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The geometry and combinatorics of
cographic toric face rings

Sebastian Casalaina-Martin, Jesse Leo Kass and Filippo Viviani

In this paper, we define and study a ring associated to a graph that we call the
cographic toric face ring or simply the cographic ring. The cographic ring is the
toric face ring defined by the following equivalent combinatorial structures of a
graph: the cographic arrangement of hyperplanes, the Voronoi polytope, and the
poset of totally cyclic orientations. We describe the properties of the cographic
ring and, in particular, relate the invariants of the ring to the invariants of the
corresponding graph.

Our study of the cographic ring fits into a body of work on describing rings
constructed from graphs. Among the rings that can be constructed from a graph,
cographic rings are particularly interesting because they appear in the study of
compactified Jacobians of nodal curves.

Introduction

In this paper, we define and study a ring R(I") associated to a graph I' that we call
the cographic toric face ring or simply the cographic ring. The cographic ring R(I")
is the toric face ring defined by the following equivalent combinatorial structures
of I': the cographic arrangement of hyperplanes -, the Voronoi polytope Vorr,
and the poset of totally cyclic orientations 0%. We describe the properties of the
cographic ring and, in particular, relate the invariants of the ring to the invariants of
the corresponding graph.

Our study of the cographic ring fits into a body of work on describing rings
constructed from graphs. Among the rings that can be constructed from a graph,
cographic rings are particularly interesting because they appear in the study of
compactified Jacobians.

The authors establish the connection between R(I') and the local geometry
of compactified Jacobians in [Casalaina-Martin et al. 2011]. The compactified
Jacobian J ‘)‘; of a nodal curve X is the coarse moduli space parametrizing sheaves

MSC2010: primary 14H40; secondary 13F55, 05E40, 14K30, 05B35, 52C40.
Keywords: toric face rings, graphs, totally cyclic orientations, Voronoi polytopes, cographic
arrangement of hyperplanes, cographic fans, compactified Jacobians, nodal curves.
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on X that are rank-1, semistable, and of fixed degree d. These moduli spaces have
been constructed by Oda and Seshadri [1979], Caporaso [1994], Simpson [1994],
and Pandharipande [1996], and the different constructions are reviewed in Section 2
of [Casalaina-Martin et al. 2011]. In Theorem A of the same work, it is proved that
the completed local ring of J ‘)i( at a point is isomorphic to a power series ring over
the completion of R(I") for a graph I' constructed from the dual graph of X.

Also in [Casalaina-Martin et al. 2011], we studied the local structure of the
universal compactified Jacobian, which is a family of varieties over the moduli
space of stable curves whose fibers are closely related to the compactified Jacobians
just discussed. (See Section 2 of [loc. cit.] for a discussion of the relation between the
compactified Jacobians from the previous paragraph and the fibers of the universal
Jacobian). Caporaso [1994] first constructed the universal compactified Jacobian,
and Pandharipande [1996] gave an alternative construction. In [Casalaina-Martin
et al. 2011, Theorem A] we gave a presentation of the completed local ring of the
universal compactified Jacobian at a point, and we will explore the relation between
that ring and the affine semigroup ring defined in Section 5A in the upcoming paper
[Casalaina-Martin et al. 2012].

Cographic toric face rings are examples of toric face rings. Recall that a toric
face ring is constructed from the same combinatorial data that is used to construct
a toric variety: a fan. Let Hz be a free, finite-rank Z-module and % be a fan
that decomposes Hr = Hz ®z R into (strongly convex rational polyhedral) cones.
Consider the free k-vector space with basis given by monomials X¢ indexed by
elements ¢ € Hz. If we define a multiplication law on this vector space by setting

xe.x¢ — {X"“/ ife, ¢ e o for some o € F,
0 otherwise
and extending by linearity, then the resulting ring R (%) is the toric face ring (over k)
that is associated to %.

We define the cographic toric face ring R(I") of a graph I' to be toric face
ring associated to the fan that is defined by the cographic arrangement (6# The
cographic arrangement is an arrangement of hyperplanes in the real vector space Hg
associated to the homology group Hz := H;(I", Z) of the graph. Every edge of I"
naturally induces a functional on Hp, and the zero locus of this functional is a
hyperplane in Hg, provided the functional is nonzero. The cographic arrangement
is defined to be the collection of all hyperplanes constructed in this manner. The
intersections of these hyperplanes define a fan @%, the cographic fan. The toric
face ring associated to this fan is R(I").

We study the fan 9«7# in Section 3. The main result of that section is Corollary 3.9,
which provides two alternative descriptions of @# First, using a theorem of Amini,
we prove that 9'*% is equal to the normal fan of the Voronoi polytope Vorr. As a
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consequence, we can conclude that @%, considered as a poset, is isomorphic to the
poset of faces of Vorr ordered by reverse inclusion. Using work of Greene and
Zaslavsky, we show that this common poset is also isomorphic to the poset 0% of
totally cyclic orientations.

The combinatorial definition of R(I") does not appear in [Casalaina-Martin et al.
2011]. Rather, the rings in that paper appear as invariants under a torus action.
The following theorem, proven in Section 6 (Theorem 6.1), shows that the rings in
[Casalaina-Martin et al. 2011] are (completed) cographic rings:

Theorem A. Let I be a finite graph with vertices V (I'), oriented edges E(F), and
source and target maps s,t . E(I') — V(I'). Let
k[U;, Uz :e € E(IN)]

Tr:i= [[ Gn and A():= Gels e cET)

veV(T)

If we make Tt act on A(T") by

AUz = Agz Ug)»_l

t(e)’
then the invariant subring A(T)'T is isomorphic to the cographic ring R(T").

The cographic ring R(I") has reasonable geometric properties. Specifically, in
Theorem 5.7, we prove that R(I") is

« of pure dimension b (I") = dimg H(T", R),
o Gorenstein,

e seminormal, and

 semi log canonical.

We also compute invariants of R(I") in terms of the combinatorics of I'. The
invariants we compute are

o a description of R(I") in terms of oriented subgraphs (Section 5B),
o the number of minimal primes in terms of orientations (Theorem 5.7(i)),
o the embedded dimension of R(I") in terms of circuits (Theorem 5.7(vi)), and

o the multiplicity of R(I") (Theorem 5.7(vii)).

Finally, it is natural to ask what information is lost in passing from I" to R(I"). An
answer to this question is given by Theorem 7.1, which states that R(I") determines I"
up to three-edge connectivization.

Combinatorially defined rings, such as the cographic toric face ring, have long
been used in the study of compactified Jacobians and, more generally, degenerate
abelian varieties (see, e.g., [Mumford 1972; Oda and Seshadri 1979; Faltings
and Chai 1990; Namikawa 1980; Alexeev and Nakamura 1999; Alexeev 2004]).
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In particular, the ring R(I") we study here is a special case of the rings Ry(c)
studied by Alexeev and Nakamura [1999, Theorem 3.17]. There the rings appear
naturally as a by-product of Mumford’s technique for degenerating an abelian
variety. Alexeev and Nakamura [1999, Lemma 4.1] proved that Ry(c) satisfies the
Gorenstein condition, and the seminormality was established by Alexeev [2002].
In personal correspondence, Alexeev informed the authors that the techniques of
those papers can also be used to establish other results in this paper such as the fact
that R(I") is semi log canonical.

In a different direction, the cographic ring is defined by the cographic fan @#,
which is the normal fan to the Voronoi polytope Vorr. There is a body of work study-
ing similar polytopes and the algebra-geometric objects defined by these polytopes.
Altmann and Hille [1999] define the polytope of flows associated to an oriented graph
(or quiver). Associated to this polytope is a toric variety that they relate to a moduli
space. There are also a number of recent papers that study the modular/integral flow
polytope in H{(I', R). This study is motivated by the work of Beck and Zaslavsky
[2006] on interpreting graph polynomials in terms of lattice points. Some recent
papers on this topic are [Beck and Zaslavsky 2006; Breuer and Dall 2010; Breuer and
Sanyal 2012; Chen 2010]. The paper [Breuer and Dall 2010], in particular, studies
graph polynomials using tools from commutative algebra. The Voronoi polytope
does not equal the modular/integral flow polytope or the polytope of flows of an ori-
ented graph. It would, however, be interesting to further explore the relation between
these polytopes. (We thank the anonymous referee for pointing out this literature.)

This paper suggests several other questions for further study. First, in Section 5A,
we exhibit a collection of generators V,,, indexed by oriented circuits y, for
R(I'\ T, ¢). What is an explicit set of generators for the ideal of relations between
the variables V), ? This problem is posed as Problem 5.5. Second, in Theorem 5.7,
we give a formula for the multiplicity of R(I") in terms of the subdiagram volume
of certain semigroups associated to I". Problem 5.8 is to find an expression for this
multiplicity in terms of well-known graph theory invariants. Third, we also prove in
Theorem 5.7 that Spec(R(I")) is semi log canonical. In Problem 5.9, we ask: which
graphs I' have the stronger property that R(I") is semi divisorial log canonical?

1. Preliminaries

In this section, we review the definitions of the graph-theoretic objects considered
in this paper. This will provide the reader with enough background to follow the
main ideas of the proof of Theorem A (proven in Section 6) as well as the proofs
of many of the geometric properties of cographic rings (proven in Section 4).

1A. Notatlon Followmg notatlon of Serre [1980 §2.1], a graph I" will consist
of the data (E =V, E-S E) where V and E are sets, ¢ is a fixed-point free
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involution, and s and ¢ are maps satisfying s(¢) = 7(¢(€)) for all € € E. The maps
s and t are called the source and target maps, respectively. We call V =: V(I")
the set of vertices. We call E =: E (") the set of oriented edges. We define the set
of (unoriented) edges to be E(I') = E := E/L. An orientation of an edge e € E
is a representative for e in E ; we use the notation ¢ and e for the two possible
orientations of e. An orientation of a graph T is a section ¢ : E — E of the quotient
map. An oriented graph consists of a pair (I', ¢) where I' is a graph and ¢ is an
orientation. Given an oriented graph, we say that ¢ (e) is the positive orientation of
the edge e. Given a subset S C E, we define S C E to be the set of all orientations
of the edges in S.

1B. Homology of a graph. leen aring A, let Co(I", A) = CO(F A) be the free
A-module with basis V (I") and C1 (I, A) be the A-module generated by E (I') with
the relations e = —eé for every e € E(I"). If we fix an orientation, then a basis for
C 1(I", A) is given by the positively oriented edges; this induces an isomorphism
with the usual group of 1-chains of the simplicial complex associated to I". These
modules may be put into a chain complex. Define a boundary map 9 by

a: 61(F, A) — éo(F, A)=Cy(, A), er>t(e)—s(e).

We will denote by H,(I", A) the groups obtained from the homology of 6’.(I‘, A).
The homology groups H,(I", A) coincide with the homology groups of the topolog-
ical space associated to I.

1C. The bilinear form. The vector space C 1(I', R) is endowed with a positive
definite bilinear form

(-,):Ci(M,R)®Cy(T, R) — R

that is uniquely determined by (2, ) = 1, (¢,¢) = —1, and (¢, f) = 0 if f #&, .
As above, fixing an orientation induces a basis for C 1(I', R), and in terms of such a
basis, this is the standard inner product. By restriction, we get a positive definite
bilinear form on H{(I', R) C C 1(I', R). The pairing (-, -) allows us to form the
product (e, v) of an oriented edge ¢ with a vector v € C 1(I", R) but not the product
(e, v) of v with an unoriented vector. However, we will write (e, v) = 0 to mean
(e, v) = 0 for one (equivalently all) orientations of e.

1D. Cographic arrangement. We review the definition of the cographic arrange-
ment %# of I' [Greene and Zaslavsky 1983, §8; Novik et al. 2002, §5].! To begin,

IThe name “cographic arrangement” suggests the fact that <€J- depends on the cographic matroid
associated to I". The notation <61J: is used in [Novik et al. 2002] while in [Greene and Zaslavsky
1983] the cographic arrangement is denoted by 9¢-[T']. There is a dual notion, namely that of the
graphic arrangement, which depends only on the graphic matroid associated to I" and is denoted by
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let 7€ be the coordinate hyperplane arrangement in C 1(I', R). More precisely,

# =) lveCiT.R): (v,e) =0}.
ecE
The restriction of this hyperplane arrangement to H;(I", R) is called the cographic
arrangement %% More precisely,

¢ = |J weCmR): (@ e)=0)
eckE
H (I, R)Zker(- ,e)

The cographic arrangement partitions H; (I", R) into a finite collection of strongly
convex rational polyhedral cones. These cones, together with their faces, form a
(complete) fan that is defined to be the cographic fan and is denoted @#.2 We give
a more detailed enumeration of the cones of this fan in Section 3, where we discuss
the poset of totally cyclic orientations.

Remark 1.1. The following observation used in the proof of Theorem A is proven
in Corollary 3.4. We emphasize it here so that the reader may follow the proof of
Theorem A having read just Section 1. Letc =), .pa.e andc' =), pa.e be
cycles in Hi (I, 7). Then c and ¢’ lie in a common cone of @% if and only if, for all
e € E, a,a, > 0. In words, two cycles lie in a common cone if and only if every
common edge is oriented in the same direction.

1E. Toric face rings. We recall the definition of a toric face ring associated to
a fan. In [Ichim and Romer 2007, §2; Bruns et al. 2008, §2], the authors define
more generally the toric face ring associated to a monoidal complex. The following
definition is a special case:

Definition 1.2. Let Hy be a free Z-module of finite rank, and let % be a fan of
(strongly convex rational polyhedral) cones in Hg = Hz ®7z R with support Supp Z.
The toric face ring Ry (%) is the k-algebra whose underlying k-vector space has
basis {X¢ : ¢ € Hz N Supp &} and whose multiplication is defined by

xe . x¢ — Xt ife, ¢’ € o for some o € F, (11
0 otherwise.

We will write R(%) if we do not need to specify the base field k.

Remark 1.3. It follows from the definition that R(%) is a reduced ring finitely
generated over k. See also Section 5, especially (5-4), for more on generators and
relations.

%r in [Novik et al. 2002] and #[I'] in [Greene and Zaslavsky 1983, §7]. The graphic arrangement of
hyperplanes is also studied in [Orlik and Terao 1992, §2.4], where it is denoted by s4(I").

2We use the notation @% and the name “cographic fan” in order to be consistent with the nota-
tion (@% used in [Novik et al. 2002] for the cographic arrangement of hyperplanes.
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A cographic toric face ring is the toric face ring associated to a cographic fan.

Definition 1.4. Let " be a finite graph. The cographic toric face ring Ry (") is the
toric face k-ring R(?ﬁf:) associated to the cographic fan @1{ We will write R(I") if
we do not need to specify the base field k.

1F. The Voronoi polytope. Following [Bacher et al. 1997], we define the Voronoi
polytope of I by

Vorr :={ve Hi(I', R) : (v,v) < (v—A,v—A) forall A € H|(T", Z)}.

The reader familiar with the Voronoi decomposition of R" will recognize this
polytope as the unique cell containing the origin in the Voronoi decomposition
associated with the lattice H(I', Z) endowed with the scalar product defined in
Section 1C (see [Erdahl 1999; Alexeev 2004, §2.5] for more details).

To the Voronoi polytope, we can associate its normal fan N(Vorr), which is
defined as follows. Given a face § of Vorr, we define the (strongly convex rational
polyhedral) cone Cs by

Cs={aec H(,R): (a,r) > (a, r") for all r € § and r’ € Vorr}.
The normal fan N'(Vorr) of Vorr is the fan whose cones are the cones Cs.

Remark 1.5. In Proposition 3.8, we will prove that the cographic fan %% is equal
to the normal fan of the Voronoi polytope N (Vorr).

2. Totally cyclic orientations

Here we define and study totally cyclic orientations of a graph. We also define
an oriented circuit on a graph and describe the relation between these circuits and
totally cyclic orientations.

2A. Subgraphs. In this subsection, we introduce some special subgraphs that will
play an important role throughout the paper.

Given a graph I' and a collection S C E(I') of edges, we define I \ S to be
the graph, called a spanning subgraph (see, e.g., [Oda and Seshadri 1979, §4]),
obtained from I by removing the edges in S and leaving the vertices unmodified.
In other words, I' \ § consists of the data

(EM\S 2 V,EM)\ 55 EMD)\ 9.

Of particular significance is the special case where S = {e} consists of a single
edge. If I" \ {e} has more connected components than I', then we say that e is a
separating edge. The set of all separating edges is written E (I")sep.
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Given a chain ¢ € C| (I', R), we would like to refer to the underlying graph having
only those edges in the support of ¢. More precisely, given ¢ € 6‘1 (I, R), let Supp(c)
denote the set of all edges e with the property that (e, ¢) Z0. We define I'. to be the
subgraph of I" with V(I".) := V(I') and E(I".) := Supp(c). There is a distinguished
orientation ¢, of I', given by setting ¢.(e) equal to ¢ if (¢, ¢) > 0 and to e otherwise.
Using this subgraph, we can write ¢ as

c= ) me(@pele) 1)

eeSupp(c)
with all m.(e) > 0. Indeed, we have m.(e) = (¢.(e), ¢).

2B. Totally cyclic orientations and oriented circuits. Totally cyclic orientations
will play a dominant role in what follows. We are going to review their definition
and their basic properties.

Definition 2.1. If I is connected, then we say that an orientation ¢ of I is fotally
cyclic if there does not exist a nonempty proper subset W C V (I") such that every
edge e between a vertex in W and a vertex in the complement V (I') \ W is oriented
from W to V \ W (i.e., the source of ¢ (e) lies in W and the target of ¢ (e) lies
in V(I')\ W). If T is disconnected, then we say that an orientation of I" is totally
cyclic if the orientation induced on each connected component of I is totally cyclic.

Observe that if I' is a graph with no edges, then the empty orientation of I
is a totally cyclic orientation. Totally cyclic orientations are closely related to
oriented circuits. Recall that a graph A is called cyclic if it is connected, free from
separating edges, and satisfies b1 (A) = 1. A cyclic graph together with a totally
cyclic orientation is called an oriented circuit. A cyclic graph admits exactly two
totally c_y)clic orientations.

Let Cir(I') der&)te the set of all oriented circuits on I'; that is, y = (A, ¢a)
is an element of Cir(I") if A is a cyclic subgraph of I" and ¢ E) a totally cyclic
orientation of A. We call E(A) the support of y = (A, ¢pa) € Cir(I"). There is a
natural map

pr s
Cir(I') - H{(T", A),
y=(,¢0) > Iyl= ) ¢ale.

ecE(A)
—
With respect to the orientation ¢ of I', we can consider Cirg (I') C Cir(I"), the
subset that consists of oriented circuits on I" of the form (A, ¢|A) (i.e., oriented
circuits whose orientation is compatible with ¢).

Remark 2.2. The oriented circuits on I', i.e., the elements of (ﬁ)r(F), are the
(signed) cocircuits of the cographic oriented matroid M*(I") of I or, equivalently,
the (signed) circuits of the oriented graphic matroid M (I") of I" [Bjorner et al. 1999,
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§1.1]. Many of the combinatorial results that follow can be naturally stated using
this language. We will limit ourselves to pointing out the connection with the theory
when relevant.

The next lemma clarifies the relationship between totally cyclic orientations
and compatibly oriented circuits. Recall that an oriented path from w € V(I") to
v € V(I') is a collection of oriented edges {1, ..., e} C E(T) such that s(¢;) = w,
t(¢;)=s(¢jr1) foranyi=1,...,r —1,and t(¢,) = v. If ¢ is an orientation of T,
a path compatibly oriented with respect to ¢ is an oriented path as before of the

form {¢p(e1), ..., p(er)}.

Lemma 2.3. Let I" be a graph.
(1) The graph I" admits a totally cyclic orientation if and only if E(I")sep = <.
(2) Fix an orientation ¢ on I". The following conditions are equivalent:

(a) The orientation is totally cyclic.

(b) For any distinct v, w € V(I") belonging to the same connected component
of I', there exists a path compatibly oriented with respect to ¢ from w to v.

(c) The cycles [y] associated to the y € Cirg(I') generate H\(I', Z), and
E()gep = 2.

(d) Every edge e € E is contained in the support of a compatibly oriented
circuit y € Cirg(I).

Proof. For part (1), see, e.g., [Caporaso and Viviani 2010, Lemma 2.4.3(1)] and
the references therein. Part (2) is a reformulation of [Caporaso and Viviani 2010,
Lemma 2.4.3(2)]. The only difference is that part (2) is proved in [loc. cit.] under the
additional hypothesis that E(I")sep = &. Note, however, that each of the conditions
(a), (b), and (d) imply that E(I")sep = <; hence, we deduce part (2) as stated above.

[l

The following well-known lemma can be thought of as a modification of (c) above.
We no longer require that the oriented circuits on I' be oriented compatibly. The
statement is essentially that any cycle ¢ in H|(I", Z) is a positive linear combination
of cycles associated to circuits supported on c.

Lemma 2.4. Let I" be a graph, and let ¢ € G (I, Z). Then c € H| (I, Z) if and only
if ¢ can be expressed as

c= Y nly] (2-2)

y€Cirg,. (')
for some natural numbers n.(y) € N.

Proof. A direct proof follows from the definitions and is left to the reader. Alterna-
tively, one can use the fact that a covector of an oriented matroid can be written as



1790 Sebastian Casalaina-Martin, Jesse Leo Kass and Filippo Viviani

a composition of cocircuits conformal to it [Bjorner et al. 1999, Proposition 3.7.2]
together with Remark 2.2. O

The oriented circuits can be used to define a simplicial complex that will be used
in Section 5B.

Definition 2.5. Two oriented circuits y = (A, ¢) and y' = (A’, ¢') are said to be
concordant, written y < y’, if for any e € E(A) N E(A’) we have ¢ (e) = ¢'(e).
We write y % y’ if y and y’ are not concordant.

Definition 2.6. The simplicial complex of concordant circuits A((E)r(F)) is defined
to be the (abstract) simplicial complex whose elements are collections o € Cir(I")
of oriented circuits on I with the property that any two circuits are concordant (i.e.,
if y1, 2 € 0, then y; < ).

2C. The poset OPr of totally cyclic orientations. Totally cyclic orientations natu-
rally form a poset. We recall the definition for the sake of completeness.

Definition 2.7 [Caporaso and Viviani 2010, Definition 5.2.1]. The poset 0% of
totally cyclic orientations of I' is the set of pairs (7', ¢) where T C E(I') and
¢ E('\T)— E (I'\ T) is a totally cyclic orientation of I' \ T,> endowed with
the partial order

(T",¢") <(T,¢) < I'\T'CIT'\T and ¢' =@|gr\1).
We call T the support of the pair (T, ¢).
Using Lemma 2.3(2)(d), we get that

(T',¢') < (T, $) <= City("\ T") C Ciry (T \ T). (2-3)

The set Ciry (I"\T') is a collection of concordant cycles. Another connection between
orientations and totally cyclic orientations is given by the following definition:

Definition 2.8. Let o € A((S)r(f‘)) be a collection of concordant circuits. To o we
associate the pair (75, ¢o) € 0P, which is defined as follows. Set T, equal to the
set of all edges that are not contained in a circuit y € o. The orientation ¢, of
"'\ 7, is defined by setting

e if(e,[y])>0forall y €o,

¢o(€) == {é_ if (‘e" [y]) >0forall y €o.

Observe that the orientation ¢, on I' \ 7, is a totally cyclic orientation by
Lemma 2.3(2)(d) and that o C Cirg, (I' \ 7). The following lemma, whose proof
is left to the reader, will be useful in the sequel:

3The choice of orientation on the complement of T, rather than on 7 itself, has to do with the
importance of the notion of spanning subgraphs of I', all of which are of this form. In graph theory, it
is customary to denote spanning subgraphs in this way, so we follow that convention.
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Lemma 2.9. The maximal elements of the poset OPr are given by (E(I")sep, ¢)
as ¢ varies among the totally cyclic orientations of I' \ E(I")sep. (I

Remark 2.10. The poset 0% of totally cyclic orientations is isomorphic to the
poset of covectors of the cographic oriented matroid M*(I") of I [Bjorner et al.
1999, §3.7]. Equivalently, the poset obtained from 0% by adding an element 1 and
declaring that 1 > (T, ¢) for any (T, ¢) € O%r is isomorphic to the big face lattice
Fpig(M™*(I")) of the cographic oriented matroid M*(I") [Bjorner et al. 1999, §4.1].

3. Comparing posets: the cographic arrangement, the Voronoi polytope, and
totally cyclic orientations

In this section, we prove that the poset 0% of totally cyclic orientations of I" is
isomorphic to the poset of cones (ordered by inclusion) of the cographic fan %%,
which we also show is the normal fan of the Voronoi polytope Vorr of I'.

3A. Cographic arrangement. Let us start by describing the cographic arrangement
(61% associated to I' in the language of totally cyclic orientations.
For every edge e € E(I"), we can consider the linear subspace of H| (', R)

{(-,e)=0}:={ve Hi(T,R) : (v, e) =0}.

This subspace is a proper subspace (i.e., a hyperplane) precisely when e is not a
separating edge, and the collection of all such hyperplanes is defined to be the
cographic arrangement. Similarly, for any oriented edge ¢ € E(I"), we set

{(-,)>0}:={ve H(T,R): (v,e) > 0}.

As mentioned, the elements of the cographic arrangement partition H;(I", R)
into a finite collection of rational polyhedral cones. These cones, together with their
faces, form the cographic fan 971% We can enumerate these cones and make their
relation to totally cyclic orientations more explicit by introducing some notation.

Given a collection T of edges and an orientation ¢ of I' \ 7' (not necessarily
totally cyclic), we define (possibly empty) cones o (T, ¢) and 6°(T, ¢) by

(T, ¢) = [{(-. @) = 01N [){(-.e) =0}, (3-1)
e¢T eeT

o°(T. ¢) = [{(-. 6(e) > 01N [){(-.e) =0} (3-2)
e¢T eeT

The cone o°(T, ¢) is a subcone of o (T, ¢), and it is the relative interior of
o (T, ¢) provided 6°(T, ¢) is nonempty. The cone o (T, ¢) is an element of the
cographic fan, and every cone in the fan can be written in this form. While every
element of %# can be written as o (T, ¢), the pair (T, ¢) is not uniquely determined
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by the cone. The pair (T, ¢) is, however, uniquely determined if we further require
that (7', ) € O0Pr. This fact is proven in the following proposition, which is
essentially a restatement of some results of Greene and Zaslavsky [1983, §8]:

Proposition 3.1. (i) Every cone o € %% can be written as 0 = o (T, ¢) for a
unique element (T, ¢) € OPr.

(i1) For any (T, ¢) € OPr, the linear span of o (T, @) is equal to

(o(T,¢)) = ﬂ{(-,e)ZO}ZHl(F\T, R)

ecT

and has dimension b1 (I'\ T).

(iii) For any (T, ¢) € OPr, the extremal rays of o (T, ¢) are the rays generated by
the elements [y ] for y € Cirg ('\ T).

Proof. Part (i) follows from [Greene and Zaslavsky 1983, Lemma 8.2]. Note that
in [ibid.] the authors assume that E(I")s, = &. However, it is easily checked that
the inclusion map I' \ E(I")sep € I' induces natural isomorphisms 9?1%\ E(M)sep =% #
and 0P\ E(T)sep = O0%r. Therefore, the general case follows from the special case
treated in [ibid.].

Let us now prove part (ii). The linear subspace ﬂeeT{( ,e)=0C H((,R)is
generated by all the cycles of I" that do not contain edges e € T in their support and
is therefore equal to H;(I" \ 7', R), which has dimension equal to b;(I" \ 7). Now,
to complete the proof, let us establish that (o (T, ¢)) =), {(-, €) = 0}. First, if
o(T,¢) =09,ie.,if o(T, p) ={0}, then b1(I' \ T) = 0 by Lemma 2.3(2)(d). But
then (,.7{(-,e) =0} = H;(I'\ T, R) =0, and we are done. On the other hand,
if o(T, ¢)° # &, then 0°(T, ¢) is the relative interior of o (T, ¢), and hence, the
linear span of o (T, ¢) is equal to ﬂeeT{( -,e) =0}.

Finally, let us prove part (iii). From [Greene and Zaslavsky 1983, Lemma 8.5],
it follows that the extremal rays of o (T, ¢) are among the rays generated by
the elements [y] for y € Cirg(I' \ T). We conclude by showing that for any
y € Cirg (I'\ T'), the ray generated by [y] is extremal for o (T, ¢). By contradiction,
suppose that we can write

V= > myly] (3-3)
y'€Cirg (T\T)
y'#Y
for some m, € R>o. Consider a cycle yp € Ciry(I'\ T) \ {y} such that m,, > 0
(which clearly exists since [y] # 0). Since y and yp are concordant and distinct,
there should exist an edge e € E(yp) \ E(y). Now returning to the expression (3-3),
on the left-hand side, neither the oriented edge € nor e can appear. On the other hand,
on the right-hand side, the oriented edge ¢ (e) appears with positive multiplicity
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because it appears with multiplicity m,, > 0 in m,,[yo] and all the oriented circuits
appearing in the summation are concordant. This is a contradiction. (I

Corollary 3.2. The association

(T,¢) = o(T, )

defines an isomorphism between the poset of 0Pr and the poset of cones of @%
ordered by inclusion.* In particular, the number of connected components of the
complement of ‘6% in Hi (', R) is equal to the number of totally cyclic orientations
on '\ E(I)gep.

Proof. According to Proposition 3.1(i), the map in the statement is bijective. We
have to show that

o(T,$) So(T',¢) <= (T,¢) <(T",¢".

The implication <= is clear by the definition (3-1) of o (T, ¢).

Conversely, assume that o (T, ¢) C o(T’,¢’). There is nothing to show if
o (T, ¢) = {0} is the origin. Otherwise, by Proposition 3.1(ii), the relative interior
o°(T, ¢) of o (T, ¢) is nonempty, so pick c € 0°(T, ¢). By formula (3-2), for every
e ¢ T, we have that (¢, ¢ (e)) > 0. Since c € o (T, ¢’), by definition (3-1), we must
have e ¢ T’ and ¢'(¢) = ¢(e). This shows that T O T’ and that ¢{“\T = ¢ or in
other words that (T, ¢) < (T', ¢').

The last assertion follows from the first one using the fact that the connected
components of the complement of %% in H(I', R) are the maximal cones in 9?1%
and Lemma 2.9. O

Remark 3.3. The last assertion of Corollary 3.2 is due to Green and Zaslavsky
[1983, Lemma 8.1]. Moreover, Greene and Zaslavsky [1983, Theorem 8.1] give a
formula for the number of totally cyclic orientations of a graph free from separating
edges.

The following well-known result plays a crucial role in the proof of Theorem 6.1:

Corollary 3.4. Let
c= ZaeE and ¢ = Zaéz
ecE ecE

be cycles in H| (I, Z). Then there is a cone of OJFIJ: containing ¢ and ¢’ if and only if
foralle € E, a,a, > 0.

Proof. From Proposition 3.1(i), it follows that ¢ and ¢’ belong to the same cone
of @# if and only if there exists (T, ¢) € 0% such that ¢, ¢’ € o (T, ¢). We conclude
by looking at the explicit description (3-1). ]

4Note that the poset of cones of @lé is anti-isomorphic to the face poset 2(%%) of the arrangement
%# [Orlik and Terao 1992, Definition 2.18].
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Remark 3.5. Corollary 3.2 together with Remark 2.10 imply that the cographic ori-
ented matroid M*(T") is represented by the cographic hyperplane arrangement (61% in
the sense of [Bjorner et al. 1999, §1.2(c)]. Using this, Corollary 3.4 is a restatement
of the fact that two elements of H;(I', Z) belong to the same cone of 9?# if and
only if their associated covectors are conformal [Bjorner et al. 1999, §3.7].

3B. Voronoi polytope. The following description of the faces of Vorr is a restate-
ment, in our notation, of a result of Omid Amini [Amini 2010], which gives a
positive answer to a conjecture of Caporaso and Viviani [2010, Conjecture 5.2.8(1)]:

Proposition 3.6 (Amini). (i) Every face of the Voronoi polytope Vorr is of the form

F(T,¢) :={v e Vorr : (v, [y]) = 5(y]. [y]) forany y € Cirg(T\ T)}  (3-4)
for some uniquely determined element (T, ¢) € OPr.
(ii) For any (T, ¢) € O%r, the dimension of the affine span of F (T, ¢) is equal to
bi(T(T)) =b:1(I') =i (I'\T).
(iii) Forany (T, ¢) € OPr, the codimension-1 faces of Vorr containing F (T, ¢) are
exactly those of the form F (S, V), where (S, ¥) < (T, ¢) and b1 (I' \ S) = 1.
Proof. Part (i) follows by combining [Amini 2010, Theorem 1, Lemma 7]. Part (ii)

follows from the remark after [Amini 2010, Lemma 10]. Part (iii) follows from
[Amini 2010, Lemma 7]. (]

Corollary 3.7 (Amini). The association

(T, ¢9)— F(T, )

defines an isomorphism of posets between the poset 0P and the poset of faces
of Vorr ordered by reverse inclusion. In particular, the number of vertices of Vorp
is equal to the number of totally cyclic orientations on I' \ E(I")sep.

Proof. The first statement is a reformulation of [Amini 2010, Theorem 1]. The last
assertion follows from the first one together with Lemma 2.9. ([

We now show that the cographic fan %# is the normal fan N'(Vorr) of the Voronoi
polytope Vorr. The cones of the normal fan, ordered by inclusion, form a poset that
is clearly isomorphic to the poset of faces of Vorr, ordered by reverse inclusion.

Proposition 3.8. The cographic fan %IJ: is equal to N (Vorr), the normal fan of the
Voronoi polytope Vorr.

Proof. By Propositions 3.1 and 3.6, it is enough to show that, for any (7, ¢) € O%r,
the normal cone in N'(Vorr) to the face F(T, ¢) C Vorr is equal to o (T, ¢). Fix
a face F (T, ¢) of Vorr for some (T, ¢) € OPr. If (T, ¢) is equal to the minimal
element 0 = (E(I")sep, @) of the poset O%r, then F(0) = Vorr and its normal cone
is equal to the origin in H; (", R), which is equal to o (0).
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Suppose now that b1 (I" \ T) > 1. Denote by {(S;, ¥;)} all the elements of 0P
such that (S;, ¥;) < (T, ¢) and by(I' \ S;) = 1. Let y; be the unique oriented
circuit of I' such that Ciry, (I' \ S;) = {y;}. According to Proposition 3.6(iii),
the codimension-1 faces of Vorp containing F(T, ¢) are exactly those of the
form F(S;, ¥;). Therefore, the normal cone of F (T, ¢) is the cone whose extremal
rays are the normal cones to the faces F(S;, ¥;), which, using (3-4), are equal
to o (S;, ¥i) = R>¢ - [y:]. By Proposition 3.1(iii), the cone whose extremal rays are
given by Rx¢ - [y;] is equal to o (T, ¢), which completes the proof. U

Combining Corollaries 3.2 and 3.7 and Proposition 3.8, we get the following
incarnations of the poset 0%y of totally cyclic orientations:

Corollary 3.9. The following posets are isomorphic:

(1) the poset OPr of totally cyclic orientations,
(2) the poset of faces of the Voronoi polytope Vorr, ordered by reverse inclusion,
(3) the poset of cones in the normal fan N (Vorr), ordered by inclusion, and

(4) the poset of cones in the cographic fan 9?%, ordered by inclusion.

Remark 3.10. Corollary 3.9 together with Remark 2.10 imply that the cographic
oriented matroid M*(T") is represented by the Voronoi polytope Vorr (which is a
zonotope; see, e.g., [Erdahl 1999]) in the sense of [Bjorner et al. 1999, §2.2].

4. Geometry of toric face rings

Let Hz be a free Z-module of finite rank b, and let & be a fan of (strongly convex
rational polyhedral) cones in Hgx = Hz ®z R. The aim of this section is to study
the toric face ring R(%) = Ry (%) associated to ¥ as in Definition 1.2. We will pay
special attention to fans % that are complete, i.e., such that every x € Hp is contained
in some cone o € %, or polytopal, i.e., the normal fans of rational polytopes in Hf;.
Note that a polytopal fan is complete, but the converse is false if b > 3 (see [Oda 1988,
p. 84] for an example). In the subsequent sections, we will apply the results of this
section to the cographic fan @% of a graph I', which is polytopal by Proposition 3.8.

Note that the fan % is naturally a poset: given o, o’ € ¥, we say that 0 > o if
o D o’. The poset (%, >) has some nice properties, which we now describe. Recall
the following standard concepts from poset theory. A (finite) poset (P, <) is called
a meet-semilattice if every two elements x, y € P have a meet (i.e., an element,
denoted by x A y, that is uniquely characterized by conditions x Ay < x, y and,
if z € P is such that z < x, y, then z < x A y). In a meet-semilattice, every finite
subset of elements {x{, ..., x,} C P admits a meet, denoted by x; A--- Ax,. A
meet-semilattice is called bounded (from below) if it has a minimum element 0. A
bounded meet-semilattice is called graded if, for every element x € P, all maximal
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chains from 0 to x have the same length. If this is the case, we define a function,
called the rank function, p : P — N by setting p(x) equal to the length of any
maximal chain from 0 to x. A graded meet-semilattice is said to be pure if all the
maximal elements have the same rank, and this maximal rank is called the rank of
the poset and is denoted by rk P. A graded meet-semilattice is said to be generated
in maximal rank if every element of P can be obtained as the meet of a subset
consisting of maximal elements.

Having made these preliminary remarks, we now collect some of the properties
of the poset (%, >) that we will need later.

Lemma 4.1. The poset (¥, >) has the following properties:

(1) (%, >) is a meet-semilattice, where the meet of two cones is equal to their
intersection.

(11) (%, =) is bounded with minimum element O given by the zero cone {0}.

(ii1) (%, =) is a graded semilattice with rank function given by p(c) :=dimo.
(v) If F is complete, then (¥, >) is pure of rank tk F = b.

) If F is complete, then (¥, >) is generated in maximal rank. O

We will denote by F .« the subset of & consisting of the maximal cones of F.

4A. Descriptions of R(¥) as an inverse limit and as a quotient. In this subsection,
we give two descriptions of the toric face ring R(%F).

The first description of R(%) is as an inverse limit of affine semigroup rings. For
any cone o € ¥, consider the semigroup

C(o):=0NHz C Hy, 4-1)

which, according to Gordan’s lemma (e.g., [Bruns and Herzog 1993, Proposition
6.1.2]), is a positive normal affine semigroup, i.e., a finitely generated semigroup iso-
morphic to a subsemigroup of Z¢ for some d € N such that 0 is the unique invertible
element and such that if m - z € C (o) for some m € N and z € Z¢ then z € C(0).

Definition 4.2. We define R (o) := k[C(0)] to be the affine semigroup ring asso-
ciated to C (o) (in the sense of [Bruns and Herzog 1993, §6.1]), i.e., the k-algebra
whose underlying vector space has basis {X“ : ¢ € C (o)} and whose multiplication
is defined by X¢ - X¢ := X°t<'. We will write R(c) if we do not need to specify
the base field k. If &, is the fan induced by o (consisting of the cones in % that
are faces of o), then clearly R(0) = R(%F5).

The following properties are well-known.

Lemma 4.3. R(o0) is a normal, Cohen—Macaulay domain of dimension equal to
dimo.
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Proof. By definition, we have R(c) C k[Hz] = k[xlil, .. .,x;tl]; hence, R(o)
is a domain. R(o) is normal by [Bruns and Herzog 1993, Theorem 6.1.4] and
Cohen—Macaulay by a theorem of Hochster [loc. cit., Theorem 6.3.5(a)]. Finally, it
follows easily from [loc. cit., Proposition 6.1.1] that the (Krull) dimension of R(o)
is equal to dimo. O

Given two elements o, ¢’ € ¥ such that ¢ > ¢, or equivalently such that o D o/,
there exists a natural projection map between the corresponding affine semigroup
rings of Definition 4.2
X¢ ifceo’ Co,

0 ifceo\o’.

With respect to these maps, the set {R(c0) : 0 € &} forms an inverse system of rings.
From [Bruns et al. 2008, Proposition 2.2], we deduce the following description of
R(%):

rojo' i R(0) = R(0"), X {

Proposition 4.4. Let & be a fan. We have an isomorphism
R(%F) = 1(31 R(0).
oeF

We denote by r, : R(¥) — R(0) the natural projection maps.

The second description of R(%) is as a quotient of a polynomial ring. For any
cone o € F, the semigroup C (o) = o N Hz has a unique minimal generating set,
called the Hilbert basis of C (o) and denoted by 7, [Miller and Sturmfels 2005,
Proposition 7.15]. Therefore, we have a surjection

Ty k[Vy:a € Hy]— R(o), V,r— X7, 4-2)
In the terminology of [Sturmfels 1996, Chapter 4], the kernel of 7,, which we
denote by I, is the foric ideal associated to the subset #,. In the terminology of
[Miller and Sturmfels 2005, Chapter I1.7], I, is the lattice ideal associated with the
kernel of the group homomorphism

Po 2% — Hz, u={ta}acs, —> ) Uac.
o€,

From [Sturmfels 1996, Lemma 4.1] (see also [Miller and Sturmfels 2005, Theorem
7.3]), we get that /,; is a binomial ideal with the explicit presentation

Iy = (V4= V¥:u,veN" c 7% with p,(u) = p, (v)), (4-3)

where, for any u = (ug)gey, € N we set V¥ := Hae%a Vi ek[Vy o€ ¥s].
If we set #g = oc5 Ho, then, from Definition 1.2, it follows that we have a
surjection
wg  k[Vy:a € Hgz] — R(F), V,— X“. (4-4)

We denote by /g the kernel of wg. In order to describe the ideal /g, we introduce the
abstract simplicial complex Ag on the vertex set #g whose faces are the collections
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of elements of #g that belong to the same cone of %. The minimal nonfaces of Ag
are formed by pairs {c, @'} of elements of ¥ such that « and &’ do not belong to
the same cone of %; hence, Ag is a flag complex [Stanley 1996, Chapter 111, §4].
Consider the Stanley—Reisner ring (or face ring)
k[Vy:a e #Hg]
(Vo Vo o, @'} ¢ Ag)
associated to the flag complex Ag (see [Stanley 1996, Chapter II] for an introduction
to Stanley—Reisner rings). Observe that if {«, «'} ¢ Ag, then X*1. X1¢1 = 0 by
Definition 1.2. This implies that the surjection 7 factors as
qo KVt € Hg] o Ve i@ EHT] o R
(VaVa’ . {0(7 Ol/} ¢ A@)

or in other words that (V,Vy : {a, @'} ¢ Ag) C I5.

