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Let K be a complete discrete valuation field of mixed characteristic .0;p/ and GK

the absolute Galois group of K. In this paper, we will prove the p-adic mon-
odromy theorem for p-adic representations of GK without any assumption on
the residue field of K, for example the finiteness of a p-basis of the residue field
of K. The main point of the proof is a construction of .';GK /-module zNrCrig .V /

for a de Rham representation V , which is a generalization of Pierre Colmez’s
zNCrig.V /. In particular, our proof is essentially different from Kazuma Morita’s
proof in the case when the residue field admits a finite p-basis.

We also give a few applications of the p-adic monodromy theorem, which are
not mentioned in the literature. First, we prove a horizontal analogue of the p-adic
monodromy theorem. Secondly, we prove an equivalence of categories between
the category of horizontal de Rham representations of GK and the category of
de Rham representations of an absolute Galois group of the canonical subfield
of K. Finally, we compute H 1 of some p-adic representations of GK , which is a
generalization of Osamu Hyodo’s results.
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Introduction

Let p be a prime and K a complete discrete valuation field of mixed characteris-
tic .0;p/ with residue field kK . Let GK be the absolute Galois group of K. When
kK is perfect, Jean-Marc Fontaine defined the notions of crystalline, semistable,
de Rham, Hodge–Tate representations for p-adic representations of GK (see [Fon-
taine 1994a; 1994b] for example). The p-adic monodromy conjecture, which
asserts that de Rham representations are potentially semistable, was first proved
by Laurent Berger [2002, Théorème 0.7] by using the theory of p-adic differential
equations. Precisely speaking, Berger used the p-adic local monodromy theorem
for p-adic differential equations with Frobenius structure due to Yves André,
Zoghman Mebkhout, and Kiran Kedlaya.

The notions of the above categories of representations were defined by Olivier
Brinon [2006] when kK admits a finite p-basis. In this case, the p-adic monodromy
theorem was proved by Kazuma Morita [2011, Corollary 1.2]. Roughly speaking,
he proved the p-adic monodromy theorem by studying some differential equations,
which are defined by Sen’s theory of BdR due to Fabrizio Andreatta and Olivier
Brinon [2010]. In that reference, Tate–Sen formalism for a quotient �K of GK

is applied to establish Sen’s theory of BdR, where �K is isomorphic to an open
subgroup of Z�p Ë Zp.1/

JK with JK WD dimkK
�1

kK=Z
<1. To prove Tate–Sen

formalism, we iteratively use analogues of the normalized trace map due to John
Tate. Hence, we can not use Morita’s approach in the case JK D1.

Our main theorem in this paper is the p-adic monodromy theorem without any
assumption on the residue field kK . We also give the following applications of
the p-adic monodromy theorem, which are not mentioned in the literature: First, we
will prove a horizontal analogue of the p-adic monodromy theorem (Theorem 7.4).
Secondly, we will prove that the category of horizontal de Rham representations
of GK is canonically equivalent to the category of de Rham representations of GKcan

(Theorem 7.6), where Kcan is the canonical subfield of K. Finally, we will calcu-
late H 1 of horizontal de Rham representations under a certain condition on Hodge–
Tate weights (Theorem 7.8). This calculation is a generalization of calculations
done by Hyodo for Zp.n/ with n 2 Z (Theorem 1.16).

Statement of Main Theorem. Let K and GK be as above. We do not put any
assumption on the residue field kK of K, in particular, we may consider the case
that kK is imperfect with ŒkK W k

p
K
�D1. In this setup, the notions of crystalline,

semistable, de Rham, Hodge–Tate representations are also defined (see Section 3).
Then, our main theorem is the following:

Main Theorem (p-adic monodromy theorem). Let V be a de Rham representation
of GK . Then, there exists a finite extension L=K such that the restriction V jL is
semistable.
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Note that the converse can be easily proved by using Hilbert 90.

Strategy of proof. As is mentioned above, Kazuma Morita’s proof can not be
generalized directly. When the residue field kK is perfect, an alternative proof of
the p-adic monodromy theorem due to Pierre Colmez is available, which does not
need the theory of p-adic differential equations. We will prove the Main Theorem
by generalizing Colmez’s method. In the following, we will explain our strategy
after recalling Colmez’s proof in the case that V is a 2-dimensional de Rham
representation. (We can prove the higher-dimensional case in a similar way.) After
replacing K by the maximal unramified extension of K and taking a Tate twist
of V , we may also assume that we have DdR.V / D .B

C
dR ˝Qp

V /GK and kK is
separably closed.

In this paragraph, assume that the residue field of K is perfect, that is, kK is
algebraically closed. We first fix notation: Let QBCrig WD

T
n2N '

n.BCcris/. For h2N>0

and a 2 N, denote Uh;a WD .B
C
cris/

'hDpa

and U0
h;a
WD .BCst /

'hDpa

. Note that we
have Uh;0 D U0

h;0
D Qph , where Qph denotes the unramified extension of Qp

with ŒQph WQp �D h. We will recall Colmez’s proof: His proof has the following
two key ingredients. One is Dieudonné–Manin classification theorem over QBCrig.
Then, he applies this theorem to construct a rank 2 free QBCrig-submodule QNCrig.V /
of QBCrig˝Qp

V with basis e
1
; e

2
. Moreover, QNCrig.V / is stable by ' and GK -actions

and the following properties are satisfied:

(i) We have an isomorphism of BCdRŒGK �-modules

BCdR˝ QBCrig
QNCrig.V /Š .B

C
dR/

2:

(ii) There exist h 2 N>0 and a 1-cocycle

C WGK !

 
Q�

ph Uh;a

0 Q�
ph

!
I g 7! Cg WD

�
�1.g/ cg

0 �2.g/

�
such that we have g.e

1
; e

2
/D .e

1
; e

2
/Cg for all g 2GK .

The second key ingredient is the H 1
g D H 1

st -theorem for U0
h;a

with h; a 2 N>0:
Let L=K be a finite extension. If a 1-cocycle GL!U0

h;a
is a 1-coboundary in BCdR,

then it is a 1-coboundary in U0
h;a

. By using these facts, Colmez proved the Main
Theorem as follows. When hD0, we may regard C as a p-adic representation of GK ,
which is Hodge–Tate of weights 0 by (i). By Sen’s theorem on Cp-representations,
C has a finite image, which implies the assertion. Therefore, we may assume h> 0.
By the cocycle condition of C , �i for i D 1; 2 is a character. By (i), �i for i D 1; 2

is Hodge–Tate with weights 0 as a p-adic representation. By Sen’s theorem again,
there exists a finite extension L=K such that �i.GL/D1 for iD1; 2. By the cocycle
condition of C again, c WGL!Uh;a is a 1-cocycle, which is a 1-coboundary in BCdR
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by (i). By the H 1
g DH 1

st -theorem, there exists x 2 U0
h;a

such that cg D .g� 1/.x/

for all g 2GL. Therefore,

e1;�xe1C e2 2 BCst ˝ QBCrig
QNCrig.V /� BCst ˝Qp

V

form a basis of Dst.V jL/, which implies that V jL is semistable.
We will outline our proof of the Main Theorem in the following: For simplicity,

we omit some details. We first fix notation: In the imperfect residue field case, we
can construct rings of p-adic periods BCcris, BCst and BCdR, on which connections r
act. Let BrCcris and BrCst be the rings of the horizontal sections of BCcris and BCst
respectively. Let QBrCrig WD

T
n2N '

n.BrCcris /. For h 2 N>0 and a 2 N, let Uh;a WD

.BrCcris /
'hDpa

and U0
h;a
WD .BrCst /'

hDpa

. Even when kK may not be perfect, we
can easily prove a generalization of Sen’s theorem (Theorem 2.1) and an analogue
of Colmez’s Dieudonné–Manin classification theorem in an appropriate setting (see
Section 5). By using Dieudonné–Manin theorem, we can also give a functorial
construction QNrCrig .V / for a de Rham representation V . Our object zNrCrig .V / is a
rank 2 free QBrCrig -submodule of QBrCrig ˝Qp

V with basis e
1
; e

2
. Moreover, zNrCrig .V /

is stable by ' and GK -actions and the following properties are satisfied:

(i) We have an isomorphism of BCdRŒGK �-modules

BCdR˝ QBrCrig
QNrCrig .V /Š .B

C
dR/

2:

(ii) There exist h 2 N>0 and a 1-cocycle

C WGK !

 
Q�

ph Uh;a

0 Q�
ph

!
I g 7! Cg WD

�
�1.g/ cg

0 �2.g/

�
such that we have g.e

1
; e

2
/D .e

1
; e

2
/Cg for all g 2GK .

By using QNrCrig .V /, we prove the Main Theorem as follows. In the case hD 0, the
same proof as above is valid, hence we assume h > 0. By the cocycle condition
of C , �i for i D 1; 2 is a character, which is Hodge–Tate with weights 0 by (i). By
a generalization of Sen’s theorem, we may assume that �i.GK /D 1 for i D 1; 2

after replacing K by some finite extension. Then, by the cocycle condition of C ,
c WGK ! Uh;a is a 1-cocycle, which is a 1-coboundary in BCdR. Unfortunately, an
analogue of the above H 1

st DH 1
g -theorem does not hold in the imperfect residue field

case. Instead, we will prove that there exists x 2 .BCcris/
G

Kpf and y 2BrCdR such that
cg D .g�1/.xCy/ for g 2GK (a special case of Lemma 6.6). Here Kpf denotes a
“perfection” of K, which is a complete discrete valuation field of mixed characteris-
tic .0;p/ with residue field k

pf
K

and we can regard an absolute Galois group GK pf

of Kpf as a closed subgroup of GK . Since we have a canonical isomorphism
zNrCrig .V /jGKpf Š

QNCrig.V jGKpf / by functoriality, we can apply Colmez’s H 1
g DH 1

st -
theorem to the 1-cocycle cjG

Kpf . As a consequence, there exists z 2 U0
h;a

such that
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cg D .g� 1/.z/ for all g 2GK pf . Since we have cg D .g� 1/.y/ for all g 2GK pf ,
we have z � y 2 .BrCdR /GKpf , which is included in BrCcris by a calculation. Hence,
e

1
;�fx C .y � z/C zge

1
C e

2
2 BCst ˝ QBrCrig

zNrCrig .V / � BCst ˝ V forms a basis
of Dst.V jK /, which implies that V jK is semistable.

Structure of paper. In Section 1, we will recall the preliminary facts used in the
paper. In Section 2, we will generalize Sen’s theorem on Cp-admissible representa-
tions, which is a special case of the Main Theorem and will be used in the following.
The next two sections are devoted to review rings of p-adic periods in the imperfect
residue field case. Although most of the results seem to be well-known, we will
give proofs for the convenience of the reader. In Section 3, we will recall basic
constructions and algebraic properties of rings of p-adic periods used in p-adic
Hodge theory in the imperfect residue field case. In Section 4, we will recall
Galois-theoretic properties of rings of p-adic periods constructed in the previous
section. In Section 5, we will construct the .';GK /-modules zNrCrig .V / for de Rham
representations V after Tate twist. In Section 6, we will prove the Main Theorem
combining the results proved in the previous sections. In Section 7, we will give
applications of the Main Theorem.

Conventions

Throughout this paper, let p be a prime and K a complete discrete valuation field of
mixed characteristic .0;p/. Denote the integer ring of K by OK and a uniformizer
of OK by �K . Put U

.n/
K
WD 1C�n

K
OK for n 2N>0. Denote by kK the residue field

of K. We denote by Kur the p-adic completion of the maximal unramified extension
of K. Denote by e

K
the absolute ramification index of K. For an extension L=K

of complete discrete valuation fields, we define the relative ramification index e
L=K

of L=K by e
L=K
WD e

L
=e

K
.

For a field F , fix an algebraic closure (resp. a separable closure) of F , denote
it by F alg or F (resp. F sep) and let GF be the absolute Galois group of F . For
a field k of characteristic p, let kpf WD kp�1 be the perfect closure in a fixed
algebraic closure of k. Let kp1 WD

T
n2N kpn

be the maximal perfect subfield of
k. Denote by Cp and OCp

the p-adic completion of K and its integer ring. Let vp
be the p-adic valuation of Cp normalized by vp.p/D 1.

We fix a system of p-power roots of unity f�pngn2N>0
in K, that is, �p is a

primitive p-th root of unity and �p

pnC1 D �pn for all n 2N>0. Let � WGK ! Z�p be
the cyclotomic character defined by g.�pn/D �

�.g/
pn for n 2 N>0.

