (h). �

It follows from Lemma 3.3 that if the torsor E→ X is classifying with E(F) 6=∅,
then every element h ∈ H(X)bal determines an H -invariant ih of G as follows. Let
I be a G-torsor over a field extension K/F . We claim that there is a point x ∈ X (K )
such that E(x)' I . If K is infinite, this follows from the definition of the classifying
G-torsor. If K is finite then all G-torsors over K are trivial by [Lang 1956], as G
is connected. Since E(K ) 6=∅, we can take for x the image in X (K ) of any point
in E(K ). Defining ih(E)= x∗(h) ∈ H(K ), we have a group homomorphism

H(X)bal→ Inv(G, H), h 7→ ih .

3b. Cohomology with values in Q/Z( j). For every integer j ≥ 0, the coefficients
Q/Z( j) are defined as the direct sum over all prime integers p of the objects
Qp/Zp( j) in the derived category of sheaves of abelian groups on the big étale site
of Spec F , where

Qp/Zp( j)= colim
n

µ
⊗ j
pn

if p 6= char F , with µpn the sheaf of (pn)-th roots of unity, and

Qp/Zp( j)= colim
n

Wn�
j
log[− j]

if p= char F > 0, with Wn�
j
log the sheaf of logarithmic de Rham–Witt differentials;

see [Illusie 1979, I.5.7; Kahn 1996].
We write H m(X,Q/Z( j)) for the étale cohomology of a scheme X with values

in Q/Z( j). Then

H m(X,Q/Z( j)){p} = colim
n

H m(X, µ⊗ j
pn )

if p 6= char F and

H m(X,Q/Z( j)){p} = colim
n

H m− j (X,Wn�
j
log)

if p = char F > 0. In the latter case, the group Wn�
j
log(F) is canonically iso-

morphic to K M
j (F)/pn K M

j (F), where K M
j (F) is Milnor’s K -group of F (see
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[Bloch and Kato 1986, Corollary 2.8]), hence by [Izhboldin 1991; Garibaldi et al.
2003, Part II, Appendix A], H s(F,Wn�

j
log) is isomorphic to

H s(F, K M
j (Fsep)/pn K M

j (Fsep))=


K M

j (F)/pn K M
j (F) if s = 0,

H 2(F, K M
j (Fsep))pn if s = 1,

0 otherwise.

It follows that in the case p = char F > 0, we have

H m(F,Q/Z( j)){p} =


K M

j (F)⊗ (Qp/Zp) if m = j ,
H 2(F, K M

j (Fsep)){p} if m = j + 1,
0 otherwise.

The motivic complexes Z( j), for j = 0, 1, 2, of étale sheaves on a smooth scheme
X were defined by S. Lichtenbaum [1987; 1990]. We write H∗(X,Z( j)) for the
étale (hyper)cohomology groups of X with values in Z( j).

The complex Z(0) is equal to the constant sheaf Z and Z(1) = Gm ,X [−1],
thus H n(X,Z(1)) = H n−1(X,Gm ,X ). In particular, H 3(X,Z(1)) = Br(X), the
cohomological Brauer group of X . The complex Z(2) is concentrated in degrees 1
and 2 and there is a product map Z(1)⊗L Z(1)→ Z(2); see [Lichtenbaum 1987,
Proposition 2.5].

The exact triangle in the derived category of étale sheaves

Z( j)→Q⊗Z( j)→Q/Z( j)→ Z( j)[1]

yields the connecting homomorphism

H i (X,Q/Z( j))→ H i+1(X,Z( j)),

which is an isomorphism if X = Spec(F) for a field F and i > j [Kahn 1993,
Lemme 1.1].

Write Hn(Q/Z( j)) for the Zariski sheaf on a smooth scheme X associated to
the presheaf U 7→ H n(U,Q/Z( j)) of étale cohomology groups.

Let G be a linear algebraic group over F . We assume that G is connected if F is
a finite field and write Invn(G,Q/Z( j)) for the group of degree n invariants of G
for the functor K 7→ H n(K ,Q/Z( j)). Note that Property 2.1 holds for this functor
by [Garibaldi et al. 2003, Part 2, Proposition A.9].

Choose a classifying G-torsor E → X with E a G-rational variety such that
E(F) 6= ∅. Applying the construction given in Section 3a to the functor U 7→
H 0

Zar(U,Hn(Q/Z( j))), we get a homomorphism

ϕ : H 0
Zar(X,Hn(Q/Z( j)))bal→ Invn(G,Q/Z( j)).

Theorem 3.4. Let G be a smooth linear algebraic group over a field F. We assume
that G is connected if F is a finite field. Let E → X be a classifying G-torsor
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with E a G-rational variety such that E(F) 6=∅. Then the homomorphism ϕ is an
isomorphism.

Proof. Let Egen→ F(X) be the generic fiber of the classifying G-torsor E→ X .
Note that since the pull-back of E → X with respect to any of the two pro-
jections E2/G → X coincides with the G-torsor E2

→ E2/G, the pull-backs
of the generic G-torsor Egen → Spec F(X) with respect to the two morphisms
Spec F(E2/G)→Spec F(X) induced by the projections are isomorphic. It follows
that for every invariant i ∈ Inv(G, H∗(Q/Z( j))) we have

p∗1(i(Egen))= i(p∗1(Egen))= i(p∗2(Egen))= p∗2(i(Egen))

in H∗(F(E2/G),Q/Z( j)), that is, i(Egen) ∈ H∗(F(X),Q/Z( j))bal. By Proposi-
tion A.9, ∂x(h)= 0 for every point x ∈ X of codimension 1, hence

θG(i)= i(Egen) ∈ H 0
Zar(X,Hn(Q/Z( j)))bal

by Proposition A.10. By Theorem 2.2, θG is injective and by construction, the
composition θG ◦ϕ is the identity. It follows that ϕ is an isomorphism. �

Write H 0
Zar(X,Hn(Q/Z( j))) for the factor group of H 0

Zar(X,Hn(Q/Z( j))) by
the natural image of H n(F,Q/Z( j)).

Corollary 3.5. The isomorphism ϕ yields an isomorphism

H 0
Zar(X,Hn(Q/Z( j)))bal −→

∼ Invn(G,Q/Z( j))norm.

4. Degree 3 invariants of algebraic tori

In this section we prove the main theorem that describes degree 3 invariants of an
algebraic torus with values in Q/Z(2).

4a. Algebraic tori. Let F be a field and 0 = Gal(Fsep/F) the absolute Galois
group of F . An algebraic torus of dimension n over F is an algebraic group T such
that Tsep is isomorphic to the product of n copies of the multiplicative group Gm ;
see [Colliot-Thélène and Sansuc 1977; Voskresenskiı̆ 1998]. For an algebraic torus
T over a field F , we write T̂sep for the 0-module of characters Hom(Tsep,Gm). The
group T̂sep is a 0-lattice, that is, a free abelian group of finite rank with a continuous
0-action. The contravariant functor T 7→ T̂sep is an antiequivalence between the
category of algebraic tori and the category of 0-lattices: the torus T and the group
T (F) can be reconstructed from the lattice T̂sep by the formulas

T = Spec(Fsep[T̂sep]
0),

T (F)= Hom0(T̂sep, F×sep)= (T̂
◦

sep⊗ F×sep)
0,

where T̂ ◦sep = Hom(T̂sep,Z).
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We write T̂ for the character group HomF (T,Gm)= (T̂sep)
0 and T ◦ for the dual

torus having character lattice T̂ ◦sep.
A torus T is called quasisplit if T is isomorphic to the group of invertible

elements of an étale F-algebra, or equivalently, the 0-lattice T̂sep is permutation,
that is, T̂sep has a 0-invariant Z-basis. An invertible torus is a direct factor of a
quasisplit torus.

A torus T is called flasque or coflasque if H 1(L , T̂ ◦sep)= 0 or H 1(L , T̂sep)= 0,
respectively, for every finite field extension L/F . A flasque resolution of a torus S
is an exact sequence of tori 1→ T → P→ S→ 1 with T flasque and P quasisplit.
By [Colliot-Thélène and Sansuc 1977, §4; Voskresenskiı̆ 1998, §4.7], the torus T in
the flasque resolution is invertible if and only if S is a direct factor of a rational torus.

4b. Products. Let T be a torus over F and let T̂ (i) denote the complex T̂sep⊗Z(i)
of étale sheaves over F for i = 0, 1, 2. Thus, T̂ (0)= T̂sep and

T̂ (1)= (T̂sep⊗ F×sep)[−1] = T ◦(Fsep)[−1].

Let S and T be algebraic tori over F and let i and j be nonnegative integers
with i + j ≤ 2. For any smooth variety X over F , we have the product map

(Ŝsep⊗ T̂sep)
0
⊗ H p(X, Ŝ◦(i))⊗ Hq(X, T̂ ◦( j))→ H p+q(X,Z(i + j)) (4-1)

taking a⊗ b⊗ c to a ∪ b∪ c, via the canonical pairings between Ŝsep and Ŝ◦sep, T̂sep

and T̂ ◦sep, and the product map Z(i)⊗L Z( j)→ Z(i + j).
Recall that there is an isomorphism H n(F,Z(k))' H n−1(F,Q/Z(k)) for n > k.

In particular, we have the cup-product map

(Ŝsep⊗ T̂sep)
0
⊗ H p(F, S)⊗ Hq(F, T )→ H 3(F,Q/Z(2)) (4-2)

if p+ q = 2.
If S=T ◦ is the dual torus, then (Ŝsep⊗T̂sep)

0
=End0(T̂sep) contains the canonical

element 1T . We then have the product map

H p(X, T̂ (i))⊗ Hq(X, T̂ ◦( j))→ H p+q(X,Z(i + j)) (4-3)

and in particular, the product maps

H 1(F, T̂sep)⊗ H 1(F, T )→ H 2(F,Q/Z(1))= Br(F), (4-4)

H 1(F, T ◦)⊗ H 1(F, T )→ H 3(F,Q/Z(2)), (4-5)

H 2(F, T ◦)⊗ H 0(F, T )→ H 3(F,Q/Z(2)), (4-6)

taking a⊗ b to 1T ∪ a ∪ b and applying (4-2).
As T is a commutative group, the set H 1(K , T ) is an abelian group. An invariant

i ∈ Inv(T, H) for a functor H is called linear if iK : H 1(K , T )→ H(K ) is a group
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homomorphism for every K/F . In the next section we will see that a normalized
degree 3 invariant of a torus need not be linear.

4c. Main theorem. Let T be a torus over F and choose a standard classifying
T -torsor U →U/T such that the codimension of V \U in V is at least 3. Such a
torsor exists by [Edidin and Graham 1998, Lemma 9].

By [Sansuc 1981, Proposition 6.10], there is an exact sequence

Fsep[U ]×/F×sep→ T̂sep→ Pic((U/T )sep)→ Pic(Usep).

The codimension assumption implies that the side terms are trivial, hence the map
T̂sep→ Pic((U/T )sep) is an isomorphism. It follows that the classifying T -torsor
U →U/T is universal in the sense of [Colliot-Thélène and Sansuc 1987a].

Write K∗(F) for the (Quillen) K -groups of F and K∗ for the Zariski sheaf
associated to the presheaf U 7→ K∗(U ). Then the groups H n

Zar(U/T,K2) are
independent of the choice of the classifying torsor; see [Edidin and Graham 1998].
So we write H n

Zar(BT,K2) for this group (see Section A-IV). As Tsep is a split torus,
by the Künneth formula (see Example A.5),

H n
Zar(BTsep,K2)=


K2(Fsep) if n = 0,
Pic((U/T )sep)⊗ F×sep = T̂sep⊗ F×sep = T ◦(Fsep) if n = 1,
CH2((U/T )sep)= S2(T̂sep) if n = 2.

Applying the calculation of the K-cohomology groups to the standard classifying
T -torsor U i

→ U i/T for every i > 0 instead of U → U/T , by Proposition B.3,
we have the exact sequence

0→ H 1(F, T ◦)
α
−→ H 4(U i/T,Z(2))

→ H 4((U i/T )sep,Z(2))0→ H 2(F, T ◦), (4-7)

where H 4(U i/T,Z(2)) is the factor group of H 4(U i/T,Z(2)) by H 4(F,Z(2)),
the map α is given by α(a)= q∗(a)∪ [U i

] with q :U i/T → Spec F the structure
morphism, [U i

] the class of the T -torsor U i
→ U i/T in H 1(U i/T, T ), and the

cup-product is taken for the pairing (B-6).
Taking the sequences (4-7) for all i (see Section A-IV), we get the exact sequence

of cosimplicial groups

0→ H 1(F, T ◦)
α
−→ H 4(U •/T,Z(2))→ H 4((U •/T )sep,Z(2))0→ H 2(F, T ◦).

The first and the last cosimplicial groups in the sequence are constant, hence by
Lemma A.2, the sequence

0→ H 1(F, T ◦)
α
−→ H 4(U/T,Z(2))bal

→ H 4((U/T )sep,Z(2))0bal→ H 2(F, T ◦) (4-8)
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is exact as h0(H 4(U •/T,Z(2)))= H 4(U/T,Z(2))bal.
The following theorem was proved by B. Kahn [1996, Theorem 1.1]:

Theorem 4.1. Let X be a smooth variety over F. Then there is an exact sequence

0→ CH2(X)→ H 4(X,Z(2))→ H 0
Zar(X,H3(Q/Z(2)))→ 0.

By Theorem 4.1, there is an exact sequence of cosimplicial groups

0→ CH2(U •/T )→ H 4(U •/T,Z(2))→ H 0
Zar(U

•/T,H3(Q/Z(2)))→ 0.

As the functor CH2 is homotopy invariant, by Lemma A.4, the first group in the
sequence is constant. In view of Lemma A.2, and following the notation for the
K-cohomology, the sequence

0→ CH2(BT )→ H 4(U/T,Z(2))bal→ H 0
Zar(U/T,H3(Q/Z(2)))bal→ 0 (4-9)

is exact. By Corollary 3.5, the last group in the sequence is canonically isomorphic
to Inv(T, H 3(Q/Z(2)))norm.

As the torus Tsep is split, all the invariants of Tsep are trivial hence the sequence
(4-9) over Fsep yields an isomorphism

H 4((U/T )sep,Z(2))bal ' CH2(BTsep)' S2(T̂sep). (4-10)

Combining (4-8), (4-9) and (4-10), we get the following diagram with an exact
row and column:

0

��
H 1(F, T 0)

α
�� **

0 // CH2(BT ) //

((

H 4(U/T,Z(2))bal //

��

Inv3(T,Q/Z(2))norm // 0.

S2(T̂sep)
0

��
H 2(F, T 0)

Write Dec=Dec(T̂sep) for the subgroup of decomposable elements in S2(T̂sep)
0

(see Section A-II).

Lemma 4.2. The image of the homomorphism

CH2(BT )→ CH2(BTsep)
0
= S2(T̂sep)

0

in the diagram coincides with Dec.
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Proof. Consider the Grothendieck ring K0(BT ) of the category of T -equivariant vec-
tor bundles over Spec(F), or equivalently, of the category of finite dimensional linear
representations of T . If T is split, every linear representation of T is a direct sum of
one-dimensional representations. Therefore, there is an isomorphism between the
group ring Z[T̂ ] of all formal finite sums

∑
x∈T̂ ax ex and K0(BT ), taking ex with

x ∈ T̂ to the class of the 1-dimensional representation given by x . In general, for
every torus T , we have K0(BTsep)=Z[T̂sep] and K0(BT )=Z[T̂sep]

0
=K0(BTsep)

0;
see [Merkurjev and Panin 1997, page 136]. The group Z[T̂sep]

0 is generated by the
sums

∑n
i=1 eγi x , where γ1, γ2, . . . , γn are representatives of the left cosets of an

arbitrary open subgroup 0′ in 0 and x ∈ (T̂sep)
0′ .

The equivariant Chern classes were defined in [Edidin and Graham 1998, §2.4].
The first Chern class c1 : K0(BTsep) → CH1(BTsep) = T̂sep takes ex to x . In
the diagram

Z[T̂sep]
0

��

K0(BT )

��

c2 // CH2(BT )

��
Z[T̂sep] K0(BTsep)

c2 // CH2(BTsep) S2(T̂sep)

the second Chern class maps c2 are surjective by [Esnault et al. 1998, Lemma C.3]. It
follows from the formula c2(a+b)= c2(a)+c1(a)c1(b)+c2(b) that the composition

Z[T̂sep]
0
= K0(BT )→ K0(BTsep)

c2
−→ CH2(BTsep)= S2(T̂sep)→ S2(T̂sep)/(T̂ )2

is a homomorphism and its image is generated by the elements (see Section A-II)

c2

( n∑
i=1

eγi x
)
=

∑
i< j

(γi x)(γ j x)= Qtr(x). �

By the restriction-corestriction argument, the kernel of the homomorphism

CH2(BT )→ CH2(BTsep)
0
= S2(T̂sep)

0

coincides with the torsion subgroup CH2(BT )tors in CH2(BT ).
The following theorem describes degree 3 invariants of an algebraic torus with

values in Q/Z(2):

Theorem 4.3. Let T be an algebraic torus a field F. Then there is an exact sequence

0→ CH2(BT )tors→ H 1(F, T 0)
α
−→ Inv3(T,Q/Z(2))norm

→ S2(T̂sep)
0/Dec→ H 2(F, T 0).

The homomorphism α is given by α(a)(b)= aK ∪ b for every a ∈ H 1(F, T 0) and
b ∈ H 1(K , T ) and every field extension K/F , where the cup-product is defined
in (4-5).
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Proof. The exactness of the sequence follows from the diagram before Lemma 4.2. It
remains to describe the map α. Take an a ∈ H 1(F, T 0) and consider the invariant i
defined by i(b) = aK ∪ b, where the cup-product is given by (4-5). We need
to prove that i = α(a). Choose a standard classifying T -torsor U → U/T and
set K = F(U/T ). Let Ugen be the generic fiber of the classifying torsor. By
Theorem 2.2, it suffices to show that i(Ugen) = α(a)(Ugen) over K . This follows
from the description of the map α in the exact sequence (4-7). �

Remark 4.4. In a similar (and much simpler) fashion one can describe degree 2
invariants of an algebraic torus T with values in Q/Z(1), that is, invariants with
values in the Brauer group by computing the étale motivic cohomology group
H 3(U/T,Z(1))= H 2(U/T,Gm)= Br(U/T ) for a standard classifying T -torsor
U →U/T . One establishes canonical isomorphisms

H 1(F, T̂sep)' H 3(U/T,Z(1))bal ' Inv2(T,Q/Z(1))norm = Inv(T,Br)norm.

The composition takes an element a ∈ H 1(F, T̂sep) to the invariant b 7→ aK ∪ b
for b ∈ H 1(K , T ) and a field extension K/F . This description shows that every
normalized Br-invariant of T is linear.

4d. Torsion in CH2(BT ). We investigate the group CH2(BT )tors, the first term
of the exact sequence in Theorem 4.3.

Let S be an algebraic torus over F . Using the Gersten resolution, [Quillen 1973,
Proposition 5.8] we identify the group H 0(Ssep,K2)with a subgroup in K2(Fsep(S)).
Set H 0(Ssep,K2) :=H 0(Ssep,K2)/K2(Fsep). By [Garibaldi et al. 2003, Part 2, §5.7],
we have an exact sequence

0→ Ŝsep⊗ F×sep→ H 0(Ssep,K2)
λ
−→

∧2 Ŝsep→ 0 (4-11)

of 0-modules, where λ({ex , ey
})= x ∧ y for x, y ∈ Ŝsep.

Consider the 0-homomorphism

γ :
∧2 Ŝsep→ H 0(Ssep,K2)

x ∧ y 7→ {ex , ey
}− {ey, ex

}.

We have λ ◦ γ = 2 · Id, hence the connecting homomorphism

∂ : H i (F,
∧2 Ŝsep)→ H i+1(F, Ŝsep⊗ F×sep) (4-12)

satisfies 2∂ = 0.

Lemma 4.5. If S is an invertible torus, then the sequence of 0-modules (4-11)
is split.
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Proof. Suppose first that S is quasisplit. Let {x1, x2, . . . , xm} be a permutation basis
for Ŝsep. Then the elements xi ∧ x j for i < j form a Z-basis for

∧2 Ŝsep. The map∧2 Ŝsep→ H 0(Ssep,K2), taking xi ∧ x j to {exi , ex j } is a splitting for γ .
In general, find a torus S′ such that S× S′ is quasisplit. The desired splitting is

the composition∧2 Ŝsep→
∧2 ̂Ssep× S′sep

α
−→ H 0(Ssep× S′sep,K2)

β
−→ H 0(Ssep,K2),

where α is a splitting for the torus S×S′ and β is the pull-back map for the canonical
inclusion S ↪→ S× S′. �

Let
1→ T → P→ Q→ 1

be a coflasque resolution of T , that is, P is a quasisplit torus and Q is a coflasque
torus; see [Colliot-Thélène and Sansuc 1977]. The torus P is an open set in the
affine space of a separable F-algebra on which T acts linearly. Hence P→ Q is a
standard classifying T -torsor. By Theorem 2.2, the natural map

θT : Inv3(T,Q/Z(2))→ H 3(F(Q),Q/Z(2))

is injective.
Consider the spectral sequence (B-10) for the variety X = Q. By [Garibaldi et al.

2003, Part 2, Corollary 5.6], we have H 1(Qsep,K2)= 0. In view of Proposition B.4,
we have an injective homomorphism

β : H 2(F, H 0(Qsep,K2))→ H 4(Q,Z(2)) (4-13)

such that the composition of β with the homomorphism

H 2(F, Q◦)→ H 2(F, H 0(Qsep,K2))

is given by the cup-product with the class of the identity in H 0(Q, Q).

Lemma 4.6. For a coflasque torus Q, the group CH2(Q) is trivial.

Proof. By [Merkurjev and Panin 1997, Theorem 9.1], for every torus Q, the
Grothendieck group K0(Q) is generated by the classes of the sheaves i∗(P), where
P is an invertible sheaf on QL , L/F a finite separable field extension and i :QL→Q
is the natural morphism. By definition of a coflasque torus,

Pic(QL)= H 1(L , Q̂sep)= 0.

It follows that every invertible sheaf on QL is trivial, hence K0(Q)= Z · 1. Since
the group CH2(Q) is generated by the second Chern classes of vector bundles on
Q [Esnault et al. 1998, Lemma C.3], we have CH2(Q)= 0. �
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It follows from Proposition A.10, Theorem 4.1, and Lemma 4.6 that the homo-
morphism

κ : H 4(Q,Z(2))→ H 4(F(Q),Z(2))= H 3(F(Q),Q/Z(2)) (4-14)

is injective.
Consider the diagram

0 // Q◦(Fsep) // H 0(Qsep,K2)

s
��

//
∧2 Q̂sep

t
��

// 0

0 // Q◦(Fsep) // P◦(Fsep) // T ◦(Fsep) // 0

where s is the composition of the natural map H 0(Qsep,K2)→ H 0(Psep,K2) and
a splitting of P◦(Fsep)→ H 0(Psep,K2) (see Lemma 4.5).

We have the following diagram

H 1(F, T ◦)� _

∂1
��

α // Inv3(T,Q/Z(2))norm� _

θT
��

H 1(F, H 0(Qsep,K2))
ϕ // H 1(F,

∧2 Q̂sep)
∂ //

t∗
88

H 2(F, Q◦) σ // H 3(F(Q),Q/Z(2))

with the bottom sequence a complex, where σ is the composition of the maps in
(4-13) and (4-14):

H 2(F, Q0)
ψ
−→ H 2(F, H 0(Qsep,K2))

β
−→ H 4(Q,Z(2))
κ
−→ H 4(F(Q),Z(2))= H 3(F(Q),Q/Z(2)),

with ϕ and ψ given by Galois cohomology applied to the exact sequence (4-11) for
the torus Q. Note that the connecting map ∂1 is injective as H 1(F, P◦)= 0 since
P◦ is a quasisplit torus. As 2∂ = 0 in (4-12), we have 2t∗ = 0.

The commutativity of the triangle follows from the definition of t∗. We claim
that the square in the diagram is anticommutative. Note that ∂2(ξ)= [Pgen], where
∂2 : H 0(F, Q)→ H 1(F, T ) is the connecting homomorphism, Pgen is the generic
fiber of the morphism P→ Q, and ξ ∈ H 0(K , Q) is the generic point of Q with
K = F(Q). It follows from the description of the maps α and β in (4-7) and (4-13),
respectively, and Lemma A.1 that

σ(∂1(a))= ∂1(a)K ∪ ξ = (−aK )∪ ∂2(ξ)= (−aK )∪ [Pgen] = −θT (α(a))

for every a ∈ H 1(F, T ◦).
The maps β and κ are injective, hence the bottom sequence in the diagram is
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exact. Thus, we have an exact sequence

H 1(F, H 0(Qsep,K2))→ H 1(F,
∧2 Q̂sep)→ Ker(α)→ 0

and 2·Ker(α)=2·Im(t∗)=0. Furthermore, Ker(α)'CH2(BT )tors by Theorem 4.3
and the group H 1(F,

∧2 Q̂sep) is finite as
∧2 Q̂sep is a lattice.

We have proved:

Theorem 4.7. Let 1→ T → P→ Q→ 1 be a coflasque resolution of a torus T .
Then there is an exact sequence

H 1(F, H 0(Qsep,K2))→ H 1(F,
∧2 Q̂sep)→ CH2(BT )tors→ 0.

Moreover, CH2(BT )tors is a finite group satisfying 2 ·CH2(BT )tors = 0.

Corollary 4.8. If T ◦ is a birational direct factor of a rational torus, or if T is
split over a cyclic field extension, then CH2(BT )tors = 0, that is, the map α in
Theorem 4.3 is injective.

Proof. The exact sequence 1 → Q◦ → P◦ → T ◦ → 1 is a flasque resolution
of T ◦. If T ◦ is a birational direct factor of a rational torus, or if T is split over a
cyclic field extension, the torus Q◦, and hence Q, is invertible; see Section 4a and
[Voskresenskiı̆ 1998, §4, Theorem 3]. By Lemma 4.5, the sequence (4-11) for the
torus Q is split, hence the first map in Theorem 4.7 is surjective. �

Question 4.9. Is CH2(BT )tors trivial for every torus T ?

4e. Special tori. Let T be an algebraic torus over a field F . The tautological
invariant of the torus T ◦× T is the normalized invariant taking a pair

(a, b) ∈ H 1(K , T ◦)× H 1(K , T )

to the cup-product a ∪ b ∈ H 3(K ,Q/Z(2)) defined in (4-5).
The following theorem shows that if a torus T has only trivial degree 3 normalized

invariants with values in Q/Z(2) universally, that is, over all field extensions of
F , then T has no nonconstant invariants at all by the simple reason: every T -
torsor over a field is trivial. Note that it follows from Theorem 2.4 that T has no
degree 2 normalized invariants with values in Q/Z(1) universally if and only if T
is coflasque.

Theorem 4.10. Let T be an algebraic torus over a field F. Then the following are
equivalent:

(1) Inv3(TK ,Q/Z(2))norm = 0 for every field extension K of F.

(2) The tautological invariant of the torus T ◦× T is trivial.

(3) The torus T is invertible.

(4) The torus T is special.
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Proof. (1)⇒ (2): Let K/F be a field extension and a ∈ H 1(K , T ◦). By assumption,
the degree 3 normalized invariant i = α(a) with values in Q/Z(2), defined by
i(b) = a ∪ b for every b ∈ H 1(K , T ), is trivial. In other words, the tautological
invariant of the torus T ◦× T is trivial.
(2)⇒ (3): The image of the tautological invariant in the group

S2(T̂ ◦sep⊕ T̂sep)
0/Dec

is represented by the identity 1T̂ in the direct factor (T̂ ◦sep⊗ T̂sep)
0
= End0(T̂sep) of

S2(T̂ ◦sep⊕ T̂sep)
0 (see Section A-II). The projection of Dec on the direct summand

(T̂ ◦sep⊗ T̂sep)
0 is generated by the traces Tr(a⊗ b) for all open subgroups 0′ ⊂ 0

and all a ∈ (T̂ ◦sep)
0′ and b ∈ (T̂sep)

0′ . Hence 1T̂ =
∑

i Tr(ai ⊗ bi ) for some open
subgroups 0i ⊂ 0, ai ∈ (T̂ ◦)0i and bi ∈ (T̂ )0i . If Pi = Z[0/0i ], then ai can be
viewed as a 0-homomorphism T̂→ Pi and bi can be viewed as a 0-homomorphism
Pi → T̂ such that the composition

T̂
(bi )
−−→ P

(ai )
−−→ T̂ ,

where P =
∐

Pi , is the identity. It follows that T̂ is a direct summand of a
permutation 0-module P and hence T is invertible.
(3)⇒ (4): Obvious as every invertible torus is special.
(4)⇒ (1): Obvious. �

Remark 4.11. The equivalence (3) ⇔ (4) was essentially proved in [Colliot-
Thélène and Sansuc 1987b, Proposition 7.4].

4f. Linear and quadratic invariants. Let T be a torus over F . By Theorem 4.3,
we have a natural homomorphism to the group of linear invariants:

α : H 1(F, T ◦)→ Inv3(T,Q/Z(2))lin.

Let S and T be algebraic tori over F . For every field extension K/F , the
cup-product (4-2) yields a homomorphism

ε : (T̂⊗2
sep )

0
→ Inv3(T,Q/Z(2))

defined by ε(a)(b)= aK ∪ b∪ b for a ∈ (T̂⊗2
sep )

0 and b ∈ H 1(K , T ).
We say that an invariant i ∈ Inv3(T,Q/Z(2)) is quadratic if the function

h(a, b) := i(a+ b)− i(a)− i(b)

is bilinear and h(a, a)=2i(a) for all a and b. For example, the tautological invariant
of the torus T ◦× T in Section 4e is quadratic. We write Inv3(T,Q/Z(2))quad for
the subgroup of all quadratic invariants in Inv3(T,Q/Z(2)). The image of ε is
contained in Inv3(T,Q/Z(2))quad.
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Lemma 4.12. The composition of ε with the map

Inv3(T,Q/Z(2))→ S2(T̂sep)
0/Dec

in Theorem 4.3 is induced by the natural homomorphism T̂⊗2
sep → S2(T̂sep).

Proof. Let U → U/T =: X be a standard classifying T -torsor as in Section 4c.
Consider the commutative diagram

(T̂⊗2
sep )

0
⊗ H 1(X, T )⊗2

��

prod // H 4(X,Z(2))bal

��

// Inv3(T,Q/Z(2))norm

T̂⊗2
sep ⊗ H 1(Xsep, T )⊗2 prod //

η o

��

H 4(Xsep,Z(2))bal

o

��
T̂⊗2

sep ⊗ (T̂
◦

sep)
⊗2
⊗ T̂⊗2

sep
κ // S2(T̂sep)

0/Dec

where the product maps are given by (4-1), η identifies

H 1(Xsep, T )= T̂ ◦sep⊗Pic(Xsep)

with T̂ ◦sep⊗ T̂sep and κ is given by the pairing between the first and second factors.
Write [U ] for the class of the classifying torsor in H 1(X, T ). The image of [U ] in

H 1(Xsep, Tsep)= T̂ ◦sep⊗ T̂sep = End(T̂sep)

is the identity 1T̂sep
. Hence for every a ∈ (T̂⊗2

sep )
0, the image of a ⊗ [U ] ⊗ [U ]

under the diagonal map in the diagram coincides with the canonical image of a
in S2(T̂sep)

0/Dec. �

The composition of the map S2(T̂sep)
0
→ (T̂⊗2

sep )
0 given by a · b 7→ a ⊗ b+

b⊗ a with the natural map (T̂⊗2
sep )

0
→ S2(T̂sep)

0 is multiplication by 2. Then by
Lemma 4.12, 2 ·S2(T̂sep)

0/Dec is contained in the image of the map

Inv3(T,Q/Z(2))→ S2(T̂sep)
0/Dec .

Theorem 4.3 then yields:

Theorem 4.13. Let T be an algebraic torus over F. Then 2 times the homo-
morphism S2(T̂sep)

0/Dec→ H 2(F, T 0) from Theorem 4.3 is trivial. If p is an
odd prime,

Inv3(T,Qp/Zp(2))norm = Inv3(T,Qp/Zp(2))lin⊕ Inv3(T,Qp/Zp(2))quad

and there are natural isomorphisms Inv3(T,Qp/Zp(2))lin ' H 1(F, T ◦){p} and

Inv3(T,Qp/Zp(2))quad ' (S
2(T̂sep)

0/Dec){p}.
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Example 4.14. Let X = {x1, x2, . . . , xn} be a set of n elements with the natural
action of the symmetric group Sn . A continuous surjective group homomorphism
0→ Sn yields a separable field extension L/F of degree n. Consider the torus
T = RL/F (Gm ,L)/Gm , where RL/F is the Weil restriction; see [Voskresenskiı̆ 1998,
Chapter 1, §3.12]. Note that the generic maximal torus of the group PGLn is of this
form (see Section 5b). The character lattice T̂sep is the kernel of the augmentation
homomorphism Z[X ] → Z.

The dual torus T ◦ is the norm one torus R(1)L/F (Gm ,L). For every field extension
K/F , we have:

H 1(K , T )= Br(K L/K ), H 1(K , T ◦)= K×/N (K L)×,

where K L := K ⊗ L , N is the norm map for the extension K L/K and

Br(K L/K )= Ker(Br(K )→ Br(K L)).

The pairing

K×/N (K L)×⊗Br(K L/K )→ H 3(F,Q/Z(2))

defines linear degree 3 invariants of both T and T ◦.
We claim that S2(T̂sep)

0/Dec = 0 and S2(T̂ ◦sep)
0/Dec = 0, that is, T and T ◦

have no nontrivial quadratic degree 3 invariants. We have T̂ ◦sep=Z[X ]/ZNX , where
NX =

∑
xi . The group S2(T̂ ◦sep)

0 is generated by S :=
∑

i< j xi · x j . As S ∈ Dec,
we have S2(T̂ ◦sep)

0/Dec= 0.
Let D =

∑
x2

i and E := Qtr(x1 − x2) = 2S − (n − 1)D, where the quadratic
map Qtr is defined in Section A-II. The group S2(T̂sep)

0 is generated by E if n is
even and by E/2 if n is odd. A computation shows that nE/2 = Qtr(nx1− NX ).
It follows that the generator of S2(T̂sep)

0 belongs to Dec, hence S2(T̂sep)
0/Dec

is trivial.
Note that as the torus T is rational, it follows from Theorem 4.3 and Corollary 4.8

that Inv3(T ◦,Q/Z(2))norm ' Br(L/F).