Moreover, observe also that the surjection g of (4-4) is compatible with the
surjections 1, of (4-2) for every o € & in the sense that we have a commutative di-
agram

k[Ag] :=

K[V, : o € ¥s5] — R(F)

3

K[Vy:a€H,] - R(o)

where 6 is the surjective ring homomorphism given by sending V, — V, if
o €y C Hg and Vy — 0 if o € g \ ¥#,. Both the vertical surjections have
natural sections: the left map has a section s obtained by sending V,, +— V,, for
any o € #, C ¥, and the left map has a section obtained by sending X into
X¢ forany c € C(0) =0 N Hy C Hz. Therefore, we can regard I, as an ideal of
k[Vy : @ € #5] by extensions of scalars and, by the above commutative diagram,
we have that I, C Ig.

From [Bruns et al. 2008, Propositions 2.3 and 2.6], we get the following descrip-
tion of the ideal Ig:

Proposition 4.5. Let & be a fan. The kernel 15 of the map g of (4-4) is given by
Iy = VoV e, &V ¢ A) + Y Mo = (Vo Vi e, &V ¢ Ag)+ Y I,
oceF 0 €Fmax

where, as usual, Fn.x denotes the subset of F consisting of the maximal cones.

4B. Prime ideals of R(%). We now want to describe the prime ideals of the ring
R(%). Observe that, from the Definition 1.2, it follows that R(%) has a natural
7> = Hy-grading.

Recall the following notions for a Z"-graded ring R (see, e.g., [Uliczka 2009]). A
graded ideal is an ideal I of R with the property that for any x € I all homogenous
components of x belong to I as well; this is equivalent to I being generated by
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homogenous elements. For any ideal I of R, the graded core I* of I is defined as
the ideal generated by all homogenous elements of /. It is the largest graded ideal
contained in /. If p is a prime ideal of R, then p* is a prime ideal [Uliczka 2009,
Lemma 1.13i)].
For any o € ¥, the kernel of the natural projection map r, : R(%¥) — R(o), which
is explicitly equal to
po =({X:c¢ o}, (4-6)

is graded since it is generated by homogeneous elements and is prime by Lemma 4.3.
From [Ichim and Rémer 2007, Lemma 2.1], we deduce the following description
of the graded ideals of R(%):

Proposition 4.6. The assignment o — p, gives an isomorphism between the poset
(%, =) and the poset of graded prime ideals of R(%F) ordered by reverse inclusion.
In particular, m = pjo) is the unique graded maximal ideal of R(F), which is also a
maximal ideal in the usual sense.

From Proposition 4.6, we can deduce a description of the minimal primes of R(%).

Corollary 4.7. The minimal primes of R(%) are the primes p, as o varies among
all the maximal cones of F. In particular, if F is complete, then R(%F) is of pure
dimension b.

Proof. Observe that if p is a minimal ideal of R(%F), then p* = p by the minimality
of p; hence, p is graded. Conversely, if p is a graded ideal of R(%) that is minimal
among the graded ideals of R(%), then p is also a minimal ideal of R(%): indeed,
if g C p, then g* = p by the minimality properties of p; hence, q = p.

It is now clear that the first assertion follows from Proposition 4.6. The last
assertion follows from the first one together with Lemmas 4.1(iv) and 4.3. U

Definition 4.8. The poset of strata of R(%), denoted by Str(R(F)), is the set of all
the ideals of R(%) that are sums of minimal primes with the order relation given
by reverse inclusion.

Geometrically, the poset Str(R(%)) is the collection of all scheme-theoretic
intersections of irreducible components of Spec R(%) ordered by inclusion.

Corollary 4.9. If & is complete, then the assignment o +— P, gives an isomorphism
between (%, >) and Str(R(%F)).

Proof. The statement will follow from Proposition 4.6 if we show that the ideals
that are sums of minimal primes of R(%) are exactly those of the form p, for some
o € #. Indeed, given minimal primes p,, fori =1, ..., n (see Corollary 4.7), we
have that ()/_, 0; = o for some o € F and, from (4-6), it follows that

D Po = (XC o ¢ ﬂa,-) = o (4-7)
i=1 i=1
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Conversely, every cone o € ¥ is the intersection of the maximal dimensional cones o;
containing it by Lemma 4.1(v). Therefore, (4-7) shows that p, € Str(R(%F)). U

4C. Gorenstein singularities. The aim of this subsection is to prove the following:

Theorem 4.10. If & is a polytopal fan, then R(%F) is a Gorenstein ring and its
canonical module wgg) is isomorphic to R(F) as a graded module.

Proof. This is a consequence of two results from [Ichim and Romer 2007]. The first
is Theorem 1.1, stating that a toric face ring R(%) is Cohen—Macaulay provided
that the fan & is shellable (see p. 252 of that paper for the definition). The second
is Theorem 1.4, stating that R(%) is Gorenstein and its canonical module wg ) is
isomorphic to R(%) as a graded module provided that R(%) is Cohen—Macaulay
and ¥ is Eulerian (see Definition 6.4 in the same paper).

Now it is enough to recall that a polytopal fan is Eulerian (see, e.g., [Stanley
1994, p. 302]) and shellable by the Bruggesser—-Manni theorem [Bruns and Herzog
1993, Theorem 5.2.14]. |

4D. The normalization. In this subsection, we prove that the toric face ring of any
fan is seminormal and we describe its normalization.

Recall that, given a reduced ring R with total quotient ring Q(R), the normaliza-
tion of R, denoted by R, is the integral closure of R inside Q(R). R is said to be
normal if R = R (see [Huneke and Swanson 2006, Definition 1.5.1], for example).
Moreover, we need the following:

Definition 4.11. Let R be a Mori ring, i.e., a reduced ring such that R is finite
over R. The seminormalization of R, denoted by * R, is the biggest subring of R
such that the induced pull-back map Spec(™ R) — Spec R is bijective with trivial
residue field extension. We say that R is seminormal if TR = R.

For the basic properties of seminormal rings, we refer to [Greco and Traverso
1980; Swan 1980]. Observe that R(%) is a Mori ring since it is reduced and finitely
generated over a field k (see Remark 1.3).

Theorem 4.12. Let & be any fan.

(i) The normalization of R(¥F) is equal to
R#F = [] R,
0 €Fmax

where Fax is the subset of & consisting of all the maximal cones of F.

(1) R(%) is a seminormal ring.
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Proof. Let us first prove part (i). By [Huneke and Swanson 2006, Corollary 2.1.13]
and Corollary 4.7, we get that the normalization of R(%) is equal to

R@= [] k.
0 €Fmax
We conclude by Lemma 4.3, which says that each domain R(o’) is normal.
Let us now prove part (ii). According to Proposition 4.4 and Lemma 4.3, the
ring R(%) is an inverse limit of normal domains. Then the seminormality of R(%F)
follows from [Swan 1980, Corollary 3.3]. (Il

4E. Semi log canonical singularities. In this subsection, we prove that Spec R (%)
has semi log canonical singularities provided that % is a polytopal fan.

We first recall the definitions of log canonical and semi log canonical pairs (see
[Kollar and Mori 1998] for log canonical pairs and [Abramovich et al. 1992; Fujino
2000] for semi log canonical pairs). For the relevance of slc singularities in the
theory of compactifications of moduli spaces, see [Kollar 2010].

Definition 4.13. Let X be an S, variety (i.e., such that the local ring Oy , of X at any
(schematic) point x € X has depth at least min{2, dim O ,}) of pure dimension n
over a field k and A be an effective @Q-Weil divisor on X such that Kx + A is
Q-Cartier.

(1) We say that the pair (X, A) is log canonical (or Ic for short) if

e X is smooth in codimension 1 (or equivalently X is normal) and
o there exists a log resolution f : Y — X of (X, A) such that

Ky Zf*(Kx-i-A)-i-ZaiEi,
i

where E; are divisors on Y and @; > —1 for every i.
We say that X is Ic if the pair (X, 0) is Ic, where O is the zero divisor.
(il) We say that the pair (X, A) is semi log canonical (or s/c for short) if

e X is nodal in codimension 1 (or equivalently, X is seminormal and Goren-
stein in codimension 1) and
e if u: X* — X is the normalization of X and © is the Q-Weil divisor on X
given by
Kxu+0 =pu*(Kx + A), 4-8)

then the pair (X*, ®) is lc.
We say that X is slc if the pair (X, 0) is slc, where O is the zero divisor.

Theorem 4.14. If F is a polytopal fan, then the variety Spec R(%F) is slc.
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Proof. Observe that Spec R(%) is Gorenstein by Theorem 4.10 and seminormal
by Theorem 4.12(ii); hence, in particular, it is $> and nodal in codimension 1
[Greco and Traverso 1980, §8]. Moreover, Spec R(%) is of pure dimension rk & by
Corollary 4.7. Consider now the normalization morphism (see Theorem 4.12(i))

u:Spec R(F) = ]_[ Spec R(o) — Spec R(%).

0 €Fmax

If we apply the formula (4-8) to the above morphism p and we use the fact
that A = 0 (by hypothesis) and Kx = 0 by Theorem 4.10, then we get that the
divisor @ restricted to each connected component Spec R(o) of the normalization
Spec ITQ?) is equal t0 —Kgpec r(o)- Therefore, from Definition 4.13(ii), we get that
Spec R(¥F) is slc if and only if the pair (Spec R(0), —Kspec r(0)) 18 lc for every
0 € Fmax- Therefore, we conclude using the fact that for any toric variety Z the
pair (Z, —K7z) is Ic [Fujino and Sato 2004, Proposition 2.10; Cox et al. 2011,
Corollary 11.4.25]. (]

4F. Embedded dimension. In this subsection, we compute the embedded dimen-
sion of R(%) at its unique graded maximal ideal m. In doing this, we also compute
the embedded dimension of the affine semigroup ring R (o) of Definition 4.2 at the
maximal ideal (X :c € C(o) \ {0}), which, by a slight abuse of notation, we also
denote by m.

Recall that given a maximal ideal m of a ring R with residue field k := R/m,
the embedded dimension of R at m is the dimension of the k-vector space m/m?.
Geometrically, the embedded dimension of R at m is the dimension of the Zariski
tangent space of Spec(R) at the point m € Spec(R).

Theorem 4.15. Let & be a fan.

(1) The embedded dimension of R(o) at m is equal to the cardinality of the Hilbert
basis ¥, (see Section 4A).

(i1) The embedded dimension of R(¥) at m is equal to the cardinality of Hg
(=Useg %o).

Proof. Consider the presentation (4-2) of the ring R(o’). Since the elements of the
Hilbert basis #, cannot be written in a nontrivial way as N-linear combinations of
elements in the semigroup C (o) [Miller and Sturmfels 2005, proof of Proposition
7.15], we get that the ideal I, = ker 7, satisfies

I, C n?, (4-9)

where n:=(V, :a € ¥#,) Ck[V, :a € #,]. Part (1) now follows from (4-2) and (4-9).
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In order to prove part (ii), consider the presentation (4-4) of the ring R(%F). It is
enough to prove that the ideal /5 = ker g satisfies

I5 C 02, (4-10)

where 0 := (Vy 1o € H5) Ck[Vy : @ € H5]. Consider the generators of /g given in
Proposition 4.5. Clearly the generators of the form V,, V,, (for {«, @'} ¢ Ag) belong
to 02. In order to deal with the other generators of I, consider the diagram (4-5).
As in the discussion that precedes Proposition 4.5, we view I, as included in I3
via the section s. By applying the section s to the inclusion (4-9) and using the
obvious inclusion s(n?) C 0%, we get the desired inclusion (4-10). O

4G. Multiplicity. In this subsection, we study the multiplicity e, (R(%F)) of R(%F)
at its unique graded maximal ideal m.

Recall (see, e.g., [Serre 1965, Chapter 1IB, Theorem 3]) that the Hilbert—Samuel
function

n — dim; R(%)/m"

is given, for large values of n € N, by a polynomial (called the Hilbert—Samuel
polynomial) that is denoted by P, (R(%); n). The degree of Py (R(%F); n) is equal
to dim R(%) [Serre 1965, Chapter 1IIB, Theorem 1]. We can therefore write

ppdim R(F) i R 1
I - — gy im R(%F)—
P (R(F); ) = em(R(F)) R +O0(n ),
where O (n') denotes a polynomial of degree less than or equal to ¢ and e (R (%))
is, by definition, the multiplicity of R(%) at m [Serre 1965, Chapter VA]. The
following result is a special case of [Matsumura 1989, Theorem 14.7]:

Theorem 4.16. If F is a fan of dimension d (i.e., such that the maximum of the
dimension of the cones in & is d) in R?, then R(¥) has dimension d and its
multiplicity is equal to

en(RF) = ) em(R(0)),
dimo=d
where m is the unique graded maximal ideal of the rings in question.
Proof. The theorem is the special case of [Matsumura 1989, Theorem 14.7], where

A = R(%) and q = m. Indeed, the rings R(o) are the localizations of R(%) at
minimal primes q satisfying dim R(¥)/q = d by Corollary 4.7. O

The above result reduces the computation of the multiplicity of R(%) at m (for a
complete fan &) to that of the affine semigroup rings R(o) at m for o a cone of &
of maximal dimension. These latter multiplicities can be computed geometrically
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Figure 1. A two-dimensional cone o whose associated semigroup
C (o) has Hilbert basis #, = {vy, vz, v3}. The shaded region is the
subdiagram part K_(C (o)) of C(0).

from the affine semigroup C (o) as we now explain following Gel fand, Kapranov,
and Zelevinsky [Gel'fand et al. 1994].

To that aim, we need to recall some definitions. Given a cone o € %, set
C(o)z := (o) N Hz and C(o)Rr := (o) N Hg. We denote by volc(,) the unique
translation-invariant measure on C (o )r such that the volume of a standard unimod-
ular simplex A (i.e., A is the convex hull of a basis of Hz together with 0) is 1.
Following [Gel'fand et al. 1994, p. 184], denote by K, (C (o)) the convex hull of
the set C (o) \ {0} and K_(C (o)) the closure of o \ K1 (C(0)). The set K_(C (o))
is a bounded (possibly not convex) lattice polyhedron in C (o) that is called the
subdiagram part of C (o).

Definition 4.17 [Gel'fand et al. 1994, Chapter 5, Definition 3.8]. The subdiagram
volume of C (o) is the natural number

u(C(0)) := volc(ey, (K_(C(0))).

The multiplicity of R(c) at m can be computed in terms of the subdiagram
volume of C (o) as asserted by the following result, whose proof can be found in
[Gel'fand et al. 1994, Chapter 5, Theorem 3.14]:

Theorem 4.18. The multiplicity of R(o) at m is equal to
em(R(0)) =u(C(0)).

5. Geometry of cographic rings

The aim of this section is to describe the properties of the cographic ring R(I")
associated to a graph I'. The main results are Theorem 5.7 and the descriptions of
the cographic ring in Section 5B. Recall from Definition 1.4 that R(I") is the toric
face ring associated to the cographic fan %# in H(I', R), which is a polytopal fan
by Proposition 3.8.
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According to Proposition 3.1(i), every cone of @% is of the form

o(T.¢) == {(-.¢() =0} N [{(-.e)=0}
e¢T eeT
for some uniquely determined element (7', ¢) € O%r, i.e., a totally cyclic orientation
¢ on I' \ T. We will denote the positive normal affine semigroup associated to
o(T, ¢) as in (4-1) by

C('\T,¢):=C(o(T,¢9))=0(Y, ) NH(T', Z)
and its associated affine semigroup ring (as in Definition 4.2)
R(I'\T, ¢) :=k[C('\T, ¢)].

5A. Affine semigroup rings R(I' \ T, ¢). Let us look more closely at the affine
semigroup rings R(I"'\ T, ¢) for a fixed (T, ¢) € OPr.

The ring R(I" \ T, ¢) is a normal, Cohen—-Macaulay domain of dimension equal
to dimo (7T, ¢) = b (I' \ T) as follows from Lemma 4.3 and Proposition 3.1(ii).
However, the ring R(I" \ T, ¢) need not be Gorenstein and indeed not even (-
Gorenstein as the following example shows:

Example 5.1. Consider the totally cyclic oriented graph (I", ¢) depicted in Figure 2.
Consider the pointed rational polyhedral cone o (&, ¢) C H|(I', R) and its dual
cone o (J, ¢)¥ C Hy(I", R) defined by

o(3,¢) :={e H([,R)" : £(v) >0 forevery v € 0 (T, $)}.

Since for any edge e € E(I"), the graph I' \ {e} with the orientation induced by ¢ is
totally cyclic, we get that the cone o (&, ¢) has five codimension-1 faces defined by
the equations {(-, ¢(e;)) =0} fori =1, ..., 5 (see Corollary 3.2). This implies that
the extremal rays of o (&, ¢)" are the rays generated by (-, ¢(e;)) fori =1, ..., 5.

It follows from [Dais 2002, proof of Theorem 3.12] that R(I", ¢) is Q-Gorenstein
if and only if there exists an element m € H; (", Q) such that (m, ¢ (¢;)) =1 for every

€l

€2

Figure 2. A totally cyclic oriented graph (I", ¢) with R(I", ¢) not
Q-Gorenstein.
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i =1,...,5. However, these conditions force m to be equal to m = Zle ¢ (e;),
which is a contradiction since B(Zle P(e)) =vi—vp #0.

Denote by 9\ r,¢) the Hilbert basis (i.e., the minimal generating set) of the
positive affine normal semigroup C(I" \ T, ¢). From Lemma 2.4, we get the
following explicit description of ¥\ 7 4):

Proposition 5.2. The Hilbert basis of C(I' \ T, ¢) is equal to
Hr,g) :={lyl:y € Cirg("\T)} C Hi('\T, Z2) € H((T', Z).
The Hilbert basis #\7,¢) of C(I' \ T, ¢) enjoys the following remarkable
properties:
Lemma 5.3. Let (T, ¢) € OPr.
(i) The group Z - ¥ 1,9y € HI(I'\ T, Z) generated by ¥\t 4) coincides with
H(T'\T,2).
(ii) The ray Rx¢ - [y] is extremal for the cone o (T, ¢) = Rxq - #H(r\r1,¢) for each
[v]€ #H\1).
Proof. Part (i) follows from Lemma 2.3(2)(c). Part (ii) follows from Proposition
3.1(iii). O

We warn the reader that the Hilbert basis 9\ r,4) need not be unimodular as we
show in Example 5.4 below. Recall that a subset 54 C Z¢ is said to be unimodular
if o spans R and, moreover, if we represent the elements of < as column vectors
of a matrix A with respect to a basis of 79, then all the nonzero d x d minors of A
have the same absolute value [Sturmfels 1996, p. 70].

Example 5.4. Consider the totally cyclic oriented graph (I", ¢) depicted in Figure 3.
One can check that b1 (I') =4 and that 7 4) consists of the eight elements

[ije] = d(e]) +d(e7) + p(e})

1 2
€ o €]
1 2
€o €
® 3 °
W

3
€

Figure 3. A totally cyclic oriented graph (I", ¢) with ¥ 4) not
totally unimodular.
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for i, j, k € {0, 1}. The elements %B := {[vo00], [¥100], [¥010], [Y001]} form a basis
of Hi(I', Z). If we order the elements of ¥ 4 as

{[yo00l, [y1001, [v0101, [Y0011, [Y110]s [V101], [YO11], Y111},

then the elements of 3 4), with respect to the basis %, are the column vectors of
the matrix

-2

S = O O
- o O O

—1
0
1
1

—_ O = =

—1
1
1
0

(e
S O = O
[

The minor Aj;34 (i.e., the minor corresponding to the first four columns) is equal
to 1 while the minor Aj34g is equal to 2; hence, ¥ 4) is not unimodular.

According to (4-2) and (4-3), the affine semigroup ring R(I" \ T, ¢) admits the
presentation

[V, : ¥ € Ciryg(T'\ T)]

k
R('\T, ¢):= 7
(M\T.¢)

(5-1)

where I(r\7,4) := Is(1,¢) 1s @ binomial ideal, called the toric ideal associated to
#(r\1,¢) in the terminology of [Sturmfels 1996, Chapter 4]. The following problem
seems interesting:

Problem 5.5. Find generators for the binomial toric ideal I(r\71,¢).

We warn the reader that the toric ideal /(r\r,¢) need not to be homogeneous as
shown by the following example:

Example 5.6. Consider the totally cyclicly oriented graph (I', ¢) depicted in

Figure 4.
éy4 ® €6
'\e_f_/-

es

Figure 4. A totally cyclic oriented graph (I', ¢) with I(r 4) not homogeneous.
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It is easy to see that b1 (I"') =4 and that ¥ 4) consists of the five elements

(1] :=¢(e1) + P (es),
[v2] := ¢ (e2) + ¢ (es),
[y3]:= @ (e3) + @ (es),
[val :== ¢ (e1) + P (e2) + P (e3),
[ys5]:= ¢ (es) + @ (es) + ¢ (es).

The binomial ideal /(- ¢ is generated by V,, V,,V,, — V,,V,.; hence, it is not
homogeneous.

5B. Descriptions of R(I') as an inverse limit and as a quotient. Using the general
results of Section 4A, the ring R(I") admits two explicit descriptions.

The first description of R(I") is as an inverse limit of affine semigroup rings (see
Proposition 4.4):

R(T) = l(ln R(\T, ¢). (5-2)
(T,$)€0Pr

The second description is a presentation of R(I") as a quotient of a polynomial
ring. In order to make this explicit for R(I"), observe first that the union of all the
Hilbert bases of the cones o (T, ¢), as (T, ¢) varies in OPr, is equal to the set of
all oriented circuits of I, i.e.,

pr
Hg1 = Cir(I). (5-3)
Moreover, Corollary 3.4 implies that the simplicial _cgmplex Ag. introduced in

Section 4A coincides with the simplicial complex A (Cir(I')) of concordant circuits
as in Definition 2.5, or in symbols,

7
Agi = A(Cir(I)).
From (4-4), Proposition 4.5, and Lemma 2.9, we get the presentation of R(I")
KV, 1y € Cir(I)]

R() = -

(5-4)
where It := Iy is explicitly given by
Ir=W,Vyiy #v0+ D Ira =V iy £y

(T, ¢9)e0Pr
+ Z IM\ET)p.p)- (5-5)
(E(M)sep.p)€0Pr
From Proposition 4.6, we get that the graded prime ideals of R(I") are given by
Py i={X 1cga(T, )} (5-6)
as (T, ¢) varies in O%Pr.
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5C. Singularities of R(I'). In this subsection, we analyze the singularities of the
ring R(I").

Theorem 5.7. Let I" be a graph and R(T") its associated cographic ring. Then we
have the following:

(i) R(I") is a reduced finitely generated k-algebra of pure dimension equal to
bi(I'). The minimal prime ideals of R(I') are given by P(£(r).,.¢) 4 ¢ varies
among all the totally cyclic orientations of I' \ E(I")sep.

(i) R(I") is Gorenstein, and its canonical module wgry is isomorphic to R(I') as
a graded module.

(i) R(T") is a seminormal ring.

(iv) The normalization of R(I") is equal to

RM) =[] R\ EM@)sep, ),
¢

where the product is over all the totally cyclic orientations ¢ of E(I') \ E(I")sep.
(v) The variety Spec R(T") is slc.

(vi) The embedded dimension of R(I") at m is equal to the cardinality of (j)r(f‘),
the set of oriented circuits on I.

(vii) The multiplicity of R(I") at m is equal to

en(R(M) =" em(R(M\ E(Nsep, #)) = Y u(C(T'\ E(Dsep, ),
¢ ¢

where the sum is over all the totally cyclic orientations ¢ of I' \ E(I")sep and
m is the unique graded maximal ideal of the rings in question.

Proof. Part (i) follows from Remark 1.3, Corollary 4.7, and Lemma 2.9. Part (ii)
follows Theorem 4.10 using that @# is a polytopal fan by Proposition 3.8. Part
(ii1) follows from Theorem 4.12(ii). Part (iv) follows from Theorem 4.12(i) and
Lemma 2.9. Part (v) follows from Theorem 4.14 using that @# is polytopal. Part (vi)
follows from Theorem 4.15(ii) and (5-3). Part (vii) follows from Theorem 4.16,
Theorem 4.18, and Lemma 2.9. ]

Problem 5.8. Express the multiplicity of R(I') at wv in terms of well-known graph
invariants.

Problem 5.9. Characterize the graphs I that have the property that Spec(R(I")) is
semi divisorial log terminal. (See [Fujino 2000, Definition 1.1] for the definition of
semi divisorial log terminal.)
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Problem 5.9 is motivated by moduli theory. The singularities of R(I") are the
singularities that appear on compactified Jacobians, and compactified Jacobians
arise as limits of abelian varieties. Fujino [2011] shows that, in a suitable sense, it
is possible to degenerate an abelian variety to a semi divisorial log terminal variety.
If R(I") is semi divisorial log terminal, then compactified Jacobians are examples
of Fujino’s degenerations. For a general discussion of singularities and their role in
moduli theory, we direct the reader to [Kolldr 2010].

Following the proof of Theorem 4.14, Problem 5.9 is equivalent to the following
one: characterize the totally cyclic orientations ¢ of a graph I" that have the property
that the pair (Spec R(I", ¢), —KR(r,¢)) is divisorial log terminal (in the sense of
[Kolldr and Mori 1998]). Note that the pair (Spec R(I", ¢), —Kpr(r,¢)) does not
satisfy the stronger condition of being Kawamata log terminal (and so Spec R(I")
is not semi Kawamata log terminal) because —Kg(r,¢) is effective and nonzero.

6. The cographic ring R(I") as a ring of invariants

In [Casalaina-Martin et al. 2011], the completion of the ring R(I") with respect to
the maximal ideal m = p( appears naturally as a ring of invariants. In this section,
we explain this connection. Consider the multiplicative group

T[‘ = l_[ Gm

veV ()

The elements of Tr(S) for a k-scheme S can be written as A = (A,)yey ) With
Ay € G (8) =05%.
Consider the ring
klUz, Uz :e € E(I')]

A) = .
(UzUz e e E(IN))

If we make the group 7t act on A(I") via
AUz = AS(E)UEA;(;),

then the invariant subring is described by the following theorem:

Theorem 6.1. The invariant subring A(T')TT is isomorphic to the cographic toric
ring R(T").

Proof. We prove the theorem by exhibiting a k-basis for the invariant subring that
is indexed by H{(I', Z) in such a way that multiplication satisfies Equation (1-1).
We argue as follows. Grade A(I") by the C 1(I', Z)-grading induced by the obvious
grading of k[U;, U; : e € E(I')] (so the weight of U; is e).

This grading is preserved by the action of 7t on A(I"), so the invariant subring is
generated by invariant homogeneous elements. Furthermore, given a homogeneous
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element M€ =[] Ug(g) of weight ¢ =) a(é)é, an element A € Tr acts as

ro M =[] r@Uah b = (1‘[ k’;(”))MC,
é

v

where b(v) is defined by d(c) = >_ b(v)v. In particular, we see that M¢ is invariant
if and only if d(c) =0, or in other words, ¢ € H(I", Z).

We can conclude that the invariant subring is generated by the homogeneous
elements M€ whose weight c lies in H{(I", Z). In fact, these elements freely generate
the invariant subring because distinct elements have distinct weights.

To complete the proof, observe that multiplication satisfies

0 if (¢, €) > 0 and (c’, ¢) < 0 for some e,

Mc . Mc/ _ /
Met¢  otherwise.

(6-1)
The condition that there exists an oriented edge € with (c, €) > 0 and (¢/, €) < 0 is
equivalent to the condition that ¢ and ¢’ do not lie in a common cone by Corollary 3.4.
We can conclude that the rule X¢ — M¢ defines an isomorphism between the
cographic ring R(I") and the invariant subring of A(T"). [l

7. A Torelli-type result for R(T")

In this section, we investigate when two graphs give rise to the same cographic
toric face ring. Before stating the result, we need to briefly recall some operations
in graph theory introduced in [Caporaso and Viviani 2010, §2]. Two graphs I
and I'" are said to be cyclic equivalent (or 2-isomorphic) if there exists a bijection
€ : E(I') - E(I") inducing a bijection on the circuits. The cyclic equivalence
class of I' is denoted by [I"]¢yc. Given a graph I', a 3-edge connectivization of T is
a graph that is obtained from I" by contracting all the separating edges of I and
by contracting, for every separating pair of edges, one of the two edges. While a
3-edge connectivization of I" is not unique (because of the freedom that we have in
performing the second operation), its cyclic equivalence class is well-defined; it is
called the 3-edge connected class of I' and denoted by [rp

cye*
Theorem 7.1. Let I' and I’ be two graphs. Then R(I') = R(I'') if and only if
[TTye = My

Proof. Assume first that [F]éyc =[I" ]3Cyc. From [Caporaso and Viviani 2010,
proof of Proposition 3.2.3], it follows that CGI% = ‘6#,, i.e., that there exists an R-
linear isomorphism ¢ : H, (", R) — H;(I'', R) that sends H;(T", Z) isomorphically
onto H,(I"", Z) and such that ¢ sends the hyperplanes of %% bijectively onto the
hyperplanes of C(%#,. Since @# is the fan induced by the arrangement of hyper-
planes 6, the above map ¢ will send the cones of 9**# bijectively onto the cones
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of 9**1%,. Therefore, the map
R(I) — R(I), X+ X?©

is an isomorphism of rings.

Conversely, if R(I') = R(I''), then clearly Str(R(I")) = Str(R(I')) (see Defi-
nition 4.8). By Corollary 4.9, we deduce that 0P = 0%y, which implies that
[[]¢ye = [['Téy, by [Caporaso and Viviani 2010, Theorem 5.3.2]. O
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Essential p-dimension of algebraic groups
whose connected component is a torus

Roland Lotscher, Mark MacDonald, Aurel Meyer and Zinovy Reichstein

Following up on our earlier work and the work of N. Karpenko and A. Merkurjev,
we study the essential p-dimension of linear algebraic groups G whose connected
component G is a torus.

1. Introduction

Let p be a prime integer and k a base field of characteristic not equal to p. In this
paper, we will study the essential p-dimension of linear algebraic k-groups G whose
connected component G is an algebraic torus. This is a natural class of groups; for
example, normalizers of maximal tori in reductive linear algebraic groups are of
this form. This paper is a sequel to [Lotscher et al. 2013], where G was assumed to
be of multiplicative type. For background material and further references on the
notion of essential dimension, see [Reichstein 2011].

For the purpose of computing ed(G; p), we may replace the base field k£ by any
field extension whose degree is finite and prime to p. (We will sometimes refer
to such field extensions as prime-to- p extensions.) In particular, after passing to a
suitable prime-to-p extension of k, we may assume that k contains a primitive p-th
root of unity ¢, and that there is a field extension // k whose degree is a power of p
such that (i) the torus 7 := G becomes split and (ii) the étale group G/ G° becomes
constant over /. In this situation, the finite group G /G has a Sylow p-subgroup F
defined over k; see [Lotscher et al. 2013, Remark 7.2]. Since G is smooth, we may
replace G by the preimage of F' without changing its essential p-dimension; see
[Meyer and Reichstein 2009, Lemma 4.1]. It is thus natural to restrict our attention
to the case where F := G/G" is a finite p-group. In view of this, we will make the
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partially supported by a postdoctoral fellowship from the Canadian National Science and Engineering
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following assumptions on k£ and G for the remainder of this section and throughout
much of the rest of the paper:

Notational conventions 1.1. Unless otherwise specified, k will denote a field of
characteristic not equal to p containing a primitive p-th root of unity ¢,, and G
will denote an algebraic k-group that fits into an exact sequence

l1-T—-G-5F—1 (1-1)

of k-groups, where T := G is a torus and F := G/G" is a finite p-group. More-
over, we will assume that there is a field extension of k of p-power degree over
which T becomes split and F becomes constant. Note that /' may be twisted (i.e.,
nonconstant) and 7 may be nonsplit over k. The extension (1-1) is not assumed to
be split (not even over the algebraic closure of k).

To state our main result, we recall that a linear representation p : G — GL(V) is
called generically free if there exists a G-invariant dense open subset U € V such
that the scheme-theoretic stabilizer of every point of U is trivial. We will say that p
is p-faithful if ker p is finite of order prime to p. We will say that p is p-generically
free if it is p-faithful and gives rise to a generically free representation of G/ ker p.

A generically free representation is faithful, but a faithful representation may
not be generically free. This phenomenon is not well understood; there is no
classification of such representations, and we do not even know for which groups G
they occur.! It is, however, the source of many of the subtleties we will encounter.

Theorem 1.2. Let G be an algebraic k-group satisfying Conventions 1.1. Then
mindim p —dim G <ed(G; p) < mindimu —dim G,

where the minima are taken respectively over all p-faithful representations p of G
and p-generically free representations | of G.

As a simple example, let k =C, p=2 and G =0, >~ SO, x Z /27 be the group of
2 x 2 orthogonal matrices, where G° = SO, ~ G,, is a one-dimensional torus. The
natural representation i : G < GL, is faithful but not generically free: if a®+b> #0,
then the stabilizer of v = (a, b) € C? is the subgroup of G = O, of order 2 generated
by the reflection in the line spanned by v. It is easy to see that no two-dimensional
representation of O; is 2-generically free, but the three-dimensional representation
i @ det is generically free. (Here det : O, — GL; is the determinant.) Theorem 1.2
thus yields 1 < ed(O; 2) < 2. The true value of ed(O;; 2) is 2; see [Reichstein
2000, Theorem 10.3].

In general, let us denote the difference between the upper and lower bounds of
Theorem 1.2 by gap(G; p). If G = G" is a torus or G = F is a finite p-group, then

I Faithful representations that are not generically free are better understood for connected semisim-
ple groups; see [Vinberg and Popov 1994, Section 7].
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gap(G; p) = 0 (see [Lotscher et al. 2013, Lemma 2.5; Meyer and Reichstein 2009,
Remark 2.1]), and Theorem 1.2 reduces to [Lotscher et al. 2013, Theorems 1.1
and 7.1], respectively. (The case where G = F is a constant finite p-group is
due to Karpenko and Merkurjev [2008], whose work was the starting point for
both [Lotscher et al. 2013] and the present paper.) We will show that the upper and
lower bounds of Theorem 1.2 coincide for a larger class of groups, which we call
tame; see Definition 7.3 and Corollary 7.4. More generally, we will show:

Theorem 1.3. Let G be an algebraic k-group satisfying Conventions 1.1. Then
gap(G; p) <dim T — dim 7¢),

Here C(F) is the central p-subgroup of F defined in Section 4, the F-action
on T is induced by conjugation in G, and T¢) C T denotes the subgroup of
elements fixed by C(F).

Our second main result about gap(G; p) is the following “additivity theorem™:

Theorem 1.4. Let G| and G, be algebraic k-groups satisfying Conventions 1.1. If
gap(Gy; p) = gap(Go; p) =0, then gap(G| X Go; p) =0, and ed(G| x Ga; p) =
ed(G1; p) +ed(Go; p).

The rest of this paper is structured as follows. In Section 2, we discuss the notion
of p-special closure kP’ of a field k and show that passing from k to k(”) does not
change the essential p-dimension of any k-group. In Section 3, we show that if
A — B is an isogeny of degree prime to p, then A and B have the same essential
p-dimension. Sections 4, 5 and 6 are devoted to the proof of our main Theorem 1.2.
In Section 7, we introduce the class of tame groups and show that for these groups
the upper and the lower bounds of Theorem 1.2 coincide. In Section 8, we prove
Theorem 1.3, and in Section 9, we prove Theorem 1.4. In Section 10, we classify
central extensions (1-1) with G of small essential p-dimension.

2. The p-special closure of a field

Let K be an arbitrary field and p be a prime integer. We will denote the algebraic
and separable closures of K by K, and K, respectively. Recall that K is called
p-special if the degree of every finite extension of K is a power of p.

Lemma 2.1. A field K is p-special if and only if it has no nontrivial prime-to-p
extensions.

Proof. We need to show that if K has no nontrivial prime-to-p extensions, then the
degree of every finite extension L/K is a power of p. After passing to the normal
closure, we may assume that L is normal over K. Now L/K is generated by a
separable extension L;/K and a purely inseparable extension L;/K; see [Lang
1965, Proposition VII.7.12]. Hence, it suffices to show that [L : K] is a power of p
if 1) L/K is separable or (ii) L/K is purely inseparable.
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(i) As above, we may assume that L/K is normal, i.e., Galois. Let I';, be a p-
Sylow subgroup of I' = Gal(L/K). Then L'» /K is a prime-to-p extension. Hence,
L' =K,ie,I' =T, and [L: K]=|T|is a power of p.

(ii) If char(K) # p, a purely inseparable extension L/K is prime-to-p and hence
trivial. If char(K) = p, then [L : K] is a power of p. O

By [Elman et al. 2008, Proposition 101.16] for every field K, there exists an
algebraic field extension L /K such that L is p-special and every finite subextension
of L/K has degree prime to p. Such a field L is called a p-special closure of K
and will be denoted by K.

The following properties of p-special closures will be important for us in the
sequel:

Lemma 2.2. Let K be a field and K an algebraic closure of K containing K P,
(@) KV is a direct limit of prime-to-p extensions K; /K.
(b) The field K'P) is perfect if char K # p.
(c) Suppose char K # p. For any prime q % p, the cohomological q-dimension of
U = Gal(Kqe/KP) is cdy (V) = 0.

Proof. (a) The finite subextensions K'/K of K» /K form a direct system with
limit K ”. (b) Every finite extension of K ?) has p-power degree and is therefore
separable. (c) By construction, W is a profinite p-group. The result follows from
[Serre 2002, Corollary 2, 1.3]. O

Let / be a base field, Fields // be the category of field extensions of / and Sets be
the category of sets. We call a covariant functor % : Fields /I — Sets limit-preserving
if, for any directed system of fields {K;}, 9?(1i_r)n K;) = 111; F(K;). For example,
if A is an algebraic group, the functor #(K) = H'(K, A) is limit-preserving; see
[Margaux 2007, 2.1].

Lemma 2.3. Let F be limit-preserving and o € %(K) an object. Denote the image
of a in F(KP) by ag. Then:

(a) edg(a; p) =edg(agm; p) =edg(agm).

(b) ed(F; p)=ed(F;»; p), where F;» :Fields/[(?) — Sets denotes the restriction

of F to Fields /1P,
Proof. (a) It is clear that edg («r; p) > edg(agwm; p) =edg(ag ) for any functor F.
It remains to prove edg («; p) <edgs(agw). If L/K is finite of degree prime to p,
edg(a; p) = edg(ar; p); (2-1)

cf. [Merkurjev 2009, Proposition 1.5] and its proof. For the p-special closure K (»),
this is similar and uses (2-1) repeatedly.
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Suppose there is a subfield Ko € K P and e » comes from an element 8 € F(K)
so that Bx; = ag. Write KP) = 1i_n)1££, where & is a direct system of finite
prime-to- p extensions of K. Then Ky = 1i_n>1§Eo with $o={LN Ky | L € £}, and
by assumption on &, we have F(Kj) = li_r>nL/€§£O F(L).

Thus, there is a field L'=LNK( (L € £) and y € F(L') such that yx, = . Since
oy and y; become equal over K (P, after possibly passing to a finite extension, we
may assume they are equal over L, which is finite of degree prime to p over K.
Combining these constructions with (2-1), we see that

edg(o; p) =edg(ar; p) =edg(yr; p) <eds(yr) < trdeg; Ko.

This proves eds(«; p) < eds (k) since Ky was an arbitrary field of definition
for o K®-

(b) This follows directly from (a) by taking o of maximal essential p-dimension. [J
Proposition 2.4. Let [ be an arbitrary field,
%, % : Fields /I — Sets

be limit-preserving functors and & — § be a natural transformation. If the map
F(K) — 9G(K) is bijective or surjective for any p-special field containing [, then,
respectively,

ed(F; p) =ed(9; p) or ed(F; p)=ed(s; p).

Proof. Assume the maps are surjective. By Lemma 2.2(a), the natural transformation
is p-surjective in the terminology of [Merkurjev 2009], so we can apply [Merkurjev
2009, Proposition 1.5] to conclude ed(%F; p) > ed(%; p).

Now assume the maps are bijective. Let a be in (K ) for some K /[ and 8 its
image in 9G(K). We claim that ed(«; p) = ed(8; p). First by Lemma 2.3, we may
assume that K is p-special. In this situation, it is enough to prove that ed(«) <ed(B)
(the opposite inequality is by functoriality).

Assume that 8 comes from Sy € 4(K() for some field / € Ko € K. Let Ké
denote the algebraic closure of Ky in K. Any finite prime-to-p extension of K is
isomorphic (over K)) to a subfield of K (cf. [Merkurjev 2009, Lemma 6.1]) and
hence coincides with K. Thus, K|, has no nontrivial prime-to-p extensions. By
Lemma 2.1, it follows that K| is p-special. Since K|, is an algebraic extension of
Ko, we may replace Ko by K|) and thus assume that K is p-special. By assumption,
F(Ko) = 9(Ko) and F(K) — 9(K) are bijective; therefore, the unique element
oo € F(Kp) that maps to Bp must map to o under the natural restriction map. The
claim follows.

We obtain ed(F; p) = ed(x; p) =ed(B; p) <ed(¥; p) by taking o of maximal
essential p-dimension. [l
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3. Isogenies

An isogeny of algebraic groups is a surjective morphism A — B with finite kernel.
The degree of an isogeny is the order of its kernel.

Proposition 3.1. Suppose A — B is an isogeny of degree prime to p of smooth
algebraic groups over a field | of characteristic not equal to p. Then

(@) forany p-special field K containing k, the natural map H'(K, A)— H' (K, B)
is bijective and

(b) ed(A; p) =ed(B; p).
Example 3.2. Let E¢° and E° be simply connected simple groups of type Eg

and E7, respectively. In [Gille and Reichstein 2009, 9.4 and 9.6], it is shown that if k
is an algebraically closed field of characteristic not equal to 2 and 3, respectively, then

ed(E¢;2) =3 and ed(ES;3) =3.
For the adjoint groups E2 = E¢ /i3 and E ad — EX /2, we therefore have
ed(EX%;2) =3 and ed(E3%;3)=3.
For the proof of Proposition 3.1, we will need a lemma.