For a set S , denote by jS j the cardinality of S . Let JK be an index set such that
we have an isomorphism �1

kK=Z
Š k

L
JK

K
as kK -vector spaces. In this paper, we

do not assume jJK j <1. Unless a particular mention is stated, we always fix a
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lift ftj gj2JK
of a p-basis of kK and sequences of p-power roots ftp�n

j gn2N;j2JK

in K, that is, we have .tp�n�1

j /p D t
p�n

j for n 2 N>0.
For a ring R, denote the Witt ring with coefficients in R by W .R/. If R has

characteristic p, then we denote the absolute Frobenius on R by ' W R ! R

and also denote the ring homomorphism W .'/ W W .R/! W .R/ by '. Denote
by Œx� 2W .R/ the Teichmüller lift of x 2R.

For a p-adically Hausdorff abelian group M in which p is not a nonzero divisor,
we define the p-adic semivaluation of M as the map v W M ! Z [ f1g such
that v.0/D1 and v.x/D n if x 2 pnM npnC1M . We have the properties

v.px/D 1C v.x/; v.xCy/� inf .v.x/; v.y//; v.x/D1 () x D 0;

for x;y 2M . We can extend v to v WM Œp�1�!Z[f1g, which we call the p-adic
semivaluation defined by the lattice M . We also call the topology induced by v
the p-adic topology defined by the lattice M .

Let F be a nontrivial nonarchimedean complete valuation field with valuation vF .
Assume that an F -vector space V is endowed with a countable decreasing sequence
of valuations fv.n/ W V ! R[f1ggn2N over F , that is, we have

v.0/.x/� v.1/.x/� � � � ; v.n/.�x/D vF .�/C v
.n/.x/;

v.n/.xCy/� inf .v.n/.x/; v.n/.y//

for �2F and x;y2V . We regard V as a topological F -vector space whose topology
is generated by V

.n/
r WD fx 2 V j v.n/.x/ � rg for n; r 2 N. Then, we call V a

Fréchet space (over F ) if V is complete with respect to this topology (see [Schneider
2002, Section 8]). For Fréchet spaces V and W , we define the completed tensor
product V y̋F W as the inverse limit lim

 �n;r2N
V =V

.n/
r ˝F W =W

.n/
r (see [Schneider

2002, Section 17]).
For a multiset faigi2I of elements in R [ f1g, we denote faigi2I ! 1 if

the set fi 2 I; ai < ng is finite for all n 2 N>0. Note that if jI j <1, then the
condition faigi2I !1 is always satisfied.

In this paper, we refer to the continuous cohomology group as the group
cohomology. For a profinite group G and a topological G-module M , denote
by H n.G;M / the n-th continuous group cohomology with coefficients in M . We
also denote H 0.G;M / by M G . We also consider H q.G;M / for q D 0; 1 if M is
a (noncommutative) topological G-group M .

We denote by ei 2 N
L

I the element whose i-th component is equal to 1 and
zero otherwise. We will use the following multi-index notation: Let M be a monoid.
For a subset fxigi2I of M and n D .ni/i2I 2 N

L
I , we define xn WD

Q
i2I x

ni

i

and xŒn� WD
Q
i2I

u
ni

i =ni ! when it has a meaning. We denote by jnj the sum
P
i2I

ni for
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.ni/i2I 2N
L

I . If no particular mention is stated, for an index set I , we denote by
u
I

or v
I

the formal variables fuigi2I or fvigi2I respectively.
For group homomorphisms f;g W M ! N of abelian groups, we denote

by M fDg the kernel of the map f �g WM !N .

1. Preliminaries

This preliminary section is a miscellany of basic definitions, facts, conventions, and
remarks used in the paper. Although we will give some proofs for convenience, the
reader may skip the proofs by admitting the facts.

1A. Cohen ring. Let k be a field of characteristic p. Let C.k/ be a Cohen ring
of k, that is, a complete discrete valuation ring with maximal ideal generated
by p and residue field k. This is unique up to a canonical isomorphism if k is
perfect (in fact, C.k/ŠW .k/) and unique up to noncanonical isomorphisms in
general. Denote JC.k/Œp�1� by J for a while. For a lift ftj gj2J � C.k/ of a p-
basis of k, we regard C.k/ as a ZŒTj �j2J -algebra by Tj 7! tj . This morphism
is formally étale for the p-adic topologies. In fact, we may replace ZŒTj �j2J

by R WD .ZŒTj �j2J /.p/. Since C.k/=R is flat and k=Fp.Tj /j2J is formally étale for
the discrete topologies, C.k/=R is formally étale by [Grothendieck 1964, 0.19.7.1
and 0.20.7.5].

By the lifting property, we have C.kK /! OK , an injective algebra homomor-
phism which is totally ramified of degree e

K
. We will denote by K0 the fraction

field of the image of C.k/ in K. We also note that OK0
is unique if kK is perfect and

nonunique otherwise. By the lifting property again, we have a lift ' W OK0
! OK0

of
the absolute Frobenius of kK : It is unique if kK is perfect and nonunique otherwise.
An example of such a ' is '.tj / D t

p
j for all j 2 JK0

. Moreover, when kK is
imperfect, the construction of K0 cannot be functorial in the following sense: For
a finite extension L=K, we cannot always choose K0 � K and L0 � L such
that K0 �L0.

Finally, note that for a given lift ftj gj2JK
� OK of a p-basis of kK , we can

choose OK0
such that ftj gj2JK

� OK0
. In fact, we regard OK as a ZŒTj �j2JK

-
algebra by sending Tj to tj . We choose a lift ft 0j gj2JK

� C.kK / of the p-
basis ftj gj2JK

� kK and we regard C.kK / as a ZŒTj �j2JK
-algebra by Tj 7! t 0j .

Then, we lift the projection C.kK /! kK to a ZŒTj �j2JK
-algebra homomorphism

C.kK /! OK by the lifting property, whose image satisfies the condition. Thus, if
we choose a lift ftj gj2JK

of a p-basis of kK , we may always assume that we have
ftj gj2JK

�K0.

1B. Canonical subfield. We first recall the following two lemmas, which are
proved in [Epp 1973, 0.4]. We give proofs for the reader.
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Lemma 1.1. Let k be a field of characteristic p.

(i) The field kp1 is algebraically closed in k. In particular, the fields .kp1/sep

and k are linearly disjoint over kp1 .

(ii) For a finite extension k 0=kp1 , we have k 0 D .kk 0/p
1

.

Proof.

(i) The assertion follows from the fact that any algebraic extension over a perfect
field is perfect.

(ii) As is mentioned in the above proof, k 0 is perfect. We have kk 0 D k˝kp1 k 0

by (i). Hence, we have .kk 0/p
n

D kpn

˝kp1 k 0 and

.kk 0/p
1

D

\
n

.kpn

˝kp1 k 0/D kp1
˝kp1 k 0 D k 0: �

Lemma 1.2. Let l=k be an algebraic extension of fields of characteristic p.

(i) If l=k is a (possibly infinite) Galois extension, then lp1=kp1 is also a (possi-
ble infinite) Galois extension. Moreover, the canonical map

Gl=k !Glp1=kp1

is surjective.

(ii) If l=k is finite, then lp1=kp1 is also a finite extension. Moreover, we have
Œlp1 W kp1 �� Œl W k�.

Proof. (i) We may easily reduce to the case that l=k is finite Galois. Obviously
any k-algebra endomorphism on l induces a kpn

-algebra endomorphism on lpn

.
In particular, lpn

and lp1 are Gl=k-stable. Since the Frobenius commutes with the
action of Gl=k , we have .lpn

/Gl=k D .lGl=k /p
n

D kpn

. By taking the intersection,
we have .lp1/Gl=k Dkp1 . For x 2 lp1 , let f .X /2kŒX � be the monic irreducible
separable polynomial such that f .x/D 0. Then all the solutions of f belong to lp1

and we have f .X / 2 .lp1/Gl=k ŒX �D kp1 ŒX �. This implies that lp1=kp1 is a
Galois extension. The latter assertion follows from the equality .lp1/Gl=k D kp1 .

(ii) We may assume that l=k is purely inseparable or separable. If l=k is purely
inseparable, then l is generated by finitely many elements of the form xp�n

with n 2 N and x 2 k as a k-algebra. Hence we have lpn

� k for some n, that is,
kp1 D lp1 . Assume that l=k is separable. The first assertion is reduced to the
case that l=k is a Galois extension, which follows from (i). Since the canonical
k-algebra homomorphism lp1˝kp1 k! l is injective by Lemma 1.1(i), we have
Œlp1 W kp1 �� Œl W k�. �

Defintion 1.3. (i) (Compare [Hyodo 1986, Theorem 2].) We define the canonical
subfield Kcan of K as the algebraic closure of W .k

p1

K
/Œp�1� in K.
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(ii) (Compare [Hyodo 1986, (0-5)].) We define condition (H) as follows:

K contains a primitive p2-th root of unity and we have e
K=Kcan

D 1.

Note that Kcan is a complete discrete valuation field of mixed characteristic .0;p/
with perfect residue field k

p1

K
. If kK is perfect, then we have Kcan DK. We also

note that the restriction GK !GKcan is surjective since Kcan is algebraically closed
in K. We will regard GKcan as a quotient of GK in the rest of the paper.

Remark 1.4. (i) In [Brinon 2006, Notation 2.29], Kcan is denoted by Kr since
Kcan coincides with the kernel of the canonical derivation d W K ! y�1

K

(Proposition 1.13 below).

(ii) The canonical morphism

Kcan˝Kcan;0
K0!K

is injective since we have e
K0=Kcan;0

D 1 and Kcan=Kcan;0 is totally ramified.
Note that we have e

K=Kcan
D 1 if and only if the above morphism is surjective.

The following are the basic properties of the canonical subfields used in this paper.

Lemma 1.5. Let L=K be a finite extension.

(i) The fields .Kcan/
alg and K are linearly disjoint over Kcan.

(ii) If L=K is Galois, then Lcan=Kcan is also a finite Galois extension. Moreover,
the canonical map GL=K !GLcan=Kcan is surjective.

(iii) The field extension Lcan=Kcan is finite with ŒLcan WKcan�� ŒL WK�.

(iv) If K0=Kcan is a finite extension, then we have .KK0/can DK0.

Proof. (i) Since Kcan is algebraically closed in K, we have .Kcan/
alg\K DKcan,

which implies the assertion.

(ii) Since k
p1

L
=k

p1

K
is finite by Lemma 1.2(ii), we have Lcan D L\ .Kcan/

alg.
Hence we have Lcan \K DKcan. Since Lcan=Kcan is algebraic, Lcan and K are
linearly disjoint over Kcan by (i). Let x 2Lcan and f .X / 2KcanŒX � be the monic
irreducible polynomial such that f .x/D 0. By the linearly disjointness, f .X / is
irreducible in KŒX �. Since L=K is Galois, all the solutions of f .X /D 0 belong
to L\ .Kcan/

alg D Lcan. This implies that Lcan=Kcan is Galois. Since we have
.Lcan/

GL=K DLcan\K DKcan, we have the rest of the assertion.

(iii) The finiteness of Lcan=Kcan is reduced to the case that L=K is Galois, which
follows from (ii). Since the canonical K-algebra homomorphism Lcan˝Kcan K!L

is injective by (i), we have ŒLcan WKcan�� ŒL WK�.

(iv) The assertion follows from the inequalities

ŒK0 WKcan�� Œ.KK0/can WKcan�� ŒKK0 WK�D ŒK0 WKcan�;
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where the second inequality follows from (iii) and the last equality follows from
the linear disjointness of K and K0 over Kcan by (i). �

Theorem 1.6 (the complete case of Epp’s theorem [1973]). There exists a finite
Galois extension of K0=Kcan such that KK0 satisfies condition (H).

Proof. By the original Epp’s theorem, we have a finite extension K0=Kcan such that
we have e

KK 0=K 0
D 1. We have only to prove that we have e

KK 00=K 00
D 1 for any

finite extension K00=K0. In fact, if we choose K00 as the Galois closure of K0.�p2/

over Kcan, then K00 satisfies the condition by Lemma 1.5(iv). Since we have
KK00 D .KK0/˝K 0 K

00 by Lemma 1.5(i) and (iv), we have e
KK 00=KK 0

� e
K 00=K 0

.
By multiplying with e

KK 0
D e

K 0
, we have e

KK 00
� e

K 00
, implying the assertion. �

Example 1.7 (the higher-dimensional local fields case). We say that K has a
structure of a higher-dimensional local field if K is isomorphic to a finite extension
over the fractional field of a Cohen ring of the field

Fq..X1//..X2// : : : ..Xd //

with q D pf (see [Zhukov 2000] about higher-dimensional local fields). In this
case, Kcan coincides with the algebraic closure of Qp in K. In fact, we have
only to prove that k

p1

K
is a finite field. By Lemma 1.2(ii), we may reduce to the

case kK D Fq..X1// : : : ..Xd //. Then, the assertion follows from an iterative use of
the following fact: If k is a field of characteristic p, then we have k..X //p

1

Dkp1 .
Obviously, the RHS is contained in the LHS. Let f D

P
n��1 anX n 2 k..X //p

1

with an 2 k. Since f 2 k..X //p, we have an D 0 if p − n and an 2 kp otherwise.
By repeating this argument, we have an D 0 for n¤ 0 and f D a0 2 kp1 .

