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Multiplicative excellent families of elliptic
surfaces of type E7 or E8

Abhinav Kumar and Tetsuji Shioda

We describe explicit multiplicative excellent families of rational elliptic surfaces
with Galois group isomorphic to the Weyl group of the root lattices E7 or E8.
The Weierstrass coefficients of each family are related by an invertible polyno-
mial transformation to the generators of the multiplicative invariant ring of the
associated Weyl group, given by the fundamental characters of the corresponding
Lie group. As an application, we give examples of elliptic surfaces with mul-
tiplicative reduction and all sections defined over Q for most of the entries of
fiber configurations and Mordell–Weil lattices described by Oguiso and Shioda,
as well as examples of explicit polynomials with Galois group W (E7) or W (E8).

1. Introduction

For an elliptic curve E over a field K , determining its Mordell–Weil group is a
fundamental problem in algebraic geometry and number theory. When K = k(t)
is a rational function field in one variable, this problem becomes a geometrical
one of understanding sections of an elliptic surface with section. Lattice theoretic
methods of attack were described in [Shioda 1990]. In particular, when E→P1

t is
a rational elliptic surface given as a minimal proper model of

y2
+ a1(t)xy+ a3(t)y = x3

+ a2(t)x2
+ a4(t)x + a6(t)

with ai (t) ∈ k[t] of degree at most i , the possible configurations (types) of bad
fibers and Mordell–Weil groups were analyzed by Oguiso and Shioda [1991].

In [Shioda 1991a], the second author studied sections for some families of ellip-
tic surfaces with an additive fiber, by means of the specialization map, and obtained
a relation between the coefficients of the Weierstrass equation and the fundamental
invariants of the corresponding Weyl groups. Shioda and Usui [1992] expanded
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this by studying families with a bad fiber of additive reduction more exhaustively.
They defined the formal notion of an excellent family (see Section 2) and found
excellent families for many of the “admissible” types.

The analysis of rational elliptic surfaces of high Mordell–Weil rank, but with a
fiber of multiplicative reduction, is much more challenging. However, understand-
ing this situation is arguably more fundamental, since if we write down a “random”
elliptic surface, then with probability close to 1 it will have Mordell–Weil lattice E8

and twelve nodal fibers (that is, of multiplicative reduction). To be more precise,
if we choose Weierstrass coefficients ai (t) of degree i , with coefficients chosen
uniformly at random from among rational numbers (say) of height at most N , then
as N→∞ the surface will satisfy the condition above with probability approach-
ing 1. One can make a similar statement for rational elliptic surfaces chosen to
have Mordell–Weil lattice E∗7 , E∗6 , etc.

In [Shioda 2012], this study was carried out for elliptic surfaces with a fiber
of type I3 and Mordell–Weil lattice isometric to E∗6 , through a “multiplicative ex-
cellent family” of type E6. We will describe this case briefly in Section 3. The
main result of this paper shows that two explicitly described families of rational
elliptic surfaces with Mordell–Weil lattices E∗7 or E8 are multiplicative excellent.
The proof involves a surprising connection with representation theory of the corre-
sponding Lie groups, and in particular, their fundamental characters. In particular,
we deduce that the Weierstrass coefficients give another natural set of generators
for the multiplicative invariants of the respective Weyl groups, as a polynomial ring.
Similar formulas were derived by Eguchi and Sakai [2003] using calculations from
string theory and mirror symmetry.

The idea of an excellent family is quite useful and important in number theory.
An excellent family of algebraic varieties leads to a Galois extension F(µ)/F(λ)
of two purely transcendental extensions of a number field F (say Q), with Galois
group a desired finite group G. This setup has an immediate number-theoretic
application, since one may specialize the parameters λ and apply Hilbert’s irre-
ducibility theorem to obtain Galois extensions over Q with the same Galois group.
Furthermore, we can make the construction effective if appropriate properties of the
group G are known (see Examples 8 and 19 for the case G=W (E7) or W (E8)). At
the same time, an excellent family will give rise to a split situation very easily, by
specializing the parameters µ instead. For examples, in the situation considered
in our paper, we obtain elliptic curves over Q(t) with Mordell–Weil rank 7 or
8 together with explicit generators for the Mordell–Weil group (see Examples 7
and 18). There are also applications to geometric specialization or degeneration
of the family. Therefore, it is desirable (but quite nontrivial) to construct explicit
excellent families of algebraic varieties. Such a situation is quite rare in general:
theoretically, any finite reflection group is a candidate, but it is not generally neatly
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related to an algebraic geometric family. Hilbert treated the case of the symmet-
ric group Sn , corresponding to families of zero-dimensional varieties. Not many
examples were known before the (additive) excellent families for the Weyl groups
of the exceptional Lie groups E6, E7 and E8 were given in [Shioda 1991a], using
the theory of Mordell–Weil lattices. Here, we finish the story for the multiplicative
excellent families for these Weyl groups.

2. Mordell–Weil lattices and excellent families

Let X
π
→ P1 be an elliptic surface with section σ : P1

→ X , that is, a proper
relatively minimal model of its generic fiber, which is an elliptic curve. We denote
the image of σ by O , which we take to be the zero section of the Néron model.
We let F be the class of a fiber in Pic(X) ∼= NS(X), and let the reducible fibers
of π lie over ν1, . . . , νk ∈ P1. The nonidentity components of π−1(νi ) give rise
to a sublattice Ti of NS(X), which is (the negative of) a root lattice (see [Kodaira
1963a; 1963b; Tate 1975]). The trivial lattice T is ZO ⊕ ZF ⊕ (

⊕
Ti ), and we

have the isomorphism MW(X/P1) ∼= NS(X)/T , which describes the Mordell–
Weil group. In fact, one can induce a positive definite pairing on the Mordell–Weil
group modulo torsion, by inducing it from the negative of the intersection pairing
on NS(X). We refer the reader to [Shioda 1990] for more details. In this paper,
we will call

⊕
Ti the fibral lattice.

Next, we recall from [Shioda and Usui 1992] the notion of an excellent family
with Galois group G. Suppose X→ An is a family of algebraic varieties, varying
with respect to n parameters λ1, . . . , λn . The generic member of this family Xλ is
a variety over the rational function field k0 = Q(λ). Let k = k0 be the algebraic
closure, and suppose that C(Xλ) is a group of algebraic cycles on Xλ over the
field k (in other words, it is a group of algebraic cycles on Xλ ×k0 k). Suppose
in addition that there is an isomorphism φλ : C(Xλ)⊗Q ∼= V for a fixed vector
space V , and C(Xλ) is preserved by the Galois group Gal(k/k0). Then we have
the Galois representation

ρλ : Gal(k/k0)→ Aut(C(Xλ))→ Aut(V ).

We let kλ be the fixed field of the kernel of ρλ, that is, it is the smallest extension of
k0 over which the cycles of C(λ) are defined. We call it the splitting field of C(Xλ).

Now let G be a finite reflection group acting on the space V .

Definition 1. We say {Xλ} is an excellent family with Galois group G if the fol-
lowing conditions hold:

(1) The image of ρλ is equal to G.

(2) There is a Gal(k/k0)-equivariant evaluation map s : C(Xλ)→ k.
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(3) There exists a basis {Z1, . . . , Zn} of C(Xλ) such that if we set ui = s(Zi ),
then u1, . . . , un are algebraically independent over Q.

(4) Q[u1, . . . , un]
G
=Q[λ1, . . . , λn].

As an example, for G=W (E8), consider the following family of rational elliptic
surfaces over k0 =Q(λ):

y2
= x3
+ x

( 3∑
i=0

p20−6i t i
)
+

( 3∑
j=0

p30−6 j t j
+ t5

)
,

with λ = (p2, p8, p12, p14, p18, p20, p24, p30). Shioda [1991a] shows that this is
an excellent family with Galois group G. The pi are related to the fundamental
invariants of the Weyl group of E8, as is suggested by their degrees (subscripts).

We now define the notion of a multiplicative excellent family for a group G.
As before, X → An is a family of algebraic varieties, varying with respect to
λ= (λ1, . . . , λn), and C(Xλ) is a group of algebraic cycles on Xλ, isomorphic (via
a fixed isomorphism) to a fixed abelian group M . The fields k0 and k are as before,
and we have a Galois representation

ρλ : Gal(k/k0)→ Aut(C(Xλ))→ Aut(M).

Suppose that G is a group acting on M .

Definition 2. We say {Xλ} is a multiplicative excellent family with Galois group
G if the following conditions hold:

(1) The image of ρλ is equal to G.

(2) There is a Gal(k/k0)-equivariant evaluation map s : C(Xλ)→ k∗.