5. Unramified invariants

Let K/F be a field extension and v a discrete valuation of K over F with valuation
ring Ov . We say that an element a ∈ H n(K ,Q/Z( j)) is unramified with respect to
v if a belongs to the image of the map H n(Ov,Q/Z( j))→ H n(K ,Q/Z( j)); see
[Colliot-Thélène and Ojanguren 1989]. We write H n

nr(K ,Q/Z( j)) for the subgroup
of the elements in H n(K ,Q/Z( j)) that are unramified with respect to all discrete
valuations of K over F . We have a natural homomorphism

H n(F,Q/Z( j))→ H n
nr(K ,Q/Z( j)). (5-1)
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A dominant morphism of varieties Y → X yields a homomorphism

H n
nr(F(X),Q/Z( j))→ H n

nr(F(Y ),Q/Z( j)). (5-2)

Proposition 5.1. Let K/F be a purely transcendental field extension. Then the
homomorphism (5-1) is an isomorphism.

Proof. The statement is well known for the p-components if p 6= char F ; see,
for example, [Colliot-Thélène and Ojanguren 1989, Proposition 1.2]. It suffices
to consider the case K = F(t) and prove the surjectivity of (5-1). The coniveau
spectral sequence for the projective line P1 (see (A-1) in the Appendix) yields an
exact sequence

H n(P1,Q/Z( j))→ H n(K ,Q/Z( j))→
∐

x∈P1

H n+1
x (P1,Q/Z( j))

and, therefore, a surjective homomorphism H n(P1,Q/Z( j))→ H n
nr(K ,Q/Z( j)).

By the projective bundle theorem (classical if p 6=char(F) and [Gros 1985, Theorem
2.1.11] if p = char(F) > 0), we have

H n(P1,Q/Z( j))= H n(F,Q/Z( j))⊕ H n−2(F,Q/Z( j − 1))t,

where t is a generator of H 2(P1,Z(1)) = Pic(P1) = Z. As t vanishes over the
generic point of P1, the result follows. �

Let G be a linear algebraic group over F . Choose a standard classifying G-torsor
U→U/G. An invariant i ∈ Invn(G,Q/Z( j)) is called unramified if the image of i
under θG : Invn(G,Q/Z( j))→ H n(F(U/G),Q/Z( j)) is unramified. This is inde-
pendent of the choice of standard classifying torsor. Indeed, if U ′→U ′/G is another
standard classifying G-torsor, then (U×V ′)/G→U/G and (V ×U ′)/G→U ′/G
are vector bundles. Hence the field F((U ×U ′)/G) is a purely transcendental
extension of F(U/G) and F(U ′/G) and by Proposition 5.1,

H n
nr(F(U/G),Q/Z( j))' H n

nr(F((U ×U ′)/G),Q/Z( j))

' H n
nr(F(U

′/G),Q/Z( j)).

We write H n
nr(F(BG),Q/Z( j)) for this common value and Invn

nr(G,Q/Z( j)) for
the subgroup of unramified invariants. Similarly, we write Brnr(F(BG)) for the
unramified Brauer group H 2

nr(F(BG),Q/Z(1)).

Proposition 5.2. If G ′ be a subgroup of G and i ∈ Invn
nr(G,Q/Z( j)), then

res(i) ∈ Invn
nr(G

′,Q/Z( j)).
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Proof. It is shown in Section 2b that there is a surjective morphism X ′→ X of
the respective classifying varieties of G ′ and G, such that θG(i)F(X ′) = θG ′(res(i)).
Applying the homomorphism (5-2) we see that res(i) is unramified. �

Proposition 5.3. Let G be a smooth linear algebraic group over a field F. The map
Invn

nr(G,Q/Z( j))→ H n
nr(F(BG),Q/Z( j)) induced by θG is an isomorphism.

Proof. By Theorem 3.4, it suffices to show that

H n
nr(F(U/G),Q/Z( j))⊂ H n(F(U/G),Q/Z( j))bal.

We follow Totaro’s approach; see [Garibaldi et al. 2003, p. 99]. Consider the open
subscheme W of (U 2/G)×A1 of all triples (u, u′, t) such that (2−t)u+(t−1)u′∈U .
We have the projection q :W →U 2/G, the morphisms f :W →U/G defined by
f (u, u′, t)= (2−t)u+(t−1)u′, and hi :U 2/G→W defined by hi (u, u′)= (u, u′, i)
for i = 1 and 2. The composition f ◦ hi is the projection pi :U 2/G→U/G and
q ◦ hi is the identity of U 2/G.

Let wi be the generic point of the preimage of i with respect to the projection
W → A1 and write Oi for the local ring of W at wi . The morphisms q, f ,
and hi yield F-algebra homomorphisms F(U 2/G)→ Oi , F(U/G)→ Oi and
Oi → F(U/G). Note that by Proposition A.11, we have

H n
nr(F(W ),Q/Z( j))⊂ H n(Oi ,Q/Z( j)).

In the commutative diagram

H n
nr(F(U/G),Q/Z( j))

� _

��

f ∗ // H n
nr(F(W ),Q/Z( j))

� _

��

H n
nr(F(U

2/G),Q/Z( j))
� _

��

∼

q∗oo

H n(F(U/G),Q/Z( j))

p∗i ))

f ∗ // H n(Oi ,Q/Z( j))

h∗i
��

H n(F(U 2/G),Q/Z( j))
q∗oo

H n(F(U 2/G),Q/Z( j))

the top right map q∗ is an isomorphism by Proposition 5.1 since the field extension
F(W )/F(U 2/G) is purely transcendental. It follows that the restriction of p∗i
on H n

nr(F(U/G),Q/Z( j)) coincides with (q∗)−1
◦ f ∗ and hence is independent

of i . �

5a. Unramified invariants of tori.

Proposition 5.4. If T is a flasque torus, then every invariant in Invn(T,Q/Z( j))
is unramified.
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Proof. Consider an exact sequence of tori 1→ T → P→ Q→ 1 with P quasisplit.
Choose a smooth projective compactification X of Q; see [Colliot-Thélène et al.
2005]. As T is flasque, by [Colliot-Thélène and Sansuc 1977, Proposition 9], there
is a T -torsor E→ X extending the T -torsor P→ Q. The torsor E is classifying
and T -rational. Choose an invariant in Invn(G,Q/Z( j)) and consider its image a
in H n(F(X),Q/Z( j))bal (see Theorem 3.4). We show that a is unramified with
respect to every discrete valuation v on F(X) over F ; see [Colliot-Thélène 1995,
Proposition 2.1.8]. By Proposition A.9, a is unramified with respect to the discrete
valuation associated to every point x ∈ X of codimension 1, that is, ∂x(a)= 0.

As X is projective, the valuation ring Ov of the valuation v dominates a point
x ∈ X . It follows from Proposition A.11 that a belongs to the image of

H n(OX,x ,Q/Z( j))→ H n(F(X),Q/Z( j)).

As the local ring OX,x is a subring of Ov, a belongs to the image of

H n(Ov,Q/Z( j))→ H n(F(X),Q/Z( j))

and hence a is unramified with respect to v. �

Let T be a torus over F . By [Colliot-Thélène and Sansuc 1987b, Lemma 0.6],
there is an exact sequence of tori 1→ T → T ′→ P→ 1 with T ′ flasque and P
quasisplit. The following theorem computes the unramified invariants of T in terms
of the invariants of T ′.

Theorem 5.5. There is a natural isomorphism

Invn
nr(T,Q/Z( j))' Invn(T ′,Q/Z( j)).

Proof. Choose an exact sequence 1→ T ′→ P ′→ S→ 1 with P ′ a quasisplit
torus. Let S′ be the cokernel of the composition T → T ′→ P ′. We have an exact
sequence 1→ P → S′→ S→ 1. As P is quasisplit, the latter exact sequence
splits at the generic point of S and therefore, F(S′) is a purely transcendental field
extension of F(S). It follows from Propositions 5.1, 5.3, and 5.4 that

Invn
nr(T,Q/Z( j))' H n

nr(F(S
′),Q/Z( j))' H n

nr(F(S),Q/Z( j))

' Invn
nr(T

′,Q/Z( j))= Invn(T ′,Q/Z( j)). �

The following corollary is essentially equivalent to [Colliot-Thélène and Sansuc
1987b, Proposition 9.5] in the case when F is of zero characteristic.

Corollary 5.6. With notation as above, the isomorphism

Inv(T,Br)−→∼ Pic(T )= H 1(F, T̂ )
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identifies Invnr(T,Br) with the subgroup H 1(F, T̂ ′) of H 1(F, T̂ ) of all elements
that are trivial when restricted to all cyclic subgroups of the decomposition group
of T .

Proof. The description of H 1(F, T̂ ′) as a subgroup of H 1(F, T̂ ) is given in [Colliot-
Thélène and Sansuc 1987b, Proposition 9.5], and this part of the proof is character-
istic free. �

In view of Propositions 5.1 and 5.3 we can calculate the group of unramified
cohomology for the function field of an arbitrary torus in terms of the invariants of
a flasque torus:

Theorem 5.7. Let S be a torus over F and let 1 → T → P → S → 1 be a
flasque resolution of S, that is, T is flasque and P is quasisplit. Then there is a
natural isomorphism

H n
nr(F(S),Q/Z( j))' Invn(T,Q/Z( j)).

Note that the torus S determines T up to multiplication by a quasisplit torus. If X
is a smooth compactification of S, then one can take a torus T with T̂sep'Pic(Xsep);
see [Colliot-Thélène and Sansuc 1977, Proposition 6; Voskresenskiı̆ 1998, §4.6].

Corollary 5.8. A torus S has no nonconstant unramified degree 3 cohomology with
values in Q/Z(2) universally, that is, H 3

nr(K (S),Q/Z(2)) = H 3(K ,Q/Z(2)) for
any field extension K/F , if and only if S is a direct factor of a rational torus.

Proof. If S is a direct factor of a rational torus, then S has no nonconstant unramified
cohomology by Proposition 5.1.

Conversely, let 1 → T → P → S → 1 be a flasque resolution of S. By
Theorem 5.7, Inv3(TK ,Q/Z(2))norm = 0 for every K/F . It follows from Theorem
4.10 that T is invertible and hence S is a factor of a rational torus (see Section 4a).

�

Theorems 4.3, 5.7 and [Colliot-Thélène and Sansuc 1977, §2] yield the following
proposition.

Proposition 5.9. Let S be a torus over F and let 1→ T → P → S → 1 be a
flasque resolution of S. Then we have an exact sequence

0→ CH2(BT )tors→ H 1(F, T 0)→ H 3
nr(F(S),Q/Z(2))

→ H 0(F,S2(T̂sep))/Dec→ H 2(F, T 0).

For an odd prime p, there is a canonical direct sum decomposition

H 3
nr(F(S),Qp/Zp(2))= H 1(F, T 0){p}⊕ (H 0(F,S2(T̂sep))/Dec){p}.

If X is a smooth compactification of S, one can take the torus T with T̂sep=Pic(Xsep).
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5b. The Brauer invariant for semisimple groups. The following theorem was
proved by Bogomolov [1987, Lemma 5.7] in characteristic zero:

Theorem 5.10. Let G be a (connected) semisimple group over a field F. Then
Invnr(G,Br)= Inv(G,Br)const = Br(F) and Brnr(F(BG))= Br(F).

Proof. Let G ′→ G be a simply connected cover of G and C the kernel of G ′→ G.
By Theorem 2.4 and [Sansuc 1981, Lemme 6.9(iii)], we have

Inv(G,Br)norm = Pic(G)= Ĉ(F).

As the map Ĉ(F)→ Ĉ(Fsep) is injective, we can replace F by Fsep and assume
that the group G is split.

Consider the variety T of maximal tori in G and the closed subscheme X⊂G×T

of all pairs (g, T ) with g ∈ T . The generic fiber of the projection X→ T is the
generic torus Tgen of G. Then Tgen is a maximal torus of G K , where K := F(T).

Every maximal torus in G is the factor torus of a maximal torus in G ′ by C .
It follows that the variety T′ of maximal tori in G ′ is naturally isomorphic to T.
Moreover, as the generic torus T ′gen of G ′ is a maximal torus of G ′K , we have
Tgen ' T ′gen/CK and, therefore, an exact sequence of character groups

0→ T̂gen→ T̂ ′gen→ ĈK → 0.

By Theorem 2.4, the composition of the natural homomorphism

Inv(G,Br)norm→ Inv(G K ,Br)norm

with the restriction Inv(G K ,Br)norm→ Inv(Tgen,Br)norm can be identified with the
natural composition Pic(G)→Pic(G K )→Pic(Tgen) and hence with the connecting
homomorphism Ĉ(F)= Ĉ(K )→ H 1(K , T̂gen). Note that as F = Fsep, the decom-
position group of Tgen coincides with the Weyl group W of G by [Voskresenskiı̆
1988, Theorem 1], hence H 1(K , T̂gen)' H 1(W, T̂gen).

Let w be a Coxeter element in W .1 It is the product of reflections with respect to
all simple roots (in some order). By [Humphreys 1990, Lemma, p. 76], 1 is not an
eigenvalue of w on the space of weights T̂ ′gen⊗R. Let W0 be the cyclic subgroup
in W generated by w. It follows that the first term in the exact sequence

(T̂ ′gen)
W0 → Ĉ(K )→ H 1(W0, T̂gen)

is trivial, that is, the second map is injective. Hence every nonzero character χ in
Ĉ(K ) restricts to a nonzero element in H 1(W0, T̂gen). It follows that the image of
χ in H 1(W, T̂gen) is ramified by Corollary 5.6, hence so is χ by Proposition 5.2. �

1We owe the idea to use the Coxeter element and the reference below to S. Garibaldi.
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Appendix A: Generalities

A-I: Proof of Theorem 2.2. Suppose that i(Egen)= 0 for an H -invariant i of G.
Let K/F be a field extension and I → Spec K a G-torsor. We need to show that
i(I )= 0 in H(K ).

Suppose first that K is infinite. Find a point x ∈ X (K ) such that I is isomorphic
to the pull-back of the classifying torsor with respect to x . Let x ′ be a rational
point of X K above x and write O for the local ring OX K ,x ′ . The K -algebra O is a
regular local ring with residue field K . Therefore, the completion Ô is isomorphic
to K [[t1, t2, . . . , tn]] over K . Let L be the quotient field of Ô , a field extension of
K (X). We have the following diagram of morphisms with a commutative square
and three triangles:

Spec K

��

x

!!
Spec L

99

//

��

Spec Ô //

OO

��

X

Spec K (X) // Spec O

==

The pull-back of the classifying torsor E→ X via Spec K (X)→ X is (Egen)K (X).
The G-torsor I is the pull-back of E→ X with respect to x . Let Ê be the pull-back
of E → X via Spec Ô → X . Therefore, I is the pull-back of Ê . Since G is
smooth, by a theorem of Grothendieck [Demazure and Grothendieck 1970, XXIV,
Proposition 8.1], Ê is the pull-back of I with respect to Spec Ô → Spec(K ). It
follows that IL ' (Egen)L as torsors over L . Hence the images of i(I ) and i(Egen)

in H(L) are equal and therefore, i(I )L = 0. By Property 2.1, we have i(I )= 0.
If K is finite, we replace F by F((t)) and K by K ((t)). By the first part of the

proof, i(I ) belongs to the kernel of H(K )→ H(K ((t))) and hence is trivial by
Property 2.1 again.

A-II: Decomposable elements. Let 0 be a profinite group and A a 0-lattice. Write
A0 for the subgroup of 0-invariant elements in A. Let 0′ ⊂ 0 be an open subgroup
and choose representatives γ1, γ2, . . . , γn for the left cosets of 0′ in 0. We have
the trace map Tr : A0

′

→ A0 defined by Tr(a)=
∑n

i=1 γi a.
Let S2(A) be the symmetric square of A. Consider the quadratic trace map

Qtr : A0
′

→ S2(A)0 defined by Qtr(a)=
∑

i< j (γi a)(γ j a). Write Dec(A) for the
subgroup of decomposable elements in S2(A)0 generated by the square (A0)2 of
A0 and the elements Qtr(a) for all open subgroups 0′ ⊂ 0 and all a ∈ A0

′

.
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Let B be another 0-lattice. We write Dec(A, B) for the subgroup of (A⊗ B)0

generated by elements of the form Tr(a⊗ b) for all open subgroups 0′ ⊂ 0 and all
a ∈ A0

′

, b ∈ B0
′

.
There is a natural isomorphism S2(A⊕B)'S2(A)⊕(A⊗B)⊕S2(B). Moreover,

the equality Qtr(a+b)=Qtr(a)+ (Tr(a)⊗Tr(b)−Tr(a⊗b))+Qtr(b) yields the
decomposition

Dec(A⊕ B)' Dec(A)⊕Dec(A, B)⊕Dec(B).

A-III: Cup-products. Let 1→ T → P → Q→ 1 be an exact sequence of tori.
We consider the connecting maps

∂1 : H p(F, T̂ (i))→ H p+1(F, Q̂(i))

for the exact sequence 0→ Q̂sep→ P̂sep→ T̂sep→ 0 of character 0-lattices and

∂2 : Hq(F, Q̂◦( j))→ Hq+1(F, T̂ ◦( j))

for the dual sequence of lattices (see notation in Section 4b).

Lemma A.1. Let a ∈ H p(F, T̂ (i)) and b ∈ Hq(F, Q̂◦( j)) with i + j ≤ 2. Then
∂1(a)∪ b = (−1)p+1a ∪ ∂2(b) in Hp+q+1(F,Z(i + j)), where the cup-product is
defined in (4-3).

Proof. By [Cartan and Eilenberg 1999, Chapter V, Proposition 4.1], the elements
∂1(1T ) and ∂2(1Q) in

H 1(F, T̂ ◦sep⊗ Q̂sep)= Ext10(T̂sep, Q̂sep)

differ by a sign. Write τ for the isomorphism induced by permutation of the factors.
By the standard properties of the cup-product, we have

∂1(a)∪ b = 1T ∪ ∂1(a)∪ b = ∂1(1T )∪ a ∪ b = (−1)pqτ(∂1(1T )∪ b∪ a)

= (−1)pq+1τ(∂2(1Q)∪ b∪ a)= (−1)pq+1τ(1Q ∪ ∂2(b)∪ a)

= (−1)p+11Q ∪ a ∪ ∂2(b)= (−1)p+1a ∪ ∂2(b). �

A-IV: Cosimplicial abelian groups. Let A• be a cosimplicial abelian group

A0
d0
//

d1
// A1 ////// A2

//////// · · ·

and write h∗(A•) for the homology groups of the associated complex of abelian
groups. In particular,

h0(A•)= Ker
[
(d0
− d1) : A0

→ A1].
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We say that the cosimplicial abelian group A• is constant if for every i , all the
coface maps d j : Ai−1

→ Ai , j = 0, 1, . . . , i , are isomorphisms. In this case all the
d j are equal as d j = s−1

j = d j+1, where the s j are the codegeneracy maps. For a
constant cosimplicial abelian group A•, we have h0(A•)= A0 and hi (A•)= 0 for
all i > 0. We will need the following straightforward statement.

Lemma A.2. Let 0→ A•→ B•→C•→ D• be an exact sequence of cosimplicial
abelian groups with A• a constant cosimplicial group. Then the sequence of groups
0→ A0

→ h0(B•)→ h0(C•)→ h0(D•) is exact.

Let H be a contravariant functor from the category of schemes over F to the
category of abelian groups. We say that H is homotopy invariant if for every vector
bundle E→ X over F , the induced map H(X)→ H(E) is an isomorphism.

For an integer d > 0 consider the following property of the functor H :

Property A.3. For every closed subscheme Z of a scheme X with codimX (Z)≥ d ,
the natural homomorphism H(X)→ H(X \ Z) is an isomorphism.

Let G be a linear algebraic group over a field F and choose a standard classifying
G-torsor U → U/G. Let U i denote the product of i copies of U . We have the
G-torsors U i

→U i/G.
Consider the cosimplicial abelian group A•= H(U •/G) with Ai

= H(U i+1/G)
and coface maps Ai−1

→ Ai induced by the projections U i+1/G→U i/G.

Lemma A.4. Let H be a homotopy invariant functor satisfying Property A.3 for
some d. Let U →U/G be a standard classifying G-torsor and U ′ an open subset
of a G-representation V ′.

1. If codimV ′(V ′ \U ′)≥ d, then the natural homomorphism

H(U/G)→ H((U ×U ′)/G)

is an isomorphism.

2. If codimV (V \U )≥ d, then the cosimplicial group H(U •/G) is constant.

Proof. 1. The scheme (U×U ′)/G is an open subset of the vector bundle (U×V ′)/G
over U/G with complement of codimension at least d. The map in question
is the composition H(U/G)→ H((U × V ′)/G)→ H((U ×U ′)/G) and both
maps in the composition are isomorphisms since H is homotopy invariant and
satisfies Property A.3.

2. By the first part of the lemma applied to the G-torsor U i
→U i/G and U ′=U ,

the map H(U i/G)→ H(U i+1/G) induced by a projection U i+1/G→U i/G is
an isomorphism. �

By Lemma A.4, if H is a homotopy invariant functor satisfying Property A.3 for
some d , then the group H(U/G) does not depend on the choice of the representation
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V and the open set U ⊂ V provided codimV (V \U )≥ d . Following [Totaro 1999],
we denote this group by H(BG).

Example A.5. The split torus T = (Gm)
n over F acts freely on the product U of

n copies of Ar+1
\ {0} with U/T ' (Pr )n , that is, BT is “approximated” by the

varieties (Pr )n if “r >> 0.” We then have CH∗(BT )= S∗(T̂ ), where S∗ represents
the symmetric algebra and T̂ is the character group of T ; see [Edidin and Graham
1998, p. 607]. In particular, Pic(BT ) = CH1(BT ) = T̂ . More generally, by the
Künneth formula [Esnault et al. 1998, Proposition 3.7],

H∗Zar(BT,K∗)' CH∗(BT )⊗ K∗(F)' S∗(T̂ )⊗ K∗(F),

where Kn(F) is the Quillen K -group of F and Kn is the Zariski sheaf associated
to the presheaf U 7→ Kn(U ).

A-V: Étale cohomology. For a scheme X and a closed subscheme Z ⊂ X we write
H∗Z (X,Q/Z( j)) for the étale cohomology group of X with support in Z and values
in Q/Z( j) [Milne 1980, Chapter III, §1]. Write X (i) for the set of points in X of
codimension i . For a point x ∈ X (1) set

H∗x (X,Q/Z( j))= colim
x∈U

H∗
{x}∩U (U,Q/Z( j)),

where the colimit is taken over all open subsets U ⊂ X containing x . If X is a
variety, write

∂x : H∗(F(X),Q/Z( j))→ H∗+1
x (X,Q/Z( j))

for the residue homomorphisms arising from the coniveau spectral sequence [Colliot-
Thélène et al. 1997, 1.2]

E p,q
1 =

∐
x∈X (p)

H p+q
x (X,Q/Z( j))⇒ H p+q(X,Q/Z( j)). (A-1)

Let f : Y → X be a dominant morphism of varieties over F , y ∈ Y (1), and
x = f (y). If x ∈ X (1), there is a natural homomorphism

f ∗y : H
∗

x (X,Q/Z( j))→ H∗y (Y,Q/Z( j)).

The following lemma is straightforward.

Lemma A.6. Let f : Y → X be a dominant morphism of varieties over F , y ∈ Y (1)

and x = f (y).

(1) If x is the generic point of X , then the composition

H∗(F(X),Q/Z( j))
f ∗
−→ H∗(F(Y ),Q/Z( j))

∂y
−→ H∗+1

y (Y,Q/Z( j))

is trivial.



1674 Sam Blinstein and Alexander Merkurjev

(2) If x ∈ X (1), the diagram

H∗(F(X),Q/Z( j))

f ∗

��

∂x // H∗+1
x (X,Q/Z( j))

f ∗y
��

H∗(F(Y ),Q/Z( j))
∂y // H∗+1

y (Y,Q/Z( j)).

is commutative.

Lemma A.7. Let X be a geometrically irreducible variety, Z ⊂ X a closed sub-
variety of codimension 1, and x the generic point of Z. Let P be a variety over
F such that P(K ) is dense in P for every field extension K/F with K infinite,
and let y be the generic point of Z × P in Y := X × P. Then the homomorphism
f ∗y : H∗x (X,Q/Z( j))→ H∗y (Y,Q/Z( j)) induced by the projection f : Y → X
is injective.

Proof. Assume first that the field F is infinite. An element α ∈ H∗x (X,Q/Z( j)) is
represented by an element h ∈ H∗Z∩U (U,Q/Z( j)) for a nonempty open set U ⊂ X
containing x . If α belongs to the kernel of

f ∗y : H
∗

x (X,Q/Z( j))→ H∗y (Y,Q/Z( j)),

then there is an open subset W ⊂U × P containing y such that h belongs to the
kernel of the composition

g : H∗Z∩U (U,Q/Z( j))→ H∗(Z∩U )×P(U × P,Q/Z( j))→ H∗(Z×P)∩W (W,Q/Z( j)).

As F is infinite, by the assumption on P , there is a rational point t ∈ P in the
image of the dominant composition (Z × P) ∩ W ↪→ Z × P → P . We have
(U×t)∩W =U ′×t for an open subset U ′⊂U such that x ∈U ′. Composing g with
the homomorphism H∗(Z×P)∩W (W,Q/Z( j))→ H∗Z∩U ′(U

′,Q/Z( j)) induced by the
morphism (U ′, Z∩U ′)→ (W, (Z×P)∩W ), u 7→ (u, t), we see that h belongs to the
kernel of the restriction homomorphism H∗Z∩U (U,Q/Z( j))→H∗Z∩U ′(U

′,Q/Z( j)),
hence the image of α in H∗x (X,Q/Z( j)) is trivial.

Suppose now that F is a finite field. Choose a prime integer p and an infinite
algebraic pro-p-extension L/F . By the first part of the proof, the statement holds
for the variety X L over L . By the restriction-corestriction argument, Ker( f ∗y ) is a
p-primary torsion group. Since this holds for every prime p, we have Ker( f ∗y )= 0.

�

Corollary A.8. Let G be a linear algebraic group over F , let E → X be a G-
torsor over a geometrically irreducible variety X with E a G-rational variety and
consider the first projection p : E2/G→ X. Let x ∈ X and y ∈ E2/G be points of
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codimension 1 such that p(y)= x. Then the homomorphism

p∗y : H
∗

x (X,Q/Z( j))→ H∗y (E
2/G,Q/Z( j))

is injective.

Proof. Choose a linear G-space V and a nonempty G-variety U that is G-isomorphic
to open subschemes of E and V . We can replace the variety E2/G by (E ×U )/G,
an open subscheme in the vector bundle (E×V )/G over X . Shrinking X around x ,
we may assume that the vector bundle is trivial, that is, (E ×U )/G is isomorphic
to an open subscheme in X × V . The statement then follows from Lemma A.7. �

Proposition A.9. In the conditions of Corollary A.8, let h ∈ H∗(F(X),Q/Z( j))bal.
Then ∂x(h)= 0 for every point x ∈ X of codimension 1.

Proof. Let y ∈ E2/G be the point of codimension 1 such that p1(y) = x . As
p2(y) is the generic point of X , by Lemma A.6(1), ∂y(h′)= 0, where h′ = p∗1(h)=
p∗2(h) in H∗(F(E2/G),Q/Z( j)). It follows from Lemma A.6(2) that ∂x(h) is in
the kernel of (p1)

∗
y : H

∗
x (X,Q/Z( j))→ H∗y (E

2/G,Q/Z( j)) and hence is trivial
by Corollary A.8. �

The sheaf H∗(Q/Z( j)) defined in Section 3 has a flasque resolution related to
the Cousin complex by [Colliot-Thélène et al. 1997, §2] (for the p-components
with p 6= char F) and [Gros and Suwa 1988, Theorem 1.4] (for the p-component
with p = char F > 0):

0→Hn(Q/Z( j))→
∐

x∈X (0)

ix∗H n
x (X,Q/Z( j))→

∐
x∈X (1)

ix∗H n+1
x (X,Q/Z( j))→· · · ,

where ix : Spec F(x)→ X are the canonical morphisms. In particular, we have:

Proposition A.10. Let X be a smooth variety over F. The sequence

0→ H 0
Zar(X,H∗(Q/Z( j)))→ H∗(F(X),Q/Z( j))

∂
−→

∐
x∈X (1)

H∗+1
x (X,Q/Z( j)),

where ∂ =
∐
∂x , is exact.

Proposition A.11. Let X be a smooth variety over F and x ∈ X. The sequence

0→ H∗(OX,x ,Q/Z( j)))→ H∗(F(X),Q/Z( j))
∂
−→

∐
x ′∈X (1)
x ′∈{x}

H∗+1
x ′ (X,Q/Z( j))

is exact.
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Appendix B: Spectral sequences

B-I: Hochschild–Serre spectral sequence. Let

A
W
−→B

V
−→ C

be additive left exact functors between abelian categories with enough injective
objects. If W takes injective objects to V -acyclic ones, there is a spectral sequence

E p,q
2 = R pV (Rq W (A))⇒ R p+q(V W )(A)

for every complex A in A bounded from below.
We have exact triangles in the derived category of B:

τ≤n RW (A)→ RW (A)→ τ≥n+1 RW (A)→ τ≤n RW (A)[1], (B-1)

τ≤n−1 RW (A)→ τ≤n RW (A)→ RnW (A)[−n] → τ≤n−1 RW (A)[1]. (B-2)

The filtration on Rn(V W )(A) is defined by

F j Rn(V W )(A)= Im(RnV (τ≤(n− j)RW (A))→ RnV (RW (A))= Rn(V W )(A)).

As τ≥n+1 RW (A) is acyclic in degrees less than or equal to n, the morphism

RnV (τ≤n RW (A))→ RnV (RW (A))= Rn(V W )(A)

is an isomorphism, in particular, F0 Rn(V W )(A)= Rn(V W )(A).
The edge homomorphism is defined as the composition

Rn(V W )(A)−→∼ RnV (τ≤n RW (A))→ RnV (RnW (A)[−n])= V (RnW (A)).

Moreover, the kernel F1 Rn(V W )(A) of the edge homomorphism is isomorphic to
RnV (τ≤n−1 RW (A)). We define the morphism dn as the composition

dn : F1 Rn(V W )(A)→ RnV (Rn−1W (A)[−n+1])= R1V (Rn−1W (A))= E1,n−1
2 .

B-II: First spectral sequence. Let X be a smooth variety over a field F . We have
the functors

Sheavesét(X)
q∗
−→ Sheavesét(F)

V
−→ Ab,

where q∗ is the push-forward map for the structure morphism q : X → Spec(F)
and V (M)= H 0(F,M).

Consider the Hochschild–Serre spectral sequence

E p,q
2 = H p(F, Hq(Xsep,Z(2))⇒ H p+q(X,Z(2)). (B-3)

Set 1(i) := Rq∗(Z(i)) for i = 1 or 2. Then 1(i) is the complex of étale sheaves
on F concentrated in degrees ≥ 1. The j-th term F j H n(X,Z(i)) of the filtration
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on H n(X,Z(i)) coincides with the image of the canonical homomorphism

H n(F, τ≤(n− j)1(i))→ H n(F,1(i))= H n(X,Z(i)).

Let M be a 0-lattice viewed as an étale sheaf over F . Note that there are
canonical isomorphisms

H∗(F,M◦⊗1(i))= Ext∗F (M,1(i))= Ext∗X (q
∗M,Z(i)), (B-4)

where M◦ := Hom(M,Z) is the dual lattice.
Consider also the following product map:

Z(1)⊗L 1(1)→ Rq∗(q∗Z(1)⊗L Z(1))→ Rq∗(Z(1)⊗L Z(1))→ Rq∗(Z(2)).

The complex Z(1)⊗L τ≤21(1) is trivial in degrees greater than 3, hence we have a
commutative diagram

Z(1)⊗L τ≤21(1)

��

prod // τ≤3 Rq∗(Z(2))

��

= τ≤31(2)

Z(1)⊗L 1(1)
prod // Rq∗(Z(2)) = 1(2).

There are canonical morphisms from (B-2):

h2 : τ≤21(1)[2] → H 2(Xsep,Z(1)) and h3 : τ≤31(2)[3] → H 3(Xsep,Z(2)).

Consider an element

δ ∈ H 1(F,M ⊗ F×sep)= Ext1F (M
◦,Gm ,F )= Ext2F (M

◦,Z(1)),

and view δ as a morphism δ : M◦→ Z(1)[2] in D+(Sheavesét(F)).
The following diagram

M◦⊗1(1)[2]
δ⊗1 // Z(1)⊗L 1(1)[4]

prod // 1(2)[4]

M◦⊗ τ≤21(1)[2]

1⊗h2
��

(1⊗i2)[2]

OO

δ⊗1 // Z(1)⊗L τ≤21(1)[4]

1⊗h2
��

(1⊗i2)[4]

OO

prod // τ≤31(2)[4]

h3
��

(i3)[4]

OO

M◦⊗ H 2(Xsep,Z(1))
δ⊗1 // Z(1)⊗L H 2(Xsep,Z(1))[2]

prod // H 3(Xsep,Z(2))[1]

where i2 : τ≤21(1) → 1(1) and i3 : τ≤31(2) → 1(2) are natural morphisms,
is commutative.

By (B-4), we have

H 0(F,M◦⊗1(1)[2])= Ext2F (M,1(1))= Ext2X (q
∗M,Z(1)).



