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Kernels for products of L-functions
Nikolaos Diamantis and Cormac O’Sullivan

The Rankin–Cohen bracket of two Eisenstein series provides a kernel yielding
products of the periods of Hecke eigenforms at critical values. Extending this
idea leads to a new type of Eisenstein series built with a double sum. We develop
the properties of these series and their nonholomorphic analogs and show their
connection to values of L-functions outside the critical strip.

1. Introduction

Rankin [1952] introduced the fruitful idea of expressing the product of two critical
values of the L-function of a weight-k Hecke eigenform f for 0 = SL(2,Z) in
terms of the Petersson scalar product of f and a product of Eisenstein series:

〈Ek1 Ek2, f 〉 = (−1)k1/223−k k1k2

Bk1 Bk2

L∗( f, 1)L∗( f, k2) (1-1)

for k= k1+k2, the Bernoulli numbers B j and the completed, entire L-function of f ,

L∗( f, s) :=
0(s)
(2π)s

∞∑
m=1

a f (m)
ms =

∫
∞

0
f (iy)ys−1 dy.

Zagier [1977, p. 149] extended (1-1) to get

〈[Ek1, Ek2]n, f 〉 = (−1)k1/2(2π i)n23−k
(

k−2
n

)
k1k2

Bk1 Bk2

L∗( f, n+1)L∗( f, n+ k2),

(1-2)
where k= k1+k2+2n and [g1, g2]n stands for the Rankin–Cohen bracket of index n
given by

[g1, g2]n :=

n∑
r=0

(−1)r
(

k1+n−1
n−r

)(
k2+n−1

r

)
g(r)1 g(n−r)

2 . (1-3)

The periods of f in the critical strip are the numbers

L∗( f, 1), L∗( f, 2), . . . , L∗( f, k− 1). (1-4)

MSC2010: primary 11F67; secondary 11F03, 11F37.
Keywords: L-functions, noncritical values, Rankin–Cohen brackets, Eichler–Shimura–Manin theory.

1883

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2013.7-8


1884 Nikolaos Diamantis and Cormac O’Sullivan

Zagier [1977, §5] and Kohnen and Zagier [1984] proved important results of the
Eichler–Shimura–Manin theory on the algebraicity of these critical values using
(1-2). We describe this in more depth in Sections 2C and 8A.

On the face of it, the techniques of [Zagier 1977], employing (1-2), apply only
to critical values; an extension to noncritical values, L∗( f, j) for integers j 6 0
or j ≥ k, would seem to require Rankin–Cohen brackets of negative index n or
holomorphic Eisenstein series of negative weight, neither of which are defined.
Analyzing the structure of the Rankin–Cohen bracket of two Eisenstein series in
Section 6 reveals a natural construction, which we call a double Eisenstein series:1∑

γ,δ∈0∞\0

γ δ−1
6=0∞

(cγ δ−1)l j (γ, z)−k1 j (δ, z)−k2, (1-5)

where, for γ ∈ 0, we write

γ =

(
aγ bγ
cγ dγ

)
and j (γ, z) := cγ z+ dγ .

By comparison, the usual holomorphic Eisenstein series is

Ek(z) :=
∑

γ∈0∞\0

j (γ, z)−k . (1-6)

The double Eisenstein series (1-5) converges to a weight-(k1+ k2) cusp form when
l < k1− 2, k2− 2. For negative integers l, it behaves as a Rankin–Cohen bracket of
negative index; see Proposition 2.4. This allows us to further generalize (1-1) and
(1-2), and in Section 8, we characterize the field containing an arbitrary value of an
L-function in terms of double Eisenstein series and their Fourier coefficients. In
the interesting paper [Cohen et al. 1997], Rankin–Cohen brackets are linked to op-
erations on automorphic pseudodifferential operators and may also be reinterpreted
in this framework allowing for more general indices.

An extension of Zagier’s kernel formula (1-2) in the nonholomorphic direction is
given in Section 9C. There we show that the holomorphic double Eisenstein series
have nonholomorphic counterparts:∑

γ,δ∈0∞\0

γ δ−1
6=0∞

|cγ δ−1 |
−s−s′ Im(γ z)s Im(δz)s

′

. (1-7)

These weight-0 functions possess analytic continuations and functional equations
resembling those for the classical nonholomorphic Eisenstein series. As kernels,
they produce products of L-functions for Maass cusp forms; see Theorem 2.9. The
main motivation for this construction was its potential use in the rapidly developing

1In the context of multiple zeta functions, the authors in [Gangl et al. 2006] give a different
definition of “double Eisenstein series”. See also [Deninger 1995], for example, for distinct “double
Eisenstein–Kronecker series”.



Kernels for products of L-functions 1885

study of periods of Maass forms [Bruggeman et al. 2013; Lewis and Zagier 2001;
Manin 2010; Mühlenbruch 2006]. In developing the properties of (1-7), we require
a certain kernel K(z; s, s ′) as defined in (9-1). It is interesting to note that Diaconu
and Goldfeld [2007] needed exactly the same series for their results on second
moments of L∗( f, s); see Section 9A.

2. Statement of main results

2A. Preliminaries. Our notation is as in [Diamantis and O’Sullivan 2010]. In all
sections but two, 0 is the modular group SL(2,Z) acting on the upper half-plane H.
The definitions we give for double Eisenstein series extend easily to more general
groups, so in Section 4, we prove their basic properties for 0 an arbitrary Fuchsian
group of the first kind, and in Section 10, we see how some of our main results are
valid in this general context.

Let Sk(0) be the C-vector space of holomorphic, weight-k cusp forms for 0 and
Mk(0) the space of modular forms. These spaces are acted on by the Hecke operators
Tm ; see (3-6). Let Bk be the unique basis of Sk consisting of Hecke eigenforms
normalized to have first Fourier coefficient 1. We assume throughout this paper
that f ∈Bk . Since 〈Tm f, f 〉 = 〈 f, Tm f 〉, it follows that all the Fourier coefficients
of f are real, and hence, L∗( f, s)= L∗( f, s). Also, recall the functional equation

L∗( f, k− s)= (−1)k/2L∗( f, s). (2-1)

We summarize some standard properties of the nonholomorphic Eisenstein series;
see for example [Iwaniec 2002, Chapters 3 and 6]. Throughout this paper, we use
the variables z = x + iy ∈ H and s = σ + i t ∈ C.

Definition 2.1. For z ∈H and s ∈C with Re(s) > 1, the weight-0, nonholomorphic
Eisenstein series is

E(z, s) :=
∑

γ∈0∞\0

Im(γ z)s =
ys

2

∑
c,d∈Z
(c,d)=1

|cz+ d|−2s . (2-2)

Let θ(s) := π−s0(s)ζ(2s). Then E(z, s) has a Fourier expansion [Iwaniec 2002,
Theorem 3.4], which we may write in the form

E(z, s)= ys
+
θ(1− s)
θ(s)

y1−s
+

∑
m 6=0

φ(m, s)|m|−1/2Ws(mz), (2-3)

where Ws(mz) = 2(|m|y)1/2Ks−1/2(2π |m|y)e2π imx is the Whittaker function for
z ∈ H and also θ(s)φ(m, s)= σ2s−1(|m|)|m|1/2−s . As usual, σs(m) :=

∑
d|m ds is

the divisor function.
For the weight-k (k ∈ 2Z) nonholomorphic Eisenstein series, generalizing (2-2),
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set

Ek(z, s) :=
∑

γ∈0∞\0

Im(γ z)s
(

j (γ, z)
| j (γ, z)|

)−k

. (2-4)

Then (2-4) converges to an analytic function of s ∈ C and a smooth function of
z ∈ H for Re(s) > 1. Also y−k/2 Ek(z, s) has weight k in z. Define the completed
nonholomorphic Eisenstein series as

E∗k (z, s) := θk(s)Ek(z, s) for θk(s) := π−s0(s+ |k|/2)ζ(2s). (2-5)

With (2-3), we see that E(z, s) has a meromorphic continuation to all s ∈ C. The
same is true of Ek(z, s); see [Diamantis and O’Sullivan 2010, §2.1] for example.
We have the functional equations

θ(s/2)= θ((1− s)/2), (2-6)

E∗k (z, s)= E∗k (z, 1− s). (2-7)

2B. Holomorphic double Eisenstein series. Define the subgroup

B :=
{(

1 n
0 1

) ∣∣∣∣ n ∈ Z

}
⊂ SL(2,Z). (2-8)

Then 0∞, the subgroup of 0 = SL(2,Z) fixing∞, is B∪−B. For γ ∈ 0∞ \0, the
quantities cγ , dγ and j (γ, z) are only defined up to sign (though even powers are
well-defined). For γ ∈ B\0, there is no ambiguity in the signs of cγ , dγ and j (γ, z).

Definition 2.2. Let z ∈H and w ∈ C. For integers k1, k2 ≥ 3, we define the double
Eisenstein series

Ek1,k2(z, w) :=
∑

γ,δ∈B\0
c
γ δ−1>0

(cγ δ−1)w−1 j (γ, z)−k1 j (δ, z)−k2 . (2-9)

This series is well-defined and converges to a holomorphic function of z that
is a weight-(k = k1 + k2) cusp form for Re(w) < k1 − 1, k2 − 1, as we see in
Proposition 4.2. It vanishes identically when k1 and k2 have different parity.

Let k be even. To get the most general kernel, with s ∈ C set

Es,k−s(z, w) :=
∑

γ,δ∈B\0
c
γ δ−1>0

(cγ δ−1)w−1
(

j (γ, z)
j (δ, z)

)−s

j (δ, z)−k . (2-10)

In the usual convention, for ρ ∈ C with ρ 6= 0, write

ρ = |ρ|ei arg(ρ) for −π < arg(ρ)6 π

and
ρs
= |ρ|sei arg(ρ)s for s ∈ C. (2-11)
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Note that

cγ δ−1 =

∣∣∣∣cγ dγ
cδ dδ

∣∣∣∣> 0 =⇒
j (γ, z)
j (δ, z)

∈ H for z ∈ H,

and so ( j (γ, z)/j (δ, z))−s in (2-10) is well-defined and a holomorphic function of
s ∈ C and z ∈H. Proposition 4.2 shows that Es,k−s(z, w) converges absolutely and
uniformly on compact sets for which 2< σ < k− 2 and Re(w) < σ − 1, k− 1−σ .