(3) There exists a basis {Z1, . . . , Zn} of C(Xλ) such that if we set ui = s(Zi ),
then u1, . . . , un are algebraically independent over Q.

(4) Q[u1, . . . , un, u−1
1 , . . . , u−1

n ]
G
=Q[λ1, . . . , λn].

Remark 3. Though we use similar notation, the specialization map s and the ui

in the multiplicative case are quite different from the ones in the additive case.
Intuitively, one may think of these as exponentiated versions of the corresponding
objects in the additive case. However, we want the specialization map to be an
algebraic morphism, and so in general (additive) excellent families specified by
Definition 1 will be very different from multiplicative excellent families specified
by Definition 2.

In our examples, G will be a finite reflection group acting on a lattice in Eu-
clidean space, which will be our choice for M . However, what is relevant here is
not the ring of (additive) invariants of G on the vector space spanned by M . Instead,
note that the action of G on M gives rise to a “multiplicative” or “monomial” action
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of G on the group algebra Q[M], and we will be interested in the polynomials on
this space that are invariant under G. This is the subject of multiplicative invariant
theory (see, for example, [Lorenz 2005]). In the case when G is the automorphism
group of a root lattice or root system, multiplicative invariants were classically
studied by using the terminology of “exponentiated” roots eα (for instance, see
[Bourbaki 1968, Section VI.3]).

3. The E6 case

We now sketch the construction of multiplicative excellent family in [Shioda 2012].
Consider the family of rational elliptic surfaces Sλ with Weierstrass equation

y2
+ t xy = x3

+ (p0+ p1t + p2t2) x + q0+ q1t + q2t2
+ t3

with parameter λ = (p0, p1, p2, q0, q1, q2). The surface Sλ generically only has
one reducible fiber at t =∞, of type I3. Therefore, the Mordell–Weil lattice Mλ of
Sλ is isomorphic to E∗6 . There are 54 minimal sections of height 4/3, and exactly
half of them have the property that x and y are linear in t . If we have

x = at + b and y = ct + d,

then substituting these back in to the Weierstrass equation, we get a system of
equations, and we may easily eliminate b, c, d from the system to get a monic
equation of degree 27 (subject to a genericity assumption), which we write as
8λ(a)= 0. Also, note that the specialization of a section of height 4/3 to the fiber
at∞ gives us a point on one of the two nonidentity components of the special fiber
of the Néron model (the same component for all the 27 sections). Identifying the
smooth points of this component with Gm×{1} ⊂Gm×(Z/3Z), the specialization
map s takes the section to (−1/a, 1). Let the specializations be si = −1/ai for
1≤ i ≤ 27. We have

8λ(X)=
27∏

i=1

(X − ai )=

27∏
i=1

(X + 1/si )

= X27
+ ε−1 X26

+ ε−2 X25
+ · · ·+ ε4 X4

+ ε3 X3
+ ε2 X2

+ ε1 X + 1.

Here εi is the i-th elementary symmetric polynomial of the si and ε−i that of
the 1/si . The coefficients of 8λ(X) are polynomials in the coordinates of λ, and
we may use the equations for ε1, ε2, ε3, ε4, ε−1 and ε−2 to solve for p0, . . . , q3.
However, the resulting solution has ε−2 in the denominator. We may remedy this
situation as follows. Consider the construction of E∗6 as described in [Shioda 1995]:
let v1, . . . , v6 be vectors in R6 with 〈vi , v j 〉 = δi j+1/3, and let u = (

∑
vi )/3. The

Z-span of v1, . . . , v6, u is a lattice L isometric to E∗6 . It is clear that v1, . . . , v5, u



1618 Abhinav Kumar and Tetsuji Shioda

forms a basis of L . Here, we choose an isometry between the Mordell–Weil lat-
tice and the lattice L , and let the specializations of v1, . . . , v6, u be s1, . . . , s6, r ,
respectively. These satisfy s1s2 . . . s6 = r3. The 54 nonzero minimal vectors of E∗6
split up into two cosets (modulo E6) of 27 each, of which we have chosen one.
The specializations of these 27 special sections are given by

{s1, . . . , s27} := {si : 1≤ i ≤ 6} ∪ {si/r : 1≤ i ≤ 6} ∪ {r/(si s j ) : 1≤ i < j ≤ 6}.

If
δ1 = r + 1

r
+

∑
i 6= j

si

s j
+

∑
i< j<k

( r
si s j sk

+
si s j sk

r

)
,

then δ1 belongs to the G=W (E6)-invariants of Q[s1, . . . , s5, r, s−1
1 , . . . , s−1

5 , r−1
],

and explicit computations in [Shioda 2012] show that

Q[s1, . . . , s5, r, s−1
1 , . . . , s−1

5 , r−1
]
G
=Q[δ1, ε1, ε2, ε3, ε−1, ε−2]

=Q[p0, p1, p2, q0, q1, q2].

The explicit relation showing the second equality is as follows:

δ1 =−2p1, ε−1 = p2
2 − q2,

ε2 = 13p2
2 + p0− q2, ε−2 =−2p1 p2+ 6p2+ q1,

ε1 = 6p2, ε3 = 8p3
2 + 2p0 p2+ p2

1 − 6p1− q0+ 9.

We make an additional observation. The six fundamental representations of the
Lie algebra E6 correspond to the fundamental weights in the following diagram,
which displays the standard labeling of these representations.

1 3 4 5 6

2

The dimensions of these representations V1, . . . , V6 are 27, 78, 351, 2925, 351, 27
respectively, and their characters are related to ε1, ε2, ε3, ε−1, ε−2, δ1 by the nice
transformation

χ1 = ε1, χ2 = δ1+ 6, χ3 = ε2,

χ4 = ε3, χ5 = ε−2, χ6 = ε−1.

This explains the reason for bringing in δ1 into the picture, and also why there
is a denominator when solving for p0, . . . , q2 in terms of ε1, . . . , ε4, ε−1, ε−2, as
remarked in [Shioda 2012]. The coefficients ε j are essentially the characters of∧j V , where V = V1 is the first fundamental representation, while ε− j are those of∧j V ∗, where V6 = V ∗. Note that

∧3V ∼=
∧3V ∗. Therefore, from the expressions
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for ε1, ε2, ε3, ε−1, ε−2, we may obtain p2, q2, p0, q1, q0, in terms of the remaining
variable p1, without introducing any denominators. However, representation V2

cannot be obtained as a direct summand with multiplicity 1 from a tensor product
of
∧j V (for 1≤ j ≤ 3) and

∧k V ∗ (for 1≤ k ≤ 2). On the other hand, we do have
the isomorphism

(V2⊗ V5)⊕ V5⊕ V1 ∼=
∧4V1⊕ (V3⊗ V6)⊕ (V6⊗ V6).

Therefore, we are able to solve for p1 if we introduce a denominator of ε−2, which
is the character of V5.

4. The E7 case

4.1. Results. Next, we exhibit a multiplicative excellent family for the Weyl group
of E7. It is given by the Weierstrass equation

y2
+ t xy = x3

+ (p0+ p1t + p2t2) x + q0+ q1t + q2t2
+ q3t3

− t4.

For generic λ = (p0, . . . , p2, q0, . . . , q3), this rational elliptic surface Xλ has a
fiber of type I2 at t =∞, and no other reducible fibers. Hence, the Mordell–Weil
group Mλ is E∗7 . We note that any elliptic surface with a fiber of type I2 can be
put into this Weierstrass form (in general over a small degree algebraic extension
of the ground field), after a fractional linear transformation of the parameter t , and
Weierstrass transformations of x and y.

Lemma 4. The smooth part of the special fiber is isomorphic to the group scheme
Gm ×Z/2Z. The identity component is the nonsingular part of the curve

y2
+ xy = x3.

The x- and y-coordinates of a section of height 2 are polynomials of degrees 2
and 3 respectively, and its specialization at t = ∞ is (limt→∞(y + t x)/y, 0) ∈
k∗×{0, 1}. A section of height 3/2 has x and y coordinates of the form

x = at + b and y = ct2
+ dt + e.

and specializes at t =∞ to (c, 1).