1678 Sam Blinstein and Alexander Merkurjev

Furthermore, the diagram above yields a commutative square

Ext2X (q
∗M,Z(1))

d2
��

q∗(δ) ∪ − // F1 H 4(X,Z(2))

d4

��
Hom0(M, H 2(Xsep,Z(1))

j // H 1(F, H 3(Xsep,Z(2))),

where d2 is the edge map coming from the spectral sequence

Extp
F (M, Hq(Xsep,Z(1)))⇒ Extp+q

X (q∗M,Z(1)) (B-5)

and j coincides with the composition

Hom0(M, H 2(Xsep,Z(1))= H 0(F,M◦⊗ H 2(Xsep,Z(1)))
δ ∪ −
−−−→ H 1(F, F×sep⊗ H 2(Xsep,Z(1)))

ρ
−→ H 1(F, H 3(Xsep,Z(2))),

with ρ given by the product map.
Now suppose the group H 2(Xsep,Z(1)), which is canonically isomorphic to

Pic(Xsep), is a lattice. Let M = Pic(Xsep) and consider the torus T over F with
T̂sep = M . It follows that

δ ∈ H 1(F, T ◦)= H 1(F, T̂sep⊗ F×sep)= H 2(F, T̂sep⊗Z(1)),

where T ◦ is the dual torus. Note that δ ∪ 1M = δ, where

1M ∈ H 0(F,M◦⊗ H 2(Xsep,Z(1)))= End0(M)

is the identity.
The top map in the last diagram is given by the pairing

H 1(X, T 0)⊗ H 1(X, T )→ F1 H 4(X,Z(2)),

a⊗ b 7→ a ∪ b,
(B-6)

defined as the cup-product in (4-3),

H 2(X, T̂ (1))⊗ H 2(X, T̂ ◦(1))→ F1 H 4(X,Z(2)),

if we identify Ext2X (q
∗M,Z(1)) with H 2(X, T̂ ◦(1))= H 1(X, T ).

In this case, the homomorphism

ρ : H 1(F, T ◦)→ H 1(F, H 3(Xsep,Z(2))) (B-7)

is given by the product homomorphism

T ◦(Fsep)= F×sep⊗ T̂sep = F×sep⊗Pic(Xsep)→ H 3(Xsep,Z(2)).
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A T -torsor E→ X is called universal if the class of E in

H 1(X, T )= Ext2X (q
∗M,Z(1))

satisfies d2([E])= 1M ; see [Colliot-Thélène and Sansuc 1987a].
Commutativity of the previous diagram gives:

Proposition B.1. Let X be a smooth variety over F such that Pic(Xsep) is a lattice.
Let T be the torus over F satisfying T̂sep = Pic(Xsep) and let E be a universal
T -torsor over X with the class [E] ∈ H 1(X, T ). Then for every δ ∈ H 1(F, T ◦),
we have

d4(q∗(δ)∪ [E])= ρ(δ),

where d4 : F1 H 4(X,Z(2))→ H 1(F, H 3(Xsep,Z(2))) is the map induced by the
Hochschild–Serre spectral sequence (B-3) and the cup-product is taken for the
pairing (B-6).

B-III: Second spectral sequence. We assume that H 3(Xsep,Z(2))= 0, hence in
particular E0,3

2 = 0 in the spectral sequence (B-3) and so E2,2
∞
⊂ E2,2

2 . Therefore,
we have a canonical map

e4 : F2 H 4(X,Z(2))→ E2,2
∞
↪→ E2,2

2 = H 2(F, H 2(Xsep,Z(2)).

Let N be a 0-lattice. Consider an element

γ ∈ H 2(F, N ⊗ F×sep)= Ext2F (N
◦,Gm ,F )= Ext3F (N

◦,Z(1)),

and view γ as a morphism γ : N ◦→ Z(1)[3] in D+(Sheavesét(F)).
As above, the commutative diagram

N ◦⊗1(1)[1]
γ⊗1 // Z(1)⊗L 1(1)[4]

prod // 1(2)[4]

N ◦⊗ τ≤11(1)[1]

1⊗h1
��

(1⊗i1)[1]

OO

γ⊗1 // Z(1)⊗L τ≤11(1)[4]

1⊗h1
��

(1⊗i1)[4]

OO

prod // τ≤21(2)[4]

h2
��

(i2)[4]

OO

N ◦⊗ H 1(Xsep,Z(1))
γ⊗1 // Z(1)⊗L H 1(Xsep,Z(1))[3]

prod // H 2(Xsep,Z(2))[2]

where i1, i2, h1 and h2 are defined in a similar fashion as in Section B-II, yields a
commutative square

Ext1X (q
∗N ,Z(1))

d1
��

q∗(γ ) ∪ − // F2 H 4(X,Z(2))

e4

��
Hom0(N , H 1(Xsep,Z(1)) k // H 2(F, H 2(Xsep,Z(2)))
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where d1 is the edge map coming from the spectral sequence

Extp
F (N , Hq(Xsep,Z(1)))⇒ Extp+q

X (q∗N ,Z(1))

and k coincides with the composition

Hom0(N , H 1(Xsep,Z(1))= H 0(F, N ◦⊗ H 1(Xsep,Z(1)))
γ ∪ −
−−−→ H 2(F, F×sep⊗ H 1(Xsep,Z(1)))→ H 2(F, H 2(Xsep,Z(2)))

with the last homomorphism given by the product map.
Suppose N is a 0-lattice in Fsep[X ]× such that the composition

N ↪→ Fsep[X ]×→ Fsep[X ]×/F×sep

is an isomorphism. Consider the torus Q with Q̂sep = N , so that γ ∈ H 2(F, Q◦).
Note that γ ∪ iN = γ , where

iN ∈ H 0(F, N ◦⊗ H 1(Xsep,Z(1)))= Hom0(N , Fsep[X ]×)

is the embedding.
The top map in the previous diagram is given by the pairing

H 2(X, Q0)⊗ H 0(X, Q)→ F2 H 4(X,Z(2)),

a⊗ b 7→ a ∪ b,
(B-8)

defined as the cup-product in (4-3),

H 3(X, Q̂(1))⊗ H 1(X, Q̂◦(1)))→ H 4(X,Z(2)),

if we identify Ext1X (q
∗N ,Z(1)) with H 1(X, Q̂◦(1))= H 0(X, Q).

The inclusion of Q̂sep into Fsep[X ]× yields a morphism ε : X→ Q that can be
viewed as an element of H 0(X, Q). Consider the map

µ : H 2(F, Q◦)→ H 2(F, H 2(Xsep,Z(2))) (B-9)

given by composition with the product homomorphism

Q◦(Fsep)= F×sep⊗ Q̂sep→ F×sep⊗ H 1(Xsep,Z(1))→ H 2(Xsep,Z(2)).

We have proved:

Proposition B.2. Let X be a smooth variety over F such that H 3(Xsep,Z(2))= 0.
Let N be a 0-lattice in Fsep[X ]× such that the composition

N ↪→ Fsep[X ]×→ Fsep[X ]×/F×sep
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is an isomorphism. Let Q be the torus over F satisfying Q̂sep = N. Then for every
γ ∈ H 2(F, Q◦), we have

e4(q∗(γ )∪ ε)= µ(γ ),

where e4 : F2 H 4(X,Z(2))→ H 2(F, H 2(Xsep,Z(2))) is the map induced by the
Hochschild–Serre spectral sequence (B-3) and the cup-product is taken for the
pairing (B-8).

B-IV: Relative étale cohomology. Let X be a smooth variety over F . Following
B. Kahn [1996, §3], we define the relative étale cohomology groups as follows.
Recall that 1(i) = Rq∗(Z(i)) for i = 1 and 2, where q : X → Spec(F) is the
structure morphism, and let 1′(i) be the cone of the natural morphism Z(i)→1(i)
in D+(Sheavesét(F)). Define

H∗(X/F,Z(2)) := H∗(F,1′(2)).

(Note that our indexing is different from that in [Kahn 1996, §3].)
There is an infinite exact sequence

· · · → H i (F,Z(2))→ H i (X,Z(2))→ H i (X/F,Z(2))→ H i+1(F,Z(2))→ · · ·

If X has a rational point, we have

H i (X/F,Z(2))= H i (X,Z(2)) := H i (X,Z(2))/H i (F,Z(2)).

There is a Hochschild–Serre type spectral sequence [Kahn 1996, §3]

E p,q
2 = H p(F, Hq(Xsep/Fsep,Z(2)))⇒ H p+q(X/F,Z(2)), (B-10)

and we have by [Kahn 1996, Lemma 3.1] that

Hq(Xsep/Fsep,Z(2))=


0 if q ≤ 0,
uniquely divisible group if q = 1,
H 0

Zar(Xsep,K2) if q = 2,
H 1

Zar(Xsep,K2) if q = 3.

It follows that E p,q
2 = 0 if q ≤ 1 and p > 0. Comparing the spectral sequences

(B-3) and (B-10), by Proposition B.1 we have:

Proposition B.3. Let X be a smooth variety over F such that X (F) 6= ∅. If
H 0

Zar(Xsep,K2) = K2(Fsep), then the spectral sequence (B-10) yields an exact
sequence

0→ H 1(F, H 1
Zar(Xsep,K2))

α
−→ H 4(X,Z(2))

→ H 4(Xsep,Z(2))0→ H 2(F, H 1
Zar(Xsep,K2)).
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If , moreover, the group Pic(Xsep) is a lattice and T is the torus over F such that
T̂sep = Pic(Xsep), then α(ρ(δ))= q∗(δ)∪ [E] for every δ ∈ H 1(F, T ◦), where ρ is
defined in (B-7) and E is a universal T -torsor over X.

Comparing the spectral sequences (B-3) and (B-10), by Proposition B.2 we have:

Proposition B.4. Let X be a smooth variety over F such that X (F) 6= ∅. If
H 1

Zar(Xsep,K2)= 0, then the spectral sequence (B-10) yields an exact sequence

0→ H 2(F, H 0
Zar(Xsep,K2))

β
−→ H 4(X,Z(2))

→ H 4(Xsep,Z(2))0→ H 3(F, H 0
Zar(Xsep,K2)).

If N is a 0-lattice in Fsep[X ]× such that the composition

N ↪→ Fsep[X ]×→ Fsep[X ]×/F×sep

is an isomorphism and Q is the torus over F satisfying Q̂sep = N , then β(µ(γ ))=
q∗(γ )∪ ε for every γ ∈ H 2(F, Q◦), where µ is defined in (B-9) and ε ∈ H 0(X, Q)
is given by the inclusion of Q̂sep into Fsep[X ]×.
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On abstract representations of the groups
of rational points of algebraic groups and

their deformations
Igor A. Rapinchuk

In this paper, we continue our study, begun in an earlier paper, of abstract
representations of elementary subgroups of Chevalley groups of rank ≥ 2. First,
we extend the methods to analyze representations of elementary groups over
arbitrary associative rings and, as a consequence, prove the conjecture of Borel
and Tits on abstract homomorphisms of the groups of rational points of algebraic
groups for groups of the form SLn,D , where D is a finite-dimensional central
division algebra over a field of characteristic 0. Second, we apply the previous
results to study deformations of representations of elementary subgroups of
universal Chevalley groups of rank ≥ 2 over finitely generated commutative rings.

1. Introduction and statement of the main results

The goal of this paper is twofold. First, we extend the methods and results developed
in our paper [Rapinchuk 2011] to analyze abstract representations of Chevalley
groups over commutative rings to elementary groups over arbitrary associative rings.
As a consequence of this analysis, we prove the conjecture of Borel and Tits [1973,
8.19] on abstract homomorphisms of the groups of rational points of algebraic
groups for groups of the form SLn,D, where D is a finite-dimensional central
division algebra over a field of characteristic 0. Second, we apply the results
of [Rapinchuk 2011] to study deformations of representations of the elementary
subgroup 0= E(8, R) of a universal Chevalley group associated to a root system8

of rank ≥ 2 over a finitely generated commutative ring R. This relies on the
description, obtained in [Rapinchuk 2011], of representations with nonreductive
image, which are at the heart of the Borel–Tits conjecture (recall that representations
with reductive image were completely described in [Borel and Tits 1973]). We also
use techniques of representation and character varieties (see [Lubotzky and Magid
1985]) in conjunction with the fact that such 0 satisfies Kazhdan’s property (T),
which was recently established in [Ershov et al. 2011].

MSC2010: primary 20G15; secondary 14L15.
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Before formulating of our first result, let us recall the statement of the Borel–Tits
conjecture. For an algebraic G defined over a field k, let G+ denote the subgroup of
G(k) generated by the k-points of split (smooth) connected unipotent k-subgroups.

Conjecture (BT). Let G and G ′ be algebraic groups defined over infinite fields k
and k ′, respectively. If ρ : G(k)→ G ′(k ′) is any abstract homomorphism such that
ρ(G+) is Zariski-dense in G ′(k ′), then there exist a commutative finite-dimensional
k ′-algebra C and a ring homomorphism fC : k→ C such that ρ = σ ◦ rC/k′ ◦ F ,
where F : G(k)→ C G(C) is induced by fC (C G is the group obtained by change
of scalars), rC/k′ : C G(C)→ RC/k′(C G)(k ′) is the canonical isomorphism (here
RC/k′ denotes the functor of restriction of scalars), and σ is a rational k ′-morphism
of RC/k′(C G) to G ′.

If an abstract homomorphism ρ : G(k)→G ′(k ′) admits a factorization as in (BT),
we will say that ρ has a standard description.

Remarks. (1) Another frequently used definition of G+, which appears in the
introduction of [Borel and Tits 1973], is that it is the subgroup of G(k) generated
by the k-points of the unipotent radicals of the parabolic k-subgroups of G. Recall
that if G is reductive, then the k-split smooth connected unipotent k-subgroups all
lie in the unipotent radicals of minimal parabolic k-subgroups, so in this case, the
two definitions coincide. However, they may differ for general smooth connected
affine k-groups. Now, it follows from [Conrad et al. 2010, Proposition C.3.11,
Theorem C.3.12] that in the case of a general smooth connected affine k-group G,
one can also describe G+ as the subgroup of G(k) generated by the k-points of the
k-split unipotent radicals of the minimal pseudoparabolic k-subgroups.

(2) It was pointed out to us by B. Conrad and G. Prasad that, using techniques from
the theory of pseudoreductive groups (developed in [Conrad et al. 2010, Chapter 9]),
one can construct counterexamples to (BT) over all local and global function fields
of characteristic 2 (or, more generally, over any field k of characteristic 2 such that
[k : k2

]=2). The groups that arise in these counterexamples are perfect and k-simple.
So one should exclude fields of characteristic 2 (and possibly also characteristic 3)
in the statement of (BT).

Our result concerning (BT) is as follows. Given a finite-dimensional central
division algebra D over a field k, we let G = SLn,D denote the algebraic k-group
such that G(k) = SLn(D), the group of elements of GLn(D) having reduced
norm 1; recall that G is an inner form of type Al (see [Knus et al. 1998; Platonov
and Rapinchuk 1994] for details).

Theorem 1. Let D be a finite-dimensional central division algebra over a field k
of characteristic 0, and let G = SLn,D, where n ≥ 3. Let ρ : G(k)→ GLm(K )
be a finite-dimensional linear representation of G(k) over an algebraically closed
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field K of characteristic 0, and set H = ρ(G(k)) (Zariski-closure). Then the
abstract homomorphism ρ : G(k)→ H(K ) has a standard description.

In fact, we will see in Section 3 that a similar, but somewhat weaker, statement
can be established for representations of elementary groups over arbitrary associative
rings, not just division algebras (see Theorem 3.2 for a precise statement). It should
be observed that while the overall structure of the proof of Theorem 1 resembles
that of the Main Theorem of [Rapinchuk 2011], the analogs of the K -theoretic
results of Stein [1973], which played a crucial role in [Rapinchuk 2011], were not
available in the noncommutative setting. So part of our argument is dedicated to
developing the required K -theoretic results, which is done in Section 2 using the
computations of relative K2 groups given by Bak and Rehmann [1982].

As we have already mentioned, results describing representations of a given
group 0 with nonreductive image can be used to analyze deformations of represen-
tations of 0, which is the second major theme of this paper. Formally, over a field of
characteristic 0, deformations of (completely reducible) n-dimensional representa-
tions of a finitely generated group 0 can be understood in terms of the corresponding
character variety Xn(0). For 0 = E(8, R), the elementary subgroup of G(R),
where G is a universal Chevalley–Demazure group scheme corresponding to a
reduced irreducible root system of rank>1 and R is a finitely generated commutative
ring, we use the results of [Rapinchuk 2011] to estimate the dimension of Xn(0)

as a function of n. (We note that it was recently shown in [Ershov et al. 2011] that
such 0 possesses Kazhdan’s property (T) and hence is finitely generated, so the
representation variety Rn(0) and the associated character variety Xn(0) are defined.
See Section 4 for a brief review of these notions and [Lubotzky and Magid 1985]
for complete details.) To put our result into perspective, we recall that for 0 = Fd ,
the free group on d > 1 generators, the dimension ~n(0) := dim Xn(0) is given by

~n(0)= (d − 1)n2
+ 1,

i.e., the growth of ~n(0) is quadratic in n. It follows that the rate of growth cannot
be more than quadratic for any finitely generated group (and it is indeed quadratic
in some important situations such as 0 = πg, the fundamental group of a compact
orientable surface of genus g > 1 [Rapinchuk et al. 1996]). At the other end of the
spectrum are the groups 0, called SS-rigid, for which ~n(0)= 0 for all n ≥ 1. For
example, according to the superrigidity theorem of Margulis [1991, Chapter VII,
Theorems 5.6, 5.25, and A], all irreducible higher-rank lattices are SS-rigid (see
Section 5 regarding the superrigidity of groups like E(8,O), where O is a ring of
algebraic integers). Now, in [Rapinchuk 2013], we show that if 0 is not SS-rigid,
then the rate of growth of ~n(0) is at least linear. It follows that unless 0 is SS-rigid,
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the growth rate of ~n(0) is between linear and quadratic. Our result shows that for
0 = E(8, R) as above, this rate is the minimal possible, namely linear.

To formulate our result, we recall that a pair (8, R) consisting of a reduced
irreducible root system of rank > 1 and a commutative ring R was called nice in
[Rapinchuk 2011] if 2 ∈ R× whenever 8 contains a subsystem of type B2 and
2, 3 ∈ R× if 8 is of type G2.

Theorem 2. Let 8 be a reduced irreducible root system of rank ≥ 2, R a finitely
generated commutative ring such that (8, R) is a nice pair, and G the univer-
sal Chevalley–Demazure group scheme of type 8. Let 0 = E(8, R) denote the
elementary subgroup of G(R), and consider the variety Xn(0) of characters of
n-dimensional representations of 0 over an algebraically closed field K of charac-
teristic 0. Then there exists a constant c = c(R) (depending only on R) such that
~n(0) := dim Xn(0) satisfies

~n(0)≤ c · n

for all n ≥ 1.

The proof is based on a suitable variation of the approach, going back to A. Weil,
of bounding the dimension of the tangent space to Xn(0) at a point [ρ] corresponding
to a representation ρ : 0→ GLn(K ) by the dimension of the cohomology group
H 1(0,AdGLn ◦ ρ). Using the results of [Rapinchuk 2011], we describe the latter
space in terms of certain spaces of derivations of R. This leads to the conclusion that
the constant c in Theorem 2 does not exceed the minimal number of generators d
of R (i.e., the smallest integer such that there exists a surjection Z[X1, . . . , Xd ]� R).
In fact, if R is the ring of integers or S-integers in a number field L , then c= 0 (see
Lemma 4.7), so we obtain that ~n(0)= 0 for all n, i.e., 0 is SS-rigid. We then show
in Section 5 that the results of [Rapinchuk 2011] actually imply that 0 = E(8, R)
is in fact superrigid in this case. The proof of Theorem 2 uses the validity of
property (T) for 0 = E(8, R). On the other hand, groups of this form account for
most of the known examples of linear Kazhdan groups, so it is natural to ask if the
conclusion of Theorem 2 can be extended to all discrete linear Kazhdan groups.

Conjecture. Let 0 be a discrete linear group having Kazhdan’s property (T). Then
there exists a constant c = c(0) such that

~n(0)≤ c · n

for all n ≥ 1.

The paper is organized as follows. In Section 2, we begin by summarizing some
well known facts from K -theory and then use the results of [Bak and Rehmann
1982] to obtain a description of the group K2 of certain associative rings similar
to the one given by Stein in the commutative case. This is then used in the proof
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of Theorem 1, which is given in Section 3, along with similar results for arbitrary
associative rings. Next, we begin Section 4 with a brief review of representation
and character varieties and some related cohomological machinery, after which we
turn to the proof of Theorem 2. Finally, in Section 5, we show how the techniques
of [Rapinchuk 2011], along with some considerations involving derivations, can be
used to establish various rigidity results for the elementary groups E(8,O), where
O is a ring of algebraic integers.

Notations and conventions. Throughout the paper, 8 will denote a reduced irre-
ducible root system of rank ≥ 2. All of our rings are assumed to be associative and
unital. As noted earlier, if R is a commutative ring, we say that the pair (8, R) is
nice if 2 ∈ R× whenever 8 contains a subsystem of type B2 and 2, 3 ∈ R× if 8 is
of type G2. Finally, given an algebraic group H , we let H◦ denote the connected
component of the identity.

2. K -theoretic preliminaries

In this section, we develop the K -theoretic results that will be needed in the proof
of Theorem 1. Even though the statements in this section are consequences of
some well known results, to the best of our knowledge, they have never appeared
explicitly in the literature in the form that we require. The main objective will be
to use the computations of Bak and Rehmann [1982] to establish certain analogs
in the noncommutative setting of Stein’s [1973] description of the group K2 of a
semilocal commutative ring (see Propositions 2.3 and 2.4 below).

We begin by recalling some standard definitions. Let R be an associative unital
ring. For 1 ≤ i, j ≤ n, i 6= j , and r ∈ R, let ei j (r) ∈ GLn(R) be the elementary
matrix with r in the (i, j)-th place, and let En(R) denote the subgroup of GLn(R),
called the elementary group, generated by all the ei j (r). If n ≥ 3, it is well known
that the elementary matrices in GLn(R) satisfy the following relations:

(R1) ei j (r)ei j (s)= ei j (r + s).

(R2) [ei j (r), ekl(s)] = 1 if i 6= l and j 6= k.

(R3) [ei j (r), e jl(s)] = eil(rs) if i 6= l.

The Steinberg group over R, denoted Stn(R), is defined to be the group generated by
all symbols xi j (r) with 1≤ i, j ≤ n, i 6= j , and r ∈ R subject to the natural analogs
of the relations (R1)–(R3) written in terms of the xi j (r). From the definition, it is
clear that there exists a canonical surjective group homomorphism

πR : Stn(R)→ En(R), xi j (r) 7→ ei j (r),

and we set
K2(n, R)= ker(Stn(R)

πR
−−→ En(R)).
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It is easy to see that there exist natural homomorphisms Stn(R)→ Stn+1(R) and
En(R) ↪→ En+1(R), which induce homomorphisms K2(n, R)→ K2(n + 1, R)
[Hahn and O’Meara 1989, §1.4]. Also notice that the pair (Stn(R), πR) is functorial
in the following sense: given a homomorphism of rings f : R → S, there is a
commutative diagram of group homomorphisms

Stn(R)

πR

��

F̃
// Stn(S)

πS

��

En(R)
F
// En(S)

where F and F̃ are the homomorphisms induced by f defined on generators by

F : ei j (t) 7→ ei j ( f (t)) and F̃ : xi j (t) 7→ xi j ( f (t)).

It follows from the commutativity of the above diagram that F̃ induces a homomor-
phism K2(n, R)→ K2(n, S). In the following proposition, we derive some general
properties of K2(n, R) that will be needed later in this section:

Proposition 2.1. (a) Suppose R is an associative unital ring such that R/J (R)
is artinian, where J (R) is the Jacobson radical of R. Then the natural map
K2(3, R)→ K2(4, R) is an isomorphism. If , moreover, R is finitely generated
as a module over its center, then K2(n, R) is a central subgroup of Stn(R)
for n ≥ 3.

(b) Suppose C is a commutative finite dimensional algebra over a field K , and let
A=Mm(C) be the ring of m×m matrices over C. For a ∈C and 1≤ k, l ≤m,
let ỹkl(a) ∈ A be the matrix with a as the (k, l) entry and 0 for all other entries.
Then for n ≥ 3, the maps

ψ̃(x A
i j (ỹkl(a)))= xC

(i−1)m+k,( j−1)m+l(a),

ψ(eA
i j (ỹkl(a)))= eC

(i−1)m+k,( j−1)m+l(a),

where the x A
i j (a) and eA

i j (a) are the generators of Stn(A) and En(A) and the
xC

i j (c) and eC
i j (c) are the generators of Stnm(C) and Enm(C), respectively,

define isomorphisms ψ̃ : Stn(A)→ Stnm(C) and ψ : En(A)→ Enm(C) such
that the following diagram commutes:

Stn(A)

πA

��

˜ψ
// Stnm(C)

πC

��

En(A)
ψ
// Enm(C)

(1)

In particular, K2(n,Mm(C))' K2(nm,C).



Representations of algebraic groups and deformations 1691

Proof. (a) By Theorem 7 of [van der Kallen 1976], the fact that R/Rad(R) is
artinian implies that it has property S R∗2 , and then Theorem 6 of the same work
yields the required isomorphism. Now, if R is finitely generated as a module
over its center, then according to [Hahn and O’Meara 1989, Theorem 1.4.15],
πR : Stn(R)→ En(R) is a central extension for n ≥ 4 (in fact, a universal central
extension for n≥ 5). So in view of the canonical isomorphism K2(3, R)' K2(4, R),
we obtain that K2(n, R) is a central subgroup of Stn(R) for n ≥ 3, as claimed.

(b) First notice that the natural group isomorphism GLn(A)
∼
−→ GLnm(C) restricts

to a group homomorphism ψ : En(A)→ Enm(C). By direct computation with com-
mutator relations, one sees that ψ is surjective for n ≥ 3 and hence an isomorphism.
Moreover, on generators it is given by the second formula in the statement. Now,
since A is generated additively by the ỹkl(a), with 1≤ k, l ≤ m, it follows that the
x̃ A

i j (ỹkl(a)) generate Stn(A), so it suffices to define ψ̃ on these elements and check
the defining relations. This is done by direct computation using the definition of ψ̃
given above.

Next, since without loss of generality m ≥ 2, we have nm ≥ 6, so as noted
in the proof of (a), πC : Stnm(C)→ Enm(C) is a universal central extension and
πA : Stn(A)→ En(A) is a central extension. Hence, there exists a unique group
homomorphism ϕ̃ : Stnm(C)→ Stn(A) making the diagram

Stn(A)

πA

��

Stnm(C)
ϕ̃

oo

πC

��

En(A)
ψ
// Enm(C)

(2)

commute, and by universality, we conclude that ψ̃ ◦ϕ̃= idStnm(C). On the other hand,
by the commutativity of the diagrams (1) and (2), we have that for any x ∈ Stn(A),

(ψ ◦πA ◦ ϕ̃ ◦ ψ̃)(x)= (πC ◦ ψ̃)(x)= (ψ ◦πA)(x).

Sinceψ is an isomorphism, we conclude that (ϕ̃◦ψ̃)(x)= xzx , where zx ∈K2(n, A).
The centrality of K2(n, A) then implies that the map x 7→ zx is a homomor-
phism Stn(A) → K2(n, A), which must be trivial as Stn(A) is a perfect group
and K2(n, A) is commutative. Thus, ϕ̃ ◦ ψ̃ = idStn(A), as required. It then follows
that K2(n, A)' K2(nm,C). �

Next, let us summarize the results of [Bak and Rehmann 1982] dealing with
relative K2 groups of associative rings (see Theorem 2.2 below). From now on, we
will always assume that n ≥ 3. First, we need to introduce some additional notation.
As above, let R be an associative unital ring. Given u ∈ R×, we define, for i 6= j ,
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the following standard elements of Stn(R):

wi j (u)= xi j (u)x j i (−u−1)xi j (u) and hi j (u)= wi j (u)wi j (−1).

Notice that the image πR(hi j (u)) in En(R) is the diagonal matrix with u as the
i-th diagonal entry, u−1 as the j-th diagonal entry, and 1s everywhere else on the
diagonal. We will also need the following noncommutative version of the usual
Steinberg symbols: for u, v ∈ R×, let

c(u, v)= h12(u)h12(v)h12(vu)−1.

One easily sees that πR(c(u, v)) is the diagonal matrix with uvu−1v−1 as its first
diagonal entry and 1s everywhere else on the diagonal. Let Un(R) be the subgroup
of Stn(R) generated by all the c(u, v) with u, v ∈ R×.

As in the commutative case, one can also consider relative versions of these
constructions. Let a be a two-sided ideal of R and

GLn(R, a)= ker(GLn(R)→ GLn(R/a))

be the congruence subgroup of level a. Define En(R, a) to be the normal subgroup
of En(R) generated by all elementary matrices ei j (a) with a ∈ a. Now letting

Stn(R, a)= ker(Stn(R)→ Stn(R/a)),

we have a natural homomorphism Stn(R, a)→ En(R, a), and we set

K2(n, R, a)= ker(Stn(R, a)→ En(R, a)).

Finally, let

Un(R, a) := 〈c(u, 1+ a) | u ∈ R×, 1+ a ∈ (1+ a)∩ R×〉

(notice this is contained in Stn(R, a)). We should point out that even though for
a noncommutative ring, the groups Un(R) and Un(R, a) may not lie in K2(n, R),
it is well known that any element of K2(n, R)∩Un(R) is automatically contained
in the center of Stn(R) [Milnor 1971, Corollary 9.3]. This will be needed in
Proposition 2.3 below.

Theorem 2.2 [Bak and Rehmann 1982, Theorem 2.9, Corollary 2.11]. Let R be
an associative unital ring. Suppose that a is a two-sided ideal contained in the
Jacobson radical J (R) of R and that R is additively generated by R×. Assume
n ≥ 3. Then the following are true:

(1) K2(n, R, a)⊂Un(R, a), and the canonical sequence below is exact:

1→Un(R, a)→Un(R)→Un(R/a)→ 1.
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(2) If , moreover, K2(n, R/a)⊂Un(R/a), then K2(n, R)⊂Un(R) and the natural
sequence

1→ K2(n, R, a)→ K2(n, R)→ K2(n, R/a)→ 1

is exact.

The theorem yields the following:

Proposition 2.3. Suppose that R is either a finite-dimensional algebra over an
algebraically closed field K or a finite ring with 2 ∈ R×. Then K2(n, R)⊂Un(R),
and consequently, K2(n, R) is a central subgroup of Stn(R).

Proof. Let J = J (R) be the Jacobson radical of R. To apply Theorem 2.2, we
need to verify that in both cases, R is additively generated by its units and that
K2(n, R/J )⊂Un(R/J ).

If R is a finite-dimensional algebra over K , then we can view R as a connected
algebraic ring over K , and it follows from [Rapinchuk 2011, Corollary 2.5] that R is
generated by R×.1 Now suppose that R is a finite ring. Since R is obviously artinian,
R/J is semisimple [Lam 2001, Theorem 4.14], so by the Artin–Wedderburn theorem
[Lam 2001, Theorem 3.5] and the fact that finite division rings are commutative
[Lam 2001, Theorem 13.1], we have

R/J ' Mn1(F1)⊕ · · ·⊕Mnr (Fr ),

where F1, . . . , Fr are finite fields with Fi 6= F2, the field of two elements, for all i as
2 ∈ R×. It follows that R/J is additively generated by its units. On the other hand,
the canonical map R→ R/J induces a surjective homomorphism R×→ (R/J )×,
which, combined with the fact that J lies in the linear span of R× [Lam 2001,
Lemma 4.3], yields that R is additively generated by R×.

Next, let us show that K2(n, R/J ) ⊂ Un(R/J ) in both cases. If R is a finite-
dimensional K -algebra, then as above R/J is semisimple. So since there are no
nontrivial division algebras over algebraically closed fields, the Artin–Wedderburn
theorem implies that

R/J ' Mn1(K )⊕ · · ·⊕Mns (K ).

Thus, in both cases, R/J is a direct sum of matrix algebras over fields. Since K2

commutes with finite direct sums, we may assume without loss of generality that
A := R/J ' Mm(F) with F a field. By Proposition 2.1, we have isomorphisms
ψ̃ : Stn(A) → Stnm(F) and ψ : En(A) → Enm(F) that induce an isomorphism

1All the background on algebraic rings needed in this paper can be found in [Rapinchuk 2011, §2].
M. Kassabov has also informed us that the notion of an algebraic ring actually goes back to [Greenberg
1964], where one can find proofs of some basic properties.
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K2(n, A)' K2(nm, F). Now let u ∈ F× and tu = diag(u, 1, . . . , 1) ∈ Mm(F). By
direct computation, one checks that

ψ̃(h A
12(tu))= hF

1,m+1(u),

and therefore, for u, v ∈ F×, we have

ψ̃(c(tu, tv))= c1,m+1(u, v),

where c1,m+1(u, v) = hF
1,m+1(u)h

F
1,m+1(v)h

F
1,m+1(vu)−1. On the other hand, by

Matsumoto’s theorem, the group K2(nm, F) is generated by the Steinberg symbols
c1,m+1(u, v) [Steinberg 1968]; consequently, we see K2(n, R/J ) ⊂ Un(R/J ), as
claimed. Hence, K2(n, R)⊂Un(R) by Theorem 2.2. As noted above, it now follows
from [Milnor 1971, Corollary 9.3] that K2(n, R) lies in the center of Stn(R). �

An important ingredient in the proof of Theorem 1 will be the following:

Proposition 2.4. Let k and K be fields of characteristic 0 with K algebraically
closed. Suppose that D is a finite-dimensional central division algebra over k, A
a finite-dimensional algebra over K , and f : D→ A a ring homomorphism with
Zariski-dense image. Then for n ≥ 3, K2(n, A) coincides with the subgroup

U ′n(A)=
〈
c(u, v) | u, v ∈ f (L×)

〉
,

where L is an arbitrary maximal subfield of D.

We begin with the following:

Lemma 2.5. Let A, D, and f be as above, and set C = f (k) (Zariski closure).
Then

A ' D⊗k C ' Ms(C) (3)

as K -algebras, where s2
= dimk D. Moreover, if L is any maximal subfield of D,

then the second isomorphism can be chosen so that L ⊗k C ' Ds(C), where
Ds(C)⊂ Ms(C) is the subring of diagonal matrices.

Proof. We start with the proof of the first isomorphism in (3). To begin, we note
that since k and K are both fields of characteristic 0, C is a finite-dimensional
algebra over K by [Rapinchuk 2011, Lemma 2.13, Proposition 2.14]. Moreover,
by [Greenberg 1964, Proposition 5.1], the natural inclusion C ↪→ A is a homo-
morphism of K -algebras (this also follows from the proof of [Rapinchuk 2011,
Proposition 2.14]). Now consider the map

θ : D⊗k C→ A, (x, c) 7→ f (x)c.