Lemma 3.3. Let N be a finite algebraic group over a field | of characteristic not
equal to p. The following are equivalent:

(a) p does not divide the order of N.
(b) p does not divide the order of N (ly).

Proof. Let N° be the connected component of N and N = N/N° the étale
quotient. Recall that the order of a finite algebraic group N over [ is defined as
IN| = dim; I[[N] and |N| = |[N°||N%|; see, e.g., [Tate 1997]. If char! =0, N° is
trivial; if charl = g # p is positive, | N°| is a power of ¢. Hence, N is of order prime
to p if and only if the étale algebraic group N is. Since N° is connected and finite,
NO(lalg) = {1}, so N(layg) is of order prime to p if and only if the group Né‘(lalg)
is. Then |[N¥| = dim; [[N¥] = |[N®(lye)|; cf. [Bourbaki 1990, V.29 Corollary]. [J

Proof of Proposition 3.1. (a) Let N be the kernel of the isogeny A — B and K be
a p-special field over /. Since Kgp = Ky (see Lemma 2.2(b)), the sequence of
Kep-points 1 — N(Kgep) — A(Kgep) — B(Kgep) — 1 is exact. By Lemma 3.3,
the order of N(Kgep) is not divisible by p and therefore coprime to the order of
any finite quotient of ¥ = Gal(K,/K). By [Serre 2002, L.5, Exercise 2], this
implies that H'(K, N) = {1}. Similarly, if .N is the group N twisted by a cocycle
c: ¥ — A, then (N(Kyep) = N(Kjep) is of order prime to p, and HY(K,.N)={1}.
It follows that H' (K, A) — H'(K, B) is injective; cf. [Serre 2002, 1.5.5].



Essential p-dimension of algebraic groups 1823

Surjectivity is a consequence of [Serre 2002, I, Proposition 46] and the fact
that the g-cohomological dimension of W is O for any divisor g of |N(Kep)]
(Lemma 2.2(c)).

(b) This part follows from (a) and Proposition 2.4. O

4. Proof of the main theorem: an overview

We now assume that Conventions 1.1 are valid. The upper bound in Theorem 1.2
is an easy consequence of Proposition 3.1. Indeed, suppose i : G — GL(V) is a
p-generically free representation. That is, ker p is a finite group of order prime
to p, and p descends to a generically free representation of G’ := G/ ker u. By
Proposition 3.1, ed(G; p) = ed(G’; p). On the other hand,

ed(G’; p) <ed(G') <dimu —dim G’ = dim u — dim G;

see [Berhuy and Favi 2003, Lemma 4.11; Merkurjev 2009, Corollary 4.2]. This
completes the proof of the upper bound in Theorem 1.2.

The rest of this section will be devoted to outlining a proof of the lower bound of
Theorem 1.2. The details (namely, the proofs of Propositions 4.2 and 4.3) will be
supplied in the next two sections. The starting point of our argument is [Lotscher
et al. 2013, Theorem 3.1], which we reproduce below for the reader’s convenience:

Theorem 4.1. Consider an exact sequence of algebraic groups over a field
1-C—-H—>Q0—1

such that C is central in H and is isomorphic to u; for some r > 0. Given a
character x : C — i, denote by Rep* the class of irreducible representations
¢ : H— GL(V) such that ¢ (c) = x(c)Id for every c € C.

Assume further that

gced{dim ¢ | ¢ € Rep’} = min{dim ¢ | ¢ € Rep*} 4-1)
for every character x : C — 1), Then
ed(H; p) > mindim ¢ — dim H,

where the minimum is taken over all finite-dimensional representations W of H such
that  |c is faithful.

To prove the lower bound of Theorem 1.2, we will apply Theorem 4.1 to the
exact sequence
1-CG)—-G— Q0—1, 4-2)

where C(G) is a central subgroup of G defined as follows. Recall from [Lotscher
et al. 2013, Section 2] that if A is a k-group of multiplicative type, Split; (A) is
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defined as the maximal split k-subgroup of A. That is, if X (A) is the character
Gal(ksep/ k)-module of A, then the character module of Split, (A) is defined as the
largest quotient of X (A) with trivial Gal(ksp/ k)-action.

We denote by Z(G)[p] the p-torsion subgroup of the center Z(G). Note that
Z(G) is a commutative group, which is an extension of a p-group by a group of
multiplicative type. Since char k # p, it follows that Z(G) is of multiplicative type.
We now define C(G) := Split, (Z(G)[p]).

In order to show that Theorem 4.1 can be applied to the sequence (4-2), we need
to check that condition (4-1) is satisfied. This is a consequence of the following
proposition, which will be proved in the next section:

Proposition 4.2. The dimension of every irreducible representation of G over k is
a power of p.

Applying Theorem 4.1 to the exact sequence (4-2) now yields
ed(G; p) > mindim p — dim G,

where the minimum is taken over all representations p : G — GL(V) such that
plc() is faithful. This resembles the lower bound of Theorem 1.2; the only
difference is that in the statement of Theorem 1.2 we take the minimum over
p-faithful representations p and here we only ask that p |c(g) should be faithful.
The following proposition shows that the two bounds are, in fact, the same, thus
completing the proof of Theorem 1.2:

Proposition 4.3. A finite-dimensional representation p of G is p-faithful if and
only if plc(c) is faithful.
We will prove Proposition 4.3 in Section 6.

Remark 4.4. The inequality mindim p —dim G <ed(G; p) of Theorem 1.2, where
p ranges over all p-faithful representations of G, fails if we take the minimum
over just the faithful (rather than p-faithful) representations, even in the case where
G =T is a torus.

Indeed, choose T so that the Gal(kep/ k)-character lattice X (T') of T is a direct
summand of a permutation lattice, but X (7') itself is not permutation (see [Colliot-
Thélene and Sansuc 1977, 8A] for an example of such a lattice).

In other words, there exists a k-torus 7’ such that T x T’ is quasisplit (but T
is not). This implies that H' (K, T x T’) = {1} and thus H'(K, T) = {1} for any
field extension K /k. Consequently, ed(7'; p) = 0 for every prime p.

On the other hand, we claim that the dimension of the minimal faithful represen-
tation of T is strictly bigger than dim 7. Assume the contrary. Then there exists
a surjective homomorphism f : P — X(T) of Gal(ksp/k)-lattices, where P is
permutation and rank P = dim T'; see, e.g., [Lotscher et al. 2013, Lemma 2.6]. This
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implies that f has finite kernel and hence is injective. We conclude that f is an
isomorphism, so X (T) is a permutation Gal(ksep/ k)-lattice, a contradiction. [

5. Dimensions of irreducible representations

The purpose of this section is to prove Proposition 4.2.

Lemma 5.1. Let H be a finite p-subgroup of G defined over k. Then H becomes
constant after some field extension of k whose degree is a power of p.

Recall that here G and k are subject to Conventions 1.1.

Proof. After passing to a suitable p-power field extension of k, the torus 7" becomes
split, and F' becomes constant. In other words, we may assume that 7 N H is split
and the image w(H) of H in F is constant. Moreover, after adjoining a primitive
root of unity of order p™ :=|T N H|, we may assume that 7 N H is constant (note
that [k(¢,m) : k] is a power of p since k is assumed to contain ¢,). Thus, H is an
extension of a constant p-group 7 (H) by a constant p-group 7' N H. The group H
becomes constant after a p-power field extension if and only if the image of I" in
Aut(H (ksep)) is a p-group. Thus, it suffices to establish the following claim:

Claim. Let B be a p-group, S a finite subgroup of Aut(B)and1 - A— B —-C—1
an S-equivariant exact sequence with § acting trivially on A and C. Then S is a
p-group.

To prove the claim, assume the contrary. Then S contains a subgroup of prime
order g # p. After replacing S by that subgroup, we may assume without loss
of generality that |S| = g. Let b € B. Then the image of b in C is fixed under S.
Hence, the fiber Ab over this element is S-stable. Since the cardinality of Ab is a
power of p and thus is not divisible by ¢, S has to fix some elements of Ab. Denote
one of these elements by bg. Then b € Abg, and since the elements of A are fixed
by S, this implies that b is fixed by S as well. This shows that S acts trivially on B,
a contradiction. U

The special case of Proposition 4.2, where T = {1}, i.e., G = F is a finite p-group
that becomes constant after a p-power field extension, is established in the course
of the proof of [Lotscher et al. 2013, Theorem 7.1]. Our proof of Proposition 4.2
below is based on leveraging this case as follows.

Lemma 5.2. Let H be a smooth algebraic group defined over a field | and
HCcHC---CH

be an ascending sequence of smooth [-subgroups whose union Unzl H, is Zariski
densein H. If p : H — GL(V) is an irreducible representation of H, then p |p, is
irreducible for sufficiently large integers i.
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Proof. Foreachd =1,...,dimV — 1, consider the H-action on the Grassman-
nian Gr(d, V) of d-dimensional subspaces of V. Let X = Gr(d, V)# and
X l.(d) = Gr(d, V)" be the subvarieties of d-dimensional H- and H;-invariant sub-
spaces of V, respectively. Then X id) > X éd) D ..., and since the union of the
groups H; is dense in H,

x@ — ﬂ X(d)

i>0

By the Noetherian property of Gr(d, V), we have X@ = X\ for some my > 0.
Since V does not have any H-invariant d-dimensional /-subspaces, we know
that X (]) = @. Thus, X, (@) ,() = g, 1e., V does not have any H,,, -invariant
d-dimensional /-subspaces. Settlng m :=max{mi, ..., Mdimv—1}, We see that p|g,
is irreducible for any i > m. U

We now proceed with the proof of Proposition 4.2. By Lemmas 5.1 and 5.2, it
suffices to construct a sequence of finite p-subgroups

FCHC---CG

defined over k whose union | J,,.., F, is Zariski dense in G. In fact, it suffices to
construct one p-subgroup F' C G defined over k such that F’ surjects onto F'. Once
F' is constructed, we can define F; C G as the subgroup generated by F’ and T[p']
for every i > 0. Here T[m] denotes the m-torsion subgroup of 7. Since Un>1
contains both F’ and T[p’ 1 for every i > 0, it is Zariski dense in G, as desired.

The following lemma, which establishes the existence of F’, is thus the final
step in our proof of Proposition 4.2:

Lemma 5.3. Let 1 - T — G %> F — 1 be an extension of a p-group F by a
torus T over an arbitrary field k. Then G has a p-subgroup F' withw(F') = F

Here G and k are not subject to Conventions 1.1. In the case where F is split
and k is algebraically closed, the above lemma is proved in [Chernousov et al. 2006,
page 564]; cf. also the proof of [Borel and Serre 1964, Lemme 5.11].

Proof. Denote by Ex! (F T) the group of equlvalence classes of extensions of F
by T. We claim that Ex! (F, T) istorsion. Let Ex' (F, T) CEx (F, T) be the classes
of extensions that have a scheme-theoretic section (i.e., G(K) — F(K) is surjective
for all K/k). There is a natural isomorphism Ex!'(F,T) ~ H*(F, T), where
H? denotes Hochschild cohomology; see [Demazure and Gabriel 1970, 111.6.2,
Proposition]. By [Schneider 1981], the usual restriction-corestriction arguments
can be applied in Hochschild cohomology, and in partlcular m - H*(F, T) =0,
where m is the order of F. Now recall that M — Ex! (F, M) and M — Ex'(F, M)
are both derived functors of the crossed homomorphisms M +— Ex’(F, M), where
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in the first case M is in the category of F-module sheaves and in the second F-
module functors, cf. [Demazure and Gabriel 1970, I11.6.2]. Since F is finite and
T an affine scheme, by [Schneider 1980b, Sitze 1.2 and 3.3] there is an exact
sequence of F-module schemes 1 — T — M| — M, — 1 and an exact sequence
Ex’(F, M) — Ex’(F, My) — Ex!(F, T) - H*(F, M) ~ Ex'(F, M;). The F-
module sequence also induces a long exact sequence on Ex(F, ), and we have

Ex'(F, T)
/ \
Ex’(F, My) —— Ex"(F, M») Ex!(F, M;).

\ /

Ex!'(F, T)

An element in Ex! (F, T) can thus be killed first in Ex' (F, M), so it comes from
ExO(F M5). Then kill its 1mage in Ex'(F, T) ~ H?(F, T), so it comes from
Ex’(F, M) and hence is zero in Ex! (F, T). In particular, multiplying twice by the
order m of F, we see that m? - Ex!(F, T) = 0. This proves the claim.

Now let us consider the exact sequence 1 > N> TXT 1, where N is
the kernel of multiplication by m?. Clearly N is finite, and we have an induced
exact sequence

Ex'(F, N) — Bx'(F, T) X" Ex\(F, T),

which shows that the given extension G comes from an extension F’ of F by N.
Then G is the pushout of F' by N — T, and we can identify F’ with a subgroup
of G. ]

6. Proof of Proposition 4.3

We will prove Proposition 6.1 below; Proposition 4.3 is an immediate consequence
with N = ker p. Once again, please note that Conventions 1.1 are in force.

Proposition 6.1. Let N be a normal k-subgroup of G. The following conditions
are equivalent:

(a) N is finite of order prime to p.
(b)y NNC(G) = {1}.
() NNZ(G)lpl={1}.
In particular, taking N = G, we see that C(G) # {1} if G # {1}.
Proof. (a) = (b) This is obvious since C(G) is a p-group.

(b) = (c) Assume the contrary: A:=NNZ(G)[p]#{1}. By Lemma 5.1, Z(G)[p]
becomes constant over a field extension &’/ k of p-power degree. Since k contains ¢),,
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the group Z(G)[p] splits over k" as a group of multiplicative type. It is shown
in [Lotscher et al. 2013, Section 2] that C(A) # {1}. Thus,

{1} #C(A) S NN C(G),

contradicting (b).

(¢) = (a) Our proof of this implication will rely on the following assertion:

Claim. Let M be a nontrivial normal finite p-subgroup of G such that the commu-
tator (7', M) is trivial. Then M N Z(G)[p] # {1}.

To prove the claim, note that M (ksp) is nontrivial and the conjugation action of
G (ksep) on M (kgep) factors through an action of the p-group F(kgp). Thus, each
orbit has p" elements for some n > 0; consequently, the number of fixed points is
divisible by p. The intersection (M N Z(G))(ksep) is precisely the fixed point set
for this action; hence, M N Z(G)[p] # {1}. This proves the claim.

We now continue with the proof of the implication (¢) = (a). Assume that
N <G and N N Z(G)[p] = {1}. Applying the claim to the normal subgroup
M := (NNT)[p] of G, we see that (N N T)[p] ={1},i.e., NNT is a finite group
of order prime to p. The exact sequence

l1-NNT—>N—> N —1, (6-1)

where N is the image of N in F := G/T, shows that N is finite. Now observe
that for every r > 1, the commutator (N, T[p"]) is a p-subgroup of N N T. Thus,
(N, T[p"]) = {1} for every r > 1. We claim that this implies (N, T) = {1}. If N is
smooth, this is straightforward; see [Borel 1969, Proposition 2.4, page 59]. If N
is not smooth, note that the map ¢ : N x T — G sending (n, t) to the commutator
ntn— 't~ descendsto¢: N x T — G (indeed, NNT clearly commutes with 7).
Since |N| is a power of p and char(k) # p, N is smooth over k, and we can pass
to the separable closure ke, and apply the usual Zariski density argument to show
that the image of c¢ is trivial.

We thus conclude that N N T is central in N. Since gcd(|N N T|, N) =1, by
[Schneider 1980a, Corollary 5.4] the extension (6-1) splits, i.e., N >~ (NNT) x N.
This turns N into a finite p-subgroup of G with (T, N) = {1}. The claim implies
that N is trivial. Hence, N = N NT is a finite group of order prime to p, as claimed.

This completes the proof of Proposition 6.1 and thus of Theorem 1.2. (]

7. Tame groups

As we have seen in Section 1, some groups G satisfying Conventions 1.1 have
faithful linear representations that are not generically free. In this section, we take
a closer look at this phenomenon.
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If F'is a subgroup of F, then we will use the notation G g to denote the subgroup
m Y (F’") of G. Here 7 is the natural projection G — G/T = F as in (1-1).

Lemma 7.1. Suppose T is central in G. Then

(a) G has only finitely many k-subgroups S such that SNT = {1}, and

(b) every faithful action of G on a geometrically irreducible variety X is generi-
cally free.

Proof. After replacing k by its algebraic closure k,,, we may assume without loss
of generality that k is algebraically closed.

(a) Since F has finitely many subgroups, it suffices to show that for every subgroup
Fy C F, there are only finitely many S C G such that 7 (S) = Fpand SNT = {1}.

After replacing G by Gf,, we may assume that Fy = F. In other words, we
will show that & has at most finitely many sections s : F — G. Fix one such
section, sg : F — G. Denote the exponent of F' by e. Suppose s : FF — G is
another section. Then for every f € F(k), we can write s(f) = so(f)t for some
t € T (k). Since T is central in G, t and so( ) commute. Since s(f)¢ =so(f)* =1,
we see that ¢ = 1. In other words, ¢t € T (k) is an e-torsion element, and there
are only finitely many e-torsion elements in 7' (k). We conclude that there are
only finitely many choices of s(f) for each f € F(k). Hence, there are only
finitely many sections F — G, as claimed.

(b) The restriction of the G-action on X to T is faithful and hence generically free;
cf., e.g., [Lotscher 2010, Proposition 3.7(A)]. Hence, there exists a dense open
T -invariant subset U C X such that Staby (1) = {1} for all # € U. In other words, if
S = Stabg (1), then SNT = {1}. By (a), G has finitely many nontrivial subgroups S
with this property. Denote them by Si, ..., S,. Since G acts faithfully, X5 is a
proper closed subvariety of X for any i =1, ..., n. Since X is irreducible,

U'=U\(X"U--.UXx®)

is a dense open T -invariant subset of X, and the stabilizer Stabg () is trivial for
every u € U'. Replacing U’ by the intersection of its (finitely many) G (ka)-
translates, we may assume that U’ is G-invariant. This shows that the G-action on
X is generically free. |

Proposition 7.2. (a) A faithful action of G on a geometrically irreducible variety
X is generically free if and only if the action of the subgroup Gcry € G on X
is generically free.

(b) A p-faithful action of G on a geometrically irreducible variety X is p-generi-
cally free if and only if the action of the subgroup Gc(ry € G on X is p-
generically free.
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Proof. (a) The (faithful) T-action on X is necessarily generically free; cf. [Lotscher
2010, Proposition 3.7(A)]. Thus, by [Gabriel 2011, Exposé V, Théoreme 10.3.1] or
[Berhuy and Favi 2003, Theorem 4.7], X has a dense open T -invariant subvariety U
defined over k, which is the total space of a T-torsor, U — Y :=U/T, where Y is
also smooth and geometrically irreducible. Since G/ T is finite, after replacing U
by the intersection of its (finitely many) G (kag)-translates, we may assume that U
is G-invariant.

The G-action on U gives rise to an F-action on Y (by descent). Now it is easy
to see (cf. [Lorenz and Reichstein 2000, Lemma 2.1]) that the following conditions
are equivalent:

(i) The G-action on X is generically free.
(i) The F-action on Y is generically free.
Since F is finite, (ii) is equivalent to
(iii) F acts faithfully on Y.

Proposition 6.1 tells us that the kernel of the F-action on Y is trivial if and only if
the kernel of the C(F)-action on Y is trivial. In other words, (iii) is equivalent to

(iv) C(F) acts faithfully (or equivalently, generically freely) on Y
and consequently to
(v) the G¢(ry-action on U (or, equivalently, on X) is generically free.

Note that (iv) and (v) are the same as (ii) and (i), respectively, except that F is
replaced by C(F) and G by G¢(r). Thus, the equivalence of (iv) and (v) follows like
the equivalence of (i) and (ii). We conclude that (i) and (v) are equivalent, as desired.

(b) Let K be the kernel of the G-action on X, which is contained in 7 by assump-
tion. Note that (G/K)/(T/K)=G/T = F, so (a) says the G/K -action on X is
generically free if and only if the G¢(r)/K -action on X is generically free, and (b)
follows. (]

The following definition is natural in view of Proposition 7.2:

Definition 7.3. Consider the action of F on T induced by conjugation in G. We
say that G is tame if C(F) lies in the kernel of this action. Equivalently, G is tame
if T is central in G¢(F).

Recall in Section 1 we defined gap(G; p) as the difference between the minimal
dimension of a p-generically free representation and the minimal dimension of a
p-faithful representation of G (all representations are assumed to be defined over k).

Corollary 7.4. Let G be a tame k-group and X be a geometrically irreducible
k-variety X.
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(a) Every faithful G-action on X is generically free.
(b) Every p-faithful G-action on X is p-generically free.
(c) We have gap(G; p) = 0. In other words,

ed(G; p) = mindim p — dim G,
where the minimum is taken over all p-faithful k-representations of G.

Proof. (a) Since G is tame, T is central in G¢(r). Hence, the G¢(r)-action on X
is generically free by Lemma 7.1(b). By Proposition 7.2(a), the G-action on X is
generically free.

(b) Let K be the kernel of the action. Note that G/K is also tame. Now apply
(a) to G/K.

(c) This follows immediately from (b) and Theorem 1.2. ]

8. Proof of Theorem 1.3

In this section, we will prove the following proposition, which implies Theorem 1.3:
Proposition 8.1. Let p : G — GL(V) be a linear representation of G.

(a) If p is faithful, then G has a generically free representation of dimension at
most dim p 4+ dim T — dim 7€),

(b) If p is p-faithful, then G has a p-generically free representation of dimension
at most dim p 4+ dim T — dim 7¢(9),

Proof. (a) The subgroup T¢F) is preserved by the conjugation action of G, so the
adjoint representation of G decomposes as Lie(7T) = Lie(T¢F)) @ W for some
G-representation W. Since the G-action on Lie(T") factors through F, the existence
of W follows from Maschke’s theorem. Let  be the G-representationon V & W.
Since dim Lie(7¢) > dim 7€), we have dim i < dim p +dim 7 — dim 7€,
It thus remains to show that u is a generically free representation of G.

Let K be the kernel of the G¢(r)-action on Lie(T). We claim T is central in K.
The finite p-group K /T acts on T (by conjugation), and it fixes the identity. By
construction, K /T acts trivially on the tangent space at the identity, which implies
K /T acts trivially on T since the characteristic is not equal to p; cf. [Gille and
Reichstein 2009, Proof of Lemma 4.1]. This proves the claim.

By Lemma 7.1, the K -action on V is generically free. Now G ¢(r) acts trivially on
Lie(T€P)), so Ge(ry/K acts faithfully on W. Since G¢(ry/K is finite, this action
is also generically free. Therefore, G¢ () acts generically freely on V & W [Meyer
and Reichstein 2009, Lemma 3.2]. Finally, by Proposition 7.2(a), G acts generically
freely on V @ W, as desired.
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(b) By our assumption, kerp € T. Set T := T/kerp. It is easy to see that
dim 7€) < dim T€P). Hence, by (a) there exists a generically free representation
of G/ ker p of dimension at most

dim7T —dimT¢P) <dim T —dim 7€),

We may now view this representation as a p-generically free representation of G.
This completes the proof of Theorem 1.3. U

Remark 8.2. A similar argument shows that for any tame normal subgroup H C G
over k, gap(G; p) <ed(G/H; p).

9. Additivity

Our proof of the additivity Theorem 1.4 relies on the following lemma. Let G be
an algebraic group defined over a field k and C be a k-subgroup of G. Denote the
minimal dimension of a representation p of G such that p |¢ is faithful by f(G, C).

Lemma 9.1. Let k be an arbitrary field. Fori =1, 2, let G; be an arbitrary (linear)
algebraic group defined over k, and let C; be a central k-subgroup of G;. Assume
that C; is isomorphic to ,u;f over k for some ry, ry > 0. Then

f(G1x Gy C1 x Cy) = f(Gy; Cr) + f(G2; Cr).

Our argument below is a variant of the proof of [Karpenko and Merkurjev 2008,
Theorem 5.1], where G is assumed to be a (constant) finite p-group and C = C(G)
(recall that C(G) is defined at the beginning of Section 4).

Proof. Fori = 1,2, let m; : G| x G, — G; be the natural projection, and let
€ : G; = G x G, be the natural inclusion.

If p; is a d;-dimensional representation of G; whose restriction to C; is faithful,
then clearly p; o) @ pr o 3 is a (d| + d»)-dimensional representation of G| x G»
whose restriction to C; x C, is faithful. This shows that

f(G1 x Gy Cr xCa) < f(Gy; C)+ f(Go; Cr).

To prove the opposite inequality, let p : G; x G, — GL(V) be a representation
such that p|c, xc, is faithful and of minimal dimension

d= f(G1 xG; Cy x Cp)

with this property. Let py, p2, ..., p, denote the irreducible decomposition factors
in a Jordan—Holder series for p. (Note that since G| and G, are arbitrary linear
algebraic groups, p may not be completely reducible.) Since C; x C; is central
in G| X G», each p; restricts to a multiplicative character of C; x C,, which we
will denote by y;. Moreover, since C; x Cp =~ ,u;} 172 is linearly reductive, p lc,xc,
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is a direct sum Xde' ®---P X,ied”, where d; = dim p;. It is easy to see that the

following conditions are equivalent:

(1) plc,xc, is faithful.

(i) xi1, ..., xn generate (C; x Cp)* as an abelian group.

In particular, we may replace p by the direct sum p; & --- @ p,. Since C; is
isomorphic to M;i we will think of (C x C2)* as an [ ,-vector space of dimension
r1 + ra. Since (i) <= (ii) above, we know that xi, ..., x, span (C; x Cp)*. In
fact, they form a basis of (C; x C»)*, i.e., n = r; + rp. Indeed, if they were not
linearly independent, we would be able to drop some of the terms in the irreducible
decomposition p; @ - - - @ p, so that the restriction of the resulting representation
to C1 x C, would still be faithful, contradicting the minimality of dim p.

We claim that it is always possible to replace each p; by p}, where ,o;. is either
pj o€l oy Or pj o€y omy such that the restriction of the resulting representation
p'=p @@ p, to C; x C, remains faithful. Since dim p; = dim p;, we see that
dim p’ = dim p. Moreover, p’ will then be of the form a1 o 71 @ a» o 75, where «;
is a representation of G; whose restriction to C; is faithful. Thus, if we can prove
the above claim, we will have

f(G1 X Gp; C1 x Cp) =dim p :dimp/ =dimog +dim oy
> f(Gy1, C1) + f(Ga, (),

as desired.

To prove the claim, we will define ,o} recursively for j = 1,...,n. Suppose
J ,o}_l have already be defined so that the restriction of

PI® DO DD D pn
to C| x C, is faithful. For notational simplicity, we assume p; = ,oi, e P = P},l-
Note that
Xj=(xjo€10om) D (xjo0e0m).

Since i, ..., x» form a basis of (C; x C3)* as an [F,-vector space, we see that
(a) xjoerjomy or (b) xjoezom; does not lie in Span[Fp(Xl, e X1y Xjtls e s Xn)-
Set

, pjoe€lom incase (a),
p; = .
pjo€omy otherwise.

Using the equivalence of (i) and (ii) above, we see that the restriction of
L1 O 1®P; P11 Doy

to C is faithful. This completes the proof of the claim and thus of Lemma 9.1. [J
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Proof of Theorem 1.4. The groups G| and G in the statement of Theorem 1.4 are
assumed to satisfy Conventions 1.1 and hence so does G := G| x G3.

Recall also that C(G) is defined as the maximal split p-torsion subgroup of the
center of G; see Section 4. It follows from this definition that

C(G) =C(Gy) x C(Gy).

By Lemma 9.1 and Proposition 4.3, the minimal dimension of a p-faithful repre-
sentation is

(G, C(G)) = f(G1, C(G1)) + f(G2, C(G2)),

which is the sum of the minimal dimensions of p-faithful representations of G
and G,. For i € {1, 2} since gap(G;; p) = 0, there exists a p-generically free
representation p; of G; of dimension f(G;, C(G;)). The direct sum p; @ py is a
p-generically free representation of G, and its dimension is f (G, C(G)). It follows
that gap(G; p) = 0. By Theorem 1.2,

ed(G; p) = f(G,C(G)) —dim G
and similarly for G| and G»; cf. Proposition 4.3. Hence, as desired, we have
ed(G; p) =ed(Gy; p) +ed(G2; p). U

Example 9.2. Let T be a torus over a field k£ of characteristic not equal to 2.
Suppose there exists an element 7 in the absolute Galois group Gal(ksep/ k) that acts
on the character lattice X (7)) via multiplication by —1. Then ed(7; 2) > dim T.

Proof. Let n := dimT. Over the fixed field K := (kgp)®, the torus T becomes
isomorphic to a direct product of n copies of a nonsplit one-dimensional torus 77.
Using [Lotscher et al. 2013, Theorem 1.1], it is easy to see that ed(77; 2) = 1. By
Theorem 1.4, we conclude that

ed(T;2) > ed(Tk;2) =ed((T))";2) =ned(T1;2) =dimT. O
We end this section with an example that shows that the property gap(G; p) =0
is not preserved under base field extensions.

Example 9.3. Let £ be as in Conventions 1.1, T be an algebraic k-torus that splits
over a field extension of k of p-power degree and F be a nontrivial p-subgroup of
the constant group S,. Form the wreath product

T F:=T"xF,
where F' acts on T" by permutations.
Then gap(T @ F'; p) =0 if and only if ed(7'; p) > 0. Moreover,

ed(T"; p) =ned(T; p) ifed(T; p) >0,

ed(TF; p)= .
( p) {ed(F; p) otherwise.
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Proof. Let W be a p-faithful T-representation of minimal dimension. By [Lotscher
et al. 2013, Theorem 1.1], ed(T; p) =dim W —dimT.

Then W®" is naturally a p-faithful (T : F)-representation. Lemma 9.1 and
Proposition 4.3 applied to 7" tell us that W®" has minimal dimension among all
p-faithful representations of T F.

Suppose ed(T'; p) > 0, i.e., dim W > dim T. The group F acts faithfully on the
rational quotient W®" /T" = (W /T)" since dim W/T =dim W —dim T > 0. It is
easy to see that the (T F)-action on W®" is p-generically free; cf., e.g, [Meyer
and Reichstein 2009, Lemma 3.3]. In particular, gap(7 : F; p) = 0 and

ed(T1F; p)=dim W® —dim(T:F) =n(dim W—dim T) =ned(T; p) =ed(T"; p),

where the last equality follows from the additivity Theorem 1.4.

Now assume that ed(7'; p) =0, i.e., dim W =dim 7. The group T : F cannot
have a p-generically free representation V of dimension dim W®" =dim T F since
T" would then have a dense orbit in V. It follows that gap(7: F'; p) > 0. In order to
compute its essential p-dimension of 72 F', we use the fact that the natural projection
T F — F has a section. Hence, the map H'(%,T:F)— H'(x, F) also has a sec-
tion and is consequently a surjection. This implies ed(T: F'; p) >ed(F; p). Let W’
be a faithful F-representation of dimension ed(F'; p). The direct sum W®"@® W’ con-
sidered as a T F representation is p-generically free, so ed(T: F; p) =ed(F; p). U

10. Groups of low essential p-dimension

In [Lotscher et al. 2013], we have identified tori of essential dimension O as those tori
whose character lattice is invertible, i.e., a direct summand of a permutation module;
see [Lotscher et al. 2013, Example 5.4]. The following lemma (with H = G) shows
that among the algebraic groups G studied in this paper, i.e., extensions of p-groups
by tori, there are no other examples of groups of ed(G; p) =0:

Lemma 10.1. Let H be an algebraic group over a field | such that H/H® is a
p-group. If ed(H; p) =0, then H is connected.

Proof. Assume the contrary: F := H/H® # {1}. Let X be an irreducible H-
torsor over some field K//. For example, we can construct X as follows. Start
with a faithful linear representation H < GL, for some n > 0. The natural
projection GL, — GL, /H is an H-torsor. Pulling back to the generic point
Spec(K) — GL, /H, we obtain an irreducible H-torsor over K.

Now X/H? — Spec(K) is an irreducible F-torsor. Since F' # {1} is not con-
nected, this torsor is nonsplit. As F is a p-group, X/H" remains nonsplit over
every prime-to-p extension L /K. It follows that the degree of every closed point of
X is divisible by p; hence, p is a torsion prime of H. Therefore, ed(H; p) > 0 by
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[Merkurjev 2009, Proposition 4.4]. This contradicts the assumption ed(H; p) =0,
so I must be trivial. O

Proposition 10.2. Let G be a central extension of a p-group F by a torus T over a
field k of characteristic not p. If ed(G; p) < p — 2, then G is of multiplicative type.

Proof. Without loss of generality, assume k = k,jg. By Theorem 1.2, there is a
p-faithful representation V of G withdimV <dim7 + p — 2.

First consider the case where V is faithful. By the theorem of Nagata [1961],
G is linearly reductive; hence, we can write V = @;_, V; for some nontrivial
irreducible G-representations V;. Since T is central and diagonalizable, it acts by a
fixed character on V; for every i. Hence, r > dim 7' by faithfulness of V. It follows
that 1 <dimV; < p — 1 for each i. But every irreducible G-representation has
dimension a power of p (Proposition 4.2), so each V; is one-dimensional. In other
words, G is of multiplicative type.

Now consider the general case, where V is only p-faithful, and let K € G be the
kernel of that representation. Then G/K is of multiplicative type, so it embeds into
a torus 7. Since T is central in G, a subgroup F’ as in Lemma 5.3 is normal, so
let 7, = G/ F’, which is also a torus. The kernel of the natural map G — T} x T,
is contained in K N F’. On the other hand, K N F’ = {1} because p does not divide
the order of K. This shows that G embeds into the torus 7} x 7> and hence is of
multiplicative type. O

Example 10.3. Proposition 10.2 does not generalize to tame groups. For a coun-
terexample, assume that the field k contains a primitive root of unity of order p2, and
consider the group G = G?, xZ/p*Z, where a generator in Z/p>Z acts by cyclically
permuting the p copies of G,,. The group G is tame since C(Z/p*Z) =7/ pZ = »
acts trivially on G/ . On the other hand, G is not abelian and hence is not of
multiplicative type.

We claim that ed(G; p) = 1 and hence ed(G; p) < p — 2 for every odd prime p.
There is a natural p-dimensional faithful representation p of G; p embeds G/, into
GL, diagonally in the standard basis ey, ..., e,, and Z/ p*Z cyclically permutes
ey, ...,ep,. Taking the direct sum of p with the one-dimensional representation
xX:G—=>Z/p*Z=n 2 <> Gy =GLy, we obtain a faithful (p + 1)-dimensional rep-
resentation p @ x, which is therefore generically free by Corollary 7.4 (this can also
be verified directly). Hence, ed(G; p) < (p+ 1) —dim(G) = 1. On the other hand,
by Lemma 10.1, we see that ed(G; p) > 1 and thus ed(G; p) =1, as claimed. [

Let I', be a finite p-group, and let ¢ : P — X be a map of Z[I",]-modules. As
in [Lotscher et al. 2013], we will call ¢ a p-presentation if P is permutation and
the cokernel is finite of order prime to p. We will denote by / the augmentation
ideal of Z[I",] and by X := X/(pX +1X) the largest p-torsion quotient with trivial
I'p-action. The induced map on quotient modules will be denoted by ¢ : P — X.
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Lemma 10.4. Let ¢ : P — X be a map of Z|I" ,]-modules. Then the cokernel of ¢
is finite of order prime to p if and only if ¢ is surjective.

Proof. This is shown in [Merkurjev 2010, Proof of Theorem 4.3] and from a
different perspective in [Lotscher et al. 2013, Lemma 2.2]. ]

In the sequel, for G a group of multiplicative type over k, the group I', in
the definition of “p-presentation” is understood to be a Sylow p-subgroup of
I' = Gal(¢/k), where £/k is a Galois splitting field of G.

Proposition 10.5. Let G be a central extension of a p-group F by a torus T, and
let 0 <r < p —2. The following statements are equivalent:

(a) ed(G; p) <r.

(b) G is of multiplicative type, and there is a p-presentation P — X (G) whose
kernel is isomorphic to the trivial Z|T" ,]-module 7".

Proof. (a) = (b) Assuming (a) by Proposition 10.2, G is of multiplicative type. By
[Lotscher et al. 2013, Corollary 5.1], we know there is a p-presentation P — X (G)
whose kernel L is free of rank ed(G; p) < p —2. By [Abold and Plesken 1978,
Satz], I", must act trivially on L.

(b) = (a) This direction follows from [Lotscher et al. 2013, Corollary 5.1]. U

Proposition 10.6. Assume that G is of multiplicative type with a p-presentation
¢ : P — X (G) whose kernel is isomorphic to the trivial Z|I" ,]-module 7" for some
r > 0. Then ed(G; p) <r, and the following conditions are equivalent:

(a) ed(G; p)=r.
(b) ker ¢ is contained in pP + I P.
(c) ker ¢ is contained in

{ZaMeP

reA

a, =0 (mod p), VA € AFP}.

Here I denotes the augmentation ideal in Z[I",1, and A is a I ,-invariant basis of P.

Proof. (a) <= (b) We have a commutative diagram

1 7" P— xG)

| I

@)p7) —— P —25 X(G)

with exact rows. By Lemma 10.4, ¢ is a surjection. Therefore, ker¢ € pP + 1 P if
and only if ¢ is an isomorphism.



1838 Roland Lotscher, Mark MacDonald, Aurel Meyer and Zinovy Reichstein

Write P as a direct sum P >~ EBTZI P; of transitive permutation Z[I",]-modules
Py,...,Py. Then P/(pP+1P)~ @?’ZIPJ/(ij —1—IP]~) ~ (Z]pZ)". If ¢ is not
an isomorphism, we can replace P by the direct sum P of only m—1 P;s without los-
ing surjectivity of ¢. The composition P <> P — X(G)is thenstill a p-presentation
of X(G) by Lemma 10.4, so ed(G; p) <rank P—dimG <rank P — dim G =r.

Conversely, assume that ¢ is an isomorphism. Let ¥ : P’ — X(G) be a p-
presentation such that ed(G; p) = rankker ¢. Let d be the index [X(G) : ¢ (P)],
which is finite and prime to p. Since the map X(G) — d - X(G), x — dx is an
isomorphism, we may assume that the image of v is contained in ¢ (P). We have an
exact sequence Homzr,;(P’, P) — Homz(r,1(P’, ¢ (P)) — Exté[rp](P/, 7"), and
the last group is zero by [Lorenz 2005, Lemma 2.5.1]. Therefore, ¥ = ¢ o ¢’ for
some map /' : P" — P of Z[I",,]-modules. Since ¢ is an isomorphism and ¥ is a
p-presentation, it follows from Lemma 10.4 that v/ is a p-presentation as well and
in particular that rank P’ > rank P. Thus, ed(G; p) = rankker ¢ > rank ker¢p =r.

(b) <= (c). It suffices to show that P'» N (pP + I P) consists precisely of the
elements of P'» of the form Y sen @A witha, =0 (mod p) forall 1 € A'” for any
permutation Z[T",]-module P. One easily reduces to the case where P is a transitive
permutation module. Then P'» consists precisely of the Z-multiples of Y, _, A,
and pP + I P are the elements ), _, a;A with) , _,a; =0 (mod p). Thus, for
n €7, the element n) , _,A liesin pP + I P if and only if n - |A| =0 (mod p)
if and only if n =0 (mod p) or |[A] =0 (mod p). Since |A] is a power of p, the
claim follows. (]

Example 10.7. Let E be an étale algebra over k. We can write E =] X --- X £,
with some separable field extensions ¢;/ k. The kernel of the norm map

n: RE/k(Gm) — Gm

is denoted by Rg}k(Gm). Let G = n_l(,upr) for some r > 0. It is a group of
multiplicative type fitting into an exact sequence

1> RY)(Gp) > G — jupr — 1.

Let £ be a finite Galois extension of k containing £1, ..., £, (so £ splits G), let
I' =Gal(¢/k) and 'y, = Gal(£/¢;), and let I, be a p-Sylow subgroup of I'. The
character module of G has a p-presentation

m
P:=@zIr/T,] - X(G)
i=1
with kernel generated by the element (p”, ..., p") € P. This element is fixed by I',,
so ed(G; p) < 1. It satisfies condition (c) of Proposition 10.6 if and only if » > 0
or every I',-set I'/ Ty, is fixed-point free. Note that I'/ I'y, has I',-fixed points if
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and only if [¢; : k] =|I"/ 'y, | is prime to p. We thus have

0 ifr=0and [{; : k] is prime to p for some i,

d(G; p) =
ed(G: p) {1 otherwise.
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Differential characterization
of Wilson primes for [Fg[t]

Dinesh S. Thakur

Dedicated to Barry Mazur on his 75th birthday

We consider an analog, when Z is replaced by [, [#], of Wilson primes, namely the
primes satisfying Wilson’s congruence (p — 1)! = —1 to modulus p? rather than
the usual prime modulus p. We fully characterize these primes by connecting
these or higher power congruences to other fundamental quantities such as higher
derivatives and higher difference quotients as well as higher Fermat quotients.
For example, in characteristic p > 2, we show that a prime g of F,[7] is a Wilson
prime if and only if its second derivative with respect to ¢ is 0 and in this case,
further, that the congruence holds automatically modulo p?~!. For p =2, the
power p — 1 is replaced by 4 — 1 = 3. For every ¢, we show that there are infinitely
many such primes.

1. Introduction

For a prime p, the well-known Wilson congruence says that (p — 1)! = —1 mod p.
A prime p is called a Wilson prime if the congruence above holds modulo pZ. Only
three such primes are known, and we refer to [Ribenboim 1996, pp. 346 and 350]
for history and [Sauerberg et al. 2013] for more references.

Many strong analogies [Goss 1996; Rosen 2002; Thakur 2004] between number
fields and function fields over finite fields have been used to benefit the study of
both. These analogies are even stronger in the base case Q, Z <> F(t), F[t], where
F is a finite field. We will study the concept of Wilson prime in this function field
context and find interesting differential characterizations for them with the usual
and arithmetic derivatives. In [Sauerberg et al. 2013], we exhibited infinitely many
of them, at least for many F. Our characterization gives easier alternate proof
generalizing to all F.