Proof. First, to get a local chart for the elliptic surface near t = ∞, we set x =
x̃/u2, y = ỹ/u3 and t = 1/u, and look for u near 0. Therefore, the special fiber
(before blow-up) is given by ȳ2

+ x̄ ȳ = x̄3, where x̄ = x̃ |u=0 and ȳ = ỹ|u=0 are
the reductions of the coordinates at u = 0, respectively. It is an easy exercise
to parametrize the smooth locus of this curve: It is given, for instance, by x̄ =
s/(s − 1)2, ȳ = s/(s − 1)3. We then check that s = (ȳ + x̄)/ȳ and the map
from the smooth locus to Gm that takes the point (x̄, ȳ) to s is a homomorphism
from the secant group law to multiplication in k∗. This proves the first half of
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the lemma. Note that we could just as well have taken 1/s to be the parameter
on Gm ; our choice is a matter of convention. To prove the specialization law for
sections of height 3/2, we may, for instance, take the sum of such a section Q
with a section P of height 2 with specialization (s, 0). A direct calculation shows
that the y-coordinate of the sum has top (quadratic) coefficient cs. Therefore the
specialization of Q must have the form κc, where κ is a constant not depending
on Q. Finally, the sum of two sections Q1 and Q2 of height 3/2 and having
coefficients c1 and c2 for the t2 term of their y-coordinates can be checked to
specialize to (c1c2, 0). It follows that κ = ±1, and we take the plus sign as a
convention. (It is easy to see that both choices of sign are legitimate, since the
sections of height 2 generate a copy of E7, whereas the sections of height 3/2 lie
in the nontrivial coset of E7 in E∗7 ). �

There are 56 sections of height 3/2, with x and y coordinates in the form above.
Substituting the formulas above for x and y into the Weierstrass equation, we get
the following system of equations.

c2
+ ac+ 1= 0,

q3+ ap2+ a3
= (2c+ a)d + bc,

q2+ bp2+ 3a2b = (2c+ a)e+ (b+ d)d,

q1+ bp1+ ap0+ 3ab2
= (2d + b)e,

q0+ bp0+ b3
= e2.

We solve for a and b from the first and second equations, and then e from the
third, assuming c 6=1. Substituting these values back into the last two equations, we
get two equations in the variables c and d . Taking the resultant of these two equa-
tions with respect to d, and dividing by c30(c2

−1)4, we obtain an equation of degree
56 in c, which is monic, reciprocal and has coefficients in Z[λ] = Z[p0, . . . , q3].
We denote this polynomial by

8λ(X)=
56∏

i=1

(X − s(P))= X56
+ ε1 X55

+ ε2 X54
+ · · ·+ ε1 X + ε0,

where P ranges over the 56 minimal sections of height 3/2. It is clear that a, b, d, e
are rational functions of c with coefficients in k0.

We have a Galois representation on the Mordell–Weil lattice

ρλ : Gal(k/k0)→ Aut(Mλ)∼= Aut(E∗7).

Here Aut(E∗7)∼=Aut(E7)∼=W (E7), the Weyl group of type E7. The splitting field
of Mλ is the fixed field kλ of Ker(ρλ). By definition, Gal(kλ/k0) ∼= Im(ρλ). The
splitting field kλ is equal to the splitting field of the polynomial 8λ(X) over k0,
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since the Mordell–Weil group is generated by the 56 sections of smallest height
Pi = (ai t+bi , ci t2

+di t+ei ). We also have kλ= k0(P1, . . . , P56)= k0(c1, . . . , c56).
We shall sometimes write eα, (for α ∈ E∗7 a minimal vector) to refer to the special-
izations of these sections c(Pi ), for convenience.

Theorem 5. Assume that λ is generic over Q, i.e., the coordinates p0, . . . , q3 are
algebraically independent over Q.

(1) ρλ induces an isomorphism Gal(kλ/k0)∼=W (E7).

(2) The splitting field kλ is a purely transcendental extension of Q, isomorphic to
the function field Q(Y ) of the toric hypersurface

Y ⊂ G8
m defined by s1 . . . s7 = r3.

There is an action of W (E7) on Y such that Q(Y )W (E7) = kW (E7)
λ = k0.

(3) The ring of W (E7)-invariants in the affine coordinate ring

Q[Y ] =
Q[si , r, 1/si , 1/r ]
(s1 . . . s7− r3)

∼=Q[s1, . . . , s6, r, s−1
1 , . . . , s−1

6 , r−1
]

is equal to the polynomial ring Q[λ]:

Q[Y ]W (E7) =Q[λ] =Q[p0, p1, p2, q0, q1, q2, q3].

In fact, we shall prove an explicit, invertible polynomial relation between the
Weierstrass coefficients λ and the fundamental characters for E7. Let V1, . . . , V7

be the fundamental representations of E7, and χ1, . . . , χ7 their characters (on a
maximal torus), as labeled below. For a description of the fundamental modules
for the exceptional Lie groups see [Carter 2005, Section 13.8].

1 3 4 5 6 7

2

Note that since the weight lattice E∗7 has been equipped with a nice set of genera-
tors (v1, . . . , v7, u)with

∑
vi =3u (as in [Shioda 1995]), the characters χ1, . . . , χ7

lie in the ring of Laurent polynomials Q[si , r, 1/si , 1/r ], where si corresponds to
evi and r to eu , and are obviously invariant under the (multiplicative) action of the
Weyl group on this ring of Laurent polynomials. Explicit formulas for the χi are
given in the auxiliary files.

We also note that the roots of 8λ are given by

si ,
1
si

for 1≤ i ≤ 7 and
r

si s j
,

si s j

r
for 1≤ i < j ≤ 7.
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Theorem 6. For generic λ over Q, we have

Q[χ1, . . . , χ7] =Q[p0, p1, p2, q0, q1, q2, q3].

The transformation between these sets of generators is

χ1 = 6p2+ 25,

χ2 = 6q3− 2p1,

χ3 =−q2+ 13p2
2 + 108p2+ p0+ 221,

χ4 = 9q2
3 − 6p1q3− q2− q0+ 8p3

2 + 85p2
2 + (2p0+ 300)p2+ p2

1 + 10p0+ 350,

χ5 = (6p2+ 26)q3+ q1− 2p1 p2− 10p1,

χ6 =−q2+ p2
2 + 12p2+ 27,

χ7 = q3,

with inverse

p2 = (χ1− 25)/6,

p1 = (6χ7−χ2)/2,

p0 =−(3χ6− 3χ3+χ
2
1 − 2χ1+ 7)/3,

q3 = χ7,

q2 =−(36χ6−χ
2
1 − 22χ1+ 203)/36,

q1 = (24χ7+ 6χ5+ (−χ1− 5)χ2)/6,

q0 = (27χ2
2 − 8χ3

1 − 84χ2
1 + 120χ1− 136)/108−(χ1+ 2)χ6/3−χ4+ (χ1+ 5)χ3/3.

Our formulas agree with those of Eguchi and Sakai [2003], who seem to derive
these by using an ansatz.

Next, we describe two examples through specialization, one of “small Galois”
(in which all sections are defined over Q[t]) and one with “big Galois” (which has
Galois group the full Weyl group).

Example 7. The values

p0 = 244655370905444111/(3µ2),

p1 =−4788369529481641525125/(16µ2),

q3 = 184185687325/(4µ),

p2 = 199937106590279644475038924955076599/(12µ4),

q2 = 57918534120411335989995011407800421/(9µ3),

q1 =−179880916617213624948875556502808560625/(4µ4),

q0 = 35316143754919755115952802080469762936626890880469201091/(1728µ6),
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where µ = 2 · 3 · 5 · 7 · 11 · 13 · 17 = 102102, give rise to an elliptic surface for
which we have r = 2, s1 = 3, s2 = 5, s3 = 7, s4 = 11, s5 = 13, s6 = 17, the simplest
choice of multiplicatively independent elements. The Mordell–Weil group has a
basis of sections for which c ∈ {3, 5, 7, 11, 13, 17, 15/2}. We write down their
x-coordinates below:

x(P1)=−(10/3)t − 707606695171055129/1563722760600,

x(P2)=−(26/5)t − 611410735289928023/1563722760600,

x(P3)=−(50/7)t − 513728975686763429/1563722760600,

x(P4)=−(122/11)t − 316023939417997169/1563722760600,

x(P5)=−(170/13)t − 216677827127591279/1563722760600,

x(P6)=−(290/17)t − 17562556436754779/1563722760600,

x(P7)=−(229/30)t − 140574879644393807/390930690150.

In the auxiliary files the x-and y-coordinates are listed, and it is verified that they
satisfy the Weierstrass equation.