1C. Canonical derivation.

Defintion 1.8 (Compare [Hyodo 1986, Section 4].). Let q 2 N. For a complete
discrete valuation ring R with mixed characteristic .0;p/, let

y�
q
R
WD lim
 �n

�
q

R=Z
=pn�

q

R=Z

and let d WR! y�1
R

be the canonical derivation. Let y�q

RŒp�1�
WD y�

q
R
Œp�1� for q 2Z

and let d WRŒp�1�! y�1
RŒp�1�

be the canonical derivation and dq W
y�

q

RŒp�1�
!

y�
qC1

RŒp�1�
the morphism induced by the exterior derivation, which satisfies the usual

formula dq.�!/ D �dq! C .�1/q! ^ d� for � 2 K and ! 2 y�q
K

. We endow
y�

q

RŒp�1�
with the p-adic topology defined by the lattice Im. y�q

R
can.
��! y�

q

RŒp�1�
/.

Obviously, the derivation dq is continuous.
For q 2 Z<0, we put y�q

RŒp�1�
WD 0 as a matter of convention.

The following are the basic properties of the canonical derivations used in the
sequel.
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Lemma 1.9. Let R be a discrete valuation ring with uniformizer �R and ˛ W
M !M 0 a morphism of R-modules whose kernel and cokernel are killed by �c

R

for c 2 N. Then, for any R-module M 00, the kernel and cokernel of the morphism
id˝ ˛ WM 00 ˝R M !M 00 ˝R M 0 are killed by �2c

R
. In particular, the kernel

and cokernel of ˛
N

q WM
N

q!M 0
N

q are killed by �2qc
R

.

Proof. We prove the first assertion. If ˛ is injective or surjective, then the cokernel
and kernel are killed by �c

R
by the calculation of Tor�R. The general case follows

easily from these cases by writing ˛ as a composition of an injection and a surjection.
The last assertion follows from the following decomposition and induction on q:

M
N

.qC1/
DM ˝R M

N
q

id˝˛
N

q

�����!M ˝R M 0
N

q
˛˝id
���!M 0

˝R M 0
N

q
DM 0

N
.qC1/

�

Lemma 1.10 [Hyodo 1986]. Let q 2 N.

(i) We have the OK0
-linear isomorphism

y�
q
OK0
Š lim
 �n

�
.OK0

=pnOK0
/˝Z

Vq
Z Z

L
JK
�
I dtj1

^� � �^dtjq
7! 1˝ej1

^� � �^ejq
:

In particular, y�q
OK0

=.pn/ is a free OK0
=.pn/-module.

(ii) We have a canonical isomorphism�Vq
K
y�1

K

�b! y�q
K
:

(iii) Let L be a finite extension over the completion of an unramified extension of K.
Then, we have a canonical isomorphism

L˝K
y�

q
K
! y�

q
L
:

Proof. The assertions (i) and (ii) follow from [Hyodo 1986, Lemma (4.4), Remark 3]
respectively. The canonical exact sequence

0! OL˝OK
�1

OK=Z
!�1

OL=Z
!�1

OL=OK
! 0

(from [Scholl 1998, Section 3.4, footnote]) induces the exact sequence

�1
OL=OK

Œpn�! OL˝OK
�1

OK=Z
=.pn/

˛n
�!�1

OL=Z
=.pn/!�1

OL=OK
=.pn/! 0;

where �1
OL=OK

Œpn� denotes the kernel of the multiplication by pn on �1
OL=OK

.
Fix c 2N such that pc�1

OL=OK
D 0. Then, the kernel and cokernel of ˛n are killed

by pc . Denote by Qn and Qn the kernel of the canonical mapsNq
OL

�
OL˝OK

�1
OK=Z

=.pn/
�
!
Vq

OL

�
OL˝OK

�1
OK=Z

=.pn/
�
;Nq

OL
�1

OL=Z
=.pn/!�

q

OL=Z
=.pn/:
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We consider the commutative diagram

OL˝OK

Nq
OK
�1

OK=Z

.pn/

can:

Š

//

can:��
��

Nq
OL

OL˝OK
�1

OK=Z

.pn/

can:��
��

˛
N

q
n
//
Nq

OL

�1
OL=Z

.pn/

can:��
��

OL˝OK

�
q

OK=Z

.pn/

can:

Š

//
Vq

OL

OL˝OK
�1

OK=Z

.pn/

Vq
˛n
//
�

q

OL=Z

.pn/
:

We have only to prove that the kernel and cokernel of
Vq
˛n are killed by p3qc .

Indeed, if this is true, then we decompose the canonical map

˛q
n W OL˝OK

�
q

OK=Z
=.pn/!�

q

OL=Z
=.pn/

into the following exact sequences:

0 // ker˛q
n

inc:
// OL˝OK

�
q

OK=Z
=.pn/

˛
q
n
// Im˛

q
n

// 0;

0 // Im˛
q
n

inc:
// �

q

OL=Z
=.pn/

pr:
// cok˛q

n
// 0:

By passing to limits, we obtain the following exact sequences:

0 // lim
 �n

ker˛q
n

inc:
// OL˝OK

y�
q
OK

can:
// lim
 �n

Im˛
q
n

ı
// lim
 �

1

n
ker˛q

n ;

0 // lim
 �n

Im˛
q
n

inc:
// y�

q
OL

pr:
// lim
 �n

cok˛q
n :

Since ker˛q
n and cok˛q

n are killed by p3qc , lim
 �n

ker˛q
n and lim

 �

1

n
ker˛q

n , lim
 �

cok˛q
n

are also killed by p3qc [Neukirch et al. 2008, Proposition 2.7.4]. Hence, the kernel
and cokernel of the canonical map OL˝OK

y�
q
OK
! y�

q
OL

are killed by p3qc and p6qc

respectively. By inverting p, we obtain the assertion.
Note that the kernel and cokernel of ˛

N
q

n are killed by p2qc by Lemma 1.9. By
the snake lemma, it suffices to prove that the cokernel of the map ˛

N
q

n W Qn!Qn

is killed by pqc . The OL-module Qn is generated by the elements of the form
x WDx1˝� � �˝xq with xi 2�

1
OL=Z

=.pn/ such that xiDxj for some i¤j . Since the
cokernel of ˛n is killed by pc , there exist y1; : : : ;yq 2 OL˝OK

�1
OL=Z

=.pn/ such
that pcxi D ˛n.yi/ and yi D yj . Hence we have pqcxD .pcx1/˝� � �˝ .p

cxq/D

˛
N

q

n .y1˝ � � �˝yq/ and y1˝ � � �˝yq 2 Qn, which implies the assertion. �
Remark 1.11. If ŒkK W k

p
K
� D pd < 1, then dimK

y�
q
K
D
�
d
q

�
< 1 for q 2 N

by Lemma 1.10. In particular, the canonical derivation d is Kcan-linear since the
restriction d jKcan factors through y�1

Kcan
D 0 by functoriality.
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Defintion 1.12. Fix a lift ftj gj2JK
� OK0

of a p-basis of kK . By Lemma 1.10(i),
dx for x 2 OK0

can be uniquely written in the form
P

j2JK
dtj ˝ @j .x/, where

f@j .x/gj2JK
� OK0

is such that fvp.@j .x//gj2JK
!1. Note that f@j gj2JK

are
mutually commutative derivations of OK0

by the formula d1 ı d D 0. We also note
that @j is continuous since we have the inequality vp.@j .x//� vp.x/ for x 2 OK0

,
which we can check by taking modulo p.

The following is another characterization of the canonical subfields.

Proposition 1.13 [Brinon 2006, Proposition 2.28]. We have the exact sequence

0 // Kcan
inc:
// K

d
// y�1

K
:

Proof. We first reduce to the case K D K0. In the case that K satisfies condi-
tion (H), we obtain the exact sequence by applying Kcan˝Kcan;0

to the exact sequence
for K DK0 by Remark 1.4(ii) and Lemma 1.10(iii). In the general case, we choose
a finite Galois extension K0=Kcan such that KK0 satisfies condition (H) by Epp’s
Theorem 1.6. Since we have .KK0/canDK0 by Lemma 1.5(iv), K0˝Kcan KDKK0

by Lemma 1.5(i) and . y�1
KK 0

/GK 0=Kcan D y�1
K

by Lemma 1.10(iii), the assertion
follows from Galois descent.

We will prove the assertion in the case K D K0. We may replace Kcan;K

and y�1
K

by OKcan ;OK and y�1
OK

respectively. Notation is as above. Let ' be the
Frobenius on OK given by '.tj / D t

p
j for j 2 JK . Let '� W y�1

K
! y�1

K
be the

Frobenius induced by '. Since we have d ı ' D '� ı d , by a simple calculation,
we have @j ı' D pt

p�1
j ' ı @j , that is, .tj@j / ı' D p' ı .tj@j / for j 2 JK .

The ring '.OK / is a complete discrete valuation ring of mixed characteris-
tic .0;p/ and we may regard its residue field as k

p
K

. Let ƒ WD f0; : : : ;p� 1g
L

JK .
Since the image of ftngn2ƒ in kK forms a k

p
K

-basis of kK , by approximation,
every element x 2 OK can be uniquely written in the form x D

P
n2ƒ '.an/t

n,
where an 2 OK is such that fvp.an/gn2ƒ!1. We claim that if 'n.x/ 2 ker d

with n 2 N and x 2 OK , we have x 2 '.OK /. Since the Frobenius '� on y�1
OK

is
injective by Lemma 1.10(i) and the commutativity d ı' D '� ı d , we may assume
nD 0. By definition, we have @j .x/D 0 for all j 2 JK . We have

tj@j .x/D
X
n2ƒ

.tj@jı'/.an/t
n
C

X
n2ƒ

'.an/tj@j .t
n/D

X
n2ƒ

'.ptj@j .an/Cnj an/t
n:

Hence, we have anD�n�1
j ptj@j .an/ if nj ¤ 0. Therefore, for n2ƒnf0g, we have

vp.an/� vp.an/C 1, that is, an D 0, which implies the claim. By using the claim,
if we have x 2 ker d , then we have x 2

T
n2N '

n.OK /. Since the complete discrete
valuation ring

T
n2N '

n.OK / is absolutely unramified with residue field k
p1

K
, the

inclusion OKcan �
T

n2N '
n.OK / is an equality by approximation, which implies

the assertion. �
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1D. A spectral sequence of continuous group cohomology. The following lemma
is a basic fact when we calculate continuous Galois cohomology whose coefficient
is an inverse limit of p-adic Banach spaces with surjective transition maps. For
example, we need it later when we calculate cohomology of BCdR-modules.

Lemma 1.14 (Compare [Neukirch et al. 2008, Theorem 2.7.5].). Let G be a profi-
nite group and fMngn2N be an inverse system of continuous G-modules (each Mn

may not be discrete) such that the transition map MnC1!Mn admits a continuous
section (as topological spaces) for all n 2N. Let M1 be the continuous G-module
lim
 �

Mn with the inverse limit topology. Then, we have a canonical exact sequence

0 // lim
 �

1

n
H q�1.G;Mn/ // H q.G;M1/ // lim

 �n
H q.G;Mn/ // 0

for all q 2 N, where lim
 �

� is the derived functor of lim
 �

in the category of inverse
systems of abelian groups indexed by N.

Proof. Let C�1 WD C�cont:.G;M1/ (resp. C�n WD C�cont:.G;Mn/) be the continuous
cochain complex of G with coefficients in M1 (resp. Mn). Then, fC�ngn2N forms
an inverse system of cochain complexes and we have C�1 D lim

 �n
C�n. Moreover,

the transition maps of the inverse system fC�ngn2N are surjective by the existence of
continuous sections, in particular, fC�ngn2N satisfies the Mittag–Leffler condition.
Then, the assertion follows from [Weibel 1994, Variant in pp.84]. �

1E. Hyodo’s calculations of Galois cohomology. We will recall Hyodo’s calcula-
tions of Galois cohomology. For n 2 Z, denote by Zp.n/ the n-th Tate twist of Zp .
For a Zp ŒGK �-module V , let V .n/ WD V ˝Zp

Zp.n/.

Theorem 1.15 [Hyodo 1986, Theorem 1]. For n 2N and q 2 Z, we have canonical
isomorphisms

H n.GK ;Cp.q//Š

�
0 q ¤ n; n� 1;

y�
q
K

otherwise:

We will generalize the following theorem as an application of the Main Theorem
in Section 7.