Define the completed double Eisenstein series as

E∗s,k−s(z, w)

:=

[
esiπ/20(s)0(k− s)0(k−w)ζ(1−w+ s)ζ(1−w+ k− s)

23−wπ k+1−w0(k− 1)

]
Es,k−s(z, w).

(2-12)

Theorem 2.3. Let k ≥ 6 be even. The series E∗s,k−s(z, w) has an analytic continua-
tion to all s, w ∈ C and as a function of z is always in Sk(0). For any f in Bk , we
have

〈E∗s,k−s( · , w), f 〉 = L∗( f, s)L∗( f, w). (2-13)

It follows directly from (2-13) and (2-1) that E∗s,k−s(z, w) satisfies eight func-
tional equations generated by

E∗s,k−s(z, w)= E∗w,k−w(z, s), (2-14)

E∗s,k−s(z, w)= (−1)k/2 E∗k−s,s(z, w). (2-15)

The next result shows how E∗s,k−s is a generalization of the Rankin–Cohen
bracket [Ek1, Ek2]n .

Proposition 2.4. For n ∈ Z≥1 and even k1, k2 ≥ 4,

n! [Ek1, Ek2]n =
2(−1)k1/2π k0(k− 1)

(2π i)nζ(k1)ζ(k2)0(k1)0(k2)0(k− n− 1)
E∗k1+n,k2+n(z, n+ 1).

Another way to understand these double Eisenstein series is through their con-
nections to nonholomorphic Eisenstein series. Any smooth function transforming
with weight k and with polynomial growth as y→∞ may be projected into Sk with
respect to the Petersson scalar product. See [Diamantis and O’Sullivan 2010, §3.2]
and the contained references. Denote this holomorphic projection by πhol.

Proposition 2.5. Let k = k1+ k2 ≥ 6 for even k1, k2 ≥ 0. Then for all s, w ∈ C

E∗s,k−s(z, w)= πhol
[
(−1)k2/2 y−k/2 E∗k1

(z, u)E∗k2
(z, v)/(2π k/2)

]
,

where
u = (s+w− k+ 1)/2 and v = (−s+w+ 1)/2. (2-16)
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2C. Values of L-functions. For f ∈Bk , let K f be the field obtained by adjoining
to Q the Fourier coefficients of f . We will recall Zagier’s proof of the next result
in Section 8A.

Theorem 2.6 (Manin’s periods theorem). For each f ∈Bk there exist real numbers
ω+( f ), ω−( f ) such that

L∗( f, s)/ω+( f ), L∗( f, w)/ω−( f ) ∈ K f

for all s and w with 16 s, w 6 k− 1 and s even and w odd.

Let m ∈ Z satisfy m 6 0 or m ≥ k. Then for these values outside the critical
strip we have, according to [Kontsevich and Zagier 2001, §3.4] and the references
therein,

L∗( f,m) ∈ P[1/π ],

where P is the ring of periods: complex numbers that may be expressed as an
integral of an algebraic function over an algebraic domain. In contrast to the
periods (1-4), we do not have much more precise information about the algebraic
properties of the values L∗( f,m). A special case of a theorem by Koblic [1975]
shows, for example, that

L∗( f,m) /∈ Z · L∗( f, 1)+Z · L∗( f, 2)+ · · ·+Z · L∗( f, k− 1).

Let K (E∗s,k−s( · , w)) be the field obtained by adjoining to Q the Fourier coef-
ficients of E∗s,k−s( · , w), and let ω+( f ) and ω−( f ) be as given in Theorem 2.6.
Then we have:

Theorem 2.7. For all f ∈Bk and s ∈ C,

L∗( f, s)/ω+( f ) ∈ K (E∗s,k−s( · , k− 1))K f ,

L∗( f, s)/ω−( f ) ∈ K (E∗k−2,2( · , s))K f .

The above theorem gives the link between Fourier coefficients of double Eisen-
stein series and arbitrary values of L-functions. We hope that this interesting
connection will help shed light on L∗( f, s) for s outside the set {1, 2, . . . , k− 1}.
See the further discussion in Section 8B for the case when s ∈ Z.

In Section 8C, we also prove results analogous to Theorem 2.7 for the completed
L-function of f twisted by e2π imp/q for p/q ∈Q:

L∗( f, s; p/q) :=
0(s)
(2π)s

∞∑
m=1

a f (m)e2π imp/q

ms =

∫
∞

0
f (iy+ p/q)ys−1 dy. (2-17)



Kernels for products of L-functions 1889

2D. Nonholomorphic double Eisenstein series.

Definition 2.8. For z ∈ H and w, s, s ′ ∈ C, we define the nonholomorphic double
Eisenstein series as

E(z, w; s, s ′) :=
∑

γ,δ∈0∞\0

γ δ−1
6=0∞

Im(γ z)s Im(δz)s
′

|cγ δ−1 |w
. (2-18)

A simple comparison with (2-2) shows it is absolutely and uniformly convergent
for Re(s),Re(s ′) > 1 and Re(w) > 0. (This domain of convergence is improved in
Proposition 4.3.) The most symmetric form of (2-18) is when w = s+ s ′. Define

E∗(z; s, s ′) := 4π−s−s′0(s)0(s ′)ζ(3s+ s ′)ζ(s+ 3s ′)E(z, s+ s ′; s, s ′)

+ 2θ(s)θ(s ′)E(z, s+ s ′). (2-19)

Theorem 2.9. The completed double Eisenstein series E∗(z; s, s ′) has a meromor-
phic continuation to all s, s ′ ∈ C and satisfies the functional equations

E∗(z; s, s ′)= E∗(z; s ′, s),

E∗(z; s, s ′)= E∗(z; 1− s, 1− s ′).

For any even Maass Hecke eigenform u j ,

〈E∗(z; s, s ′), u j 〉 = L∗(u j , s+ s ′− 1/2)L∗(u j , s ′− s+ 1/2).

3. Further background results and notation

We need to introduce two more families of modular forms.

Definition 3.1. For z ∈ H, k ≥ 4 in 2Z and m ∈ Z≥0, the holomorphic Poincaré
series is

Pk(z;m) :=
∑

γ∈0∞\0

e2π imγ z

j (γ, z)k
=

1
2

∑
γ∈B\0

e2π imγ z

j (γ, z)k
. (3-1)

For m≥1, the series Pk(z;m) span Sk(0). The Eisenstein series Ek(z)= Pk(z; 0)
is not a cusp form but is in the space Mk(0). The second family of modular forms
is based on a series due to Cohen [1981].

Definition 3.2. The generalized Cohen kernel is given by

Ck(z, s; p/q) := 1
2

∑
γ∈0

(γ z+ p/q)−s j (γ, z)−k (3-2)

for p/q ∈Q and s ∈ C with 1< Re(s) < k− 1.
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In [Diamantis and O’Sullivan 2010, §5], we studied Ck(z, s; p/q) (the factor 1/2
is included to keep the notation consistent with that article, where 0 = PSL(2,Z)).
We showed that, for each s ∈C with 1<Re(s) < k−1, Ck(z, s; p/q) converges to
an element of Sk(0)with a meromorphic continuation to all s ∈C. From Proposition
5.4 of the same work, we have

〈Ck( · , s; p/q), f 〉 = 22−kπe−siπ/2 0(k− 1)
0(s)0(k− s)

L∗( f, k− s; p/q), (3-3)

which is a generalization of Cohen’s lemma in [Kohnen and Zagier 1984, §1.2].
For simplicity, we write Ck(z, s) for Ck(z, s; 0). The twisted L-functions satisfy

L∗( f, s; p/q)= L∗( f, s;−p/q), (3-4)

qs L∗( f, s; p/q)= (−1)k/2qk−s L∗( f, k− s;−p′/q) (3-5)

for pp′ ≡ 1 mod q as in [Kowalski et al. 2002, Appendix A.3].
Define Mn :=

{(a
c

b
d

) ∣∣ a, b, c, d ∈ Z, ad − bc = n
}
. Thus, M1 = 0. For k ∈ Z

and g : H→ C, set

(g|kγ )(z) := det(γ )k/2g(γ z) j (γ, z)−k

for all γ ∈Mn . The weight-k Hecke operator Tn acts on g ∈ Mk by

(Tng)(z) := nk/2−1
∑

γ∈0\Mn

(g|kγ )(z)= nk−1
∑

ad=n
a,d>0

d−k
∑

06b<d

g
(

az+ b
d

)
. (3-6)

4. Basic properties of double Eisenstein series

We work more generally in this section with 0 a Fuchsian group of the first kind
containing at least one cusp. Set

ε0 := #{0 ∩ {−I }}. (4-1)

Label the finite number of inequivalent cusps a, b, etc., and let 0a be the subgroup
of 0 fixing a. There exists a corresponding scaling matrix σa ∈ SL(2,R) such that
σa∞= a and

σa
−10aσa =

{
B ∪−B if −I ∈ 0 (ε0 = 1),
B if −I /∈ 0 (ε0 = 0).

Also set 0∗a := σaBσa−1.
We recall some facts about Ek,a(z, s), the nonholomorphic Eisenstein series

associated to the cusp a; see for example [Iwaniec 2002, Chapter 3; Diamantis and
O’Sullivan 2010, §2.1]. It is defined as

Ek,a(z, s) :=
∑

γ∈0a\0

Im(σa−1γ z)s
(

j (σa−1γ, z)
| j (σa−1γ, z)|

)−k
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and absolutely convergent for Re(s) > 1. Put E∗k,a(z, s) := θk(s)Ek,a(z, s) as in
(2-5). Then we have the expansion

E∗0,a(σbz, s)= δabθ(s)ys
+ θ(1− s)Yab(s)y1−s

+

∑
l 6=0

Yab(l, s)Ws(lz), (4-2)

and
E∗k,a(σbz, s)= δabθk(s)ys

+ θk(1− s)Yab(s)y1−s
+ O(e−2πy) (4-3)

as y→∞ for all k ∈ 2Z. Also, its functional equation is

E∗k,a(z, 1− s)=
∑
b

Yab(1− s)E∗k,b(z, s). (4-4)

We gave the coefficients Yab(s) and Yab(l, s) explicitly in the case of 0 = SL(2,Z)

following (2-3), and in general, they involve series containing Kloosterman sums;
see [Iwaniec 2002, (3.21) and (3.22)].