Example 8. The value λ= λ0 := (1, 1, 1, 1, 1, 1, 1) gives rise to an explicit poly-
nomial f (X)=8λ0(X), given by

f (X)= X56
− X55

+ 40X54
− 22X53

+ 797X52
− 190X51

+ 9878X50
− 1513X49

+ 82195X48
− 17689X47

+ 496844X46
− 175584X45

+ 2336237X44

− 1196652X43
+ 8957717X42

− 5726683X41
+ 28574146X40

− 20119954X39
+ 75465618X38

− 53541106X37
+ 163074206X36

− 110505921X35
+ 287854250X34

− 181247607X33
+ 420186200X32

− 243591901X31
+ 518626022X30

− 278343633X29
+ 554315411X28

− 278343633X27
+ 518626022X26

− 243591901X25
+ 420186200X24

− 181247607X23
+ 287854250X22

− 110505921X21
+ 163074206X20

− 53541106X19
+ 75465618X18

− 20119954X17
+ 28574146X16

− 5726683X15
+ 8957717X14

− 1196652X13
+ 2336237X12

− 175584X11
+ 496844X10

− 17689X9
+ 82195X8

− 1513X7

+ 9878X6
− 190X5

+ 797X4
− 22X3

+ 40X2
− X + 1,

for which we can show that the Galois group is the full group W (E7), as follows.
The reduction of f (X) modulo 7 shows that Frob7 has cycle decomposition of
type (7)8, and similarly, Frob101 has cycle decomposition of type (3)2(5)4(15)2.
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This implies, as in [Shioda 1991b, Example 7.6], that the Galois group is the entire
Weyl group.

We can also describe degenerations of this family Xλ of rational elliptic surfaces
by the method of “vanishing roots”, where we drop the genericity assumption, and
consider the situation where the elliptic fibration might have additional reducible
fibers. Let ψ : Y → A7 be the finite surjective morphism associated to

Q[p0, . . . , q3] ↪→Q[Y ] ∼=Q[s1, . . . , s6, r, s−1
1 , . . . , s−1

6 , r−1
].

For ξ = (s1, . . . , s7, r) ∈ Y , let the multiset 5ξ consist of the 126 elements si/r
and r/si for 1 ≤ i ≤ 7, si/s j ((for 1 ≤ i 6= j ≤ 7) and si s j sk/r and r/(si s j sk)

for 1 ≤ i < j < k ≤ 7, corresponding to the 126 roots of E7. Let 2ν(ξ) be the
number of times 1 appears in 5ξ , which is also the multiplicity of 1 as a root of
9λ(X) (to be defined in Section 4.2), where λ=ψ(ξ). We call the associated roots
of E7 the vanishing roots, in analogy with vanishing cycles in the deformation of
singularities. By abuse of notation we label the rational elliptic surface Xλ as Xξ .

Theorem 9. The surface Xξ has new reducible fibers (necessarily at t 6=∞) if and
only if ν(ξ) > 0. The number of roots in the root lattice Tnew is equal to 2ν(ξ),
where Tnew :=

⊕
v 6=∞ Tv is the new part of the trivial lattice.

We may use this result to produce specializations with trivial lattice includ-
ing A1, corresponding to the entries in the table of [Oguiso and Shioda 1991,
Section 1]. Note that in earlier work [Shioda 1991a; Shioda and Usui 1992], ex-
amples of rational elliptic surfaces were produced with a fiber of additive type,
for instance, a fiber of type III (which contributes A1 to the trivial lattice) or a
fiber of type II. Using our excellent family, we can produce examples with the
A1 fiber being of multiplicative type I2 and all other irreducible singular fibers
being nodal (that is, I1). We list below those types that are not already covered by
[Shioda 2012]. To produce these examples, we use an embedding of the new part
Tnew of the fibral lattice into E7, which gives us any extra conditions satisfied by
s1, . . . , s7, r . The following multiplicative version of the labeling of simple roots
of E7 is useful (compare [Shioda 1995]).

s1

s2

s2

s3

s3

s4

s4

s5

s5

s6

s6

s7

r
s1s2s3

For instance, to produce the example in line 18 of the table (that is, with Tnew=D4),
we may use the embedding into E7 indicated by embedding the D4 Dynkin diagram
within the dashed lines in the figure above. Thus, we must force s2 = s3 = s4 = s5
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Type Fibral lattice MW group {s1, . . . , s6, r}

2 A1 E∗7 3, 5, 7, 11, 13, 17, 2
4 A2

1 D∗6 3, 3, 5, 7, 11, 13, 2
7 A3

1 D∗4 ⊕ A∗1 3, 3, 5, 5, 7, 11, 2
10 A1⊕ A3 A∗1⊕ A∗3 3, 3, 3, 3, 5, 7, 2
13 A4

1 D∗4 ⊕Z/2Z −1, 2, 3, 5, 7, 49/30, 7
14 A4

1 A∗41 3, 3, 5, 5, 7, 7, 2

17 A1⊕ A4
1

10

(
3 1 −1
1 7 3
−1 3 7

)
3, 3, 3, 3, 3, 5, 2

18 A1⊕ D4 A∗31 2, 3, 3, 3, 3, 5, 18
21 A2

1⊕ A3 A∗3⊕Z/2Z 3, 5, 60, 30, 30, 30, 900
22 A2

1⊕ A3 A∗21 ⊕〈1/4〉 3, 3, 5, 5, 5, 5, 2
24 A5

1 A∗31 ⊕Z/2Z 15/4, 2, 2, 3, 3, 5, 15
28 A1⊕ A5 A∗2⊕Z/2Z 2, 3, 6, 6, 6, 6, 36
29 A1⊕ A5 A∗1⊕〈1/6〉 2, 2, 2, 2, 2, 2, 3
30 A1⊕ D5 A∗1⊕〈1/4〉 2, 2, 2, 2, 2, 3, 8

33 A2
1⊕ A4

1
10

(
2 1
1 3

)
2, 2, 3, 3, 3, 3, 12

34 A2
1⊕ D4 A∗21 ⊕Z/2Z 2, 3, 3, 3, 3, 6, 18

38 A3
1⊕ A3 A∗1⊕〈1/4〉⊕Z/2Z 2, 2, 3, 3, 3, 4, 12

42 A6
1 A∗21 ⊕ (Z/2Z)2 6,−1,−1, 2, 2, 3, 6

47 A1⊕ A6 〈1/14〉 8, 8, 8, 8, 8, 8, 128
48 A1⊕ D6 A∗1⊕Z/2Z 1, 2, 2, 2, 2, 2, 4
49 A1⊕ E6 〈1/6〉 2, 2, 2, 2, 2, 2, 8
52 A2

1⊕ D5 〈1/4〉⊕Z/2Z 2, 2, 2, 2, 2, 4, 8
53 A2

1⊕ A5 〈1/6〉⊕Z/2Z 2, 2, 4, 4, 4, 4, 16
57 A3

1⊕ D4 A∗1⊕ (Z/2Z)2 −1, 2, 2, 2, 2,−2,−4
58 A1⊕ A2

3 A∗1⊕Z/4Z I, I, I, I, 2, 2, 2
60 A4

1⊕ A3 〈1/4〉⊕ (Z/2Z)2 2, 2, 2, 2,−1,−1, 4
65 A1⊕ E7 Z/2Z 1, 1, 1, 1, 1, 1, 1
70 A1⊕ A7 Z/4Z I, I, I, I, I, I, I
71 A2

1⊕ D6 (Z/2Z)2 1, 1, 1, 1, 1, 1,−1
74 A2

1⊕ A2
3 (Z/2Z)⊕ (Z/4Z) I, I, I, I,−1,−1,−1

Table 1. Examples of specializations of the E7 family (types are
from [Oguiso and Shioda 1991]).

and r = s1s2s3, and a simple solution with no extra coincidences is given in the
rightmost column (note that s7 = 183/(2 · 34

· 5)= 36/5).
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Here I =
√
−1.

Remark 10. For the examples in lines 58, 70 and 74 of the table, one can show
that it is not possible to define a rational elliptic surface over Q in the form we
have assumed, such that all the specializations si , r are rational. However, there
do exist examples with all sections defined over Q, not in the chosen Weierstrass
form.

The surface with Weierstrass equation

y2
+ xy+ 1

16(c
2
− 1)(t2

− 1)y = x3
+

1
16(c

2
− 1)(t2

− 1)x2

has a 4-torsion section (0, 0) and a nontorsion section(
(c+ 1)(t2

− 1)/8, (c+ 1)2(t − 1)2(t + 1)/32
)

of height 1/2, as well as two reducible fibers of type I4 and a fiber of type I2. It is
an example of type 58.

The surface with Weierstrass equation

y2
+ xy+ t2 y = x3

+ t2x2

has a 4-torsion section (0, 0), and reducible fibers of types I8 and I2. It is an
example of type 70.