Theorem 1.16. (i) [Hyodo 1986, Theorem 2] We have the exact sequence

0 // H 1.GKcan ;Zp.1//
Inf
// H 1.GK ;Zp.1//

can:
// H 1.GK ;Cp.1//:

(ii) [Hyodo 1987, Theorem (0-2)] If kK is separably closed, then

Inf WH 1.GKcan ;Zp.n//!H 1.GK ;Zp.n//

is an isomorphism for n¤ 1.
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1F. Closed subgroups of GK . Let L be an algebraic extension of K in Cp. Let
yLalg be the algebraic closure of yL in Cp . Let M be a finite extension of yL and choose
a polynomial f .X / 2 yLŒX � such that M Š yLŒX �=.f .X //. Let f0.X / 2LŒX � be
a polynomial such that the p-adic valuations of the coefficients of f �f0 are large
enough. Then, we have M Š yLŒX �=.f0.X // by Krasner’s lemma. In particular,
the algebraic extension .M \Lalg/=L is dense in M . Hence, we have a canonical
morphism of profinite groups GL!G yL, which is an isomorphism whose inverse
G yL! GL maps g to gjLalg . In the sequel, we will identify GL with G yL and we
also regard G yL as a closed subgroup of GK .

1G. Perfection. For a subset J of JK , we denote the p-adic completion of the
field

S
n2N K.ft

p�n

j gj2J / by KJ . Then, KJ is a complete discrete valuation field
of mixed characteristic .0;p/ with e

KJ=K
D 1 and its residue field is isomorphic

to
S

n2N kK .ft
p�n

j gj2J /. We also denote KJK
by Kpf, which is referred as a

perfection of K since the residue field kK pf Š k
pf
K

of Kpf is perfect. Since we may
assume that ftj gj2JK

is contained in K0 (Section 1A), we may assume .K0/J D

.KJ /0, which is denoted by KJ ;0 for simplicity.
Let P.JK / be the subsets of JK consisting of subsets J 2 JK such that JK nJ

is finite. Note that we have ŒkKJ
W k

p
KJ
� D pjJKnJ j < 1 for J 2 P.JK / since

ftj gj2JKnJ forms of a p-basis of kKJ
. We regard P.JK / as an inverse system with

respect to the reverse inclusion. Then, we have

K Š lim
 �

J2P.JK /

KJ D

\
J2P.JK /

KJ ;

that is, K is represented by an inverse limit of complete discrete valuation fields,
whose residue fields admit a finite p-basis. In fact, if we endow JK with a well-
order - by the axiom of choice, then for J 2 P.JK /, the subset

EJ WD f1g[

(
t
a1p�n1

j1
: : : t

amp�nm

jm

ˇ̌̌̌
j1 � � � �� jm 2 J; 0< aji

< pnji 2 N>0

.p; aji
/D 1 for 1� i �m 2 N>0

)
of KJ forms a basis of KJ as a K-Banach space. If J1 � J2 are in P.JK /, then
we have EJ1

� EJ2
and the assertion follows from the fact f1g D

T
J2P.JK /

EJ .

1H. G -regular ring. We will recall basic facts about G-regular rings. For details,
see [Fontaine 1994b, Section 1].

Let E be a topological field and G a topological group. A finite-dimensional
E-vector space V is an E-representation of G if V has a continuous E-linear action
of G. We denote the category of E-representations of G by RepEG. We call B

an .E;G/-ring if B is a commutative E-algebra and G acts on B by E-algebra auto-
morphisms. Let B be an .E;G/-ring. For V 2RepEG, let DB.V / WD .B˝E V /G
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and we will call the following canonical homomorphism the comparison map:

˛B.V / W B˝BG DB.V /! B˝E V:

We say that an .E;G/-ring B is G-regular if the following is satisfied:

(G�R1) The ring B is reduced.

(G�R2) For all V 2 RepEG, ˛B.V / is injective.

(G�R3) Every G-stable E-line in B is generated by an invertible element of B.

Here, a G-stable E-line in B means one-dimensional G-stable E-vector space
in B. The condition (G�R3) implies that BG is a field. We say that V 2 RepEG is
B-admissible if ˛B.V / is an isomorphism. We denote the category of B-admissible
E-representations of G by RepB=EG, which is a Tannakian full subcategory
of RepEG [Fontaine 1994b, Proposition 1.5.2].

Notation. We will call an object of RepQp
GK a p-adic representation of GK . For

a .Qp;GK /-ring B, we denote RepB=Qp
GK by Repadm

B GK if no confusion arises.

We recall the basic facts about G-regular rings.

Lemma 1.17. Let B be a field and G a group acting on B by ring automorphisms.
Let M be a finite-dimensional B-vector space with semilinear G-action. Then, the
canonical map

B˝BG M G
!M

is injective. In particular, we have dimBG M G � dimB M .

Proof. Suppose that the assertion does not hold. Let n 2N be the smallest integer
such that there exist n elements v1; : : : ; vn 2M G which are linearly independent
over BG but not over B. Let

P
1�i�n �ivi D 0 be a nontrivial relation with �i 2B.

Since B is a field, we may assume that �1 D 1. Then, we have

0D .g� 1/

� X
1�i�n

�ivi

�
D

X
1<i�n

.g.�i/��i/vi :

Hence, we have �i 2 BG by assumption, which is a contradiction. �

Example 1.18 [Fontaine 1994b, Proposition 1.6.1]. All .E;G/-rings which are
fields are G-regular. In fact, we have only to verify .G�R2/, which follows by
applying the above lemma to M WD B˝E V .

Lemma 1.19 [Fontaine 1994b, Proposition 1.4.2]. Let B be a G-regular .E;G/-
ring and V an E-representation of G. Then, we have dimBG DB.V / � dimE V .
Moreover, the equality holds if and only if V is B-admissible.



The p-adic monodromy theorem in the imperfect residue field case 1993

Lemma 1.20 [Fontaine 1994b, Proposition 1.6.5]. Let B be a G-regular .E;G/-
ring and B0 an E-subalgebra of B stable by G. Assume that B0 satisfies .G�R3/

and that the canonical map BG ˝
B0G

B0 ! B is injective. Then, B0 is a G-
regular .E;G/-ring. Moreover, if V 2 RepEG is B0-admissible, then V is B-
admissible and the canonical map

BG
˝

B0G
DB0.V /!DB.V /

is an isomorphism.

Lemma 1.21 [Fontaine 1994b, Corollaire 1.6.6]. Let B0 be an integral domain
which is an .E;G/-ring, and B the fraction field of B0. If B0 satisfies .G�R3/

and B0G D BG , then B0 is GK -regular.

Remark 1.22 (restriction). Let B be a G-regular .E;G/-ring and H a subgroup
of G such that B is H -regular as an .E;H /-ring. If V 2 RepEG is B-admissible,
then V jH is also B-admissible in RepEH . Moreover, we have a canonical iso-
morphism BH ˝BG DB.V /ŠDB.V jH /. Indeed, the admissibility of V implies
that we have the comparison isomorphism B˝BG DB.V /Š B˝E V as BŒGK �-
modules. By taking H -invariants, we have BH ˝BG DB.V / Š DB.V jH /. In
particular, we have dimBH DB.V jH /D dimBG DB.V /D dimE V , which implies
the B-admissibility of V jH by Lemma 1.19.

2. A generalization of Sen’s theorem

The aim of this section is to prove the following generalization of Sen’s theorem
on Cp-admissible representations [Sen 1980, Corollary in (3.2)].

Theorem 2.1. Let V 2 RepQp
GK . The following are equivalent:

(i) There exists a finite extension L over the maximal unramified extension of K

such that GL acts trivially on V .

(ii) V is Cp-admissible.

(iii) V jK pf is Cp-admissible as an object of RepQp
GK pf .

Lemma 2.2. Let E be a field of characteristic 0 and � W U .n/
Qp
Ë
Q

i2I pni Zp !

GLr .E/ a group homomorphism with n; r 2 N>0 and .ni/i2I 2 NI , where the
action of U .n/

Qp
on
Q

i2I pni Zp is given by scalar multiplication. If ker� contains
an open subgroup of U .n/

Qp
, then the image of � is finite.

Proof. By shrinking U .n/
Qp

, we may assume that ker � contains U .n/
Qp

. Also, we may
assume that E is algebraically closed. Let x0 WD 1Cpn 2 U .n/

Qp
;x 2

Q
i2I pni Zp .

By the fact that ker � is a normal subgroup of U WD U .n/
Qp
Ë
Q

i2I pni Zp and a
simple calculation, we have

.1;x/�1.x0; 0/.1;x/.x�1
0 ; 0/D .1; .x0� 1/x/D .1;pnx/ 2 ker �:
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In particular, ker � contains U .n/
Qp
Ë
Q

i2I pnCni Zp as a normal subgroup. By taking
the quotient of U by this subgroup, � factors through a group homomorphism
� W .Z=pnZ/I ! GLr .E/.

To prove the assertion, it suffices to prove that for any finite subset S of Im �,
we have jS j � pnr . Any g 2 Im � is conjugate to a diagonal matrix whose diagonal
entries are in �pn.E/ since the order of g divides pn. Since the elements of S

commute, S is simultaneously diagonalizable. Hence, up to conjugation, S is
contained in the set fdiag.a1; : : : ; ar / j ai 2 �pn.E/g, whose order is pnr . �

Proof of Theorem 2.1. The implication (i)) (ii) follows from Hilbert 90 and
(ii)) (iii) follows from Remark 1.22. We will prove (iii)) (i). Note that if kK is
perfect, then the assertion is a theorem of Sen ([1980, Corollary in (3.2)]).

By replacing K by a finite extension of Kur, we may assume that kK is separably
closed and K satisfies condition (H). In this case, the assertion to prove is that GK

acts on V via a finite quotient. Since the residue field k
pf
K

of Kpf is algebraically
closed, GK pf D GK geo acts on V via a finite quotient by Sen’s theorem, where
Kgeo WD

S
n2N K.ft

p�n

j gj2JK
/. Hence, there exists a finite extension L=K such that

GLK geo acts trivially on V . In particular, if we put K1 WDKgeo.�p1/, then GLK1

acts trivially on V . In the following, we regard V as a p-adic representation of
GLK1=L. Take a basis of V and let �0 WGLK1=L!GLr .Qp/ be the corresponding
matrix presentation of V with r WD dimQp

V . We have only to prove that the image
of �0 is finite.

Since K satisfies condition (H), we have an isomorphism GK1=K ŠU .n0/
Qp
ËZ

JK
p ,

where n0 2 N>1 satisfies GK.�p1 /=K
Š U .n0/

Qp
via the cyclotomic character and

U .n0/
Qp

acts on Z
JK
p by scalar multiplication (see [Hyodo 1986, Section 1] for

details). We have GLK1=LK geo � ker �0 Ec GLK1=L. By using the restriction
map ResLK1

K1
and the above isomorphism, we may regard these groups as subgroups

of U .n0/
Qp
ËZ

JK
p . Since GLK1=L is an open subgroup of GK1=K , there exists n2N

and .nj /j2JK
2 NJK such that GLK1=L contains U WD U .n/

Qp
Ë
Q

j2JK
pnj Zp

as an open subgroup. Since GLK1=LK geo is an open subgroup of GK1=K geo Š

GK.�p1 /=K
Š U .n0/

Qp
Š Zp, ker �0 contains an open subgroup of U .n/

Qp
. Therefore,

the group homomorphism � WD �0jU W U ! GLr .Qp/ satisfies the assumption of
Lemma 2.2, hence, the image of � is finite. Since U is open in GLK1=L, we obtain
the assertion. �

3. Basic construction of rings of p-adic periods

Throughout this section, let K be a closed subfield of Cp whose value group vp.K�/
is discrete. We will recall the construction of rings of p-adic periods

Ainf;Cp=K; Bcris;Cp=K; Bst;Cp=K; BdR;Cp=K; BHT;Cp=K
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due to Fontaine [1994a], which is functorial with respect to Cp and K. We also
recall abstract algebraic properties of these rings as in [Brinon 2006]. Although we
do not assume KDK, standard techniques of proofs in the case KDK, which are
developed in [Fontaine 1994a; Brinon 2006], can be applied to our situation.

3A. Universal pro-infinitesimal thickenings.

Defintion 3.1 [Fontaine 1994a, Section 1]. A p-adically formal pro-infinitesimal
OK-thickening of OCp

is a pair .D; �D/, where

� D is an OK-algebra,

� �D W D ! OCp
is a surjective OK-algebra homomorphism such that D is

.p; ker �D/-adic Hausdorff complete.

Obviously, p-adically formal OK-thickenings of OCp
form a category.

Theorem 3.2 [Fontaine 1994a, Théorème 1.2.1]. The category of p-adically formal
pro-infinitesimal OK-thickenings of OCp

admits a universal object, that is, an initial
object.