We claim that θ is an isomorphism. From the above remark, it is clear that θ
is a homomorphism of K -algebras (where D ⊗k C is endowed with the natural
K -algebra structure coming from C). For surjectivity, first note that since im θ
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contains f (D), it is Zariski-dense in A. On the other hand, let x1, . . . , xs2 be a
basis of D over k. Then

im θ = f (x1)C + · · ·+ f (xs2)C

and therefore is closed. Hence, θ is surjective. To prove injectivity, notice that since
D is a central simple algebra, ker θ = D⊗k c for some ideal c⊂C [Farb and Dennis
1993, Theorem 3.5]. On the other hand, since by construction the restriction θ |c is
an embedding, we have c= 0, and θ is injective.

Now let us consider the second isomorphism. First, since C is a commutative
artinian algebraic ring, by [Rapinchuk 2011, Proposition 2.20], we can write

C = C1× · · ·×Cr ,

where each Ci is a local commutative algebraic ring. Moreover, since tensor products
commute with finite products and Ms(C1× · · · ×Cr ) = Ms(C1)× · · · ×Ms(Cr ),
it suffices to establish the isomorphism when C is a local algebraic ring. So
suppose that is the case, and let J (C) be the Jacobson radical of C . Then it follows
from [Rapinchuk 2011, Corollary 2.6, Proposition 2.19] that C/J (C) ' K , so
composing f with the canonical map C → C/J (C), we obtain an embedding
k ↪→ K . Consequently, as K is algebraically closed, the division algebra D splits
over K , i.e., there exists an isomorphism

τ : D⊗k K
∼
−→ Ms(K ). (4)

Notice also if L is a maximal subfield of D, we can choose τ so that L⊗k K 'Ds(K ).
Indeed, since L is separable over k (as char k = 0) and [L : k] = s, we can write
L = k[X ]/( f ), where f is a separable polynomial of degree s. Then by the Chinese
remainder theorem, L⊗k K ' K s . But any subalgebra of Ms(K ) that is isomorphic
to K s is conjugate to Ds(K ) [Gille and Szamuely 2006, Lemma 2.2.9], so it follows
that τ can be composed with an inner automorphism of Ms(K ) to have the required
form.

Now consider the natural (surjective) map

D⊗k C→ D⊗k (C/J (C))= D⊗k K .

Since D is a central simple algebra, the same argument as above shows that the
kernel of this map is contained in the Jacobson radical J (D⊗k C), and the fact that
D⊗k K ' Ms(K ) is semisimple implies that it actually coincides with J (D⊗k C).
So by the Wedderburn–Malcev theorem [Pierce 1982, Corollary 11.6], there exists
a section

α : Ms(K )' D⊗k K ↪→ D⊗k C.
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We claim that the following map gives the required isomorphism:

β : Ms(K )⊗K C→ D⊗k C, m⊗ c 7→ α(m) · (1⊗ c).

Indeed, injectivity is proved by the same argument as above, and surjectivity
follows by dimension count. Thus, Ms(C) ' Ms(K ) ⊗K C ' D ⊗k C , and it
follows immediately from the above remarks that Ds(C)' L ⊗k C . �

Proof of Proposition 2.4. By Lemma 2.5, we have L ⊗k C ' Ds(C). Moreover,
L ⊗k C ' f (L). Indeed, since k ⊂ L , we have

f (L)⊂ θ(L ⊗k C)⊂ f (L).

On the other hand, the same argument as in the proof of Lemma 2.5 shows that
θ(L ⊗k C) is closed.

Next, since A ' Ms(C) and C is a finite-dimensional K -algebra, there exists by
Proposition 2.1 an isomorphism ψ̃ : Stn(A)→Stns(C) that induces an isomorphism
K2(n, A)' K2(ns,C). Now, C is a semilocal commutative ring that is additively
generated by its units, so K2(ns,C) coincides with the subgroup Uns(C) of Stns(C)
generated by the Steinberg symbols c1,s+1(u, v) taken with respect to the root α1,s+1

(i.e., c1,s+1(u, v)=h1,s+1(u)h1,s+1(v)h1,s+1(vu)−1) by [Stein 1973, Theorem 2.13].
As we noted in the proof of Proposition 2.3, we have

ψ̃(c(tu, tv))= c1,s+1(u, v),

where for u ∈ C×, we set tu = diag(u, 1, . . . , 1) ∈ Ms(C). Thus, K2(n, A) is
contained in the group generated by the symbols c(tu, tv). On the other hand,
since all of the tu are diagonal matrices, they lie in the image of L ⊗k C ; hence,
K2(n, A)⊂U ′n(A). Since clearly U ′n(A)⊂ K2(n, A), this concludes the proof. �

3. Abstract homomorphisms over noncommutative rings

The main goal of this section is to give the proof of Theorem 1. Before beginning
the argument, we would like to give an alternative statement of Theorem 1, which
can be generalized (in a somewhat weaker form) to (essentially) arbitrary associative
rings. First, we need to observe that if B is a finite-dimensional algebra over an
algebraically closed field K , then the elementary group En(B) has the structure
of a connected algebraic K -group. Indeed, using the regular representation of B
over K , it is easy to see that GLn(B) is a Zariski-open subset of Mn(B) and hence
an algebraic group over K . Now let us view B as a connected algebraic ring over K ,
and for i, j ∈ {1, . . . , n}, i 6= j , consider the regular maps

ϕi j : B→ GLn(B), b 7→ ei j (b).
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Set Wi j = imϕi j . Then each Wi j contains the identity matrix In ∈ GLn(B), and
by definition, En(B) is generated by the Wi j . So En(B) is a connected algebraic
group by [Borel 1991, Proposition 2.2].

Theorem 3.1. Suppose k and K are fields of characteristic 0 with K algebraically
closed, D is a finite-dimensional central division algebra over k, and n is an
integer≥3. Let ρ : En(D)→GLm(K ) be a finite-dimensional linear representation,
and set H = ρ(En(D)) (Zariski closure). Then there exist a finite-dimensional
associative K -algebra B, a ring homomorphism f : D→ B with Zariski-dense
image, and a morphism σ : En(B)→ H of algebraic K -groups such that

ρ = σ ◦ F,

where F : En(D)→ En(B) is the group homomorphism induced by f .

We also have the following result for general associative rings:

Theorem 3.2. Suppose R is an associative ring with 2 ∈ R×, K is an algebraically
closed field of characteristic 0, and n is an integer ≥ 3. Let ρ : En(R)→ GLm(K )
be a finite-dimensional linear representation, set H = ρ(En(R)), and let H◦ denote
the connected component of H. If the unipotent radical of H◦ is commutative,
there exist a finite-dimensional associative K -algebra B, a ring homomorphism
f : R→B with Zariski-dense image, and a morphism σ : En(B)→ H of algebraic
K -groups such that for a suitable finite-index subgroup 1⊂ En(R), we have

ρ|1 = (σ ◦ F)|1,

where F : En(R)→ En(B) is the group homomorphism induced by f .

As we indicated in the introduction, the proofs of Theorems 3.1 and 3.2 are based
on a natural extension of the approach developed in our earlier paper [Rapinchuk
2011]. More precisely, we will first associate to ρ an algebraic ring A, then show
that ρ can be lifted to a representation τ̃ : Stn(A)→ H of the Steinberg group,
and finally use the results of Section 2 to verify that σ̃ descends to an abstract
representation of En(A). Then, to conclude the argument, we will prove that this
abstract representation is actually a morphism of algebraic groups.

We begin with the construction of the algebraic ring A attached to a given
representation ρ.

Proposition 3.3. Suppose R is an associative ring, K is an algebraically closed
field, and n ≥ 3. Given a representation ρ : En(R)→ GLm(K ), there exists an
associative algebraic ring A together with a homomorphism of abstract rings
f : R→ A having Zariski-dense image such that for all i, j ∈ {1, . . . , n}, i 6= j ,
there is an injective regular map ψi j : A→ H into H := ρ(En(R)) satisfying

ρ(ei j (t))= ψi j ( f (t)) (5)

for all t ∈ R.
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Proof. This statement goes back to [Kassabov and Sapir 2009] (see also [Rapinchuk
2011, Theorem 3.1]). For the sake of completeness, we indicate the main points of
the construction. Let A = ρ(e13(R)). If α : A× A→ A denotes the restriction of
the matrix product in H to A, it is clear (A,α) is a commutative algebraic subgroup
of H . We let f : R→ A be the map defined by t 7→ ρ(e13(t)). From the definition,
it follows that

α( f (t1), f (t2))= f (t1+ t2)

for all t1, t2 ∈ R. To define the multiplication operation µ : A× A→ A, we will
need the elements

w12 = e12(1)e21(−1)e12(1) and w23 = e23(1)e32(−1)e23(1)

(notice that these are simply the images under πR of the elements wi j (1) considered
in Section 2). By direct computation, one sees that

w−1
12 e13(r)w12 = e23(r), w23e13(r)w−1

23 = e12(r),

and
[e12(r), e23(s)] = e13(rs)

for all r, s ∈ R, where [g, h] = ghg−1h−1. Now let µ : A× A→ H be the regular
map defined by

µ(a1, a2)= [ρ(w23)a1ρ(w23)
−1, ρ(w12)

−1a2ρ(w12)].

Then the above relations yield

µ( f (t1), f (t2))= f (t1t2),

so, in particular, µ( f (R)× f (R))⊂ f (R), which implies that µ(A× A)⊂ A and
allows us to view µ as a regular map µ : A×A→ A. Since by our assumption R is a
(unital) associative ring and f has Zariski-dense image, it follows that (A,α,µ) is a
(unital) associative algebraic ring as defined in [Rapinchuk 2011, §2]. Furthermore,
by our construction, (5) obviously holds for the inclusion map ψ13 : A→ H . Finally,
using an appropriate element wi j , we can conjugate any root subgroup ei j (R)
into e13(R), from which the existence of all the other maps ψi j follows. �

Remark 3.4. Observe that if R is an infinite division ring, then the algebraic
ring A constructed in Proposition 3.3 is automatically connected. Indeed, the
connected component A◦ is easily seen to be a two-sided ideal of A. So if A 6= A◦,
then f −1(A◦) would be a proper two-sided ideal of finite index in R, which is
impossible. In particular, we see that in the situation of Theorem 3.1, the algebraic
ring associated to ρ is connected.
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Next, we show that the representation ρ can be lifted to a representation of the
Steinberg group Stn(A). The precise statement is given by the following proposition:

Proposition 3.5. Suppose R is an associative ring, K is an algebraically closed
field, and n ≥ 3, and let ρ : En(R)→ GLm(K ) be a representation. Let A and
f : R→ A be the algebraic ring and ring homomorphism constructed in Proposition

3.3. Then there exists a group homomorphism τ̃ : Stn(A)→ H ⊂ GLm(K ) such
that τ̃ : xi j (a) 7→ψi j (a) for all a ∈ A and all i, j ∈ {1, . . . , n}, i 6= j . Consequently,
τ̃ ◦ F̃ = ρ ◦πR , where F̃ : Stn(R)→ Stn(A) is the homomorphism induced by f .

Proof. This proposition is proved in exactly the same way as [Rapinchuk 2011,
Proposition 4.2]. We simply note that since Stn(A) is generated by the symbols
xi j (a) subject to the relations (R1)–(R3) given in Section 2, to establish the existence
of τ̃ , it suffices to verify that relations (R1)–(R3) are satisfied if the xi j (a) are
replaced by ψi j (a), which follows from (5) and the fact that f has Zariski-dense
image. For the second statement, we observe that the maps τ̃ ◦ F̃ and ρ ◦πR both
send the symbol xi j (s) to ψi j ( f (s))= ρ(ei j (s))= (ρ ◦πR)(xi j (s)), so they must
coincide on Stn(R). �

To analyze the representation σ̃ that we have just constructed, we will need some
additional information on the structure of the group Stn(A).

Proposition 3.6. Let K be an algebraically closed field of characteristic 0 and n
an integer ≥ 3. Suppose A is an associative algebraic ring over K such that 2∈ A×,
and let A◦ denote the connected component of 0A. Then

(i) Stn(A)= Stn(A◦)× P , where P is a finite group and

(ii) K2(n, A◦) is a central subgroup of Stn(A◦).

Proof. (i) First, since char K = 0, by [Rapinchuk 2011, Proposition 2.14], we have
A = A◦⊕ S with S a finite ring. So

Stn(A)= Stn(A◦)×Stn(S),

and we need to show that Stn(S) is a finite group. Now, since En(S) is obvi-
ously a finite group and K2(n, S) is by definition the kernel of the canonical map
πS : Stn(S)→ En(S), we see that the finiteness of Stn(S) is equivalent to that
of K2(n, S). On the other hand, since 2∈ S×, Proposition 2.3 implies that K2(n, S)
is a central subgroup of Stn(S). So we can use the argument given in the proof
of [Rapinchuk 2011, Proposition 4.5] and consider the Hochschild–Serre spectral
sequence

H 1(Stn(S),Q/Z)→ H 1(K2(8, S),Q/Z)Stn(S)→ H 2(En(S),Q/Z)
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(where all groups act trivially on Q/Z) corresponding to the short exact sequence

1→ K2(n, S)→ Stn(S)
πS
−→ En(S)→ 1

to conclude that K2(n, S) is finite.

(ii) By [Rapinchuk 2011, Proposition 2.14], A◦ is a finite-dimensional K -algebra,
so the assertion follows from Proposition 2.3. �

Remark 3.7. We would like to point out that the assumption that 2 ∈ A× is needed
to guarantee that the finite ring S that appears in the proof of Proposition 3.6(i) above
is additively generated by its units, which then enables us to use Proposition 2.3 to
conclude that K2(n, S) is a central subgroup of Stn(S). If S is a finite commutative
ring, then, as we show in [Rapinchuk 2011, Proposition 4.5], this assumption is not
needed since in that case S can be written as a finite product of commutative local
rings, which are automatically generated by their units.

To complete the proofs of Theorems 3.1 and 3.2, the basic idea will be to show
that the homomorphism τ̃ constructed in Proposition 3.5 descends to a (rational)
representation of En(A). Let us make this more precise. Given a representation
ρ : En(R)→ GLm(K ), let f : R→ A be the ring homomorphism associated to ρ
(Proposition 3.3), and let F̃ : Stn(R)→Stn(A) and F : En(R)→ En(A) denote the
group homomorphisms induced by f . Then under the hypotheses of Theorems 3.1
and 3.2, we have Stn(A) = Stn(A◦) (Remark 3.4) and Stn(A) = Stn(A◦) × P
(Proposition 3.6), respectively, so in both cases, 1̃ := F̃−1(Stn(A◦)) and1 :=πR(1̃)

are finite-index subgroups of Stn(R) and En(R). Moreover, F(1)⊂ En(A◦) clearly.
Thus, letting σ̃ denote the restriction of τ̃ to Stn(A◦), we see that the solid arrows in

1̃
F̃
//

πR

��

Stn(A◦)

πA◦

��
σ̃

  

1

ρ

**

F
// En(A◦)

σ

((
H◦

(6)

form a commutative diagram. In the remainder of this section, we will show that
under our assumptions, there exists a group homomorphism σ : En(A◦)→ H◦ (in
fact, a morphism of algebraic groups) making the full diagram commute. In the sit-
uation of Theorem 3.1, the existence of the required abstract homomorphism σ will
be shown in Proposition 3.8 below. For Theorem 3.2, we will first need to establish
the somewhat weaker result that there exists a homomorphism σ : En(A◦)→ H
such that σ ◦πA◦ = ν ◦ σ̃ , where Z(H◦) is the center of H◦, H = H◦/Z(H◦), and
ν : H◦→ H is the canonical map (see Proposition 3.10).
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Proposition 3.8. Suppose k and K are fields of characteristic 0 with K alge-
braically closed, D is a finite-dimensional central division algebra over k, and
n is an integer ≥ 3. Let ρ : En(D)→ GLm(K ) be a representation, and let A
denote the algebraic ring associated to ρ (Proposition 3.3). Then A = A◦ is a
finite-dimensional K -algebra and there exists a homomorphism of abstract groups
σ : En(A◦)→ H◦ making the diagram (6) commute.

Proof. We have A= A◦ by Remark 3.4, and A◦ is a finite-dimensional K -algebra by
[Rapinchuk 2011, Proposition 2.14]. Next, by Proposition 2.4, K2(n, A) coincides
with the subgroup

U ′n(A)= 〈c(u, v) | u, v ∈ f (L×)〉

of Stn(A), where L is an arbitrary maximal subfield of D and f : D→ A is the ring
homomorphism associated to ρ. Now, from the construction of σ̃ and the definition
of c(u, v), we have

σ̃ (c(u, v))= H12(u)H12(v)H12(vu)−1,

where for r ∈ A×, we set

H12(r)=W12(r)W12(−1) and W12(r)= ψ12(r)ψ21(−r−1)ψ12(r).

By [Rapinchuk 2011, Proposition 2.4], the map A×→ A×, t 7→ t−1 is regular,
which implies that the map

2 : A×× A×→ H, (u, v) 7→ τ̃ (c(u, v))

is also regular. On the other hand, as we observed earlier, πD(hi j (u)) ∈ En(D) is a
diagonal matrix with u as the i-th diagonal entry, u−1 as the j-th diagonal entry,
and 1s everywhere else on the diagonal. In particular, for u, v ∈ L×, it follows that

πD(h12(u)h12(v)h12(vu)−1)= 1.

So by Proposition 3.5,

σ̃ (c( f (u), f (v)))= ρ(πD(h12(u)h12(v)h12(vu)−1))= 1

for all u, v ∈ L×. By the regularity of 2, we obtain that σ̃ (c(a, b)) = 1 for all
a, b ∈ f (L×), and consequently, σ̃ vanishes on K2(n, A). Since the canonical
homomorphism πA : Stn(A) → En(A) is surjective and K2(n, A) = kerπA by
definition, the existence of σ now follows. �

The proof of Theorem 3.2 will require the following proposition, which contains
analogs of results established in [Rapinchuk 2011, §5]:

Proposition 3.9. Suppose R is an associative ring with 2 ∈ R×, K is an alge-
braically closed field of characteristic 0, and n ≥ 3. Let ρ : En(R)→GLm(K ) be a
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representation, set H = ρ(En(R)), and let A denote the algebraic ring associated
to ρ. Then the following hold:

(i) The group H◦ coincides with σ̃ (Stn(A◦)) and is its own commutator.

(ii) Let U and Z(H◦) be the unipotent radical and center of H◦, respectively. If U
is commutative, then Z(H◦)∩U = {e}, and consequently, Z(H◦) is finite and
is contained in any Levi subgroup of H◦.

Proof. (i) It follows from Proposition 3.5 that σ̃ (Stn(A◦)) coincides with the (ab-
stract) group H⊂ H generated by all theψi j (A◦)with i, j ∈{1, . . . , n}, i 6= j . Since
ψα(A◦) is clearly a connected subgroup of H , by [Borel 1991, Proposition 2.2], H is
Zariski-closed and connected; hence, H⊂H◦. On the other hand, by Proposition 3.6,
Stn(A◦) is a finite-index subgroup of Stn(A), from which it follows that σ̃ (Stn(A))
is Zariski-closed. Since σ̃ (Stn(A)) contains ρ(En(R)), it is Zariski-dense in H
and therefore coincides with H . So H is a closed subgroup of finite index in H ;
hence, H⊃ H◦, and consequently, H= H◦. Furthermore, from the definition of
the Steinberg group, one easily sees that Stn(A◦) coincides with its commutator
subgroup, so the same is true for H◦.

(ii) Using the fact that H◦ coincides with its commutator subgroup, one can now
apply the argument given in the proof of [Rapinchuk 2011, Proposition 5.5]. �

Now set H = H◦/Z(H◦). Since Z(H◦) is a closed normal subgroup of H◦,
H is an (affine) algebraic group and the canonical map ν : H◦→ H is a morphism
of algebraic groups [Borel 1991, Theorem 6.8].

Proposition 3.10. Suppose R is an associative ring with 2 ∈ R×, K is an alge-
braically closed field of characteristic 0, and n ≥ 3. Let ρ : En(R)→GLm(K ) be a
representation, set H = ρ(En(R)), and let A denote the algebraic ring associated
to ρ. Then A◦ is a finite-dimensional K -algebra and there exists a homomorphism
σ : En(A◦)→ H such that σ ◦πA◦ = ν ◦ σ̃ .

Proof. Since char K = 0, by [Rapinchuk 2011, Proposition 2.14], A◦ is a finite-
dimensional K -algebra. Furthermore, H◦ = σ̃ (Stn(A◦)) by Proposition 3.9 and
K2(n, A◦) = kerπA◦ is a central subgroup of Stn(A◦) by Proposition 2.3, from
which the existence of σ follows. �

The remaining step in the proof is to show that the (abstract) homomorphisms
σ : En(A◦)→ H◦ and σ : En(A◦)→ H constructed in Propositions 3.8 and 3.10,
respectively, are actually morphisms of algebraic groups (see Proposition 3.12 be-
low). In the latter case, this will allow us to lift σ to a morphism of algebraic groups
σ : En(A◦)→ H◦ making the diagram (6) commute. Our proof of rationality here
will deviate from the approach of [Rapinchuk 2011] as rather than using results about
the “big cell” of En(A◦), we will instead apply the following geometric lemma:
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Lemma 3.11. Let X , Y , and Z be irreducible varieties over an algebraically closed
field K of characteristic 0. Suppose s : X→Y and t : X→ Z are regular maps with
s dominant such that for any x1, x2 ∈ X with s(x1)= s(x2), we have t (x1)= t (x2).
Then there exists a rational map h : Y 99K Z such that h ◦ s = t on a suitable open
subset of X.

Proof. Let W ⊂ X × Y × Z be the subset

W = {(x, y, z) | s(x)= y, t (x)= z}.

Notice that W is the graph of the morphism

ϕ : X→ Y × Z , x 7→ (s(x), t (x)),

so W is an irreducible variety isomorphic to X . Now consider the projection
prY×Z : X × Y × Z → Y × Z , and let U = prY×Z (W ) and V = U , where the bar
denotes the Zariski closure. Then V is an irreducible variety. Moreover, U is
constructible by [Humphreys 1975, Theorem 4.4] so in particular contains a dense
open subset P of V , which is itself an irreducible variety. Let now p : P→Y be the
projection to the first component. We claim that p gives a birational isomorphism
between P and Y . From our assumptions, we see that p is dominant, and since
char K = 0, p is also separable. So it follows from [Humphreys 1975, Theorem
4.6] that to show that p is birational, we only need to verify that it is injective.
Consider u1 = (y1, z1) and u2 = (y2, z2) in P , with y1 = y2. By our construction,
there exist x1, x2 ∈ X such that s(x1)= y1, t (x1)= z1, s(x2)= y2, and t (x2)= z2.
Since s(x1)= s(x2), we have t (x1)= t (x2), so u1 = u2, as needed.

Since p is birational, we can now take h = πZ ◦ p−1
: Y 99K Z , where we let

πZ : Y × Z→ Z be the projection. �

Now let ρ : En(R)→ GLm(K ) be a representation as in Theorem 3.1 or 3.2,
and let A denote the algebraic ring associated to ρ. Also let Q be the set of all
pairs (i, j) with 1≤ i, j ≤ n, i 6= j . Then, as we already observed at the beginning
of this section, En(A◦) is the connected algebraic group generated by the images
Wq = imϕq of the regular maps

ϕq : A◦→ GLn(A◦), a 7→ eq(a)

for all q ∈ Q. In particular, [Borel 1991, Proposition 2.2] implies that there exists a
finite sequence (α(1), . . . , α(v)) in Q such that

En(A◦)=W ε1
α(1) · · ·W

εv
α(v),

where each εi =±1. Let

X =
v∏

i=1

(A◦)α(i)
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be the product of v copies of A◦ indexed by the α(i), and define a regular map
s : X→ En(A◦) by

s(aα(1), . . . , aα(v))= ϕα(1)(aα(1))ε1 · · ·ϕα(v)(aα(v))εv . (7)

Also let

t : X→ H◦, t (aα(1), . . . , aα(v))= ψα(1)(aα(1))ε1 · · ·ψα(v)(aα(v))εv , (8)

where the ψα(i) are the regular maps from Proposition 3.3. With this setup, we can
now prove:

Proposition 3.12. The homomorphisms σ : En(A◦)→ H◦ and σ : En(A◦)→ H
constructed in Propositions 3.8 and 3.10, respectively, are morphisms of algebraic
groups.

Proof. We will only consider σ as the argument for σ is completely analogous. Set
Y = En(A◦) and Z = H◦, and let s : X → Y and t : X → Z be the regular maps
defined in (7) and (8). From the construction of σ , it is clear that (σ ◦ s)(x)= t (x),
so in particular, s(x1)= s(x2) for x1, x2 ∈ X implies that t (x1)= t (x2). Hence, by
Lemma 3.11, σ is a rational map. Therefore, there exists an open subset V ⊂ En(A◦)
such that σ |V is regular. So it follows from the next lemma that σ : En(A◦)→ H◦

is a morphism. �

Lemma 3.13 [Rapinchuk 2011, Lemma 6.4]. Let K be an algebraically closed
field, and let G and G′ be affine algebraic groups over K with G connected. Suppose
f : G→ G′ is an abstract group homomorphism,2 and assume there exists a Zariski-
open set V ⊂ G such that ϕ := f |V is a regular map. Then f is a morphism of
algebraic groups.

Theorem 3.1 now follows from Propositions 3.8 and 3.12 with B= A◦ (= A).
For Theorem 3.2, we again take B = A◦, and it remains to show that one can
lift the morphism σ : En(A◦)→ H to a morphism σ : En(A◦)→ H◦ making the
diagram (6) commute. This is accomplished through a suitable modification of the
argument used in the proof of [Rapinchuk 2011, Proposition 6.6]. For this, we need
some analogs of results contained in [Rapinchuk 2011, §6] regarding the structure
of En(B) as an algebraic K -group, where B is an arbitrary finite-dimensional
algebra over an algebraically closed field K . Let J = J (B) be the Jacobson radical
of B. Then by the Wedderburn–Malcev theorem [Pierce 1982, Corollary 11.6],
there exists a semisimple subalgebra B ⊂ B such that B = B ⊕ J as K -vector
spaces and B ' B/J as K -algebras. Furthermore, since K is algebraically closed,
the Artin–Wedderburn theorem implies that

B = Mn1(K )× · · ·×Mnr (K ).

2Here we tacitly identify G and G′ with the corresponding groups G(K ) and G′(K ) of K -points.



Representations of algebraic groups and deformations 1705

Now consider the group homomorphism En(B)→ En(B) induced by the canonical
map B→ B/J (notice that this is a morphism of algebraic groups as B→ B/J is
a homomorphism of algebraic rings: see [Rapinchuk 2011, Lemma 2.9]), and let
En(J ) be its kernel. It is clear that En(J ) is a closed normal subgroup of En(B).
Note that

En(Mni (K ))' Enni (K )' SLnni (K ),

so En(B) is a semisimple simply connected algebraic group. It is also easy to see
that for any a, b ≥ 1, we have

[GLn(B, J a),GLn(B, J b)] ⊂ GLn(B, J a+b),

where GLn(B, J s)= ker(GLn(B)→ GLn(B/J s)). Since J is a nilpotent ideal, it
follows that En(J ) is a nilpotent group. In particular, we obtain that

En(B)= En(J )o E(B) (9)

is a Levi decomposition of En(B) [Rapinchuk 2011, Proposition 6.5].
Now, using the Levi decomposition (9) for B = B as well as the fact that the

center Z(H◦) is finite (Proposition 3.9), one can directly imitate the argument of
[Rapinchuk 2011, Proposition 6.6] to conclude the proof of Theorem 3.2.

Finally, to derive Theorem 1 from Theorem 3.1, we first note that by Lemma 2.5,
we have K -algebra isomorphisms

B' D⊗k C ' Ms(C),

where s2
= dimk D and C = f (k) (as above, f : D→B is the ring homomorphism

associated to ρ). Consequently, En(B)' En(Ms(C))' Ens(C). Moreover, since
C is a finite-dimensional K -algebra, in particular a semilocal commutative ring,
Ens(C) ' SLns(C) [Matsumoto 1966, Corollary 2]. So since G = SLn,D is K -
isomorphic to SLns [Platonov and Rapinchuk 1994, 2.3.1], we see En(B)' G(C).
Letting fC : k→ C be the restriction of f to k, we now obtain Theorem 1.

4. Applications to representation varieties
and deformations of representations

In this section, we will prove Theorem 2. To estimate the dimension of the character
variety Xn(0) for an elementary subgroup 0 as in the statement of Theorem 2, we
will exploit the well known connection, going back to A. Weil, between the tangent
space of Xn(0) at a given point and the 1-cohomology of 0 with coefficients in the
space of a naturally associated representation. We then use the results of [Rapinchuk
2011] on standard descriptions of representations of 0 to relate the latter space
to a certain space of derivations of the finitely generated ring R used to define 0
(see Proposition 4.4). Since the dimensions of spaces of derivations are finite and
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are bounded by a constant depending only on R, we obtain the required bound
on dim Xn(0). Throughout this section, we will work over a fixed algebraically
closed field K of characteristic 0.

We begin by summarizing some key definitions and basic properties related
to representation and character varieties, mostly following the first two chapters
of [Lubotzky and Magid 1985]. Let 0 be a finitely generated group, and fix an
integer n ≥ 1. Recall that the n-th representation scheme of 0 is the functor Rn(0)

from the category of commutative K -algebras to the category of sets defined by

Rn(0)(A)= Hom(0,GLn(A)).

More generally, if G is a linear algebraic group over K , we let the representation
scheme of 0 with values in G be the functor R(0,G) defined by

R(0,G)(A)= Hom(0,G(A)).

Because for any commutative K -algebra A, a homomorphism ρ : 0→ GLn(A) is
determined by the images of the generators, subject to the defining relations of 0,
one shows that Rn(0) is an affine K -scheme represented by a finitely generated
K -algebra An(0). Similarly, R(0,G) is an affine K -scheme represented by a
finitely generated K -algebra A(0,G) [Lubotzky and Magid 1985, Proposition 1.2].
The set Rn(0)(K ) of K -points of Rn(0) is then denoted Rn(0) and is called the
n-th representation variety of 0. It is an affine variety over K with coordinate
ring An(0)= An(0)red, the quotient of An(0) by its nilradical. The representation
variety R(0,G) is defined analogously.

Now let ρ0 ∈ R(0,G). To describe the Zariski tangent space of R(0,G) at ρ0,
denoted Tρ0(R(0,G)), we will use the algebra of dual numbers K [ε] (where
ε2
= 0). More specifically, it is well known that R(0,G)(K [ε]) is the tangent

bundle of R(0,G), and therefore, Tρ0(R(0,G)) can be identified with the fiber
over ρ0 of the map µ : R(0,G)(K [ε])→R(0,G)(K ) induced by the augmentation
homomorphism K [ε]→ K , ε 7→ 0 [Borel 1991, AG 16.2]. In other words, we have

Tρ0(R(0,G))= {ρ ∈ Hom(0,G(K [ε])) | µ ◦ ρ = ρ0}.

For us, it will be useful to have the following alternative description of Tρ0(R(0,G)).
Let g̃ be the Lie algebra of G. Notice that g̃ has a natural 0-action given by

γ · x = Ad(ρ0(γ ))x

for γ ∈ 0 and x ∈ g̃, where Ad : G(K )→GL(g̃) is the adjoint representation. Now
Tρ0(R(0,G)) can be identified with the space Z1(0, g̃) of 1-cocycles [Lubotzky
and Magid 1985, Proposition 2.2]. Indeed, an element c ∈ Z1(0, g̃) is by definition
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a map c : 0→ g̃ such that

c(γ1γ2)= c(γ1)+Ad(ρ0(γ1))c(γ2).

On the other hand, we have an isomorphism G(K [ε])' g̃oG given by

B+Cε 7→ (C B−1, B).

Hence, an element ρ ∈ Tρ0(R(0,G)) is a homomorphism ρ : 0→ g̃o G whose
projection to the second factor is ρ0. In other words, it arises from a map c : 0→ g̃

such that the map
0→ g̃oG, γ 7→ (c(γ ), ρ0(γ ))

is a group homomorphism. With the above identification, this translates into the
condition

c(γ1γ2)= c(γ1)+Ad(ρ0(γ1))c(γ2),

giving the required isomorphism of Tρ0(R(0,G)) with Z1(0, g̃). Also notice that
for any finite-index subgroup 1 ⊂ 0 (which is automatically finitely generated),
the natural restriction maps R(0,G)→R(1,G) and Z1(0, g̃)→ Z1(1, g̃) induce
a commutative diagram

Tρ0(R(0,G)) //

��

Z1(0, g̃)

��

Tρ0(R(1,G)) // Z1(1, g̃)

where the horizontal maps are the isomorphisms described above.
Next, let us recall a characterization of the space B1(0, g̃) of 1-coboundaries

that will be used later; for this, we need to consider the action of G(K ) on R(0,G).
Given ρ0 ∈ R(0,G), let ψρ0 : G(K )→ R(0,G) be the orbit map, i.e., the map
defined by

ψρ0(T )= Tρ0T−1, T ∈ G(K ).

Direct computation shows that under the isomorphism Tρ0(R(0,G))' Z1(0, g̃), the
image of the differential (dψρ0)e : Te(G)→ Tρ0(R(0,G))⊂ Tρ0(R(0,G)) consists
of maps τ : 0→ g̃ such that there exists A ∈ g̃ with

τ(γ )= A−Ad(ρ0(γ ))A

for all γ ∈ 0, i.e., the image coincides with B1(0, g̃) [Lubotzky and Magid 1985,
Proposition 2.3]. In fact, if O(ρ0) is the orbit of ρ0 in R(0,G) under the action
of G(K ), then B1(0, g̃) can be identified with Tρ0(O(ρ0))⊂Tρ0(R(0,G)) [Lubotzky
and Magid 1985, Corollary 2.4].
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As a special case of the preceding constructions, we can consider the action
of GLn(K ) on Rn(0). The n-th character variety of 0, denoted Xn(0), is by
definition the (categorical) quotient of Rn(0) by GLn(K ); i.e., it is the affine K -
variety with coordinate ring An(0)

GLn(K ). Let π : Rn(0)→ Xn(0) be the canonical
map. Then each fiber π−1(x) contains a semisimple representation, and moreover,
if ρ1, ρ2 ∈ Rn(0) are semisimple with π(ρ1) = π(ρ2), then ρ1 = Tρ2T−1 for
some T ∈ GLn(K ). In particular, we see that π induces a bijection between
the isomorphism classes of semisimple representations and the points of Xn(0)

[Lubotzky and Magid 1985, Theorem 1.28].
We turn to the proof of Theorem 2. In the remainder of this section, 0 will be the

elementary subgroup E(8, R)⊂G(R), where8 is a reduced irreducible root system
of rank ≥ 2, G a universal Chevalley–Demazure group scheme of type 8, and R a
finitely generated commutative ring such that (8, R) is a nice pair. By recent work
of Ershov, Jaikin-Zapirain, and Kassabov [2011], it is known that 0 has Kazhdan’s
property (T). In particular, 0 is finitely generated and satisfies the condition

for any finite-index subgroup 1⊂ 0, the abelianization 1ab
=1/[1,1] is finite

(FAb)
[de la Harpe and Valette 1989]. This has the following consequence:

Proposition 4.1 [Rapinchuk 1999, Proposition 2]. Let0 be a group satisfying (FAb).
For any n ≥ 1, there exists a finite collection G1, . . . ,Gd of algebraic subgroups of
GLn(K ) such that for any completely reducible representation ρ : 0→ GLn(K ),
the Zariski closure ρ(0) is conjugate to one of the Gi . Moreover, for each i , the
connected component G◦i is a semisimple group.