For the natural generalization of (2-10), we define the double Eisenstein series
associated to the cusp a as

Es,k−s,a(z, w) :=
∑

γ,δ∈0∗a\0
c
σa−1γ δ−1σa

>0

(cσa−1γ δ−1σa)
w−1

(
j (σa−1γ, z)
j (σa−1δ, z)

)−s

j (σa−1δ, z)−k

(4-5)
so that

Es,k−s,a(σaz, w)= j (σa, z)k
∑

γ,δ∈B\0′
c
γ δ−1>0

(cγ δ−1)w−1
(

j (γ, z)
j (δ, z)

)−s

j (δ, z)−k (4-6)

for 0′ = σa−10σa, which is also a Fuchsian group of the first kind. To establish an
initial domain of absolute convergence for (4-6), we consider∑

γ,δ∈B\0′
c
γ δ−1>0

∣∣∣∣(cγ δ−1)w−1
(

j (γ, z)
j (δ, z)

)−s

j (δ, z)−k
∣∣∣∣. (4-7)

Recalling (2-11), we see that

|ρs
| = |ρ|σ e−t arg(ρ)

�t |ρ|
σ for s = σ + i t ∈ C.

Therefore, with r = Re(w) and Im(γ z) = y| j (γ, z)|−2, we deduce that (4-7) is
bounded by a constant depending on s times

y−k/2
∑

γ,δ∈0∞\0
′

γ δ−1
6=0∞

|cγ δ−1 |
r−1 Im(γ z)σ/2 Im(δz)(k−σ)/2. (4-8)

Lemma 4.1. There exists a constant κ0 > 0 so that for all γ, δ ∈ 0 with cγ δ−1 > 0

κ0 6 cγ δ−1 6 Im(γ z)−1/2 Im(δz)−1/2.
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Proof. The existence of κ0 is described in [Iwaniec 2002, §2.5 and §2.6; Shimura
1971, Lemma 1.25]. Set ε(γ, z) := j (γ, z)/| j (γ, z)| = ei arg( j (γ,z)). It is easy to
verify that, for all γ, δ ∈ 0 and z ∈ H,

cγ δ−1 = cγ j (δ, z)− cδ j (γ, z)

=

(
j (γ, z)− j (γ, z)

2iy

)
j (δ, z)−

(
j (δ, z)− j (δ, z)

2iy

)
j (γ, z)

= (ε(δ, z)−2
− ε(γ, z)−2) j (γ, z) j (δ, z)/(2iy).

Therefore,

|cγ δ−1 | =

∣∣∣∣ε(γ, z)
ε(δ, z)

−
ε(δ, z)
ε(γ, z)

∣∣∣∣ Im(γ z)−1/2 Im(δz)−1/2/2

=

∣∣∣∣Im(ε(γ, z)
ε(δ, z)

)∣∣∣∣ Im(γ z)−1/2 Im(δz)−1/2

6 Im(γ z)−1/2 Im(δz)−1/2. �

It follows that for r ′ =max(r, 1) and γ δ−1 /∈ 0∞

|cγ δ−1 |
r−1
� Im(γ z)(1−r ′)/2 Im(δz)(1−r ′)/2 (4-9)

for an implied constant depending on 0 and r . Combining (4-8) and (4-9) shows

Es,k−s,a(σaz, w)
j (σa, z)k

� y−k/2
∑

γ,δ∈0∞\0
′

γ δ−1
6=0∞

Im(γ z)(1−r ′+σ)/2 Im(δz)(1−r ′+k−σ)/2

= y−k/2
[

Ea

(
σaz,

1− r ′+ σ
2

)
Ea

(
σaz,

1− r ′+ k− σ
2

)
− Ea

(
σaz, 1−r ′+

k
2

)]
(4-10)

on noting that Im(γ z)= Im(δz) for γ δ−1
∈ 0∞. Since Ea(z, s) is absolutely con-

vergent for σ =Re(s) > 1, we have proved that the series Es,k−s,a(σaz, w), defined
in (4-6), is absolutely convergent for 2< σ < k− 2 and Re(w) < σ − 1, k− 1− σ .
This convergence is uniform for z in compact sets of H and for s and w in compact
sets in C satisfying the above constraints.

We next verify that Es,k−s,a(z, w) has weight k in the z variable. We have

f (z) ∈ Mk(0) ⇐⇒ f (σaz) j (σa, z)−k
∈ Mk(σa

−10σa),

so with (4-6), we must prove that

g(z) :=
∑

γ,δ∈B\0′
c
γ δ−1>0

(cγ δ−1)w−1
(

j (γ, z)
j (δ, z)

)−s

j (δ, z)−k
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is in Mk(0
′). For all τ ∈ 0′,

g(τ z)
j (τ, z)k

=

∑
γ,δ∈B\0′
c
γ δ−1>0

(cγ δ−1)w−1
(

j (γ, τ z)
j (δ, τ z)

)−s

j (δ, τ z)−k j (τ, z)−k

=

∑
γ,δ∈B\0′

c
(γ τ)(δτ )−1>0

(c(γ τ)(δτ )−1)w−1
(

j (γ τ, z)
j (δτ, z)

)−s

j (δτ, z)−k
= g(z)

as required.
We finally show that Es,k−s is a cusp form. By (4-10), replacing z by σa−1σbz

and using (4-3), for any cusp b we obtain

Es,k−s,a(σbz, w)
j (σb, z)k

� y−k/2
[

Ea

(
σbz,

1− r ′+ σ
2

)
Ea

(
σbz,

1− r ′+ k− σ
2

)
−Ea

(
σbz, 1−r ′+

k
2

)]
� y1+σ−k

+ y1−σ
+ y1+r ′−k

+ yr ′−k

and approaches 0 as y → ∞. Thus, by a standard argument (see for example
[Diamantis and O’Sullivan 2010, Proposition 5.3]), Es,k−s,a(z, w) is a cusp form.
Assembling these results, we have shown the following:

Proposition 4.2. Let z ∈ H and k ∈ Z, and let s, w ∈ C satisfy 2< σ < k− 2 and
Re(w) < σ − 1, k − 1− σ . For 0 a Fuchsian group of the first kind with cusp a,
the series Es,k−s,a(z, w) is absolutely and uniformly convergent for s, w and z in
compact sets satisfying the above constraints. For each such s and w, we have
Es,k−s,a(z, w) ∈ Sk(0) as a function of z.

The same techniques prove the next result for the nonholomorphic double Eisen-
stein series. Generalizing (2-18), we set

Ea(σaz, w; s, s ′) :=
∑

γ,δ∈0∞\σa
−10σa

γ δ−1
6=0∞

Im(γ z)s Im(δz)s
′

|cγ δ−1 |w
. (4-11)

Proposition 4.3. Let z ∈ H and s, s ′, w ∈ C with σ = Re(s) and σ ′ = Re(s ′). The
series Ea(z, w; s, s ′) defined in (4-11) is absolutely and uniformly convergent for z,
w, s and s ′ in compact sets satisfying

σ, σ ′ > 1 and Re(w) > 2− 2σ, 2− 2σ ′.

Unlike Es,k−s,a(z, w), the series Ea(z, w; s, s ′) may have polynomial growth at
cusps.
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5. Further results on double Eisenstein series

5A. Analytic continuation: proof of Theorem 2.3. Our next task is to prove the
meromorphic continuation of Es,k−s(z, w) in s and w. For s and w in the initial
domain of convergence, we begin with

ζ(1−w+ s)ζ(1−w+ k− s)Es,k−s(z, w)

=

∞∑
u,v=1

uw−1−svw−1−k+s
∑

a,b,c,d∈Z
(a,b)=(c,d)=1

ad−bc>0

(ad − bc)w−1
(

az+ b
cz+ d

)−s

(cz+ d)−k

=

∞∑
u,v=1

∑
a,b,c,d∈Z

(a,b)=(c,d)=1
ad−bc>0

(au · dv− bu · cv)w−1
(

au · z+ bu
cv · z+ dv

)−s

(cv · z+ dv)−k

=

∑
a,b,c,d∈Z
ad−bc>0

(ad − bc)w−1
(

az+ b
cz+ d

)−s

(cz+ d)−k (5-1)

=

∞∑
n=1

1
n1−w

∑
( a b

c d )∈Mn

(
az+ b
cz+ d

)−s

(cz+ d)−k

= 2
∞∑

n=1

TnCk(z, s)
nk−w , (5-2)

recalling (3-2). With Proposition 4.2, we know Es,k−s(z, w) ∈ Sk(0) so that

Es,k−s(z, w)=
∑
f ∈Bk

〈Es,k−s( · , w), f 〉
〈 f, f 〉

f (z) =⇒

ζ(1−w+s)ζ(1−w+k−s)Es,k−s(z, w)= 2
∞∑

n=1

1
nk−w

∑
f ∈Bk

〈TnCk( · , s), f 〉
〈 f, f 〉

f (z).

Then

〈TnCk(z, s), f 〉 = 〈Ck(z, s), Tn f 〉 = a f (n)〈Ck(z, s), f 〉,

and with (3-3), we obtain

ζ(1−w+ s)ζ(1−w+ k− s)Es,k−s(z, w)

= 23−wπ k+1−we−siπ/2 0(k− 1)
0(s)0(k− s)0(k−w)

×

∑
f ∈Bk

L∗( f, k− s)L∗( f, k−w)
f (z)
〈 f, f 〉

. (5-3)
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Define the completed double Eisenstein series E∗ with (2-12). Then (5-3) becomes

E∗s,k−s(z, w)=
∑
f ∈Bk

L∗( f, s)L∗( f, w)
f (z)
〈 f, f 〉

. (5-4)

We also now see from (5-4) that E∗s,k−s(z, w) has an analytic continuation to all s
and w in C and satisfies (2-13) and the two functional equations (2-14) and (2-15).
The dihedral group D8 generated by (2-14) and (2-15) is described in [Diamantis
and O’Sullivan 2010, §4.4]. �

5B. Twisted double Eisenstein series. In this section, we define the twisted double
Eisenstein series by

ζ(1−w+ s)ζ(1−w+ k− s)Es,k−s(z, w; p/q)

:=

∑
a,b,c,d∈Z
ad−bc>0

(ad − bc)w−1
(

az+ b
cz+ d

+
p
q

)−s

(cz+ d)−k (5-5)

for p/q ∈Q with q > 0 and establish its basic required properties. We remark that
the above definition of Es,k−s(z, w; p/q) comes from generalizing (5-1), but it is
not clear how it can be extended to general Fuchsian groups.