Such an object is unique up to a canonical isomorphism and we denote it by
.Ainf;Cp=K; �Cp=K/. Note that Ainf;Cp=K is functorial with respect to Cp and K. We
recall the construction. Let RCp

WD lim
 �x 7!xp

OCp
=pOCp

be the perfection of the
ring OCp

=pOCp
. We have the canonical isomorphism

lim
 �

x 7!xp

OCp
!RCp

I .x.n//n2N 7! .x.n/ mod pOCp
/n2N;

where the addition and the multiplication of the LHS are given by

..x.n//C .y.n///n D limm.x
.nCm/

Cy.nCm//p
m

; .x.n// � .y.n//D .x.n/y.n//:

Let �Cp=Qp
WW .RCp

/! OCp
be defined by

P
n2N pnŒxn� 7!

P
n2N pnx

.0/
n . This

is a surjective Zp-algebra homomorphism. Let �Cp=K W OK ˝Z W .RCp
/! OCp

be the linear extension of �Cp=Qp
. Then, Ainf;Cp=K is the Hausdorff completion

of OK˝Z W .RCp
/ with respect to the .p; ker �Cp=K/-adic topology. We will give

an explicit description of Ainf;Cp=K later: Note that the description, together with
the isomorphism W .RCp

/ Š Ainf;Cp=Qp
(Remark 3.5), immediately implies that

Ainf;Cp=K is an integral domain (at least) when we have KD K0.
We define Qtj WD .tj ; t

p�1

j ; : : : /2RCp
and uj WD tj�ŒQtj �2ker �Cp=K0

. Let vinf;Cp=K

be the p-adic semivaluation of Ainf;Cp=K. We put

Ainf;Cp=Qp
fuJK
g WDn P

n2N
L

JK

anun
ˇ̌̌
an 2 Ainf;Cp=Qp

; fvinf;Cp=Qp
.an/gjnjDn!1 for all n 2 N

o
:
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If JK is finite, Ainf;Cp=Qp
fu

JK
g is a ring of formal power series with coefficients

in Ainf;Cp=Qp
. We extend �Cp=Qp

to a surjective Ainf;Cp=Qp
-algebra homomorphism

#Cp=K WAinf;Cp=Qp
fu

JK
g!OCp

by #Cp=K.uj /D 0. Then, .Ainf;Cp=Qp
fu

JK
g; #Cp=K/

is a p-adically formal Zp-pro-infinitesimal thickening of OCp
. We have a canoni-

cal Ainf;Cp=Qp
-algebra homomorphism

�inf;Cp=K W Ainf;Cp=Qp
fuJK
g ! Ainf;Cp=KI un

7! un:

Lemma 3.3. If we assume KDK0, then �inf;Cp=K is an isomorphism. In particular,
we have

vinf;Cp=K.x/D inf
n2N

L
JK

vinf;Cp=Qp
.an/

for x D
P

n2N
L

JK anun with an 2 Ainf;Cp=Qp
.

Proof. Denote AD Ainf;Cp=Qp
fu

JK
g and # D #Cp=K. We regard OK as a ZŒTj �j2JK

-
algebra as in Section 1A. We recall that since KD K0, the map ZŒTj �j2JK

! OK

is formally étale for the p-adic topology. We also regard A as a ZŒTj �j2JK
-

algebra by Tj 7! ŒQtj �C uj . Then, by the lifting property, we can lift the canonical
OK-algebra structure on A=.p; ker#/ Š OCp

=.p/ to an OK-algebra structure on
AŠ lim
 �n

A=.p; ker#/n:

OK
can:

//

9!

$$

OCp

ZŒTj �j2JK

str:
//

str:

OO

A

#

OO

By this structure map, we may regard A as a pro-infinitesimal OK-thickening
of OCp

. By universality, we have only to prove that �inf;Cp=K is an OK-algebra
homomorphism. Let ˛ W OK ! Ainf;Cp=K be the composition of the structure
map OK ! A and �inf;Cp=K. Since �inf;Cp=K commutes with the projections #
and �Cp=K, we have the commutative diagram

OK
can:

//

˛

&&

OCp

ZŒTj �j2JK

str:
//

str:

OO

Ainf;Cp=K;

�Cp=K

OO

where the horizontal structure map is given by Tj 7! tj . By this diagram and
the lifting property, ˛ coincides with the structure map OK ! Ainf;Cp=K mod-
ulo .p; ker �Cp=K/

n for all n 2 N. Since Ainf;Cp=K is .p; ker �Cp=K/-adically Haus-
dorff complete, ˛ coincides with the structure map OK! Ainf;Cp=K, which implies
the assertion. �
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For general K, we have:

Lemma 3.4. (i) The canonical map

Ainf;Cp=K! Ainf;Cp=Kur

is an isomorphism.

(ii) If L=K is a finite extension with ŒkL W kK�sep D 1, then the canonical map

OL˝OK Ainf;Cp=K! Ainf;Cp=L

is an isomorphism.

(iii) Let L be a finite extension of the p-adic completion of an unramified extension
of K. Then, the canonical map

Ainf;Cp=KŒp
�1�=.ker �Cp=K/

n
! Ainf;Cp=LŒp

�1�=.ker �Cp=L/
n

is an isomorphism for all n 2 N.

Proof. (i) The assertion is equivalent to saying that the category of p-adically formal
OK-pro-infinitesimal thickening of OCp

is equivalent to the category of p-adically
formal OKur-pro-infinitesimal thickening of OCp

. Let .D; �D/ be a p-adically formal
OK-pro-infinitesimal thickening of OCp

. Then, we have only to prove that there
exists a unique OK-algebra homomorphism OKur ! D such that �D is an OKur-
algebra homomorphism. By dévissage, we may replace D by D=.p; ker �D/

n with
n 2 N. Since �D induces an isomorphism D=.p; ker �D/Š OCp

=.p/ and OKur=OK

is p-adically formally étale, the assertion follows from the commutative diagram

OKur
can:

//

9!

&&

OCp
=.p/

OK

can:

OO

str:
// D=.p; ker �D/

n;

.�D/�

OO

where .�D/� is the ring homomorphism induced by �D .

(ii) By assumption, the canonical map OL˝OK
OKur!OLur is an isomorphism. By us-

ing this fact and (i), we may assume that KDKur and LDLur. In particular, we may
consider the case that kK is separably closed, where the condition ŒkL W kK�sep D 1

is always satisfied. By faithfully flat descent, the assertion is reduced to the case
that L=K is Galois. Since L=K is a solvable extension [Fesenko and Vostokov 2002,
Exercise 2, Section 2, Chapter II], we may assume that L=K has prime degree.

By universality, we have only to prove that the LHS is a p-adically formal OL-pro-
infinitesimal thickening of OCp

. Hence, it suffices to verify that OL˝OK Ainf;Cp=K

is .p; I/-adically Hausdorff complete, where I denotes the kernel of the canon-
ical map 1˝ �Cp=K W OL ˝OK Ainf;Cp=K ! OCp

. Since we have an isomorphism
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of Ainf;Cp=K-modules OL˝OK Ainf;Cp=K Š .Ainf;Cp=K/
ŒLWK�, we have only to prove

that the topologies on OL ˝OK Ainf;Cp=K defined by the ideals .p; I/ and .p; I 0/
are equivalent, where I 0 denotes the ideal of OL ˝OK Ainf;Cp=K generated by
ker .�Cp=K W Ainf;Cp=K! OCp

/. By definition, we have .p; I 0/ � .p; I/. We have
only to prove that we have In � .�K˝ 1; I 0/ for some n 2 N since p divides �eK

K .
In the following, for x 2 OCp

, we denote by Qx any element Qx 2 RCp
such

that Qx.0/D x. Since we have �K˝1�1˝ Œ Q�K� 2 I 0, we have .�K˝1; 1˝ Œ Q�K�/�

.�K˝ 1; I 0/. Note that if x 2 OL is primitive, that is, 1;x; : : : ;xŒLWK��1 is an OK-
basis of OL, then we have I � .x˝1�1˝Œ Qx�; I 0/. Hence, we have only to prove the
existence of a primitive element x 2 OL satisfying .x˝1�1˝ Œ Qx�/n 2 .�K˝1; I 0/

for some n 2 N. In the case ŒL W K� D e
L=K

, �L is a primitive element of OL

and we have .�L ˝ 1 � 1 ˝ Œ Q�L�/
2eL=K 2 .�K ˝ 1; 1 ˝ Œ Q�K�/. Otherwise, we

have ŒL W K�D ŒkL W kK�insep D p. If we choose x 2 OL whose image in OL=�KOL

does not belong to kK, then x is primitive by Nakayama’s lemma. Moreover, if we
choose a 2 OK such that xp � a mod �KOL, then we have

.x˝ 1� 1˝ Œ Qx�/p � a˝ 1� 1˝ Œ Qa� mod .�K˝ 1; 1˝ Œ Q�K�/

and a˝ 1� 1˝ Œ Qa� 2 I 0, which implies the assertion.

(iii) We denote the map by i and we will construct the inverse. By replacing K and L

by Kur and Lur, we may assume ŒkL W kK�sep D 1. By (ii), we identify Ainf;Cp=L

with OL˝OK Ainf;Cp=K. Since L=K is étale, by a similar argument as in the proof
of (i), we have a unique K-algebra homomorphism

j W L! Ainf;Cp=KŒp
�1�=.ker �Cp=K/

n

such that �Cp=K W Ainf;Cp=KŒp
�1�=.ker �Cp=K/

n ! Cp is an L-algebra homomor-
phism. Hence, we have the Ainf;Cp=K-algebra homomorphism

j ˝ id W Ainf;Cp=LŒp
�1�=.ker �Cp=L/

n
! Ainf;Cp=K=.ker �Cp=K/

n:

By construction, we have .j ˝ id/ ı i D id. To prove i ı .j ˝ id/ D id, we have
only to prove that i ı .j ˝ id/ is an L-algebra homomorphism, which follows from
the uniqueness of j . �

Remark 3.5. We may identify Ainf;Cp=Qp
with W .RCp

/ [Fontaine 1994a, 1.2.4(e)]
and the kernel of �Cp=Qp

is principal by [Fontaine 1994a, 2.3.3]. Moreover,
if K D K0 and kK is perfect, then the canonical map Ainf;Cp=Qp

! Ainf;Cp=K

is an isomorphism [Fontaine 1994a, 1.2.4(e)]. Note that we have no canonical
choice of an embedding W .k

alg
K
/Œp�1�!Cp when kK is imperfect, since different

perfections of K induce different embeddings. Thus, we can not endow Ainf;Cp=Qp

with a canonical W .k
alg
K
/-algebra structure induced by that of Ainf;Cp=W .k

alg
K
/Œp�1�

via the above isomorphism as in the perfect residue field case.
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3B. BdR and BHT. We define BCdR;Cp=K WD lim
 �n

Ainf;Cp=KŒp
�1�=.ker �Cp=K/

n and

t WD log .Œ"�/D
X

n2N>0

.�1/n�1 .Œ"��1/n

n
2 BCdR;Cp=Qp

with " WD .1; �p; �p2 ; : : : / 2 RCp
. We also define BdR;Cp=K WD BCdR;Cp=KŒt

�1�.
We denote the projection BCdR;Cp=K ! Cp by �Cp=K again. Then, BCdR;Cp=K is a
Hausdorff complete local ring with maximal ideal ker �Cp=K. Moreover, BdR;Cp=K

is an integral domain. In fact, by the following explicit description of BdR;Cp=K, it
follows from the fact that BdR;Cp=Qp

is a field (Remark 3.6(ii) below).
We define the canonical topology on BCdR;Cp=K as follows. We regard

Ainf;Cp=KŒp
�1�=.ker �Cp=K/

n

as a p-adic Banach space whose lattice is given by the image of Ainf;Cp=K. Then,
we endow BCdR;Cp=K with the inverse limit topology, which is a Fréchet complete
K-algebra. We also endow BdR;Cp=K with a limit of Fréchet topology by regard-
ing BdR;Cp=K as the direct limit of BCdR;Cp=K with respect to the multiplication by t�1.
Let v.n/dR;Cp=K be the semivaluation of BCdR;Cp=K induced by the p-adic semivaluation
of BCdR;Cp=K=.ker �Cp=K/

n defined by the lattice

Im.Ainf;Cp=K
can:
��! BCdR;Cp=K=.ker �Cp=K/

n/:

Obviously, the semivaluations fv.n/dR;Cp=Kgn2N are decreasing.
We will give an explicit description of BCdR;Cp=K. Let

BCdR;Cp=Qp
fuJK
g WDn P

n2N
L

JK

anun
ˇ̌̌
an 2 BCdR;Cp=Qp

; fv.r/dR;Cp=Qp
.an/gjnjDn!1 for all n; r 2 N

o
:

This is a BCdR;Cp=Qp
-algebra. Then, the canonical BCdR;Cp=Qp

-algebra homomor-
phism

�dR;Cp=K W B
C
dR;Cp=Qp

fuJK
g ! BCdR;Cp=KI un

7! un

is an isomorphism. To prove this, by Remark 3.6(ii) below, we may reduce to
the case KDK0. In this case, the assertion follows from the explicit description
of Ainf;Cp=K.