Thus, if we denote by Rn(0)ss the set of completely reducible representations
ρ : 0→ GLn(K ), we have3

Rn(0)ss =
⋃

i∈{1,...,d},
g∈GLn(K )

gR′(0,Gi )g−1,

where for an algebraic subgroup G⊂ GLn(K ), we set

R′(0,G)= {ρ : 0→ G | ρ(0)= G}.

Therefore, letting π : Rn(0)→ Xn(0) be the canonical map, we obtain that

Xn(0)=

d⋃
i=1

π(R′(0,Gi )). (10)

3Observe that if G ⊂ GLn(K ) is an algebraic subgroup such that G◦ is semisimple, then G is
completely reducible; hence, any representation ρ : 0 → GLn(K ) with ρ(0) = G is completely
reducible.
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Notice that if G⊂ GLn(K ) is an algebraic group such that G◦ is semisimple, then
R′(0,G) is an open subvariety of R(0,G). Indeed, let

R′′(0,G)= {ρ : 0→ G | ρ(0)⊃ G◦}.

Since G◦ is semisimple, R′′(0,G) is easily seen to be an open subvariety in R(0,G)

[Rapinchuk 1998, Lemma 4]. On the other hand, we obviously have

R′(0,G)= R′′(0,G)∩
(
R(0,G) \

⋃l
i=1 R(0,Hi )

)
,

where H1, . . . ,Hl are the algebraic subgroups of G such that

G ) Hi ⊃ G◦.

Now let W ⊂ Xn(0) be an irreducible component of maximal dimension so that
dim Xn(0) = dim W . Then it follows from (10) that we can find an irreducible
component V of some R′(0,Gi ) such that π(V ) = W . Since π |V is dominant
and separable (as char K = 0), it follows from [Borel 1991, AG 17.3] that there
exists ρ0 ∈ V that is a simple point (of R′(0,Gi )) such that π(ρ0) is simple and
the differential

(dπ)ρ0 : Tρ0(V )→ Tπ(ρ0)(W ) (11)

is surjective. Next, let ψρ0 : Gi → R(0,Gi ) be the orbit map. By the construction
of π , we have (π ◦ψρ0)(T )= π(ρ0) for any T ∈ Gi , so d(π ◦ψρ0)e = 0. On the
other hand, as we noted above, the image of the differential (dψρ0)e is the space
B = B1(0, g̃i ), where g̃i is the Lie algebra of Gi with 0-action given by Ad ◦ ρ0.
Since ρ0 is a simple point, it lies on a unique irreducible component of R′(0,Gi ), so
it follows that the image ofψρ0 (i.e., the orbit of ρ0) is contained in V . Consequently,
(11) factors through

Tρ0(V )/B→ Tπ(ρ0)(W ).

Since obviously dimK Tρ0(V )≤ dimK Tρ0(R(0,Gi )) and

Tρ0(R(0,Gi ))' Z1(0, g̃),

we therefore obtain that

dim Xn(0)= dim W ≤ dimK H 1(0, g̃i ). (12)

Thus, the proof of Theorem 2 is now reduced to considering the following situation.
Suppose ρ0 : 0→GLn(K ) is a completely reducible representation, set G= ρ0(0)

(note that the connected component G◦ is semisimple), and let g̃ be the Lie algebra
of G, considered as a 0-module via Ad ◦ ρ0. We need to give an upper bound on
dimK H 1(0, g̃). This will be made more precise in Proposition 4.4 below after
some preparatory remarks.
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First, notice that for the purpose of estimating dimK H 1(0, g̃), we may compose
ρ0 with the adjoint representation and assume without loss of generality that the
group G is adjoint. Now, since G◦ is semisimple, ρ0 has a standard description by
[Rapinchuk 2011, Theorem 6.7], i.e., there exist a commutative finite-dimensional
K -algebra A0, a ring homomorphism

f0 : R→ A0 (13)

with Zariski-dense image, and a morphism of algebraic groups

θ : G(A0)→ G (14)

such that on a suitable finite-index subgroup 1⊂ 0, we have

ρ0|1 = (θ ◦ F0)|1, (15)

where F0 : 0→ G(A0) is the group homomorphism induced by f0. Moreover, it
follows from [Rapinchuk 2011, Proposition 5.3] that θ(G(A0))= G◦.

Next, let G1, . . . ,Gr be the (almost) simple components of G◦ [Borel 1991,
Proposition 14.10]. Since G◦ is adjoint, the product map

G1× · · ·×Gr → G◦

is an isomorphism. The following lemma gives a more detailed description of A0:

Lemma 4.2. The algebraic ring A0 is isomorphic to the product K × · · ·× K︸ ︷︷ ︸
r copies

.

Proof. Let J0 be the Jacobson radical of A0. Since G◦ is semisimple (in particu-
lar, reductive), J0 = {0} by [Rapinchuk 2011, Lemma 5.7], and consequently by
[Rapinchuk 2011, Proposition 2.20], we have

A0 ' K (1)
× · · ·× K (s),

where K (i)
' K for all i . Thus, G(A0)=G(K (1))×· · ·×G(K (s)). As we observed

above, the map θ is surjective, so since G(K ) is an almost simple group, it follows
that s ≥ r . On the other hand, by [Rapinchuk 2011, Theorem 3.1], for each
root α ∈8, there exists an injective map ψα : A0→ G such that

θ(eα(a))= ψα(a), (16)

where eα(A0) is the 1-parameter root subgroup of G(A0) corresponding to the root α
[Rapinchuk 2011, Proposition 4.2]. Now if s > r , then θ would kill some simple
component G(K (i)) of G(A0). Since G(K (i)) intersects each root subgroup eα(A0),
the maps ψα would not be injective, a contradiction. So s = r , as claimed. �
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Thus, we can write f0 : R→ A0 as

f0(t)= ( f (1)0 (t), . . . , f (r)0 (t)) (17)

for some ring homomorphisms f (i)0 : R→ K .

Remark 4.3. Notice that for each i , the image θ(G(K (i))) intersects a unique sim-
ple factor of G◦, say θ(G(K (i)))∩Gi 6= {e}, and then θ(G(K (i)))=Gi . Furthermore,
it follows from the proof of Lemma 4.2 that θ is an isogeny, so since char K = 0,
the differential (dθ)e : g→ g̃i gives an isomorphism of Lie algebras. In particular,
we see that the Lie algebras of all the simple factors Gi are isomorphic (in fact, they
are isomorphic as G(K )-modules with G(K ) acting via Ad ◦ θ ).

To formulate the next result, we need to introduce some notation. Suppose
g : R→ K is a ring homomorphism. Then we will let Derg(R, K ) denote the space
of K -valued derivations of R with respect to g, i.e., an element δ ∈ Derg(R, K ) is
a map δ : R→ K such that for any r1, r2,∈ R,

δ(r1+ r2)= δ(r1)+ δ(r2) and δ(r1r2)= δ(r1)g(r2)+ g(r1)δ(r2).

Proposition 4.4. Suppose ρ0 : 0 → GLn(K ) is a linear representation, and set
G= ρ0(0). Let g̃ denote the Lie algebra of G, and assume G◦ is semisimple. Then

dimK H 1(0, g̃)≤

r∑
i=1

dimK Der f (i)0 (R, K ),

where the f (i)0 are the ring homomorphisms appearing in (17).

We first note two facts that will be needed in the proof. Let 3⊂ 0 be any finite-
index subgroup. Then, as we have already seen, the space of 1-cocycles Z1(3, g̃)

can be naturally identified with the tangent space

Tρ0(R(3,G))= {ρ ∈ Hom(3,G(K [ε])) | µ ◦ ρ = ρ0}. (18)

Also observe that the restriction map

res0/3 : H 1(0, g̃)→ H 1(3, g̃)

is injective. Indeed, since [0 :3]<∞, the corestriction map

cor0/3 : H 1(3, g̃)→ H 1(0, g̃)

is defined and the composition cor0/3 ◦ res0/3 coincides with multiplication by
[0 :3]. Since char K = 0, the injectivity of res0/3 follows.

Proof of Proposition 4.4. Set

X = Der f (1)0 (R, K )⊕ · · ·⊕Der f (r)0 (R, K ),
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and let 1⊂ 0 be the finite-index subgroup appearing in (15). We will show that
there exists a linear map ψ : X→ H 1(1, g̃) such that

res(H 1(0, g̃))⊂ im(ψ). (19)

The proposition then follows from the injectivity of the restriction map.
The map ψ is constructed as follows. Choose derivations δi ∈ Der f (i)0 (R, K ) for

i = 1, . . . , r , and let
B = K [ε]× · · · × K [ε]︸ ︷︷ ︸

r copies

(with ε2
= 0). Then

fδ1,...,δr : R→ B, s 7→ ( f (1)0 (s)+ δ1(s)ε, . . . , f (r)0 (s)+ δr (s)ε)

is a ring homomorphism and hence induces a group homomorphism

Fδ1,...,δr : 0→ G(B)

(recall that 0 = E(R)⊂ G(R)). On the other hand, we have

G(B)' (g⊕ · · ·⊕ g)o (G(K )× · · ·×G(K ))' Lie(G(A0))oG(A0)

and
G(K [ε])' g̃oG,

so we can define a group homomorphism θ̃ : G(B)→ G(K [ε]) by the formula

(x, g) 7→ ((dθ)e(x), θ(g)),

where θ : G(A0)→ G is the morphism appearing in (14). Notice that since by
Remark 4.3, the differential of θ gives a homomorphism

(dθ)e : g→ g̃i

for each factor g of Lie(G(A0)), the map θ̃ can also be described as follows. Let
x1, . . . , xr ∈ g and g ∈ G(A0). Then

θ̃ (x1, . . . , xr , g)=
( r∑

i=1

(dθ)e(xi ), θ(g)
)
.

Now, θ̃ ◦ Fδ1,...,δr is a homomorphism 0→ G(K [ε]), and in view of (15), we have

µ ◦ (θ̃ ◦ Fδ1,...,δr |1)= ρ0.

It follows from (18) that

cδ1,...,δr := θ̃ ◦ pr ◦Fδ1,...,δr |1,
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where pr : G(B)→ Lie(G(A0)) is the projection, is an element of Z1(1, g̃). Now
put

ψ((δ1, . . . , δr ))= [cδ1,...,δr ],

where [cδ1,...,δr ] denotes the class of cδ1,...,δr in H 1(1, g̃).
Let us now turn to the proof of the inclusion (19). Suppose ρ : 0→ G(K [ε])

is a homomorphism with µ ◦ ρ = ρ0. By [Rapinchuk 2011, Proposition 2.14,
Theorem 3.1], we can associative to ρ a commutative finite-dimensional K -algebra
A together with a ring homomorphism f : R→ A with Zariski-dense image.

Lemma 4.5. Let A be the finite-dimensional commutative K -algebra associated
to ρ. Then

A ' K̃ (1)
× · · ·× K̃ (r),

where, as above, r is the number of simple components of G◦ and, for each i , K̃ (i) is
isomorphic to either K or K [ε] (with ε2

= 0).

Proof. Let J be the Jacobson radical of A. Since the unipotent radical U of ρ(0)◦ is
commutative (which follows from the fact that g̃ is the unipotent radical of G(K [ε])),
we have J 2

= {0} by [Rapinchuk 2011, Lemma 5.7]. Now by our assumption,
µ ◦ ρ = ρ0, where µ : G(K [ε])→ G(K ) is the homomorphism induced by ring
homomorphism K [ε] → K , ε 7→ 0. In particular, for any root α ∈8, we have

µ(ρ(eα(r)))= ρ0(eα(r)) (20)

for all r ∈ R. Since µ is a morphism of algebraic groups and the algebraic rings A
and A0 associated to ρ and ρ0, respectively, are by construction the connected com-
ponents of ρ(eα(R)) and ρ0(eα(R)) for any root α [Rapinchuk 2011, Theorem 3.1],
it follows that µ induces a surjective map ν : A→ A0. Moreover, since (20) holds
for all roots α ∈8, the construction of the ring operations on A and A0 given in
[Rapinchuk 2011, Theorem 3.1] implies that ν is actually a ring homomorphism.
Also notice that since J is commutative and nilpotent, we have J ⊂ ker ν by the
definition of µ. On the other hand, the ring A0 is semisimple by Lemma 4.2, so
J = ker ν. Thus, A0 ' A/J ' K × · · ·× K .

Next, by the Wedderburn–Malcev theorem, we can find a semisimple subalgebra
B̃ ⊂ A such that A = B̃⊕ J as K -vector spaces and B̃ ' A/J ' K × · · ·× K as
K -algebras [Pierce 1982, Corollary 11.6]. Let ei ∈ B̃ be the i-th standard basis
vector. Since e1, . . . , er are idempotent and we have e1+· · ·+ er = 1 and ei e j = 0
for i 6= j , it follows that we can write A =

⊕r
i=1 Ai , where Ai = ei A. Clearly,

Ai = B̃i⊕ Ji with B̃i = ei B̃ ' K and Ji = ei J ; in particular, Ai is a local K -algebra
with maximal ideal Ji such that J 2

i = {0}. To complete the proof, it obviously
suffices to show that si := dimK Ji ≤ 1 for all i .



1714 Igor A. Rapinchuk

Now, by [Rapinchuk 2011, Proposition 6.5], for each i = 1, . . . , r , we have a
Levi decomposition

G(Ai )= (g⊕ · · ·⊕ g)︸ ︷︷ ︸
si copies

oG(K ),

where g is the Lie algebra of G(K ). Also, by [Rapinchuk 2011, Theorem 6.7],
there exists a morphism

σ : G(A)→ G(K [ε]) (21)

of algebraic groups such that for a suitable subgroup of finite index1′⊂0, we have

ρ|1′ = σ ◦ F |1′, (22)

where F : 0 → G(A) denotes the group homomorphism induced by f . Since
µ ◦ ρ = ρ0 and for 1̃=1∩1′, we have

ρ0|1̃ = (θ ◦ F0)|1̃ and ρ|1̃ = σ ◦ F |1̃

by (15) and (22), it follows that the diagram

G(A) σ
//

ν̃

��

G(K [ε])

µ

��

G(A0)
θ

// G

(23)

commutes (where ν̃ is the homomorphism induced by ν). Now Remark 4.3, together
with the definition of ν, implies that (θ ◦ ν̃)(G(Ai )) = Gi , where Gi is a simple
factor of G. Since G(Ai ) coincides with its commutator subgroup [Stein 1971,
Corollary 4.4], we obtain that σ(G(Ai )) is a subgroup of G(K [ε]) that maps to Gi

under µ and coincides with its commutator, so the fact that the simple factors
G1, . . . ,Gr of G commute elementwise implies that σ(G(Ai ))⊂ g̃i oGi , where gi

is the Lie algebra of Gi . On the other hand, by [Rapinchuk 2011, Theorem 3.1], for
each root α ∈8, there exists an injective map ψ̃α : A→ G(K [ε]) such that

σ(eα(a))= ψ̃α(a), (24)

where eα(A) is the 1-parameter root subgroup of G(A) corresponding to the root α.
So since g̃i ' g by Remark 4.3, the same argument as in the proof of Lemma 4.2
shows that si ≤ 1. �

For ease of notation, we will view A as a subalgebra of

Ã := K [ε]× · · · × K [ε]︸ ︷︷ ︸
r copies

. (25)
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Then, using the lemma and the assumption that µ ◦ ρ = ρ0, we can write the
homomorphism f : R→ A in the form

f (t)= ( f (1)0 (t)+ δ1(t)ε, . . . , f (r)0 (t)+ δr (t)ε) (26)

with (δ1, . . . , δr ) ∈ X and δi = 0 for i = r2+ 1, . . . , r .
To describe the cohomology class corresponding to ρ, we will now need to

analyze more closely the morphism σ introduced in (21). First, we note that if
A = A/J and G(A, J ) is the congruence subgroup

G(A, J )= ker(G(A)→ G(A)),

then by [Rapinchuk 2011, Proposition 6.5],

G(A)= G(A, J )oG(A)

is a Levi decomposition of G(A). Now by [Borel 1991, Proposition 11.23], any
two Levi subgroups of (G(K [ε]))◦ are conjugate under an element of the unipotent
radical Ru(G(K [ε]))◦, which can be identified with G◦(K [ε], (ε)) ' g̃. In our
case, we can apply this to the groups σ(G(A)) and θ(G(A0)) = G◦ (where θ is
the morphism from (14)) to conclude that Bθ(G(A0))B−1

= σ(G(A)) for some
B ∈ G(K [ε], (ε)) ' g̃. By direct computation, one sees that for any X ∈ G and
B = I + εY ∈ G(K [ε], (ε)),

B X B−1
= (I + ε(Y − XY X−1))X,

which shows that

ρ(γ )= σ(F(γ ))=
(
(σ ◦ pr ◦F)(γ )+ Y −Ad(θ(F0(γ ))(Y ), θ(F0(γ )))

)
for all γ ∈ 1̃ = 1 ∩ 1′ (where 1 and 1′ are the finite-index subgroups of 0
appearing in (15) and (22), respectively). Since θ(F0(γ ))= ρ0(γ ) for γ ∈ 1̃, we
can rewrite this as

ρ(γ )= (c(γ ), ρ0(γ )),

where
c(γ )= (σ ◦ pr ◦F)(γ )+ Y −Ad(ρ0(γ ))(Y ).

Using (18), we obtain c ∈ Z1(1̃, g̃). Now let bY ∈ B1(1̃, g̃) be the 1-coboundary
defined by bY (γ )= Y −Ad(ρ0(γ ))Y , and put c̃ = c− bY (thus, c̃ and c define the
same element of H 1(1̃, g̃)). Then

c̃(γ )= (σ ◦ pr ◦F)(γ )

for all γ ∈ 1̃. To complete the proof of the proposition, we will need the following:
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Lemma 4.6. Assume that K is an algebraically closed field of characteristic 0. Let
π : G→G′ be an isogeny of absolutely almost simple algebraic groups. Let g and g′

denote the Lie algebras of G and G′, respectively. Set

H= goG and H′ = g′oG′,

where G and G′ act on g and g′, respectively, via the adjoint representation. Then
for any morphism ϕ : H→H′ such that ϕ|G = π , there exists a ∈ K such that

ϕ(X, g)= (a(dπ)e(X), π(g)).

Proof. Since char K = 0 and g and g′ are simple Lie algebras, the adjoint rep-
resentations Ad : G→ GL(g) and Ad : G′→ GL(g′) are both irreducible. Let us
now view g′ as a G-module with G acting via π . Then both ϕ|g and (dπ)e are
G-equivariant homomorphisms of irreducible G-modules. So by Schur’s lemma,
ϕ|g = a(dπ)e for some a ∈ K [Artin 1991, Theorem 9.6]. �

Now, as above, we consider A as a subalgebra of the algebra Ã appearing in (25);
after possible renumbering, we may assume that, in the notation of Lemma 4.5,
we have K̃ (i)

' K [ε] for i = 1, . . . , s, where s = dimK J (A), and K̃ (i)
' K for

i = s+ 1, . . . , r . We will view G(A) as a subgroup of

G( Ã)' Lie(G(A0))oG(A0)

and write G(A0)=G(K (1))×· · ·×G(K (r)) and Lie(G(A0))= g1⊕· · ·⊕gr , where
G(K (i)) = G(K ) and gi = g for all i . We will also regard σ : G(A)→ G(K [ε])
as a morphism σ : G( Ã)→ G(K [ε]) with σ |gi = 0 for all i > s. Now since by
our construction, the cocycles c and c̃ lie in the same cohomology class, we may
assume without loss of generality that σ has the form

σ(x1, . . . , xr , g)= (σ |g1⊕···⊕gr (x1, . . . , xr ), θ(g))

for (x1, . . . , xr , g)∈ (g1⊕· · ·⊕gr )oG(A). By Remark 4.3, for each factor G(K (i))

of G(A0), the differential (dθ)e : gi→ g̃i yields an isomorphism of G(K )-modules
(with G(K ) acting on g̃i via Ad◦ θ ). Furthermore, since σ |G(A)= θ , the same argu-
ment as used in the proof of Lemma 4.5 shows that σ(gi )= g̃i for i = 1, . . . , s. Now
applying Lemma 4.6 to the restrictions σ |gioG(K (i)) and ((dθ)e, θ)|gioG(K (i)), we get

σ |gi = a(dθ)e|gi

for some a ∈ K (possibly 0). Repeating for all factors shows that we have

σ |g1⊕···⊕gr (x1, . . . xr )=

r∑
i=1

ai (dθ)e(xi )



Representations of algebraic groups and deformations 1717

for (x1, . . . , xr ) ∈ g1⊕ · · · ⊕ gr . So replacing the element (δ1, . . . , δr ) in (26) by
(a1δ1, . . . , arδr ), we have

c̃(γ )= cδ1,...,δr (γ )

for all γ ∈ 1̃. Now let ψ((δ1, . . . , δr )) = dδ1,...,δr ∈ Z1(1, g̃), and let cρ be the
element of Z1(0, g̃) corresponding to ρ. It follows that

res1/1̃(res0/1([cρ]))= res1/1̃([dδ1,...,δr ]),

where

res0/1 : H 1(0, g̃)→ H 1(1, g̃) and res1/1̃ : H 1(1, g̃)→ H 1(1̃, g̃)

are the restriction maps. So the injectivity of the restriction maps yields

res0/1([cρ])= [dδ1,...,δr ],

which shows that
res(H 1(0, g̃))⊂ im(ψ).

This completes the proof of the proposition. �

Proof of Theorem 2. In view of (12) and Proposition 4.4, it remains to show that
r ≤ n and to give a bound on the dimension of the space Derg(R, K ), for any ring
homomorphism g : R→ K , which is independent of g. Notice that G◦ ⊂ GLn(K )
and G◦ = G1× · · ·×Gr , so we have

n ≥ rk G◦ =

r∑
i=1

rk Gi ≥ r

as needed. For the second task, we have the following (elementary) lemma:

Lemma 4.7. Let R be a finitely generated commutative ring, and let d denote the
minimal number of generators of R (i.e., the smallest integer such that there exists
a surjection Z[x1, . . . , xd ]� R). Then for any field K and ring homomorphism
g : R → K , dimK Derg(R, K ) ≤ d. If , moreover, K is a field of characteris-
tic 0, R is an integral domain with field of fractions L , and g is injective, then
dimK Derg(R, K ) ≤ l, where l is the transcendence degree of L over its prime
subfield.

Proof. Let S = {r1, . . . , rd} be a minimal set of generators of R. Since any element
δ∈Derg(R, K ) is completely determined by its values on the elements of S, the map

δ 7→ (δ(r1), . . . , δ(rd))

defines an injection Derg(R, K )→ K d , so dimK Derg(R, K )≤ d as claimed.
Now suppose that R is a finitely generated integral domain and g is injective.

Since char K = 0, after possibly localizing R with respect to the multiplicative
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set Z \ {0} (which does not affect the dimension of the space Derg(R, K )), we
can use Noether’s normalization lemma to write R as an integral extension of
S =Q[x1, . . . , xl] so that the field of fractions of R is a separable extension of that
of S. Combining this with the assumption that g is injective, one easily sees that
any derivation δ of R is uniquely determined by its restriction to S [Lang 2002,
Chapter VII, Theorem 5.1], so in particular,

dimK Derg(R, K )≤ dimK Derg(S, K )=: s.

On the other hand, the argument given in the previous paragraph shows that s ≤ l,
which completes the proof. �

Remark 4.8. Notice that the estimate dimK Derg(R, K )≤ l may not be true if g is
not injective. Indeed, take K =Q, and let R0=Z[X, Y ] and R=Z[X, Y ]/(X3

−Y 2).
Furthermore, let

f : Z[X, Y ] →Q, ϕ(X, Y ) 7→ ϕ(0, 0)

and g : R → Q denote the induced homomorphism. The space Der f (R0,Q) is
spanned by the linearly independent derivations δx and δy defined by

δx(ϕ(X, Y ))=
∂ϕ

∂X
(0, 0) and δy(ϕ(X, Y ))=

∂ϕ

∂Y
(0, 0),

so dimQ Der f (R0,Q)= 2. Now notice that the natural map

Derg(R,Q)→ Der f (R0,Q)

is bijective. Indeed, it is obviously injective, and since any δ ∈ Der f (R0,Q)

vanishes on the elements of the ideal (X3
− Y 2)R0, it is also surjective. Thus,

dimQ Derg(R,Q) = 2. On the other hand, if L is the fraction field of R, then
l := tr degQ L is 1.

5. Applications to rigidity

In this section, we will show how our results from [Rapinchuk 2011] imply various
forms of classical rigidity for the elementary groups E(8,O), where 8 is a reduced
irreducible root system of rank > 1 and O is a ring of algebraic integers (or S-
integers) in a number field. It is worth mentioning that all forms of rigidity ultimately
boil down to the fact that O does not admit nontrivial derivations.

To fix notations, let 8 be a reduced irreducible root system of rank > 1, G the
universal Chevalley–Demazure group scheme of type 8, and O a ring of algebraic
S-integers in a number field L such that (8,O) is a nice pair. Furthermore, let
0 = E(8,O) be the elementary subgroup of G(O).
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Proposition 5.1. Let ρ : 0→ GLm(K ) be an abstract linear representation over
an algebraically closed field K of characteristic 0. Then there exist

(i) a finite-dimensional commutative K -algebra

A ' K (1)
× · · ·× K (r)

with K (i)
' K for all i ,

(ii) a ring homomorphism f = ( f (1), . . . , f (r)) : O→ A with Zariski-dense image,
where each f (i) : O→ K (i) is the restriction to O of an embedding ϕi : L ↪→ K
and ϕ1, . . . , ϕr are all distinct, and

(iii) a morphism of algebraic groups σ : G(A)→ GLm(K )

such that for a suitable subgroup of finite index 1⊂ 0, we have

ρ|1 = σ |1.

Proof. Let H = ρ(0), where, as before, the bar denotes Zariski closure. We begin
by showing that the connected component H◦ is automatically reductive. Suppose
this is not the case, and let U be the unipotent radical of H◦. Since the commutator
subgroup U ′ = [U,U ] is a closed normal subgroup of H , the quotient Ȟ = H/U ′

is affine, so we have a closed embedding ι : Ȟ → GLm′(K ) for some m′. Then
ρ̌ = ι ◦π ◦ ρ, where π : H → Ȟ is the quotient map, is a linear representation of
0 such that ρ̌(0)◦ = Ȟ◦ has commutative unipotent radical. So we can now apply
[Rapinchuk 2011, Theorem 6.7] to obtain a finite-dimensional commutative K -
algebra Ǎ, a ring homomorphism f̌ : O→ Ǎ (which is injective as any nonzero ideal
in O has finite index) with Zariski-dense image, and a morphism σ̌ : G( Ǎ)→ Ȟ of
algebraic groups such that for a suitable finite-index subgroup 1̌⊂ 0, we have

ρ̌|1̌ = (σ̌ ◦ F̌)|1̌,

where F̌ : 0→ G( Ǎ) is the group homomorphism induced by f̌ .
Now let J be the Jacobson radical of Ǎ. Since Ȟ◦ has commutative unipotent

radical, J 2
= {0} by [Rapinchuk 2011, Lemma 5.7]. We claim that in fact J = {0}.

Indeed, using the Wedderburn–Malcev theorem as in the proof of Lemma 4.5, we
can write Ǎ=

⊕r
i=1 Ǎi , where for each i , Ǎi = K ⊕ Ji is a finite-dimensional local

K -algebra with maximal ideal Ji such that J 2
i = {0}. Then it suffices to show that

Ji = {0} for all i . So we may assume that Ǎ is itself a local K -algebra of this form.
Then, fixing a K -basis {ε1, . . . , εs} of J , we have

f̌ (x)= f0(x)+ δ1(x)ε1+ · · ·+ δs(x)εs,

where f0 : O→ K is an injective ring homomorphism and δ1, . . . , δs ∈Der f0(O, K ).
On the other hand, since the fraction field of O is a number field, it follows from
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Lemma 4.7 that the derivations δ1, . . . , δs are identically zero. So the fact that f̌
has Zariski-dense image forces J = {0}. Consequently, Ǎ ' K × · · ·× K .

Now by [Rapinchuk 2011, Proposition 5.3], σ̌ : G( Ǎ)→ Ȟ◦ is surjective, so Ȟ◦

is semisimple and in particular reductive [Borel 1991, Proposition 14.10]. It follows
that U = [U,U ] [Borel 1991, Corollary 14.11], and hence, being a nilpotent group,
U = {e}, which contradicts our original assumption. Thus, H◦ must be reductive,
as claimed.

We can now apply [Rapinchuk 2011, Theorem 6.7] to ρ to obtain a finite-
dimensional commutative K -algebra A, a ring homomorphism f : O→ A with
Zariski-dense image, and a morphism σ : G(A)→ H of algebraic groups such that
for a suitable subgroup of finite index 1⊂ 0, we have

ρ|1 = (σ ◦ F)|1.

Moreover, the fact that H◦ is reductive implies that A = K × · · ·× K [Rapinchuk
2011, Proposition 2.20, Lemma 5.7]. So we can write f = ( f (1), . . . , f (r)) for
some ring homomorphisms f (1), . . . , f (r) : O→ K . It is easy to see that all of
the f (i) are injective, and since L is the fraction field of O, it follows that each
homomorphism f (i) is a restriction to O of an embedding ϕi : L ↪→ K . Finally, since
f has Zariski-dense image, all of the ϕi must be distinct, completing the proof. �

Keeping the notations of the proposition, we have the following:

Corollary 5.2. Any representation ρ : 0→ GLm(K ) is completely reducible.

Proof. By Proposition 5.1, we have ρ|1 = σ |1, so since G(B) is a semisimple
group and char K = 0, ρ|1 is completely reducible. Since 1 is a finite-index
subgroup of 0, it follows that ρ is also completely reducible. �

SS-rigidity and local rigidity. Notice that since by Lemma 4.7 there are no nonzero
derivations δ : O→ K , Proposition 4.4 and the estimate given in (12) yield that
for 0 = E(8,O), we have dim Xn(0)= 0 for all n ≥ 1, i.e., 0 is SS-rigid. In fact,
Corollary 5.2 implies that 0 is locally rigid, that is, H 1(0,Ad◦ρ)= 0 for any repre-
sentation ρ : 0→ GLm(K ). This is shown in [Lubotzky and Magid 1985], and we
recall the argument for the reader’s convenience. Let V = K m . It is well known that

H 1(0,EndK (V, V ))= Ext10(V, V )

[Lubotzky and Magid 1985, page 37], and Ext10(V, V )= 0 by Corollary 5.2. But
Ad ◦ ρ, whose underlying vector space is Mm(K ), can be naturally identified as a
0-module with EndK (V, V ), so H 1(0,Ad ◦ ρ)= 0, as claimed.

Superrigidity (compare [Bass et al. 1967, §16; Margulis 1991, Chapter VII]). Let
0=SLn(Z) (n≥3) and consider an abstract representation ρ : 0→GLm(K ). There
exists a rational representation σ : SLn(K )→ GLm(K ) such that ρ|1 = σ |1 for a
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suitable finite-index subgroup 1⊂0. Indeed, let f : Z→ A be the homomorphism
associated to ρ. Since A ' K (1)

× · · · × K (r) by Proposition 5.1, we see that f
is simply a diagonal embedding of Z into K × · · ·× K . But f has Zariski-dense
image, so r = 1, and the rest follows.

Notice that for a general ring of S-integers O, the algebraic group G(A) that
arises in Proposition 5.1 can be described as follows. Let G= RL/Q(L G), where
L G is the algebraic group obtained from G by extending scalars from Q to L and
RL/Q is the functor of restriction of scalars. Then G(K )'G(K )×· · ·×G(K ) with
the factors corresponding to all of the distinct embeddings of L into K [Platonov
and Rapinchuk 1994, §2.1.2]. The group G(A) is then obtained from G(K ) by
simply projecting to the factors corresponding to the embeddings ϕ1, . . . , ϕr , so
any representation of E(8,O) factors through G.

Remark 5.3. Let us point out that another situation in which Der f (R, K ) = 0
occurs is if K is a field of characteristic p > 0 and R is a commutative ring of
characteristic p such that R p

= R. This allows one to use arguments similar to the
ones presented in this section to recover results of Seitz [1997]. Details will be
published elsewhere.
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Betti diagrams from graphs
Alexander Engström and Matthew T. Stamps

The emergence of Boij–Söderberg theory has given rise to new connections
between combinatorics and commutative algebra. Herzog, Sharifan, and Varbaro
recently showed that every Betti diagram of an ideal with a k-linear minimal
resolution arises from that of the Stanley–Reisner ideal of a simplicial complex. In
this paper, we extend their result for the special case of 2-linear resolutions using
purely combinatorial methods. Specifically, we show bijective correspondences
between Betti diagrams of ideals with 2-linear resolutions, threshold graphs, and
anti-lecture-hall compositions. Moreover, we prove that any Betti diagram of a
module with a 2-linear resolution is realized by a direct sum of Stanley–Reisner
rings associated to threshold graphs. Our key observation is that these objects are
the lattice points in a normal reflexive lattice polytope.

1. Introduction

A fundamental problem in commutative algebra is to characterize the coarsely graded
Betti numbers of the finitely generated graded modules over a fixed polynomial ring.
Originating with Hilbert in the 1890s, this task largely eluded mathematicians until
2006, when Boij and Söderberg introduced the following relaxation: Instead of try-
ing to determine whether or not a table of nonnegative integers is the Betti diagram of
a module, one should try to determine if some rational scalar of the table is the Betti
diagram of a module. This shifted the viewpoint to studying rays in a rational cone
and with this new geometric picture, the subject has seen a great deal of progress over
the last six years. In particular, the idea led Boij and Söderberg [2008] to conjecture
that every Betti diagram of a module can be decomposed in a specific and predictable
way. Eisenbud and Schreyer [2009] proved this for Cohen–Macaulay modules, and
Boij and Söderberg [2012] later extended that proof to the general setting.