Writing

(ad − bc)w−1
(

az+ b
cz+ d

+
p
q

)−s

= q1−w+s((aq + cp)d − (bq + dp)c)w−1
(
(aq + cp)z+ (bq + dp)

cz+ d

)−s

,

we see that (5-5) equals

q1−w+s
∑

a′,b′,c,d∈Z
a′d−b′c>0

(a′d − b′c)w−1
(

a′z+ b′

cz+ d

)−s

(cz+ d)−k

with a′ ≡ cp mod q and b′ ≡ dp mod q. Hence, Es,k−s(z, w; p/q) is a subseries
of Es,k−s(z, w) and, in the same domain of initial convergence, is an element of Sk .

The analog of (5-2) is

ζ(1−w+ s)ζ(1−w+ k− s)Es,k−s(z, w; p/q)= 2
∞∑

n=1

TnCk(z, s; p/q)
nk−w . (5-6)

Hence, with (3-3),
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ζ(1−w+ s)ζ(1−w+ k− s)Es,k−s(z, w; p/q)

= 23−wπ k+1−we−siπ/2 0(k− 1)
0(s)0(k− s)0(k−w)

×

∑
f ∈Bk

L∗( f, k− s; p/q)L∗( f, k−w)
f (z)
〈 f, f 〉

. (5-7)

Define the completed double Eisenstein series E∗s,k−s(z, w; p/q) with the same
factor as (2-12), and we obtain

〈E∗s,k−s( · , w; p/q), f 〉 = L∗( f, k− s; p/q)L∗( f, k−w) (5-8)

for any f in Bk . Then (5-7) implies E∗s,k−s(z, w; p/q) has an analytic continuation
to all s and w in C. It satisfies the two functional equations

E∗s,k−s(z, k−w; p/q)= (−1)k/2 E∗s,k−s(z, w; p/q),

qs E∗k−s,s(z, w; p/q)= (−1)k/2qk−s E∗s,k−s(z, w;−p′/q)

for pp′ ≡ 1 mod q using (2-1) and (3-5), respectively.

6. Applying the Rankin–Cohen bracket to Poincaré series

The main objective of this section is to show how double Eisenstein series arise
naturally when the Rankin–Cohen bracket is applied to the usual Eisenstein series Ek .
Proposition 2.4 will be a consequence of this. In fact, since there is no difficulty in
extending these methods, we compute the Rankin–Cohen bracket of two arbitrary
Poincaré series

[Pk1(z;m1), Pk2(z;m2)]n

for m1,m2 ≥ 0. The result may be expressed in terms of the double Poincaré series
defined below. In this way, the action of the Rankin–Cohen brackets on spaces of
modular forms can be completely described. See also Corollary 6.5 at the end of
this section.

Definition 6.1. Let z ∈ H, k1, k2 ≥ 3 in Z and m1,m2 ∈ Z≥0. For w ∈ C with
Re(w) < k1− 1, k2− 1, we define the double Poincaré series

Pk1,k2(z, w;m1,m2) :=
∑

γ,δ∈B\0
c
γ δ−1>0

(cγ δ−1)w−1 e2π i(m1γ z+m2δz)

j (γ, z)k1 j (δ, z)k2
. (6-1)

The series (6-1) will vanish identically unless k1 and k2 have the same parity.
Clearly, we have Ek1,k2(z, w)= Pk1,k2(z, w; 0, 0). Since |e2π i(m1γ z+m2δz)|6 1, it is
a simple matter to verify that the work in Section 4 proves that Pk1,k2(z, w;m1,m2)

converges absolutely and uniformly on compacta to a cusp form in Sk1+k2(0).
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For l ∈ Z≥0, it is convenient to set

Qk(z, l;m) :=

{
Pk(z;m) if l = 0,
1
2

∑
γ∈B\0

e2π imγ z(cγ )l

j (γ,z)k+l if l ≥ 1.
(6-2)

As in the proof of Proposition 4.2, Qk is an absolutely convergent series for k
even and at least 4. The next result may be verified by induction.

Lemma 6.2. For every j ∈ Z≥0, we have the formulas

d j

dz j Ek(z)= (−1) j (k+ j − 1)!
(k− 1)!

Qk(z, j; 0),

d j

dz j Pk(z;m)=
j∑

l=0

(−1)l+ j (2π im)l
j !
l!

(
k+ j−1
k+l−1

)
Qk+2l(z, j− l;m) for m > 0.

Set

Ak1,k2(l, u)n :=
(k1+ n− 1)! (k2+ n− 1)!

l! u! (n− l − u)! (k1+ l − 1)! (k2+ u− 1)!
.

Proposition 6.3. For m1,m2 ∈ Z≥1,

[Pk1(z;m1), Pk2(z;m2)]n =
∑

l,u≥0
l+u6n

Ak1,k2(l, u)n(−2π im1)
l(2π im2)

u

× Pk1+n+l−u,k2+n−l+u(z, n+ 1− l − u;m1,m2)/2

+ Pk1+k2+2n(z;m1+m2)
∑

l,u≥0
l+u=n

Ak1,k2(l, u)n(−2π im1)
l(2π im2)

u .

Proof. With Lemma 6.2,

[Pk1(z;m1), Pk2(z;m2)]n

=

n∑
l=0

n∑
u=0

(2π im1)
l(2π im2)

u (k1+ n− 1)! (k2+ n− 1)!
l! u! (k1+ l − 1)! (k2+ u− 1)!

×

n−u∑
r=l

(−1)n+l+u+r Qk1+2l(z, r − l;m1)Qk2+2u(z, n− r − u;m2)

(r − l)! (n− r − u)!
. (6-3)

The inner sum over r is

(−1)l

4(n− l − u)!

∑
γ,δ∈B\0

e2π i(m1γ z+m2δz)

j (γ, z)k1+2l j (δ, z)k2+2u

×

n−u∑
r=l

(
n−l−u

r−l

)(
cγ

j (γ, z)

)r−l(
−cδ

j (δ, z)

)n−r−u

, (6-4)
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and, employing the binomial theorem, (6-4) reduces to

(−1)l

4(n− l − u)!

∑
γ,δ∈B\0

e2π i(m1γ z+m2δz)

j (γ, z)k1+n+l−u j (δ, z)k2+n−l+u (cγ j (δ, z)− cδ j (γ, z))n−l−u

(6-5)
for l + u < n and

(−1)l

4(n− l − u)!

∑
γ,δ∈B\0

e2π i(m1γ z+m2δz)

j (γ, z)k1+n+l−u j (δ, z)k2+n−l+u (6-6)

for l + u = n. Noting that

cγ j (δ, z)− cδ j (γ, z)=
∣∣∣∣cγ dγ
cδ dδ

∣∣∣∣= cγ δ−1

means that (6-5) becomes

(−1)l

2(n− l − u)!
Pk1+n+l−u,k2+n−l+u(z, n+ 1− l − u;m1,m2) (6-7)

and (6-6) equals

(−1)l

(n− l − u)!

(
Pk1+n+l−u,k2+n−l+u(z, n+ 1− l − u;m1,m2)

2

+ Pk1+k2+2n(z;m1+m2)

)
. (6-8)

Putting (6-7) and (6-8) into (6-3) finishes the proof. �

In fact, Proposition 6.3 is also valid for m1 or m2 equaling 0 provided we agree
that (−2π im1)

l
= 1 in the ambiguous case where m1 = l = 0 and similarly that

(2π im2)
u
= 1 when m2 = u = 0. With this notational convention, the proof of the

last proposition gives:

Corollary 6.4. For m > 0, we have

[Ek1(z), Pk2(z;m)]n =
n∑

u=0

Ak1,k2(0, u)n(2π im)u

×
Pk1+n−u,k2+n+u(z, n+ 1− u; 0,m)

2
+Pk1+k2+2n(z;m)·Ak1,k2(0, n)n(2π im)n,

[Ek1(z), Ek2(z)]n= Ak1,k2(0, 0)n Ek1+n,k2+n(z, n+1)/2+Ek1+k2(z)·δn,0. (6-9)

Proposition 2.4 follows directly from (6-9). Combining Proposition 2.4 with
Theorem 2.3 gives a new proof of Zagier’s formula (1-2). His original proof in
[1977, Proposition 6] employed Poincaré series.

Proof of Proposition 2.5. Let Fs,w(z)= (−1)k2/2 y−k/2 E∗k1
(z, u)E∗k2

(z, v)/(2π k/2)

with u = (s +w− k + 1)/2 and v = (−s +w+ 1)/2 as before in (2-16). Then
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Fs,w(z) has weight k and polynomial growth as y→∞. It is proved in [Diamantis
and O’Sullivan 2010, Proposition 2.1] that

〈Fs,w, f 〉 = L∗( f, s)L∗( f, w) (6-10)

for all f ∈ Bk . Comparing (6-10) with (2-13) shows that

E∗s,k−s( · , w)= πhol(Fs,w),

as required. �

A basic property of Rankin–Cohen brackets naturally emerges from Proposition
6.3 and Corollary 6.4.

Corollary 6.5. For g1∈Mk1(0) and g2∈Mk2(0), we have [g1, g2]n ∈ Sk1+k2+2n(0)

for n > 0.

Proof. The space Mk1(0) is spanned by Ek1 and the Poincaré series Pk1(z;m)
for m ∈ Z≥1. So we may write g1, and similarly g2, as a linear combination of
Eisenstein and Poincaré series. Hence, [g1, g2]n is a linear combination of the
Rankin–Cohen brackets appearing in Proposition 6.3 and Corollary 6.4. By these
results, [g1, g2]n is a linear combination of double Poincaré and double Eisenstein
series, which are in Sk1+k2+2n(0) as we have already shown. �

It would be interesting to know if Pk1,k2(z, w;m1,m2) has a meromorphic contin-
uation in w. As a corollary of work in the next section, we establish the continuation
of Pk1,k2(z, w; 0, 0) to all w ∈ C.

7. The Hecke action

The expression (5-2), giving Es,k−s in terms of Ck acted upon by the Hecke opera-
tors, can be studied further and yields an interesting relation between Es,k−s(z, w)
and the generalized Cohen kernel Ck(z, s; p/q).

We have

TnCk(z, s; p/q)= nk−1
∑

ρ∈0\Mn

Ck(ρz, s; p/q) · j (ρ, z)−k

=
1
2 nk−1

∑
γ∈Mn

(
γ z+

p
q

)−s

j (γ, z)−k .