The author is supported in part by NSA grant H98230-10-1-0200.
MSC2010: primary 11T55; secondary 11A41, 11NOS5, 11N69, 11A07.
Keywords: Wilson prime, arithmetic derivative, Fermat quotient.
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2. Wilson primes

Let us fix some basic notation. We use the standard conventions that empty sums
are zero and empty products are one. Further,

q is a power of a prime p,

Ay = {elements of A of degree d},
(n] =14" —1,

Dy =[50 —19) =Tln—i17,

Ly =[TG" =0 =TIl

F; is the product of all (nonzero) elements of A of degree less than i,
Na = qd fora € Ay, i.e., the norm of a and

g is a monic irreducible polynomial in A of degree d.

If we interpret the factorial of n — 1 as the product of nonzero “remainders”
when we divide by n, we get F; as a naive analog of factorial of a € A;. Note
that it just depends on the degree of a. By the usual group theory argument with
pairing of elements with their inverses, we get an analog of Wilson’s theorem that
F;=—1 mod g for e a prime of degree d. Though not strictly necessary for this
paper, we now introduce a more refined notion of factorial due to Carlitz. For n € Z
and n > 0, we define its factorial by

n!::HD?"eA forn:Zniqi,Ogni<q.

See [Thakur 2004, 4.5-4.8, 4.12 and 4.13; 2012] for its properties such as prime
factorization, divisibilities, functional equations, interpolations and arithmetic of
special values and congruences, which are analogous to those of the classical
factorial. See also [Bhargava 2000], which gives many interesting divisibility
properties in great generality.

Carlitz proved D, is the product of monics of degree n. This gives the connection
between the two notions above, that for a € A;, (Na — 1)! = (—1)' F;. (See [Thakur
2012, Theorem 4.1, Section 6] for more on these analogies and some refinements
of analogs of Wilson’s theorem.) This also implies

d—1
Fy= D! []id =17~ = (=1)"Da/La. (1)
j=1

So let us restate the above well-known analog of Wilson’s theorem.

Theorem 2.1. If p is a prime of A of degree d, then

(-4 Wp—1!'=F;=—1 mod p.
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This naturally leads to:
Definition 2.2. A prime g € A, is a Wilson prime if F; = —1 mod p°.
Remarks 2.3. If d =1, then F; = —1. So the primes of degree 1 are Wilson primes.
If ¢ (¢) is Wilson prime, then so are g (¢ +60) and g (ut) for 6 € F, and pu € [FZ as
follows immediately from the formula for Fj.
We introduce some differential, difference and arithmetic differential operators.
Definition 2.4. (1) For g as above and a € A, let Q(a) := (aqd —a)/g be the
Fermat quotient. We denote its i-th iteration by Qg).
(2) For a =a(t) € A, we denote by D (a) = a® its i-th derivative with respect
to . We also use the usual short forms ¢’ = aV and a” = a'®.

(3) We define the higher difference quotients A (a) = al'l of a € A (with respect
to ¢ and 0 to be fixed later) by

ad%)=a@) and ") = @) - a1 0))/(r —0).

Theorem 2.5. Letd :=deggp. If d =1, then Fy = —1 and the valuation of Q,(t)
atpisq — 2.
Letd > 1 and k <q. Then Fy = —1 mod p* if and only if Q% (1) =0 mod p*~!
if and only if Q) (1) =0 mod p for2 <r <k.
Proof. The d = 1 case follows immediately from the definitions. Let d > 1. We
recall (see, e.g., [Thakur 2004, pp. 7 and 103; 2012, proof of Theorem 7.2]) some
facts, which we use below.
(i) The product of elements of (A/gp¥)* is —1 unless g =2,d =1, and k =2 or 3,
as seen by pairing elements with their inverses and counting order-2 elements.
(i) The product of all monic elements prime to g and of degree i is D; /(" Di—4),
where r is uniquely determined by the condition that the quantity is prime to .
(iii) Since the valuation of [m] at © is 1 or 0 according to whether d divides m,
we have [i + kd] = [i] mod 50‘11 and thus [kd]/g = [d]/g mod pqd” for k a
positive integer. In particular, these congruences hold modulo 9.
Hence, by (1), we have modulo p* (with s appropriate to make the second
quantity below a unit at )
DiaL -
1= (=1)p’ kd L (k—1)d
LiaDg—-1yq
= (=1 kd = 117"+ [k = Dd + 117 ) @[k — 1a)r" !
x ([0 = Dd = 1177779 Y[ = 2d) 0 ()

d+1

d_ 2d_ d d_
= Fy(ld)/p) @'~ D@ =aD+(pd_ya'=1(pd"

(k—D)d _q

= Fa([d]/p)? )

)q"—‘ .
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where we used that, for a prime to g, we have a1l =1 mod g and thus
a9 =1 =1 mod 4.

Hence, if Qg)(t) is 0 modulo ©*~!, then ([d]/9)?~! = 1 mod ©*, and thus,
F; = —1 mod p*. Conversely, writing ([d]/ga)qd_1 =14 ag for some a € A, we
see that if F; = —1 mod p*, then modulo g*, we have

1= +a@)]+qd+"'+q(k_2)d =l+4ap

so that ag = 0 as desired. The other implications are immediate. U

This generalizes the k = 2 case [Sauerberg et al. 2013, Theorem 2.6] with a
different manipulation of the quantities even in that case.

Next, we use this to give another criterion for Wilson prime now using the
derivative of the Fermat quotient instead of iterated Fermat quotient! For a general
study of differential operators in the arithmetic context, their classification and
applications, we refer to [Buium 2005] and references there. See also [lhara 1992].

Theorem 2.6. Assume q > 2 ord > 1. The prime g is a Wilson prime if and only
if o divides the derivative of [d]/g with respect to t.

Proof. Leta=[d]/@ =) a;t'. Then by the binomial theorem, modulo [d]?, we have

a —a=Yar (" —141) —1) = Za,-ti(i )([d]/z)l = d'[d].

(In words, the Frobenius difference quotient (aqd —a)/ (tqd —1) of a = Q(t) with
respect to ¢ is congruent to the derivative of a with respect to t modulo any prime
of degree dividing the degree of g.) Now since a is square-free and, in particular,
not a p-th power, a’ is nonzero, and since the valuation of [d] at g is 1, the claim
follows from Theorem 2.5. (]

This reduces computations from dq?-degree polynomials occurring in Fy to just
g“-degree or from iterates of Fermat quotients to the first one. Also, the derivative
kills 1/p of the coefficients on average. In fact, we will improve further.

Now we consider g-adic expansion of ¢ using Teichmiiller representatives. Let
Ay, be the completion of A at g, and let [, be its residue field. Let 6 € [, be the
Teichmiiller representative of r modulo .

Lemma 2.7. Lett =0 + Y p;p' be the p-adic expansion of t with Teichmiiller
representatives ; € F,. Then

S WU S co )
' RM0) T pD0) T M)

More generally, if (t —0)" divides p'?), then p; = pl1(0) =0 for2 <i <r, and
for2 <i <r,we have

7

RIC)
_80[1](9)1'4-1 :

i =
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Proof. For d = 1, we have 1 = 6 + g, whereas for d > 1 the expansion is an infinite
sum. Noting that g = [](¢ —09"), where i runs from 0 to d — 1, the claim follows
inductively on i by starting with the unknown g-adic expansion and by dividing by
t — 6 and then putting # = 0 in each step. _

In more detail, in the first step, we have 1= u; [],.;.0( — 67') plus terms
divisible by t — 6 so that u; = 1/]](@ —69) = 1/p1 (). In the next step, we
have —p21/(p110) (") = pr + u3(t — )M + - - -, proving the claim for ;.
Under the hypothesis of divisibility, the claims are clear inductively on i. ]

Remarks 2.8. We record in passing that without any hypothesis as in the second
part of Lemma 2.7, a similar manipulation leads to

[3](9) [2](0)2
_pm 4+26®m 5
P (0) P (0)

Note that the second term vanishes if pm (@) =0 (orif p =2).

Mm3 =

We now use Theorem 2.5 and Lemma 2.7 to get our main theorem, a criterion for
Wilson prime in terms of vanishing at 6 of the second difference quotient value as
well as in terms of the total vanishing of the second derivative of g with respect to ¢:

Theorem 2.9. (i) A prime g is a Wilson prime if and only if £'*'(8) = 0.

(i) When p > 2, g is a Wilson prime if and only if " = d*g/dt? is identically
zero. In other words, the Wilson primes are exactly the primes of the form
3" pit! with p; nonzero implying i =0, 1 mod p.

(iii)) When p > 2, if o is a Wilson prime, then the Wilson congruence holds modulo
pP~1. Also, pl1(0) =0for 1 <i < p.

(iv) When p = 2, the Wilson primes are exactly the primes of the form Y p;t with
pi nonzero implying i =0, 1 mod 4. For such g, the Wilson congruence holds
modulo ©3, and pU1(0) =0 for 1 <i < 4.

2

Proof. We have Q,(t) = — ) — oo — -+ — qu_lpq“— mod o9~ and

Qp(Qp (1) = 2+ 3+ -+ prga_19%  mod 7' ~2.
Hence, (i) follows by Lemma 2.7.

Let o := U (0) and (1) = o (1) —a(t —6). Then p?1(0) = 0 is equivalent to
(t —6)3 dividing f(¢). This condition implies f”(9) = " (6) =0, but g being an
irreducible polynomial with 6 as a root, this implies that the lower degree second
derivative is identically zero. Conversely, f(#) = f'(6) = 0 implies, if d > 1,
f(t) = (t —0)*h(t), and () =0 then implies that 2h(0) = 0 so that if p > 2,
h is divisible by t — 6, implying (ii).

Once the second derivative is identically zero, the higher derivatives are also
zero. (Note the (d + 1)-th derivative or p-th derivative is identically zero anyway
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for any g.) The vanishing of first i derivatives implies at least i + 1 multiplicity
for i < p, which implies vanishing of higher difference quotients (which decrease
in degree by 1 in each step). This implies (iii) by Lemma 2.7 and Theorem 2.5.
Here is an another way to see the last part. If we write o (t) = Y p;t’, then
p(+0)=> a;it! witha; =Y pi (,i)@k_i . Our condition translates to 13 dividing
f(t+0) so that oy = 0. By Lucas’ theorem or directly, if p = 2, (’2) = 0 implies
(g) = 0 so that o3 = 0. Similarly, for general p, (’2) = 0 implies (;) = 0 for
2 <r < p—1, implying o, = 0 for those r. This also proves (iv). U

Theorem 2.10. There are infinitely many Wilson primes for T, [t].

Proof. First let g be odd. It is enough to produce infinitely many irreducible
elements in A that have powers of ¢ occurring only with exponents that are O or 1
modulo p. Let n be a positive integer. Then by consideration of factorization of
the cyclotomic polynomial, we see that there are ¢ (¢g" — 1)/n primitive monic
polynomials of degree n, where (as usual) we mean by a primitive polynomial
of degree n a minimal polynomial over [, of a generator of ;. For each such
irreducible polynomial P(t) = Y p;t', the polynomial }_ p;#@ ~D/@=D ig of the
form we want and is irreducible by a theorem of Ore [1934, Chapter 3, Theorem 1].

The same method works for ¢ = 2* with s > 1 since the exponents are then 0, 1
mod 4 as we require. The remaining case ¢ = 2 can not be handled by this method.
In this case, applying Serret’s theorem [Lidl and Niederreiter 1996, Theorem 3.3.5]
(or the special case recalled in [Sauerberg et al. 2013, Theorem 2.8]) to the (Wilson)
prime f(t) =t*+1t+ 1 and s = 5", we get infinitely many primes f(¢>"), which
are Wilson primes by Theorem 2.9(iv). ([

Remarks 2.11 (Heuristic counts and exact multiplicity). In the Z case, the number
of Wilson primes less than x grows like ) p<x 1/p ~loglog(x) under the naive
heuristics of ((p —1)!+ 1)/ p being randomly distributed modulo p, and we expect
at most finitely many primes giving the congruence to power p>. In [Sauerberg et al.
2013] for some g, we produced families of Wilson primes for A with loglog(x)
growth of the size, but now with Theorem 2.9(ii), we can show that there are many
more. In fact, if we let r; and w, denote the number of primes and Wilson primes,
respectively, of A of degree d, then under the naive heuristics of randomness of p; in
Theorem 2.9(ii) for primes, we see that as d tends to infinity and (log wy)/(log 7y)
approaches 2/p if p is odd and 1/2 if p = 2. It should be possible to prove these
asymptotics using Theorem 2.9(ii). In our case, the congruence holds to power g7 ~!
for the Wilson primes (to power g2 if p = 2). It is unclear whether this power can
be increased for some primes. Though the correspondence of Theorem 2.5 goes
up to power g7~ the small amount of numerical data calculated by the author’s
masters student George Todd (for which the author thanks him) showed exactness
of the power p”~! even for g not prime.
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Remarks 2.12. We finish by giving quick sketches of alternate and simplified
proofs of earlier results.

(1) We know that for a € [y, o =t” —t —a is a prime of A if and only if trace of a
to [, is nonzero. Assume g is a prime and ¢ = p™. Then

mp—1

19 =" " " = =P o ot
so that Q, (1) = (14" — 1)/ = P "4+ P+ 1. If Q3 (1) denotes the
r-th iteration of Q,, we see immediately by induction that for p > r > 1, the
valuation at g of Qg) (t) is p — r. Similarly, it is easy to check that ¢ = 2
and p = 1* 4+t + 1 satisfies the Wilson congruence modulo g3 but not p*, and
similarly, a calculation as above shows that in this case Qg) (t) vanishes modulo g
but not Q3 (1).

This gives another proof of [Thakur 2012, Theorem 7.1], which says that such
g’s are Wilson primes (even to the exact (p — 1)-th power congruence) if p > 2.

(2) Theorem 2.6 allows us to give a simple alternate proof of [Sauerberg et al. 2013,
Theorem 2.9]. By the theorem above, g (1)? divides 1+ (t"d — D' () /o (1) so
that modulo g (°)2,

0=1+ (D= 1)rp' ) /p ) =1+ (19" = 1)ip/(*)s* /o (),

exactly as in the middle part of the proof of [Sauerberg et al. 2013, Theorem 2.9].
This implies by Theorem 2.5 that g (¢°) is Wilson prime as desired.

(3) Theorem 2.6 also provides another proof for the reciprocal prime theorem
[Sauerberg et al. 2013, Theorem 3.3] when p is odd. If f(¢t) =t%p (1/t) and p
is a Wilson prime, then " =0 and d(d — 1) = 0 mod p so that taking derivatives
with the product and chain rules simplifies to f” = —2(d — 1)t“3p’(1/t), which
is 0 if and only if d =1 mod p.

Using Theorem 2.9(ii) and (iv), instead of Theorem 2.6, gives even simpler
proofs of results in (2) and (3) (and also (1) except for the exactness of the exponent
p — 1 in the modulus). We leave it as a straightforward exercise.
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Principal W-algebras for GL(m|n)

Jonathan Brown, Jonathan Brundan and Simon M. Goodwin

We consider the (finite) W-algebra W,,), attached to the principal nilpotent orbit
in the general linear Lie superalgebra gl,,,,(C). Our main result gives an explicit
description of W,,, as a certain truncation of a shifted version of the Yangian
Y(g[m). We also show that W,,|, admits a triangular decomposition and construct
its irreducible representations.

1. Introduction

A (finite) W-algebra is a certain filtered deformation of the Slodowy slice to a
nilpotent orbit in a complex semisimple Lie algebra g. Although the terminology is
more recent, the construction has its origins in the classic work of Kostant [1978].
In particular, Kostant showed that the principal W-algebra—the one associated
to the principal nilpotent orbit in g—is isomorphic to the center of the universal
enveloping algebra U (g). In the last few years, there has been some substantial
progress in understanding W-algebras for other nilpotent orbits thanks to works
of Premet, Losev and others; see [Losev 2011] for a survey. The story is most
complete (also easiest) for sl,(C). In this case, the W-algebras are closely related
to shifted Yangians; see [Brundan and Kleshchev 2006].

Analogues of W-algebras have also been defined for Lie superalgebras; see, for
example, the work of De Sole and Kac [2006, §5.2] (where they are defined in terms
of BRST cohomology) or the more recent paper of Zhao [2012] (which focuses
mainly on the queer Lie superalgebra q,,(C)). In this article, we consider the easiest
of all the “super” situations: the principal W-algebra Wy, |, for the general linear
Lie superalgebra g, (C). Our main result gives an explicit isomorphism between
W n and a certain truncation of a shifted subalgebra of the Yangian Y (gl;);); see
Theorem 4.5. Its proof is very similar to the proof of the analogous result for
nilpotent matrices of Jordan type (m, n) in gl,, , ,(C) from [Brundan and Kleshchev
2006].

Brown and Goodwin are supported by EPSRC grant number EP/G020809/1. Brundan is supported by
NSF grant number DMS-1161094.

MSC2010: primary 17B10; secondary 17B37.
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The (super)algebra W,,|, turns out to be quite close to being supercommutative.
More precisely, we show that it admits a triangular decomposition

Wity = W Wor s Wi

min "' m mn

in which W, and W,' ~are exterior algebras of dimension 2™""") and W,
is a symmetric algebra of rank m + n; see Theorem 6.1. This implies that all
the irreducible W,,,-modules are finite-dimensional; see Theorem 7.2. We show
further that they all arise as certain tensor products of irreducible gl;;(C)- and
gl (C)-modules; see Theorem 8.4. In particular, all irreducible W,,,-modules are
of dimension dividing 2™"-") A closely related assertion is that all irreducible
highest-weight representations of ¥ (gl;;) are tensor products of evaluation modules;
this is similar to a well-known phenomenon for Y (gl,) going back to [Tarasov 1985].

Some related results about W,,,, have been obtained independently by Poletaeva
and Serganova [2013]. In fact, the connection between W, and the Yangian
Y (gly);) was foreseen long ago by Briot and Ragoucy [2003], who also looked at
certain nonprincipal nilpotent orbits, which they assert are connected to higher-rank
super Yangians although we do not understand their approach. It should be possible
to combine the methods of this article with those of [Brundan and Kleshchev 2006]
to establish such a connection for all nilpotent orbits in gl,,,(C). However, this
is not trivial and will require some new presentations for the higher-rank super
Yangians adapted to arbitrary parity sequences; the ones in [Gow 2007; Peng 2011]
are not sufficient as they only apply to the standard parity sequence.

By analogy with the results of Kostant [1978], our expectation is that W,,, will
play a distinguished role in the representation theory of gl,,,,(C). In a forthcoming
article [Brown et al.], we will investigate the Whittaker coinvariants functor Hy, a
certain exact functor from the analogue of category O for gl,,,, (C) to the category of
finite-dimensional W,,,-modules. We view this as a replacement for the functor V
of Soergel [1990]; see also [Backelin 1997]. We will show that Hy sends irreducible
modules in O to irreducible W, |,-modules or 0 and that all irreducible W,,|,-modules
occur in this way; this should be compared with the analogous result for parabolic
category O for gl,,,,(C) obtained in [Brundan and Kleshchev 2008, Theorem E].
We will also use properties of H to prove that the center of W, is isomorphic to
the center of the universal enveloping superalgebra of g, (C).

Notation. We denote the parity of a homogeneous vector x in a Z/2-graded vector
space by |x| € {0, 1}. A superalgebra means a Z/2-graded algebra over C. For
homogeneous x and y in an associative superalgebra A = Ay ® Ay, their super-
commutator is [x, y] := xy — (=1)*I’lyx. We say that A is supercommutative if
[x, y] =0 for all homogeneous x, y € A. Also for homogeneous xi, ..., x, € A,
an ordered supermonomial in x1, . .., X, means a monomial of the form xi' . -x,i"
foriy,...,i, >0 suchthati; <1if x; is odd.
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2. Shifted Yangians

Recall that gl,,,(C) is the Lie superalgebra of all (m + n) x (m + n) complex
matrices under the supercommutator with Z/2-grading defined so that the matrix
unite; jisevenif 1 <i,j <morm+1=<1i, j <m+n and ¢; ; is odd otherwise.
We denote its universal enveloping superalgebra U (gl,,,,,); it has basis given by all
ordered supermonomials in the matrix units.

The Yangian Y (gl,,,) was introduced originally by Nazarov [1991]; see also
[Gow 2007]. We only need here the special case of ¥ = Y (gl;);). For its definition,
we fix a choice of parity sequence

(1, 12D eZ/2x Z)2 (2-1)

with |1]| # |2|. All subsequent notation in the remainder of the article depends implic-

itly on this choice. Then we define Y to be the associative superalgebra on generators

{11 <i.j <2, r >0}, with 1) of parity |i| + | j|. subject to the relations

L,

min(r,s)—1
") )7 — 3 lilliHilipl ] @ r+s—1-a) _ (r+s—1-a) (@
(7. 15l = (=1) Y @ tp.i fig )
a=0

adopting the convention that tl.((}) =4, j (Kronecker delta).

Remark 2.1. In the literature, one typically only finds results about ¥ (gl;|;) proved
for the definition coming from the parity sequence (|1, |2|) = (0, 1). To aid in trans-
lating between this and the other possibility, we note that the map tl.(fj) = (— 1)’ti(7rj)
defines an isomorphism between the realizations of Y (gly};) arising from the two
choices of parity sequence.

As in [Nazarov 1991], we introduce the generating function
) =Y tu e Yu .
r>0

Then Y is a Hopf superalgebra with comultiplication A and counit ¢ given in terms
of generating functions by

2
A ) =Y ton () @ty j(u), (2-2)
h=1
ety j(u) =46 ;. (2-3)

There are also algebra homomorphisms
in:Ugly) — Y. e (DY, (2-4)
ev:¥ = Ugly), ) 808+ (D8, 1e; . (2-5)
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The composite ev o in is the identity; hence, in is injective and ev is surjective. We
call ev the evaluation homomorphism.

We need another set of generators for Y called Drinfeld generators. To define
these, we consider the Gauss factorization T (1) = F (u) D(u) E (1) of the matrix

T = (tl,l(u) t1,2(u)) ‘

t1(u) to(u)

This defines power series d; (1), e(u), f(u) € Y [[u~'] such that

_(diw) O (1 e(w) _ 1 0
D(u)_( 0 dz(u))’ E(u)_(o 1), F(u)_(f(u) )

Thus, we have that

di(u) = 11,1 (u), dr(u) =t (1) — o1 Wty 1 (@)t 2(w),  (2-6)

e@)=t1) ' hoG),  f@)=n1)H 1w -7
Equivalently,

f1(u) =di(u), 1) =da(u) + fu)di(u)e(u), (2-8)

o) =di(wew),  ni(u)= fd(u). (2-9)

The Drinfeld generators are the elements di(r), e and ) of Y defined from the ex-

pansions d;(u) = 3", . dl.(r)u_’, ew) =3, e(’)u_i and f(u) =), fPu"".
Also define d” € Y from the identity d;(u) = Y, d\"u™" := d; ().

Theorem 2.2 [Gow 2007, Theorem 3]. The superalgebra Y is generated by the
even elements {dl.(r) |i=1,2, r >0} and odd elements (e, f) | r > 0} subject
only to the following relations:
r+s—1
[di(r)’ d(s)] =0, [e(r)’ f(s)] — (_1)|1| Z d’l(a)dér-‘rs—l—a)’
a=0

r—1
[e(r)’ e(S)] — 0’ [dl'(r), e(s)] — (_1)|1| Zdi(a)e(r+s_l_a)y
a=0

r—1
[f(r)’ f(s)] — 0’ [di(i’), f(s)] — _(_1)\1| Z f(r+s_l_a)dj(a)'
a=0
0 _ () - : ro gla) j(r—a) _
Hered;” = 1and d;"’ is defined recursively from ) | _,d;"’d; =6.0.

Remark 2.3. By [Gow 2007, Theorem 4], the coefficients {c¢” | r > 0} of the
power series

c(u) = Z cPDu™" = dy(u)ds(u) (2-10)

r>0
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generate the center of Y. Moreover, [¢”), f®)] = (=1)I!c¢ =D 50 these super-
commutators are central.

Remark 2.4. Using the relations in Theorem 2.2, one can check that ¥ admits an
algebra automorphism

Y=Y, d”—d, d s d?, eV — O fO s _e® (2-11)
By [Gow 2007, Proposition 4.3], this satisfies
Aol =Po(fL®C)oA, (2-12)
where P(x ® y) = (=¥ y @ x.

Proposition 2.5. The comultiplication A is given on Drinfeld generators by the
following:

A(dy () = di () ® di (u) +di (w)e(u) ® f(u)di(u),
A w) =Y (=" euy"di(u) @ di(u) f (w)",

n>0

Adr(w) =Y (=D Hdywew)" ® f )" da(u),

n>0
A(dy () = do () @ dy(u) — e(u)dy (u) ® da(u) f (u),
Ale) =1@ew) =Y (=" ew)" @ di(u) f )"~ dr(w),

n>1

A(f@) = fa)@1=> (=DM dywyew)" ' dy(u) ® f(u)".

n>1

Proof. Check the formulae for d;(u), di(u) and e(u) directly using (2-2), (2-6)
and (2-7). The other formulae then follow using (2-12). [l

Here is the PBW theorem for Y.

Theorem 2.6 [Gow 2007, Theorem 1]. Order the set {tifrj.) |1<i,j<2,r>0}in
some way. The ordered supermonomials in these generators give a basis for Y.

There are two important filtrations on Y. First we have the Kazhdan filtration,
which is defined by declaring that the generator ti(fj) is in degree r, i.e., the filtered
degree-r part F,Y of Y with respect to the Kazhdan filtration is the span of all
monomials of the form ti(]ryl}l . -tiir:’;n such that r{ + --- +r, < r. The defining
relations imply that the associated graded superalgebra grY is supercommuta-

tive. Let gl});[x] denote the current Lie superalgebra gl;|; (C) ®c C[x] with basis
{ei,jx" |1 <i,j <2, r >0}. Then Theorem 2.6 implies that gr ¥ can be identified
with the symmetric superalgebra S(gl;|;[x]) of the vector superspace gl;;;[x] so
that gr, 1) = (=1)lile; jxr=1,

roLg
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The other filtration on Y, which we call the Lie filtration, is defined similarly
by declaring that tifr]? is in degree r — 1. In this case, we denote the filtered
degree-r part of Y by F/Y and the associated graded superalgebra by gr' Y. By
Theorem 2.6 and the defining relations once again, gr' Y can be identified with the
universal enveloping superalgebra U (gl;;[x]) so that gr’r_l tl.(’ri) = (—1)|i|e,-,jx’_1.
The Drinfeld generators di(r), e and f ) all lie in Fr’_lY , and we have that
o d =gr_, ti(,ri)’ g e =gr_, tf’% gy [ =gr_, fz(?
(The situation for the Kazhdan filtration is more complicated: although di(r), e
and f) do all lie in F, Y, their images in gr, ¥ are not in general equal to the images
of tl.(’ri), tl(r% or tz(,?’ but they can expressed in terms of them via (2-6) and (2-7).)

Combining the preceding discussion of the Lie filtration with Theorem 2.6, we
obtain the following basis for Y in terms of Drinfeld generators. (One can also
deduce this by working with the Kazhdan filtration and using (2-6)—(2-9).)

Corollary 2.7. Order the set {d" |i =1,2, r > 0}U{e®, f© | r > 0} in some
way. The ordered supermonomials in these generators give a basis for Y.

Now we are ready to introduce the shifted Yangians for gl,;; (C). This parallels
the definition of shifted Yangians in the purely even case from [Brundan and
Kleshchev 2006, §2]. Let 0 = (s;,j)1<i,j<2 be a 2 x 2 matrix of nonnegative
integers with 51,1 = 522 = 0. We refer to such a matrix as a shift matrix. Let Y, be
the superalgebra with even generators {di(’) |i =1,2, r >0} and odd generators
{e | r > s12) U {f(’) | r > 52,1} subject to all of the relations from Theorem 2.2
that make sense, bearing in mind that we no longer have available the generators ¢
for 0 <r < sy, or f© for 0 <r <s51. Clearly there is a homomorphism Y, — Y
that sends the generators of Y, to the generators with the same name in Y.

Theorem 2.8. Order the set
dPli=1,2,r>000{e? |r>s120U{f" |r> s}

in some way. The ordered supermonomials in these generators give a basis for Y.
In particular, the homomorphism Y, — Y is injective.

Proof. 1t is easy to see from the defining relations that the monomials span, and
their images in Y are linearly independent by Corollary 2.7. (]

From now on, we will identify Y, with a subalgebra of Y via the injective
homomorphism Y, < Y. The Kazhdan and Lie filtrations on Y induce filtrations
on Y, such that gr¥, CgrY and gr' Y, C gr' Y. Let 919}, [x] be the Lie subalgebra
of gly;;[x] spanned by the vectors e; jx" for 1 <i, j <2 and r > s; ;. Then we have
that gr Y, = S(glf),[x]) and gr' Y, = U (g} [x]).
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Remark 2.9. For another shift matrix 6’ = (slf’j)lg,-’jfz with Sé’l + s{yQ =521+ 51,2
there is an isomorphism

LY, SV, di(r) - di(r>’ e > e(s;,z_sll"'r), f(r) — f(sé{l—sz,H-r)' (2-13)

This follows from the defining relations. Thus, up to isomorphism, Y, depends only
on the integer 57 1 + 1.2 > 0, not on o itself. Beware though that the isomorphism ¢
does not respect the Kazhdan or Lie filtrations.

For o # 0, Y, is not a Hopf subalgebra of Y. However, there are some useful
comultiplication-like homomorphisms between different shifted Yangians. To start
with, let 0" and o!° be the upper and lower triangular shift matrices obtained
from o by setting 521 and s 2, respectively, equal to 0. Then, by Proposition 2.5,
the restriction of the comultiplication A on Y gives a homomorphism

A:Yy — Y0 ® Yow. (2-14)

The remaining comultiplication-like homomorphisms involve the universal envelop-
ing algebra U (gl;) = Cle;,1]. Assuming that s; » > 0, let o4 be the shift matrix
obtained from o by subtracting 1 from the entry s; ». Then the relations imply that
there is a well-defined algebra homomorphism

Ay Yy = Yo, ®@U(gH). (2-15)
d” > d"” @1, d v dY @1+ (1)) Ve,
e s e @14 (—DPe Ve, O FOQI1.

Finally, assuming that s | > 0, let o_ be the shift matrix obtained from o by
subtracting 1 from s, ;. Then there is an algebra homomorphism

ALY, > U@gl) @Y, (2-16)
4" 10d", 4 > 10d + (=)Ple @dy ™",
FOS 10 O 4 (—DPley 1@ £V, 60 s 1 @e®,

If 512 > 0, we denote (*P); = (o4)"P by aip. If 52,1 > 0, we denote (01°)_ = (o )l
by ol If both s1,2 > 0and 52,1 > 0, we denote (0)_ = (0-)+ by o+.

Lemma 2.10. Assuming that s| 2 > 0 in the first diagram, s> 1 > 0 in the second
diagram and both 512 > 0 and 52,1 > 0 in the final diagram, the following commute:

Ay
YO’ Ycr+ ® U (9 [1)

Al de 2-17)
d®A,
Y0 @ Yop ——————— Y 00 ® Yf’ip ®U(gly)
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YU A Yo.lo ® Ygup

A_l lA@id (2-18)
id®A
Uglh) @Y, —————U(gh) ® Y, ® You

Ay
Y, Yo, ®U(gly)

AJ lA_®id (2-19)
id®A,
U )®Y, ————— U(gl)®Y,, @U(gl))

Proof. Check on Drinfeld generators using (2-15) and (2-16) and Proposition 2.5. [J

Remark 2.11. Writing ¢ : U(gl;) — C for the counit, the maps (id ®¢) o A and
(¢ ® id) o A_ are the natural inclusions Y, — Y, . and Y, — Y,_, respectively.
Hence, the maps A and A_ are injective.

3. Truncation

Let o = (si,j)1<i, j<2 be a shift matrix. Suppose also that we are given an integer
[ > 5314512, and set

k2=l—S2,] — 81,2 > 0.

In view of Lemma 2.10, we can iterate A a total of s; 5 times, A_ a total of s3 |
times and A a total of k — 1 times in any order that makes sense (when k = 0,
this means we apply the counit ¢ once at the very end) to obtain a well-defined
homomorphism

ALY, - U@)®> @Y @ U(gl)®"2.

(02
7=\10)°

A} = ([d®eRid®id) o (A_ ®id®id)o (A4 ®id)o Ay,
A = ([d®AL ®id)o (A_®id)o Ay = ([d®A, ®id) o (([d®AL) 0 A_,
A’ =(A_®id®id®id) o (id®A; ®id) o ((d®A,) o A

= (([d®A®id®id) o (A_ ®id®id) o (d®A4) 0 A

For example, if

then

Let
UL :=U@gl)®> @ U (gl )® @ U(gl)®2, (3-1)
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viewed as a superalgebra using the usual sign convention. Recalling (2-5), we
obtain a homomorphism

ev, := (i[d® @ ev®* ®1d®*2) 0 AL 1 ¥y — UL. (3-2)

Let
Y. :=ev (Y,) CU.. (3-3)

This is the shifted Yangian of level I.

In the special case that o = 0, we denote ev’, Y. and U. simply by ev/, ¥’
and U!, respectively, so that Y/ =ev/(Y) C U'. We call Y! the Yangian of level .
Writing e[‘] = (—1D)N®CD ®e; ; ® 19079, we have simply that

(r) —[C 1-5le2] [Cr]
ev (t ) - Z Z € flllehlzhz T,y J (3-4)

l<ci<-<ep<l 1<hy,...,h,_1<2
forany 1 <i,j <2 and r > 0. In particular, ev (t(r)) =0 for r > 1. Gow
[2007, proof of Theorem 1] shows that the kernel of evi 1Y —» Ylis generated
by {t(r) |1 <i,j <2, r>I[}and, moreover, the images of the ordered supermono-
mials in the remaining elements {t( ) |1<i,j<2, 0<r<I} give a basis for Y’.
(Actually, she proves this for all Y (g[m|n) and not just Y (gl;;).) The goal in this
section is to prove analogues of these statements for Y, with o # 0.
Let I! be the two-sided ideal of Y,, generated by the elements dfr) forr > k.

Lemma 3.1. I Ckerev..

Proof. We need to show that evf7 (dl(r)) =0 for all » > k. We calculate this by first
applying all the maps A and A_ to deduce that

evh (@) =121 @ evk(d\"”) @ 19912,
Since dfr) = tl(rf, it is then clear from (3-4) that ev¥ (dl(r)) =0 forr > k. O
Proposition 3.2. The ideal I (’, contains all of the following elements:

Z dl(’_“)g(“) forr >s12+k, (3-5)

S12<a<r

Z f(b)dl(r_b) forr > sy +k, (3-6)

52,1 <b<r

dy + Y [P forr > 1. (3-7)

S12<a

s2.1<b

a+b<r
Proof. Consider the algebra Y, [~ "N [u] of formal Laurent series in the variable !
with coefficients in Y. For any such formal Laurent series p = er N pru’, we
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write [ p]>¢ for its polynomial part Zivzo pru”. Also write = for congruence modulo
Yo[ul+u='IL[u="], so p =0 means that the u"-coefficients of p lie in I} for all
r < 0. Note that if p =0, g € Y,[u], then pg = 0. In this notation, we have by
definition of IfI that u*d, (u) = 0. Introduce the power series

es (1) := Z eMur, fo(u) := Z FOu,
r>s12 r>s821

The proposition is equivalent to the following assertions:

w2 (w)ey (u) =0, (3-8)
w> o u)d; () = 0, (3-9)
u (do(u) + f5 (w)dy (u)eq (1)) = 0. (3-10)
For the first two, we use the identities
(=DM ), e*2 TV = u"2d) (u)eq (), (3-11)
(DMLY dy ()] = u® fr (w)d, (). (3-12)

These are easily checked by considering the u~"-coefficients on each side and using
the relations in Theorem 2.2. Assertions (3-8) and (3-9) follow from (3-11) and
(3-12) on multiplying by u* as u*d; (u) = 0. For the final assertion (3-10), recall
the elements ¢ from (2-10). Let ¢, (1) := > c%~". Another routine check
using the relations shows that r>a,1+512

(DML e ()] = w1 eq (). (3-13)
Using (3-8), (3-12) and (3-13), we deduce that
0= (=DM 2 M 2D dy (u)eq (u)]
="y ) (=DM, g )]+ DD dy ()]eq ()
= udy (u)co (u) +u' £ )di (w)eq (1).
To complete the proof of (3-10), it remains to observe that
w120 () = w2 dy (w)dy (1) — [ T2 dy (u)do ()]0
hence, u'd; (u)cy (1) = u'd (u). a
For the rest of the section, we fix some total ordering on the set
Q:={d" 10<r<kyu{d’ 10<r<1
Ule" |sio<r <sio+kU{f [so1 <r <syi+k}. (3-14)

Lemma 3.3. The quotient algebra Y, /1 Cl, is spanned by the images of the ordered
supermonomials in the elements of 2.
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Proof. The Kazhdan filtration on Y, induces a filtration on Y, /I. with respect to
which gr(Y, /1 é) is a graded quotient of gr Y. We already know that gr Y, is super-
commutative, so gr(Y, /1%) is too. Let d” := gr,(d"” + I1), e := gr, (") 4 I})
and I(’) =gr, (fO + 1.

To prove the lemma, it is enough to show that gr(Y, /I') is generated by

@’ 10<r=<ijuidy’ 0<r=1

U{e” |s12 <r <s1o+kU{f7 |51 <r <sp1+k}
This follows because d Y) = 0 for r > k, and each of the elements gig) forr > [,
e for r > 51 +k and ]_”(” for r > 55,1 + k can be expressed as polynomials in
generators of strictly smaller degrees by Proposition 3.2. (I

Lemma 3.4. The image under evf7 of the ordered supermonomials in the elements
of Q are linearly independent in Y, al'

Proof. Consider the standard filtration on U’ generated by declaring that all the
elements of the form 1 ®---®1Q®x@1®---®1 for x € gl or gl;|; are in degree 1.
It induces a filtration on Y so that gr Y. is a graded subalgebra of gr U.. Note that
grU! is supercommutative, so the subalgebra gr Y! is too. Each of the elements
evl (d "y, evl (e) and evl (f() are in filtered degree r by the definition of ev’ .
Let gll.r) = gr, (ev) (di(r))), e = gr.(evl (e")) and f) = gr,(ev) (f1)).

Let M be the set of ordered supermonomials in -

@’ 10<r=<ijuidy’ |0<r=1
Ule” |s12 <r <si2+kU{f7 |51 <r <sp1+k}

To prove the lemma, it suffices to show that M is linearly independent in gr Y. For
this, we proceed by induction on s | + 51 2.

To establish the base case 52,1 +s512=0,1.e.,0 =0, Y, =Y and Yé =Y., let gl(r])
denote gr, (evf7 (tl.(’rj))). Fix a total order on {gl(r]) |1<i,j<2, 0<r<l}, and let
M’ be the resulting set of ordered supermonomials. Exploiting the explicit formula
(3-4), Gow [2007, proof of Theorem 1] shows that M’ is linearly independent. By
(2-6)—(2-9), any element of M is a linear combination of elements of M’ of the
same degree and vice versa. So we deduce that M is linearly independent too.

For the induction step, suppose that 53 1 + 1.2 > 0. Then we either have 55 1 >0
or 512 > 0. We just explain the argument for the latter case; the proof in the former
case is entirely similar replacing A, with A_. Recall that o, denotes the shift
matrix obtained from o by subtracting 1 from s; 2. So Uf, = Uf,:l ®U(gl)). By its

definition, we have that ev), = (ev,' ®id) o A; hence, Y} C Y/ @ U(gl). Let
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x:=gr ey €grU(gly). Then

- (r) - (r)

d"=d"e1, 4y =d@1+-D¥ o,
»(r)

I(r) — J_c ®1, g(r) :_é(r) ®1+ (_1)|2|_é(r*1) ®x.
The notation is potentially confusing here, so we have decorated elements of

grY f,:l Cer Uf,:l with a dot. It remains to observe from the induction hypothesis
applied to grY, é:l that ordered supermonomials in

@' e110<r<kjuldy "ex|0<r=<1
»(r)

U{_é(r—l)®x|sl72<r551’2+k}U{I ®1]0<r<si2+k}

are linearly independent. O

Theorem 3.5. The kernel of eV’ : Y, — Y. is equal to the two-sided ideal I gen-
erated by the elements {d{r) | r > k}. Hence, er7 induces an algebra isomorphism
between Y, /I’ and Y!.

Proof. By Lemma 3.1, ev/. induces a surjection Y, /I. — Y!. It maps the spanning
set from Lemma 3.3 onto the linearly independent set from Lemma 3.4. Hence, it
is an isomorphism and both sets are actually bases. (]

Henceforth, we will identify Y. with the quotient Y, /I., and we will abuse
notation by denoting the canonical images in Y, é of the elements di(r) e .. of Y,
by the same symbols di(r), e, .... This will not cause any confusion as we will
not work with Y, again.

Here is the PBW theorem for ¥/, which was noted already in the proof of
Theorem 3.5.

Corollary 3.6. Order the set
{@d”10<r<kju{d’ 10<r<i)

Ule" |sio<r <sia+kU{f |51 <r <sp1+k)
in some way. The ordered supermonomials in these elements give a basis for Yé.

Remark 3.7. In the arguments in this section, we have defined two filtrations on Y/ :
one in the proof of Lemma 3.3 induced by the Kazhdan filtration on Y, and the
other in the proof of Lemma 3.4 induced by the standard filtration on U!. Using
Corollary 3.6, one can check that these two filtrations coincide.

Remark 3.8. Theorem 3.5 shows that Y. has generators
(@ 1i=1.2,r>000(e" [r>s120U(f7 |7 >s521)

subject only to the relations from Theorem 2.2 and the additional truncation relations
d](r) =0 for r > k. Corollary 3.6 shows that all but finitely many of the generators
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are redundant. In special cases, it is possible to optimize the relations too. For
example, if | =51 +512+ 1 and we setd :=d'", ¢ := 12D and f := fl21+D),
then Y/ is generated by its even central elements ¢V, ..., ¢ from (2-10), the even
element d and the odd elements e and f subject only to the relations

[d, e]:(—l)me, [d, f]=—(—1)|1|f, e, f]:(—l)lllc(l),
[, ¢ =[c",d]=[c", el=[c", fl=1e,el =f, f1=0,

forr,s =1,...,1. To see this, observe that these elements generate Yé and they
satisfy the given relations; then apply Corollary 3.6.