A natural question that arises from Boij–Söderberg theory is the following: If a
module is constructed from a combinatorial object, such as the edge ideal of a graph
or the Stanley–Reisner ideal of a simplicial complex, can any of the combinatorial
properties of that object be seen in the Boij–Söderberg decomposition of the module?
Herzog, Sharifan, and Varbaro [Herzog et al. 2012] recently gave an elegant partial
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Keywords: linear resolutions, Boij–Söderberg theory, threshold graphs.

1725

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2013.7-7
http://dx.doi.org/10.2140/ant.2013.7.1725


1726 Alexander Engström and Matthew T. Stamps

answer to this question for the special case of ideals with k-linear resolutions by
showing that every Betti diagram of an ideal with a k-linear minimal resolution
can be realized by the Stanley–Reisner ideal of a certain simplicial complex. More
specifically, they prove that from the coefficients of a Boij–Söderberg decomposition
of a k-linear Betti diagram, one obtains an O-sequence which, by a famous result
of Eagon and Reiner along with Macaulay’s theorem, yields a simplicial complex
with the desired properties. Nagel and Sturgeon [2013] employ a similar approach
to show that the k-linear Betti diagrams can be realized with hyperedge ideals of
k-uniform Ferrers hypergraphs.

In this paper, we restrict our attention to the case of 2-linear resolutions and
give an alternate characterization of the Betti diagrams of ideals with 2-linear
minimal resolutions using purely combinatorial means. We show that every Betti
diagram from an ideal with a 2-linear resolution is realized by a Stanley–Reisner
ring constructed from a threshold graph and that this correspondence is a bijection.

Theorem 4.12. For every 2-linear ideal I in S, there is a unique threshold graph
T on n+ 1 vertices with β(S/I )= β(k[T ]).

Moreover, for any such ideal, we give an efficient algorithm for constructing its
corresponding threshold graph that avoids expensive computations like Hochster’s
formula; rather, we can generate all such Betti diagrams recursively with affine
transformations, avoiding operators such as Ext and Tor. Even more interesting, we
find that these diagrams are the lattice points of a normal reflexive lattice simplex
that is combinatorially equivalent to a simplex of anti-lecture-hall compositions
and, from this geometric picture, we prove that any Betti diagram of a module with
a 2-linear resolution arises from a direct sum of Stanley–Reisner rings constructed
from threshold graphs.

Theorem 4.16. For every finitely generated, graded S-module M with 2-linear
minimal free resolution and β0,0(M)=m, there is a collection of m threshold graphs
{T1, . . . , Tm}, not necessarily distinct, such that β(M)= β(k[T1]⊕ · · ·⊕ k[Tm]).

The paper is organized as follows: In Section 2, we give a quick review of
the necessary concepts from commutative algebra and Boij–Söderberg theory. In
Section 3, we interpret the main theorem of Boij–Söderberg theory in terms of linear
algebra for the special case of modules with k-linear minimal resolutions. We prove
our main theorems in Section 4 and conclude with some interesting connections to
discrete geometry in Section 5.

2. Preliminaries

We begin with a review of the basic definitions and theorems from Boij–Söderberg
theory. For a more detailed introduction, we recommend [Fløystad 2012].
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Commutative algebra. Let k be a field and S = k[x1, . . . , xn]. For any finitely
generated graded S-module M , let Mi denote its graded piece of degree i and let
M(d) denote the twisting of M by d , that is, the module such that M(d)i ∼= Mi+d .
A minimal graded free resolution of M is an exact complex

0← M← F0← F1← · · · ← Fl,

where each Fi is a graded free S-module of the form⊕
j∈Z

S(− j)βi, j

such that the number of basis elements is minimal and each map is graded.
The value βi, j is called the i-th graded Betti number of degree j . These numbers

are a refinement of the ordinary Betti numbers βi =
∑

j βi, j and are independent
of the choice of resolution of M , thus yielding an important numerical invariant
of M . We often express the graded Betti numbers in a two-dimensional array called
the Betti diagram of M , denoted by β(M). Since βi, j = 0 whenever i > j , it is
customary to write β(M) such that βi, j is in position ( j − i, i). That is,

β(M)=


β0,0 β1,1 . . . βl,l

β0,1 β1,2 . . . βl,l+1
...

...
. . .

...

β0,r β1,r+1 . . . βl,l+r

 .
A Betti diagram is called pure if every column has at most one nonzero entry, that
is, for each i ∈ {0, . . . , l}, βi, j 6= 0 for at most one j ∈ Z.

Boij–Söderberg theory. Let Zn+1
deg denote the set of strictly increasing nonnegative

integer sequences d = (d0, . . . , ds) with s ≤ n, called degree sequences, along with
the partial order given by

(d0, . . . , ds)≥ (e0, . . . , et)

whenever s ≤ t and di ≥ ei for all i ∈ {0, . . . , s}. To every d ∈ Zn+1
deg , we associate

a pure Betti diagram π(d) with entries defined as follows:

πi, j (d)=


∏

k 6=0,i

∣∣∣∣dk−d0
dk−di

∣∣∣∣ i ≥ 0, j = di ,

0 otherwise.

The main theorem of Boij–Söderberg theory states that the Betti diagram of any
graded S-module can be written as a positive rational combination of π(d)’s. It was
originally conjectured by Boij and Söderberg [2008], proven for Cohen–Macaulay
modules by Eisenbud and Schreyer [2009], and then generalized thus:
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Theorem 2.1 [Boij and Söderberg 2012]. For every graded S-module M , there
exists a vector c ∈ Q

p
≥0 and a chain of degree sequences d1 < d2 < · · · < d p in

Zn+1
deg such that

β(M)= c1π(d1)+ · · ·+ cpπ(d p).

The combination in Theorem 2.1 is called a Boij–Söderberg decomposition of
M and the entries of c are called Boij–Söderberg coefficients. This decomposition
is not unique in general, but there is a simple algorithm for computing a set of
coefficients that satisfy the theorem, see [Fløystad 2012].

3. Betti diagrams of 2-linear resolutions

An ideal I in S is called k-linear if βi, j (I ) = 0 whenever j − i 6= k − 1. If I is
2-linear, then the Betti diagram of M = S/I looks like

β(M)=
[

1 · · · · · · ·
· β1 β2 β3 · · · βs

]
for some s ≤ n. Our aim is to translate the statement of Theorem 2.1, for S-modules
with 2-linear resolutions, into linear algebraic terms. For this, it will be convenient
to consider the reduced Betti vector ω(M)= [β1, . . . , βs] in place of β(M).

If M is a 2-linear S-module, then every dl in Theorem 2.1 is of the form
(0, 2, . . . , l + 1). So, let π l

= π(dl), ωl be the reduced Betti vector corresponding
to π l , and � be the lower-diagonal n× n matrix whose l-th row is ωl . We leave it
to the reader to verify the following:

Lemma 3.1. The matrix � is invertible and has i j-entry ωi
j = j

(i+1
j+1

)
. Moreover,

the i j -entry of �−1 is (−1)i− j 1
i

(i+1
j+1

)
.

Since any subset of row vectors in � forms a chain in Zn+1
deg , we can replace the

vector c ∈Q
p
>0 in Theorem 2.1 with a vector c ∈Qn

≥0 such that
∑

i ci = β0,0(M).

Theorem 3.2. For every 2-linear (graded) S-module M with β0,0(M)= m,

β(M)= c1π
1
+ · · ·+ cnπ

n,

where c = ω(M)�−1
∈Qn

≥0 and
∑

i ci = m.

Remark 3.3. When β0,0(M)= 1, Theorem 3.2 asserts that ω(M) is a lattice point
in the (n−1)-dimensional simplex spanned by row vectors of �.

We conclude this section with some classic examples of 2-linear ideals that arise
from graph theory. A graph G consists of a finite set V (G), called the vertex set,
and a subset E(G) of

(V (G)
2

)
, called the edge set. To simplify notation, we write

uv instead of {u, v} for each edge in G. For any subset of vertices W ⊂ V (G), the
induced subgraph G[W ] is the graph with vertex set W and edge set E(G)∩

(W
2

)
.
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If W = V (G)\ S for some S⊆ V (G), we write G \ S instead of G[W ]. A subgraph
C of the form V (C) = {v1, . . . , vl} and E(C) = {vivi+1 | 1 ≤ i < l} ∪ {v1vl} is
called a cycle of length l. We say G is chordal if it has no induced cycles of length
greater than three or, equivalently, if E(C) ( E(G[C]) for every cycle of length
greater than three. The elements of E(G[C]) \ E(C) are called chords. Chordal
graphs have many interesting properties that are actively studied in graph theory.
For a thorough introduction to graph theory, we recommend [Diestel 2010].

Given a graph G with vertex set [n+1] = {1, . . . , n+1}, where n is the number
of indeterminates in S, let R = k[x1, . . . , xn+1], let

I c(G)= 〈xi x j | i j /∈ E(G)〉 ⊆ R

be the ideal generated by the monomials corresponding to nonedges in G, and let
k[G] be the quotient R/I c(G). The knowledgeable reader may observe that I c(G)
is the edge ideal of the complement of G and k[G] is the Stanley–Reisner ring of
the clique complex of G. The following theorem was first proved by Fröberg [1990]
and then by Dochtermann and Engström [2009], using topological combinatorics.

Theorem 3.4. A graph G is chordal if and only if I c(G) is 2-linear. Whenever this
is the case,

βi, j (k[G])=
∑

W∈(V (G)
j )

(−1+ # components of G[W ])

for i = j − 1≥ 1.

Example 3.5. If G consists of n + 1 isolated vertices, then the
(n+1

i+1

)
induced

subgraphs of G with i + 1 vertices each have i + 1 connected components. Thus,
βi,i+1(k[G])= i

(n+1
i+1

)
for each i ≥ 1.

Example 3.6. If G consists of a complete graph on n vertices plus an isolated
vertex v, then the

(n
i

)
induced subgraphs of G with i + 1 vertices that contain v

each have two connected components and the remaining induced subgraphs of G
(with i + 1 vertices) are connected. Thus, βi,i+1(k[G])=

(n
i

)
for each i ≥ 1.

Remark 3.7. If we apply Theorems 3.2 and 3.4 to k[G] for some chordal graph G,
we get a formula that takes the number of connected components of induced
subgraphs of G as input and yields a vector c ∈Qn

≥0, namely ω(k[G])�−1, whose
entries sum to 1. It is natural to ask what this formula says if G is not chordal. If the
entries of c fail to be nonnegative or sum to 1, then we get a certificate that G is not
chordal. Since measuring how far a graph is from being chordal is nontrivial from
the viewpoint of complexity, one is inclined to ask if this procedure characterizes
chordal graphs.

Alas, this turns out to not be the case — there are nonchordal graphs that yield
admissible c’s — but these false chordal graphs seem to be few. Examples of false



1730 Alexander Engström and Matthew T. Stamps

Figure 1. The single false chordal graph on six vertices along with
two examples on seven vertices.

chordal graphs on six and seven vertices are illustrated in Figure 1. All other false
chordal graphs on seven vertices arise from expanding a (possibly empty) clique
of the six-vertex graph or coning over the whole six-vertex graph. We offer some
computer-generated statistics on the size of each class of graphs for a given number
of vertices:

1 2 3 4 5 6 7

Chordal 1 2 4 10 27 94 393
False chordal 0 0 0 0 0 1 15

Not chordal 0 0 0 1 7 62 651

4. Betti diagrams from graphs

In this section, we study the Betti diagrams corresponding to a special class of
chordal graphs called threshold graphs. We show that threshold graphs on a fixed
vertex set have distinct Betti diagrams, that every Betti diagram of a chordal graph
is that of a threshold graph on the same number of vertices, that every Betti diagram
of an S-algebra with a 2-linear resolution is that of a threshold graph on n + 1
vertices, and that every Betti diagram of an S-module with a 2-linear resolution is
that of a direct sum of Stanley–Reisner rings constructed from threshold graphs on
n+ 1 vertices, where n is the number of indeterminates in S.

Betti diagrams from threshold graphs. In a graph G, two vertices are said to be
adjacent if they are contained in an edge of G. A vertex adjacent to no others is
called isolated and a vertex adjacent to all others is called dominating. For every
graph G on n vertices, let G∗ be the graph on n+ 1 vertices obtained by adding
an isolated vertex to G and, similarly, let G∗ be the graph obtained by adding a
dominating vertex to G. A graph G is called threshold if it can be constructed from
a single vertex and a sequence of the operations ∗ and ∗. It is well known that if G
is chordal, then so are G∗ and G∗, and thus, all threshold graphs are chordal. We
refer to Mahadev and Peled [1995] for a survey that includes the following lemma:

Lemma 4.1. There are 2n threshold graphs on n + 1 vertices. Moreover, every
threshold graph is determined by a unique sequence of ∗ and ∗ operations.
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The Betti diagram of a threshold graph can be constructed recursively in a similar
manner to the graph itself. As such, we can quickly calculate the Betti diagram of
a threshold graph without the computations in Theorem 3.4.

Proposition 4.2. If G is a chordal graph on n vertices, then

ω(k[G∗])= [ω(k[G]) | 0] and ω(k[G∗])= ω(k[G])3+ ηn, (1)

where 3 is the (n− 1)× n-matrix whose (i, j) position is 1 if i = j or j − 1 and 0
otherwise, and ηn is the vector whose i-th entry is

(n
i

)
.

Proof. This is a simple application of Theorem 3.4. For the first part, any subset
of vertices containing the dominating vertex in G∗ spans a connected graph and
therefore, the only nonzero parts of ω(k[G∗]) come from ω(k[G]). For the second
part, we consider whether or not a subset of vertices in G∗ contains the isolated
vertex v: The induced subgraphs that do not contain v contribute [ω(k[G]) | 0] to
ω(k[G∗]) while those that do contain v contribute [0 | ω(k[G])] + ηn . �

As a corollary, we find that distinct threshold graphs on a fixed number of vertices
have distinct Betti diagrams.

Corollary 4.3. If T and T ′ are threshold graphs on the same number of vertices
and ω(k[T ])= ω(k[T ′]), then T ∼= T ′.

Proof. For any chordal graph G on k vertices, ωk+1(k[G∗]) 6= ωk+1(k[G∗])= 0 by
Proposition 4.2. Therefore, since distinct threshold graphs have distinct sequences
of ∗ and ∗ (Lemma 4.1), they must also have distinct Betti diagrams. �

Betti diagrams from chordal graphs. Next, we show that every Betti diagram from
a chordal graph arises as the Betti diagram of a threshold graph on the same number
of vertices. Moreover, for a given chordal graph, we present an efficient algorithm
for constructing its “threshold representative”.

Let ∼β be the equivalence relation for graphs on [n+ 1] defined by

G ∼β H if and only if β(k[G])= β(k[H ])

and let [G]β denote the equivalence class of G with respect to ∼β . For a chordal
graph G on n+1 vertices, a threshold graph T (on n+1 vertices) is called a threshold
representative of G if T ∈ [G]β . The next theorem follows from the notion of
algebraic shifting and can be pieced together from results in [Goodarzi and Yassemi
2012; Klivans 2007; Woodroofe 2011], but we offer a purely graph-theoretic proof
instead.

Theorem 4.4. Every chordal graph G has a unique threshold representative T .
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Figure 2. A comparison of a graph G (left) with Gv→w (right).

We proceed with some new machinery. For a graph G with v,w ∈ V (G), we
define a new graph Gv→w on V (G) with

E(Gv→w) :=
(
E(G) \ {uv | u ∈ N (v;w)}

)
∪
{
uw | u ∈ N (v;w)

}
,

where N (x) = {y ∈ V (G) | xy ∈ E(G)} is the neighborhood of a vertex x and
N (v;w)= N (v) \

(
{w} ∪ N (w)

)
. See Figure 2.

Lemma 4.5. Let G be a chordal graph.

(1) If G is connected with vw ∈ E(G), then Gv→w is chordal.

(2) If G is disconnected with v,w ∈ V (G) in separate components, then Gv→w is
chordal.

Proof. For each part, we suppose C is a cycle with length l ≥ 4 in G ′ = Gv→w and
show that C has a chord in G ′.

In (1), if w /∈ V (C), then C ⊆ G since the only new edges of G ′ contain w and
therefore C has at least one chord in G. If every chord of C in G is removed in G ′,
then they must each contain v and thus G[V (C \v)∪w] is an induced cycle, which
is a contradiction. If w ∈ V (C), v /∈ V (C), and C does not have a chord in G ′, then
G[V (C)∪ v] is an induced cycle since N (v)⊆ N (w) in G ′, another contradiction.
If v,w ∈ V (C), then vw ∈ E(C) and xw is a chord of C in G ′, where x is the other
neighbor of v in C , since N (v)⊆ N (w) in G ′.

In (2), if w /∈ V (C), then C contains a chord in G \ w = G ′ \ w ⊆ G ′. So
suppose w ∈ V (C) and C has no chord in G ′. Then G[V (C \w)] is contained
in the connected component of either v or w in G. If the former is true, then
G[V (C \w)∪ v] is an induced cycle and if the latter is true, then C itself is an
induced cycle in G, both of which are contradictions. �

For a graph H with W ⊆ V (H), let κH (W ) denote the number of connected
components in H [W ].

Lemma 4.6. Let G be a chordal graph.

(1) If G is connected with vw ∈ E(G), then Gv→w ∈ [G]β .

(2) If G is disconnected with v,w ∈ V (G) in separate components, then Gv→w is
in [G]β .
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Proof. This is a straightforward application of Theorem 3.4 after we make the
following calculations. For each part, let G ′ = Gv→w and W ⊆ V (G).

In (1), if v,w /∈W , then κG(W )= κG ′(W ) since G \ {v,w} = G ′ \ {v,w} and if
v,w ∈ W , then κG(W ) = κG ′(W ) because the component in G[W ] containing v
and w spans the same set of vertices as that of G ′[W ]. For the remaining subsets
of V (G), we prove that κG(W ∪ v)+ κG(W ∪w)= κG ′(W ∪ v)+ κG ′(W ∪w) for
every W ⊆ V (G) \ {v,w}. Let m◦(W ), mw(W ), and mv(W ) denote the number of
connected components of G[W ] that do not contain any elements of N (v)∪ N (w),
N (v) \ N (w), and N (w) \ N (v), respectively. It is straightforward to check that
κG(W∪v)=1+m◦(W )+mw(W ), κG(W∪w)=1+m◦(W )+mv(W ), κG ′(W∪v)=
1+m◦(W )+mv(W )+mw(W ), and κG ′(W ∪w)= 1+m◦(W ).

In (2), we record the difference between κG(W ) and κG ′(W ). If v,w /∈W , then
κG(W )=κG ′(W ) since G\{v,w}=G ′\{v,w}. If v,w∈W , then κG(W )=κG ′(W )

because every vertex in the component of v in G[W ] gets moved to the component
of w in G ′[W ]. If v ∈ W and w /∈ W , then κG(W ) = κG ′(W )− 1. If w ∈ W and
v /∈W , then κG(W )= κG ′(W )+ 1. �

Proof of Theorem 4.4. We induct on |V (G)|. Let G be a chordal graph on n vertices
and fix a vertex v ∈ V (G). We will apply the operations v→w or w→v to G to a get
a graph where v is either dominating or isolated.

If G is connected and v is not dominating, then for any vertex u ∈ G with
d(u, v)= 2, let w ∈ N (v)∩ N (u) and replace G with Gw→v . Repeat this until v is
a dominating vertex, that is, there are no more elements u with d(v, u)= 2. The
process terminates since G is finite and connected. By Lemma 4.5, the graph G is
chordal at every step and by Lemma 4.6, its Betti diagram stays fixed. Since v is
dominating and G \ v is chordal (being an induced subgraph of a chordal graph),
β(k[G]) = β(k[G \ v]). So, by induction, there is a unique (up to isomorphism)
threshold graph T such that β(k[T ∗])= β(k[T ])= β(k[G \ v])= β(k[G]).

If G is disconnected, let w ∈ V (G) be in a separate component in G from v. By
Lemmas 4.5 and 4.6, Gv→w is chordal and β(k[G])= β(k[Gv→w]); by induction,
there exists a unique (up to isomorphism) threshold graph T ∈ [Gv→w \ v]β . Thus,
T∗ = T ∪ {α} ∈ [G]β and β(k[T∗])= β(k[G]). �

Remark 4.7. The algorithm presented in the proof of Theorem 4.4 is fast. A crude
analysis of the complexity is as follows: For each vertex of G, we decompose
G into its connected components which takes O(|V (G)| + |E(G)|) and then we
repeatedly apply the operations v→w or w→v; by amortized analysis, this takes only
O(|E(G)|) since each edge is moved at most once. Thus, the total complexity
is O(|V (G)|(|V (G)| + |E(G)|))≈ O(|V (G)|3). The authors suspect that a more
thorough analysis would yield a complexity of O(|V (G)|2), which is the best one
could hope for with this problem.
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As simple corollaries of Theorem 4.4, we recover two special classes of graphs
that are invariant under β.

Corollary 4.8. If G is a tree on n+ 1 vertices, then βi,i+1(k[G])= i
( n

i+1

)
.

Proof. Since G has exactly n edges and v→w preserves the number of edges in G,
the procedure outlined in the proof of Theorem 4.4 yields a threshold representative
T of G that is a star on n+ 1 vertices, that is, a single dominating vertex v and no
other edges. Therefore, T \ v consists of n isolated points and, by Proposition 4.2
and Example 3.5, βi,i+1(k[G])= βi,i+1(k[T ])= βi,i+1(k[T \ v])= (i)

( n
i+1

)
. �

The graph from a triangulation of a polygon is called maximally outerplanar.

Corollary 4.9. If G is a maximal outerplanar graph on n + 1 vertices, then
βi,i+1(k[G])= i

(n−1
i+1

)
.

Proof. By Theorem 4.4, the threshold representative T of G consists of a dominating
vertex v and a path on V (T ) \ v. In particular, T \ v is a tree on n vertices. The
result now follows from Proposition 4.2 and Corollary 4.8. �

Betti diagrams of algebras and modules. Here we present the main results of the
paper — that every Betti diagram from a 2-linear ideal in S arises from a Stanley–
Reisner ring of a threshold graph on n+1 vertices and that every Betti diagram from
an S-module with a 2-linear resolution arises from a direct sum of Stanley–Reisner
rings constructed from threshold graphs on n+ 1 vertices.

To begin, we establish bijections between the set of threshold graphs on n+ 1
vertices, the set of Betti diagrams from 2-linear ideals in S, and the set of anti-
lecture-hall compositions of length n bounded above by 1. An integer sequence
λ= (λ1, λ2, . . . , λn) of the form

t ≥ λ1
1
≥
λ2
2
≥ · · · ≥

λn
n
≥ 0

is called anti-lecture-hall composition of length n bounded above by t . These
sequences were introduced in [Corteel and Savage 2003] and are a well-studied
variation of the lecture hall partitions in [Bousquet-Mélou and Eriksson 1997a;
1997b]. For our purposes, we only need this result of Corteel, Lee, and Savage:

Theorem 4.10 ([Corteel et al. 2005]). There are (t + 1)n anti-lecture-hall composi-
tions of length n bounded above by t.

We remark that k[G] = R if G is the complete graph on n+ 1 vertices, so we
shall ignore that graph for the rest of the paper.

Proposition 4.11. The set of noncomplete threshold graphs on n+1 vertices, the set
of Betti diagrams of quotients of S by 2-linear ideals, and the set of anti-lecture-hall
compositions of length n with λ1 = 1 are in bijective correspondence.
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Proof. By Lemma 4.1 and Corollary 4.3, there are 2n
− 1 noncomplete threshold

graphs on n + 1 vertices, each of which corresponds to a distinct Betti diagram.
It suffices to show that the Betti diagrams of quotients of S by 2-linear ideals
inject into the anti-lecture-hall compositions of length n with λ1 = 1, since by
Theorem 4.10, there are exactly 2n

− 1 of them.
Let I be a 2-linear ideal in S and let 9 be the unimodular matrix with i j-entry

equal to
(i−1

j−1

)
. Then there exists λ = [λ1, . . . , λn] ∈ Zn such that ω(S/I ) = λ9.

By Theorem 3.2, we have

λ9�−1
= [c1, . . . , cn] ∈Qn

≥0

with
∑n

i=1 ci = 1. We leave it to the reader to verify that 9 ·�−1 has i j-entry 1/ i
if i = j , −1/ i if i = j + 1, and 0 otherwise. Thus, ci = λi/ i −λi+1/(i + 1) for all
i ∈ [n− 1] and cn = λn/n. In particular, we get

1=
n∑

i=1

ci =
λ1

1
≥
λ2

2
≥ · · · ≥

λn

n
= cn ≥ 0

and hence, λ is an anti-lecture-hall composition with λ1 = 1. �

The first part of our main theorem is a simple corollary of Proposition 4.11. In
particular, it asserts that the injection in Proposition 4.2 is in fact a bijection.

Theorem 4.12 (Main Theorem, Part 1). For every 2-linear ideal I in S, there is a
unique threshold graph T on n+ 1 vertices with β(S/I )= β(k[T ]).

Remark 4.13. For a given 2-linear ideal I in S, it is easy to construct the graph T
realizing its Betti diagram.

Example 4.14. To illustrate Theorem 4.12 at work, consider the ideal

I = 〈x2
1 , x1x2, x1x3, x1x4, x2

2 , x1x5+ x2x4, x2
4〉 ⊆ S = k[x1, . . . , x5].

Then

β(S/I )=
[

1 · · · · ·
· 7 11 6 1 0

]
.

In order to find a threshold graph T on six vertices whose Betti diagram is β(S/I ),
we sequentially apply the inverses of the affine transformations in Proposition 4.2
depending on whether or not the sequences end in 0. (We leave it to the reader to
verify that the inverse of 3 in Proposition 4.2 is the n× (n−1)-matrix whose (i, j)
position is (−1)i+ j if i ≤ j and 0 otherwise.)

[7, 11, 6, 1, 0]
−
∗

−→ [7, 11, 6, 1]
−∗
−→ [3, 2, 0]

−
∗

−→ [3, 2]
−∗
−→ [1]

−∗
−→ [0]
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Figure 3. The threshold graph T on six vertices with ω(k[T ])= [7, 11, 6, 1, 0].

From this, we see that β(S/I ) = β(k[T ]), where T is the threshold graph with
sequence ∗ ∗ ∗ ∗ ∗ drawn in Figure 3.

For the rest of the paper, we take a more geometric approach. Specifically,
we make use of the fact (Remark 3.3) that the reduced Betti vectors of these
diagrams are lattice points in the (n−1)-dimensional lattice simplex Pn spanned
by the row vectors of �. Illustrations of P1 through P4, labeled by reduced Betti
vectors, Boij–Söderberg coefficients, truncated coordinates (see Section 5), and
corresponding chordal graphs are shown in Figures 4 and 5, with the threshold
graphs colored dark green. Notice that each Pn contains two copies of Pn−1, colored
blue and red, corresponding to the first and second equations, respectively, in (1)
(see Proposition 4.2).

We continue with some standard definitions from discrete geometry. The integer
points Zd

⊆ Rd form a lattice. The integer points of a polytope are its lattice points

Figure 4. The lattice polytopes P1 (left), P2 (middle), and P3 (right).
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Figure 5. The lattice polytope P4.

and a polytope is called a lattice polytope if all its vertices are lattice points. For a
polytope P with vertices {v1, . . . , vs} and t ∈N, let t P denote the t-th dilation of P ,
that is, the polytope attained by taking the convex hull of the points {t ·v1, . . . , t ·vs},
let SP ⊆Zd+1 denote the semigroup generated by

{
[1, p1, . . . , pd ] : (p1, . . . , pd)∈

P ∩ Zd
}
, and let gp(SP) be the smallest group containing SP , that is the group

of differences in SP . We say P is normal if x ∈ gp(SP) such that s · x ∈ SP for
some s ∈N implies that x ∈ SP . We refer to [Barvinok 2002; Bruns et al. 1997] for
questions on lattice polytopes.

Proposition 4.15. The lattice simplex Pn is normal for each n ∈ N.

Proof. It is straightforward to check that the anti-lecture-hall compositions of
length n bounded above by 1 are the lattice points of the n-dimensional lattice
simplex spanned by (0, . . . , 0) and the compositions λl

= (1, 2, . . . , l, 0, . . . , 0)
for l ∈ [n]. Let Qn be the facet spanned by the λl . Since normality is preserved
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under unimodular transformations, we prove that Qn is normal and apply 9 from
the proof of Proposition 4.11.

To begin, we must truncate the coordinates of Qn since it is an (n−1)-dimensional
simplex. Removing the first coordinate yields the simplex with vertices (0, . . . , 0)
and (2, 3, . . . , l, 0, . . . , 0) for l ∈ [n]. Then SQn is the set of all anti-lecture-hall
compositions and gp(SQn )= Zn . From here it is clear that if λ ∈ Zn and s ·λ ∈ SQn

for some s ∈ N, then λ ∈ SQn . Hence, Qn is normal. �

A convenient consequence of normality is that every lattice point in the t-th
dilation of a normal polytope P can be written as a sum of t , not necessarily distinct,
lattice points in P . With that, we can prove the second part of our main theorem.

Theorem 4.16 (Main Theorem, Part 2). For every finitely generated, graded S-
module M with a 2-linear minimal free resolution and β0,0(M) = m, there is a
collection of m threshold graphs {T1, . . . , Tm}, not necessarily distinct, such that
β(M)= β(k[T1]⊕ · · ·⊕ k[Tm]).

Proof. By Theorem 3.2, ω(M) is a lattice point in m Pn and is a sum of m lattice
points p1, . . . , pm in Pn , by Proposition 4.15. Applying Theorem 4.12 yields a
threshold graph Ti such that pi = ω(k[Ti ]) for each i ∈ [m], and thus,

β(M)= β(T1)+ · · ·+β(Tm)= β(k[T1]⊕ · · ·⊕ k[Tm]). �

Remark 4.17. The decomposition in Theorem 4.16 is often not unique. So in the
more general setting of modules, we do not know how to construct the family of
trees representing a given Betti diagram as we do in the special case of algebras,
see Theorem 4.12 and Example 4.14.

5. The geometry of Pn and Qn

In the previous section, we used the geometry of the lattice simplex Pn of reduced
Betti vectors of 2-linear ideals in S (or equivalently, the lattice simplex Qn of nonzero
anti-lecture-hall compositions of length n) to prove algebraic statements about Betti
diagrams of algebras and modules with 2-linear resolutions, but these polytopes
have many other beautiful geometric properties which make them interesting on
their own. In this section, we take the opportunity to showcase a few of these
properties. Specifically, we remark that Pn has a simple Ehrhart polynomial, by a
result from [Corteel et al. 2005], and we prove that Pn is reflexive.

Given a d-dimensional polytope P , let EhrP(t) denote the number of lattice
points in t P . It is well known that EhrP(t) is a degree d polynomial in t , called
the Ehrhart polynomial of P , with constant term 1 and leading coefficient equal
to the volume of P , and that Ehrhart polynomials are preserved under unimodular
transformations. For an introduction to Ehrhart theory, see [Beck and Robins 2007].
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Theorem 5.1. For every n, t ∈ N, EhrPn (t)= EhrQn (t)= (t + 1)n − tn .

Proof. Since the matrix 9−1 in the proof of Proposition 4.11 is unimodular, we
know that EhrPn (t)=EhrQn (t). So, let An(t) denote the number of anti-lecture-hall
compositions of length n with λ1 ≤ t . Theorem 4.10 gives us An(t) = (t + 1)n .
Since every point in the t Qn satisfies λ1 = t , it follows immediately that

EhrPn (t)= EhrQn (t)= An(t)− An(t − 1)= (t + 1)n − tn. �

Next, we prove that Pn is reflexive. For this, we need the concept of a dual (or
polar) of a polytope, but restrict to the case of simplices, since those are the only
polytopes we consider.

Definition 5.2. Let the vertices of a d-simplex P be recorded as the rows of the
d × (d − 1) matrix M and let M∗ be the (d − 1)× d matrix such that M M∗ has
value −1 everywhere outside the diagonal. The d-simplex whose vertices are the
columns of M∗ is the dual P∗ of P .

If P is a lattice polytope containing 0 as an interior point such that P∗ is also a
lattice polytope, then P and P∗ are called reflexive. These polytopes have several
interesting properties and characterizations, for instance, a lattice polytope P is
reflexive if and only if its only interior lattice point is 0 and if u and v are two lattice
points on the boundary of P , then either u and v are on the same facet, or u+ v is
in P . This is an important concept with interesting connections to geometry and
theoretical physics. For an exposition suitable for researchers with a background in
discrete mathematics, we refer to Batyrev and Nill [2008].

Because Pn is an (n−1)-dimensional simplex with coordinates in Zn , for each
lattice point p ∈ Pn , we define

pt = [p1, . . . , pn−1] := [p− ηn]2≤i≤n =
[

p2−
(n

2

)
, . . . , pn −

(n
n

)]
to be the truncated coordinates of p in Pn .

Theorem 5.3. The simplex Pn realized in the truncated coordinates is a reflexive
lattice polytope.

Proof. We begin by removing the left-most column of � to get the n × (n − 1)
matrix �′n . Then the truncated coordinates of Pn are the rows of �n =�

′
n − ηn1n .

More explicitly, the i j-entry of �′n is ( j + 1)
(i+1

j+2

)
and the j entry of ηn is

( n
j+1

)
.

The dual of Pn , in truncated coordinates, is the simplex whose vertices are
the columns of the (n − 1)× (n) matrix 4n satisfying that all values of �n4n

outside the diagonal are −1. If all entries of 4n are integers, then the dual of Pn

is a lattice polytope and hence, Pn is reflexive. To show this, we construct 4n

explicitly with three (n−1)×n matrices, 4′n , 4′′n , and 4′′′n . The i j -entries of 4′n are
−(i+2)(−1)i+ j

( i
j−1

)
and the matrices 4′′n and 4′′′n are all zero, with the exceptions



1740 Alexander Engström and Matthew T. Stamps

that the first column of 4′′n is −2(−1)i , and the bottom right-most entry of 4′′′n is
1− n. We consider 4n =4

′
n +4

′′
n +4

′′′
n .