To decompose Mn into left 0-cosets, set

H :=

{(
a b
0 d

) ∣∣∣∣ a, b, d ∈ Z≥0, ad = n, 06 b < a
}
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so that Mn =
⋃
ρ∈H

ρ0, a disjoint union. Hence,

TnCk(z, s; p/q)= 1
2 nk−1

∑
ρ∈H

∑
γ∈0

(
ργ z+

p
q

)−s

j (ρ, γ z)−k j (γ, z)−k

=
1
2 nk−1

∑
a|n

(
n
a

)−k(
a2

n

)−s ∑
06b<a

∑
γ∈0

(
γ z+ b

a
+

n
a2

p
q

)−s

j (γ, z)−k

= ns−1
∑
a|n

ak−2s
∑

06b<a

Ck

(
z, s; b

a
+

n
a2

p
q

)
. (7-1)

Combining (7-1) in the case p/q = 0, with (5-2) we find

ζ(1−w+ s)ζ(1−w+ k− s)Es,k−s(z, w)
2

=

∞∑
n=1

TnCk(z, s)
nk−w

=

∞∑
n=1

ns+w−k−1
∑
a|n

ak−2s
∑

06b<a

Ck

(
z, s; b

a

)

=

∞∑
a=1

ak−2s
∞∑
v=1

(av)s+w−k−1
∑

06b<a

Ck

(
z, s; b

a

)

= ζ(k+ 1− s−w)
∞∑

a=1

aw−s−1
∑

06b<a

Ck

(
z, s; b

a

)
.

Consequently, for 2< σ < k− 2 and Re(w) < σ − 1, k− 1− σ ,

ζ(1−w+ s)Es,k−s(z, w)= 2
∞∑

a=1

aw−s−1
a−1∑
b=0

Ck

(
z, s; b

a

)
. (7-2)

Upon taking the inner product of both sides with f ∈Bk , by using (2-13) and
(3-3) and then simplifying, we obtain

(2π)k−w

0(k−w)
L∗( f, s)L∗( f, w)

= ζ(k+ 1− s−w)
∞∑

a=1

aw−s−1
a−1∑
b=0

L∗
(

f, k− s; b
a

)
. (7-3)

Since the eigenforms f in Bk span Sk , we may verify (7-2) by giving another proof
of (7-3). Note that the right side of (7-3) equals
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ζ(k+ 1− s−w)
0(k− s)
(2π)k−s

∞∑
a=1

aw−s−1
a−1∑
b=0

∞∑
m=1

a f (m)e2π imb/a

mk−s

= ζ(k+ 1− s−w)
0(k− s)
(2π)k−s

∞∑
m=1

∞∑
a|m

aw−s a f (m)
mk−s

= ζ(k+ 1− s−w)
0(k− s)
(2π)k−s

∞∑
m=1

a f (m)σw−s(m)
mk−s .

The series

L( f ⊗ E( · , v), k− s) :=
∞∑

m=1

a f (m)σw−s(m)
mk−s

is a convolution L-series involving the Fourier coefficients of f (z) and E(z, v) for
2v = −s +w+ 1 (as in (2-16)) and, recalling [Zagier 1977, (72)] or [Diamantis
and O’Sullivan 2010, (2.11)],

ζ(k+1−s−w)
0(k− s)
(2π)k−s L( f⊗E( · , v), k−s)=

(2π)k−w

0(k−w)
L∗( f, k−s)L∗( f, k−w).

(7-4)
Applying the functional equation (2-1) confirms that the right side of (7-4) equals
the left side of (7-3).

Looking to simplify (7-2) leads to the natural question, what are the relations
between the Ck(z, s; p/q) for rational p/q in the interval [0, 1)? For example, it is
a simple exercise with (3-3) and (3-5) to show that

q−sCk(z, s; p/q)= e−siπq−k+sCk(z, k− s;−p′/q)

for pp′ ≡ 1 mod q . With s = k/2 at the center of the critical strip, we get an even
simpler relation:

Ck(z, k/2; p/q)= (−1)k/2Ck(z, k/2;−p′/q). (7-5)

A more interesting, but speculative, possibility would be to argue in the reverse
direction in order to derive information about L-functions twisted by exponentials
with nonrational exponents. Specifically, if we established, by other means, relations
between the Ck(z, s; x) for x /∈Q, then (7-2) and other results proven here might lead
to relations for L-functions twisted by exponentials with nonrational exponents. That
would be important because such L-functions play a prominent role in Kaczorowski
and Perelli’s program of classifying the Selberg class (see, e.g., [Kaczorowski
and Perelli 1999]). Relations between these L-functions seem to be necessary for
the extension of Kaczorowski and Perelli’s classification to degree 2, to which
L-functions of GL(2) cusp forms belong.
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8. Periods of cusp forms

8A. Values of L-functions inside the critical strip. We first review Zagier’s proof
in [1977, §5] of Manin’s periods theorem. This exhibits a general principle of
proving algebraicity we will be using in the next sections.

For all s, w ∈ C, it is convenient to define Hs,w ∈ Sk by the conditions

〈Hs,w, f 〉 = L∗( f, s)L∗( f, w) for all f ∈Bk .

We need the following result:

Lemma 8.1. For g ∈ Sk with Fourier coefficients in the field Kg and f ∈Bk with
coefficients in K f ,

〈g, f 〉/〈 f, f 〉 ∈ Kg K f .

Proof. See the general result of Shimura [1976, Lemma 4]. It is also a simple
extension of [Diamantis and O’Sullivan 2010, Lemma 4.3]. �

Let Kcritical be the field obtained by adjoining to Q all the Fourier coefficients of{
Hs,k−1, Hk−2,w

∣∣ 16 s, w 6 k− 1, s even, w odd
}
.

Thus, with f ∈Bk and employing Lemma 8.1,

L∗( f, k− 1)L∗( f, k− 2)= 〈Hk−1,k−2, f 〉 = c f 〈 f, f 〉 (8-1)

for c f ∈ KcriticalK f , and the left side of (8-1) is nonzero because the Euler product
for L∗( f, s) converges for Re(s) > k/2+ 1/2. Set

ω+( f ) :=
c f 〈 f, f 〉

L∗( f, k− 1)
and ω−( f ) :=

〈 f, f 〉
L∗( f, k− 2)

. (8-2)

Then ω+( f )ω−( f )= 〈 f, f 〉, and we have:

Lemma 8.2. For each f ∈Bk ,

L∗( f, s)/ω+( f ) and L∗( f, w)/ω−( f ) ∈ KcriticalK f

for all s and w with 16 s, w 6 k− 1, s even and w odd.

Proof. For such s and w,

L∗( f, s)
ω+( f )

=
L∗( f, s)L∗( f, k− 1)

c f 〈 f, f 〉
=
〈Hs,k−1, f 〉

c f 〈 f, f 〉
=

c′f 〈 f, f 〉

c f 〈 f, f 〉
∈ KcriticalK f ,

L∗( f, w)
ω−( f )

=
L∗( f, w)L∗( f, k− 2)

c f 〈 f, f 〉
=
〈Hk−2,w, f 〉

c f 〈 f, f 〉
=

c′′f 〈 f, f 〉

c f 〈 f, f 〉
∈ KcriticalK f . �
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To deduce Manin’s theorem from Lemma 8.2, we use Zagier’s explicit expression
for Hs,w. For n ≥ 0, even k1, k2 ≥ 4 and k = k1+ k2+ 2n, (1-2) implies

(−1)k1/223−k k1k2

Bk1 Bk2

(
k−2

n

)
Hn+1,n+k2 =

[Ek1, Ek2]n

(2π i)n
. (8-3)

The Fourier coefficients of Ek1 and Ek2 are rational, and hence, the right side of
(8-3) has rational coefficients. Then Hn+1,n+k2 has Fourier coefficients in Q (and
also for k1, k2 = 2 [Kohnen and Zagier 1984, p. 214]). It follows that Kcritical =Q

and Lemma 8.2 becomes Theorem 2.6, Manin’s periods theorem.

8B. Arbitrary L-values. With the results of the last section, we may now give the
proof of Theorem 2.7, restated here:

Theorem 8.3. For all f ∈ Bk and s ∈ C, with ω+( f ) and ω−( f ) as in Manin’s
theorem,

L∗( f, s)/ω+( f ) ∈ K (E∗s,k−s( · , k− 1))K f ,

L∗( f, s)/ω−( f ) ∈ K (E∗k−2,2( · , s))K f .

Proof. By Theorem 2.3, we have Hs,w(z) = E∗s,k−s(z, w) for all s, w ∈ C. Thus,
arguing as in Lemma 8.2 with E∗s,k−s( · , k−1)= Hs,k−1 and E∗k−2,2( · , s)= Hk−2,s

yields the theorem. �

We indicate briefly how the double Eisenstein series Fourier coefficients re-
quired to define K (E∗s,k−s( · , k − 1)) and K (E∗k−2,2( · , s)) in Theorem 2.7 may
be calculated when s ∈ Z, using a slight extension of the methods in [Diamantis
and O’Sullivan 2010, §3]. We wish to find the l-th Fourier coefficient, as,w(l), of
Hs,w(z) = E∗s,k−s(z, w) for s even and w odd (and we assume s, w ≥ k/2 > 1).
With Proposition 2.5, this is (−1)k2/2/(2π k/2) times the l-th Fourier coefficient of

πhol
[
y−k/2 E∗k1

(z, u)E∗k2
(z, v)

]
for u = (s+w− k+ 1)/2 and v = (−s+w+ 1)/2 both in Z. Let

F(z) := y−k/2 E∗k1
(z, u)E∗k2

(z, v)−
θk1(u)θk2(1− v)
θk(s+ 1− k/2)

y−k/2 E∗k (z, s+ 1− k/2)

−
θk1(u)θk2(v)

θk(w+ 1− k/2)
y−k/2 E∗k (z, w+ 1− k/2).

Then πhol(y−k/2 E∗k1
(z, u)E∗k2

(z, v))= πhol(F(z)) because πhol(y−k/2 E∗k (z, s))= 0
for every s. We have constructed F so that F(z)� y−ε as y→∞, and we may
use [Diamantis and O’Sullivan 2010, Lemma 3.3] to obtain

as,w(l)=
(−1)k2/2(4πl)k−1

(2π k/2)(k− 2)!