For n 2 N, let FilnBCdR;Cp=K be the closed ideal of BCdR;Cp=K generated by the
ideal .ker �Cp=K/

n. We endow BdR;Cp=K with the decreasing filtration defined
by FilnBdR;Cp=K WD

P
iCjDn t iFilj BCdR;Cp=K. Denote the graded Cp-algebra as-

sociated to the filtration by BHT;Cp=K. We also denote by vj the image of uj=t

in BHT;Cp=K ;0 for j 2 JK . Since the filtration is compatible with the multiplica-
tion by t , that is, tmFilnBdR;Cp=K D FilnCmBdR;Cp=K, we have an isomorphism
BHT;Cp=K Š

L
n2Z

BHT;Cp=K;0tn.
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For n 2 N, let

CpfvJK
gn WD

n P
n2N

L
JK WjnjDn

anvn
ˇ̌̌
an 2 Cp; fvp.an/gn!1

o
and CpfvJK

g WD
L
n2N

CpfvJK
gn. We have a Cp-algebra homomorphism

�HT;Cp=K;0 W CpfvJK
g ! BHT;Cp=K;0I vn

7! vn;

which is an isomorphism. One reduces to the case K D K0 by Remark 3.6(ii)
below. Then, the assertion follows from the above explicit description of BCdR;Cp=K

and the formula of the semivaluation v.n/dR;Cp=K (Remark 3.6(iii) below). By this
description, BHT;Cp=K is an integral domain.

Remark 3.6. (i) (The perfect residue field case) Assume that kK is perfect. Then,
we have a canonical isomorphism B~;Cp=Qp

! B~;Cp=K for ~ 2 fdR;HTg. More-
over, BdR;Cp=Qp

is a complete discrete valuation field of equal characteristic 0 with
valuation ring BCdR;Cp=Qp

, t is a uniformizer and the residue field is Cp. We also
have an isomorphism BHT;Cp=Qp

Š
L

n2Z Cptn. In fact, the first assertion follows
from Remark 3.5 and the latter assertion reduces to the case where kK is perfect by
regarding Cp as the p-adic completion of .Kpf/alg [Fontaine 1994a, 1.5.1].

(ii) (Invariance) The above structures on BCdR;Cp=K (ring structure, filtration, topol-
ogy) are invariant under finite or unramified extensions. As a consequence, we
may regard BCdR;Cp=K as a Kalg-algebra and a similar invariance for BHT;Cp=K as
a graded Cp-algebra also holds. As for a filtered ring, the invariance follows
from Lemma 3.4(iii). To prove the rest of the assertion, we have only to prove
that for an unramified extension or a finite extension L=K, the p-adic semivalu-
ations v.n/dR;Cp=K and v.n/dR;Cp=L are equivalent for all n 2 N. The unramified case
follows from Lemma 3.4(i). In the other case, let ƒ.n/K (resp. ƒ.n/L ) be the im-
age of Ainf;Cp=K (resp. Ainf;Cp=L) in BCdR;Cp=K=.ker �Cp=K/

n. Replacing K by the
maximal unramified extension of K in L, we may assume that L=K satisfies the
assumption in Lemma 3.4(ii). Since Ainf;Cp=L is a finite Ainf;Cp=K-module by
Lemma 3.4(ii), there exists m 2 N such that pmƒ.n/L � ƒ

.n/
K by Lemma 3.4(iii).

Since we have ƒ.n/K �ƒ
.n/
L by definition, the two p-adic topologies induced by the

lattices ƒ.n/K and ƒ.n/L respectively are equivalent, which implies the assertion.

(iii) Assume KD K0. Then, we have the formula

v.n/dR;Cp=K.x/D inf
jnj<n

v
.n/

dR;Cp=Qp
.an/;

where we have xD
P

n2N
L

JK anun 2BCdR;Cp=K with an 2BCdR;Cp=Qp
. This follows

from the explicit description of Ainf;Cp=K.
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3C. Connections on BdR and BHT. We denote by y�q
K
y̋ KBdR;Cp=K the direct limit

lim
�!
y�

q
K
y̋ KBCdR;Cp=K, where the transition maps are the multiplication by 1˝ t�1.

Then, the canonical derivation d WK! y�1
K uniquely extends to a BdR;Cp=Qp

-linear
continuous derivation

r W BdR;Cp=K!
y�1

K
y̋ KBdR;Cp=K:

Indeed, the canonical derivation d W OK !
y�1

OK
extends to an Ainf;Cp=Qp

-linear
derivation d W Ainf;Cp=K !

y�1
OK
y̋ OKAinf;Cp=K by the construction of Ainf. After

inverting p, then taking the ker �Cp=K-adic Hausdorff completion, we obtain a
desired derivation. Since the image of K˝Z BdR;Cp=Qp

is dense in BdR;Cp=K by
construction, the uniqueness follows. More precisely, if we denote by f@j gj2JK

the
derivations on BdR;Cp=K given by r.x/D

P
j2JK

dtj ˝ @j .x/, then f@j gj2JK
are

mutually commutative continuous BdR;Cp=Qp
-derivations and we have @j D @=@uj .

More generally, the exterior derivation dq W
y�

q
K !

y�
qC1
K for q 2 N>0 uniquely

extends to a BdR;Cp=Qp
-linear continuous homomorphism

rq W
y�

q
K
y̋ KBdR;Cp=K!

y�
qC1
K
y̋ KBdR;Cp=K

such that we have rq.!˝ x/ D rq.!/˝ xC .�1/q! ^r.x/ for x 2 BdR;Cp=K

and ! 2 y�q
K. Obviously, the connection r satisfies Griffith transversality

r.FilnBdR;Cp=K/� y�
1
K
y̋ KFiln�1BdR;Cp=K

for n 2 Z. These connections are invariant under finite or unramified extensions by
Lemma 1.10(iii) and Remark 3.6(ii).

Notation. We will use the following notation:

BrCdR;Cp=K WD .B
C
dR;Cp=K/

rD0;BrdR;Cp=K WD .BdR;Cp=K/
rD0

BrHT;Cp=K WD Im.BHT;Cp=Qp

can:
��! BHT;Cp=K/:

We endow the first two rings with induced filtrations and the last one with
an induced graded structure. Note that these rings are invariant under finite or
unramified extensions of K and that BrCdR;Cp=K and BrdR;Cp=K (resp. BrHT;Cp=K) have
a canonical .Kcan/

alg-algebra (resp. Cp-algebra) structure. By the above description
of the connection and the explicit descriptions of BdR;Cp=K and BHT;Cp=K, we have:

Lemma 3.7. The canonical maps

BCdR;Cp=Qp
! BrCdR;Cp=K; BdR;Cp=Qp

! BrdR;Cp=K; BHT;Cp=Qp
! BrHT;Cp=K

are isomorphisms. These maps are compatible with filtrations and gradings.
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Remark 3.8. Assume that ŒkK W k
p
K � <1. Since y�1

K is a finite-dimensional K-
vector space (Remark 1.11), the connection r W BdR;Cp=K !

y�1
K ˝K BdR;Cp=K

induces a BHT;Cp=Qp
-linear derivation

r W BHT;Cp=K!
y�1

K˝K BHT;Cp=K:

More precisely, if we denote by f@j gj2JK
the derivations on BHT;Cp=K defined

as above, then, by the explicit description of BHT;Cp=K, f@j gj2JK
are commut-

ing BHT;Cp=Qp
-linear derivations and we have @j D t@=@vj . In particular, BrHT;Cp=K

coincides with .BHT;Cp=K/
rD0. In the general case, we must handle complicated

topologies to define such a connection. To avoid it, we define BrHT;Cp=K in an ad-hoc
way as above.

We also have an analogue of Poincaré lemma.

Lemma 3.9. The complex

0 // BrCdR;Cp=K

inc:
// BCdR;Cp=K

r
// y�1

K
y̋ KBCdR;Cp=K

r1 // y�2
K
y̋ KBCdR;Cp=K

is exact.

Proof. By the invariance of the above complex under a finite extension, we may
assume KD K0. Recall the explicit description of BCdR;Cp=K in Section 3B. Since
we have vp.n!/� jnj for n 2 N

L
JK , x 2 BCdR;Cp=K is written uniquely in the form

x D
P

n2N
L

JK anuŒn� with an 2 BCdR;Cp=Qp
such that fv.r/dR;Cp=Qp

.an/gjnjDn!1

for all r; n 2 N. Moreover, we have the inequality

inf
jnj<r

v.r/dR;Cp=Qp
.an/C r > inf

jnj<r
v.r/dR;Cp=Qp

.n! an/D v
.r/
dR;Cp=K.x/ (1)

by Remark 3.6(iii). We have only to prove that there exists x 2 BCdR;Cp=K such
that r.x/ D ! for ! 2 kerr1. Write ! D

P
j2JK

dtj ˝ �j with �j 2 BCdR;Cp=K

such that fv.r/dR;Cp=K.�j /gj2JK
! 1 for all r 2 N. The assumption ! 2 kerr1

implies that we have @j 0.�j / D @j .�j 0/ for j ; j 0 2 JK. As above, we can write
�j D

P
n2N

L
JK �j ;nuŒn�, where �j ;n 2 BCdR;Cp=Qp

satisfies the convergence condi-
tion as above. We have the relation �j ;nCe

j 0
D�j 0;nCe

j
for n2N

L
JK and j ; j 02JK.

We will define a sequence fangn2N
L

JK in BCdR;Cp=Qp
as follows: Put a0 equal to 0.

For n¤ 0, choose any j 2 JK such that nj ¤ 0 and define an WD �j ;n�e
j
. By the

above relation, this is independent of the choice of j . To prove the assertion, it
suffices to prove that we have fv.r/dR;Cp=Qp

.an/gjnjDn!1 for all r; n2N. Indeed, if
this is proved, we see that the element x WD

P
n2N

L
JK anuŒn� belongs to BCdR;Cp=K

and we have r.x/ D !. We have only to prove that, for fixed r; n;N 2 N, we
have v.r/dR;Cp=Qp

.an/�N for all but finitely many n 2N
L

JK such that jnj D n. We
may assume r � n. Choose a finite subset J of JK such that v.r/dR;Cp=K.�j /� rCN
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for j 2 JK n J . Let n 2 N
L

JK such that jnj D n. If there exists j 2 JK n J such
that nj ¤ 0, then we have

v.r/dR;Cp=Qp
.an/D v

.r/
dR;Cp=Qp

.�j ;n�e
j
/ > v.r/dR;Cp=K.�j /� r � r CN � r DN;

where the first inequality follows from inequality (1). This implies the assertion
since our exceptional set fn 2 NJ j jnj D ng is finite. �

3D. Universal PD-thickenings.

Defintion 3.10. A p-adically formal OK-PD-thickening of OCp
is a triple

.D; �D ; 
D/;

where

� D is a p-adically Hausdorff complete OK-algebra,

� �D WD! OCp
is a surjective OK-algebra homomorphism,

� 
D is a PD-structure on ker �D , compatible with the canonical PD-structure
on the ideal .p/.

Obviously, p-adically formal OK-thickenings of OCp
form a category.

Theorem 3.11 [Fontaine 1994b, Théorème 2.2.1]. The category of p-adically
formal OK-thickenings of OCp

admits a universal object, that is, an initial object.

Such an object is unique up to a canonical isomorphism and we denote it
by .Acris;Cp=K; �Cp=K; 
 /. Let’s recall the construction. Let .OK˝Z W .RCp

//PD be
the PD-envelope of OK˝Z W .RCp

/ with respect to the ideal

ker .�Cp=K W OK˝Z W .RCp
/! OCp

/;

compatible with the canonical PD-structure on the ideal .p/. Then, Acris;Cp=K is
the p-adic Hausdorff completion of .OK˝Z W .RCp

//PD.

Remark 3.12. (i) By [Fontaine 1994a, Remarques 2.2.3], if we have K D K0

and kK is perfect, then the canonical map Acris;Cp=Qp
! Acris;Cp=K is an

isomorphism.

(ii) By a similar proof as Lemma 3.4(i), the canonical map

Acris;Cp=K! Acris;Cp=Kur

is an isomorphism. In general, we have no invariance for Acris;Cp=K as in
Remark 3.6(ii) even after inverting p.

If KD K0 and kK is perfect, then we have an explicit description of Acris;Cp=K:

Acris;Cp=K D

nP
n2N

an
!n

n!

ˇ̌̌
an 2 Ainf;Cp=K; fvinf;Cp=K.an/gn2N!1

o
;
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where ! denotes a generator of ker .�Cp=K W Ainf;Cp=K! OCp
/. Note that the se-

quence fangn2N is not uniquely determined. Moreover, we have t 2 Acris;Cp=K

and Acris;Cp=K is an integral domain of characteristic 0 whose PD-structure is given
by 
n.x/D xŒn� D xn=n! for x 2 ker �Cp=K. In fact, the assertions follow from the
case K D K

pf
0

by Remark 3.5 and Remark 3.12(i), and the assertion in this case
follows from [Fontaine 1994a, 2.3.3].