4. Principal W-algebras

We turn to the W-algebra side of the story. Let = be a (two-rowed) pyramid, that is, a
collection of boxes in the plane arranged in two connected rows such that each box in
the first (top) row lies directly above a box in the second (bottom) row. For example,
here are all the pyramids with two boxes in the first row and five in the second:

L) L L - L

Let k and [ denote the number of boxes in the first and second rows of 7, respectively,
so that k <[. The parity sequence fixed in (2-1) allows us to talk about the parities
of the rows of m: the i-th row is of parity |i|. Let m be the number of boxes in the
even row, i.e., the row with parity 0, and n be the number of boxes in the odd row,
i.e., the row with parity 1. Then label the boxes in the even and odd rows from left
to right by the numbers 1, ..., mand m+1, ..., m +n, respectively. For example,
here is one of the above pyramids with boxes labeled in this way assuming that
(|11, 12]) = (1, 0), i.e., the bottom row is even and the top row is odd:

6|7
[1[2[3]4]5] “4-1)
Numbering the columns of 1, ...,/ in order from left to right, we write row(i)

and col(i) for the row and column numbers of the i-th box in this labeling.

Now let g :=gl,, ,,(C) for m and n coming from the pyramid 7 and the fixed parity
sequence as in the previous paragraph. Let t be the Cartan subalgebra consisting of
all diagonal matrices and €1, . . ., &,4, € t* the basis such that & (¢; ;) =§;, ; for each
j=1,...,m+n. The supertrace form (-|-) on g is the nondegenerate invariant
supersymmetric bilinear form defined by (x|y) = str(xy), where the supertrace str A
of matrix A =(a; j)1<i, j<m+n MeANS @1,1++* ++Amm —Am+1,m+1—"* *— Amtn,m+n-
It induces a bilinear form (-|-) on t* such that (g;[e;) = (—1)|r°W(")|8,~,j.
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We have the explicit principal nilpotent element
e .= Zei’j € 0y (4'2)
iJ

summing over all adjacent pairs of boxes in the pyramid 7. In the example
above, we have that e = ey 7 + €33+ €34+ ea5+e67. Let x € g* be defined by
x(x) := (x|e). If we set

eij 1= (=D Ve . (4-3)

then we have that

_ 1 if[j]i]is an adjacent pair of boxes in 7,
X @)= > A AGREETP (4-4)
0 otherwise.
Introduce a Z-grading g = €, ., 9(r) by declaring that ¢; ; is of degree
deg(e;, ;) :=col(j) — col(i). (4-5)

This is a good grading for e, which means that e € g(1) and the centralizer g° of e
in g is contained in €, ., g(r); see [Hoyt 2012] for more about good gradings on
Lie superalgebras (one should double the degrees of our grading to agree with the
terminology there). Set

p=oar), =90, m:=Pa0).

r>0 r<0

Note that x restricts to a character of m. Let m, := {x — x(x) | x € m}, which is
a shifted copy of m inside U (m). Then the principal W -algebra associated to the
pyramid 7 is

Wr :={u e U(p) | um, Cm,U(g)}. (4-6)

It is straightforward to check that W, is a subalgebra of U (p).

The first important result about W, is its PBW theorem. This is noted already in
[Zhao 2012, Remark 3.10], where it is described for arbitrary basic classical Lie
superalgebras modulo a mild assumption on e (which is trivially satisfied here). To
formulate the result precisely, embed e into an sl-triple (e, &, f) in g; such that
h € g(0) and f € g(—1). It follows from s(, representation theory that

p=g°®[pt, f], (4-7)

where pt = D, . 9(r) denotes the nilradical of p. Also introduce the Kazhdan
filtration on U (p), which is generated by declaring for each r > 0 that x € g(r) is
of Kazhdan degree r 4 1. The associated graded superalgebra gr U (p) is supercom-
mutative and is naturally identified with the symmetric superalgebra S(p) viewed
as a positively graded algebra via the analogously defined Kazhdan grading. The
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Kazhdan filtration on U (p) induces a Kazhdan filtration on W, C U (p) so that
grWr CgrU(p) =S(p).

Theorem 4.1. Let p: S(p) — S(g°) be the homomorphism induced by the projection
of p onto g° along (4-7). The restriction of p defines an isomorphism of Kazhdan-
graded superalgebras gr W, = S(g°).

Proof. Superize the arguments in [Gan and Ginzburg 2002] as suggested in [Zhao
2012, Remark 3.10]. ]

In order to apply Theorem 4.1, it is helpful to have available an explicit basis for
the centralizer g°. We say that a shift matrix o = (s; j)1<;, j<2 iS compatible with 7
if either k > 0 and 7 has s | columns of height 1 on its left side and sy 2 columns of
height 1 on its right side or if k =0 and [/ = 521 + s1,2. These conditions determine
a unique shift matrix o when k > 0, but there is some minor ambiguity if k =0
(which should never cause any concern). For example, if 7 is as in (4-1), then

o= 02
~\10
is the only compatible shift matrix.
Lemma 4.2. Let o =(s; j)1<i, j<2 be a shift matrix compatible with 7. Forr >0, let
xl.(’rj) = Z epq €9(r—1).
1<p,g<m+n

row(p)=i, row(g)=j
deg(ep,q)=r—1

Then the elements
10 <r <k ufxd)10<r <1

U {XY% [s120<r <si2+kjU {xéfi | $2,1 <71 <s2,1+k}
give a homogeneous basis for g°.

Proof. As e is even, the centralizer of e in g is just the same as a vector space as the
centralizer of e viewed as an element of gl , (C), so this follows as a special case
of [Brundan and Kleshchev 2006, Lemma 7.3] (which is [Springer and Steinberg
1970, IV.1.6]). ]

We come to the key ingredient in our approach: the explicit definition of special
elements of U (p), some of which turn out to generate W, . Define another ordering <
ontheset {1, ..., m+n}bydeclaring thati < j if col(i) < col(j) orif col(i) =col(j)
and row(i) < row(j). Let p € t* be the weight with

(Plej) =#{i |i < j and [row(i)| = 1} —#{i | i < j and [row(i)| =0}.  (4-8)
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For example, if 7 is as in (4-1), then p = —e4 — 2¢5. The weight p extends to a
character of p, so there are automorphisms

Si5:UM) — U), ejjr> e ;jE£6; jplei;). 4-9)

Finally, given 1 <i, j <2,0<¢ <2 and r > 1, we define

l(rj)g._ (Z( 1)r K Z ( 1)#{61 1,...,. s — 1|rOW(]a)<§}é i éi“jx), (4_10)

11 J;
where the sumisoverall 1 <iy,...,i, ji,..., js <m-+n such that
e row(i;) =i and row(jy) = Jj,
e col(iy) <col(jy) (a=1,...,5s),
o TOW(ig+1) =10oW(jy) (@a=1,...,5s —1),
e if row(j,) > g, then col(iz41) >col(jy) (a=1,...,5s —1),
o if row(j,) < ¢, then col(iy41) <col(j,) (a=1,...,s—1)and
o deg(e;,,j,) +---+degle;,, ;) =r—s.
It is convenient to collect these elements together into the generating function
e =Y 1) u™ e U@Iu~'] (4-11)
r=0
0)

setting 7; o= = §; j. The following two propositions should already convince the
reader of the remarkable nature of these elements:

Proposition 4.3. The following identities hold in U (p)[[u~']:

f1 ) = 07 (4-12)
t22(u) =t ()", (4-13)
t12:0(w) = t1 1.0 2.1 (), (4-14)
f.1;0(m) =t 1.1 () 1;0(0), (4-15)
12.2:0(u) = t22,1 () + 12,1:1(W)t1 1,0ty 2,1 (). (4-16)

Proof. This is proved in [Brundan and Kleshchev 2006, Lemma 9.2]; the argument
there is entirely formal and does not depend on the underlying associative algebra
in which the calculations are performed. ([
Proposition 4.4. Let o be a shift matrix compatible with . The following elements
of U(p) belong to Wy all tl(rf 0 tl(rf 1 tz(rg | and tz(r% ,forr >0, all tl 2 1forr >S50

andallt21 (Jorr > sy 1.

Proof. This is postponed to Section 5. U
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Now we can deduce our main result. For any shift matrix o compatible with 7,
we identify U (h) with the algebra U, ! from (3-1) so that

o 2 1TV @ eroni oy ® 19079 if ge =2,
ij= 18— 1)®ell®1®(l 9] ifg.=1
for any 1 <i, j <m +n with ¢ := col(i) = col(j), where g, denotes the number
of boxes in this column of 7. Define the Miura transform
w:Wy = Uh)=U" (4-17)
to be the restriction to W, of the shift automorphism S_; composed with the natural
homomorphism pr: U (p) — U (h) induced by the projection p — h.

Theorem 4.5. Let o be a shift matrix compatible with w. The Miura transform
is injective, and its image is the algebra Yé - U(l, Jfrom (3-3). Hence, it defines a
superalgebra isomorphism

w:Wy 3! (4-18)

between W, and the shifted Yangian of level . Moreover, u maps the invariants
from Proposition 4.4 to the Drinfeld generators of Y, C’, as follows:

pily=d? >0,  uel)=d" >0, (4-19)
n) ) =dy’ (>0, nityr) =dy” (> 0), (4-20)
“(11(7%;1) =e" (r>s12), M(fz(,ril) =19 (r>s0). (4-21)

Proof. We first establish the identities (4-19)—(4-21). Note that the identities
involving Ji(r) are consequences of the ones involving di(r) thanks to (4-12) and
(4-13) recalling also that di(w) = d;(w)~'. To prove all the other identities, we
proceed by induction on sp 1 + 512 =1—k.

First consider the base case [ = k. For 1 <i, j <2 and r > 0, we know in this
situation that t(r) 0 € W since, using (4-14)—(4-16), it can be expanded in terms of
elements all of Wthh are known to lie in W, by Proposition 4.4; see also Lemma 5.1.
Moreover, we have directly from (4-10) and (3-4) that ,u(tl(rj) o) = ti(’rj) ey é Hence,

u(ti j.0(m)) =1t j(u). The result follows from this, (2-6), (2-7) and the analogous
expressions for #1 1.0(¢), t2,2:1(u), t1,2:1(1) and 1.1 (u) derived from (4-14)-(4-16).

Now consider the induction step, so s2 1 +s1,2 > 0. There are two cases according
to whether 52 1 > 0 or 512 > 0. We just explain the argument for the latter situation
since the former is entirely similar. Let 77 be the pyramid obtained from 7 by
removing the rightmost column, and let W;; be the corresponding finite W-algebra.
We denote its Miura transform by i : Wy — U, f,:] and similarly decorate all other
notation related to 7z with a dot to avoid confusion. Now we proceed to show that

u(tl(r% ) = e for each r > 51 5. By induction, we know that u(tl(r% ) =¢é" for
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each r > 51 7. But then it follows from the explicit form of (4-10), together with
(2-15) and the definition of the evaluation homomorphism (3-2), that

l“(ti,ri D= M(Iiri PO I+ (= 1)‘2|M(l1(r2 D ®ers
=1+ (=D Ve =€

providing r > s1 2. The other cases are similar.
Now we deduce the rest of the theorem from (4-19)—(4-21). Order the elements of

Q:={t]],10<r <k}U{y), 10<r<I)

U{flzl |S12<F<S12+k}U{t21 L1821 <7 <s31+k}

in some way. By Proposition 4.4, each t(rj) ¢ € Q belongs to W,. Moreover, from

the definition (4-10), it is in filtered degree r and gr, #;’ j c is equal up to a sign
to the element x(rj) from Lemma 4.2 plus a linear combination of monomials in
elements of strictly smaller Kazhdan degree. Using Theorem 4.1, we deduce that
the set of all ordered supermonomials in the set 2 gives a linear basis for W,. By
(4-19)—(4-21) and Corollary 3.6, ; maps this basis onto a basis for Y’ f, C Ué. Hence,
W is an isomorphism. (]

Remark 4.6. The grading p = P, ., g(r) induces a grading on the superalgebra
U (p). However, W, is not a graded subalgebra. Instead, we get induced another
filtration on W, with respect to which the associated graded superalgebra gr’ W,
is identiﬁed With a graded subalgebra of U (p). From Proposition 4.4, each of the
invariants t belongs to filtered degree r — 1 and has image (—1)"~! (rj) in the
associated graded algebra. Combined with Lemma 4.2 and the usual PBW theorem
for g¢, it follows that gr’ W, = U (g°). Moreover, this filtration on W, corresponds
under the isomorphism f to the filtration on ¥/ induced by the Lie filtration on Y.

Remark 4.7. In this section, we have worked with the “right-handed” definition
(4-6) of the finite W-algebra. One can also consider the “left-handed” version

={ueUp) [myu S U(g)my]}.

There is an analogue of Theorem 4.5 for W!, via which one sees that W, = W}
More precisely, we define the “left-handed” Miura transform p : W! — U (h) as
above but twisting with the shift automorphism S_;+ rather than S_;, where

(BTlej) =#{i |i <" j and [row(i)| = 1} —#{i | i <" j and |[row(i)| =0} (4-22)
and i < j means either col(i) > col(j), or col(i) = col(j) and row(i) < row(}).
The analogue of Theorem 4.5 asserts that ' is injective with the same image as .
Hence, 1~ o, i.e., the restriction of the shift S; 5 : U(p) — U(p), gives an
isomorphism between W;Tf and W, . Noting that

p=p'= Y (DINORINDle — g, (4-23)

1<i,j<m+n
col(i)<col(j)
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there is a more conceptual explanation for this isomorphism along the lines of the
proof given in the nonsuper case in [Brundan et al. 2008, Corollary 2.9].

Remark 4.8. Another consequence of Theorem 4.5 together with Remarks 2.9
and 2.1 is that up to isomorphism the algebra W, depends only on the set {m, n},
i.e., on the isomorphism type of g and not on the particular choice of the pyramid 7
or the parity sequence. As observed in [Zhao 2012, Remark 3.10], this can also be
proved by mimicking [Brundan and Goodwin 2007, Theorem 2].

5. Proof of invariance

In this section, we prove Proposition 4.4. We keep all notation as in the statement
of the proposition. Showing that u € U (p) lies in the algebra W, is equivalent
to showing that [x, u] € m, U(g) for all x € m or even just for all x in a set of
generators for m. Let

Q:={1],o1r>00U{ts, Ir>s12)Ul ], [r>s1}U{n, | r >0} (5-1)

Our goal is to show that [x, u] € m, U(g) for x running over a set of generators
of m and u € Q. Proposition 4.4 follows from this since all the other elements
listed in the statement of the proposition can be expressed in terms of elements
of Q thanks to Proposition 4.3. Also observe for the present purposes that there is
some freedom in the choice of the weight p: it can be adjusted by adding on any
multiple of “supertrace” €; +--- 4+ &y — €m+1 — + - - — Em4n. This just twists the
elements tl.(’r.); by an automorphism of U (g) so does not have any effect on whether
they belong to W,. So sometimes in this section we will allow ourselves to change
the choice of p.

(r)

Lemma 5.1. Assuming k = [, we have that |x, L i

r>0.

lem, U(g) forall x € m and

Proof. Note when k =1 that =g+ - -4 —Emy1— - - —Eman if (1], [2)) = (1, 0)
and 5 = 0 if (|1],]2]) = (0, 1). As noted above, it does no harm to change the
choice of p to assume in fact that o = 0 in both cases. Now we proceed to mimic
the argument in [Brundan and Kleshchev 2006, §12].

Consider the tensor algebra 7' (M;) in the (purely even) vector space M; of [ x [
matrices over C. For 1 <1i, j < 2, define a linear map #; ; : T(M;) — U(g) by
setting

ti,j (1) =8 j, tij(eap) = (_l)li‘ei*a,]’*b,

i@ ®@x) = Y hn )y (X2) -ty ()
lfhl ..... hr,1§2
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forl <a,b<l,r>1andxy,...,x, € M;, where i x a denotes a if |i| =0 and
[ +aif |i| = 1. It is straightforward to check for x, yi, ..., y, € M; that

i, (X), tp. (N R+ - R yr)]

— (_1)|i|\j|+|i|\P\+|j|IP| Z(tp,j()’I R ®ys—lig(Xys ® -+ ® yy)

s=1

- tp,j(yl - Q YSx)ti,q(ys+1 Q- yr))a (5-2)

where the products xy; and ysx on the right are ordinary matrix products in M;. We
extend #; ; to a C[u]-module homomorphism T'(M;)[u] — U (g)[u] in the obvious
way. Introduce the following matrix with entries in the algebra T (M;)[u]:

u+tey;r e e ey,
1 u+enn
Au) = 0 e

: I u+te—_11-1 e—1y
0 0 1 u-+tej;

The point is that #; j.o(u) = u‘lt,-, j(cdet A(u)), where the column determinant of
an [ x [ matrix A = (a; ;) with entries in a noncommutative ring means the Laplace
expansion keeping all the monomials in column order, i.e.,

cdet A := Z sgn(W)ay(1),1 - * Aw().1-

wes;

We also write A, 4(u) for the submatrix of A(u) consisting only of rows and columns
numbered c, ..., d.

Since m is generated by elements of the form #; j(ec41,c), it suffices now to
show that [#; j(ecy1.c), tp,q(cdet A(u))] € m, U(g) forevery 1 <i, j, p,q <2 and
c=1,...,1—1. To do this, we compute using the identity (5-2):

[ti,j (ect1,¢)s Ipg (cdet A(u))]

€ctl,c €ct1,c+1 MR VN iy
=1, (cdet Ay o_1 (u))t; g | cdet bowtectten oo eor
0 1 u-+tep
uterr --- e €l,c
1 :
—1p,j | cdet _ tig(cdet Acya ().
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In order to simplify the second term on the right-hand side, we observe crucially
for h =1,2 that #; ;((u +ecc)ecy1,c) =ty j(u+ec ) (modm, U(g)). Hence, we
get that

[£i,j(ect1,e), Tp g (cdet Au))]

L ecirer1 o0 ectl
L utectierr - €1
=1y, (cdet Al 1 (Lt))t,‘,q cdet
0 cee 1 u+te
u-+teyq - €lc €l
1 :
—1p,; | cdet ) ti g (cdet Acqp (1))
: U+ece ecc
0 e 1 1

modulo m, U (g). Making the obvious row and column operations gives that

L ecqierr oo0 et
L u+tecrierr =0 ectl
cdet | . ) . =ucdet Ac42,(u),
0 e 1 u+ey
uterl -+ € €lc
1 :
cdet =ucdet Ay .—1(u).
. u-+tecc ecc
0 e 1 1
It remains to substitute these into the preceding formula. U

Proof of Proposition 4.4. Our argument goes by induction on s 1 +s1,2 =/ —k. For
the base case k = [, we use Proposition 4.3 to rewrite the elements of €2 in terms of
the elements tl.(’rj); o- The latter lie in W by Lemma 5.1. Hence, so do the former.
Now assume that so 1 + 512 > 0. There are two cases according to whether
§12 > S2.1 Or 52,1 > §12. Suppose first that 57 » > 571 and hence that s 2, > 0. We
may as well assume in addition that [ > 2: the result is trivial for / < 1 as m = {0}.
Let 77 be the pyramid obtained from 7 by removing the rightmost column. We will
decorate all notation related to 7z with a dot to avoid any confusion. In particular,

W is a subalgebra of U (p) C U(§). Let
6:U(@ — Ul(g)

be the embedding sending e; ; € g to e; j € g if the i-th and j-th boxes of 7
correspond to the i’-th and j’-th boxes of 7, respectively. Let b be the label of



1870 Jonathan Brown, Jonathan Brundan and Simon M. Goodwin

the box at the end of the second row of =, i.e., the box that gets removed when
passing from m to 7r. Also in the case that s;, = 1, let ¢ be the label of the
box at the end of the first row of 7.

Lemma 5.2. In the above notation, the following hold:
Q) 1) = 0G0 forall r > 0,
(i) 1y}, =05, forallr > 51,1,
Gid) 175, = 0G\2.) + 0G5 )S5@p0) — 0G5\, eo—1.5] for all r > 512 and
(v) 15 =05 ) + 005 )S5@p0) — [0S 5 ), ep—1.6] forall r > 0.

Proof. This follows directly from the definition of these elements using also that
0085 =S;00 on elements of U(p). O

Observe next that m is generated by 6 (m) U J, where

7 {{eb,c, epp—1) ifs1o=1, (5-3)

{eb,b_l} if §1,2 > 1.
We know by induction that the following elements of U (p) belong to W all tl(rf 0
and tz(rz) , forr >0, all tl(r% | for r > 51 > and all tz(rl) | for r > 55 1. Also note that the
elements of 6 (m) commute with e;_1 5 and S;(e;,,). Combined with Lemma 5.2,
we deduce that [0(x), u] € 6(m,)U(g) € m, U(g) forany x e mand u € Q. It
remains to show that [x, u] € m, U(g) for each x € J and u € Q. This is done in

Lemmas 5.3, 5.4 and 5.6 below.

Lemma 5.3. For x € J and u € {tl(,rl);o | r >0} U {té,?u | r > $2.1}, we have that
[x,u]l em,U(g).

Proof. Take ep, 4 € J. Consider a monomial S;(e;, j, - - - €;,,j,) in the expansion of u
from (4-10). The only way it could fail to supercommute with e, 4 is if it involves
some e;, j, with j, = b or i, =d. Since row(js) = 1 and col(i,+1) > col(j,) when
row(j,) = 2, this situation arises only if s12 = 1, i =d and j, = c. Then the
supercommutator [ep, 4, €;,. j,| equals Ze;, .. It remains to repeat this argument to
see that we can move the resulting e, . € m, to the beginning. O

It is harder to deal with the remaining elements tl(r%,l and tz(r%,l of Q2. We follow

different approaches according to whether sy, > 1 ors; o = 1.

Lemma 5.4. Assume that s1o > 1. We have that [e, 1, u] € m, U(g) for all
welt!), |r>s1200{y, Ir >0}

Proof. We just explain in detail for u = tl(r%, 1> the other case follows the same pattern.
Let 77 be the pyramid obtained from 7 by removing its rightmost two columns. We
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decorate all notation associated to W; with a double dot, so Wi C U (p) C U (§)
and so on. Let

¢:U @) — U(g)
be the embedding sending e; ; € g to e; j € g, where the i-th and j-th boxes of 7

are labeled by i and j in m, respectively. For r > 51 », we have by analogy with
Lemma 5.2(iii) that

0G5 ) =0 )+ b0 3NS5 @p-15-1) — [$( 51 ep—2.0-1]-

We combine this with Lemma 5.2(iii) to deduce for r > s7 > that

o w(r—1 _ o(r—1
10 =0 ) + b5 )85 @p-1.0-1) — 9} 5,

+ 51185 @b) + S5 D) S5 (@—1.6-1) S5 (@b,

(7 —2 _ wo(r—2)« — (7 —2
— P50 eb—20-1185@p0) — S 5 D)ep—1.5 + [P 5 1), ep—2.b]-

), ep—2,h—1J

We deduce that

o(F—2) ,— _ _ - -
[ebo—1. {2 1= @5 ) @51 S5@b.0) — 25185 @b-1.6-1) + (1) P2y 1)

e(F—2 _ c(F—2)n _ o(r—2
+[¢ (ll,rz;l)), ep—2.p—1lepp—1— ¢(tf,r2; 1))(€b,b —ep_1,o-1) — @ (fl(’rz;l)), ep—2.p—1].

Working modulo m, U(g), we can replace all ¢, ,_; by 1. Then we are reduced
just to checking that

S5(@pp) — S5(@p—15-1)+ (=) =2y —ep_1.p-1.
This follows because (5|ep) — (5lep—1) + (—1)?l = 0 by the definition (4-8). [

Lemma 5.5. Assume that s, = 1. Forr > 2, we have that

(ry  _ M2 =1 1®H =1

o = DU e o T— ot s G-4)
r

(ry  _ 1,2 =D (@) (r—a)

typn = DM 0 1= o0y (5-5)
a=0

Proof. We prove (5-4). The induction hypothesis means that we can appeal to
Theorem 4.5 for the algebra W;;. Hence, using the relations from Theorem 2.2, we
know that the following holds in the algebra W for all r > 2:

(r) M@ =1 (1) (=1
o= D0 e B T 1ol
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Using Lemma 5.2, we deduce for r > 2 that

. (r—1 _ (r—1
130 = 005.) + 0012185 @.) = 10G) 51, en-15]
2 c(r—1 1 <(r—1
= (=DM o 6G 1 =11, 00 50

+ (=DM 0, 0G5 1S5 @) — 111015 ) S5(@b.0)

— (=DM 0 0G5 epm10] + [t 100 G5 D). ev—1.5]
= (=DMt 0. 0G5 ) + 0G5 ) S5@00) — [0 51). ev—1.6]]
— 000G ) + 0G5 S5@o0) — 0G5, er-14))
= DM g5 1= 1 ot 2 -
The other equation (5-5) follows by a similar trick. U

Lemma 5.6. Assume that 51> = 1. We have that [x, u] € m, U(g) for all x € J and

uec {tl(fg;l |r >s12}U {tz(,'%;l | r >0}

Proof. Proceed by induction on . The base cases when r < 2 are small enough that
they can be checked directly from the definitions. Then for r > 2, use Lemma 5.5,
noting by the induction hypothesis and Lemma 5.3 that all the terms on the right-
hand side of (5-4) and (5-5) are already known to lie in m, U (g). [l

We have now verified the induction step in the case that 515 > 57 1. It remains to
establish the induction step when 53 1 > 51 2. The strategy for this is sufficiently
similar to the case just done (based on removing columns from the left of the
pyramid ) that we leave the details to the reader. We just note one minor difference:
in the proof of the analogue of Lemma 5.2, it is no longer the case that 60 S; = S5 00,
but this can be fixed by allowing the choice of p to change by a multiple of
1+ +Em—Emtl — —Emtn-

This completes the proof of Proposition 4.4. (]

6. Triangular decomposition

Let W be the principal W-algebra in g = gl,,,,(C) associated to pyramid 7. We
adopt all the notation from §4. So

e (|11, 12]) is a_pe_lrity sequence chosen so that (|1], |2]) = 0,1) if m < n and
(11, 12) = (1,0) it m > n,

e m has k = min(m, n) boxes in its first row and [ = max(m, n) boxes in its
second row and

* 0 = (8i,j)1<i,j<2 1s a shift matrix compatible with 7.

We identify W, with Y, the shifted Yangian of level [, via the isomorphism g
from (4-18). Thus, we have available a set of Drinfeld generators for W, satisfying
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the relations from Theorem 2.2 plus the additional truncation relations dl(r) =0
for r > k. In view of (4-19)—(4-21) and (4-10), we even have available explicit
formulae for these generators as elements of U (p) although we seldom need to use
these (but see the proof of Lemma 8.3 below).

By the relations, W, admits a Z-grading

Wr =P Wi
gez
such that the generators di(r) are of degree 0, the generators e are of degree 1 and
the generators £ are of degree —1. Moreover, the PBW theorem (Corollary 3.6)
implies that W,., =0 for |g| > k.

More surprisingly, the algebra W, admits a triangular decomposition. To in-
troduce this, let WJ(T) , W and W be the subalgebras of W, generated by the
elements Q0 := {d”,d\" |0 <r <k, 0<s<I}, Qy :={e") | 512 <r <s12+k}
and Q_ = {f) | 501 < r < 521 + k}, respectively. Let WE and W2 be the
subalgebras of W, generated by ¢ U Q4 and Q_ U Qq, respectively. We warn
the reader that the elements ¢ (r > 512+ k) do not necessarily lie in W, (but
they do lie in W,E by (3-5)). Similarly, the elements ) for r > 551 + k do not
necessarily lie in W_ (but they do lie in W);), and the elements dz(r) for r > 1 do
not necessarily lie in any of W;(T) , W]:TI or W,t;.

Theorem 6.1. The algebras WJ(T) , Wt and W are free supercommutative superal-
gebras on generators Q, Q24 and Q2_, respectively. Multiplication defines vector
space isomorphisms

W @W2 QW 3 W,, Wl W 3 Wi, W QW23 W,
Moreover, there are unique surjective homomorphisms
Wi — W2, W2 — WP
sending e+ 0 for all r > sy or £+ 0 for all r > s5 1, respectively, such that
the restriction of these maps to the subalgebra Wg is the identity.

Proof. Throughout the proof, we repeatedly apply the PBW theorem (Corollary 3.6),
choosing the order of generators so that Q2_ < Q¢ < Q4.

To start with, note by the left-hand relations in Theorem 2.2 that each of W2,
W and W is supercommutative. Combined with the PBW theorem, we deduce
that they are free supercommutative on the given generators. Moreover, the PBW
theorem implies that the multiplication map W, ® W2 ® W — W, is a vector
space isomorphism.

Next we observe that W,g contains all the elements e for r > s1,2. This follows
from (3-5) by induction on r. Moreover, it is spanned as a vector space by the
ordered supermonomials in the generators 29 U 2. This follows from (3-5), the
relation for [di(r), ¢)] in Theorem 2.2 and induction on Kazhdan degree. Hence,
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the multiplication map W0 @ W — W2 is surjective. It is injective by the PBW
theorem, so it is an isomorphism. Similarly, W ® W) — W,k; is an isomorphism.

Finally, let J* be the two-sided ideal of W that is the sum of all of the graded
components Wji; ¢ = W,g N Wy, for g > 0. By the PBW theorem, The natural quo-
tient map WJ(T) — Wﬁ /J*¥ is an isomorphism. Hence, there is a surjection W;E —» W](T)
as in the statement of the theorem. A similar argument yields the desired surjection
Wa — WO, O

7. Irreducible representations

Continue with the notation of Section 6. Using the triangular decomposition, we
can classify irreducible W, -modules by highest weight theory. Define a w-tableau
to be a filling of the boxes of the pyramid 7 by arbitrary complex numbers. Let
Tab,; denote the set of all such m-tableaux. We represent the m-tableau with entries
ai, ..., ay along its first row and by, ..., b; along its second row simply by the
array 3, ;\. We say that A, B € Tab, are row equivalent, denoted A ~ B, if B can
be obtained from A by permuting entries within each row.
Recall from Theorem 6.1 that WJ(T) is the polynomial algebra on

[@d",d10<r<k, 0<s<I).

For A =% € Tab,, let C be the one-dimensional W2-module on basis 14 such
that

ukdy ) la = war)--- +a)la, (7-1)
uldy(u)lpy = W+by)-- (u+b)ly. (7-2)
Thus, dl(r)lA =eq(ay,...,ar)l4 and dér)lA =e,(by, ..., b1, where e, denotes

the r-th elementary symmetric polynomial. Every irreducible W?-module is iso-
morphic to C4 for some A € Tab,, and C4 = Cp if and only if A ~ B.

Given A € Tab,;, we view C4 as a W,g -module via the surjection W,g —» W;(T) from
Theorem 6.1, i.e., e 1,4 =0 for all r > s1,2- Then we induce to form the Verma
module

M(A) := Wy ®y: Cy. (7-3)

Sometimes we need to view this as a supermodule, which we do by declaring
that its cyclic generator 1 ® 14 is even. By Theorem 6.1, W, is a free right
W£-module with basis given by the ordered supermonomials in the odd elements
{0 s2,1 <r <s21+k}. Hence, M (A) has basis given by the vectors x ® 14 as
x runs over this set of supermonomials. In particular, dim M (A) = 2.

The following lemma shows that M (A) has a unique irreducible quotient, which
we denote by L(A); we write v, for the image of 1 ® 14, € M(A) in L(A).
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Lemma 7.1. For A = }}.}f € Taby, the Verma module M(A) has a unique ir-
reducible quotient L(A). The image vy of 1 ® 14 is the unique (up to scalars)
nonzero vector in L(A) such that e(’)v+ =0 forall r > s12. Moreover, we have
that dl(r)v+ =er(ay,...,ar)vy and dér)er =er(b1,...,b)vy forallr > 0.

Proof. Let A := (—=D!!l(a; +--- + ). For any u € C, let M(A), be the u-
eigenspace of the endomorphism of M (A) defined by d := (—1)“|d1(1) € W,. Note
by (7-1) and the relations that d14 = A1, and [d, f] = — £ for each r > s, 1.
Using the PBW basis for M (A), it follows that

k
MA) =D M(A),—i (7-4)
i=0
and dim M (A),_; = (]:) for each 0 <i <k. In particular, M (A), is one-dimensional,
and it generates M (A) as a Wﬁ—module. This is all that is needed to deduce that
M (A) has a unique irreducible quotient L(A) following the standard argument of
highest weight theory.

The vector v, is a nonzero vector annihilated by e for r > sy 5, and dl(r)v+
and dz(r)er are as stated thanks to (7-1) and (7-2). It just remains to show that any
vector v € L(A) annihilated by all e isa multiple of v. The decomposition (7-4)
induces an analogous decomposition

k
LA =P LA, (7-5)

i=0
although for 0 < i < k the eigenspace L(A),_; may now be 0. Write v = Zf:o V;
with v; € L(A),_;. Then we need to show that v; = 0 for i > 0. We have that
ey = Zle eMv; = 0; hence, e v; = 0 for each i. But this means for i > 0 that
the submodule W, v; = Wﬁ v; has trivial intersection with L(A);, so it must be 0. [J

Here is the classification of irreducible W, -modules.

Theorem 7.2. Every irreducible W, -module is finite-dimensional and is isomorphic
to one of the modules L(A) from Lemma 7.1 for some A € Tab,. Moreover,
L(A) = L(B) ifand only if A ~ B. Hence, fixing a set Tab, /~ of representatives
for the ~-equivalence classes in Tab,, the modules

{L(A)| A € Tab, /~}
give a complete set of pairwise inequivalent irreducible W -modules.

Proof. We note, to start with, for A, B € Tab, that L(A) = L(B) if and only if
A ~ B. This is clear from Lemma 7.1.
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Now take an arbitrary (conceivably infinite-dimensional) irreducible W, -module
L. We want to show that L = L(A) for some A € Tab,. Fori > 0, let

Llil:={veL| Wy ,w={0}ifg>0o0rg=<—i}.

We claim initially that L[k + 1] # {0}. To see this, recall that W, = {0} for
g < —k —1, so by the PBW theorem, L[k + 1] is simply the set of all vectors v € L
such that e v = 0 for all s1,2 <r <12+ k. Now take any nonzero vector v € L
such that #{r =s; 2+ 1,...,512+k| ey = 0} is maximal. If ¢ v £ 0 for some
§12 <r <s12+k, we can replace v by ey to get a nonzero vector annihilated
by more e")’s. Hence, v € L[k + 1] by the maximality of the choice of v, and we
have shown that L[k + 1] #~ {0}.

Since L[k 4 1] # {0}, it makes sense to define i > 0 to be minimal such that
L[i] #{0}. Since L[0] = {0}, we actually have that i > 0. Pick 0 # v € L[i], and let
L' := Wiv. Actually, by the PBW theorem, we have that L' = W9 and L’ C L[i].
Suppose first that L’ is irreducible as a Wg—module. Then L' = C4 for some
A € Tab,,. The inclusion L’ < L induces a nonzero W,-module homomorphism

M(A)ZE W, ®: L' > L,

which is surjective as L is irreducible. Hence, L = L(A).

It remains to rule out the possibility that L’ is reducible. Suppose for a contra-
diction that L’ possesses a nonzero proper W2-submodule L”. As L = W, L" and
WEL" = L”, the PBW theorem implies that we can write

k
S D S L T

h=1 sy 1<ri<--<rp<sy1+k

for some vectors v, ,, w € L”. Then we have that

0#v—weL[i]N < > Wﬂ;gL[i]> CL[i—1].
g=<—1
This shows L[i — 1] # {0}, contradicting the minimality of the choice of i. (]

The final theorem of the section gives an explicit monomial basis for L(A). We
only prove linear independence here; the spanning part of the argument will be
given in Section 8.

Theorem 7.3. Suppose A =1} € Tab,. Let h >0 be maximal such that there exist
distinct 1 <iy, ...,i, <k anddistinct 1 < ji, ..., jy<lwitha; =bj,, ..., a;,=bj,.

Then the irreducible module L(A) has basis given by the vectors xv,. as X runs over
all ordered supermonomials in the odd elements { f )| §21 <r <sy1+k—h}
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Proof. Letk:=k—h and [ :=1—h. Since L(A) only depends on the ~-equivalence
class of A, we can reindex to assume that ag | = bj y, g r = bj 5, ..., ar =b.
We proceed to show that the vectors xvy for all ordered supermonomials x in
{f )| s21<r<sy1+ 12} are linearly independent in L(A). In fact, it is enough
for this to show just that

f(s2.1+1)f(52,1+2) . f(Sz,l-HE)v_i_ £0. (7-6)

Indeed, assuming (7-6), we can prove the linear independence in general by taking
any nontrivial linear relation of the form

k
Z Z )\-rl ,,,,, raf(rl) s f(ra)'U+ =0.

a=0 52,1 <r|<--<rg<s2, +k

Let a be minimal such that A, _, 7 0 for some ry, ..., r,. Apply f(‘”) cee f(si—a),
where 571 <1 <--- <s3_, < 52,1 +k are different from ry <--- <r,. All but one

term of the summation becomes 0, and using (7-6), we can deduce that A,, _,, =0,
a contradiction.
In this paragraph, we prove (7-6) by showing that
e(S|,z+1)e(Sl,2+2) . -e(‘91*2+]€)f(“‘2~1+1)f(sz‘H'Z) . f(é‘z,l-i-lg)vJr £0. (7-7)

The left-hand side of (7-7) equals

Z Sgn(w)[e(/€+1+sl.2—1)’ f(s2,1+w(1))] . [e(/;-i-l—h?],z—/;)’ f(sz_]+w(];))]v+.

weS;

By Remark 2.3, up to a sign, this is det(c(i*”j))lg,jﬁ,;u. It is easy to see from

Lemma 7.1 that c(’)v+ =e (b1,...,bj/ai, ..., ap)vs, where
er(br, ... bjjar, ... ap) = Y (=Des(br,....bphar, ... ap)
S+t=r

is the r-th elementary supersymmetric function from [Macdonald 1995, Exercise
1.3.23]. Thus, we need to show that det(e;_iﬂ(bl, cobijar, . a,;))lsi’jg; #0.
But this determinant is the supersymmetric Schur function s, (b1, ..., bj/ai, ..., ag)
for the partition A = (k") defined in [Macdonald 1995, Exercise 1.3.23]. Hence, by
the factorization property described there, it is equal to [ [, [[;<;<z(bi —a;),
which is indeed nonzero.

We have now proved the linear independence of the vectors xvy as x runs over
all ordered supermonomials in { f )| §21<r <s21+ IE}. It remains to show that
these vectors also span L(A). For this, it is enough to show that dim L(A) < 2.
This will be established in the next section by means of an explicit construction of
a module of dimension 2¥ containing L(A)asa subquotient. U
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8. Tensor products

In this section, we define some more general comultiplications between the algebras
W, allowing certain tensor products to be defined. We apply this to construct
so-called standard modules V (A) for each A € Tab,,. Then we complete the proof
of Theorem 7.3 by showing that every irreducible W,-module is isomorphic to one
of the modules V (A) for suitable A.

Recall that the pyramid 7 has / boxes on its second row. Suppose we are given
li,...,lg>0suchthat/+---+Il;=1[. Foreachc=1,...,d, let . be the pyramid
consisting of columns I} +---+1l._1+1,...,l1+---+ 1. of 7. Thus, 7 is the
“concatenation” of the pyramids ny, ..., my. Let W, be the principal W-algebra
defined from m.. Let oy, ..., 04 be the unique shift matrices such that each o,
is compatible with 7, and o, is lower or upper triangular if so; > I} +--- 4+,
or s;2 > Il.+---+14, respectively. We denote the Miura transform for W, by
fhe s Wa, < Uk

Lemma 8.1. With the above notation, there is a unique injective algebra homomor-
phism
I Wy > Wy ®--- 0 Wy, (8-1)

.....

such that (L1 @ - - @ a) 0 Ay, .1, = M

Proof. Let us add the suffix ¢ to all notation arising from the definition of Wy,
so that W, is a subalgebra of U (p.), we have that g. =m. P h. B pf and so on.
We identify g; @ - - - @ g with a subalgebra g of g so that ¢; ; € g. is identified
with e;: j» € g, where i" and j’ are the labels of the boxes of 7 corresponding to
the i-th and j-th boxes of 7., respectively. Similarly, we identify m; @ - - - d my
withm/ Cm, p; ®---Dpy withp’ Cpand by d--- D hy with h’ = h. Also let
p' = p1+---+ pa, a character of p’. In this way, Wy, ® - - - ® Wy, is identified
with W, :={u e U(®p') | um;( - m;(U(g’)}, where m;( ={x—xx)|xem).

Let q be the unique parabolic subalgebra of g with Levi factor g’ such that p C q.
Let ¥ : U(q) — U(g’) be the homomorphism induced by the natural projection of
q — ¢'. The following diagram commutes:

S_zopoS;

U(p) ——= U@y

pr oS,;l lpr’ oSy

U(h) =—=U(")

We claim that S_5 o ¢ o S5 maps Wy into W_. The claim implies the lemma, for
then it makes sense to define Ay, .. ;, to be the restriction of this map to W, and
we are done by the commutativity of the above diagram and injectivity of the Miura
transform.
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To prove the claim, observe that g — p’ extends to a character of ; hence, there
is a corresponding shift automorphism S;_5 : U(q) — U(q) that preserves W,,.
Moreover, S_; o ¥ o S5 = S;_5 o Y. Therefore, it enough to check just that
¥ (Wz) € W.. To see this, take u € Wy so that um, € m, U(g). This implies that
um’, Cm, U(g) NU(q); hence, applying ¥ we get that ¥ (u)m), € m’ U(g’). This
shows that (1) € W/ as required. Il
Remark 8.2. Special cases of the maps (8-1) with d = 2 are related to the comulti-
plications A, A4 and A_ from (2-14)—(2-16). Indeed, if =1, +1, for [; > 55 ; and
Iy > 512, the shift matrices o7 and o, above are equal to o'° and 0P, respectively.
Both squares in the following diagram commute:

A
Yo —————— Y5, QY,,
ev{,l levf}l ® evf,z2
Ul ———— Ul U

MT TM@MZ
A

Wy —————— Wx, @ Wy,

Indeed, the top square commutes by the definition of the evaluation homomorphisms
from (3-2) while the bottom square commutes by Lemma 8.1. Hence, under
our isomorphism between principal W-algebras and truncated shifted Yangians,
A1, Wy — Wy, ® Wy, corresponds exactly to the map Y. — Yéll ® Y(% induced
by the comultiplication A : Yy, — Y4, ® Yy,

Instead, if [ =1 — 1, I, = 1 and the rightmost column of 7 consists of
a single box, the map A;_1; : Wy — Wy, ® U(gl;) corresponds exactly to
the map Y} — Y/-'® U(gly) induced by A : Y, — Y, ® U(gly). Similarly,
if l; =1, [, =1 — 1 and the leftmost column of 7 consists of a single box,
Ay—1: Wr — U(gly) ® Wg, corresponds exactly to the map Yf, - U@gh)® Yéjl
inducedby A_: Y, - U(gl})) ®Y, .