∫
∞

0
Fl(y)e−2πly yk−2 dy
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on writing F(z) =
∑

l∈Z e2π ilx y−k/2 Fl(y). The functions Fl(y) are sums involv-
ing the Fourier coefficients of E∗k1

(z, u) and E∗k2
(z, v) with u, v ∈ Z. As shown

in [Diamantis and O’Sullivan 2010, Theorem 3.1], these coefficients are simply
expressed in terms of divisor functions, Bernoulli numbers and a combinatorial part.
For s and w in the critical strip, this calculation yields an explicit finite formula
for as,w(l) in [Diamantis and O’Sullivan 2010, Theorem 1.3] (and another proof
that Hs,w in (8-3) has rational Fourier coefficients and that Kcritical = Q). For s
and w outside the critical strip, we obtain infinite series representations for as,w(l)
but again involving nothing more complicated than divisor functions and Bernoulli
numbers. Further details of this computation will appear in [O’Sullivan 2013].

8C. Twisted periods. There is an analog of Manin’s periods theorem for twisted
L-functions. Let p/q ∈Q, and let u be an integer with 16 u 6 k−1. Manin shows
in [1973, (13)] (see also [Lang 1976, Chapter 5]) that iu

∫ p/q
0 f (iy)yu−1 dy is an

integral linear combination of periods iv
∫
∞

0 f (iy)yv−1 dy for v = 1, . . . , k − 1.
With (2-17), this proves

iuqk−2L∗( f, u; p/q) ∈ Z · i L∗( f, 1)+Z · i2L∗( f, 2)+ · · ·+Z · ik−1L∗( f, k− 1).

Therefore, Theorem 2.6 implies the next result.

Proposition 8.4. For all f ∈Bk , p/q ∈Q and integers u with 16 u 6 k− 1,

L∗( f, u; p/q) ∈ K f (i)ω+( f )+ K f (i)ω−( f ).

Employing (5-8), a similar proof to that of Theorem 2.7 in the last section shows
the following:

Proposition 8.5. For all f ∈Bk , p/q ∈Q and s ∈ C with ω+( f ) and ω−( f ) as in
Manin’s theorem,

L∗( f, s; p/q)/ω+( f ) ∈ K (E∗k−s,s( · , 1; p/q))K f ,

L∗( f, s; p/q)/ω−( f ) ∈ K (E∗k−s,s( · , 2; p/q))K f .

9. The nonholomorphic case

9A. Background results and notation. We will need a nonholomorphic analog of
the Cohen kernel Ck(z, s).

Definition 9.1. With z ∈ H and s, s ′ ∈ C, define the nonholomorphic kernel K as

K(z; s, s ′) := 1
2

∑
γ∈0

Im(γ z)s+s′

|γ z|2s . (9-1)

Following directly from the results in [Diamantis and O’Sullivan 2010, §5.2], it
is absolutely convergent, uniformly on compacta, for z ∈H and Re(s),Re(s ′)> 1/2.
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The kernel K(z; s, s ′)was introduced by Diaconu and Goldfeld [2007, (2.1)] (though
they describe it there as a Poincaré series and their kernel is a product of 0 factors).
Starting with the identity [Diaconu and Goldfeld 2007, Proposition 3.5]

〈 f ·K( · ; s, s ′), g〉

=
0(s+ s ′+ k− 1)

2s+s′+k−1

∫
∞

−∞

L∗( f, α+ iβ)L∗(g,−s+ s ′+ k−α− iβ)
0(s+α+ iβ)0(−s+ s ′+ k−α− iβ)

dβ

for f and g in Bk , they provide a new method to establish estimates for the second
moment of L∗( f, s) along the critical line Re(s)= k/2. They give similar results
for L∗(u j , s), the L-function associated to a Maass form u j as defined below.

The spectral decomposition of K(z; s, s ′) and its meromorphic continuation in
the s and s ′ variables is shown in [Diaconu and Goldfeld 2007, §5]. We do the same;
our treatment is slightly different, and we include it in Section 9B for completeness.

For 0 = SL(2,Z), the discrete spectrum of the Laplace operator 1=−4y2∂z∂z

is given by u0, the constant eigenfunction, and u j for j ∈Z≥1 an orthogonal system
of Maass cusp forms (see, e.g., [Iwaniec 2002, Chapters 4 and 7]) with Fourier
expansions

u j (z)=
∑
n 6=0

|n|−1/2ν j (n)Ws j (nz),

where u j has eigenvalue s j (1− s j ) and by Weyl’s law [Iwaniec 2002, (11.5)]

#{ j | |Im(s j )|6 T } = T 2/12+ O(T log T ). (9-2)

We may assume the u j are Hecke eigenforms normalized to have ν j (1)= 1. Neces-
sarily we have ν j (n)∈R. Let ι be the antiholomorphic involution (ιu j )(z) :=u j (−z).
We may also assume each u j is an eigenfunction of this operator, necessarily with
eigenvalues ±1. If ιu j = u j , then ν j (n) = ν j (−n) and u j is called even. If
ιu j =−u j , then ν j (n)=−ν j (−n) and u j is odd.

The L-function associated to the Maass cusp form u j is

L(u j , s)=
∞∑

n=1

ν j (n)/ns,

convergent for Re(s) > 3/2 since ν j (n) � n1/2 by [Iwaniec 2002, (8.8)]. The
completed L-function for an even form u j is

L∗(u j , s) := π−s0

(
s+ s j − 1/2

2

)
0

(
s− s j + 1/2

2

)
L(u j , s), (9-3)

and it satisfies
L∗(u j , 1− s)= L∗(u j , s)= L∗(u j , s). (9-4)

See [Bump 1997, p. 107] for (9-3), (9-4) and the analogous odd case.
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To E(z, s) (recall (2-3)) we associate the L-function

L(E( · , s), w) :=
∞∑

m=1

φ(m, s)
mw

.

The well-known identity
∑
∞

m=1 σx(m)/mw
= ζ(w)ζ(w− x) implies

L(E( · , s), w)=
2π s

0(s)
ζ(w+ s− 1/2)ζ(w− s+ 1/2)

ζ(2s)
. (9-5)

9B. The nonholomorphic kernel K. Throughout this section, we use s = σ + i t
and s ′ = σ ′+ i t ′. Recall K(z; s, s ′) defined in (9-1) for Re(s),Re(s ′) > 1/2. Our
goal is to find the spectral decomposition of K(z; s, s ′) and prove its meromorphic
continuation in s and s ′. See [Diaconu and Goldfeld 2007, §5] and also [Iwaniec
2002, §7.4] for a similar decomposition and continuation of the automorphic Green
function.

A routine verification (using [Jorgenson and O’Sullivan 2005, Lemma 9.2], for
example) yields

1K(z; s, s ′)= (s+ s ′)(1− s− s ′)K(z; s, s ′)+ 4ss ′K(z; s+ 1, s ′+ 1). (9-6)

Put
ξZ(z, s) :=

∑
m∈Z

1
|z+m|2s .

Then
K(z; s, s ′)=

∑
γ∈0∞\0

Im(γ z)s+s′ξZ(γ z, s). (9-7)

Use the Poisson summation formula as in [Iwaniec 2002, §3.4] or [Goldfeld 2006,
Theorem 3.1.8] to see that

ξZ(z, s)=
π1/20(s− 1/2)

0(s)
y1−2s

+
2π s

0(s)
y1/2−s

∑
m 6=0

|m|s−1/2Ks−1/2(2π |m|y)e2π imx

(9-8)
for Re(s) > 1/2. Set

ξ
]

Z(z, s) :=
∑
m 6=0

|m|s−1/2Ks−1/2(2π |m|y)e2π imx . (9-9)

Let Bρ := {z ∈C | |z|6ρ}. Then with [Jorgenson and O’Sullivan 2008, Lemma 6.4],
√

yKs−1/2(2πy)� e−2πy(yρ+3
+ y−ρ−3)

for all s ∈ Bρ and ρ, y > 0 with the implied constant depending only on ρ. Hence,

ξ
]

Z(z, s)�
∞∑

m=1

e−2πmy(mρ+σ+2 yρ+5/2
+m−ρ+σ−4 y−ρ−7/2).
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We also have [Jorgenson and O’Sullivan 2008, Lemma 6.2]
∞∑

m=1

mρe−2mπy
� e−2πy(1+ y−ρ−1)

for all y > 0 with the implied constant depending only on ρ ≥ 0. Therefore,

ξ
]

Z(z, s)� e−2πy(yρ+5/2
+ y−ρ−9/2). (9-10)

Consider the weight-0 series

K](z; s, s ′) :=
∑

γ∈0∞\0

Im(γ z)s
′
+1/2ξ

]

Z(γ z, s). (9-11)

With (9-10), we have

K](z; s, s ′)�
∑

γ∈0∞\0

(Im(γ z)σ
′
+ρ+3
+ Im(γ z)σ

′
−ρ−4)e−2π Im(γ z) (9-12)

so that K](z; s, s ′) is absolutely convergent for Re(s ′) > ρ+ 5.

Proposition 9.2. Let ρ > 0 and s, s ′ ∈ C satisfy Re(s) > 1/2, Re(s ′) > ρ+ 5 and
s ∈ Bρ . Then

K(z; s, s ′)=
π1/20(s− 1/2)

0(s)
E(z, s ′− s+ 1)+

2π s

0(s)
K](z; s, s ′), (9-13)

and, for an implied constant depending only on s and s ′,

K](z; s, s ′)� y5+ρ−σ ′ as y→∞. (9-14)

Proof. It is clear that (9-13) follows from (9-7), (9-8), (9-9) and (9-11) when s
and s ′ are in the stated range. With (9-12) and employing (4-3), we deduce that as
y→∞,

K](z; s, s ′)� (yσ
′
+ρ+3
+ yσ

′
−ρ−4)e−2πy

+

∑
γ∈0∞\0
γ 6=0∞

(Im(γ z)σ
′
+ρ+3
+ Im(γ z)σ

′
−ρ−4)

� e−πy
+ y1−(σ ′+ρ+3)

+ y1−(σ ′−ρ−4)

� y5+ρ−σ ′ . �

Clearly, for Re(s ′) > ρ + 5, (9-13) gives the meromorphic continuation of
K(z; s, s ′) to all s ∈ Bρ . For these s and s ′, it follows from (9-14) that K], as a
function of z, is bounded. Also use (9-6) and (9-13) to show that

1K](z; s, s ′)= (s+ s ′)(1− s− s ′)K](z; s, s ′)+ 4πs ′K](z; s+ 1, s ′+ 1),
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and hence, 1K] is also bounded. Therefore, with [Iwaniec 2002, Theorems 4.7
and 7.3], K] has the spectral decomposition

K](z; s, s ′)=
∞∑
j=0

〈K]( · ; s, s ′), u j 〉

〈u j , u j 〉
u j (z)

+
1

4π i

∫
(1/2)
〈K]( · ; s, s ′), E( · , r)〉E(z, r) dr, (9-15)

where the integral is from 1/2− i∞ to 1/2+ i∞ and the convergence of (9-15) is
pointwise absolute in z and uniform on compacta.