The surface with Weierstrass equation

y2
+ xy−

(
t2
−

1
16

)
y = x3

−
(
t2
−

1
16

)
x2

has two reducible fibers of type I4 and two reducible fibers of type I2. It also has
a 4-torsion section (0, 0) and a 2-torsion section

(
(4t−1)/8, (4t−1)2/32

)
, which

generate the Mordell–Weil group. It is an example of type 74. This last example
is the universal elliptic curve with Z/4Z⊕Z/2Z torsion (compare [Kubert 1976]).

4.2. Proofs. We start by considering the coefficients εi of 8λ(X); we know that
(−1)iεi is simply the i-th elementary symmetric polynomial in the 56 specializa-
tions s(Pi ). One shows, either by explicit calculation with Laurent polynomials,
or by calculating the decomposition of

∧i V (where V = V7 is the 56-dimensional
representation of E7), and expressing its character as polynomials in the funda-
mental characters, the following formulas. Some more details are in Section 7 and
the auxiliary files in [Kumar and Shioda 2013].

ε1 =−χ7,

ε2 = χ6+ 1,

ε3 =−(χ7+χ5),

ε4 = χ6+χ4+ 1,
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ε5 =−(χ6+χ3−χ
2
1 +χ1+ 1)χ7+ (χ1− 1)χ5−χ2χ3,

ε6 = χ1χ
2
7 + (χ5− (χ1+ 1)χ2)χ7+χ

2
6 + 2(χ3−χ

2
1 +χ1+ 1)χ6

−χ2χ5− (2χ1+ 1)χ4+χ
2
3 + 2(2χ1+ 1)χ3

+χ1χ
2
2 − 2χ3

1 +χ
2
1 + 2χ1+ 1,

ε7 = (−(χ1+ 1)χ6+ 2χ4− 2(χ1+ 1)χ3+χ
3
1 − 3χ1− 1)χ7

− 2(χ5−χ1χ2)χ6− (χ3−χ
2
1 +χ1+ 2)χ5+ 3χ2χ4

− (χ1+ 3)χ2χ3−χ
3
2 + (2χ1− 1)χ1χ2.

On the other hand, we can explicitly calculate the first few coefficients εi of8λ(X)
in terms of the Weierstrass coefficients, obtaining the following equations. Details
for the method are in Section 6.

ε1 =−q3,

ε2 = p2
2+12p2−q2+28,

ε3 =−3(2p2+9)q3−q1+2p1(p2+5),

ε4 = 9q2
3−6p1q3−2q2−q0+8p3

2+86p2
2+2(p0+156)p2+p2

1+10p0+378,

ε5 = (8q2−20p2
2−174p2−7p0−351)q3−2p1q2+6(p2+4)q1

+14p1 p2
2+108p1 p2+2(p0+101)p1,

ε6 = 12(4p2+15)q2
3−(5q1+38p1 p2+140p1)q3+4q2

2

+(16p2
2+96p2−4p0+155)q2+2p1q1+3(4p2+17)q0+28p4

2+360p3
2

+(4p0+1765)p2
2+2(4p2

1+21p0+1950)p2+29p2
1+p2

0+88p0+3276,

ε7 =−36q3
3+42p1q2

3+(4q2−20q0−56p3
2−628p2

2−14(p0+168)p2−16p2
1

−46p0−2925)q3+(3q1+6p1 p2+20p1)q2+(21p2
2+162p2−p0+323)q1

+6p1q0+42p1 p3
2+448p1 p2

2+2(p0+799)p1 p2+2p3
1+6(p0+316)p1.

Equating the two expressions we have obtained for each εi , we get a system of
seven equations, the first being

−χ7 =−q3.

We label these equations (1) through (7). The last few of these polynomial equa-
tions are somewhat complicated, and so to obtain a few simpler ones, we may
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consider the 126 sections of height 2, which we analyze as follows. Substituting

x = at2
+ bt + c,

y = dt3
+ et2

+ f t + g

into the Weierstrass equation, we get another system of equations:

a3
= d2
+ ad,

3a2b = (2d + a)e+ bd,

a(p2+ 3ac+ 3b2)= (2d + a) f + e2
+ be+ cd + 1,

q3+ bp2+ ap1+ 6abc+ b3
= (2d + a)g+ (2e+ b) f + ce,

q2+ cp2+ bp1+ ap0+ 3ac2
+ 3b2c = (2e+ b)g+ f 2

+ c f,

q1+ cp1+ bp0+ 3bc2
= (2 f + c)g,

q0+ cp0+ c3
= g2.

The specialization of such a section at t = ∞ is 1 + a/d . Setting d = ar , we
may as before eliminate other variables to obtain an equation of degree 126 for r .
Substituting r = 1/(u− 1), we get a monic polynomial 9λ(X)= 0 of degree 126
for u. Note that the roots are given by elements of the form

si

r
,

r
si

for 1≤ i ≤ 7,

si

s j
for 1≤ i 6= j ≤ 7, and

si s j sk

r
,

r
si s j sk

for 1≤ i < j < k ≤ 7.

As before, we can write the first few coefficients ηi of 9λ in terms of λ =
(p0, . . . , q3), as well as in terms of the characters χ j , obtaining some more rela-
tions. We will only need the first two:

−χ1+ 7= η1 =−18− 6p2,

−6χ1+χ3+ 28= η2 = p0+ 72p2+ 13p2
2 − q2+ 99

which we call (1′) and (2′), respectively.
Now we consider the system of six equations (1) through (4), (1′) and (2′).

These may be solved for (p2, p0, q3, q2, q1, q0) in terms of the χ j and p1. Substi-
tuting this solution into the other three relations (5), (6) and (7), we obtain three
equations for p1, of degrees 1, 2 and 3, respectively. These have a single common
factor, linear in p1, which we then solve. This gives us the proof of Theorem 6.

The proof of Theorem 5 is now straightforward. Part (1) asserts that the image
of ρλ is surjective on to W (E7). This follows from a standard Galois-theoretic
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argument: Let F be the fixed field of W (E7) acting on kλ =Q(λ)(s1, . . . , s6, r)=
Q(s1, . . . , s6, r), where the last equality follows from the explicit expression of
λ = (p0, . . . , q3) in terms of the χi , which are in Q(s1, . . . , s6, r). Then we
have that k0 ⊂ F since p0, . . . , q3 are polynomials in the χi with rational co-
efficients, and the χi are manifestly invariant under the Weyl group. Therefore
[kλ : k0] ≥ [kλ : F] = |W (E7)|, where the latter equality is from Galois theory. Fi-
nally, [kλ : k0] ≤ |Gal(kλ/k0)| ≤ |W (E7)|, since Gal(kλ/k0) ↪→W (E7). Therefore,
equality is forced.

Another way to see that the Galois group is the full Weyl group is to show it for a
specialization, such as Example 8, and use [Serre 1989, Section 9.2, Proposition 2].

Next, let Y be the toric hypersurface given by s1 . . . s7 = r3. Its function field is
the splitting field of8λ(X), as we remarked above. We have seen that Q(Y )W (E7)=

k0=Q(λ). Since 8λ(X) is a monic polynomial with coefficients in Q[λ], we have
that Q[Y ] is integral over Q[λ]. Therefore Q[Y ]W (E7) is also integral over Q[λ],
and contained in Q(Y )W (E7) = k0 = Q(λ). Since Q[λ] is a polynomial ring, it is
integrally closed in its ring of fractions. Therefore Q[Y ]W (E7) ⊂Q[λ].

We also know Q[χ ] = Q[χ1, . . . , χ7] ⊂ Q[Y ]W (E7), since the χ j are invariant
under the Weyl group. Therefore, we have

Q[χ ] ⊂Q[Y ]W (E7) ⊂Q[λ]

and Theorem 6, which says Q[χ ] = Q[λ], implies that all these three rings are
equal. This completes the proof of Theorem 5.

Remark 11. This argument gives an independent proof of the fact that the ring
of multiplicative invariants for W (E7) is a polynomial ring over χ1, . . . , χ7. See
[Bourbaki 1968, Théorème VI.3.1 and Exemple 1] or [Lorenz 2005, Theorem 3.6.1]
for the classical proof that the Weyl-orbit sums of a set of fundamental weights are
a set of algebraically independent generators of the multiplicative invariant ring;
from there to the fundamental characters is an easy exercise.

Remark 12. Now that we have found the explicit relation between the Weier-
strass coefficients and the fundamental characters, we may go back and explore the
“genericity condition” for this family to have Mordell–Weil lattice E∗7 . To do this,
we compute the discriminant of the cubic in x , after completing the square in y, and
take the discriminant with respect to t of the resulting polynomial of degree 10.
A computation shows that this discriminant factors as the cube of a polynomial
A(λ) (which vanishes exactly when the family has a fiber of additive reduction,
generically type II), times a polynomial B(λ), whose zero locus corresponds to the
occurrence of a reducible multiplicative fiber. In fact, we calculate (for instance,
by evaluating the split case) that B(λ) is the product of (eα − 1), where α runs
over the 126 roots of E7. We deduce by further analyzing the type II case that the
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condition to have Mordell–Weil lattice E∗7 is that∏
(eα − 1)=9λ(1) 6= 0.