Using (8-1), we can make sense of tensor products: if we are given W_-modules
V.foreachc=1,...,d, then we obtain a well-defined W,-module

ViR - ®QV;:= A;kl ld(Vlg'”‘XVd)’ (8-2)

.....

i.e., we take the pull-back of their outer tensor product (viewed as a module via the
usual sign convention).

Now specialize to the situation that d =1/ and /{ = --- =1[; = 1. Then each
pyramid . is a single column of height 1 or 2. In the former case, W, = U (gl,),
and in the latter, Wy, = U (gly);). So we have that Wy, @ --- @ W, = U!, and the
map Aj, .1 coincides with the Miura transform u.

.....
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Given A € Tab,, let A, € Tab,, be its c-th column and L(A,) be the corresponding
irreducible Wy, -module. Let us decode this notation a little. If W, = U (gl;), then
A¢ has just a single entry b and L(A,) is the one-dimensional module with an even
basis vector v, such that e; jv4 = (—1)|2|bv+. If Wy, = U(gly);), then A, has
two entries, a in the first row and b in the second row, and L(A,) is one- or two-
dimensional according to whether a = b; in both cases L(A.) is generated by an even
vector vy such that e; vy = (—D!avy, ex vy = (=1)?lbv, and e yv; =0. Let

V(A :=L(A)®---®L(A)). (8-3)

Note that dim \7(A) =2k where h is the number of ¢ = 1, ..., [ such that A,
has two equal entries.

Lemma 8.3. For any A € Tab,, there is a nonzero homomorphism
M(A) — V(A)

sending the cyclic vector 1 @ 14, € M(A) to v4 ® - -- @ vy € V(A). In particular,
V(A) contains a subquotient isomorphic to L(A).

ajp---a

Proof. Suppose that A =5, ... By the definition of M(A) as an induced module,
it suffices to show that v 1= v, ® --- ® v € V(A) is annihilated by all ¢ for
r>s12and that d\”v =e,(ay, ..., ax)v and d\v = e, (by, ..., by)v for all r > 0.
For this, we calculate from the explicit formulae for the invariants dl(r), dg) and @
given by (4-10) and (4-19)—(4-21), remembering that their action on v is defined
via the Miura transform p = Ay . It is convenient in this proof to set

(—DM®CED e ; @190 if g. =2,
gl =1 (—DP1PCD e @109 ifg.=landi=j =2,
0 otherwise

forany 1 <i, j <2 and 1 <c¢ <[, where g, is the number of boxes in the c-th
column of 7. First we have that

(r,, _ Sler] Sle2] Sler]
dy’v= Z Z €1LhiC€hihy """ €y 1Y
1<cy,.,cr <l 1<hy,...,h, 12
summing only over terms with ¢; < --- < ¢,. The elements on the right commute

(up to sign) because the ¢; are all distinct, so any éEC"Z] produces O as ej vy = 0.

Thus, the summation reduces just to
Z égc,‘l]‘--égc”l]vze,(al,...,ak)v
I<ci<-<er<l
as required. Next we have that

. #i=1,...,r—1jrow(h;)=1}slc1] 5[cal _[er]
dy v = Z Z (=D™ ' ‘32,}1]eh1,h2"‘€h,_.,zv

1<cy,....e,<l1<hy,...;h, 1 <2
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summing only over terms with ¢; > ¢;41 if row(h;) =1 and ¢; < ¢; 4 if row(h;) =2.

Here, if any monomial é[f"z] appears, the rightmost such can be commuted to

the end when it acts as 0. Thus, the summation reduces just to the terms with

hy=---=h,_1 =2, and again we get the required elementary symmetric function
e-(by, ..., by). Finally, we have that
r).,, #Hi=1,....,r—1|row(h;)=1}s[c1] s[c2] =lcr]
=" ). >, D €LmChihy " €y 2V
1<ci,...,er<l 1<hy,....,h,_1<2

summing only over terms with ¢; > ¢;41 if row(h;) =1 and ¢; < ¢j 4 if row(h;) =2.

As before, this is 0 because the rightmost é[fiz] can be commuted to the end. O

Theorem 8.4. Take any A = 3% € Taby, and let h > 0 be maximal such that
distinct 1 <iy,...,ip<kand1 < ji,..., jy <lwitha; =bj, ..., a; =bj, exist.
Choose B ~ A so that B has h columns of height 2 containing equal entries. Then

L(A) = V(B). (8-4)

In particular, dim L(A) =2k,

Proof. By Lemma 8.3, V(B) has a subquotient isomorphic to L(B) = L(A),
which implies that dim L(A) < dim V (B) = 2=, Also by the linear independence
established in the partial proof of Theorem 7.3 given in Section 7, we know that
dim L(A) > 2k, O

Theorem 8.4 also establishes the fact about dimension needed to complete the
proof of Theorem 7.3 in Section 7.

References

[Backelin 1997] E. Backelin, “Representation of the category O in Whittaker categories”, Internat.
Math. Res. Notices 1997:4 (1997), 153—-172. MR 98d:17008 Zbl 0974.17007

[Briot and Ragoucy 2003] C. Briot and E. Ragoucy, “W-superalgebras as truncations of super-
Yangians”, J. Phys. A 36:4 (2003), 1057-1081. MR 2004c:17055 Zbl 1057.17019

[Brown et al.] J. Brown, J. Brundan, and S. M. Goodwin, “Whittaker coinvariants for GL(m|n)”, in
preparation.

[Brundan and Goodwin 2007] J. Brundan and S. M. Goodwin, “Good grading polytopes”, Proc. Lond.
Math. Soc. (3) 94:1 (2007), 155-180. MR 2008g:17031 Zbl 1120.17007

[Brundan and Kleshchev 2006] J. Brundan and A. Kleshchev, “Shifted Yangians and finite W-
algebras”, Adv. Math. 200:1 (2006), 136-195. MR 2006m:17010 Zbl 1083.17006

[Brundan and Kleshchev 2008] J. Brundan and A. Kleshcheyv, “Representations of shifted Yangians
and finite W-algebras”, Mem. Amer. Math. Soc. 196:918 (2008). MR 2009i:17020 Zbl 1169.17009

[Brundan et al. 2008] J. Brundan, S. M. Goodwin, and A. Kleshchev, “Highest weight theory for
finite W-algebras”, Int. Math. Res. Not. 2008:15 (2008), Article ID rmn051. MR 2009f:17011
Zbl 1211.17024

[De Sole and Kac 2006] A. De Sole and V. G. Kac, “Finite vs affine W-algebras”, Jpn. J. Math. 1:1
(2006), 137-261. MR 2008b:17044 Zbl 1161.17015


http://dx.doi.org/10.1155/S1073792897000111
http://msp.org/idx/mr/98d:17008
http://msp.org/idx/zbl/0974.17007
http://dx.doi.org/10.1088/0305-4470/36/4/314
http://dx.doi.org/10.1088/0305-4470/36/4/314
http://msp.org/idx/mr/2004c:17055
http://msp.org/idx/zbl/1057.17019
http://dx.doi.org/10.1112/plms/pdl009
http://msp.org/idx/mr/2008g:17031
http://msp.org/idx/zbl/1120.17007
http://dx.doi.org/10.1016/j.aim.2004.11.004
http://dx.doi.org/10.1016/j.aim.2004.11.004
http://msp.org/idx/mr/2006m:17010
http://msp.org/idx/zbl/1083.17006
http://msp.org/idx/mr/2009i:17020
http://msp.org/idx/zbl/1169.17009
http://dx.doi.org/10.1093/imrn/rnn051
http://dx.doi.org/10.1093/imrn/rnn051
http://msp.org/idx/mr/2009f:17011
http://msp.org/idx/zbl/1211.17024
http://dx.doi.org/10.1007/s11537-006-0505-2
http://msp.org/idx/mr/2008b:17044
http://msp.org/idx/zbl/1161.17015

1882 Jonathan Brown, Jonathan Brundan and Simon M. Goodwin

[Gan and Ginzburg 2002] W. L. Gan and V. Ginzburg, “Quantization of Slodowy slices”, Int. Math.
Res. Not. 2002:5 (2002), 243-255. MR 2002m:53129 Zbl 0989.17014

[Gow 2007] L. Gow, “Gauss decomposition of the Yangian Y (gl;|,)”, Comm. Math. Phys. 276:3
(2007), 799-825. MR 2008h:17013 Zbl 1183.17006

[Hoyt 2012] C. Hoyt, “Good gradings of basic Lie superalgebras”, Israel J. Math. 192 (2012),
251-280. MR 3004082 Zbl 06127524

[Kostant 1978] B. Kostant, “On Whittaker vectors and representation theory”, Invent. Math. 48:2
(1978), 101-184. MR 80b:22020 Zbl 0405.22013

[Losev 2011] 1. Losev, “Finite W-algebras”, pp. 1281-1307 in Proceedings of the International
Congress of Mathematicians (Hyderabad, India, 2010), vol. 3, edited by R. Bhatia et al., Hindustan
Book Agency, New Delhi, 2011. MR 2012g:16001 Zbl 1232.17024

[Macdonald 1995] 1. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., The Claren-
don Press Oxford University Press, New York, 1995. MR 96h:05207 Zbl 0824.05059

[Nazarov 1991] M. L. Nazarov, “Quantum Berezinian and the classical Capelli identity”, Lett. Math.
Phys. 21:2 (1991), 123—-131. MR 92b:17020 Zbl 0722.17004

[Peng 2011] Y.-N. Peng, “Parabolic presentations of the super Yangian Y (gl )", Comm. Math.
Phys. 307:1 (2011), 229-259. MR 2835878 Zbl 05968689

[Poletaeva and Serganova 2013] E. Poletaeva and V. Serganova, “On finite W-algebras for Lie
superalgebras in the regular case”, pp. 487-497 in Lie theory and its applications in physics (Varna,
Bulgaria, 2011), edited by V. Dobrev, Proceedings in Mathematics & Statistics 36, Springer, Tokyo,
2013. Zbl 06189232

[Soergel 1990] W. Soergel, “Kategorie O, perverse Garben und Moduln iiber den Koinvarianten zur
Weylgruppe”, J. Amer. Math. Soc. 3:2 (1990), 421-445. MR 91e:17007 Zbl 0747.17008

[Springer and Steinberg 1970] T. A. Springer and R. Steinberg, “Conjugacy classes”, pp. 167-266 in
Seminar on Algebraic Groups and Related Finite Groups (Princeton, 1968—-1969), Lecture Notes in
Mathematics 131, Springer, Berlin, 1970. MR 42 #3091 Zbl 0249.20024

[Tarasov 1985] V. O. Tarasov, “Irreducible monodromy matrices for an R-matrix of the X X Z model,
and lattice local quantum Hamiltonians”, Teoret. Mat. Fiz. 63:2 (1985), 175-196. In Russian;
translated in Theoret. and Math. Phys. 63:2 (1985), 440-454. MR 87d:82022

[Zhao 2012] L. Zhao, “Finite W-superalgebras for queer Lie superalgebras”, preprint, 2012. arXiv
1012.2326

Communicated by J. Toby Stafford
Received 2012-05-10 Accepted 2012-12-17

brownj3@gonzaga.edu Department of Mathematics, Computer Science, and
Statistics, State University of New York College at Oneonta,
Oneonta, NY 13820, United States

brundan@uoregon.edu Department of Mathematics, University of Oregon,
Eugene, OR 97403, United States

s.m.goodwin@bham.ac.uk School of Mathematics, University of Birmingham,
Birmingham B152TT, United Kingdom

mathematical sciences publishers :'msp


http://dx.doi.org/10.1155/S107379280210609X
http://msp.org/idx/mr/2002m:53129
http://msp.org/idx/zbl/0989.17014
http://dx.doi.org/10.1007/s00220-007-0349-5
http://msp.org/idx/mr/2008h:17013
http://msp.org/idx/zbl/1183.17006
http://dx.doi.org/10.1007/s11856-012-0023-2
http://msp.org/idx/mr/3004082
http://msp.org/idx/zbl/06127524
http://dx.doi.org/10.1007/BF01390249
http://msp.org/idx/mr/80b:22020
http://msp.org/idx/zbl/0405.22013
http://dx.doi.org/10.1142/9789814324359_0096
http://msp.org/idx/mr/2012g:16001
http://msp.org/idx/zbl/1232.17024
http://msp.org/idx/mr/96h:05207
http://msp.org/idx/zbl/0824.05059
http://dx.doi.org/10.1007/BF00401646
http://msp.org/idx/mr/92b:17020
http://msp.org/idx/zbl/0722.17004
http://dx.doi.org/10.1007/s00220-011-1307-9
http://msp.org/idx/mr/2835878
http://msp.org/idx/zbl/05968689
http://dx.doi.org/10.1007/978-4-431-54270-4_36
http://dx.doi.org/10.1007/978-4-431-54270-4_36
http://msp.org/idx/zbl/06189232
http://dx.doi.org/10.2307/1990960
http://dx.doi.org/10.2307/1990960
http://msp.org/idx/mr/91e:17007
http://msp.org/idx/zbl/0747.17008
http://dx.doi.org/10.1007/BFb0081546
http://msp.org/idx/mr/42:3091
http://msp.org/idx/zbl/0249.20024
http://mi.mathnet.ru/eng/tmf/v63/i2/p175
http://mi.mathnet.ru/eng/tmf/v63/i2/p175
http://dx.doi.org/10.1007/BF01017900
http://msp.org/idx/mr/87d:82022
http://msp.org/idx/arx/1012.2326
http://msp.org/idx/arx/1012.2326
mailto:brownj3@gonzaga.edu
mailto:brundan@uoregon.edu
mailto:s.m.goodwin@bham.ac.uk
http://msp.org

ALGEBRA AND NUMBER THEORY 7:8(2013)
dx.doi.org/10.2140/ant.2013.7.1883

Kernels for products of L-functions

Nikolaos Diamantis and Cormac O’Sullivan

The Rankin—Cohen bracket of two Eisenstein series provides a kernel yielding
products of the periods of Hecke eigenforms at critical values. Extending this
idea leads to a new type of Eisenstein series built with a double sum. We develop
the properties of these series and their nonholomorphic analogs and show their
connection to values of L-functions outside the critical strip.

1. Introduction

Rankin [1952] introduced the fruitful idea of expressing the product of two critical
values of the L-function of a weight-k Hecke eigenform f for I' = SL(2, Z) in
terms of the Petersson scalar product of f and a product of Eisenstein series:

kik
(Ex,Exy. f) = (=D)R/2237 % 22 L5 (f 1) L*(f, ko) (1-1)
By, By,
for k = ky +k, the Bernoulli numbers B; and the completed, entire L-function of f,

o0

ir . D) af<m)_/°° N
L*(f,s) := <2”>S,,; = ), Sy Ty,
Zagier [1977, p. 149] extended (1-1) to get
([Ek- Eioln. f) = <—1>’<l/2<2m)"23"‘(k;2>ﬂL*(ﬁ n+ DL*(f.n+k),
By, By,

(1-2)
where k = k| +k,+2n and [g1, g2], stands for the Rankin—Cohen bracket of index n
given by

n
ki+n—1 kry+n—1 _
(g1, 821 = Z(—l)’( n ) ( , )gi’)gé" DA
r=0
The periods of f in the critical strip are the numbers

L*(f, 1), L*(f,2), ..., L*(f, k—1). (1-4)

MSC2010: primary 11F67; secondary 11F03, 11F37.
Keywords: L-functions, noncritical values, Rankin—Cohen brackets, Eichler—Shimura—Manin theory.
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Zagier [1977, §5] and Kohnen and Zagier [1984] proved important results of the
Eichler—Shimura—Manin theory on the algebraicity of these critical values using
(1-2). We describe this in more depth in Sections 2C and 8A.
On the face of it, the techniques of [Zagier 1977], employing (1-2), apply only
to critical values; an extension to noncritical values, L*( f, j) for integers j < 0
or j > k, would seem to require Rankin—Cohen brackets of negative index n or
holomorphic Eisenstein series of negative weight, neither of which are defined.
Analyzing the structure of the Rankin—Cohen bracket of two Eisenstein series in
Section 6 reveals a natural construction, which we call a double Eisenstein series:"
Yo () iy ™6 7R, (1-5)

¥,8€l0o\I"
Y8 £ o

where, for y € I', we write
a, b .
y = < 4 y) and j(y,z):=cyz+d,.
¢y dy
By comparison, the usual holomorphic Eisenstein series is

Ex@= ) jw.a™ (1-6)
yelso\I'
The double Eisenstein series (1-5) converges to a weight-(k; + k) cusp form when
I < ki —2, ky—2. For negative integers [, it behaves as a Rankin—Cohen bracket of
negative index; see Proposition 2.4. This allows us to further generalize (1-1) and
(1-2), and in Section 8, we characterize the field containing an arbitrary value of an
L-function in terms of double Eisenstein series and their Fourier coefficients. In
the interesting paper [Cohen et al. 1997], Rankin—Cohen brackets are linked to op-
erations on automorphic pseudodifferential operators and may also be reinterpreted
in this framework allowing for more general indices.
An extension of Zagier’s kernel formula (1-2) in the nonholomorphic direction is
given in Section 9C. There we show that the holomorphic double Eisenstein series
have nonholomorphic counterparts:

D leysa 7 Im(y2)” Im(82)° . (1-7)

y,8€T oo\

y8 ' # s
These weight-0 functions possess analytic continuations and functional equations
resembling those for the classical nonholomorphic Eisenstein series. As kernels,
they produce products of L-functions for Maass cusp forms; see Theorem 2.9. The
main motivation for this construction was its potential use in the rapidly developing

n the context of multiple zeta functions, the authors in [Gangl et al. 2006] give a different
definition of “double Eisenstein series”. See also [Deninger 1995], for example, for distinct “double
Eisenstein—Kronecker series”.
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study of periods of Maass forms [Bruggeman et al. 2013; Lewis and Zagier 2001;
Manin 2010; Miihlenbruch 2006]. In developing the properties of (1-7), we require
a certain kernel 7 (z; s, s") as defined in (9-1). It is interesting to note that Diaconu
and Goldfeld [2007] needed exactly the same series for their results on second
moments of L*(f, s); see Section 9A.

2. Statement of main results

2A. Preliminaries. Our notation is as in [Diamantis and O’Sullivan 2010]. In all
sections but two, I" is the modular group SL(2, Z) acting on the upper half-plane H.
The definitions we give for double Eisenstein series extend easily to more general
groups, so in Section 4, we prove their basic properties for I an arbitrary Fuchsian
group of the first kind, and in Section 10, we see how some of our main results are
valid in this general context.

Let S (I") be the C-vector space of holomorphic, weight-k cusp forms for I and
M (") the space of modular forms. These spaces are acted on by the Hecke operators
T,,; see (3-6). Let B be the unique basis of S; consisting of Hecke eigenforms
normalized to have first Fourier coefficient 1. We assume throughout this paper
that f € By. Since (T, f, f) = (f, T f), it follows that all the Fourier coefficients
of f are real, and hence, L*(f, s) = L*(f, 5). Also, recall the functional equation

L*(f, k—s) = (=D*2L*(f, 5). @2-1)

We summarize some standard properties of the nonholomorphic Eisenstein series;
see for example [Iwaniec 2002, Chapters 3 and 6]. Throughout this paper, we use
the variables z=x+iyeHand s =0 +ir € C.

Definition 2.1. For z € H and s € C with Re(s) > 1, the weight-0, nonholomorphic
Eisenstein series is
o s _ ys —2s
EG.s)= Y Im(yz)' = = > lez+d| 7. (2-2)
yela\I' c,deZ
(c.d)=1
Let 6(s) :=m*I'(s)¢(2s). Then E(z, s) has a Fourier expansion [Iwaniec 2002,
Theorem 3.4], which we may write in the form
0(1—ys)

E(z,s)=yS+Ts)yl—s+mZ#)¢<m,s>|m|—”2Ws<mz>, (2-3)

where Wy (mz) = 2(|Im|y)/?Ks—1,2(27|m|y)e* ™~ is the Whittaker function for
z € H and also 0(s)¢ (m, s) = o251 (Im|)|m|'27*. As usual, oy (m) := ), d* is
the divisor function.

For the weight-k (k € 2Z) nonholomorphic Eisenstein series, generalizing (2-2),
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set

(i Nt
Ex(z,5) = Im(VZ)’(.—> . (2-4)
ye§\r lj (v, 2|

Then (2-4) converges to an analytic function of s € C and a smooth function of
z € H for Re(s) > 1. Also y ¥/2E;(z, s) has weight k in z. Define the completed
nonholomorphic Eisenstein series as

EQ(z,8) = 0k(s)Ex(z,s) for O(s) :==m"T'(s + [k|/2)¢ (2s). (2-5)

With (2-3), we see that E(z, s) has a meromorphic continuation to all s € C. The

same is true of E(z, s); see [Diamantis and O’Sullivan 2010, §2.1] for example.
We have the functional equations

0(s/2) =0((1—15)/2), (2-6)

Ej(z,s) = E(z,1—5). -7

2B. Holomorphic double Eisenstein series. Define the subgroup

#={o7)

Then I', the subgroup of I' = SL(2, Z) fixing oo, is BU —B. For y € ' \ T, the
quantities ¢, d,, and j(y, z) are only defined up to sign (though even powers are
well-defined). For y € B\T', there is no ambiguity in the signs of ¢, d, and j (y, 2).

ne Z} Cc SL(2, 2). (2-8)

Definition 2.2. Let z € H and w € C. For integers k1, k; > 3, we define the double
Eisenstein series

B izw) = Y ()" i, 7N, 07 (2-9)
y,6€ B\T"
€ 5-1 >0
This series is well-defined and converges to a holomorphic function of z that
is a weight-(k = k| + k») cusp form for Re(w) < k; — 1, k> — 1, as we see in
Proposition 4.2. It vanishes identically when k| and k, have different parity.
Let k be even. To get the most general kernel, with s € C set

— .](ya Z) - . —k
Ei_s(z,w):= E (cys-1)" ](. ) Jj@, ). (2-10)
. Jj(8,2)
)

In the usual convention, for p € C with p # 0, write
p=|ple! P for — < arg(p) <7

and
p° = |p|fe! P fors e C. (2-11)
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Note that
cy dy
s ds

— 17Dy forzen,

j(8,2)

and so (j (v, 2)/j(8,z))~* in (2-10) is well-defined and a holomorphic function of

s € C and z € H. Proposition 4.2 shows that E ;_s(z, w) converges absolutely and

uniformly on compact sets for which2 <o <k—2and Re(w) <o -1, k—1—o0.
Define the completed double Eisenstein series as

Cy[g—l =

ES (z,w) (2-12)
_ STRL Ok —s)Tk—w)t(1—w+s)c(1 —w+k—s)
- 23_w71k+1_wr(k _ 1)

] Es,k—s (z, w).

Theorem 2.3. Let k > 6 be even. The series E;“ t—s (2, w) has an analytic continua-
tion to all s, w € C and as a function of z is always in Sx(I"). For any f in By, we
have

(ES i _sC-ow), ) =L*(f, )L*(f, w). (2-13)

It follows directly from (2-13) and (2-1) that E;“ r—s (2, w) satisfies eight func-
tional equations generated by

Ej, (zw)=Ey;, ,(z5), (2-14)
;k,kfs (z, w) = (_l)k/zEltfs,s(Z, w). (2-15)

The next result shows how E;" «—s 18 a generalization of the Rankin—-Cohen
bracket [Ey,, Ex,]n-

Proposition 2.4. Forn € 7~ and even ki, ky > 4,

_ 2(—=DR 27k (k- 1)
— Qi) ¢ (k1) (k)T (k)T (k)T (k —n — 1)

n![Ekla Ekz]n ;Ck]-i-l’l,kz-i-l’l(z’n-"_ 1)

Another way to understand these double Eisenstein series is through their con-
nections to nonholomorphic Eisenstein series. Any smooth function transforming
with weight k£ and with polynomial growth as y — oo may be projected into Sy with
respect to the Petersson scalar product. See [Diamantis and O’Sullivan 2010, §3.2]
and the contained references. Denote this holomorphic projection by mp).

Proposition 2.5. Let k = ki + ky > 6 for even k1, ky > 0. Then for all s, w € C
E} (2 w) =ma[ (= 1)°PyES (2, w)Ef (2, v) /2",

where
u=GE+w—k+1)/2 and v=(—s+w+1)/2. (2-16)
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2C. Values of L-functions. For f € By, let K s be the field obtained by adjoining
to Q the Fourier coefficients of f. We will recall Zagier’s proof of the next result
in Section 8A.

Theorem 2.6 (Manin’s periods theorem). For each f € By, there exist real numbers
wi (f), w_(f) such that

L*(f, ) /o (f), L*(f, w)/o_(f) € K¢
forall s and wwith 1 <s,w <k—1ands even and w odd.

Let m € Z satisfy m < 0 or m > k. Then for these values outside the critical
strip we have, according to [Kontsevich and Zagier 2001, §3.4] and the references
therein,

L*(f,m) e 2[1/m],

where 2 is the ring of periods: complex numbers that may be expressed as an
integral of an algebraic function over an algebraic domain. In contrast to the
periods (1-4), we do not have much more precise information about the algebraic
properties of the values L*(f, m). A special case of a theorem by Koblic [1975]
shows, for example, that

L*(fm)¢Z-L*(f, )+Z-L*(f,2)+---+Z-L*(f, k—1).

Let K(E* She ;(+, w)) be the field obtained by adjoining to Q) the Fourier coef-
ficients of Es ks (> w), and let w; (f) and w_(f) be as given in Theorem 2.6.
Then we have:

Theorem 2.7. Forall f € By and s € C,

L*(f,9)/o+(f) € K(ES (- k— 1)Ky,
L*(f,8)/o-(f) € K(E;_5,(-.5)Ky.

The above theorem gives the link between Fourier coefficients of double Eisen-
stein series and arbitrary values of L-functions. We hope that this interesting
connection will help shed light on L*(f, s) for s outside the set {1,2, ...,k —1}.
See the further discussion in Section 8B for the case when s € Z.

In Section 8C, we also prove results analogous to Theorem 2.7 for the completed
L-function of f twisted by ¢>*""?/4 for p/q € Q:

r 2wimp/q
L¥ (55 p/q) i= o) Zaf(m)e

Qm)s ms / fGy+p/y " dy. 2-17)
m=1
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2D. Nonholomorphic double Eisenstein series.

Definition 2.8. For z € H and w, s, s’ € C, we define the nonholomorphic double
FEisenstein series as

3 Im(yz)* Im(8z2)*

€(z, w;s,s):= (2-18)
|C 5—1 |w
¥.8€0\T 14
V(Sil?éroo

A simple comparison with (2-2) shows it is absolutely and uniformly convergent
for Re(s), Re(s’) > 1 and Re(w) > 0. (This domain of convergence is improved in
Proposition 4.3.) The most symmetric form of (2-18) is when w = s + s’. Define

€*(z;8,8) = 4n*S*S/F(s)F(s’)§(3s +sNe(s+35)€(z, s +5";s,8)
+20()0(sHE(z, s +5). (2-19)

Theorem 2.9. The completed double Eisenstein series €*(z; s, s’) has a meromor-
phic continuation to all s, s’ € C and satisfies the functional equations

€ (z;5,5) =€ (25, ),
€ (z;8,5) =€ (z; 1 —s,1—5").
For any even Maass Hecke eigenform u j,

(€*(z3s,8),uj)=L*(uj,s+s —1/2)L*(u;,s' —s+1/2).

3. Further background results and notation
We need to introduce two more families of modular forms.

Definition 3.1. For z € H, kK > 4 in 27 and m € Z>(, the holomorphic Poincaré

series 1s
Pi(z;m) = Z
yel\I'

2mmyz 2mmyz

3-1
o of 2 Z I G-l

y€B\T

For m > 1, the series Py (z; m) span Si(I'). The Eisenstein series Ey(z) = Px(z; 0)
is not a cusp form but is in the space My (I'). The second family of modular forms
is based on a series due to Cohen [1981].

Definition 3.2. The generalized Cohen kernel is given by

Casipla) =5 Y et p/a) i (3-2)
yel

for p/q € @ and s € C with 1 < Re(s) <k — 1.
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In [Diamantis and O’Sullivan 2010, §5], we studied 6, (z, s; p/q) (the factor 1/2
is included to keep the notation consistent with that article, where I' = PSL(2, Z)).
We showed that, for each s € C with 1 < Re(s) <k — 1, €x(z, s; p/q) converges to
an element of Sy (I") with a meromorphic continuation to all s € C. From Proposition
5.4 of the same work, we have

'tk—1)
r's)I'tk—s)
which is a generalization of Cohen’s lemma in [Kohnen and Zagier 1984, §1.2].
For simplicity, we write 6, (z, s) for €;(z, s; 0). The twisted L-functions satisfy

L*(f,s; p/q) = L*(f,5; —p/q), (3-4)
@ L*(f,s; p/q) = (D2 L*(fk—s5;—p'/q) (3-5)

for pp’ =1 mod ¢ as in [Kowalski et al. 2002, Appendix A.3].
Define M, := {(“%) | a,b,c.d € Z, ad —bc =n}. Thus, M; =T. Fork € Z
and g : H — C, set

(@r(-, 53 p/q), f) =2"Fmesim/2 L*(f,k—s;p/q), (3-3)

(81) (@) = det() g (y2)j (v, )
for all y € M,,. The weight-k Hecke operator 7, acts on g € My, by

b
(T,9)@) =71 3" (gliy)@=n*""1 > d™* 3" g(“; ) (3-6)

yell\u, ad=n 0<b<d
a,d>0

4. Basic properties of double Eisenstein series

We work more generally in this section with I' a Fuchsian group of the first kind
containing at least one cusp. Set

er = #{T N {=1}}. (4-1)

Label the finite number of inequivalent cusps a, b, etc., and let I'; be the subgroup
of I fixing a. There exists a corresponding scaling matrix o, € SL(2, R) such that
0,00 = a and

BU—-B if—IeTl (er=1),

-1
I =
% 1a% {B if —1¢T (e =0).

Also set I'} := oq.Bo, L.

We recall some facts about Ey 4(z, s), the nonholomorphic Eisenstein series
associated to the cusp a; see for example [Iwaniec 2002, Chapter 3; Diamantis and
O’Sullivan 2010, §2.1]. It is defined as

j(oa 'y, 2) )k

Era(z.5):= ) Im((’“—%)s(lj(oa‘ly’Z>|

yela\l
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and absolutely convergent for Re(s) > 1. Put E,f o (2, 8) = Ok (s)Eg a(z, 5) as in
(2-5). Then we have the expansion

E} (002, 8) = 8a0(5)y* +0(1 = )Yap ()3 + Y Yap (L W, (l2),  (4-2)
10

E{ 4062, 8) = 8ap0k(5)Y* + Ok (1 — 5)Yap()y' ™+ 0(e™ ™) (4-3)

and

as y — oo for all k € 2Z. Also, its functional equation is

Ef (z.1=8) =) Yao(1—$)Ef (2. 5). (4-4)
b

We gave the coefficients Yq5(s) and Yq5(/, s) explicitly in the case of I' = SL(2, Z)
following (2-3), and in general, they involve series containing Kloosterman sums;
see [Iwaniec 2002, (3.21) and (3.22)].

For the natural generalization of (2-10), we define the double Eisenstein series
associated to the cusp a as

. o —1 , Z —S
E;j—s.4(z, w):= Z (Couflyaflau)w_l (](a_—ly)) j(O’a_IS, Z)_k
y (SEF*\F ] (00 87 Z)
50 (4-5)

Coa=lys~loq

so that

J (v, 2)
J(6,2)

Eja(00z, w) = j (00, 2" ) (cys-l)w—‘< )J(&z)‘" (4-6)

y,8€ B\I"/

€51 >0
for I'" = 0, 'T'o,, which is also a Fuchsian group of the first kind. To establish an
initial domain of absolute convergence for (4-6), we consider

3 (cyal)w—l(M> 607k, 4-7)
y.8€B\I" Jj(6,2)
¢, s~1>0

Recalling (2-11), we see that
Ip°] = |pl7e ¥ &, |p|° fors =0 +it eC.

Therefore, with r = Re(w) and Im(yz) = y|j(y, 2)|72, we deduce that (4-7) is
bounded by a constant depending on s times

YN ey Im(y) Im(e2) 2, (4-8)
y,8€T o\
y8~ ' #l s

Lemma 4.1. There exists a constant kr > 0 so that for all y, § € T with ¢,,5-1 >0

Kr < Cps-1 < Im(yz)~ '/ Im(8z) /2.
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Proof. The existence of «r is described in [Iwaniec 2002, §2.5 and §2.6; Shimura
1971, Lemma 1.25]. Set e(y, 2) := j(¥,2)/1j (v, 2)| = ¢ @0 Tt is easy to
verify that, for all y,§ € I" and z € H,

Cys1 =y J(8,2) —csj(y,2)
) D (6.0 TED
_ <J(J/ Z)z' jly Z)>j(8,z)—<1( )= J( Z)>j()/,Z)
iy 2iy
= (e, 2) 2 —ely, 22 j(y, 2)j(8, 2)/Qiy).

Therefore,

e(y,2) (2
€@,2) ey, 2)
= ’Im(g(y’ Z)>‘ Im(yz)~ "% Im(8z) /2

€(3,2)
<Im(yz)~V/?Im(8z)~ /2. O

lcy5-1] = Im(yz)~ 2 Im(8z)""/%/2

It follows that for ' = max(r, 1) and 8! ¢ I's
leys1l ™" < Im(y2) =2 Im(3) =2 (4-9)

for an implied constant depending on I' and r. Combining (4-8) and (4-9) shows

E ;s q(oqz,w / ,
s.k—s.a(0aZ )<<y—k/2 Z Im(y )~ +)/2 Im(s7) 0" +H=0)2 (4.10)

H k
Oq,
J (04, 2) Y Sl \I”

TS

B 1-r' 4o 1—r'+k—0o k
o Y e ) ()

on noting that Im(yz) = Im(éz) for y8*1 € I'o. Since Eq(z, s) is absolutely con-
vergent for o = Re(s) > 1, we have proved that the series E; y—s (042, w), defined
in (4-6), is absolutely convergent for 2 <o <k—2and Re(w) <o —1,k—1—o0.
This convergence is uniform for z in compact sets of H and for s and w in compact
sets in C satisfying the above constraints.

We next verify that E ;_ 4(z, w) has weight k in the z variable. We have

f(2) € M(T) <= f(042)j (00, 2) 7 € Mi(04 ' Tay),

so with (4-6), we must prove that

g@= Y (e (M)_ j@. 7

(6,
y,8eB\I"/ J( Z)
€, 5-1 >0
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isin My(I'’). For all T € I,

D2 ¥ e (222 et

J(, Z)k y,8€B\I"’ J@.72)
y5_1>0
. —s
T, . _
Z (C(Vr)(ét)l)w_l(%) jGt. 2 =g
y,8€B\I” ’
Choen-1>0

as required.
We finally show that E; ;_; is a cusp form. By (4-10), replacing z by o, lopz
and using (4-3), for any cusp b we obtain
Es,k—s,a(GbZ» w)
J(op, 2

B 1—r' 4o l1—r'+k—o k
B s T Y AL

<<yl+a—k+y]—o'+yl+r/—k+yr/—k

and approaches 0 as y — oco. Thus, by a standard argument (see for example
[Diamantis and O’Sullivan 2010, Proposition 5.3]), Es (—s.a(z, w) is a cusp form.
Assembling these results, we have shown the following:

Proposition 4.2. Let z € Hand k € Z, and let s, w € C satisfy 2 <o <k —2 and
Re(w) <o — 1,k —1—0. ForT" a Fuchsian group of the first kind with cusp a,
the series E y_g.q(z, w) is absolutely and uniformly convergent for s, w and z in
compact sets satisfying the above constraints. For each such s and w, we have
E; ;—s.q(z, w) € S¢(I') as a function of z.

The same techniques prove the next result for the nonholomorphic double Eisen-
stein series. Generalizing (2-18), we set

Z Im(yz)* Im(8z2)*

€a(0az, w3 s, s) 1= "
|Cy8*1|

4-11)

)/,(SEFOQ\O'ufll—‘Gu
y8 ' # e

Proposition 4.3. Let z e Hand s, s', w € C with o = Re(s) and o’ = Re(s'). The
series €4(z, w; s, s') defined in (4-11) is absolutely and uniformly convergent for z,
w, s and s’ in compact sets satisfying

0,0/ >1 and Re(w)>2-20,2—-20".

Unlike E; ;—s.q(z, w), the series €4(z, w; s, s') may have polynomial growth at
cusps.



1894 Nikolaos Diamantis and Cormac O'Sullivan

5. Further results on double Eisenstein series

5A. Analytic continuation: proof of Theorem 2.3. Our next task is to prove the
meromorphic continuation of Ej ;_s(z, w) in s and w. For s and w in the initial
domain of convergence, we begin with

(d—w+s)e(1—w+k—s5)Esi(z, w)

> az+b\"’
= Y uriTsywn i R (ad—bc)w—l(—+d) (cz+d)™*
u,v=1 a,b,c,deZ €z

(a,b)=(c,d)=1
ad—bc>0

o0 . b —S
= Z Z (au -dv —bu - cv)? ™! (m) (cv-z+dv)~*
cv-z+dv

u,v=1 a,b,c,deZ
(a,b)=(c.d)=1
ad—bc>0

_ o w—ifaztb - —k i
= Z (ad — bc) <—cz+d> (cz+d) (5-1)

—2y" Tz, 5). (5-2)

recalling (3-2). With Proposition 4.2, we know E; x_;(z, w) € S;(I") so that

(Egk—s(-,w), f)
Es,k—s(za w) = : f@) =

<1 T,%:(-, ),
((1—w+s)¢(1—w+k—s)E; ;—s(z, w)=2Z pa— Z i, 5) f>f(z)-
ot i (f, )

Then

(Tr6(z, 5), [) = (6k(z,9), T, f) = ap(n)(€x(z,s), f),
and with (3-3), we obtain
(d—w+s)i(I—-—w+k—s5)E;k—(z, w)

T(k—1)

— 237wﬂk+17w —sim/2
rsrk—-s)'tk—w)

« N f@
L 3 k - L ) k - . 5'3
" fze%k (P =LA k= ey 059
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Define the completed double Eisenstein series E* with (2-12). Then (5-3) becomes

f(z)
f f)

Ef@ow) =Y L*(f.)L*(fiw (5-4)

fEBy

We also now see from (5-4) that E* ke +(z, w) has an analytic continuation to all s
and w in C and satisfies (2-13) and the two functional equations (2-14) and (2-15).
The dihedral group Dg generated by (2-14) and (2-15) is described in [Diamantis
and O’Sullivan 2010, §4.4]. U

5B. Twisted double Eisenstein series. In this section, we define the twisted double
Eisenstein series by

(1 =w+s)(1—w+k—$)Es (2, w; p/q)
= Y (ad—be)"~ 1(‘ZZH’JFB) (cz+d)™ (5-5)

a,b,c,deZ
ad bc>0

for p/q € Q with ¢ > 0 and establish its basic required properties. We remark that
the above definition of E ;_,(z, w; p/q) comes from generalizing (5-1), but it is
not clear how it can be extended to general Fuchsian groups.
Writing
i f(az+b p\*
d — bV 1
(a ) (cz +d + )

_ _f(aqg+cp)z+ (bg+dp)\*
=q' """ ((aq + cp)d — (bq +dp)c)” ! ( p— :

we see that (5-5) equals

a/ +b/ —S
ql—w+s Z (a/d_b/c)w—l( < ) (CZ+d)_k
a'\b',c,de” cz+d
d'd-bc=0

with @’ = ¢p mod ¢ and b’ = dp mod q. Hence, E; y_(z, w; p/q) is a subseries
of E; x—;s(z, w) and, in the same domain of initial convergence, is an element of Sg.
The analog of (5-2) is

T,6x(z, 55 p/q)

k w

(= w451 —w+k—8)Es sz, w; p/q) = 22

n=1

- (5-6)

Hence, with (3-3),
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é‘(l —w +S)§(1 —w+k _S)Es,kfs(z, w; p/Q)
Fr'k—1)
rsrk—-s)r'tk—w)

X Y L*(fik—s; p/OL*(fik—w)

feRB

— 23—wn,k+1—we—sin/2

f(@)
(fi f)

(5-7)

*

Define the completed double Eisenstein series E,

factor as (2-12), and we obtain

(E{j—sCowip/q), f)=L*(f.k—s; p/@)L*(f. k —w) (5-8)

for any f in %B. Then (5-7) implies E*, _ (z, w; p/q) has an analytic continuation

s,k—s
to all s and w in C. It satisfies the two functional equations

Ely (. k—w;ip/g)=(—D"E}_(z. w; p/qg).
Q°E}_, (z.w; p/g) = (=D E (2, w; —p'/q)

for pp’ = 1 mod ¢g using (2-1) and (3-5), respectively.

(z, w; p/q) with the same

6. Applying the Rankin—-Cohen bracket to Poincaré series

The main objective of this section is to show how double Eisenstein series arise
naturally when the Rankin—Cohen bracket is applied to the usual Eisenstein series Ej.
Proposition 2.4 will be a consequence of this. In fact, since there is no difficulty in
extending these methods, we compute the Rankin—Cohen bracket of two arbitrary
Poincaré series

[Py, (z: my), Pr,(z; m2)],

for my, my > 0. The result may be expressed in terms of the double Poincaré series
defined below. In this way, the action of the Rankin—Cohen brackets on spaces of
modular forms can be completely described. See also Corollary 6.5 at the end of
this section.