Lemma 9.3. For s ∈ Bρ and Re(s ′) > ρ+ 5, we have

〈K]( · ; s, s ′), u j 〉=
π1/2−s

40(s ′)
L∗(u j , s ′−s+1/2)0

(
s ′+ s+ s j − 1

2

)
0

(
s ′+ s− s j

2

)
when u j is an even Maass cusp form. If u j is odd or constant, then the inner product
is zero.

Proof. Unfolding,

〈K]( · ; s, s ′), u j 〉

=

∫
0\H

K](z; s, s ′)u j (z) dµ(z)

=

∫
∞

0

∫ 1

0

(∑
m 6=0

ys′+1/2
|m|s−1/2Ks−1/2(2π |m|y)e2π imx

)
u j (z)

dx dy
y2

= 2
∑
m 6=0

ν j (m)|m|s−1/2
∫
∞

0
ys′Ks−1/2(2π |m|y)Ks j−1/2(2π |m|y)

dy
y
.

Evaluating the integral [Iwaniec 2002, p. 205] yields

〈K]( · ; s, s ′), u j 〉 =
L(u j , s ′− s+ 1/2)

4π s′0(s ′)

∏
0

(
s ′± (s− 1/2)± (s j − 1/2)

2

)
.

Using (9-3) and that s j = 1− s j finishes the proof. �

In the same way, when Re(r)= 1/2,

〈K]( · ; s, s ′), E( · , r)〉

=
L(E( · , r), s ′− s+ 1/2)

4π s′0(s ′)

∏
0

(
s ′± (s− 1/2)± (r − 1/2)

2

)
.

Further, E(z, r) = E(z, r) = E(z, 1 − r), and with (9-5) we have shown the
following:
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Lemma 9.4. For s ∈ Bρ and Re(s ′) > ρ+ 5,

〈K]( · ; s, s ′), E( · , r)〉 =
π1/2−s

20(s ′)θ(1− r)
0

(
s ′+ s− r

2

)
×0

(
s ′+ s− 1+ r

2

)
θ

(
s ′− s+ r

2

)
θ

(
s ′− s+ 1− r

2

)
.

Recall that θ(s) := π−s0(s)ζ(2s) as in (2-5). Let

K1(z; s, s ′) :=
π1/20(s− 1/2)

0(s)
E(z, s ′− s+ 1),

K2(z; s, s ′) :=
π1/2

20(s)0(s ′)

∞∑
j=1

u j even

L∗(u j , s ′− s+ 1/2)0
(

s ′+ s+ s j − 1
2

)

×0

(
s ′+ s− s j

2

)
u j (z)
〈u j , u j 〉

,

K3(z; s, s ′) :=
π1/2

0(s)0(s ′)
1

4π i

∫
(1/2)

0

(
s ′+ s− r

2

)
0

(
s ′+ s− 1+ r

2

)
× θ

(
s ′− s+ r

2

)
θ

(
s ′− s+ 1− r

2

)
E(z, r)
θ(1− r)

dr.

Assembling Proposition 9.2, (9-15) and Lemmas 9.3 and 9.4, we have proven the
decomposition

K(z; s, s ′)= K1(z; s, s ′)+K2(z; s, s ′)+K3(z; s, s ′) (9-16)

for s ∈ Bρ and Re(s ′) > ρ + 5. This agrees exactly with [Diaconu and Goldfeld
2007, (5.8)].

Clearly K1(z; s, s ′) is a meromorphic function of s and s ′ in all of C. The same
is true for K2(z; s, s ′) since the factors L(u j , s ′− s+ 1/2)u j (z)/〈u j , u j 〉 have at
most polynomial growth as Im(s j )→∞ while the 0 factors have exponential decay
by Stirling’s formula. See (9-2) and [Iwaniec 2002, §7 and §8] for the necessary
bounds. The next result was first established in [Diaconu and Goldfeld 2007, §5].

Theorem 9.5. The nonholomorphic kernel K(z; s, s ′) has a meromorphic continu-
ation to all s, s ′ ∈ C.

Proof. As we have discussed, K1(z; s, s ′) and K2(z; s, s ′) are meromorphic func-
tions of s, s ′ ∈C. The poles of 0(w) are at w= 0,−1,−2, . . . , and θ(w) has poles
exactly at w = 0, 1/2 (with residues −1/2 and 1/2, respectively). Therefore, the
integral in K3(z; s, s ′) is certainly an analytic function of s and s ′ for σ ′ > σ + 1/2
and σ > 1/2 since the 0 and θ factors have exponential decay as |r | →∞. Next,
consider s fixed (with σ >1/2) and s ′ varying. Consider a point r0 with Re(r0)=1/2.
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Let B(r0) be a small disc centered at r0 and B(1− r0) an identical disc at 1− r0.
By deforming the path of integration to a new path C to the left of B(r0) and to the
right of B(1− r0), we may, by Cauchy’s theorem, analytically continue K3(z; s, s ′)
to s ′ with s ′ − s ∈ B(r0). Let C1 be a clockwise contour around the left side of
B(r0) and C2 be a counterclockwise contour around the right side of B(1− r0) so
that C = (1/2)+C1+C2. For s ′−s inside C1 (and 1− (s ′−s) inside C2), we have

π−1/20(s)0(s ′) ·K3(z; s, s ′)=
1

4π i

∫
C
∗ =

1
4π i

∫
(1/2)
∗ +

1
4π i

∫
C1

∗ +
1

4π i

∫
C2

∗ ,

where ∗ denotes the integrand in the definition of K3. Then

1
4π i

∫
C1

∗ =
−2π i
4π i

(
Res

r=s′−s
θ

(
s ′−s+1−r

2

))
×0(s)0(s ′−1/2)

θ(s ′−s)
θ(1−s ′+s)

E(z, s ′−s)

=
1
20(s)0(s

′
−1/2)

θ(s ′−s)
θ(1−s ′+s)

E(z, s ′−s)

=
1
20(s)0(s

′
−1/2)E(z, s−s ′+1).

We get the same result for (1/4π i)
∫

C2
, and for all s ′ with σ−1/2<Re(s ′)<σ+1/2,

it follows that the continuation of K3(z; s, s ′) is given by

π−1/20(s)0(s ′) ·K3(z; s, s ′)

= 0(s)0(s ′− 1/2)E(z, s− s ′+ 1)+
1

4π i

∫
(1/2)
∗ . (9-17)

Similarly, as s ′ crosses the line with real part σ − 1/2, the term

−0(s− 1/2)0(s ′)E(z, s ′− s+ 1)

must be added to the right side of (9-17). Thus, for all s ′ with 1/2<Re(s ′)<σ−1/2,
the continuation of K(z; s, s ′) is

K(z; s, s ′)=
π1/20(s ′− 1/2)

0(s ′)
E(z, s−s ′+1)+K2(z; s, s ′)+K3(z; s, s ′). (9-18)

Clearly, with (9-17) and (9-18) we have demonstrated the meromorphic continuation
of K(z; s, s ′) to all s, s ′ ∈ C with Re(s),Re(s ′) > 1/2. The continuation to all
s, s ′ ∈C follows in the same way with further terms in the expression for K(z; s, s ′)
appearing from the residues of the poles of 0((s ′+ s− r)/2)0((s ′+ s− 1+ r)/2)
as Re(s ′+ s)→−∞. �

Proposition 9.6. We have the functional equation

K(z; s, s ′)= K(z; s ′, s). (9-19)
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Proof. We may verify (9-19) by comparing (9-16) with (9-18) and using that
K2(z; s, s ′) = K2(z; s ′, s) by (9-4) and K3(z; s, s ′) = K3(z; s ′, s) by (2-6). There
is a second, easier proof: with S =

( 0
1
−1

0

)
, replace γ in (9-1) by Sγ . �

Proposition 9.7. For all s, s ′ ∈ C and any even Maass Hecke eigenform u j ,

〈K( · ; s, s ′), u j 〉=
π1/2

20(s)0(s ′)
0

(
s ′+s+s j−1

2

)
0

(
s ′+s−s j

2

)
L∗
(
u j , s ′−s+ 1

2

)
.

Proof. Since each u j is orthogonal to Eisenstein series, we have by (9-16) (for
s ∈ Bρ and Re(s ′) > ρ+ 5) that

〈K( · ; s, s ′), u j 〉 = 〈K2( · ; s, s ′), u j 〉.

The result follows, extending to all s, s ′ ∈ C by analytic continuation. �

9C. Nonholomorphic double Eisenstein series. A similar argument to the proof
of (5-2) shows that, for Re(s),Re(s ′) > 1 and Re(w)≥ 0,

ζ(w+ 2s)ζ(w+ 2s ′)E(z, w; s, s ′)= 1
2

∞∑
n=1

TnK(z; s, s ′)
nw−1/2 , (9-20)

where, in this context [Goldfeld 2006, (3.12.3)], the appropriately normalized Hecke
operator acts as

TnK(z)=
1

n1/2

∑
γ∈0\Mn

K(γ z).

For each Maass form, we have Tnu j = ν j (n)u j , and for the Eisenstein series,
[Goldfeld 2006, Proposition 3.14.2] implies Tn E(z, s) = ns−1/2σ1−2s(n)E(z, s).
Therefore, as in (9-5),

∞∑
n=1

Tn E(z, s)
nw−1/2 = E(z, s)

∞∑
n=1

σ1−2s(n)
nw−s = E(z, s)ζ(w− s)ζ(w+ s− 1).