Note that this is essentially the expression that occurs in Weyl’s denominator for-
mula. In addition, the condition for having only multiplicative fibers is that 9λ(1)
and A(λ) both be nonzero.

Finally, the proof of Theorem 9 follows immediately from the discussion in
[Shioda 2010a; 2010b] — compare [Shioda 2010b, Section 2.3] for the additive
reduction case.

5. The E8 case

5.1. Results. Finally, we show a multiplicative excellent family for the Weyl group
of E8. It is given by the Weierstrass equation

y2
= x3
+ t2 x2

+ (p0+ p1t + p2t2) x + (q0+ q1t + q2t2
+ q3t3

+ q4t4
+ t5).

For generic λ = (p0, . . . , p2, q0, . . . , q4), this rational elliptic surface Xλ has no
reducible fibers, only nodal I1 fibers at twelve points, including t = ∞. We will
use the specialization map at ∞. The Mordell–Weil lattice Mλ is isomorphic to
the lattice E8. Any rational elliptic surface with a multiplicative fiber of type I1

may be put in the form above (over a small degree algebraic extension of the base
field), after a fractional linear transformation of t and Weierstrass transformations
of x, y.

Lemma 13. The smooth part of the special fiber is isomorphic to the group scheme
Gm . The identity component is the nonsingular part of the curve y2

= x3
+ x2. The

x- and y-coordinates of a section of height 2 are polynomials of degrees 2 and 3
respectively, and its specialization at t =∞ may be taken as

lim
t→∞

(y+ t x)/(y− t x) ∈ k∗.

The proof of the lemma is similar to that in the E7 case (and simpler!), and we
omit it.

There are 240 sections of minimal height 2, with x-and y-coordinates of the
form

x = gt2
+ at + b,

y = ht3
+ ct2

+ dt + e.

Under the identification with Gm of the special fiber of the Néron model, this
section goes to (h+ g)/(h− g). Substituting the formulas above for x and y into
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the Weierstrass equation, we get the following system of equations.

h2
= g3
+ g2,

2ch = 3ag2
+ 2ag+ 1,

2dh+ c2
= q4+ gp2+ 3bg2

+ (2b+ 3a2)g+ a2,

2eh+ 2cd = q3+ ap2+ gp1+ 6abg+ 2ab+ a3,

2ce+ d2
= q2+ bp2+ ap1+ gp0+ 3b2g+ b2

+ 3a2b,

2de = q1+ bp1+ ap0+ 3ab2,

e2
= q0+ bp0+ b3.

Setting h= gu, we eliminate other variables to obtain an equation of degree 240
for u. Finally, substituting in u= (v+1)/(v−1), we get a monic reciprocal equation
8λ(X) = 0 satisfied by v, with coefficients in Z[λ] = Z[p0, . . . , p2, q0, . . . , q4].
We have

8λ(X)=
240∏
i=1

(X − s(P))= X240
+ ε1 X239

+ · · ·+ ε1 X + ε0,

where P ranges over the 240 minimal sections of height 2. It is clear that a, . . . , h
are rational functions of v, with coefficients in k0.

We have a Galois representation on the Mordell–Weil lattice

ρλ : Gal(k/k0)→ Aut(Mλ)∼= Aut(E8).

Here Aut(E8) ∼= W (E8), the Weyl group of type E8. The splitting field of
Mλ is the fixed field kλ of Ker(ρλ). By definition, Gal(kλ/k0) ∼= Im(ρλ). The
splitting field kλ is equal to the splitting field of the polynomial 8λ(X) over k0,
since the Mordell–Weil group is generated by the 240 sections of smallest height
Pi = (gi t2

+ ai t + bi , hi t3
+ ci t2

+ di t + ei ). We also have

kλ = k0(P1, . . . , P240)= k0(v1, . . . , v240).

Theorem 14. Assume that λ is generic over Q, that is, the coordinates p0, . . . , q4

are algebraically independent over Q.

(1) ρλ induces an isomorphism Gal(kλ/k0)∼=W (E8).

(2) The splitting field kλ is a purely transcendental extension of Q, and is iso-
morphic to the function field Q(Y ) of the toric hypersurface Y ⊂ G9

m defined
by s1 · · · s8 = r3. There is an action of W (E8) on Y such that Q(Y )W (E8) =

kW (E8)
λ = k0.
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(3) The ring of W (E8)-invariants in the affine coordinate ring

Q[Y ] =Q[si , r, 1/si , 1/r ]/(s1 . . . s8− r3)∼=Q[s1, . . . , s7, r, s−1
1 , . . . , s−1

7 , r−1
]

is equal to the polynomial ring Q[λ]:

Q[Y ]W (E8) =Q[λ] =Q[p0, p1, p2, q0, q1, q2, q3, q4].

As in the E7 case, we prove an explicit, invertible polynomial relation be-
tween the Weierstrass coefficients λ and the fundamental characters for E8. Let
V1, . . . , V8 be the fundamental representations of E8, and χ1, . . . , χ8 their charac-
ters as labeled below.

1 3 4 5 6 7 8

2

Again, for the set of generators of E8, we choose (as in [Shioda 1995]) vectors
v1, . . . , v8, u with

∑
vi =3u and let si correspond to vi and r to u, so that

∏
si =r3.

The 240 roots of 8λ(X) are given by

si ,
1
si

for 1≤ i ≤ 8,
si

s j
for 1≤ i 6= j ≤ 8,

si s j

r
,

r
si s j

for 1≤ i < j ≤ 8, and
si s j sk

r
,

r
si s j sk

for 1≤ i < j < k ≤ 8.

The characters χ1, . . . , χ7 lie in the ring of Laurent polynomials Q[si , r, 1/si , 1/r ],
and are invariant under the multiplicative action of the Weyl group on this ring of
Laurent polynomials. The χi may be explicitly computed using the software LiE,
as indicated in Section 7 and the auxiliary files.

Theorem 15. For generic λ over Q, we have

Q[χ1, . . . , χ8] =Q[p0, p1, p2, q0, q1, q2, q3, q4].

The transformation between these sets of generators is

χ1 =−1600q4+ 1536p2+ 3875,

χ2 = 2(−45600q4+ 12288q3+ 40704p2− 16384p1+ 73625),

χ3 = 64(14144q2
4 − 72(384p2+ 1225)q4+ 11200q3− 4096q2+ 13312p2

2

+ 87072p2− 17920p1+ 16384p0+ 104625),
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χ4 =−91750400q3
4 + 12288(25600p2+ 222101)q2

4 − 256(4530176q3− 65536q2

+ 1392640p2
2 + 21778944p2− 8159232p1+ 2621440p0+ 34773585)q4

+ 32(4718592q2
3 + 384(80896p2− 32768p1+ 225379)q3− 29589504q2

+ 30408704q1− 33554432q0+ 4194304p3
2 + 88129536p2

2

− 64(876544p1− 262144p0− 4399923)p2+ 8388608p2
1 − 133996544p1

+ 65175552p0+ 215596227),

χ5 = 24760320q2
4 − 64(106496q3+ 738816p2− 163840p1+ 2360085)q4

+ 12288(512p2+ 4797)q3− 30670848q2+ 16777216q1+ 20250624p2
2

− 512(16384p1− 235911)p2− 45154304p1+ 13631488p0+ 146325270,

χ6 = 110592q2
4 − 1536(128p2+ 1235)q4+ 724992q3− 262144q2+ 65536p2

2

+ 1062912p2− 229376p1+ 2450240,

χ7 =−4(3920q4− 1024q3− 1152p2− 7595),

χ8 =−8(8q4− 31).

Remark 16. We omit the inverse for conciseness here; it is easily computed in a
computer algebra system and is available in the auxiliary files.

Remark 17. As before, our explicit formulas are compatible with those in [Eguchi
and Sakai 2003]. Also, the proof of Theorem 14 gives another proof that the mul-
tiplicative invariants for W (E8) are freely generated by the fundamental characters
(or by the orbit sums of the fundamental weights).