Definition 6.1. Let z € H, ky, k> > 3 in Z and m|, my € Z>o. For w € C with
Re(w) < k1 — 1, kp — 1, we define the double Poincaré series

2mwi(myyz+m28z)

e
P o (2, wimy, ma) = (c,s-1)" "1 : . (6-D)
. VSGXB;\F v Jly, k)8, )k
6;8*1>0

The series (6-1) will vanish identically unless k; and k, have the same parity.
Clearly, we have Ej, ,(z, w) = Py, 1,(z, w; 0, 0). Since |27 (mya+m2d)| L1 it is
a simple matter to verify that the work in Section 4 proves that Py, ,(z, w; my, m3)
converges absolutely and uniformly on compacta to a cusp form in S, 4, (I).
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For [ € Z, it is convenient to set

O0uCe 1 m) Pi(z; m) ifl =0, 62)
kZ,l;m) = 27'rim)/z( )l . -
3 e ej(y—z)kcfl it/ > 1.
As in the proof of Proposition 4.2, Q is an absolutely convergent series for k
even and at least 4. The next result may be verified by induction.

Lemma 6.2. For every j € Z>(, we have the formulas

d’ +j
B = 1)}%@(( j; 0),

d_Pk(z m) = Z( 1)l+1(2mm)lj <]/€<—-ii_-; )QHz,(z,j—l;m) form > 0.

Set
ki +n—D'(ky+n—1)!

A lu), = .
fado (1 1) Nul(n—1—u)! (kg +1— D! (ky +u— 1)!

Proposition 6.3. Form,m; € 7>,

[Py, (z5m1), Pr,(z; ma)], = Z Ay (L W) (=2imy) 2mwima)"

L,u>0
I+u<n

X Py ynti—udptn—t+u(@n+1—1—u;my,my)/2

+ Phthor2n (@ mi+m2) Y Ak k(b ) (=2imy) (2ima)".
Lu>0
I+u=n
Proof. With Lemma 6.2,

[Py, (z; my), Py, (z; m2)],

" ) _ (ki +n—D!(ky+n—1)!
= 2 L u
;g( Tim) 2 im) e T = D) (k= D!

% X_:(_l)n+l+u+r QkH—Zl(Z’ r—1; ml)ka-i-Zu(Zv n—r—u;mn)
r—D!'n—r—u)! '

(6-3)
r=I

The inner sum over r is

(_1)1 eZﬂi(ml)/Z-i-szZ)
4n—1—u) J(y, 2)ft2 j(§, z)ket2u

n—u n—l—u ¢y r—l( —cs )n—r—u ]
XZ:;( r—l )(j(%z)) 6o) Y

y,6€ B\T"
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and, employing the binomial theorem, (6-4) reduces to

(_1)1 e2ﬂi(m1yz+m28z) ,
SV E— . . (cyj@,2)—csjly, )" 7"
Adn—1— u)!y,g\rj(y’ Z)k1+n+l—uj @, Z)k2+n—l+u 4

(6-5)
for! +u < n and
(_1)1 eZni(mlyz-l—szz)

- 6-6
4n —1—u)! y SGZB\F j(y, Dkitnt—u (s, z)ketn—i+u (6-6)

for [ +u = n. Noting that

. . ey dy|
C]/.] (5’ Z) - CB.] (ya Z) - Cs d5 - Cyé*‘
means that (6-5) becomes
(=1!

mpk1+n+l—u,kz+n—l+u @,n+1—=1—u;mp, my) (6-7)

and (6-6) equals

(=D Py nticudoin—tsu(@n+1=1—u;my, mp)
(n—1—u)! 2

+ Piyphy420 (25 my —|—m2)). (6-8)

Putting (6-7) and (6-8) into (6-3) finishes the proof. U

In fact, Proposition 6.3 is also valid for m | or m, equaling O provided we agree
that (—27im;)" = 1 in the ambiguous case where m; = [ = 0 and similarly that
(2mwimy)* =1 when my = u = 0. With this notational convention, the proof of the
last proposition gives:

Corollary 6.4. For m > 0, we have

n
[Ek, (2), Piy(zi m))n =D Ay sy (0, 1) (2 im)"
u=0
» Pk1+n—u,k2+n+u (z,n+1—-wu;0,m)
2
[Ek1 (Z)s Ekz (Z)]n = Ak[,kz (O’ O)n Ek1+n,k2+n (Z7 n+1)/2+Ek1+k2 (Z)’gﬂ,O' (6_9)

Proposition 2.4 follows directly from (6-9). Combining Proposition 2.4 with
Theorem 2.3 gives a new proof of Zagier’s formula (1-2). His original proof in
[1977, Proposition 6] employed Poincaré series.

Proof of Proposition 2.5. Let Fy ,(z) = (—1)]‘2/2)1_"/2E;(“l (z, u)E;f2 (z,v)/Q2r*/?)
withu =(s+w—-k+1)/2and v=(—s +w + 1)/2 as before in (2-16). Then

+ Pk] +kr+2n (Z7 m) : Ak] ko (07 n)n (2nlm)na
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F; (2) has weight k and polynomial growth as y — oo. It is proved in [Diamantis
and O’Sullivan 2010, Proposition 2.1] that

(Fyw, f)=L"(f,s)L*(f, w) (6-10)

for all f € B. Comparing (6-10) with (2-13) shows that

;k,k—s( i) w) = nhOI(FS,w)s
as required. (I

A basic property of Rankin—Cohen brackets naturally emerges from Proposition
6.3 and Corollary 6.4.

Corollary 6.5. For g; € My, (') and g> € My, (I'), we have [g1, 821n € Sk, +ky+21 (")
forn > 0.

Proof. The space My, (I') is spanned by Ej, and the Poincaré series Py, (z; m)
for m € Z>1. So we may write g1, and similarly g», as a linear combination of
Eisenstein and Poincaré series. Hence, [g1, 2], 1s a linear combination of the
Rankin—Cohen brackets appearing in Proposition 6.3 and Corollary 6.4. By these
results, [g1, g2], 1s a linear combination of double Poincaré and double Eisenstein
series, which are in Sk, 1,42, (I") as we have already shown. O

It would be interesting to know if Py, x,(z, w; m1, m2) has a meromorphic contin-
uation in w. As a corollary of work in the next section, we establish the continuation
of Py, 1,(z, w;0,0) toall w e C.

7. The Hecke action

The expression (5-2), giving E; x_, in terms of 6, acted upon by the Hecke opera-
tors, can be studied further and yields an interesting relation between E; ;_;(z, w)
and the generalized Cohen kernel €, (z, s; p/q).

We have
TGz, 55 p/q) =" Y @(oz,8: p/q@)-j(p, )"
pel\My,
—S
_ p . —
=3y (J/Z+—> jy.7k
y ety 9

To decompose J,, into left I"-cosets, set

{62

a,b,deZzo,adZn,0<b<a}
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so that Jl, = | J pT, a disjoint union. Hence,

peH
T, 6k (z, 5 p/q) = 3n*~ 1ZZ<PVZ+ ) jo vy i, 7
peH yell
2 A

() () 3 et 38) o

aln 0<b<a yel

-1 k—2 b np

=n' Za S Z CG/((Z,S —i—;g) (7-1)

aln 0<b<a

Combining (7-1) in the case p/q = 0, with (5-2) we find

(d—w+s)C(1—w+k—s)Egj—(z, w)
2

T, €1 (z,5)
_Z nk—w

n=1
o0
Z +w—k—lzak—2s Z (€k<z,s; g)

=1 aln 0<b<a

S

I
M2
Q»
8
M2
=
=
%
3
L
]
o)
I\
“
N———

Il
<
X
=)
N
S
A
Q

a

—g“(k—i—l—s—w)ZawS] Z%k( )

0<b<a

Consequently, for2 <o <k—2and Re(w) <o —1,k—1—o0,

((1—w+s)Esj—s(z,w) = 22(1“) 5= IZ%k<z s; b) (7-2)

b=0

Upon taking the inner product of both sides with f € %y, by using (2-13) and
(3-3) and then simplifying, we obtain

(n_)kw

Fa L L

_ e w—s—1 * _ Q _
=ctk+1—s w)Za ZL (fk sa>. (7-3)

Since the eigenforms f in By span Si, we may verify (7-2) by giving another proof
of (7-3). Note that the right side of (7-3) equals
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['(k—s) Ws— (m)
g(k+1—s—w)#z lzzafme

b=0 m=1

2wimb/a

'k g _sar(m)
:é-(k+1_s_w)(2 )ksZZ mk—s

m=1 alm

I'(k—s) i ar(m)oy,_s(m)

=ClkH 1= —w)

mkfx
m=1

The series
ag(m)oy_s(m)
mkfs

LUF®E(, v k—5)=Y

m=1

is a convolution L-series involving the Fourier coefficients of f(z) and E(z, v) for
2v=—s+w+1 (as in (2-16)) and, recalling [Zagier 1977, (72)] or [Diamantis
and O’Sullivan 2010, (2.11)],

T'(k—s) Qm)f

WL(fébE(-,v),k—s) Tk —w L(fk S)L*(f, k— wi
(7-4)

Applying the functional equation (2-1) confirms that the right side of (7-4) equals
the left side of (7-3).
Looking to simplify (7-2) leads to the natural question, what are the relations

between the 6, (z, s; p/q) for rational p/q in the interval [0, 1)? For example, it is
a simple exercise with (3-3) and (3-5) to show that

q 6 (z, 5 p/g) = e g Gz, k— 55 —p'/q)

for pp’ =1 mod g. With s = k/2 at the center of the critical strip, we get an even
simpler relation:

Ck+1—s—w)

Cr(z, k/2; p/q) = (=D (2, k/2; —p'/q). (7-5)

A more interesting, but speculative, possibility would be to argue in the reverse
direction in order to derive information about L-functions twisted by exponentials
with nonrational exponents. Specifically, if we established, by other means, relations
between the €, (z, s; x) for x ¢ Q, then (7-2) and other results proven here might lead
to relations for L-functions twisted by exponentials with nonrational exponents. That
would be important because such L-functions play a prominent role in Kaczorowski
and Perelli’s program of classifying the Selberg class (see, e.g., [Kaczorowski
and Perelli 1999]). Relations between these L-functions seem to be necessary for
the extension of Kaczorowski and Perelli’s classification to degree 2, to which
L-functions of GL(2) cusp forms belong.
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8. Periods of cusp forms

8A. Values of L-functions inside the critical strip. We first review Zagier’s proof
in [1977, §5] of Manin’s periods theorem. This exhibits a general principle of
proving algebraicity we will be using in the next sections.

For all s, w € C, it is convenient to define H; ,, € Sx by the conditions

(Hg o f)=L"(f,s)L*(f,w) forall f € By.
We need the following result:

Lemma 8.1. For g € S; with Fourier coefficients in the field K, and f € By with
coefficients in K ¢,

(&, [IN]. f) e KeKy.

Proof. See the general result of Shimura [1976, Lemma 4]. It is also a simple
extension of [Diamantis and O’Sullivan 2010, Lemma 4.3]. |

Let Kcitical be the field obtained by adjoining to @ all the Fourier coefficients of
{Hs,k_l, Hi_2 | 1<s,w<k—1, seven, w odd}.
Thus, with f € %B; and employing Lemma 8.1,
L*(fok = DL*(f k—2) = (H—1k-2, ) = cf{f, [) (8-1)

for ¢ r € Keritical K 7, and the left side of (8-1) is nonzero because the Euler product
for L*(f, s) converges for Re(s) > k/2+ 1/2. Set

crlf, ) LN
—L*(f,k—l) and wi(f)'_—L*(f,k—Z)'

Then w (f)o—(f) = (f, f), and we have:

wi(f) = (8-2)

Lemma 8.2. For each f € By,

L*(fa s)/wy(f) and L*(f» w)/w_(f) € Kcriticale
forall s and wwith1 <s,w <k—1,s even and w odd.

Proof. For such s and w,
L*(f8) _ L*(S )L (fk=1) _ (Hoer. f) _ U0 )
1 (f) crlf f) cHf ) et )

L*(fow)  L*(fw)L*(fk=2)  (Hiow f) _ UL S)
w-(f) crlfi f) crlf ) eplfif)

€ Keritical K 75

€ Keritica K f- O
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To deduce Manin’s theorem from Lemma 8.2, we use Zagier’s explicit expression
for H . For n > 0, even k1, kp > 4 and k = k| + k2 4 2n, (1-2) implies

_ k]kz k—2 [Ek s Ek ]n
—h/2p3k 22 — ki Bholn
(=D™=2 Blekz( n )Hn+1,n+k2— Qriy (8-3)

The Fourier coefficients of Ej, and Ej, are rational, and hence, the right side of
(8-3) has rational coefficients. Then H, 1,1k, has Fourier coefficients in Q (and
also for k1, k; = 2 [Kohnen and Zagier 1984, p. 214]). It follows that K tica = Q@
and Lemma 8.2 becomes Theorem 2.6, Manin’s periods theorem.

8B. Arbitrary L-values. With the results of the last section, we may now give the
proof of Theorem 2.7, restated here:

Theorem 8.3. For all f € By and s € C, with w, (f) and w_(f) as in Manin’s
theorem,

L*(f,8)/o+(f) € K(Eg_ (-, k— 1)Ky,
L*(f,8)/o-(f) € K(E{_,(-,5)K.

Proof. By Theorem 2.3, we have H; ,(z) = Es*’k_s (z, w) for all s, w € C. Thus,
arguing as in Lemma 8.2 with EJ (-, k—1) = H; ;-1 and E}'_, ,(,5) = Hy—2s
yields the theorem. O

We indicate briefly how the double Eisenstein series Fourier coefficients re-
quired to define K(E7; ((-,k—1)) and K(E_,,(-,s)) in Theorem 2.7 may
be calculated when s € Z, using a slight extension of the methods in [Diamantis
and O’Sullivan 2010, §3]. We wish to find the /-th Fourier coefficient, as ,(l), of
H; o, (2) = E‘j"k_s(z, w) for s even and w odd (and we assume s, w > k/2 > 1).

With Proposition 2.5, this is (— 1)ka/2 / (272%/2) times the [-th Fourier coefficient of
Thot[y 2 E} (2. ) E} (2, v)]
foru=(s4+w—-k+1)/2and v=(—s+w+1)/2 both in Z. Let

Ok WO, (1 —0) 4 p _

—Qk(s+1—k/2) Ej(z,s+1—k/2)

6, W, )
Or(w+1—k/2)

F(2) =y *Ef (2, W (2, v) -
Y RPE Nz, w41 —k/2).

Then 7ot (y*/2 Ef (2, u) Ef; (2, v)) = Thot (F (2)) because mho1(y ™/ Ef (z, 5)) =0
for every s. We have constructed F so that F(z) < y~% as y — oo, and we may
use [Diamantis and O’Sullivan 2010, Lemma 3.3] to obtain

(=DR/2 (4 1)*-!
2m*/2) (k — 2)!

o0
as o) = / Fi(y)e ™y dy
0
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on writing F(z) = Y ;7 ¢ y~*/2F(y). The functions F;(y) are sums involv-
ing the Fourier coefficients of E,fl (z, u) and E,’("2 (z,v) with u, v € Z. As shown
in [Diamantis and O’Sullivan 2010, Theorem 3.1], these coefficients are simply
expressed in terms of divisor functions, Bernoulli numbers and a combinatorial part.
For s and w in the critical strip, this calculation yields an explicit finite formula
for ag 4 (/) in [Diamantis and O’Sullivan 2010, Theorem 1.3] (and another proof
that H; ,, in (8-3) has rational Fourier coefficients and that Kijcat = Q). For s
and w outside the critical strip, we obtain infinite series representations for ay_,, (/)
but again involving nothing more complicated than divisor functions and Bernoulli
numbers. Further details of this computation will appear in [O’Sullivan 2013].

8C. Twisted periods. There is an analog of Manin’s periods theorem for twisted
L-functions. Let p/q € Q, and let u be an integer with 1 < u < k — 1. Manin shows
in [1973, (13)] (see also [Lang 1976, Chapter 5]) that i* fol’/q fGay)y“'dyis an
integral linear combination of periods iV fooo fay)y*tdyforv=1,...,k—1.
With (2-17), this proves

"¢ LN (fous p/q) € Z-iLN(fL D+ Z-iPLH(f2) 4+ 2L (fok = 1)
Therefore, Theorem 2.6 implies the next result.

Proposition 8.4. For all f € By, p/q € Q and integers u with 1 <u <k —1,

L*(f.u; p/q) € Kp(Dwi(f) + Kr(DHo-(f).

Employing (5-8), a similar proof to that of Theorem 2.7 in the last section shows
the following:

Proposition 8.5. Forall f € By, p/q € Qand s € C with w4 (f) and w_(f) as in
Manin’s theorem,

L*(f.s:p/@)/ o (f) € K(E}_; (-, 1; p/q) K,
L*(f,s; p/@)/w-(f) € K(E{_; (-,2; p/@)K.
9. The nonholomorphic case

9A. Background results and notation. We will need a nonholomorphic analog of
the Cohen kernel € (z, ).

Definition 9.1. With z € H and s, s" € C, define the nonholomorphic kernel i as

Im( Z)s+s
H(z:s,s') = 22 |y|2g . 9-1)
yel vz

Following directly from the results in [Diamantis and O’Sullivan 2010, §5.2], it
is absolutely convergent, uniformly on compacta, for z € H and Re(s), Re(s") > 1/2.
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The kernel #(z; s, s”) was introduced by Diaconu and Goldfeld [2007, (2.1)] (though
they describe it there as a Poincaré series and their kernel is a product of I" factors).
Starting with the identity [Diaconu and Goldfeld 2007, Proposition 3.5]

(f-H(:s.5),8)
_Ds+s"+k=1) [ L*(f,a+if)L* (g, —s+s5'+k—a—ip)
T skl oo TG +a+ip)T(—s+s5 +k—a—ip)

for f and g in By, they provide a new method to establish estimates for the second
moment of L*(f, s) along the critical line Re(s) = k/2. They give similar results
for L*(u;, s), the L-function associated to a Maass form u; as defined below.

The spectral decomposition of J(z; s, s”) and its meromorphic continuation in
the s and s’ variables is shown in [Diaconu and Goldfeld 2007, §5]. We do the same;
our treatment is slightly different, and we include it in Section 9B for completeness.

For I' = SL(2, Z), the discrete spectrum of the Laplace operator A = —4y29.9:
is given by u, the constant eigenfunction, and u; for j € Z~ an orthogonal system
of Maass cusp forms (see, e.g., [Iwaniec 2002, Chapters 4 and 7]) with Fourier
expansions

dap

uj(z) =y In|""v;(m Wy, (n2),
n#0

where u ; has eigenvalue s;(1 —s;) and by Weyl’s law [Iwaniec 2002, (11.5)]
#{j | Im(s )| < T} =T?*/12+ O(T log T). (9-2)

We may assume the u ; are Hecke eigenforms normalized to have v;(1) = 1. Neces-
sarily we have v (n) € R. Let ¢ be the antiholomorphic involution (tu;)(z) :=u j(—2).
We may also assume each u; is an eigenfunction of this operator, necessarily with
eigenvalues 1. If tu; = uj, then v;(n) = v;(—n) and u; is called even. If
wmj=—uj,thenv;(n) =—v;(—n) and u; is odd.

The L-function associated to the Maass cusp form u ; is

L(uj,s)=Y vi(m)/n’,

n=1

convergent for Re(s) > 3/2 since v;(n) < n'/2 by [Iwaniec 2002, (8.8)]. The
completed L-function for an even form u ; is

s+s;—1/2 r s—s;+1/2
2 2

L*(uj,s) ::n_SF( )L(Mj,s), (9-3)

and it satisfies
L*(uj, 1 —s)=L"(uj,s)=L*uj,5). (9-4)

See [Bump 1997, p. 107] for (9-3), (9-4) and the analogous odd case.
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To E(z, s) (recall (2-3)) we associate the L-function

¢ (m, s)

m

L(E(-,s), w):= Z
m=1

The well-known identity > >, o (m)/m" = {(w)¢ (w — x) implies
275 C(w+s—1/2)¢(w—s+1/2)
['(s) ¢(2s) '

9B. The nonholomorphic kernel 3. Throughout this section, we use s = o + it
and s’ =o' +ir’. Recall H(z; s, s’) defined in (9-1) for Re(s), Re(s’) > 1/2. Our
goal is to find the spectral decomposition of K (z; s, s) and prove its meromorphic
continuation in s and s’. See [Diaconu and Goldfeld 2007, §5] and also [Iwaniec
2002, §7.4] for a similar decomposition and continuation of the automorphic Green
function.

A routine verification (using [Jorgenson and O’Sullivan 2005, Lemma 9.2], for
example) yields

L(E(',S),'LU)Z

(9-5)

AH(z;s,8)=(6+5)1—5s—s)H(z;s,s)+4ssH(z;s+1,5+1).  (9-6)

Put |
Z,8) = _
£(2.5) Z|Z+m|2s
meZ
Then
Kz, sh= Y Imy) ™ eyz,s). 9-7)
Y €l\T

Use the Poisson summation formula as in [Iwaniec 2002, §3.4] or [Goldfeld 2006,
Theorem 3.1.8] to see that

a2 (s —1/2) |, = 2n°

2@ s) =Y +myl/z_sZ|’”|s_]/2Ks—1/2(27TImly)ez’”'”’”
e 9-8)
for Re(s) > 1/2. Set
5z s) = Y ImP V2K, 0@ lm]y)ePrins, 9-9)
m#£0

Let B, :={z € C||z| < p}. Then with [Jorgenson and O’Sullivan 2008, Lemma 6.4],

VYK—1pQmy) K e Y (yPH 4y TP

for all s € B, and p, y > 0 with the implied constant depending only on p. Hence,

o0
E5(z,5) < Z e~V (P TOR2ypH5/2 g gy oo —dy—0=T/2y

m=1
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We also have [Jorgenson and O’Sullivan 2008, Lemma 6.2]

00
Z mpe—Zmny < e—27ry(1 + y—p—l)

m=1
for all y > 0 with the implied constant depending only on p > 0. Therefore,
E1(z.s) K& (Y4 y T, (9-10)
Consider the weight-0 series
Wzssh= ) Imy gz ). (9-11)
y€Too\I
With (9-10), we have
Hzis,sh< Y Amy)” 7 4Im(y2)? P He M2 (9-12)
Y €T\
so that #"(z; s, s") is absolutely convergent for Re(s’) > p + 5.

Proposition 9.2. Let p > 0 and s, s’ € C satisfy Re(s) > 1/2, Re(s’) > p + 5 and
s € B,. Then

a2 (s —1/2) , 2
—F(s) E(z,s _s+l)+F(s)

and, for an implied constant depending only on s and s’,

Hz;s,s') = K (z; s, 87), (9-13)

Ho(z;s,8) <Y asy — oo (9-14)

Proof. 1t is clear that (9-13) follows from (9-7), (9-8), (9-9) and (9-11) when s
and s’ are in the stated range. With (9-12) and employing (4-3), we deduce that as
y — 00,

%t(z; s, S/) < (ya’+p+3 + yo’—p—4)e—2ny
+ Y ame2)? T £ Im(ya)

Y€l \I'
y#l o

< e ™Y + yl—(0/+,0+3) + yl—(U/—P—4)
<< y5+p—(7/' D

Clearly, for Re(s’) > p + 5, (9-13) gives the meromorphic continuation of
H(z;s,s") toall s € B,. For these s and s’, it follows from (9-14) that H?, as a
function of z, is bounded. Also use (9-6) and (9-13) to show that

AKX (zis,s)=(s+5)VA =5 —s) K (z; s, s) +4ns'Hi(z; s + 1,5+ 1),
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and hence, A%" is also bounded. Therefore, with [Iwaniec 2002, Theorems 4.7
and 7.3], %" has the spectral decomposition

(KA, ), U
W(z;s,s/):Z( SILLD M’>u,-(z)
oy (wj,uj)
1
+— (H*(-55,8), EC,r))E(z,r)dr, (9-15)
47'[1 1/2)

where the integral is from 1/2 —ioo to 1/2 +ioo and the convergence of (9-15) is
pointwise absolute in z and uniform on compacta.

Lemma 9.3. Fors € B, and Re(s") > p + 5, we have

g l/2s sS'+s+s;—1 s'+s—s;
K, s, uj)=———L*u;,s'—s+1/2)T / r /
< ( ,S,S),MJ) 4F(S/) (ujas S+ /) ( 2 ) ( 2

when u j is an even Maass cusp form. If u is odd or constant, then the inner product
is zero.

Proof. Unfolding,
(5 s,87),uj)
= f Wz s, 5 )uj(2) du(z)
M\H

—dxdy

oo prl
— / / (Z ys +1/2|mls—1/2KS_1/2(2n|m|y)627'rlmx)uj(z) —
0 Jo N\, 7% y

o0
_ / d
=2 vm)|m|* ‘”f y* Kx_l/z(zn|m|y)Ks7_1/z<2n|m|y)Yy.
m#0 0

Evaluating the integral [Iwaniec 2002, p. 205] yields

L(uj,s'—s+1/2) l—[F(s’:I:(s—l/Z):i:(s_j—l/2))

HoCis,sh)ug) = ;
I8, 80, uj) 45T (s)) 2

Using (9-3) and that 5; = 1 —s; finishes the proof. ([
In the same way, when Re(r) = 1/2,

(K5 5,8), EC-, 1))

_L(E(-,r),s'—5+1/2) - s+ (s—1/2)+@F—1/2)
- 4T (s") H ( 2 )

Further, E(z,r) = E(z,7) = E(z,1 — r), and with (9-5) we have shown the
following:
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Lemma 9.4. Fors € B, andRe(s') > p+5,

1/2—s / _
g . / ) B T s'+s5s—r
(H(-55,87), EC ’r)>_2F(s')9(1_r)F( y )

T s'+s—1+r 9 s'—s+r 9 s'—s+1—r .
2 2 2
Recall that 6(s) := 7 °T'(s)¢(2s) as in (2-5). Let
aPT (s —1/2)

Hi(zys,s") = TG) E(z,s' —s+1),
AETRUPSL G O Y Ces SR
18, 5) = uj,s' —s
24 L (I(s) = J 2
u] even
XF<S/+5—Sj> Mj(Z) ’
2 (uj,uj)

oz 5. 5') im w2 Lf p(S s =r\p(s s 14r
PTG 4 S 2 2

o s'—s+r 9 s'—s+1—r\ E(z,r) ir
2 2 01 —r)

Assembling Proposition 9.2, (9-15) and Lemmas 9.3 and 9.4, we have proven the
decomposition

H(zys,s)=Hi(zys, ) +Halzs s, 8") +Ha(z s, 5) (9-16)

for s € B, and Re(s") > p + 5. This agrees exactly with [Diaconu and Goldfeld
2007, (5.8)].

Clearly ¥ (z; s, s") is a meromorphic function of s and s’ in all of C. The same
is true for J,(z; s, s’) since the factors L(u;,s" —s+1/2)uj(z)/(uj, u;) have at
most polynomial growth as Im(s;) — oo while the I factors have exponential decay
by Stirling’s formula. See (9-2) and [Iwaniec 2002, §7 and §8] for the necessary
bounds. The next result was first established in [Diaconu and Goldfeld 2007, §5].

Theorem 9.5. The nonholomorphic kernel ¥.(z; s, s") has a meromorphic continu-
ationto all s, s’ € C.

Proof. As we have discussed, #(z; s, s’) and H,(z; s, s") are meromorphic func-
tions of s, s” € C. The poles of I'(w) are at w =0, —1, —2, ..., and 6 (w) has poles
exactly at w =0, 1/2 (with residues —1/2 and 1/2, respectively). Therefore, the
integral in H3(z; s, ") is certainly an analytic function of s and s’ for 6’ > o +1/2
and o > 1/2 since the I' and 6 factors have exponential decay as |r| — co. Next,
consider s fixed (with o > 1/2) and s” varying. Consider a point ry with Re(rg) =1/2.
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Let B(rg) be a small disc centered at ro and B(1 — ry) an identical disc at 1 — ry.
By deforming the path of integration to a new path C to the left of B(rp) and to the
right of B(1 — ry), we may, by Cauchy’s theorem, analytically continue #3(z; s, s”)
to s’ with s" —s € B(rg). Let C; be a clockwise contour around the left side of
B(rp) and C> be a counterclockwise contour around the right side of B(1 —rg) so
that C = (1/2) + C; + C5. For s’ —s inside C; (and 1 — (s’ —s) inside C»), we have

~1,2 / , 1 1 1 1
T L) - Ha(z;s,s)=— | x =— *4+— | x+— [ *,
4mwi Jc i J1)2) i Je, i Je,

where * denotes the integrand in the definition of ¥{3. Then

1 —2mi s'—s+1—r
— | x = —| Res 8 ————
4rri C 4ri \r=s'—s 2

x(s)[(s'— I/Z)ME(Z, s'—s)
O(l—s"+s)
= %F(s)F(s’—l/Z)ME(z, s’ —5)
O(1—s"+s)

= 10T (s'—1/2)E(z, s—s'+1).

We get the same result for (1/47i) fcz, and for all s’ witho —1/2 <Re(s") <o +1/2,
it follows that the continuation of #3(z; s, s”) is given by

7 200 - Ha(zs s, 87)

:F(S)F(s/—1/2)E(z,s—s/+1)+i_f *. (9-17)
4mi (1/2)

Similarly, as s’ crosses the line with real part o — 1/2, the term
—T(s—1/2)T(sYE(z,s' —s+1)

must be added to the right side of (9-17). Thus, for all s” with 1/2 <Re(s") <o —1/2,
the continuation of J(z; s, s') is

Tl2T(s' = 1/2)
I'(s")
Clearly, with (9-17) and (9-18) we have demonstrated the meromorphic continuation
of H(z;s,s’) to all s, s’ € C with Re(s), Re(s’) > 1/2. The continuation to all
s, s’ € C follows in the same way with further terms in the expression for #(z; s, s”)
appearing from the residues of the poles of I'((s"+s —r)/2)['((s'+s—147r)/2)
as Re(s’ +5) - —o0. O

H(z;s,5) = E(z,s—s +1D)+%a(z: s, s)+IH3(z; s, s). (9-18)

Proposition 9.6. We have the functional equation

H(z;s,8) =H(z; s, 5). (9-19)
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Proof. We may verify (9-19) by comparing (9-16) with (9-18) and using that
Ha(z; 8,8") =Ha(z; 8", s) by (9-4) and H3(z; s, ') = H3(z; s/, 5) by (2-6). There
is a second, easier proof: with § = ({7 ), replace y in (9-1) by Sy. O

Proposition 9.7. For all s, s’ € C and any even Maass Hecke eigenform u,
1/2 ’ 1 I4ie_¢.
G osesugy = (SIS T P (ST pey s L),
20 ()T (s") 2 2

Proof. Since each u; is orthogonal to Eisenstein series, we have by (9-16) (for
s € B, and Re(s") > p +5) that

(H(-5s,8),uj)y=FHa(5s,8),uj).

The result follows, extending to all s, s’ € C by analytic continuation. ]

9C. Nonholomorphic double Eisenstein series. A similar argument to the proof
of (5-2) shows that, for Re(s), Re(s’) > 1 and Re(w) > 0,

(w4 28) (w +25)E(z, w: 5, 5') = 22%, (9-20)

where, in this context [Goldfeld 2006, (3.12.3)], the appropriately normalized Hecke

operator acts as

1
LH@) =~ > AHya).

y e\,

For each Maass form, we have T,u; = v;(n)u;, and for the Eisenstein series,
[Goldfeld 2006, Proposition 3.14.2] implies T, E(z, s) = n*~201_2,(n)E(z, 5).
Therefore, as in (9-5),

> T,E(z, )
Z n_wle/zs) = )201 — (n) =E(z,8)(w—s)C(w+s—1).

n=1
Now choose any p > 0. For s € Bp, Re(s) > 1, Re(s’) > p + 5 and Re(w) > 0, we
may apply 7, to both sides of (9-16) and obtain
C(w+2s)(w+2s)€(z, w; s, s)
TlPT(s—1/2)
T 2T
1/2

o0 / /

T s’+s+si—1 s’ s—s;
_r § —s+1/2)T I \r J
Tirere) & st ( 2 ) ( 2 )

C

1/2 1 r_ f_ga]—
X L(uj, w—1/2) f(ft)> ZF(’Z)F(S,)TM/ e(s ;*r)e(s o r)
Uj, uj 1/2)

s'+s—r s'+s—1+r E(z,r)
XF( > )F( > ){(w—r){(w 1—1—1’)9(1 )dr. (9-21)

o' —s+w)l(s—s'+w—1)E(z,s' —s+1)
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Put

’ _ ’ 1
Q(s,s’;r):z@(s +; r)9<s +s2 +r>

XQ(S/—s—i-r)e(s/—s—l—l—r)/9(1_”).
2 2

Define the completed double Eisenstein series as in (2-19) and write

U(Z, s’s/) — Z L*(uj,S“l‘s/_ I/Z)L*(MJ,S/—S"F 1/2) <:JJ(Z)J>

Jj=1
uj even

As in the last section, €2 and U have exponential decay as |r|, [Im(s;)| — oo.
Specializing (9-21) to w = s + s/, we have proved the next result.

Lemma 9.8. Fors € B,, Re(s) > 1 and Re(s') > p+5,
€*(z;5,8) =20(s)0(NE(z; s +5)+20(1 —5)8(s)E(z,s' —s+1)

1
+U(z;s,s/)—|——,/ Qs,s';rE(z,r)dr. (9-22)
27'[1 1/2)

From this, we show the following:

Theorem 9.9. The completed double Eisenstein series €*(z; s, s') has a meromor-
phic continuation to all s, s’ € C, and we have the functional equations

€ (z;5,5) =€ (z; 5, 9), (9-23)
€ (z;5,8)=€"(z;1—s5,1—15). (9-24)
Proof. First note that (9-22) gives the meromorphic continuation of €*(z; s, s) to
all s and s” with s € B, and Re(s’) > p + 5. As in the proof of Theorem 9.5, we
see that the further continuation in s’ is given by (9-22) along with residues that are

picked up as the line of integration is crossed; for s € B, fixed and Re(s’) — —oo0,
the continuation of €*(z; s, s’) is given by (9-22) plus each of the following:

20(s)0(1 —sVE(z,s —s"+1) whenRe(s") <o +1/2,

—20(1—5)0(s"VE(z,s'—s+1) whenRe(s') <o —1/2,
20(1 —s5)0(1 —s")E(z,2—s —s') whenRe(s') < —o +1/2,
—20(s)0(s")E(z,s +s') whenRe(s") < —o —1/2.

We have therefore shown the meromorphic continuation of €*(z; s, s") to all s € B,
and s’ € C. Hence, for all s’ with Re(s") < —p — 4, say, we have

€*(z;5,8) =201 —5)0(1 —s)VE(z,2—s—5")+20(s)0(1 —s")E(z,s —s' + 1)

1
+U(z;s,s/)+—./ Qs,s'sr)E(z,r)dr. (9-25)
27'[l (1/2)
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The functional Equation (9-24) is a consequence of the easily checked symmetries
U(z; 1—s,1—-5)=U(z; s, s")and Q(1—s, 1—5"; r) =Q(s, s’; r) and a comparison
of (9-22) and (9-25). The Equation (9-23) has a similar proof or more simply follows
from the definition (2-19). O

Proposition 9.10. For any even Maass Hecke eigenform u; (as in Section 9A) and
all s, s’ € C,
(€ (35,8 uj)=L"(uj,s+s —1/2)L*(uj, s —s+1/2).
Proof. As in Proposition 9.7, only U(z; s, s") in (9-22) will contribute to the inner
product. U
With Theorem 9.9 and Proposition 9.10, we have proved Theorem 2.9.

10. Double Eisenstein series for general groups

We proved in Section 5A that for I' = SL(2, Z) the holomorphic double Eisenstein
series E; ;_s(z, w) may be continued to all s and w in C and satisfies a family of
functional equations. That proof does not extend to groups where Hecke operators
are not available. To show the continuation of E; y_s (z, w) for I" an arbitrary Fuch-
sian group of the first kind, we first demonstrate a generalization of Proposition 2.5.
Recall the definitions of u and v in (2-16) and er in (4-1).

Theorem 10.1. For s and w in the initial domain of convergence and even ki, ky >0
with k = k| + ko, we have

Efy sa(z,w)
=2y [ (DY TFPEE (1= wEf (- 1=v)/@a")]. (10-1)
Proof. Let g € Si(I'), and set I'" = 6, 'T"o,,. Then

(Es,k—s,a( S, w), g) = / . Im(GuZ)kg(O’aZ)Es,k—s,u(O_uZ, w) dMZ (10'2)

M\

k 8(042) . —k w—1 J,2) -
ol AR ardD DI CE e B DI CTh ha e BN EE
F/\H ](Ua, Z) (SEB\F/ )/GB\F/ ] ’ <
c «—1>0
Since ¢(042)j (0a, 2)* € Si(I), we have
g(o, g(0,0
yk _ g(ka.z) - = Im(8z)k Tg( a Z)k'
J(0a, ) j (8, 2) J(04q,62)

Note also that j(y,z)/j(8,z) = j(y8~!, 8z). Hence, (10-2) equals

2€F/F \H yk g(UaZ) [ Z (cy)w—lj(y’ Z)—S} d/»LZ (10_3)

B k
](O'a’ Z) ]/EB\F/
cy>0
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Writing

Yo=Y ) Y jizm)

yeB\I' yeB\I"/B meZ
¢y >0 ¢y >0

and using the Fourier expansion of g at a, j (o, 7)k g(oq2) = Zn 1 dg, a(n)e¥inz,
we get that (10-3) equals

o e 2minx—2mny
261 g .(n) / / ——dx dy
; 8,0 EB\F,/B )s+1 w (x+d /Cy iy)s
2rind, /c
e ag.a(n) a(n) e v/Cy
=2 i (S)Z Z (C )s+1—w
yeB\F(;/B 14
CV>
for —2mx —2my
I = —dxdy.
ko) = f / Ay O

The inner integral over x may be evaluated with a formula of Laplace [Whittaker
and Watson 1927, p. 246]:

/oo e—2m’x g e—27ry (27.[)s
oo (X F+iy)S [ (s)esin/2

so that
k-1 Qm)f

(4n)k—l F(s)e”'”/z'
With (4-2) and, for example, [Iwaniec 2002, Chapter 3], we recognize

Ii(s) =

Z e2rindy [cy B Z p2rindy, [cy B Yaa(n, s)
2s 2s s—1°
c c 2s)n
y€B\I'/B ©) Y €Too\I"/ Too (cy) ¢(25)
¢y >0 cy>0

It follows that we have shown

(2 —2u)T(k — )T (k — w) i Yoo (n, 1 = 0)aga(n)
(271)2k—s—w

(E%(, (- w),g)=27"%

s,k—s,a nk—s—v

n=1

Reasoning as in the proof of [Diamantis and O’Sullivan 2010, (2.10)], we also find,
for all even ky, ko > 0 with k; +k, =k,

(=DRPy ™ PEE (- 1—wEf (-, 1—v)/@2r"?), g)
B Q2 =-"2u)'tk—s)'k—w) Z Yoa(n, 1 —v)ag 4 a(n)

(zn)Zk—s—w I’lk S—v

Since E* (z, w) € S¢(I') and g € Si (") is arbitrary, (10-1) follows. O

s,k—s,a
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Corollary 10.2. The double Eisenstein series Ej‘ k—s.a(2, W) has a meromorphic

continuation to all s, w € C and as a function of z is always in Si(I'). It satisfies
the functional equation

E{ ow) =D"E;H | (z.w). (10-4)

s,k—s,a

Proof. Since E,;k (2, s) has a well-known continuation to all s € C, due to Selberg,
the continuation of E;" ks, (2, w) follows from (10-1). The change of variables
(s, w) = (k —s, w) corresponds to (u, v) — (v, u), and so (10-4) is also a conse-

quence of (10-1). O

If I' has more than one cusp, then EY,  (z, w) does not appear to possess a
functional equation of the type (2-14) as (s, w) — (w, s). This corresponds on the
right of (10-1) to (u, v) — (u, 1 —v), and the functional equation for E,’g’a( -, 1—v)
involves a sum over cusps as in (4-4).

We remark that the functional Equation (10-4) also follows directly from (4-6) if
—1 € I': replace y and § in the sum by —§ and y, respectively.

Finally, it would be interesting to find the continuation in s and s’ of the non-
holomorphic double Eisenstein series € (z; s, s”) for general groups. We expect

that a similar decomposition to (9-22) should be true.
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Division algebras and quadratic forms
over fraction fields of two-dimensional
henselian domains

Yong Hu

Let K be the fraction field of a two-dimensional, henselian, excellent local domain
with finite residue field k. When the characteristic of & is not 2, we prove that
every quadratic form of rank > 9 is isotropic over K using methods of Parimala
and Suresh, and we obtain the local-global principle for isotropy of quadratic
forms of rank 5 with respect to discrete valuations of K. The latter result is proved
by making a careful study of ramification and cyclicity of division algebras over
the field K, following Saltman’s methods. A key step is the proof of the following
result, which answers a question of Colliot-Thélene, Ojanguren and Parimala: for
a Brauer class over K of prime order ¢ different from the characteristic of k, if it
is cyclic of degree g over the completed field K, for every discrete valuation v
of K, then the same holds over K. This local-global principle for cyclicity is also
established over function fields of p-adic curves with the same method.

1. Introduction

Division algebras and quadratic forms over a field have been objects of interest
in classical and modern theories of algebra and number theory. They may also be
naturally and closely related to the study of semisimple algebraic groups of classical
types. In recent years, there has been much interest in problems on division algebras
and quadratic forms over function fields of two-dimensional integral schemes (which
we call surfaces).

Mostly, surfaces that have been studied are those equipped with a dominant
quasiprojective morphism to the spectrum of a normal, henselian, excellent local
domain A. If A is of (Krull) dimension 0, these are algebraic surfaces over a
field. Over function fields of these surfaces, de Jong [2004] and Lieblich [2011b]
have proven remarkable theorems concerning the period-index problem. If A is of
dimension 1, the surfaces of interest are called arithmetic surfaces by some authors.
Over function fields of arithmetic surfaces, several methods have been developed
to study division algebras and/or quadratic forms, for example in [Saltman 1997;

MSC2010: primary 11E04; secondary 16K99.
Keywords: quadratic forms, division algebras, local-global principle.
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2007; 2008; Lieblich 2011a; Harbater et al. 2009]. The methods pioneered in the
series of papers by Saltman have been important ingredients in several works by
others, including the proof of Parimala and Suresh [2010; 2012] of the fact that
over a nondyadic p-adic function field every quadratic form of dimension > 9 has a
nontrivial zero. In contrast with the arithmetic case, it seems that in the case where
A 1s two-dimensional, fewer results have been established in earlier work.