Now choose any ρ > 0. For s ∈ Bρ , Re(s) > 1, Re(s ′) > ρ+ 5 and Re(w)≥ 0, we
may apply Tn to both sides of (9-16) and obtain
ζ(w+2s)ζ(w+2s ′)E(z, w; s, s ′)

=
π1/20(s−1/2)

20(s)
ζ(s ′−s+w)ζ(s−s ′+w−1)E(z, s ′−s+1)

+
π1/2

40(s)0(s ′)

∞∑
j=1

u j even

L∗(u j , s ′−s+1/2)0
(

s ′+s+s j−1
2

)
0

(
s ′+s−s j

2

)

×L(u j , w−1/2)
u j (z)
〈u j , u j 〉

+
π1/2

20(s)0(s ′)
1

4π i

∫
(1/2)

θ

(
s ′−s+r

2

)
θ

(
s ′−s+1−r

2

)
×0

(
s ′+s−r

2

)
0

(
s ′+s−1+r

2

)
ζ(w−r)ζ(w−1+r)

E(z, r)
θ(1−r)

dr. (9-21)
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Put

�(s, s ′; r) := θ
(

s ′+ s− r
2

)
θ

(
s ′+ s− 1+ r

2

)
× θ

(
s ′− s+ r

2

)
θ

(
s ′− s+ 1− r

2

)/
θ(1− r).

Define the completed double Eisenstein series as in (2-19) and write

U (z; s, s ′) :=
∞∑
j=1

u j even

L∗(u j , s+ s ′− 1/2)L∗(u j , s ′− s+ 1/2)
u j (z)
〈u j , u j 〉

.

As in the last section, � and U have exponential decay as |r |, |Im(s j )| → ∞.
Specializing (9-21) to w = s+ s ′, we have proved the next result.

Lemma 9.8. For s ∈ Bρ , Re(s) > 1 and Re(s ′) > ρ+ 5,

E∗(z; s, s ′)= 2θ(s)θ(s ′)E(z; s+ s ′)+ 2θ(1− s)θ(s ′)E(z, s ′− s+ 1)

+U (z; s, s ′)+
1

2π i

∫
(1/2)

�(s, s ′; r)E(z, r) dr. (9-22)

From this, we show the following:

Theorem 9.9. The completed double Eisenstein series E∗(z; s, s ′) has a meromor-
phic continuation to all s, s ′ ∈ C, and we have the functional equations

E∗(z; s, s ′)= E∗(z; s ′, s), (9-23)

E∗(z; s, s ′)= E∗(z; 1− s, 1− s ′). (9-24)

Proof. First note that (9-22) gives the meromorphic continuation of E∗(z; s, s ′) to
all s and s ′ with s ∈ Bρ and Re(s ′) > ρ+ 5. As in the proof of Theorem 9.5, we
see that the further continuation in s ′ is given by (9-22) along with residues that are
picked up as the line of integration is crossed; for s ∈ Bρ fixed and Re(s ′)→−∞,
the continuation of E∗(z; s, s ′) is given by (9-22) plus each of the following:

2θ(s)θ(1− s ′)E(z, s− s ′+ 1) when Re(s ′) < σ + 1/2,

−2θ(1− s)θ(s ′)E(z, s ′− s+ 1) when Re(s ′) < σ − 1/2,

2θ(1− s)θ(1− s ′)E(z, 2− s− s ′) when Re(s ′) <−σ + 1/2,

−2θ(s)θ(s ′)E(z, s+ s ′) when Re(s ′) <−σ − 1/2.

We have therefore shown the meromorphic continuation of E∗(z; s, s ′) to all s ∈ Bρ
and s ′ ∈ C. Hence, for all s ′ with Re(s ′) <−ρ− 4, say, we have

E∗(z; s, s ′)= 2θ(1− s)θ(1− s ′)E(z, 2− s− s ′)+ 2θ(s)θ(1− s ′)E(z, s− s ′+ 1)

+U (z; s, s ′)+
1

2π i

∫
(1/2)

�(s, s ′; r)E(z, r) dr. (9-25)



Kernels for products of L-functions 1913

The functional Equation (9-24) is a consequence of the easily checked symmetries
U (z; 1−s, 1−s ′)=U (z; s, s ′) and�(1−s, 1−s ′; r)=�(s, s ′; r) and a comparison
of (9-22) and (9-25). The Equation (9-23) has a similar proof or more simply follows
from the definition (2-19). �

Proposition 9.10. For any even Maass Hecke eigenform u j (as in Section 9A) and
all s, s ′ ∈ C,

〈E∗( · ; s, s ′), u j 〉 = L∗(u j , s+ s ′− 1/2)L∗(u j , s ′− s+ 1/2).

Proof. As in Proposition 9.7, only U (z; s, s ′) in (9-22) will contribute to the inner
product. �

With Theorem 9.9 and Proposition 9.10, we have proved Theorem 2.9.

10. Double Eisenstein series for general groups

We proved in Section 5A that for 0 = SL(2,Z) the holomorphic double Eisenstein
series Es,k−s(z, w) may be continued to all s and w in C and satisfies a family of
functional equations. That proof does not extend to groups where Hecke operators
are not available. To show the continuation of Es,k−s,a(z, w) for 0 an arbitrary Fuch-
sian group of the first kind, we first demonstrate a generalization of Proposition 2.5.
Recall the definitions of u and v in (2-16) and ε0 in (4-1).

Theorem 10.1. For s andw in the initial domain of convergence and even k1, k2≥0
with k = k1+ k2, we have

E∗s,k−s,a(z, w)

= 2ε0−1πhol
[
(−1)k2/2 y−k/2 E∗k1,a

( · , 1− u)E∗k2,a
( · , 1− v)/(2π k/2)

]
. (10-1)

Proof. Let g ∈ Sk(0), and set 0′ = σa−10σa. Then

〈Es,k−s,a( · , w), g〉 =
∫
0′\H

Im(σaz)k g(σaz)Es,k−s,a(σaz, w) dµz

=

∫
0′\H

yk g(σaz)

j(σa, z)k
∑
δ∈B\0′

j (δ, z)−k

[ ∑
γ∈B\0′
c
γ δ−1>0

(cγ δ−1)w−1
(

j (γ, z)
j (δ, z)

)−s
]

dµz.

(10-2)

Since g(σaz) j (σa, z)−k
∈ Sk(0

′), we have

yk g(σaz)

j(σa, z)k j (δ, z)k
= Im(δz)k

g(σaδz)

j(σa, δz)k
.

Note also that j (γ, z)/j (δ, z)= j (γ δ−1, δz). Hence, (10-2) equals

2ε0
∫
0∞\H

yk g(σaz)

j(σa, z)k

[ ∑
γ∈B\0′

cγ>0

(cγ )w−1 j (γ, z)−s

]
dµz. (10-3)
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Writing ∑
γ∈B\0′

cγ>0

(cγ )w−1 j (γ, z)−s
=

∑
γ∈B\0′/B

cγ>0

(cγ )w−1
∑
m∈Z

j (γ, z+m)−s

and using the Fourier expansion of g at a, j (σa, z)−k g(σaz)=
∑
∞

n=1 ag,a(n)e2π inz,

we get that (10-3) equals

2ε0
∞∑

n=1

ag,a(n)
∑

γ∈B\0′/B
cγ>0

1
(cγ )s+1−w

∫
∞

0

∫
∞

−∞

yk−2 e−2π inx−2πny

(x + dγ /cγ + iy)s
dx dy

= 2ε0 Ik(s)
∞∑

n=1

ag,a(n)
nk−s

∑
γ∈B\0′/B

cγ>0

e2π indγ /cγ

(cγ )s+1−w

for

Ik(s) :=
∫
∞

0

∫
∞

−∞

yk−2 e−2π i x−2πy

(x + iy)s
dx dy.

The inner integral over x may be evaluated with a formula of Laplace [Whittaker
and Watson 1927, p. 246]:∫

∞

−∞

e−2π i x

(x + iy)s
dx = e−2πy (2π)s

0(s)esiπ/2

so that
Ik(s)=

0(k− 1)
(4π)k−1

(2π)s

0(s)esiπ/2 .

With (4-2) and, for example, [Iwaniec 2002, Chapter 3], we recognize∑
γ∈B\0′/B

cγ>0

e2π indγ /cγ

(cγ )2s =

∑
γ∈0∞\0

′/0∞
cγ>0

e2π indγ /cγ

(cγ )2s =
Yaa(n, s)
ζ(2s)ns−1 .

It follows that we have shown

〈E∗s,k−s,a( · , w), g〉 = 2ε0−1 ζ(2− 2u)0(k− s)0(k−w)
(2π)2k−s−w

∞∑
n=1

Yaa(n, 1− v)ag,a(n)
nk−s−v .

Reasoning as in the proof of [Diamantis and O’Sullivan 2010, (2.10)], we also find,
for all even k1, k2 ≥ 0 with k1+ k2 = k,

〈(−1)k2/2 y−k/2 E∗k1,a
( · , 1− u)E∗k2,b

( · , 1− v)/(2π k/2), g〉

=
ζ(2− 2u)0(k− s)0(k−w)

(2π)2k−s−w

∞∑
n=1

Yba(n, 1− v)ag,a(n)
nk−s−v .

Since E∗s,k−s,a(z, w) ∈ Sk(0) and g ∈ Sk(0) is arbitrary, (10-1) follows. �
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Corollary 10.2. The double Eisenstein series E∗s,k−s,a(z, w) has a meromorphic
continuation to all s, w ∈ C and as a function of z is always in Sk(0). It satisfies
the functional equation

E∗k−s,s,a(z, w)= (−1)k/2 E∗s,k−s,a(z, w). (10-4)

Proof. Since E∗k,a(z, s) has a well-known continuation to all s ∈ C, due to Selberg,
the continuation of E∗s,k−s,a(z, w) follows from (10-1). The change of variables
(s, w)→ (k− s, w) corresponds to (u, v)→ (v, u), and so (10-4) is also a conse-
quence of (10-1). �

If 0 has more than one cusp, then E∗s,k−s,a(z, w) does not appear to possess a
functional equation of the type (2-14) as (s, w)→ (w, s). This corresponds on the
right of (10-1) to (u, v)→ (u, 1−v), and the functional equation for E∗k2,a

( · , 1−v)
involves a sum over cusps as in (4-4).

We remark that the functional Equation (10-4) also follows directly from (4-6) if
−I ∈ 0: replace γ and δ in the sum by −δ and γ , respectively.

Finally, it would be interesting to find the continuation in s and s ′ of the non-
holomorphic double Eisenstein series E∗a(z; s, s ′) for general groups. We expect
that a similar decomposition to (9-22) should be true.
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