Example 18. Let µ= (2 · 3 · 5 · 7 · 11 · 13 · 17 · 19)= 9699690. Then

q4 =−2243374456559366834339/(25
·µ2),

q3 = 430800343129403388346226518246078567/(211
·µ3),

q2 = 72555101947649011127391733034984158462573146409905769/(222
· 32
·µ4),

q1 = (−12881099305517291338207432378468368491584063772556981164919245

30489)/(229
· 3 ·µ5),

q0 = (8827176793323619929427303381485459401911918837196838709750423283

443360357992650203)/(242
· 33
·µ6),

p2 = 146156773903879871001810589/(29
· 3 ·µ2),

p1 =−24909805041567866985469379779685360019313/(220
·µ3),

p0 = 14921071761102637668643191215755039801471771138867387/(223
· 3 ·µ4).
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These values give an elliptic surface for which we have r = 2, s1 = 3, s2 = 5,
s3 = 7, s4 = 11, s5 = 13, s6 = 17, s7 = 19, the simplest choice of multiplica-
tively independent elements. Here, the specializations of a basis are given by
v ∈ {3, 5, 7, 11, 13, 17, 19, 15/2}. Once again, we list the x-coordinates of the
corresponding sections, and leave the rest of the verification to the auxiliary files.

x(P1)= 3t2
−

99950606190359
620780160

t + 4325327557647488120209649813
2642523476911718400

,

x(P2)=
5
4

t2
−

153332163637781
1655413760

t + 5414114237697608646836821
5138596941004800

,

x(P3)=
7
9

t2
−

203120672689603
2793510720

t + 6943164348569130636788638639
7927570430735155200

,

x(P4)=
11
25

t2
−

8564057914757
147804800

t + 115126372233675800396600989
155442557465395200

,

x(P5)=
13
36

t2
−

347479008951469
6385167360

t + 157133607680949617374030405417
221971972060584345600

,

x(P6)=
17
64

t2
−

1327421017414859
26486620160

t + 5942419292933021418457517303
8901131711702630400

,

x(P7)=
19
81

t2
−

489830985359431
10056638592

t + 46685137201743696441477454951
71348133876616396800

,

x(P8)=
120
169

t2
−

30706596009257
440806080

t + 76164443074828743662165466409
55823308449760051200

.

Example 19. The value λ = λ0 := (1, 1, 1, 1, 1, 1, 1, 1) gives rise to an explicit
polynomial g(X) = 8λ0(X), for which we can show that the Galois group is
W (E8), as follows. The reduction of g(X) modulo 79 shows that Frob79 has cycle
decomposition of type (4)2(8)29, and similarly, Frob179 has cycle decomposition
of type (15)16. We deduce, as in [Jouve et al. 2008, Section 3] or [Shioda 2009],
that the Galois group is the entire Weyl group. Since the coefficients of g(X) are
large, we do not display it here, but it is included in the auxiliary files.

As in the case of E7, we can also describe degenerations of this family of ra-
tional elliptic surfaces Xλ by the method of “vanishing roots”, where we drop the
genericity assumption, and consider the situation where the elliptic fibration might
have additional reducible fibers. Let ψ : Y →A8 be the finite surjective morphism
associated to

Q[p0, . . . , q4] ↪→Q[Y ] ∼=Q[s1, . . . , s7, r, s−1
1 , . . . , s−1

7 , r−1
].

For ξ = (s1, . . . , s8, r) ∈ Y , let the multiset 5ξ consist of the 240 elements si and
1/si for 1≤ i ≤ 8, si/s j for 1≤ i 6= j ≤ 8, si s j/r and r/(si s j ) for 1≤ i < j ≤ 8,
and si s j sk/r and r/(si s j sk) for 1 ≤ i < j < k ≤ 8, corresponding to the 240
roots of E8. Let 2ν(ξ) be the number of times 1 appears in 5ξ , which is also the
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Type Fibral lattice MW group {s1, . . . , s6, r}

1 0 E8 3, 5, 7, 11, 13, 17, 19, 2
5 A3 D∗5 2, 2, 2, 2, 5, 7, 11, 3
8 A4 A∗4 2, 2, 2, 2, 2, 5, 7, 3
15 A5 A∗2⊕ A∗1 2, 2, 2, 2, 2, 2, 5, 3
16 D5 A∗3 2, 3, 3, 3, 3, 3, 5, 18

25 A6
1
7

(
4 −1
−1 2

)
2, 2, 2, 2, 2, 2, 2, 3

26 D6 A∗21 2, 3, 3, 3, 3, 3, 3, 18
35 A2

3 A∗21 ⊕Z/2Z 2,−1/2, 3, 3, 3, 1, 1,−3
36 A2

3 〈1/4〉 8, 8, 8, 8, 27, 27, 27, 1296
43 E7 A∗1 2, 2, 2, 2, 2, 2, 2, 8
44 A7 A∗1⊕Z/2Z 2, 2, 2, 2, 2, 2, 2,−8
45 A7 〈1/8〉 8, 8, 8, 8, 8, 8, 8, 256
46 D7 〈1/4〉 2, 4, 4, 4, 4, 4, 4, 32
54 A3⊕ D4 〈1/4〉⊕Z/2Z 2,−1,−1,−1,−1, 1, 1, 2
55 A3⊕ A4 〈1/20〉 16, 16, 16, 16, 32, 32, 32, 4096
62 E8 0 1, 1, 1, 1, 1, 1, 1, 1
63 A8 Z/3Z 1, 1, 1, 1, 1, 1, 1, ζ3

64 D8 Z/2Z 1, 1, 1, 1, 1, 1, 1,−1
67 A2

4 Z/5Z 1, 1, 1, 1, ζ5, ζ5, ζ5, ζ
3
5

72 A3⊕ D5 Z/4Z 1, 1, 1, I, I, I, I,−I

Table 2. Examples of specializations of the E8 family (types are
from [Oguiso and Shioda 1991]).

multiplicity of 1 as a root of 8λ(X), with λ = ψ(ξ). We call the associated roots
of E8 the vanishing roots, in analogy with vanishing cycles in the deformation of
singularities. By abuse of notation we label the rational elliptic surface Xλ as Xξ .

Theorem 20. The surface Xξ has new reducible fibers (necessarily at t 6= ∞) if
and only if ν(ξ) > 0. The number of roots in the root lattice Tnew is equal to 2ν(ξ),
where Tnew :=

⊕
v 6=∞ Tv is the new part of the trivial lattice.

We may use this result to produce specializations with trivial lattice correspond-
ing to most of the entries of [Oguiso and Shioda 1991], and a nodal fiber. We list
below those types which are not already covered by [Shioda 1991a; 2012] or our
examples for the E7 case, which have an I2 fiber.

Here ζ3, I and ζ5 are primitive third, fourth and fifth roots of unity.

Remark 21. As before, for the examples in lines 63, 67 and 72 of the table, one can
show it is not possible to define a rational elliptic surface over Q in the form we have
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assumed, such that all the specializations si and r are rational. However, there do
exist examples with all sections defined over Q, not in the chosen Weierstrass form.

The surface with Weierstrass equation

y2
+ xy+ t3 y = x3

has a 3-torsion point (0, 0) and a fiber of type I9. It is an example of type 63.
The surface with Weierstrass equation

y2
+ (t + 1)xy+ t y = x3

+ t x2

has a 5-torsion section (0, 0) and two fibers of type I5. It is an example of type 67.
The surface with Weierstrass equation

y2
+ t xy+

t2(t − 1)
16

y = x3
+

t (t − 1)
16

x2

has a 4-torsion section (0, 0), and two fibers of types I4 and I∗1. It is an example of
type 72.

Remark 22. Our tables and the one in [Shioda 2012] cover all the cases of [Oguiso
and Shioda 1991], except lines 9, 27 and 73 of the table, with trivial lattice D4,
E6 and D2

4 , respectively. Since these have fibers with additive reduction, examples
for them may be directly constructed using the families in [Shioda 1991a]. For
instance, the elliptic surface

y2
= x3
− xt2

has two fibers of type I∗0 and Mordell–Weil group (Z/2Z)2. This covers line 73 of
the table. For the other two cases, we refer the reader to the original examples of
additive reduction in [Shioda 1991a, Section 3].

5.2. Proofs. The proof proceeds analogously to the E7 case, with two differences:
We only have one polynomial 8λ(X) to work with (as opposed to having 8λ(X)
and 9λ(X)), and the equations are a lot more complicated.

We first write down the relation between the coefficients εi for 1 ≤ i ≤ 9, and
the fundamental invariants χ j ; as before, we postpone the proofs to the auxiliary
files and outline the idea in Section 7. Second, we write down the coefficients εi

in terms of λ = (p0, . . . , p2, q0, . . . , q4); see Section 6 for an explanation of how
this is carried out. In the interest of brevity, we do not write out either of these
sets of equations, but relegate them to the auxiliary computer files. Finally, setting
the corresponding expressions equal to each other, we obtain a set of equations (1)
through (9).