To calculate the product �n4n , we separate both �n and 4n into the sums above
and then multiply them. The matrix multiplications are straightforward applications
of elementary combinatorics, so we only record the results:

(1) The matrix �′n4
′
n is the sum of two matrices. The only nonzero elements of

the first are the diagonal i i-entries i(i + 1) and the only nonzero elements of
the second are the first column i1-entries −i(i + 1).

(2) The matrix ηn1n4
′
n has 1s everywhere, except that the first column is constant

with −2n+ 1 and the last column is n+ 1.

(3) The matrix �′n4
′′
n has 0s everywhere, except that the first column’s i1-entry is

i(i + 1)− 2.

(4) The matrix ηn1n4
′′
n has 0s everywhere, except that the first column is constant

with 2n− 2.

(5) The matrix �′n4
′′′
n has 0s everywhere, except that the rightmost bottom corner

is −n2.

(6) The matrix ηn1n4
′′′
n has 0s everywhere, except that the rightmost column is

constant −n.

Summing up, we conclude that the i j -entry of�n4n = (�
′
n−ηn1n)(4

′
n+4

′′
n+4

′′′
n )

is
−1 if i 6= j, i2

+ i − 1 if i = j < n, n if i = j = n. �
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Hopf monoids from class functions
on unitriangular matrices

Marcelo Aguiar, Nantel Bergeron and Nathaniel Thiem

We build, from the collection of all groups of unitriangular matrices, Hopf
monoids in Joyal’s category of species. Such structure is carried by the collection
of class function spaces on those groups and also by the collection of superclass
function spaces in the sense of Diaconis and Isaacs. Superclasses of unitriangular
matrices admit a simple description from which we deduce a combinatorial model
for the Hopf monoid of superclass functions in terms of the Hadamard product
of the Hopf monoids of linear orders and of set partitions. This implies a recent
result relating the Hopf algebra of superclass functions on unitriangular matrices
to symmetric functions in noncommuting variables. We determine the algebraic
structure of the Hopf monoid: it is a free monoid in species with the canonical
Hopf structure. As an application, we derive certain estimates on the number of
conjugacy classes of unitriangular matrices.

Introduction

A Hopf monoid (in Joyal’s category of species) is an algebraic structure akin to
that of a Hopf algebra. Combinatorial structures that compose and decompose give
rise to Hopf monoids. These objects are the subject of [Aguiar and Mahajan 2010,
Part II]. The few basic notions and examples needed for our purposes are reviewed
in Section 1, including the Hopf monoids of linear orders, set partitions, and simple
graphs and the Hadamard product of Hopf monoids.

The main goal of this paper is to construct a Hopf monoid out of the groups of
unitriangular matrices with entries in a finite field and to do this in a transparent
manner. The structure exists on the collection of function spaces on these groups
and also on the collections of class function and superclass function spaces. It is
induced by two simple operations on this collection of groups: the passage from a
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matrix to its principal minors gives rise to the product, and direct sum of matrices
gives rise to the coproduct.

Class functions are defined for arbitrary groups. An abstract notion and theory
of superclass functions (and supercharacters) for arbitrary groups exists [Diaconis
and Isaacs 2008]. While a given group may admit several such theories, there is
a canonical choice of superclasses for a special class of groups known as algebra
groups. These notions are briefly discussed in Section 4.1. Unitriangular groups
are the prototype of such groups, and we employ the corresponding notion of super-
classes in Section 4.2. The study of unitriangular superclasses and supercharacters
was initiated in [André 1995a; 1995b], making use of the method of Kirillov [1995],
and by more elementary means in [Yan 2001].

Preliminaries on unitriangular matrices are discussed in Section 2. The Hopf
monoids f(U) of functions and cf(U) of class functions are constructed in Section 3.
The nature of the construction is fairly general; in particular, the same procedure
yields the Hopf monoid scf(U) of superclass functions in Section 4.2.

Unitriangular matrices over F2 may be identified with simple graphs, and direct
sums and the passage to principal minors correspond to simple operations on graphs.
This yields a combinatorial model for f(U) in terms of the Hadamard product
of the Hopf monoids of linear orders and of graphs, as discussed in Section 3.6.
The conjugacy classes on the unitriangular groups exhibit great complexity and
considerable attention has been devoted to their study [Goodwin 2006; Higman 1960;
Kirillov 1995; Vera-López et al. 2008]. We do not attempt an explicit combinatorial
description of the Hopf monoid cf(U). On the other hand, superclasses are well-
understood (Section 4.3), and such a combinatorial description exists for scf(U). In
Section 4.5, we obtain a combinatorial model in terms of the Hadamard product of
the Hopf monoids of linear orders and of set partitions. This has as a consequence
the main result of [Aguiar et al. 2012], as we explain in Section 6.2.

Employing the combinatorial models, we derive structure theorems for the Hopf
monoids f(U) and scf(U) in Section 5. Our main results state that both are free
monoids with the canonical Hopf structure (in which the generators are primitive).

Applications are presented in Section 6. With the aid of Lagrange’s theorem
for Hopf monoids, one may derive estimates on the number of conjugacy classes
of unitriangular matrices in the form of certain recursive inequalities. We obtain
this application in Section 6.1, where we also formulate a refinement of Higman’s
conjecture on the polynomiality of these numbers. Other applications involving the
Hopf algebra of superclass functions of [Aguiar et al. 2012] are given in Section 6.2.

We employ two fields: the base field k and the field of matrix entries F. We
consider algebras and groups of matrices with entries in F; all other vector spaces
are over k. The field of matrix entries is often assumed to be finite and sometimes
to be F2.
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1. Hopf monoids

We review the basics on Hopf monoids and recall three examples built from lin-
ear orders, set partitions, and simple graphs, respectively. We also consider the
Hadamard product of Hopf monoids. In later sections, Hopf monoids are built from
functions on unitriangular matrices. The constructions of this section will allow us
to provide combinatorial models for them.

1.1. Species and Hopf monoids. For the precise definitions of vector species and
Hopf monoid, we refer to [Aguiar and Mahajan 2010, Chapter 8]. The main
ingredients are reviewed below.

A vector species p is a collection of vector spaces p[I ], one for each finite set I ,
equivariant with respect to bijections I ∼= J . A morphism of species f : p→ q is a
collection of linear maps f I : p[I ] → q[I ] that commute with bijections.

A decomposition of a finite set I is a finite sequence (S1, . . . , Sk) of disjoint
subsets of I whose union is I . In this situation, we write

I = S1 t · · · t Sk .

A Hopf monoid consists of a vector species h equipped with two collections µ
and 1 of linear maps

h[S1]⊗ h[S2]
µS1,S2
−−−→ h[I ] and h[I ]

1S1,S2
−−−−→ h[S1]⊗ h[S2].

There is one map in each collection for each finite set I and each decomposition
I = S1 t S2. This data is subject to a number of axioms, of which the main ones
follow.

Associativity. For each decomposition I = S1 t S2 t S3, the diagrams

h[S1]⊗ h[S2]⊗ h[S3]
id⊗µS2,S3 //

µS1,S2⊗id
��

h[S1]⊗ h[S2 t S3]

µS1,S2tS3
��

h[S1 t S2]⊗ h[S3] µS1tS2,S3

// h[I ]

(1)

h[I ]
1S1tS2,S3 //

1S1,S2tS3
��

h[S1 t S2]⊗ h[S3]

1S1,S2⊗id
��

h[S1]⊗ h[S2 t S3] id⊗1S2,S3

// h[S1]⊗ h[S2]⊗ h[S3]

(2)

commute.
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Compatibility. Fix decompositions S1tS2= I =T1tT2, and consider the resulting
pairwise intersections

A := S1 ∩ T1, B := S1 ∩ T2, C := S2 ∩ T1, and D := S2 ∩ T2,

as illustrated below:

S1

S2

T1 T2

A B

C D

(3)

For any such pair of decompositions, the diagram

h[A]⊗ h[B]⊗ h[C]⊗ h[D]
∼= // h[A]⊗ h[C]⊗ h[B]⊗ h[D]

µA,C⊗µB,D

��
h[S1]⊗ h[S2] µS1,S2

//

1A,B⊗1C,D

OO

h[I ]
1T1,T2

// h[T1]⊗ h[T2]

(4)

must commute. The top arrow stands for the map that interchanges the middle
factors.

In addition, the Hopf monoid h is connected if h[∅] = k and the maps

h[I ]⊗ h[∅]
µI,∅ // h[I ]
1I,∅
oo and h[∅]⊗ h[I ]

µ∅,I // h[I ]
1∅,I
oo

are the canonical identifications.
The collection µ is the product, and the collection 1 is the coproduct of the

Hopf monoid h.
A Hopf monoid is (co)commutative if the left (right) diagram below commutes

for all decompositions I = S1 t S2:

h[S1]⊗ h[S2]
∼= //

µS1,S2 !!

h[S2]⊗ h[S1]

µS2,S1}}
h[I ]

h[S1]⊗ h[S2]
∼= // h[S2]⊗ h[S1]

h[I ]
1S1,S2

aa

1S2,S1

==
(5)

The top arrows stand for the map that interchanges the factors.
A morphism of Hopf monoids f : h→ k is a morphism of species that commutes

with µ and 1.
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1.2. The Hopf monoid of linear orders. For any finite set I , L[I ] is the set of all
linear orders on I . For instance, if I = {a, b, c},

L[I ] = {abc, bac, acb, bca, cab, cba}.

Let L[I ] denote the vector space with basis L[I ]. The collection L is a vector
species.

Let I = S1 t S2. Given linear orders `i on Si , i = 1, 2, their concatenation `1 · `2

is a linear order on I . This is the list consisting of the elements of S1 as ordered
by `1 followed by those of S2 as ordered by `2. Given a linear order ` on I and
S⊆ I , the restriction `|S (the list consisting of the elements of S written in the order
in which they appear in `) is a linear order on S. These operations give rise to maps

L[S1]×L[S2] → L[I ],

(`1, `2) 7→ `1 · `2
and

L[I ] → L[S1]×L[S2],

` 7→ (`|S1, `|S2).
(6)

Extending by linearity, we obtain linear maps

µS1,S2 : L[S1]⊗ L[S2] → L[I ] and 1S1,S2 : L[I ] → L[S1]⊗ L[S2]

that turn L into a Hopf monoid. For instance, given linear orders `i on Si , i = 1, 2,
the commutativity of (4) boils down to the fact that the concatenation of `1|A and
`2|C agrees with the restriction to T1 of `1·`2. The Hopf monoid L is cocommutative
but not commutative. For more details, see [Aguiar and Mahajan 2010, Section 8.5].

1.3. The Hopf monoid of set partitions. A partition of a finite set I is a collection
X of disjoint nonempty subsets whose union is I . The subsets are the blocks of X .

Given a partition X of I and S⊆ I , the restriction X |S is the partition of S whose
blocks are the nonempty intersections of the blocks of X with S. Let I = S1 t S2.
Given partitions X i of Si , i = 1, 2, their union is the partition X1 t X2 of I whose
blocks are the blocks of X1 and the blocks of X2. A quasishuffle of X1 and X2 is
any partition of I whose restriction to Si is X i , i = 1, 2.

Let 5[I ] denote the set of partitions of I and 5[I ] the vector space with basis
5[I ]. A Hopf monoid structure on 5 is defined and studied in [Aguiar and
Mahajan 2010, Section 12.6]. Among its various linear bases, we are interested in
the basis {m X } on which the operations are as follows. The product

µS1,S2 :5[S1]⊗5[S2] →5[I ]

is given by

µS1,S2(m X1 ⊗m X2)=
∑

X :
X |S1=X1
X |S2=X2

m X . (7)
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The coproduct
1S1,S2 :5[I ] →5[S1]⊗5[S2]

is given by

1S1,S2(m X )=

{
m X |S1

⊗m X |S2
if S1 is the union of some blocks of X ,

0 otherwise.
(8)

Note that the following conditions are equivalent for a partition X of I :

• S1 is the union of some blocks of X .

• S2 is the union of some blocks of X .

• X = X |S1 t X |S2 .

These operations turn the species 5 into a Hopf monoid that is both commutative
and cocommutative.

1.4. The Hopf monoid of simple graphs. A (simple) graph g on a finite set I is a
relation on I that is symmetric and irreflexive. The elements of I are the vertices
of g There is an edge between two vertices when they are related by g.

Given a graph g on I and S ⊆ I , the restriction g|S is the graph on S whose
edges are the edges of g between elements of S. Let I = S1 t S2. Given graphs gi

of Si , i = 1, 2, their union is the graph g1 t g2 of I whose edges are those of g1

and those of g2. A quasishuffle of g1 and g2 is any graph on I whose restriction
to Si is gi , i = 1, 2.

Let G[I ] denote the set of graphs on I and G[I ] the vector space with basis G[I ].
A Hopf monoid structure on G is defined and studied in [Aguiar and Mahajan 2010,
Section 13.2]. We are interested in the basis {mg} on which the operations are as
follows. The product

µS1,S2 : G[S1]⊗G[S2] → G[I ]

is given by
µS1,S2(mg1 ⊗mg2)=

∑
g:

g|S1=g1
g|S2=g2

mg. (9)

The coproduct
1S1,S2 : G[I ] → G[S1]⊗G[S2]

is given by

1S1,S2(mg)=

{
mg|S1

⊗mg|S2
if no edge of g connects S1 to S2,

0 otherwise.
(10)

Note that no edge of g connects S1 to S2 if and only if g = g|S1 t g|S2 .
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These operations turn the species G into a Hopf monoid that is both commutative
and cocommutative.

Remark 1. The dual of a species p is the collection p∗ of dual vector spaces:
p∗[I ] = p[I ]∗. A species p is said to be finite-dimensional if each space p[I ] is
finite-dimensional. Dualizing the operations of a finite-dimensional Hopf monoid h,
one obtains a Hopf monoid h∗. The Hopf monoid h is called self-dual if h ∼= h∗.
In general, such isomorphism is not unique.

Over a field of characteristic 0, a Hopf monoid that is connected, commutative,
and cocommutative is always self-dual. This is a consequence of the Cartier–Milnor–
Moore theorem. (The isomorphism with the dual is not canonical.)

In particular, the Hopf monoids 5 and G are self-dual. In [Aguiar and Mahajan
2010], the preceding descriptions of these Hopf monoids are stated in terms of their
duals 5∗ and G∗. A different description of 5 is given in [Aguiar and Mahajan
2010, Section 12.6.2]. To reconcile the two, one should use the explicit isomorphism
5∼=5∗ given in [Aguiar and Mahajan 2010, Proposition 12.48].

1.5. The Hadamard product. Given species p and q, their Hadamard product is
the species p× q defined by

( p× q)[I ] = p[I ]⊗ q[I ].

If h and k are Hopf monoids, then so is h× k with the following operations. Let
I = S1 t S2. The product is

(h× k)[S1]⊗ (h× k)[S2] // (h× k)[I ]

h[S1]⊗ k[S1]⊗ h[S2]⊗ k[S2] ∼=

// h[S1]⊗ h[S2]
⊗ k[S1]⊗ k[S2] µS,T⊗µS,T

// h[I ]⊗ k[I ]

and the coproduct is defined dually. If h and k are (co)commutative, then so is
h× k. For more details, see [Aguiar and Mahajan 2010, Section 8.13].

2. Unitriangular matrices

This section sets up the basic notation pertaining to unitriangular matrices and
discusses two simple but important constructions: direct sum of matrices and the
passage from a matrix to its principal minors. The Hopf monoid constructions of
later sections are based on them. The key results are Lemmas 2 and 3. The former
is the reason why we must use unitriangular matrices: for arbitrary matrices, the
passage to principal minors is not multiplicative. The latter will be responsible (in
later sections) for the necessary compatibility between the product and coproduct
of the Hopf monoids.
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Let F be a field, I a finite set, and ` a linear order on I . Let M(I ) denote the
algebra of matrices

A = (ai j )i, j∈I , ai j ∈ F for all i, j ∈ I .

The general linear group GL(I ) consists of the invertible matrices in M(I ), and the
subgroup U(I, `) consists of the upper `-unitriangular matrices

U = (ui j )i, j∈I , ui i = 1 for all i ∈ I and ui j = 0 whenever i >` j .

If `′ is another linear order on I , then U(I, `) and U(I, `′) are conjugate subgroups
of GL(I ). However, we want to keep track of all groups in this collection and of
the manner in which they interact.

2.1. Direct sum of matrices. Suppose I = S1 t S2 is a decomposition. Given
A = (ai j ) ∈M(S1) and B = (bi j ) ∈M(S2), their direct sum is

A⊕ B = (ci j ) ∈M(I ),

the matrix with entries

ci j =


ai j if both i, j ∈ S1,
bi j if both i, j ∈ S2,
0 otherwise.

Let ` ∈ L[I ]. The direct sum of an `|S1-unitriangular and an `|S2-unitriangular
matrix is `-unitriangular. The morphism of algebras

M(S1)×M(S2)→M(I ), (A, B) 7→ A⊕ B

thus restricts to a morphism of groups

σS1,S2 : U(S1, `|S1)×U(S2, `|S2)→ U(I, `). (11)

(The dependence of σS1,S2 on ` is left implicit.)
Direct sum of matrices is associative; thus, for any decomposition I = S1tS2tS3,

the diagram

U(S1, `|S1)×U(S2, `|S2)×U(S3, `|S3)

id×σS2,S3
��

σS1,S2×id
// U(S1t S2, `|S1tS2)×U(S3, `|S3)

σS1tS2,S3

��
U(S1, `|S1)×U(S2t S3, `|S2tS3) σS1,S2tS3

// U(I, `)

(12)
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commutes. Note also that, with these definitions, A⊕ B and B⊕ A are the same
matrix. Thus, the following diagram commutes:

U(S1, `|S1)×U(S2, `|S2)
∼= //

σS1,S2 ((

U(S2, `|S2)×U(S1, `|S1)

σS2,S1vv
U(S1 t S2, `)

(13)

2.2. Principal minors. Given A = (ai j ) ∈M(I ), the principal minor indexed by
S ⊆ I is the matrix

AS = (ai j )i, j∈S.

In general, AS is not invertible even if A is. In addition, the assignment A 7→ AS

does not preserve multiplications. On the other hand, if U is `-unitriangular, then US

is `|S-unitriangular. In regard to multiplicativity, we have the following basic fact.
We say that S is an `-segment if i, k ∈ S and i <` j <` k imply that also j ∈ S.
Let Ei j ∈M(I ) denote the elementary matrix in which the (i, j) entry is 1 and

all other entries are 0.

Lemma 2. Let ` ∈ L[I ] and S ⊆ I . The map

U(I, `)→ U(S, `|S), U 7→US

is a morphism of groups if and only if S is an `-segment.

Proof. Suppose the map is a morphism of groups. Let i, j, k ∈ I be such that i, k ∈ S
and i <` j <` k. The matrices

Id+ Ei j and Id+ E jk

are in U(I, `), and

(Id+ Ei j ) · (Id+ E jk)= Id+ Ei j + E jk + Eik .

If j /∈ S, then the two matrices are in the kernel of the map while their product is
mapped to Id+ Eik 6= Id. Thus, j ∈ S and S is an `-segment.

The converse implication follows from the fact that if U and V are `-unitriangular,
then the (i, k) entry of U V is ∑

i≤` j≤`k

ui jv jk . �

Let I = S1 t S2 be a decomposition with `i ∈ L[Si ], i = 1, 2. We define a map

πS1,S2 : U(I, `1 · `2)→ U(S1, `1)×U(S2, `2) (14)

by
U 7→ (US1,US2).
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Note that S1 is an initial segment for `1 · `2 and S2 is a final segment for `1 · `2.
Thus, πS1,S2 is a morphism of groups by Lemma 2.

If R ⊆ S ⊆ I , then (AS)R = AR . This implies the following commutativity for
any decomposition I = S1 t S2 t S3 and `i ∈ L[Si ], i = 1, 2, 3:

U(I, `1 · `2 · `3)
πS1tS2,S3 //

πS1,S2tS3

��

U(S1 t S2, `1 · `2)×U(S3, `3)

πS1,S2×id

��
U(S1, `1)×U(S2 t S3, `2 · `3) id×πS2,S3

// U(S1, `1)×U(S2, `2)×U(S3, `3)

(15)

2.3. Direct sums and principal minors. The following key result relates the col-
lection of morphisms σ to the collection π :

Lemma 3. Fix two decompositions I = S1 t S2 = T1 t T2, and let A, B, C , and D
be the resulting intersections, as in (3). Let `i be a linear order on Si , i = 1, 2, and
`= `1 · `2. Then the following diagram commutes:

U(T1, `|T1)×U(T2, `|T2)

σT1,T2

��

πA,C×πB,D // U(A, `1|A)×U(C, `2|C)
×U(B, `1|B)×U(D, `2|D)

∼=

��

U(I, `)

πS1,S2

��
U(S1, `1)×U(S2, `2) U(A, `1|A)×U(B, `1|B)

×U(C, `2|C)×U(D, `2|D)σA,B×σC,D

oo

(16)

Proof. First note that since `|T1 = (`1|A) · (`2|C), πA,C does map as stated in the
diagram and similarly for πB,D . The commutativity of the diagram boils down to
the simple fact that

(U ⊕ V )S1 =UA⊕ VB

(and a similar statement for S2, C , and D). This holds for any U ∈ M(T1) and
V ∈M(T2). �

3. A Hopf monoid of (class) functions

We employ the operations of Section 2 (direct sum of matrices and the passage from
a matrix to its principal minors) to build a Hopf monoid structure on the collection
of function spaces on unitriangular matrices. The collection of class function spaces
gives rise to a Hopf submonoid. With matrix entries in F2, the Hopf monoid of
functions may be identified with the Hadamard product of the Hopf monoids of
linear orders and of simple graphs.
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3.1. Functions. Given a set X , let f(X) denote the vector space of functions on X
with values on the base field k. The functor

f : {sets} → {vector spaces}

is contravariant. If at least one of two sets X1 and X2 is finite, then there is a
canonical isomorphism

f(X1× X2)∼= f(X1)⊗ f(X2). (17)

A function f ∈ f(X1×X2) corresponds to
∑

i f 1
i ⊗ f 2

i ∈ f(X1)⊗f(X2) if and only if

f (x1, x2)=
∑

i

f 1
i (x1) f 2

i (x2) for all x1 ∈ X1 and x2 ∈ X2.

Given an element x ∈ X , let κx : X→ k denote its characteristic function:

κx(y)=
{

1 if y = x,
0 if not.

(18)

Suppose now that X is finite. As x runs over the elements of X , the functions κx form
a linear basis of f(X). If ϕ : X→ X ′ is a function and x ′ is an element of X ′, then

κx ′ ◦ϕ =
∑

ϕ(x)=x ′
κx . (19)

Under (17),

κ(x1,x2)↔ κx1 ⊗ κx2 . (20)

3.2. Class functions on groups. Given a group G, let cf(G) denote the vector
space of class functions on G. These are the functions f : G→ k that are constant
on conjugacy classes of G. If ϕ : G→ G ′ is a morphism of groups and f is a class
function on G ′, then f ◦ϕ is a class function on G. In this manner,

cf : {groups} → {vector spaces}

is a contravariant functor. If at least one of two groups G1 and G2 is finite, then
there is a canonical isomorphism

cf(G1×G2)∼= cf(G1)⊗ cf(G2) (21)

obtained by restriction from the isomorphism (17).
Given a conjugacy class C of G, let κC :G→ k denote its characteristic function:

κC(x)=
{

1 if x ∈ C ,
0 if not.

(22)
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Suppose G has finitely many conjugacy classes. As C runs over the conjugacy
classes of G, the functions κC form a linear basis of cf(G). If C ′ is a conjugacy
class of G ′, then

κC ′ ◦ϕ =
∑

ϕ(C)⊆C ′
κC . (23)

The conjugacy classes of G1×G2 are of the form C1×C2, where Ci is a conjugacy
class of Gi , i = 1, 2. Under (21),

κC1×C2 ↔ κC1 ⊗ κC2 . (24)

3.3. Functions on unitriangular matrices. We assume for the rest of this section
that the field F of matrix entries is finite. Thus, all groups U(I, `) of unitriangular
matrices are finite.

We define a vector species f(U) as follows. On a finite set I ,

f(U)[I ] =
⊕
`∈L[I ]

f(U(I, `)).

In other words, f(U)[I ] is the direct sum of the spaces of functions on all unitriangu-
lar groups on I . A bijection σ : I ∼= J induces an isomorphism U(I, `)∼=U(J, σ ·`)
and therefore an isomorphism f(U)[I ] ∼= f(U)[J ]. Thus, f(U) is a species.

Let I = S1 t S2 and `i ∈ L[Si ], i = 1, 2. Applying the functor f to the morphism
πS1,S2 in (14) and composing with the isomorphism in (17), we obtain a linear map

f(U(S1, `1))⊗ f(U(S2, `2))→ f(U(I, `1 · `2)).

Adding over all `1 ∈ L[S1] and `2 ∈ L[S2], we obtain a linear map

µS1,S2 : f(U)[S1]⊗ f(U)[S2] → f(U)[I ]. (25)

Explicitly, given functions f : U(S1, `1)→ k and g : U(S2, `2)→ k,

µS1,S2( f ⊗ g) : U(I, `1 · `2)→ k

is the function given by
U 7→ f (US1)g(US2). (26)

Similarly, from the map σS1,S2 in (11), we obtain the components

f(U(I, `))→ f(U(S1, `|S1))⊗ f(U(S2, `|S2))

(one for each ` ∈ L[I ]) of a linear map

1S1,S2 : f(U)[I ] → f(U)[S1]⊗ f(U)[S2]. (27)
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Explicitly, given a function f : U(I, `)→ k, we have 1S1,S2( f ) =
∑

i f 1
i ⊗ f 2

i ,
where

f 1
i : U(S1, `|S1)→ k and f 2

i : U(S2, `|S2)→ k

are functions such that

f (U1⊕U2)=
∑

i

f 1
i (U1) f 2

i (U2)

for all U1 ∈ U(S1, `|S1) and U2 ∈ U(S2, `|S2). (28)

Proposition 4. With the operations (25) and (27), the species f(U) is a connected
Hopf monoid. It is cocommutative.

Proof. Axioms (1), (2), and (4) follow from (12), (15), and (16) by functoriality. In
the same manner, cocommutativity (5) follows from (13). �

We describe the operations on the basis of characteristic functions (18). Let
Ui ∈U(Si , `i ), i=1, 2. It follows from (19) and (20), or from (26), that the product is

µS1,S2(κU1 ⊗ κU2)=
∑

πS1,S2 (U )=(U1,U2)

κU =
∑

US1=U1
US2=U2

κU . (29)

Similarly, the coproduct is

1S1,S2(κU )=
∑

σS1,S2 (U1,U2)=U

κU1 ⊗ κU2 =

{
κUS1
⊗ κUS2

if U =US1 ⊕US2 ,
0 otherwise.

(30)

3.4. Constant functions. Let 1` denote the constant function on U(I, `) with
value 1. Let I = S1 t S2. It follows from (26) that

µS1,S2(1`1 ⊗ 1`2)= 1`1·`2

for any `1 ∈ L[S1] and `2 ∈ L[S2]. Similarly, we see from (28) that

1S1,S2(1`)= 1`|S1
⊗ 1`|S2

for any ` ∈ L[I ]. We thus have:

Corollary 5. The collection of maps

L[I ] → f(U)[I ], ` 7→ 1`

is an injective morphism of Hopf monoids.
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3.5. Class functions on unitriangular matrices. Let cf(U)[I ] be the direct sum
of the spaces of class functions on all unitriangular groups on I :

cf(U)[I ] =
⊕
`∈L[I ]

cf(U(I, `)).

This defines a subspecies cf(U) of f(U).
Proceeding in the same manner as in Section 3.3, we obtain linear maps

cf(U)[S1]⊗ cf(U)[S2]
µS1,S2 // cf(U)[I ]
1S1,S2

oo

by applying the functor cf to the morphisms πS1,S2 and σS1,S2 . This is meaningful
since the latter are morphisms of groups (in the case of πS1,S2 , by Lemma 2).

Proposition 6. With these operations, the species cf(U) is a connected cocommuta-
tive Hopf monoid. It is a Hopf submonoid of f(U).

Proof. As in the proof of Proposition 4, the first statement follows by functoriality.
The second follows from the naturality of the inclusion of class functions and its
compatibility with the isomorphisms in (17) and (21). �

We describe the operations on the basis of characteristic functions (22). Let Ci

be a conjugacy class of U(Si , `i ), i = 1, 2. It follows from (23) and (24) that the
product is

µS1,S2(κC1 ⊗ κC2)=
∑

πS1,S2 (C)⊆C1×C2

κC , (31)

where the sum is over conjugacy classes C in U(I, `1·`2). Similarly, the coproduct is

1S1,S2(κC)=
∑

σS1,S2 (C1×C2)⊆C

κC1 ⊗ κC2 . (32)

Here C is a conjugacy class of U(I, `), and the sum is over pairs of conjugacy
classes Ci of U(Si , `|Si ).

Remark 7. Let
F : {groups} → {vector spaces}

be a functor that is contravariant and bilax monoidal in the sense of [Aguiar and
Mahajan 2010, Section 3.1]. The construction of the Hopf monoids f(U) and
cf(U) can be carried out for any such functor F in place of cf in exactly the same
manner. It can also be carried out for a covariant bilax monoidal functor F in
a similar manner.
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3.6. A combinatorial model. To a unitriangular matrix U ∈ U(I, `), we associate
a graph g(U ) on I as follows: there is an edge between i and j if i < j in ` and
ui j 6= 0. For example, given nonzero entries a, b, c ∈ F,

`= hi jk, U =


1 0 0 a

1 b c
1 0

1

 H⇒ g(U )= • • • •

h i j k
. (33)

Recall the Hopf monoids L and G and the notion of Hadamard product from
Section 1. Let

φ : L× G→ f(U)

be the map with components

(L× G)[I ] → f(U)[I ]

given as follows. On a basis element `⊗mg ∈ L[I ]⊗G[I ] = (L×G)[I ], we set

φ(`⊗mg)=
∑

U∈U(I,`)
g(U )=g

κU ∈ f(U(I, `))⊆ f(U)[I ] (34)

and extend by linearity. The map relates the m-basis of G to the basis of character-
istic functions (18) of f(U).

Proposition 8. Let F be an arbitrary finite field. The map φ : L× G→ f(U) is an
injective morphism of Hopf monoids.

Proof. From the definition of the Hopf monoid operations on a Hadamard product
and formulas (6) and (9), it follows that

µS1,S2

(
(`1⊗mg1)⊗ (`2⊗mg2)

)
=

∑
g|S1=g1
g|S2=g2

`1 · `2⊗mg.

Comparing with (29), we see that products are preserved since given U ∈ U(I, `),
we have

g(USi )= g(U )|Si .

The verification for coproducts is similar, employing (6), (10), and (30) and the fact
that given I = S1 t S2 and Ui ∈ U(Si , `|Si ), we have

g(U1⊕U2)= g(U1)t g(U2).

Consider the map ψ : f(U)→ L× G given by

ψ(κU )= `⊗mg(U ) (35)
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for any U ∈ U(I, `). Then

ψφ(`⊗mg)= (q − 1)e(g)`⊗mg,

where q is the cardinality of F and e(g) is the number of edges in g. Thus, φ is
injective. �

We mention that the map ψ in (35) is a morphism of comonoids but not of
monoids in general.

Assume now that the matrix entries are from F2, the field with two elements.
In this case, the matrix U is uniquely determined by the linear order ` and the
graph g(U ). Therefore, the map φ is invertible with inverse ψ .

Corollary 9. There is an isomorphism of Hopf monoids

f(U)∼= L× G

between the Hopf monoid of functions on unitriangular matrices with entries in F2

and the Hadamard product of the Hopf monoids of linear orders and simple graphs.

On an arbitrary function f : U(I, `)→ k, the isomorphism is given by

ψ( f )= `⊗
∑

U∈U(I,`)

f (U )mg(U ).

The coefficients of the m-basis elements are the values of f .

4. A Hopf monoid of superclass functions

An abstract notion of superclass (and supercharacter) has been introduced by
Diaconis and Isaacs [2008]. We only need a minimal amount of related concepts
that we review in Sections 4.1 and 4.2. For this purpose, we first place ourselves in
the setting of algebra groups. In Section 4.2, we construct a Hopf monoid structure
on the collection of spaces of superclass functions on the unitriangular groups by
the same procedure as that in Section 3. The combinatorics of these superclasses
is understood from the thesis of Yan [2001] (reviewed in slightly different terms
in Section 4.3), and this allows us to obtain an explicit description for the Hopf
monoid operations in Section 4.4. This leads to a theorem in Section 4.5 identifying
the Hopf monoid of superclass functions with matrix entries in F2 to the Hadamard
product of the Hopf monoids of linear orders and set partitions. The combinatorial
models for functions and for superclass functions are related in Section 4.6.

4.1. Superclass functions on algebra groups. Let n be a nilpotent algebra: an
associative, nonunital algebra in which every element is nilpotent. Let n= F⊕ n

denote the result of adjoining a unit to n. The set

G(n)= {1+ n | n ∈ n}
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is a subgroup of the group of invertible elements of n. A group of this form is called
an algebra group. (This is the terminology employed in [Diaconis and Isaacs 2008]
and, in a slightly different context, [André 1999; Isaacs 1995].)

A morphism of nilpotent algebras ϕ :m→n has a unique unital extension m→n,
and this sends G(m) to G(n). A morphism of algebra groups is a map of this form.

Warning. When we refer to the algebra group G(n), it is implicitly assumed that
the algebra n is given as well.

Following Yan [2001], we define an equivalence relation on G(n) as follows.
Given x, y ∈ G(n), we write x ∼ y if there exist g, h ∈ G(n) such that

y− 1= g(x − 1)h. (36)

Following now Diaconis and Isaacs [2008], we refer to the equivalence classes
of this relation as superclasses and to the functions G(n)→ k constant on these
classes as superclass functions. The set of such functions is denoted scf(G(n)).

Since
gxg−1

− 1= g(x − 1)g−1,

we have that x ∼ gxg−1 for any x, g ∈ G(n). Thus, each superclass is a union of
conjugacy classes, and hence, every superclass function is a class function:

scf(G(n))⊆ cf(G(n)). (37)

A morphism ϕ : G(m) → G(n) of algebra groups preserves the relation ∼.
Therefore, if f : G(n) → k is a superclass function on G(n), then f ◦ ϕ is a
superclass function on G(m). In this manner,

scf : {algebra groups} → {vector spaces}

is a contravariant functor. In addition, the inclusion (37) is natural with respect to
morphisms of algebra groups.