In this paper, we concentrate on the study of division algebras and quadratic
forms over the function field K of a surface that admits a proper birational morphism
to the spectrum of a two-dimensional, henselian, excellent local domain R. The
spectrum Spec R will sometimes be called a local henselian surface, and a regular
surface X equipped with a proper birational morphism X — Spec R will be referred
to as a regular proper model of Spec R. As typical examples, one may take R to be
the henselization at a closed point of an algebraic or an arithmetic surface or the
integral closure of the ring A[[#]] of formal power series in a finite extension of its
fraction field Frac(A[[#]]), where A is a complete discrete valuation ring. Note that
the ring R need not be regular in our context.

Let k denote the residue field of R. When £ is separably closed, many problems
over the function field K (e.g., period-index, cyclicity of division algebras, u-
invariant and local-global principle for quadratic forms of lower dimension) have
been solved by Colliot-Thélene, Ojanguren and Parimala [Colliot-Thélene et al.
2002]. In the case with & finite, only the local-global principle for quadratic forms
of rank 3 or 4 is proved in that paper. Harbater, Hartmann, and Krashen [Harbater
et al. 2011] obtained some results with less restrictive assumptions on the residue
field but more restrictions on the shape of the ring R.

While the proofs pass through many analyses on ramification of division algebras,
our primary goals are the following two theorems on quadratic forms:

Theorem 1.1. Let R be a two-dimensional, henselian, excellent local domain with
finite residue field k and fraction field K. Assume that 2 is invertible in k. Let Qg
be the set of discrete valuations of K that correspond to codimension-1 points of
regular proper models of Spec R.

Then quadratic forms of rank 5 over K satisfy the local-global principle with
respect to discrete valuations in Qg; namely, if a quadratic form ¢ of rank 5 over K
has a nontrivial zero over the completed field K, for every v € Qpg, then ¢ has
nontrivial zero over K.

The next theorem amounts to saying that the field K has u-invariant (page 1945)
equal to 8:

Theorem 1.2. Let R be a two-dimensional, henselian, excellent local domain with
finite residue field k and fraction field K. Assume that 2 is invertible in k.
Then every quadratic form of rank > 9 has a nontrivial zero over K.
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Over the function field of an arithmetic surface over a complete discrete valuation
ring, the same local-global principle as in Theorem 1.1 is proved for all quadratic
forms of rank > 3 in [Colliot-Théleéne et al. 2012, Theorem 3.1] by using the
patching method of [Harbater et al. 2009]. In the case that R = A[[¢] is a ring of
formal power series in one variable over a complete discrete valuation ring A, the
same type of local-global principle has been proven for quadratic forms of rank > 5
in [Hu 2012b] using the arithmetic case established by Colliot-Thélene, Parimala
and Suresh [Colliot-Théleéne et al. 2012]. (See Remark 4.3 for more information.)
However, in the general local henselian case, the lack of an appropriate patching
method has been an obstacle to proving the parallel local-global result. So for a
field K as in Theorem 1.1, the local-global principle for quadratic forms of rank 6,
7 or 8 remains open.

In the case of a p-adic function field, it is known that at least three methods can
be used to determine the u-invariant: the cohomological method of [Parimala and
Suresh 2010], the patching method of [Harbater et al. 2009] and the method of
[Leep 2013], which is built on results from [Heath-Brown 2010]. But in the case of
the function field of a local henselian surface considered here, not all of them seem
to still work. For the fraction field of a power series ring R = A[[#]] over a complete
discrete valuation ring with finite residue field, it is known that the u-invariant is at
most 8 [Harbater et al. 2009, Corollary 4.19]. Our proof of this result for general R
(with finite residue field) follows the method of Parimala and Suresh [2010; 2012].

Theorem 1.2 implies that the u-invariants u (K ) of the fraction field K and u (k) of
the residue field k satisfy the relation u (K') =4u (k) when the residue field k is finite.
A question of Suresh asks if this relation still holds when £ is an arbitrary field of
characteristic # 2. The answer is known to be affirmative in some other special cases,
but the general case seems to remain open. (See Question 4.8 for more information.)

As a byproduct, we also obtain (under the assumption of Theorem 1.2) a local-
global principle for torsors of the special orthogonal group SO(¢) of a quadratic
form ¢ of rank > 2 over K (Theorem 4.9). In fact, Theorem 1.2 will also be useful
in the study of local-global principle for torsors under some simply connected
groups of classical types over K [Hu 2012a].

The main tools we will need to prove Theorem 1.1 come from technical analyses
of ramification behaviors of division algebras using methods developed by Saltman
[1997; 2007; 2008]. A key ingredient is the following result:

Theorem 1.3. Let R be a two-dimensional, henselian, excellent local domain with
finite residue field k, g a prime number unequal to the characteristic of k, K the
fraction field of R and o € Br(K) a Brauer class of order q. Let Qg be the set of
discrete valuations of K that correspond to codimension-1 points of regular proper
models of Spec R.
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If for every v € Qp, the Brauer class
a®k K, € Br(K,)

is represented by a cyclic algebra of degree q over the completed field K, then o is
represented by a cyclic algebra of degree q over K.

Actually, as the same proof applies to the function field of a p-adic curve, a
similar result over p-adic function fields, which seems not to have been treated in
the literature, holds as well (Theorem 3.21). Note that a special case of Theorem 1.3
answers a question raised in [Colliot-Thélene et al. 2002, Remark 3.7].

Here is a brief description of the organization of the paper, together with some
auxiliary results obtained in the process of proving the above-mentioned theorems.

Section 2 is concerned with preliminary reviews on Brauer groups and Galois
symbols. The goal is to introduce some basic notions and recall standard results
that we will frequently use later. In Section 3, we recall some of the most useful
techniques and results from Saltman’s papers and we prove Theorem 1.3. We
also prove over the field K considered in Theorem 1.1 two local analogs of more
global results Saltman had shown: that the index of a Brauer class of period prime
to the residue characteristic divides the square of its period and that a class of
prime index ¢ that is different from the residue characteristic is represented by a
cyclic algebra of degree ¢g. This last statement is proved by generalizing a result of
Saltman on modified Picard groups. Finally, we will concentrate on results about
quadratic forms in Section 4. The proofs of Theorems 1.1 and 1.2 build upon the
work of Parimala and Suresh and on a result from Saito’s class field theory for
two-dimensional local rings [Saito 1987].

To ease the discussions, we fix some notations and terminological conventions
for all the rest of the paper.

o All schemes are assumed to be noetherian and separated. All rings under
consideration will be noetherian (commutative with 1).
» A curve or surface means an integral scheme of dimension 1 or 2, respectively.

» Given a scheme X, we denote by Br(X) its cohomological Brauer group, i.e.,
Br(X) = Hézt(X, Gm). If X = Spec A is affine, we write Br(A) instead of
Br(Spec A).

o If X is a scheme and x € X, we write « (x) for the residue field of x, and if
Z C X is an irreducible closed subset with generic point 1, then we write
k(Z) = x(m).

¢ The reduced closed subscheme of a scheme X will be written as X;eq.

o A discrete valuation will always be assumed normalized (nontrivial) and of
rank 1.
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» Given a field F and a scheme X together with a morphism Spec FF — X,
Q(F/X) will denote the set of discrete valuations of F' that have a center
on X. If X = Spec A is affine, we write Q(F/A) instead of Q2(F/ Spec A).

o Given a scheme X and i € N, we denote by X¥) the set of codimension-i
points of X, i.e., XD :={xeX| dimOy , =i}. If X is a normal integral
scheme with function field F, we will sometimes identify XV with the set of
discrete valuations of F corresponding to points in X1,

« For an abelian group A and a positive integer n, let A[n] denote the subgroup
consisting of n-torsion elements of A and let A/n = A/nA so that there is a
natural exact sequence

0> Aln]—>A>A—> A/n— 0.

» Given a field F, let F; be a fixed separable closure of F and G g := Gal(F;/F)
the absolute Galois group. Galois cohomology H'(GF, -) of the group G ¢
will be written H'(F, -) instead.

o R will always denote a two-dimensional, henselian, excellent local domain
with fraction field K and residue field k.

e By a regular proper model of Spec R, we mean a regular integral scheme ¥
equipped with a proper birational morphism ¥ — Spec R. A discrete valuation
of K that corresponds to a codimension-1 point of a regular proper model of
Spec R will be referred to as a divisorial valuation of K. We denote by Qpz
the set of divisorial valuations of K.

2. Some preliminaries

Brauer groups of low-dimensional schemes. Since we will often use arguments
related to Brauer groups of curves or surfaces, let us briefly review some basic facts
in this respect.

Theorem 2.1 [Grothendieck 1968a; Colliot-Thélene et al. 2002]. Let X be a
(noetherian) scheme of dimension d.
(1) Ifd <1, then the natural map Br(X) — Br(Xyeq) is an isomorphism.
(1) If X is regular and integral with function field F, then the natural map
Br(X) — Br(F) is injective.
(iii) If X is regular, integral with function field F and of dimension d < 2, then
Br(X) =(),cxm Br(Ox ) inside Br(F).

(iv) Let A be a henselian local ring, and let X — Spec A be a proper morphism
whose closed fiber Xy has dimension < 1. If X is regular and of dimension 2,
then the natural map Br(X) — Br(Xy) is an isomorphism.
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Proof. See [Colliot-Thélene et al. 2002, Lemma 1.6] for (i), [Grothendieck 1968a,
Corollary 1.8] for (ii), [Grothendieck 1968a, Corollary 2.2, Proposition 2.3] for (iii)
and [Colliot-Théleéne et al. 2002, Theorem 1.8(c)] for (iv). O

The following property for fields, already considered in [Saltman 1997], will be
of interest to us:

Definition 2.2. We say a field k has property By or k is a By field if, for every
proper regular integral (not necessarily geometrically integral) curve C over the
field k, one has Br(C) = 0.

Example 2.3. Here are some examples of B; fields:
(1) A separably closed field k has property B; [Grothendieck 1968b, Corollary 5.8].

(2) A finite field k has property Bj. This is classical by class field theory; see also
[Grothendieck 1968b, p. 97].

(3) If k has property Bj, then so does any algebraic field extension k” of k.
Proposition 2.4. Let k be a B field.
(i) For any proper k-scheme X of dimension < 1, one has Br(X) = 0.

(i1) The cohomological dimension cd(k) of k is < 1; i.e., for every torsion G-
module A, H (k, A) = Oforalli > 2.

(iii) If the characteristic of k is not 2, then every quadratic form of rank > 3 has a
nontrivial zero over k.

Proof. (i) By Theorem 2.1(i), we may assume X is reduced.

For the zero-dimensional case, it suffices to prove that Br(L) = O for a finite
extension field L of k. Indeed, the B; property implies that Br([lj’lL) = 0. The
existence of L-rational points on [P’IL shows that the natural map Br(L) — Br(IP’lL)
induced by the structural morphism [P’lL — Spec L is injective. Hence, Br(L) = 0.

Now assume that X is reduced of dimension 1. Let X’ — X be the normalization
of X. By [Colliot-Thélene et al. 2002, Proposition 1.14], there is a zero-dimensional
closed subscheme D of X such that the natural map Br(X) — Br(X’) x Br(D) is
injective. Now X' is a disjoint union of finitely many proper regular k-curves, so
Br(X’) = 0 by the B; property. We have Br(D) = 0 by the zero-dimensional case,
whence Br(X) = 0 as desired.

(ii) As a special case of (i), we have Br(k") = 0 for every finite separable extension
field k" of k. This implies cd(k) < 1 by [Serre 1994, p. 88, Proposition 5].

(iii) By (ii), we have in particular Br(k)[2] = H 2(k, nr) =0. Thus, every quaternion
algebra over k is split and the associated quadric has a k-rational point. Up to a
scalar multiple, every nonsingular three-dimensional quadratic form is associated
to a quaternion algebra and hence isotropic. U
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The following corollary is essentially proven in [Colliot-Thélene et al. 2002,
Corollaries 1.10 and 1.11]:

Corollary 2.5. Let A be a (noetherian) henselian local ring, and let X — Spec A
be a proper morphism whose closed fiber X is of dimension < 1. Assume that the
residue field of A has property Bj.

If X is regular and of dimension 2, then Br(X) = 0.

Proof. Combine Theorem 2.1(iv) and Proposition 2.4(i). [l

Symbols and unramified cohomology. This subsection is devoted to a quick re-
view of a few standard facts about Galois symbols and residue maps. For more
information, we refer the reader to [Colliot-Théléne 1995].

Let F be a field and v a discrete valuation of F with valuation ring O, and residue
field « (v). Let n > 0 be a positive integer unequal to the characteristic of x (v). Let
My be the Galois module on the group of n-th roots of unity. For an integer j > 1,
let ,u,?’ denote the Galois module given by the tensor product of j copies of u,,
and define

pu:=7/n and u®) :=Homu®’,7Z/n),

where as usual Z/n is regarded as a trivial Galois module. Kummer theory gives
a canonical isomorphism H'!(F, u,) = F*/F**. For an element a € F*, we
denote by (a) its canonical image in H'(F, u,) = F*/F*". Fora € H'(F, /Lf?j),
the cup product o U (a) € HTI(F, ;L,?(Hl)) will be simply written as («, a). In
particular, if ay, ..., a; € F*, (a1, ..., a;) € H (F, u®") will denote the cup product
(a1)U---U(a;) € H(F, u®"). Such a cohomology class is called a symbol class.

By standard theories from Galois or étale cohomology, there are residue homo-
morphisms for alli > 1 and all j € Z

oy’ H'(F, u?h) — H'™ (e v), 1V 70)
that fit into a long exact sequence

= Hy Oy, ) — H' (F, u§)
a i . ; .
— H! I(K(U), M%(] 1)) — Hét_H(@U’ M?J) —_ .

An element « € H' (F, pﬁj ) is called unramified at v if a,’;’f (@) =0.

Now consider the case of Brauer groups. By Theorem 2.1(ii), Br(0,) gets
identified with a subgroup of Br(F). An element o € Br(F') is called unramified
at v if it lies in the subgroup Br(0,) € Br(F). If n > 0 is a positive integer that is
invertible in « (v), then an element o € Br(F)[n] is unramified at v if and only if
dy (o) = 0, where 0, denotes the residue map

3, = 02! . Br(F)[n] = H*(F, ) — H'(k(v), Z/n).
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As we will frequently speak of ramification of division algebras, the above residue
map 0, = 85’1 will often be called the ramification map and denoted by ram,,.
Let X be a scheme equipped with a morphism Spec F — X. The subgroup

Bro(F/X):= (7] Br(0,) S Br(F),
veQ(F/X)

where 2 (F/X) denotes the set of discrete valuations of K that have a center on X,
is referred to as the (relative) unramified Brauer group of F over X. A Brauer class
o € Br(F) is called unramified over X if it lies in the subgroup Br,(F/ X). We say
a field extension M/ F splits all ramification of « € Br(F) over X if opy € Br(M)
is unramified over X. When X = Spec A is affine, we write Bry(F/A) instead of
Bry (F/ Spec A).

If X is an integral scheme with function field F and if X — Y is a proper
morphism, then Q(F/X) = Q(F/Y) and hence Bry (F/X) = Brp (F/Y). If X
is a regular curve or surface with function field F, then Theorem 2.1 implies that
Bry(F/X) € Br(X).

Note that for any field «, the Galois cohomology group H'(k, @/Z) is identified
with the group of characters of the absolute Galois group G, i.e., the group
Hom (G, Q/Z) of continuous homomorphisms f : G, — Q/Z. Any character
f € Homy (G, Q/7Z) must have image of the form Z/m C Q/Z for some positive
integer m, and its kernel is equal to G, for some cyclic Galois extension '/« of
degree m. There is a generator o € Gal(k'/x) such that (o) =14+mZ € Z/m. The
function f € Hom(G,, Q/7) is uniquely determined by the pair (v'/«k, o). In
this paper, we will often write an element of H'(«x, @/Z) in this way. In particular,
the ramification ram,(«) € H'!(k (v), Z/n) of a Brauer class o € Br(F)[n] at a
discrete valuation v € Q(F/X) will be represented in this way.

Let x € H'(F, Q/7) = Homys(G r, @/Z) be a character of G with image
Z/n C Q/7Z, represented by a pair (L/F,0); i.e., L/F is a finite cyclic Galois
extension of degree n such that

Gr=Ker(x:Gr— Q/2)

and o0 € Gal(L/F) is a generator such that (o) =1+ nZ € Z/n. Recall that
[Gille and Szamuely 2006, §2.5] the cyclic algebra (x, b) associated with x and
an element b € F* is the F-algebra generated by L and a word y subject to the
following multiplication relations:

y'=b and Ay=yo(A) forall AeL.

It is a standard fact that (x, b) is a central simple algebra of degree n over F. The
class of the cyclic algebra (x, b) in Br(F)[n]=H 2(F, u,) coincides with the cup
product of x € H'(F, Z/n) and (b) € H'(F, j1,,).
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If u, € F, then by Kummer theory L is of the form L = F(¥/a) for some a € F*.
There is a primitive n-th root of unity &, € F such that o (¥/a) = &,%/a. The cyclic
algebra (x, b) is isomorphic to the F-algebra (a, b)g,, which by definition is the
F-algebra generated by two words x, y subject to the relations

x"=a, y'=b and xy=E§&,yx.

Conversely, when F contains a primitive n-th root of unity &,, the algebra (a, b)g,
associated to elements a, b € F* is isomorphic to (x, b), where x € H'(F, Q/Z)
is the character represented by the cyclic extension L/F = F(%/a)/F and the
F-automorphism o € Gal(L/F) that sends ¥/a to &,%/a. The class of the algebra
(a, b)g, in Br(F) will be denoted by (a, b) when the degree n and the choice of
&, € F are clear from the context. This notation is compatible with the notion
of symbol classes via the isomorphism Br(F)[n] = H?*(F, pu,) = H*(F, Mf’z)
corresponding to the choice of §, € F.

3. Division algebras over local henselian surfaces

In this section, we first recall a number of techniques in Saltman’s method of
detecting ramification of division algebras [Saltman 1997; 2007] and then we will
prove Theorem 1.3.

Ramification of division algebras over surfaces. In this subsection, let X be a
regular excellent surface and let F' be the function field of X. By resolution of
embedded singularities [Shafarevich 1966, Theorem on p. 38 and Remark on p. 43;
Lipman 1975, p. 193], for any effective divisor D on X, there exists a regular surface
X' together with a proper birational morphism X’ — X, obtained by a sequence of
blow-ups, such that the total transform D’ of D in X’ is a simple normal crossing
(snc) divisor (i.e., the reduced subschemes on the irreducible components of D’
are regular curves and they meet transversally everywhere). We will use this result
without further reference.

Let n be a positive integer that is invertible on X, and let « € Br(F)[n] be a
Brauer class of order dividing n. For any discrete valuation v € Q(F/X), let ram,
denote the ramification map (or the residue map)

ram, = 3> : Br(F)[n] = H*(F, ) — H'(x (v), Z/n).

If v = vc is the discrete valuation centered at the generic point of a curve C C X,
we write ramc = ram,.. The ramification locus of a € Br(F)[n] on X, de-
noted Ramy (&), is by definition the (finite) union of curves C € X such that
rame(a) # 0 € H'(k(C), Z/n). The ramification divisor of « on X, denoted
again by Ramy (o) by abuse of notation, is the reduced divisor supported on the
ramification locus. After several blow-ups, we may assume Ramy («) is an snc
divisor on X.
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Definition 3.1 [Saltman 2007, §2]. Let X, F and « be as above. Assume that
Ramy (&) is an snc divisor on X. A closed point P € X is called

(1) adistant point for o if P ¢ Ramy (),

(2) a curve point for « if P lies on one and only one irreducible component of
Ramy (o) and

(3) a nodal point for o if P lies on two different irreducible components of
Ramy ().

Saltman essentially derived the following theorem from a local study of a Brauer
class at closed points in its ramification locus [Saltman 1997, Proposition 1.2]:

Theorem 3.2 [Saltman 1997, Theorem 2.1]. Let X be a regular excellent surface
that is quasiprojective over a ring, F the function field of X, n > 0 a positive integer
that is invertible on X and a € Br(F)[n]. Assume u, C F.

Then there exist f, g € F* such that the field extension M/ F == F(%/f, /g)/F
splits all ramification of a over X, i.e., oy € Bry (M / X).

(Although our setup here differs from that of Saltman’s Theorem 2.1, a careful
verification shows that his proof — with Gabber’s corrections given in [Saltman
1998] — still works. One can also find a proof of Theorem 3.2 in [Brussel 2010,
Lemma 7.8]. When n is prime, a stronger statement holds; see [Saltman 2008,
Theorem 7.13] and Proposition 3.11.)

Remark 3.3. Let R be a two-dimensional, henselian, excellent local domain with
fraction field K and residue field k. By resolution of singularities for surfaces
(see [Lipman 1975; 1978]), there exists a regular proper model & — Spec R. The
structural morphism ¥ — Spec R is actually projective by [Grothendieck 1967,
IV.21.9.13]. So Theorem 3.2 applies to such a regular proper model X — Spec R.

If the residue field k of R is finite, Theorem 3.2 has the following refined form
over the fraction field K:

Let n > 0 be a positive integer that is invertible in the finite residue field k.
Assume that i, € R. Then for any finite collection of Brauer classes «; € Br(K)[n],
1 <i <m, there exist f, g € K* such that the field extension M/K :=K (¥/f, /g)/K
splits all the o, i =1, ..., m.

In the literature, this result has been established in the case where K is a function
field of a p-adic curve and where n is a prime number, and the proof is essentially an
observation of Gabber and Colliot-Théléne [Colliot-Thélene 1998; Hoffmann and
Van Geel 1998, Theorem 2.5]. One may verify that essentially the same arguments
work in the local henselian case considered here.

We will need the following analog of [Saltman 1997, Theorem 3.4] in the sequel:
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Theorem 3.4. Let R be a two-dimensional, henselian, excellent local domain with
fraction field K and residue field k. Let n > 0 be a positive integer that is invertible
in k. Assume that k is a B field.

Then any Brauer class a € Br(K) of order n has index dividing n>.

Proof. This follows on parallel lines along the proof of [Saltman 1997, Theorem 3.4]
with suitable substitutions of the ingredients used in the case of p-adic function
fields. For the sake of the reader’s convenience, we recall the argument.

We may assume n = ¢" is a power of a prime number g. Let ¥ — Spec R be
a regular proper model. For any finite field extension K’/K, the integral closure
R’ of R in K’ satisfies the same assumptions as R and K’ is the function field
of a regular proper model ¥’ of Spec R’. One has Q(K'/¥') = Q(K'/¥) and
Bry (K’ /%) =Bry (K’ /%) = 0 by Theorem 2.1(iii) and Corollary 2.5. So it suffices
to find a finite separable field extension K’/K of degree g2 m with g { m such that
K’/K splits all ramification of « over ¥.

Now we proceed by induction on r. First assume » = 1. Then the result is
immediate from Theorem 3.2 if 1, C F. The general case follows by passing to
the extension F(u,)/F, which has degree prime to ¢q.

For general r, the inductive hypothesis applied to the Brauer class go implies
that there is a separable field extension K’/ K splitting all ramification of ga over &,
which has degree ¢> ~2m’, where g { m’. But gag' = 0 € Br(K') by Corollary 2.5.
By the case with » = 1, we can find a separable extension K”/K’ of degree g>m”
with ¢ { m” that splits all ramification of ek’ over ¥. Now K”/K is a separable
extension of degree [K” : K] = ¢* m with m = m’'m” coprime to g and K"/K
splits all ramification of o over ¥, as desired. (I

We will give an example of a Brauer class o € Br(K) of order # that is of index n?
in Example 3.18.

Classification of nodal points. To prove further results, we need more analysis on
ramification at nodal points, for which we briefly recall in this subsection some
basic notions and results due to Saltman. The reader is referred to [Saltman 2007,
§82-3] or [Brussel 2010, §§7-8] for more details.

Let X be a regular excellent surface with function field F', and let ¢ be a prime
number that is invertible on X. Let o € Br(F)[g]. Assume that Ramy («) is an
snc divisor on X. Let P € X be a nodal point for « (Definition 3.1), lying on
two distinct irreducible components C; and C, of Ramy («). Let x; = ramc, (o)
and x, =ramc, (a) be respectively the ramifications of « at C; and C;. Since the
natural sequence induced by residue maps

H*(F.u)—> @ H'(*®).2/q)— H((P), u$)
ve(Spec Oy p)D
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is a complex (see [Kato 1986] or [Colliot-Thélene 2006, Proposition 2.3]), x; =
ramc, (o) € H'(x(C)), Z/q) is unramified at P if and only if x» = ram¢, €
H'(k(C»),Z/q) is unramified at P.

Definition 3.5 [Saltman 2007, §§2-3]. Let X, F, ¢, @ and so on be as above.
Assume that Ramy («) is an snc divisor on X. Let P € X be a nodal point for «,
lying on two distinct irreducible components C| and C, of Ramy (o).

(1) P is called a cold point for « if x; =ramc, () € H'(k(C)), Z/q) (and hence
also o =ramg, (x) € H'(k(Cy), Z7/q)) is ramified at P.

(2) Assume now x; and y; are unramified at P so that they lie respectively in
H'(Oc,.p,7/q) and H'(Oc, p,7/q). Let x;(P) € H' (k(P),Z/q),i =1,2,
be their specializations and (x; (P)), i =1, 2, be the subgroups of H'(k(P), Z/q)
generated by x; (P), respectively. Then P is called
(a) a cool point for o if (x1(P)) = (x2(P)) =0,
(b) a chilly point for o if (x;(P)) = {x2(P)) # 0 and
(c) a hot point for « if (x1(P)) # (x2(P)).

When P is a chilly point, there is a unique s = s(C»/C) € (Z/q)* such that
x2(P) =s5.x1(P) € H'(k(P). Z/q).
One says that s =s(C2/Cy) is the coefficient of the chilly point P with respect to Cj.

Remark 3.6. One may verify without much pain that our classification of nodal
points, following [Brussel 2010, Definition 8.5], is equivalent to Saltman’s original
formulation, which goes as follows. First consider the case p, € F. Then

o=, )+ (v,8)+r.(m,8) (mod Br(Ox p))

by [Saltman 1997, Proposition 1.2]. Here u, v € @}P, reZ/qandm,5 €Oxp
are local equations of the two components of Ramy () passing through P. The
point P is a cold point if r 20 € Z/q. Assume nextr =0 € Z/q. Then P is
a cool point if u(P), v(P) € k(P)*4, a chilly point if u(P), v(P) ¢ x(P)*? and
they generate the same subgroup of « (P)*/kx (P)*¥ or a hot point otherwise. In the
general case, let X" — X be the connected finite étale cover obtained by adjoining
all g-th roots of unity and let «’ be the canonical image of « in Br(F’), where F’
denotes the function field of X’. Then for any two points P/, P, € X', both lying
over P € X, P| is a cold, cool, chilly or hot point for o’ if and only if P} is, and
in that case, one says that P is a cold, cool, chilly or hot point for «, respectively.
When P is chilly, the coefficient of P with respect to a component through it is
also well-defined, as the coefficient of any preimage P’ of P.

To get some compatibility for coefficients of chilly points, one has to eliminate
the so-called chilly loops, i.e., loops in the following graph. The set of vertices
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is the set of irreducible components of Ramy («), and the number » > 0 of edges
linking two vertices is equal to the number of chilly points in the intersection of the
two curves corresponding to the two vertices. (Two vertices may be joined by two
or more edges and thus contribute to some loops.)

Proposition 3.7 [Saltman 2007, Proposition 3.8]. Let X, F, q and o € Br(F)[q] be
as above. Assume that Ramy («) is an snc divisor on X. Then there exists a proper
birational morphism X' — X, obtained by a finite number of blow-ups, such that
has no cool points and no chilly loops on X'.

We also need the notion of residual class at a ramified place. Let C be an irre-
ducible component of Ramy (&), and let v = v¢ be the associated discrete valuation
of F. Choose any x € F* with g f v(x) so that the extension M/F := F({/x)/F is
totally ramified at v = v¢ and oy = o @ p M € Br(M) is unramified at the unique
discrete valuation w of M that lies over v. One has k(w) = xk(v) = «(C) and
hence a well-defined Brauer class 8¢ € Br(x(C)) given by the specialization of
oy € Br(M) in Br(k (w)) = Br(x (C)). Let (L/x(C), o) = ram¢(«) be the ramifi-
cation of o at C. Whether B¢, € Br(x(C)) is split by the field extension L/k (C)
does not depend on the choice of M = F({/x) [Saltman 2007, Corollary 0.7].
We say that the residual classes of a at C are split by the ramification if, for one
(and hence for all) choice of M = F(¥/x), the residual class B¢, € Br(k(C)) is
split by L/k(C) [Saltman 2007, p. 821 Remark]. When we are only interested
in this property, we will simply write 8¢ for B¢, € Br(«(C)) with respect to any
choice of x.

It is proved in [Saltman 2007, Propositions 0.5 and 3.10(d)] that if « has index ¢,
then all the residual classes B¢ of « at all components C of Ramy («) are split by
the ramification and there are no hot points for « on X.

Splitting over a Kummer extension. Let X be a reduced scheme that is projective
over aring. Let ? C X be a finite set of closed points of X. Denote by ¥y the sheaf
of meromorphic functions on X, and set #* := P pq k (P)*. Let 0% 4 denote the
kernel of the natural surjection of sheaves 0% — %* so that there is a natural exact
sequence

1 - 0%y — 0y — P — 1.

Define subgroups K € HO(X, 9% ) and HJ(X, %% /0%) € HO(X, 9% /0%) by
Ky :={f e H' (X, %} | f €0 p forall Pe®},
HY(X, %% /0%) == (D € H*(X, %% /0%) | Supp(D) NP = &1}.
Consider the natural map

¢: Kh— HY(X,H%/0%) @ (@K(P)*), [ (divX(f), GBf(P))-

Pe®
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Proposition 3.8 [Saltman 2007, Proposition 1.6]. With notation as above, there is
a natural isomorphism

Hy (X, 75 /0%) & @ pey  (P))
¢ (K3) '
The analog in the arithmetic case of the following proposition is [Saltman

2007, Proposition 1.7]. The following generalization to the case where A is two-
dimensional will be indispensable in the proofs of our results:

H'(X,0% 4) =

Proposition 3.9. Let A be a (noetherian) normal, henselian local domain with
residue field x, X an integral scheme and X — Spec A a proper morphism whose
closed fiber Xo has dimension < 1 and whose generic fiber is geometrically integral.
Let m be a positive integer invertible in A. Let X = (X0)sed be the reduced closed
subscheme on the closed fiber Xo. Suppose that X is geometrically reduced over k
(e.g., K is perfect). Then for any finite set P of closed points of X, the natural map

H'(X,0% ) > H'(X, 0% )
is surjective and induces a canonical isomorphism
H' (X, 0% )/m = H' (X, 0% ,)/m.
To prove the proposition, we need a well-known lemma.

Lemma 3.10. Let A be a (noetherian) henselian local ring, X — Spec A a proper
morphism with closed fiber X of dimension < 1, m > 0 a positive integer that is
invertible in A and X = (X¢)red the reduced closed subscheme on the closed fiber Xy.

Then the natural map Pic(X) — Pic(X) is surjective and induces an isomorphism

Pic(X)/m = Pic(X)/m.

Proof. The surjectivity of Pic(X) — Pic(X) follows from [Grothendieck 1967,
IV.21.9.12]. Then the commutative diagram with exact rows, which comes from
the Kummer sequence,

0 —— Pic(X)/m —— HZ(X, ) —> Br(X)[m] —— 0

| l l

0 —— Pic(X)/m —— HZ(X, tw) —> Br(X)[m] —— 0

yields the desired isomorphism Pic(X)/m = Pic(X) /m since the vertical map in the
middle is an isomorphism by proper base change [Milne 1980, p. 224, Corollary 2.7],
noticing also that any scheme Y has the same étale cohomology with value in a
commutative étale group scheme as its reduced closed subscheme Y.q [SGA 4.2
1972, Exposé VIII, Corollary 1.2]. O
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Proof of Proposition 3.9. Consider the commutative diagram with exact rows

H(X,0%) —— H(X,%*) —— H'(X.0%,;) — Pic(X) —— 0

| Ji | |
HYX,0) —— HO(X,9*) —— H\(X, 0% ,) — Pic(X) — 0

from which the surjectivity of H'(X, Oyp) > H I(X, @*)?, ,») 1s immediate since
Pic(X) — Pic(X) is surjective by Lemma 3.10. Put M := J(¢) C N := J(0).

We claim that 7 is surjective. Indeed, by Zariski’s connectedness theorem
[Grothendieck 1961, 111.4.3.12], the hypotheses that A is normal and the generic
fiber of X — Spec A is geometrically integral imply that the closed fiber Xy is
geometrically connected. The reduced closed fiber X = (X0)red 18 geometrically
connected as well. Since X is assumed to be geometrically reduced, we have
HY(X, 0*) = «*. Thus, the map 7 : H*(X, 0*) — H°(X, 0%) is clearly surjective
since A* € HO(X, 0%).

Now our claim shows that M = N, and then it follows that

Ker(H'(X, 0% 4) > H' (X, 0% ) = B := Ker (Pic(X) — Pic(X)).
It’s sufficient to show B/m = 0. From the commutative diagram with exact rows
0 —— H%X,0%/m —— H (X, ptw) —> Pic(X)[m] — 0
[ | |
0 —— HX,0%/m —— H}(X, pm) —> Pic(X)[m] — 0

it follows that Pic(X)[m] = Pic()? )[m] since the vertical map in the middle is an
isomorphism by proper base change and the left vertical map is already shown to
be surjective. Now applying the snake lemma to the commutative diagram

0 B Pic(X) —— Pic(X) —— 0
0 B Pic(X) —— Pic(X) —— 0

and using Lemma 3.10, we easily find B/m = 0, which completes the proof. [

The following result is proved in [Saltman 2008, Theorem 7.13] in the case where
g € F without assuming the residue field « perfect. It says essentially that the
conclusion of Theorem 3.2 can be strengthened for Brauer classes of prime order.

Proposition 3.11. Let A be a (noetherian) henselian local domain with residue
field k, q a prime number unequal to the characteristic of k and X a regular
excellent surface equipped with a proper dominant morphism X — Spec A whose
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closed fiber is of dimension < 1. Let F be the function field of X and o € Br(F)|[q].
Assume that k is perfect and that o has index q.

Then there is some g € F* such that the field extension M/ F := F(4/g)/F splits
all ramification of a over X, i.e., apy € Brp (M / X).

Proof. Replacing A by its normalization if necessary, we may assume that A is
normal. Let Ramy(«) = ) C; be the ramification divisor of & on X, and let
X = (X0)req be the reduced closed subscheme on the closed fiber X,. After a
finite number of blow-ups, we may assume that X is purely of dimension 1, that
B := (Ramy (&) U X)req is an snc divisor and that there are no cool points or chilly
loops for o on X (Proposition 3.7). Write

(Li/k(Ci), 07) =ram, () € H' ((Ci), Z/q)

for the ramification of « at C;. By the assumption on the index, there are no hot
points for o on X and the residual classes of o at C; are split by the ramification
L;/k(C;) for every i [Saltman 2007, Propositions 0.5 and 3.10(d)]. Using [Saltman
2007, Theorem 4.6], we can find 7 € F* having the following properties:

(P1) The valuation vc, (7) = s; is not divisible by q.

(P2) If P is a chilly point in the intersection of C; and C;, then the coefficient
s(C;/C;) of P with respect to C; (Definition 3.5) satisfies s(C;/C;)s; =
siel/ql.

(P3) The divisor E :=divx () — Y_ s;C; does not contain any singular points of
B = (Ramy (@) U X¢)req Or any irreducible component of B in its support.

(P4) With respect to F’ := F(rr'/9), the residue Brauer classes Bc, ;=B €
Br(x(C;)) of « at all the C; are trivial.

(P5) For any closed point P in the intersection of E and some C;, the intersection
multiplicity (C; - E) p is a multiple of g if the corresponding field extension
L;/k(C;) is nonsplit at P.

Let y € Pic(X) be the class of Ox(—E), and let y € Pic(X) be its canonical
image. By property (P3), E and X only intersect in nonsingular points of X. So
we can represent y as a Cartier divisor on X using the intersection of —E and X.
This divisor can be chosen in the form

Yoqn;Q;+> mQ, (3-1)

where Q; and Q) are nonsingular points on X, and for each Q). one has either
Q; ¢ Ramy (@) or Q; € C; for exactly one C; and the corresponding field extension
L;/k(C;) is split at Q; (by property (P5)).

By [Grothendieck 1967, IV.21.9.11 and IV.21.9.12], there exists a prime divisor
E| on X such that E}|z = Q) as Cartier divisors on X. Note that E] Z Ramy («)
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because otherwise Q) € E; N X would be a singular point of £/UX C B =
(Ramy () U X)req. Set E' = —E =) m Ej. Let % be the set of all singular points
of B (in particular,  contains all nodal points for «).

Lety’ e H'(X, 0% ») be the element represented by the pair

(E/, P 1) e HO(X, H* /0 @ (@ K(P)*)
Pe?
via the isomorphism

HY(X, 3% /0%) @ (B peg k (P)*)
K3

H' (X, 0% 4) =

in Proposition 3.8. (Here E’ € Hg (X, 3*/0*) since by the choice of &, E does
not contain any singular points of B = (Ramy (o) U X)red.) The image ¥’ of ¥’ in
H' (X, 0% ) lies in g.H' (X, 0% ) by the expression (3-1).

From Proposition 3.9, it follows that y’ € ¢.H' (X, 0% »)- Thus, by Proposition
3.8, there is a divisor E” € Hg)(X, J*/0*), elements a(P) € k (P)* for each P € P
and f € F* such that f is a unit at every P € P, divx(f) = E' + gE” and
f(P)=a(P)? for all P € %. We now compute

div (fm) =divx(f) +divx(7) = (E'+qE") 4+ (> siCi + E)
=—E—Y mE+qE"+E+Y s.C;
=Y siCi+(qE" - anEl/)
=Y 5iCi+ ;D (3-2)

For any D, the following properties hold:

(P6) D; can only intersect B in nonsingular points of B.

(P7) If g {nj, then D; € {E}} so that either D; NRamy («) = @ or Dj NRamy («)
consists of a single point P that lies on one C; and the corresponding field
extension L;/k (C;) splits at P.

Now we claim that g = fm satisfies the required property. That is, putting
M = F((fm)"%), apy € Br(M) is unramified at every discrete valuation of M that
lies over a point or a curve on X.

Consider a discrete valuation of M lying over some v € Q(F/ X).

If v is centered at some C;, then M/ F is totally ramified at v since the coefficient
s; of fmr at C; is prime to g (3-2); hence, in particular, M/ F splits the ramification
of o at v. As « is unramified at all other curves on X, we may restrict to the case
where v is centered at a closed point P of X. By [Saltman 2007, Theorem 3.4], we
can also ignore distant points and curve points P € C; where L;/k (C;) splits at P.
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Now assume that P is a curve point lying on some C; € {C;} where the corre-
sponding field extension L;/k(C) is nonsplit at P. By property (P7), the only
curves other than C; in the support of divy(f) that can pass through P have
coefficients a multiple of ¢g. Therefore, in Rp = Ox p, we have fm = un’f‘&q with
ue R}‘,, 71 € Rp a uniformizer of C; at P and § € Rp prime to ;. Using [Saltman
2007, Proposition 3.5], we then conclude that M/ F splits all ramification of « at v.

Recall that we have assumed there are no cool points or hot points for «. So in
the only remaining cases, P is either a cold point or a chilly point.

Assume first that P is a cold point for «. By property (P4) and [Saltman
2007, Corollary 0.7], the residual class B¢, i of o at any C; with respect to
M = F((fm)'/%) is given by the class of a cyclic algebra (x;, f '), where

xi = (Li/k(Cy), 01) = ramg; (@) € H' (k(C}), Z/q),

t is an integer prime to ¢ and f denotes the canonical image of f in « (C;). Since
f is a g-th power in « (P) by the choice, it follows easily that B¢, » is unramified
at P. In the local ring Rp = Ox p, we have f =upm,' 7, for some up € R} by
(3-2) and property (P6). Hence, by [Saltman 2007, Proposition 3.10(c)], M splits
all ramification of « at v.

Finally, consider the case where P is a chilly point. Let Cy, C; € {C;} be the two
different irreducible components of Ramy («) through P, and lety, m, € Rp =0x p
be uniformizers of C; and C, at P. Again by (3-2) and property (P6), we have
fm =upm)'ny* for some up € Ry. Let s =s(C,/Cy) be the coefficient of P with
respect to C;. Using property (P2), we find that M = F((fm)'/?) may be written
in the form M = F((n{ng)l/‘f), where 71{ € Rp is a uniformizer of Cy at P. Thus,
by [Saltman 2007, Proposition 3.9(a)], M/ F splits all ramification of « at v, which
completes the proof. U

Corollary 3.12. Let A be a (noetherian) henselian local domain with residue
field k, g a prime number unequal to the characteristic of k, and X a regular
excellent surface equipped with a proper dominant morphism X — Spec A whose
closed fiber is of dimension < 1. Let F be the function field of X and o € Br(F)|[q].
Assume that k is a By field and that o has index q.

If either nuy C F or k is perfect, then « is represented by a cyclic algebra of
degree q.

Proof. If ny, € F, we may use [Saltman 2008, Theorem 7.13] to find a degree-¢
Kummer extension M /F = F(4/g)/F that splits all ramification of a over X. If
k is perfect, such an extension exists by Proposition 3.11. As in the proof of
Theorem 3.4, we have Br,.(M/X) = 0 by Corollary 2.5. Hence, oy = 0 € Br(M).
Then by a theorem of Albert [Saltman 2007, Proposition 0.1], which is rather
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immediate when assuming the existence of a primitive g-th root of unity, « is
represented by a cyclic algebra of degree g. (I

Recall that R always denotes a two-dimensional, henselian, excellent local
domain with fraction field K and residue field k. Applying Corollary 3.12 to a
regular proper model & — Spec R yields the following:

Theorem 3.13. Assume that the residue field k of R has property By. Let q be a
prime number unequal to the characteristic of k.

If either gy € R or k is perfect, then any Brauer class o € Br(K)[q] of index q
is represented by a cyclic algebra of degree q.

Remark 3.14. (1) In Proposition 3.11 or Corollary 3.12, according to the above
proof, if we assume the morphism X — Spec A is chosen such that Ramy («) is an
snc divisor and that & has n