To solve these equations, proceed as follows: first use (1) through (5) to solve
for q0, . . . , q4 in terms of χ j and p0, p1, p2. Substituting these in to the remaining
equations, we obtain (6′) through (9′). These have low degree in p0, which we
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eliminate, obtaining equations of relatively small degrees in p1 and p2. Finally,
we take resultants with respect to p1, obtaining two equations for p2, of which the
only common root is the one listed above. Working back, we solve for all the other
variables, obtaining the system above and completing the proof of Theorem 15.
The deduction of Theorem 14 now proceeds exactly as in the case of E7.

Remark 23. As in the E7 case, once we find the explicit relation between the
Weierstrass coefficients and the fundamental characters, we may go back and ex-
plore the “genericity condition” for this family to have Mordell–Weil lattice iso-
morphic to E8. To do this we compute the discriminant of the cubic in x , after
completing the square in y, and take the discriminant with respect to t of the
resulting polynomial of degree 11. A computation shows that this discriminant
factors as the cube of a polynomial A(λ) (which vanishes exactly when the family
has a fiber of additive reduction, generically type II), and the product of (eα − 1),
where α runs over minimal vectors of E8. Again, the genericity condition to have
Mordell–Weil lattice exactly E8 is just the nonvanishing of

8λ(1)=
∏
(eα − 1),

the expression which occurs in the Weyl denominator formula. Furthermore, the
condition to have only multiplicative fibers is that 8λ(1)A(λ) 6= 0.

As before, the proof of Theorem 20 follows immediately from the results of
[Shioda 2010a; 2010b], by degeneration from a flat family.

6. Resultants, interpolation and computations

We now explain a computational aid, used in obtaining the equations expressing the
coefficients of 8λ (for E8) or 9λ (for E7) in terms of the Weierstrass coefficients
of the associated family of rational elliptic surfaces. We illustrate this using the
system of equations obtained for sections of the E8 family:

h2
= g3
+ g2,

2ch = 3ag2
+ 2ag+ 1,

c2
+ 2dh = q4+ gp2+ 3bg2

+ (2b+ 3a2)g+ a2,

2eh+ 2cd = q3+ ap2+ gp1+ 6abg+ 2ab+ a3,

2ce+ d2
= q2+ bp2+ ap1+ gp0+ 3b2g+ b2

+ 3a2b,

2de = q1+ bp1+ ap0+ 3ab2,

e2
= q0+ bp0+ b3.

Setting h = gu and solving the first equation for g, we have g = u2
− 1. We

solve the next three equations for c, d , e, respectively. This leaves us with three
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equations R1(a, b, u)= R2(a, b, u)= R3(a, b, u)= 0. These have degrees 2, 2, 3
respectively in b. Taking the appropriate linear combination of R1 and R2 gives us
an equation S1(a, b, u)= 0 which is linear in b. Similarly, we may use R1 and R3

to obtain another equation S2(a, b, u)= 0, linear in b. We write

S1(a, b, u)= s11(a, u)b+ s10(a, u),

S2(a, b, u)= s21(a, u)b+ s20(a, u),

R1(a, b, u)= r2(a, u)b2
+ r1(a, u)b+ r0(a, u).

The resultant of the first two polynomials gives us an equation

T1(a, u)= s11s20− s10s21 = 0,

while the resultant of the first and third gives us

T2(a, u)= r2s2
10− r1s10s11+ r0s2

11 = 0.

Finally, we substitute u = (v+ 1)/(v− 1) throughout, obtaining two equations
T̃1(a, v)= 0 and T̃2(a, v)= 0.

Next, we would like to compute the resultant of T̃1(a, v) and T̃2(a, v), which
have degrees 8 and 9 with respect to a, to obtain a single equation satisfied by v.
However, the polynomials T̃1 and T̃2 are already fairly large (they take a few
hundred kilobytes of memory), and since their degree in a is not too small, it is
beyond the current reach of computer algebra systems such as gp/PARI or Magma
to compute their resultant. It would take too long to compute their resultant, and
another issue is that the resultant would take too much memory to store, certainly
more than is available on the authors’ computer systems (it would take more than
16GB of memory).

To circumvent this issue, what we shall do is to use several specializations of λ
in Q8. Once we specialize, the polynomials take much less space to store, and the
computations of the resultants becomes tremendously easier. Since the resultant
can be computed via the Sylvester determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a8 . . . a2 a1 a0 0 0 . . . 0
0 a8 . . . a2 a1 a0 0 . . . 0
...
. . .

. . .
. . .

. . .
. . .

...

0 . . . 0 a8 . . . a2 a1 a0 0
0 . . . 0 0 a8 . . . a2 a1 a0

b9 b8 . . . b2 b1 b0 0 . . . 0

0 b9 b8 . . . b2 b1 b0
. . .

...
...
. . .

. . .
. . .

. . . 0
0 . . . 0 b9 b8 . . . b2 b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where T̃1(a, v) =
∑

ai (v)ai and T̃2(a, v) =
∑

bi (v)ai , we see that the resultant
is a polynomial Z(v) =

∑
ziv

i with coefficients zi being polynomials in the co-
efficients of the ai and the b j , which happen to be elements of Q[λ] (recall that
λ = (p0, . . . , p2, q0, . . . , q4)). Furthermore, we can bound the degrees mi ( j) of
zi (v) with respect to the j-th coordinate of λ, by using explicit bounds on the
multidegrees of the ai and bi . Therefore, by using Lagrange interpolation (with
respect to the eight variables λ j ) we can reconstruct zi (v) from its specializations
for various values of λ. The same method lets us show that Z(v) is divisible by v22

(for instance, by showing that z0 through z21 are zero), and also by (v+ 1)80 (by
first shifting v by 1 and then computing the Sylvester determinant, and proceeding
as before), as well as by (v2

+v+1)8 (this time, using cube roots of unity). Finally,
it is clear that Z(v) is divisible by the square of the resultant G(v) of s11 and s10

with respect to a. Removing these extraneous factors, we get a polynomial 8λ(v)
that is monic and reciprocal of degree 240. We compute its top few coefficients by
this interpolation method.

Finally, the interpolation method above is in fact completely rigorous. Namely,
let εi (λ) be the coefficient of vi in 8λ(v), with bounds (m1, . . . ,m8) for its mul-
tidegree, and ε′i (λ) the putative polynomial we have computed using Lagrange
interpolation on a set L1 × · · · × L8, where L i = {`i,0, . . . , `i,mi } for 1 ≤ i ≤ 8
are sets of integers chosen generically enough to ensure that G(v) has the correct
degree and that Z(v) is not divisible by any higher powers of v, v+1 or v2

+v+1
than in the generic case. Then since ε j (`1,i1, . . . , `8,i8)= ε

′

j (`1,i1, . . . , `8,i8) for all
choices of i1, . . . , i8, we see that the difference of these polynomials must vanish.

7. Representation theory, and some identities in Laurent polynomials

Finally, we demonstrate how to deduce the identities relating the coefficients of
8E7,λ(X) or 9E7,λ(X) to the fundamental characters for E7 (and similarly, the
coefficients of 8E8,λ(X) to the fundamental characters of E8).

Conceptually, the simplest way to do this is to express the alternating powers
of the 56-dimensional representation V7 or the 133-dimensional representation V1

in terms of the fundamental modules of E7 and their tensor products. We know
that the character χ1 of V1 is 7+

∑
eα, where the sum is over the 126 roots of E7.

Therefore we have (−1)η1 = χ1− 7. For the next example, we consider
∧2V1 =

V3⊕ V1. This gives rise to the equation

η2+ 7 · (−1)η1+

(
7
2

)
= χ3+χ1,

which gives the relation η2 = χ3− 6χ1+ 28.
A similar analysis can be carried out to obtain all the other identities used in our

proofs, using the software LiE [LiE 2000].
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A more explicit method is to compute the expressions for the χi as Laurent poly-
nomials in s1, . . . , s6, r (note that s7= r3/(s1 . . . s6)), and then do the same for the
εi or ηi . The latter calculation is simplified by computing the power sums

∑
(eα)i

(for α running over the smallest vectors of E∗7 or E7), for 1≤ i ≤ 7 and then using
Newton’s formulas to convert to the elementary symmetric polynomials, which
are (−1)iεi or (−1)iηi . Finally, we check the identities by direct computation in
the Laurent polynomial ring (it may be helpful to clear out denominators). This
method has the advantage that we obtain explicit expressions for the χi (and then
for λ by Theorem 6) in terms of s1, . . . , s6, r , which may then be used to generate
examples such as Example 7.
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