We define BCcris;Cp=K WD Acris;Cp=KŒp
�1� and Bcris;Cp=K WD BCcris;Cp=KŒt

�1�. We
also define Ast;Cp=K WD Acris;Cp=KŒx�, where x is a formal variable, and we set
BCst;Cp=K WD Ast;Cp=KŒp

�1� and Bst;Cp=K WD BCst;Cp=KŒt
�1�. We define a monodromy

operator N on Bst;Cp=K as the Bcris;Cp=K-derivation N WD �d=dx. We denote
by vcris;Cp=K the p-adic semivaluation on BCcris;Cp=K (or Acris;Cp=K) defined by the
lattice Acris;Cp=K.

In the following, we will give an explicit description of Acris;Cp=K. Let

Acris;Cp=Qp
huJK
i

be the p-adic Hausdorff completion of the PD-polynomial Acris;Cp=Qp
-algebra on

the indeterminates fuj gj2JK
. Note that the PD-structure is given by 
n.uj / D

un
j =n!D uŒn�j for n 2 N and j 2 JK. We also have

Acris;Cp=Qp
huJK
i Dn P

n2N
L

JK

anuŒn�
ˇ̌̌
an 2 Acris;Cp=Qp

; fvcris;Cp=Qp
.an/gn2N

L
JK !1

o
:

We regard Acris;Cp=K as an Acris;Cp=Qp
-algebra by functoriality. Then, by the

universal property of PD-polynomial algebras, we have the Acris;Cp=Qp
-algebra

homomorphism

�cris;Cp=K W Acris;Cp=Qp
huJK
i ! Acris;Cp=KI uŒn� 7! uŒn�:

Lemma 3.13. If KD K0, then �cris;Cp=K is an isomorphism. Moreover, we have

vcris;Cp=K.x/D inf
n2N

L
JK

vcris;Cp=Qp
.an/

for x D
P

n2N
L

JK anuŒn� 2 BCcris;Cp=K with an 2 BCcris;Cp=Qp
.

We use the following lemma in the proof:

Lemma 3.14. We also assume that KD K0 and we use the notation in Section 1A.

(i) If R is a p-adically Hausdorff complete ZŒTj �j2JK
-algebra, then the canonical

map

HomZŒTj �j2JK
.OK;R/! HomFpŒTj �j2JK

.kK;R=.p//
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is bijective, where the Fp ŒTj �j2JK
-algebra structure on kK (resp. R=.p/) is given

by Tj 7! tj (resp. is induced by ZŒTj �j2JK
!R). Moreover, the restriction map

jkp
K
W HomFpŒTj �j2JK

.kK;R=.p//! HomFpŒT
p

j
�j2JK

.k
p
K ;R=.p//

is bijective, where the Fp ŒT
p

j �j2JK
-algebra structure on k

p
K (resp. R=.p/) is given

by T
p

j 7! t
p
j (resp. the composition of the inclusion Fp ŒT

p
j �j2JK

! Fp ŒTj �j2JK
and

the above structure map Fp ŒTj �j2JK
!R=.p/).

(ii) Let # W S ! R be a surjective homomorphism of p-adically Hausdorff com-
plete ZŒTj �j2JK

-algebras, whose kernel admits a PD-structure, compatible with the
canonical PD-structure on the ideal .p/. Then, the canonical map

#� W HomZŒTj �j2JK
.OK;S/! HomZŒTj �j2JK

.OK;R/I f 7! # ıf

is bijective.

Proof. (i) The first claim follows from the p-adic formal étaleness of OK=ZŒTj �j2JK
.

The latter assertion follows by using the isomorphism of k
p
K -algebras

k
p
K ŒTj �j2JK

=.fT
p

j � t
p
j gj2JK

/Š kKI Tj 7! tj :

(ii) We denote by #1 W S=.p/!R=.p/ the ring homomorphism induced by # . By
the first assertion of (i), we have only to prove that the canonical map

HomFpŒTj �j2JK
.kK;S=.p//! HomFpŒTj �j2JK

.kK;R=.p//I f 7! #1 ıf;

which is denoted by #� again, is bijective.
We first note the following: We regard R=.p/ as a quotient of S=.p/ by #1.

Let x 2R=.p/ and let Ox1, Ox2 2S=.p/ be lifts of x. Then, we have Ox1� Ox2 2 ker#1.
Since ap D p!
p.a/ 2 pS for a 2 ker# , where 
 denotes a PD-structure on ker# ,
we have Oxp

1
D Ox

p
2

. In particular, if we denote by Ox 2 S=.p/ a lift of x 2R=.p/,
then Oxp depends only on x.

We prove the injectivity. Let f W kK!R=.p/ be an Fp ŒTj �j2JK
-algebra homo-

morphism and f , f 0 W kK ! S=.p/ lifts of f , that is, #�.f / D #�.f
0/ D f .

For x 2 kK , f .x/ and f 0.x/ 2 S=.p/ are lifts of f .x/ 2 R=.p/, hence we
have f .xp/ D f .x/p D f 0.x/p D f 0.xp/ by the above remark. Hence, we
have f jkp

K
D f 0jkp

K
, that is, f D f 0 by the latter assertion of (i).

We prove the surjectivity. Let f W kK ! R=.p/ be an Fp ŒTj �j2JK
-algebra

homomorphism. We have only to construct an Fp ŒT
p

j �j2JK
-algebra homomor-

phism f W k
p
K ! S=.p/ such that #�.f /jkp

K
coincides with f jkp

K
, where we en-

dow k
p
K and S=.p/ with Fp ŒT

p
j �j2JK

-algebra structures by a similar way as in the
statement of (i). In fact, we can uniquely extend f to a ZŒTj �j2JK

-algebra homo-
morphism f W kK! S=.p/ by the latter assertion of (i). Moreover, .#�.f //jkp

K
D

#�.f jkp
K
/ coincides with f jkp

K
, which implies #�.f /D f by the latter assertion
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of (i) again. The set-theoretic map f W k
p
K ! S=.p/ taking y to Oxp, where

Ox 2 S=.p/ is any lift of f .yp�1

/ 2R=.p/, is well-defined by the above remark.
Moreover, f is a ZŒTj �j2JK

-algebra homomorphism by a simple calculation and
#�.f /jkp

K
coincides with f jkp

K
by construction, which implies the assertion. �

Proof of Lemma 3.13. Obviously, we have only to prove the first assertion. Put AD

Acris;Cp=Qp
hu

JK
i. Extend �Cp=Qp

W Acris;Cp=Qp
! OCp

to a surjective Acris;Cp=Qp
-

algebra homomorphism # WA! OCp
by #.uŒn�/D 0. We first prove that A has an

OK-algebra structure such that # is an OK-algebra homomorphism.
Denote by ! a generator of the kernel of �Cp=Qp

W Acris;Cp=Qp
! OCp

. Then,
the PD-structure on the ideal ker �Cp=Qp

of Acris;Cp=Qp
canonically extends to a

PD-structure ı1 on the ideal .!/ of A, compatible with the canonical PD-structure
on the ideal .p/. By construction, the kernel of the map � W A ! Acris;Cp=Qp

taking uŒn� to 0 is endowed with a PD-structure ı2, compatible with the canonical
PD-structure on the ideal .p/. Since A is an integral domain of characteristic 0,
ı1 and ı2 induce the same PD-structure on .!/\ ker �. Hence, by [Berthelot and
Ogus 1978, Proposition 3.12], the ideal ker# D .!/C ker � admits a PD-structure,
compatible with the canonical PD-structure on the ideal .p/. Then, the assertion
follows by applying Lemma 3.14(ii) to # :

OK

9!

$$

can:
// OCp

ZŒTj �j2JK

str:
//

str:

OO

A;

#

OO

where the horizontal structure map is given by Tj 7! uj C ŒQtj � 2A.
By the above OK-structure, we may regard A as a p-adically formal OK-PD-

thickening of OCp
. By universality, we have only to prove that �cris;Cp=K is an OK-

algebra homomorphism. Let ˛ WOK!Acris;Cp=K be the composition of the structure
map OK ! A and �cris;Cp=K. Since �cris;Cp=K commutes with the projections #
and �Cp=K, we have the commutative diagram

OK

˛

&&

can:
// OCp

ZŒTj �j2JK

str:
//

str:

OO

Acris;Cp=K;

�Cp=K

OO

where the horizontal structure map is given by Tj 7! tj . By Lemma 3.14(ii), ˛
coincides with the structure map OK! Acris;Cp=K, which implies the assertion. �

Finally, we remark that if K D K0, then Bcris;Cp=K and Bst;Cp=K are integral
domains by the above explicit description of Acris;Cp=K.
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3E. Connections and Frobenius on Bcris and Bst. In this section, assume KDK0.
We endow BCcris;Cp=K with the p-adic topology defined by the lattice Acris;Cp=K. We
regard Bcris;Cp=K as the direct limit of BCcris;Cp=K under the multiplication by t�1

and we set
y�

q
K
y̋ KBcris;Cp=K D lim

�!
y�

q
K
y̋ KBCcris;Cp=K:

Then, the canonical derivation d WK! y�1
K uniquely extends to a Bcris;Cp=K-linear

continuous derivation r W Bcris;Cp=K!
y�1

K
y̋ KBcris;Cp=K by the explicit description

of Bcris;Cp=K. Note that r.xŒn�/Dr.x/�xŒn�1� for x 2 ker �Cp=K. As in Section 3C,
if we denote by f@j gj2JK

the derivations on Bcris;Cp=K given byr.x/D
P

j2JK
dtj˝

@j .x/, then f@j gj2JK
are commuting continuous Bcris;Cp=Qp

-derivations and we have
@j D @=@uj . We also have a canonical extension rq of exterior derivations dq . Also,
we can uniquely extend rq to the map rq W

y�
q
K
y̋ KBst;Cp=K!

y�
qC1
K
y̋ KBst;Cp=K

by putting r.x/D 0, where we define y�q
K
y̋ KBst;Cp=K WD . y�

q
K
y̋ KBcris;Cp=K/Œx�.

Let ' W OK! OK be a lift of the absolute Frobenius on kK. The ring homomor-
phism ' ˝ ' W OK ˝W .RCp

/! OK ˝W .RCp
/ induces a ring homomorphism

on Acris;Cp=K. Although the resulting map depends on the choice of a Frobenius
lift of OK in general, we denote it by ' again. By defining '.x/ WD px, we also
have a Frobenius on Bst;Cp=K. By construction, the connection and the Frobenius
on Bcris;Cp=K commute and we have the relation N ı ' D p' ıN by a simple
calculation.

Notation. We define Br};Cp=K WD .B};Cp=K/
rD0 for } 2 fcris; stg.

By the commutativity of r and ', these rings are endowed with '-actions.
Obviously, Brst;Cp=K is endowed with the monodromy operator N . By the explicit
description of Bcris;Cp=K, we have:

Lemma 3.15. For } 2 fcris; stg, the canonical map

B
};Cp=Qp

! Br};Cp=K

is an isomorphism. Since this map is compatible with Frobenius, Frobenius
on Br};Cp=K is independent of the choice of a Frobenius lift of OK. In particular, the
Frobenius on Br};Cp=K is injective.

3F. Compatibility with limit. When a p-basis of kK is not finite, some technical
difficulties occur. In this case, we will reduce to the finite p-basis case by using the
results of Section 1G and the following inverse limits.

Let the notation be as in Section 1G. By functoriality, we have canonical maps

B};Cp=K0
! lim
 �J2P.JK /

B};Cp=KJ;0
; B~;Cp=K! lim

 �J2P.JK /
B~;Cp=KJ

;

where } 2 fcris; stg, ~ 2 fdR;HTg. Since these morphisms are compatible with
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the above explicit descriptions of these rings, it is easy to see that these maps are
injective.

3G. Embeddings of Bcris and Bst into BdR. Let

JCp=K WD ker .�Cp=K W Ainf;Cp=KŒp
�1�! Cp/:

We endow the ideal JCp=K=Jn
Cp=K of the Q-algebra Ainf;Cp=KŒp

�1�=Jn
Cp=K with the

unique PD-structure. This is compatible with the canonical PD-structure of OK on
the ideal .p/. Hence, the canonical map OK˝Z W .RCp

/! Ainf;Cp=KŒp
�1�=Jn

Cp=K

factors through .OK ˝Z W .RCp
//PD ! Ainf;Cp=KŒp

�1�=Jn
Cp=K. If we endow the

LHS and the RHS with the p-adic topology and the p-adic Banach space topol-
ogy respectively (see Section 3B), then the above morphism is continuous. In
fact, the canonical map times n! factors through the image of Ainf;Cp=K. By
passing to limit, the map extends to Acris;Cp=K ! BCdR;Cp=K. Thus, we have a
canonical K-algebra homomorphism BCcris;Cp=K ! BCdR;Cp=K. Fixing Qp 2 RCp

such that Qp.0/ D p, we extend this map to BCst;Cp=K ! BCdR;Cp=K by sending x
to log .Œ Qp�=p/ WD

P
n2N>0

.�1/n�1.Œ Qp�=p� 1/n=n. Note that these morphisms are
compatible with connections.