The direct product of two algebra groups is another algebra group. Indeed,

G(n1)×G(n2)∼= G(n1⊕ n2)

and n1⊕ n2 is nilpotent. Moreover,

(x1, x2)∼ (y1, y2) ⇐⇒ (x1 ∼ y1 and x2 ∼ y2).

Therefore, a superclass of the product is a pair of superclasses from the factors, and
if at least one of the two groups is finite, there is a canonical isomorphism

scf(G(n1)×G(n2))∼= scf(G(n1))⊗ scf(G(n2)).
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4.2. Superclass functions on unitriangular matrices. Given a finite set I and a
linear order ` on I , let n(I, `) denote the subalgebra of M(I ) consisting of strictly
upper-triangular matrices

N = (ni j )i, j∈I , ni j = 0 whenever i ≥` j .

Then n(I, `) is nilpotent and G(n(I, `))= U(I, `). Thus, the unitriangular groups
are algebra groups.

We assume from now on that the field F is finite.
We define, for each finite set I ,

scf(U)[I ] =
⊕
`∈L[I ]

scf(U(I, `)).

This defines a species scf(U). Proceeding in the same manner as in Sections 3.3
and 3.5, we obtain linear maps

scf(U)[S1]⊗ scf(U)[S2]
µS1,S2 // scf(U)[I ]
1S1,S2

oo

by applying the functor scf to the morphisms πS1,S2 and σS1,S2 . This is meaningful
since the latter are morphisms of algebra groups: it was noted in Section 2.1 that
σS1,S2 is the restriction of a morphism defined on the full matrix algebras while
the considerations of Lemma 2 show that πS1,S2 is the restriction of a morphism
defined on the algebra of upper-triangular matrices.

Proposition 10. With these operations, the species scf(U) is a connected cocom-
mutative Hopf monoid. It is a Hopf submonoid of cf(U).

Proof. As in the proof of Proposition 4, the first statement follows by functoriality.
The second follows from the naturality of the inclusion (37). �

(31) and (32) continue to hold for the (co)product of superclass functions.
The constant function 1` is a superclass function. Thus, the morphism of Hopf

monoids of Corollary 5 factors through scf(U) and cf(U):

L ↪→ scf(U) ↪→ cf(U) ↪→ f(U).

4.3. Combinatorics of the superclasses. Yan [2001] showed superclasses are para-
metrized by certain combinatorial data essentially along the lines presented below.

According to (36), two unitriangular matrices U1 and U2 are in the same super-
class if and only if U2−Id is obtained from U1−Id by a sequence of elementary row
and column operations. The available operations are from the unitriangular group
itself, so the pivot entries cannot be normalized. Thus, each superclass contains
a unique matrix U such that U − Id has at most one nonzero entry in each row
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and each column. We refer to this matrix U as the canonical representative of the
superclass.

We proceed to encode such representatives in terms of combinatorial data.
We first discuss the combinatorial data. Let ` be a linear order on a finite set I

and X a partition of I . Let us say that i, j ∈ I bound an arc if

• i precedes j in `,

• i and j are in the same block of X , say S, and

• no other element of S lies between i and j in the order `.

The set of arcs is

A(X, `) := {(i, j) | i and j bound an arc}.

Consider also a function
α : A(X, `)→ F×

from the set of arcs to the nonzero elements of F. We say that the pair (X, α) is an
arc diagram on the linearly ordered set (I, `). We may visualize an arc diagram:

•

a

• •

c

•

b

• •

f g h i j k

Here the combinatorial data is

`= f ghi jk, X ={{ f, i, j}, {g}, {h, k}}, α( f, i)= a, α(i, j)= b, α(h, k)= c.

Fix the linear order `. To an arc diagram (X, α) on (I, `), we associate a matrix
UX,α with entries

ui j =


α(i, j) if (i, j) ∈ A(X, `),
1 if i = j ,
0 otherwise.

Clearly, the matrix UX,α is `-unitriangular and UX,α − Id has at most one nonzero
entry in each row and each column. In the above example,

UX,α =



1 0 0 a 0 0
1 0 0 0 0

1 0 0 c
1 d 0

1 0
1


.

Conversely, any canonical representative matrix U ∈ U(I, `) is of the form UX,α

for a unique arc diagram (X, α) on (I, `): the location of the nonzero entries
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determines the set of arcs, and the values of the entries determine the function α.
The smallest equivalence relation on I containing the set of arcs determines the
partition X .

In conclusion, the canonical representatives, and hence the superclasses, are in
bijection with the set of arc diagrams. We let CX,α denote the superclass of U(I, `)
containing UX,α , and we write κX,α for the characteristic function of this class. As
(X, α) runs over all arc diagrams on (I, `), these functions form a basis of the space
scf(U(I, `)).

We describe principal minors and direct sums of the canonical representatives. To
this end, fix ` ∈ L[I ] and recall the notions of union and restriction of set partitions
discussed in Section 1.3.

Let S⊆ I be an arbitrary subset. Given a partition X of I , let A(X, `)|S denote the
subset of A(X, `) consisting of those arcs (i, j) where both i and j belong to S. We
let α|S denote the restriction of α to A(X, `)|S . We have A(X, `)|S ⊆ A(X |S, `|S),
and if S is an `-segment, then

A(X, `)|S = A(X |S, `|S). (38)

In this case, we obtain an arc diagram (X |S, α|S) on (S, `|S), and we have

(UX,α)S =UX |S,α|S . (39)

Suppose now that I = S1tS2 and (X i , αi ) is an arc diagram on (Si , `|Si ), i = 1, 2.
Then

A(X1 t X2, `)= A(X1, `|S1)t A(X2, `|S2). (40)

Let α1 t α2 denote the common extension of α1 and α2 to this set. Then the pair
(X1 t X2, α1 tα2) is then an arc diagram on (I, `) and

UX1,α1 ⊕UX2,α2 =UX1tX2,α1tα2 . (41)

4.4. Combinatorics of the (co)product. We now describe the product and coprod-
uct of the Hopf monoid scf(U) on the basis {κX,α} of Section 4.3. We employ (31)
and (32), which, as discussed in Section 4.2, hold for superclass functions.

Let I = S1 t S2 and `i ∈ L[Si ], i = 1, 2, and consider the product

scf(U(S1, `1))× scf(U(S2, `2))→ scf(U(I, `1 · `2)).

Let (X i , αi ) be an arc diagram on (I, `i ), i = 1, 2. According to (31), we have

µS1,S2(κX1,α1 ⊗ κX2,α2)=
∑

πS1,S2 (CX,α)⊆CX1,α1×CX2,α2

κX,α,
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a sum over arc diagrams (X, α) on (I, `1 · `2). Since πS,T preserves superclasses,

πS1,S2(CX,α)⊆ CX1,α1 ×CX2,α2 ⇐⇒ πS1,S2(UX,α) ∈ CX1,α1 ×CX2,α2

⇐⇒ (UX,α)Si ∈ CX i ,αi , i = 1, 2.

In view of (39), this is in turn equivalent to

X |Si = X i and α|Si ,= αi , i = 1, 2.

In conclusion,
µS1,S2(κX1,α1 ⊗ κX2,α2)=

∑
X |Si=X i
α|Si=αi

κX,α. (42)

The sum is over all arc diagrams (X, α) on (I, `1 · `2) whose restriction to Si is
(X i , αi ) for i = 1, 2.

Take now ` ∈ L[I ], I = S1 t S2, and consider the coproduct

scf(U(I, `))→ scf(U(S1, `|S1))× scf(U(S2, `|S2)).

Let (X, α) be an arc diagram on (I, `). According to (32), we have

1S1,S2(κX,α)=
∑

σS1,S2 (CX1,α1×CX2,α2 )⊆CX,α

κX1,α1 ⊗ κX2,α2,

a sum over arc diagrams (X i , αi ) on (Si , `|Si ). The superclass CX1,α1 × CX2,α2

contains (UX1,α1,UX2,α2), and hence, its image under σS1,S2 contains

UX1,α1 ⊕UX2,α2 =UX1tX2,α1tα2

by (41). Therefore,

σS1,S2(CX1,α1 ×CX2,α2)⊆ CX,α ⇐⇒ X1 t X2 = X and α1 tα2 = α.

Note that X1 t X2 = X if and only if S1 (or equivalently, S2) is a union of blocks
of X . In this case, X i = X |Si and αi = α|Si . In conclusion,

1S1,S2(κX,α)=

{
κX |S1 ,α|S1

⊗ κX |S2 ,α|S2
if S1 is the union of some blocks of X ,

0 otherwise.
(43)

4.5. Decomposition as a Hadamard product. The apparent similarity between the
combinatorial description of the Hopf monoid operations of scf(U) in Section 4.4
and those of the Hopf monoids L and 5 in Sections 1.2 and 1.3 can be formalized.
Recall the Hadamard product of Hopf monoids from Section 1.5.

Let
φ : L×5→ scf(U)
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be the map with components

(L×5)[I ] → scf(U)[I ]

given as follows. On a basis element `⊗m X ∈ L[I ]⊗5[I ] = (L×5)[I ], we set

φ(`⊗m X )=
∑

α:A(X,`)→F×

κX,α ∈ scf(U(I, `))⊆ scf(U)[I ] (44)

and extend by linearity. The morphism φ adds labels to the arcs in all possible ways.

Proposition 11. Let F be an arbitrary finite field. The map φ : L×5→ scf(U) is
an injective morphism of Hopf monoids.

Proof. This follows by comparing definitions, as in the proof of Proposition 8. The
relevant equations are (6), (7), and (8) for the operations of L×5 and (42) and (43)
for the operations of scf(U). �

When the field of matrix entries is F2, the arc labels are uniquely determined.
The map φ is then invertible with inverse ψ given by

ψ(κX,α)= `⊗m X

for any arc diagram (X, α) on a linearly ordered set (I, `). We thus have:

Corollary 12. There is an isomorphism of Hopf monoids

scf(U)∼= L×5

between the Hopf monoid of superclass functions on unitriangular matrices with
entries in F2 and the Hadamard product of the Hopf monoids of linear orders and
set partitions.

4.6. Relating the combinatorial models. The results of Section 4.5 provide a com-
binatorial model for the Hopf monoid scf(U). They parallel those of Section 3.6 that
do the same for f(U). We now interpret the inclusion scf(U) ↪→ f(U) in these terms.

Let X be a partition on a linearly ordered set (I, `). We may regard the set of
arcs A(X, `) as a simple graph on I . Let G(X, `) denote the set of simple graphs g
on I such that

• g contains the graph A(X, `) and

• if i < j in ` and g \ A(X, `) contains an edge between i and j , then there
exists k such that

i < k < j in ` and either (i, k) ∈ A(X, `) or (k, j) ∈ A(X, `).
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The following illustrates the extra edges (dotted) that may be present in g when an
arc (solid) is present in A(X, `):

. . . • . . . • . . . • . . . • . . .

Define a map
L×5→ L× G

with components

(L×5)[I ] → (L× G)[I ], `⊗m X 7→ `⊗
∑

g∈G(X,`)

mg.

Proposition 13. The map L ×5 → L × G is an injective morphism of Hopf
monoids. Moreover, the following diagram commutes:

L×5
� � //

φ

��

L× G

φ

��
scf(U) �

� // f(U)

Proof. It is enough to prove the commutativity of the diagram since all other maps
in the diagram are injective morphisms. The commutativity boils down to the
following fact. Given X ∈5[I ], ` ∈ L[I ], and U ∈ U(I, `),

U ∈ CX,α for some α : A(X, `)→ F× ⇐⇒ g(U ) ∈ G(X, `).

This expresses the fact that a matrix U belongs to the superclass CX,α if and only if
the nonzero entries of U − Id are located either above or to the right of the nonzero
entries of the representative UX,α. �

5. Freeness

We prove that the Hopf monoids f(U) and scf(U) are free and the Hopf structure is
isomorphic to the canonical one on a free monoid. We assume that the base field k
is of characteristic 0, which enables us to apply the results of the Appendix.

5.1. A partial order on arc diagrams. Let (I, `) be a linearly ordered set. Given
arc diagrams (X, α) and (Y, β) on (I, `), we write

(X, α)≤ (Y, β)

if
A(X, `)⊆ A(Y, `) and β|A(X,`) = α.
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In other words, every arc of X is an arc of Y and with the same label. In particular,
the partition Y is coarser than X . On the other hand, the following arc diagrams
are incomparable (regardless of the labels) even though the partition on the right is
the coarsest one:

• • •

i j k
• • •

i j k

The poset of arc diagrams has a unique minimum (the partition into singletons,
for which there are no arcs) but several maximal elements. The arc diagrams above
are the two maximal elements when `= i jk (up to a choice of labels).

A partition X of the linearly ordered set (I, `) is atomic if no proper initial
`-segment of I is a union of blocks of X . Equivalently, there is no decomposition
I = S1 t S2 into proper `-segments such that X = X |S1 t X |S2 .

• • • •

atomic
• • • •

nonatomic

If (X, α) is a maximal element of the poset of arc diagrams, then X is an atomic
partition. But if X is atomic, (X, α) need not be maximal (regardless of α).

• • • •

maximal
(H⇒atomic)

• • • •

atomic
not maximal

5.2. A second basis for scf(U). We employ the partial order of Section 5.1 to
define a new basis {λX,α} of scf(U(I, `)) by

λX,α =
∑

(X,α)≤(Y,β)

κY,β . (45)

The product of the Hopf monoid scf(U) takes a simple form on the λ-basis.

Proposition 14. Let I = S1 t S2 and `i ∈ L[Si ], i = 1, 2. Then

µS1,S2(λX1,α1 ⊗ λX2,α2)= λX1tX2,α1tα2 (46)

for any arc diagrams (X i , αi ) on (Si , `i ), i = 1, 2.

Proof. We calculate using (42) and (45):

µS1,S2(λX1,α1⊗λX2,α2)=
∑

(X i ,αi )≤(Yi ,βi )

µS1,S2(κY1,β1⊗κY2,β2)=
∑

(X i ,αi )≤(Y |Si ,β|Si )

κY,β .

Now by (38) and (40), we have

(X i , αi )≤ (Y |Si , β|Si ), i = 1, 2 ⇐⇒ (X1 t X2, α1 tα2)≤ (Y, β).
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Therefore,

µS1,S2(λX1,α1 ⊗ λX2,α2)=
∑

(X1tX2,α1tα2)≤(Y,β)

κY,β = λX1tX2,α1tα2 . �

The coproduct of the Hopf monoid scf(U) takes the same form on the λ-basis as
on the κ-basis.

Proposition 15. Let I = S1 t S2 and ` ∈ L[I ]. Then

1S1,S2(λX,α)=

{
λX |S1 ,α|S1

⊗ λX |S2 ,α|S2
if S1 is the union of some blocks of X ,

0 otherwise.
(47)

Proof. Suppose first that S1 is not the union of blocks of X . Then the same is true
for any partition coarser than X , in particular for any partition Y entering in (45).
In view of (43), we then have 1S1,S2(λX,α)= 0.

Otherwise, X = X |S1 t X |S2 and α= α|S1 tα|S2 . Among the arc diagrams (Y, β)
entering in (45), only those for which Y = Y |S1 t Y |S2 contribute to the coproduct,
in view of (43). These arc diagrams are of the form Y = Y1 t Y2 and β = β1 tβ2,
and by (40), we must have

A(X |Si , `|Si )⊆ A(Yi , `|Si ) and βi |A(X |Si ,`|Si )
= α|Si , i = 1, 2.

We then have

1S1,S2(λX,α)=
∑

(X,α)≤(Y,β)

1(κY,β)

=

∑
(X |Si ,α|Si )≤(Yi ,βi )

κY1,β1 ⊗ κY2,β2 = λX |S1 ,α|S1
⊗ λX |S2 ,α|S2

. �

Remark 16. The relationship between the λ- and κ-bases of scf(U) is somewhat
reminiscent of that between the p- and m-bases of 5 [Aguiar and Mahajan 2010,
Equation (12.5)]. However, the latter involves a sum over all partitions coarser than
a given one. For this reason, the morphism φ in (44), which relates the m-basis to
the κ-basis, does not relate the p-basis to the λ-basis in the same manner.

5.3. Freeness of scf(U). Let q be a species such that q[∅]=0. A new species T(q)
is defined by T(q)[∅] = k and, on a finite nonempty set I ,

T(q)[I ] =
⊕

I=I1t···tIk
k≥1, I j 6=∅

q[I1]⊗ · · ·⊗ q[Ik].

The sum is over all decompositions of I into nonempty subsets. The number k of
subsets is therefore bounded above by |I |.
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The species T(q) is a connected monoid with product given by concatenation. To
describe this in detail, let I = StT and choose decompositions S= S1t · · · tSk and
T = T1t· · ·tTl and elements xi ∈ q[Si ], i = 1, . . . , k, and y j ∈ q[T j ], j = 1, . . . , l.
Write

x = x1⊗ · · ·⊗ xi ∈ T(q)[S] and y = y1⊗ · · ·⊗ y j ∈ T(q)[T ].

The product is

µS,T (x ⊗ y)= x1⊗ · · ·⊗ xi ⊗ y1⊗ · · ·⊗ y j

∈ q[S1]⊗ · · ·⊗ q[Sk]⊗ q[T1]⊗ · · ·⊗ q[Tl] ⊆ T(q)[I ].

The monoid T(q) is free on the species q: a map of species q→ m from q to a
monoid m has a unique extension to a morphism of monoids T(q)→ m.

The monoid T(q) may carry several coproducts that turn it into a connected
Hopf monoid. The canonical structure is the one for which the elements of q are
primitive. This means that

1S,T (x)= 0

for every x ∈ q[I ] and every decomposition I = S t T into nonempty subsets.
More details can be found in [Aguiar and Mahajan 2010, Sections 11.2.1–11.2.2].
Let D(I, `) denote the set of arc diagrams (X, α) for which X is an atomic set

partition of the linearly ordered set (I, `). Let d(I, `) be the vector space with
basis D(I, `). Define a species d by

d[I ] =
⊕
`∈L[I ]

d(I, `).

Consider the map of species d→ scf with components

d[I ] → scf(U)[I ], (X, α) 7→ λX,α.

The map sends the summand d(I, `) of d[I ] to the summand scf(U(I, `)) of
scf(U)[I ]. By freeness, it extends to a morphism of monoids

T(d)→ scf(U).

Proposition 17. The map T(d) → scf(U) is an isomorphism of monoids. In
particular, the monoid scf(U) is free.

Proof. Let (X, α) be an arbitrary arc diagram on (I, `). Let I1, . . . , Ik be the
minimal `-segments of I , numbered from left to right, such that each I j is a union
of blocks of X . Let ` j = `|I j , X j = X |I j , and α j = α|I j . Then X j is an atomic
partition of (I j , ` j ),

X1 t · · · t X j = X and α1 t · · · tα j = α.
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By (46),

µI1,...,Ik (λX1,α1 ⊗ · · ·⊗ λXk ,αk )= λX,α.

Thus, the morphism T(d) → scf(U) sends the basis element (X1, α1) ⊗ · · · ⊗

(Xk, αk) of d(I1, `1)⊗· · ·⊗d(Ik, `k) to the basis element λX,α of scf(U(I, `)) and
is therefore an isomorphism. �

We may state Proposition 17 by saying that the superclass functions λX,α freely
generate the monoid scf(U) as (X, α) runs over all arc diagrams for which X is an
atomic set partition.

The generators, however, need not be primitive. For instance,

• • •
� 1{i,k},{ j} // • •

⊗
•

i j k i k j

which is not 0. Nevertheless, Proposition 23 allows us to conclude the following:

Corollary 18. Let k be a field of characteristic 0. There exists an isomorphism of
Hopf monoids scf(U)∼=T(d), where the latter is endowed with its canonical Hopf
structure.

As discussed in the Appendix, an isomorphism may be constructed with the aid
of the first Eulerian idempotent.

Let 5a(I, `) be the vector space with basis the set of atomic partitions on (I, `).
When the field of matrix entries is F2, arc diagrams reduce to atomic set partitions
and d(I, `) identifies with 5a(I, `). Combining Corollaries 12 and 18, we obtain
an isomorphism of Hopf monoids

L×5∼= T(5a), (48)

where
5a[I ] =

⊕
`∈L[I ]

5a(I, `).

5.4. A second basis for G and for f(U). Given two unitriangular matrices U and
V ∈ U(I, `), let us write U ≤ V if

ui j = vi j whenever ui j 6= 0.

In other words, some zero entries in U may be nonzero in V ; the other entries are
the same for both matrices.

We define a new basis {λU } of f(U(I, `)) by

λU =
∑
U≤V

κV .
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Let I = S1 t S2, U ∈U(I, `), and gi ∈U(Si , `i ), i = 1, 2. It is easy to derive the
following formulas from (29) and (30):

µS1,S2(λU1 ⊗ λU2)= λU1⊕U2, (49)

1S1,S2(λU )=

{
λUS1
⊗ λUS2

if U =US1 ⊕US2,

0 otherwise.
(50)

(49) implies that f(U) is a free monoid with generators λU indexed by unitrian-
gular matrices U for which the graph g(U ) is connected.

For completeness, one may define a new basis {pg} of G[I ] by

pg =
∑
g⊆h

mh . (51)

The sum is over all simple graphs h with vertex set I and with the same or more
edges than g. Let I = S1t S2, g ∈G[I ], and gi ∈G[Si ], i = 1, 2. From (9) and (10),
one obtains

µS1,S2(pg1 ⊗ pg2)= pg1tg2, (52)

1S1,S2(pg)=

{
pg|S1
⊗ pg|S2

if no edge of g connects S1 to S2,
0 otherwise.

(53)

Equation (52) implies that G is the free commutative monoid on the species of
connected graphs. From (44), we deduce that the morphism φ of Proposition 8
takes the following form on these bases:

φ(`⊗ pg)=
∑

U∈U(I,`)
g(U )=g

λU .

6. Applications

We conclude with some applications and remarks regarding past and future work.

6.1. Counting conjugacy classes. Let kn(q) be the number of conjugacy classes
of the group of unitriangular matrices of size n with entries in the field with q
elements. Higman’s conjecture states that, for fixed n, kn is a polynomial function
of q . Much effort has been devoted to the precise determination of these numbers
or their asymptotic behavior [Goodwin 2006; Goodwin and Röhrle 2009; Higman
1960; Robinson 1998; Vera-López and Arregi 2003; Vera-López et al. 2008].

We fix q and let n vary. It turns out that the existence of a Hopf monoid structure
on class functions imposes certain linear conditions on the sequence kn(q), as we
explain next.
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Given a finite-dimensional Hopf monoid h, consider the generating function

Th(x)=
∑
n≥0

dimk(h[n]Sn )x
n. (54)

Here [n] denotes the set {1, 2, . . . , n} and h[n]Sn is the (quotient) space of coinvari-
ants for the action of the symmetric group (afforded by the species structure of h).

For example, since

(L×5)[n]Sn = (L[n]⊗5[n])Sn
∼=5[n],

we have
TL×5(x)=

∑
n≥0

Bnxn, (55)

where Bn is the n-th Bell number, the number of partitions of the set [n].
On the other hand, from (48),

TL×5(x)= TT(5a)(x).

It is a general fact that, for a species q with q[∅] = 0,

TT(q)(x)=
1

1−Tq(x)
.

(This follows from [Bergeron_F et al. 1998, Theorem 2.b, Section 1.4] for instance).
Therefore,

TL×5(x)=
1

1−
∑

n≥1 Anxn , (56)

where An is the number of atomic partitions of the linearly ordered set [n].
From (55) and (56), we deduce that∑

n≥0

Bnxn
=

1
1−

∑
n≥1 Anxn ,

a fact known from [Bergeron and Zabrocki 2009].
Consider now the injections

scf(U) ↪→ cf(U) and L×5 ↪→ scf(U).

Both are morphisms of Hopf monoids (Propositions 10 and 11). Lagrange’s theorem
for Hopf monoids implies in this situation that both quotients

Tcf(U)(x)

Tscf(U)(x)
and

Tscf(U)(x)

TL×5(x)
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belong to N[[x]], that is, have nonnegative (integer) coefficients [Aguiar and Lauve
2012, Corollary 13]. In particular,

Tcf(U)(x)

TL×5(x)
∈ N[[x]]

as well.
We have

cf(U)[n]Sn =

(⊕
`∈L[n]

cf(U([n], `))
)

Sn

∼= cf(U([n])).

Therefore,
Tcf(U)(x)=

∑
n≥0

kn(q)xn.

By combining the above, we deduce(∑
n≥0

kn(q)xn
)(

1−
∑
n≥1

Anxn
)
∈ N[[x]],

whence the following result:

Corollary 19. The following linear inequalities are satisfied for every n ∈ N and
every prime power q:

kn(q)≥
n−1∑
i=0

An−i ki (q). (57)

For instance, for n = 8, the inequality is

k6(q)≥ 92+ 22k1(q)+ 6k2(q)+ 2k3(q)+ k4(q)+ k5(q).

Inequality (57) is stronger than merely stating that there are more conjugacy
classes than superclasses. For instance, for q = 2 and n = 6, the right-hand side of
the inequality is 213 (provided we use the correct values for ki (2) for i ≤ 5) while
there are only B6 = 203 superclasses. The first few values of the sequence kn(2)
appear in [OEIS Foundation 2010] as A007976; in particular, k6(2)= 275.

The numbers kn(q) are known for n ≤ 13 from work of Vera-López and Ar-
regi [1992; 1995; 2003]; see also [Vera-López et al. 2008]. (There is an incorrect
sign in the value given for k7(q) in [Vera-López and Arregi 1995, page 923]: the
lowest term should be −7q .)

We may derive additional information on these numbers from the injective
morphism of Hopf monoids (Proposition 6)

cf(U) ↪→ f(U).
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Define a sequence of integers cn(q), n ≥ 1, by means of∑
n≥0

kn(q)xn
=

1
1−

∑
n≥1 cn(q)xn . (58)

Arguing as above, we obtain the following result:

Corollary 20. The following linear inequalities are satisfied for every n ∈ N and
every prime power q:

q(
n
2) ≥

n∑
i=1

q(
n−i

2 )ci (q). (59)

Through (58), these inequalities impose further constraints on the numbers kn(q).
The first few values of the sequence cn(q) are as follows with t = q − 1:

c1(q)= 1,

c2(q)= t,

c3(q)= t2
+ t,

c4(q)= 2t3
+ 4t2

+ t,

c5(q)= 5t4
+ 14t3

+ 9t2
+ t,

c6(q)= t6
+ 18t5

+ 55t4
+ 54t3

+ 16t2
+ t.

Conjecture 21. There exist polynomials pn(t) ∈ N[t] such that cn(q)= pn(q − 1)
for every prime power q and every n ≥ 1.

Using the formulas given by Vera-López et al. [2008, Corollaries 10–11] for
computing kn(q), we have verified the conjecture for n ≤ 13.

Polynomiality of kn(q) is equivalent to that of cn(q). On the other hand, the
nonnegativity of cn as a polynomial of t implies that of kn but not conversely. Thus,
Conjecture 21 is a strong form of Higman’s.

It is possible to show, using the methods of [Aguiar and Mahajan 2012], that the
monoid cf(U) is free. This implies that the integers cn(q) are nonnegative for every
n ≥ 1 and prime power q.

6.2. From Hopf monoids to Hopf algebras. It is possible to associate a number
of graded Hopf algebras to a given Hopf monoid h. This is the subject of [Aguiar
and Mahajan 2010, Part III]. In particular, there are two graded Hopf algebras K(h)
and K(h) related by a canonical surjective morphism

K(h)� K(h).
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The underlying spaces of these Hopf algebras are

K(h)=
⊕
n≥0

h[n] and K(h)=
⊕
n≥0

h[n]Sn ,

where h[n]Sn is as in (54). The product and coproduct of these Hopf algebras is
built from those of the Hopf monoid h together with certain canonical transfor-
mations. The latter involve certain combinatorial procedures known as shifting
and standardization. For more details, we refer to [Aguiar and Mahajan 2010,
Chapter 15].

For example, one has that
K(L)= k[x]

is the polynomial algebra on one primitive generator while K(L) is the Hopf algebra
introduced by Patras and Reutenauer [2004].

According to [Aguiar and Mahajan 2010, Section 17.4], K(5) is the ubiquitous
Hopf algebra of symmetric functions while K(5) is the Hopf algebra of symmetric
functions in noncommuting variables, an object studied in various references in-
cluding [Aguiar and Mahajan 2006, Section 6.2; Bergeron et al. 2006; Bergeron
and Zabrocki 2009; Rosas and Sagan 2006].

For any Hopf monoid h, one has [Aguiar and Mahajan 2010, Theorem 15.13]

K(L× h)∼= K(h).

Combining with Corollary 12, we obtain that, when the field of coefficients is F2,

K(scf(U))∼= K(L×5)∼= K(5).

In other words, the Hopf algebra constructed from superclass functions on unitri-
angular matrices (with entries in F2) via the functor K is isomorphic to the Hopf
algebra of symmetric functions in noncommuting variables. This is the main result
of [Aguiar et al. 2012].

The freeness of the Hopf algebra K(5), a fact known from [Harčenko 1978;
Wolf 1936], is a consequence of Proposition 17.

We mention that one may arrive at Corollary 19 by employing the Hopf algebra
K(cf(U)) (rather than the Hopf monoid cf(U)) and appealing to Lagrange’s theorem
for graded connected Hopf algebras.

6.3. Supercharacters and beyond. The notion of superclass on a unitriangular
group comes with a companion notion of supercharacter and a full-fledged theory
relating them. This is due to the pioneering work of André [1995a; 1995b] and later
Yan [2001]. Much of this theory extends to algebra groups [André 1999; Diaconis
and Isaacs 2008; Diaconis and Thiem 2009]. More recently, a connection with
classical work on Schur rings has been understood [Hendrickson 2010].
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In regards to the object of present interest, the Hopf monoid scf(U), this implies
the existence of a second canonical linear basis consisting of supercharacters. The
work of André and Yan provides a character formula, which yields the change of
basis between superclass functions and supercharacters. We plan to study the Hopf
monoid structure of scf(U) on the supercharacter basis in future work.

Appendix: On free Hopf algebras and Hopf monoids

A free algebra may carry several Hopf algebra structures. It always carries a
canonical one in which the generators are primitive. It turns out that under certain
conditions, any Hopf structure on a free algebra is isomorphic to the canonical one.
We provide such a result below. An analogous result holds for Hopf monoids in
vector species. This is applied in the paper in Section 5.

We assume that the base field k is of characteristic 0.
We employ the first Eulerian idempotent [Gerstenhaber and Schack 1991; Loday

1998, Section 4.5.2; Reutenauer 1993, Section 8.4]. For any connected Hopf
algebra H , the identity map id : H → H is locally unipotent with respect to the
convolution product of End(H). Therefore,

e := log(id)=
∑
k≥1

(−1)k+1

k
(id− ιε)∗k (60)

is a well-defined linear endomorphism of H . Here

ι : k→ H and ε : H → k

denote the unit and counit maps of H , respectively, and the powers are with
respect to the convolution product. It is an important fact that if H is in addition
cocommutative, then e(x) is a primitive element of H for any x ∈ H . In fact, the
operator e is in this case a projection onto the space of primitive elements [Patras
1994; Schmitt 1994, pages 314–318].

Let T (V ) denote the free algebra on a vector space V :

T (V )=
⊕
n≥0

V⊗n.

The product is concatenation of tensors. We say in this case that V freely generates.
The unique morphisms of algebras

1 : T (V )→ T (V )⊗ T (V ) and ε : T (V )→ k

given for all v ∈ V by

1(v)= 1⊗ v+ v⊗ 1 and ε(v)= 0
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turn T (V ) into a connected, cocommutative Hopf algebra. This is the canonical
Hopf structure on T (V ).

Proposition 22. Let k be a field of characteristic 0. Let H be a connected cocom-
mutative Hopf algebra over k. Suppose H ∼= T (W ) as algebras in such a way that
the image of W lies in the kernel of the ε. Then there exists a (possibly different)
isomorphism of Hopf algebras H ∼= T (W ), where the latter is endowed with its
canonical Hopf structure.

Proof. We may assume H=T (W ) as algebras for some subspace W of ker(ε). Since
H is connected and k is of characteristic 0, the Eulerian idempotent e is defined.
Let V = e(W ). We show below that V ∼=W and that V freely generates H . Since
H is cocommutative, V consists of primitive elements, and therefore, H ∼= T (V )
as Hopf algebras. This completes the proof.

Let
H+ =

⊕
n≥1

W⊗n.

Since ε is a morphism of algebras, H+ ⊆ ker(ε), and since both spaces are of
codimension 1, they must agree: H+ = ker(ε).

Define 1+ : H+→ H+⊗ H+ by

1+(x)=1(x)− 1⊗ x − x ⊗ 1.

By counitality,
(ε⊗ id)1+ = 0= (id⊗ ε)1+.

Therefore, 1+(H+)⊆ ker(ε)⊗ ker(ε)= H+⊗ H+, and hence,

1
(k−1)
+ (H+)⊆ H⊗k

+

for all k ≥ 1. In addition, since H = T (W ) as algebras,

µ(k−1)(H⊗k
+
)⊆

∑
n≥2

W⊗n

for all k ≥ 2.
Take w ∈W . Then

e(w)=
∑
k≥1

(−1)k+1

k
(id− ιε)∗k(w)= w+

∑
k≥2

(−1)k+1

k
µ(k−1)1

(k−1)
+ (w)

≡ w+
∑
n≥2

W⊗n.

By triangularity, e :W → V is invertible, and hence, V generates H .
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Now take w1, w2 ∈W . It follows from the above that

e(w1)e(w2)≡ w1w2+
∑
n≥3

W⊗n,

and a similar triangular relation holds for higher products. Hence, V generates H
freely. �

The Eulerian idempotent is defined for connected Hopf monoids in species
by the same formula as (60). Let p be a species such that p[∅] = 0. The free
monoid T( p) and its canonical Hopf structure is discussed in [Aguiar and Mahajan
2010, Section 11.2]. The arguments in Proposition 22 may easily be adapted to this
setting to yield the following result:

Proposition 23. Let k be a field of characteristic 0. Let h be a connected cocommu-
tative Hopf monoid in vector species over k. Suppose h∼=T( p) as monoids for some
species p such that p[∅] = 0. Then there exists a (possibly different) isomorphism
of Hopf monoids h ∼= T( p), where the latter is endowed with its canonical Hopf
structure.
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