Proposition 3.16. Assume that the algebraic closure of K in Cp is dense in Cp.
Then, the canonical maps

Kcan˝Kcan;0
Brcris;Cp=K0

! BrdR;Cp=K; Kcan˝Kcan;0
Brst;Cp=K0

! BrdR;Cp=K;

K˝K0
Bcris;Cp=K0

! BdR;Cp=K; K˝K0
Bst;Cp=K0

! BdR;Cp=K

are injective.

Proof. By identifying Cp with the p-adic completion of Kalg, we may assume KDK.
Note that if kK is perfect, then this is due to [Fontaine 1994a, 4.2.4]. We consider
the general case. We first prove the first two cases. We have only to prove the
semistable case. The canonical map Kcan ˝Kcan;0

K
pf
0
! Kpf is injective since

Kcan=Kcan;0 is totally ramified and K
pf
0

is absolutely unramified. Hence, we have
the commutative diagram

Kcan˝Kcan;0
Brst;Cp=K0

Š

��

can:
// BrdR;Cp=K

Š

��
Kcan˝Kcan;0

Bst;Cp=K
pf
0

� � can:
// Kpf˝

K
pf
0

Bst;Cp=K
pf
0

� � can:
// BdR;Cp=K pf ;

where the vertical arrows are induced by base changes and the injectivity of the
bottom second arrow follows from the perfect residue field case. Then, the assertion
follows from the above diagram. We consider the latter two cases. By passing
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to limit (Section 3F), we may assume ŒkK W k
p
K
� <1. Then, the crystalline case

follows from [Brinon 2006, Proposition 2.47], where Bcris;Cp=K0
is denoted by Bcris.

We will prove the semistable case. By regarding K˝K0
Bcris;Cp=K0

as a subring
of Frac.BdR;Cp=K /, the assertion is equivalent to saying that x is transcendental
over Frac.Bcris;Cp=K0

/. Suppose that it is not the case. To deduce a contradiction,
we have only to construct a nonzero polynomial in Bcris;Cp=K

pf
0

ŒX � which has x
as a zero. By assumption, we have a nonzero polynomial f .X / D

P
i aiX

i 2

BCcris;Cp=K0
ŒX � such that f .x/D 0. For m 2 N

L
JK , we denote by @m the productQ

j2JK
@

mj

j , where f@j gj2JK
are the derivations defined in Section 3C. Denote by

Qf .m/.X / 2 BCcris;Cp=K
pf
0
ŒX � the image of the polynomial f .m/.X / WD

P
i @

m.ai/X
i

under the canonical homomorphism BCdR;Cp=K
! BCdR;Cp=K

pf . Then, Qf .m/.X /
has x as a zero since we have x 2 BrCdR;Cp=K

. Write ai D
P

n2N
L

JK
ai;nuŒn�

with ai;n 2 BCcris;Cp=Qp
by using the explicit description of BCcris;Cp=K0

given in
Section 3D. We have @m.ai/D

P
n2N

L
K ai;nCmuŒn� and Qf .m/.X /D

P
i ai;mX i .

Hence, we obtain the desired polynomial Qf .m/.X / by choosing m 2 N
L

JK such
that we have ai;m ¤ 0 for some i . �

4. Basic properties of rings of p-adic periods

We will apply the preceding construction to the cases K D Qp;K;K
pf, among

others. The resulting rings of p-adic periods will have an appropriate Galois action
by the functoriality of the construction: For example, GK acts on BdR;Cp=Qp

and
BdR;Cp=K , GK pf acts on BdR;Cp=K pf . In this section, we will review Galois theoretic
properties of these rings. The proofs of the properties are somewhat technical and the
reader may skip this section by admitting the results including the GK -regularities
just below. We keep the notation of the previous section.

4A. Calculations of H 0 and verification of GK -regularity. In this subsection,
we will prove the GK -regularity of the .Qp;GK /-rings

Bcris;Cp=K0
; Bst;Cp=K0

; BdR;Cp=K ; BHT;Cp=K ;

Brcris;Cp=K0
; Brst;Cp=K0

; BrdR;Cp=K
; BrHT;Cp=K

;

which are used later in the paper, and calculate their H 0. Note that these rings are
integral domains by their explicit description.

Lemma 4.1. Let ~ 2 fdR;HTg.

(i) H 0
�
GK ;Frac.B~;Cp=K /

�
DK:

(ii) The .Qp;GK /-ring B~;Cp=K satisfies condition .G�R3/ of Section 1H.

(iii) The .Qp;GK /-ring B~;Cp=K is GK -regular.
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Proof. Assertion (iii) follows from (i), (ii) and Lemma 1.21. We will prove (i)
and (ii) separately in the Hodge–Tate case and the de Rham case.

(a) The Hodge–Tate case: We first verify (i). By Theorem 1.15, we have only
to prove that if we have nonzero x;y 2 BHT;Cp=K such that g.x/y D xg.y/

for all g 2 GK , then we have x=y 2 Cp. We first consider the case jJK j <1.
Note that BHT;Cp=K Š Cp Œt; t

�1; fvj gj2JK
� is a uniquely factorization domain.

Hence we may assume that x and y are relatively prime by dividing x and y by
their greatest common divisor. Then we have g.x/ D cgx and g.y/ D cgy for
cg 2 .BHT;Cp=K /

� Š
S

n2Z C�ptn by assumption. By the explicit description of
BHT;Cp=K , we can choose n 2 NJK such that

@n.x/ 2 BrHT;Cp=K
n f0g Š Cp Œt; t

�1� n f0g;

where @j D t@=@vj and @n WD
Q

j @
nj

j (Remark 3.8). Write @n.x/ D
P

n2Z antn

with an 2 Cp . Then, we have g.@n.x//D cg@
n.x/ by the commutativity of @j and

the GK -action. Since cg is homogeneous with respect to t , we have cg 2 Cp by
comparing degrees. By comparing the leading terms, we have cgD g.an/=an�

n.g/

for all g 2 GK , where n is the degree of @n.x/ with respect to t . Hence, we
have x=antn 2 .BHT;Cp=K /

GK . Note that we have .BHT;Cp=K /
GK D K. This

follows from the facts that we have BHT;Cp=K D
S

r2N t�r Cp Œt; ftvj gj2JK
� and

H 0.GK ; t
�r Cp Œt; ftvj gj2JK

�/DK

by [Brinon 2006, Lemme 2.15], where Cp Œt; ftvj gj2JK
� is written

L
r2N grr .BCdR/

in the reference. Thus, we have x2C�ptn. By the same argument, we have y 2 C�ptm

for some m 2 Z. Write x D atn, y D btm with a; b 2 C�p . Then, we have

g.a=b/D �m�n.g/.a=b/

for g 2 GK . Since H 0.GK ;Cp.n � m// is nonzero if and only if nDm by
Theorem 1.15, we must have nDm. In particular, we have x=y D a=b 2 Cp.

We consider the general case. Recall the notation in Section 1G. Let J 2P.JK /

and denote by xJ ;yJ the image of x;y in BHT;Cp=KJ
. By applying the above

result to JK D J , if xJ and yJ are nonzero, then there exists �J 2 C�p such
that xJ D �J yJ . Since this �J is uniquely determined, � D �J is independent
of the choice of J . Since Sx;y WD fJ 2 P.JK / j xJ ¤ 0 and yJ ¤ 0g is a cofinal
subset of P.JK / by the explicit description of BHT;Cp=K , we have x D �y by the
injection in Section 1G.

We will verify (ii). Let x 2 BHT;Cp=K be a generator of a GK -stable Qp-line
in BHT;Cp=K . Write g.x/D cgx with cg 2Q�p . We use the same notation as above.
By a similar argument as above, if xJ ¤ 0, then we have xJ D aJ tnJ for aJ 2 C�p
and nJ 2 N. Moreover, aJ and nJ are unique. In particular, faJ g and fnJ g are
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constant on the cofinal subset Sx;x of P.JK / and we have x 2C�ptn� .BHT;Cp=K /
�

by the injection in Section 1G.

(b) The de Rham case: To prove assertion (i), we have only to prove that if we
have nonzero x;y 2 BdR;Cp=K such that g.x/y D xg.y/ for all g 2GK , then we
have x=y 2K. Let J 2P.JK / and denote by xJ ;yJ 2BdR;Cp=KJ

the image of x;y.
If xJ ¤0 and yJ ¤0, then we have xJ =yJ 2H 0.GKJ

;Frac.BdR;Cp=KJ
//DKJ by

[Brinon 2006, Proposition 2.18], where Frac.BdR;Cp=KJ
/ is denoted by CdR. Since

the set fJ 2P.JK / jxJ ¤0 and yJ ¤0g is a cofinal subset of P.JK / by the explicit
description of BCdR;Cp=K

, we have x=y 2
T

J2P.JK /
KJ DK by the injection in

Section 1G. We will verify (ii). By Remark 3.5(i), we may assume K DKur. Let
V be a GK -stable Qp-line in BdR;Cp=K generated by x. By Lemma 4.2 below
and Theorem 2.1, there exist n 2 Z and a finite extension L=K such that V tn �

.BdR;Cp=K /
GL D .BdR;Cp=L/

GL DL; in particular, we have x 2 .BdR;Cp=K /
�. �

Lemma 4.2. Let V be a GK -stable Qp-line in BdR;Cp=K . Then, up to a Tate twist,
V is Cp-admissible as a p-adic representation.

Proof. We assume KDKur by Hilbert 90 and Remark 3.6(ii). Let x 2 BdR;Cp=K be
a generator of V . By multiplying by a power of t , we may assume x 2 BCdR;Cp=K

.
Let � W GK ! Q�p be the character defined by �.g/ D g.x/=x. By the explicit
description of BCdR;Cp=K

(Section 3B), we have

x D
X

n2N
L

JK

anun

with an 2 BCdR;Cp=Qp
. Choose n 2 N

L
JK such that an ¤ 0 and write an D tn�

with n 2 N and � 2 .BCdR;Cp=Qp
/�. Since we have g.an/D �.g/an for g 2 GK pf ,

we have .���n/.g/D g.�/=� for g 2GK pf . By taking the Qp-linear map �Cp=Qp
,

we have .���n/.g/ D g.�Cp=Qp
.�//=�Cp=Qp

.�/ for g 2 GK pf , that is, ���njK pf

is Cp-admissible. Hence, ���n is Cp-admissible by Theorem 2.1. �

Corollary 4.3. We have

.Brcris;Cp=K0
/GK D .Brst;Cp=K0

/GK DKcan;0;

.Bcris;Cp=K0
/GK D .Bst;Cp=K0

/GK DK0;

.BrCdR;Cp=K
/GK D .BrdR;Cp=K

/GK DKcan;

.BCdR;Cp=K
/GK D .BdR;Cp=K /

GK DK;

.BrHT;Cp=K
/GKD .BHT;Cp=K /

GK DK:

Proof. Since we have trivial inclusions (such as K0 � .Bcris;Cp=K0
/GK ), we have

only to show the converse inclusions. By passing to limit (Section 1G and 3F),
we may assume ŒkK W k

p
K
� <1. We prove the Hodge–Tate case first. Since we
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have BrHT;Cp=K
Š
L

n2Z Cp.n/ (Section 3B), the assertion for BrHT;Cp=K
follows

from Theorem 1.15. The assertion for BHT;Cp=K follows from [Brinon 2006,
Lemme 2.15].

We will prove the rest of the assertion. Since we have Kcan;0 D .K0/can by
comparing the residue fields, the assertions in the horizontal case follow from those
in the r-less case by taking horizontal sections. The de Rham case follows from
Lemma 4.1(i) and the crystalline and semistable cases follow from de Rham case
and Proposition 3.16. �

Lemma 4.4. The .Qp;GK /-ring B};Cp=K0
satisfies .G�R3/ for } 2 fcris; stg. In

particular, B};Cp=K0
is GK -regular.

Proof. Note that the last assertion is obtained by applying Lemma 1.20, whose
assumptions are satisfied by Proposition 3.16, Lemma 4.1(iii) and Corollary 4.3.
By Remark 3.12(ii), we may assume K D Kur. Let V be a GK -stable Qp-line
in B};Cp=K0

with generator x. By Lemma 4.2, there exists n 2 Z such that V tn

is Cp-admissible as a p-adic representation of GK . By Theorem 2.1, the image of
the map � WGK !Q�p that takes g to g.xtn/=.xtn/ is included in .Q�p/tors, which
is killed by 2.p � 1/. Therefore, we have .xtn/2.p�1/ 2 .B};Cp=K0

/GK D K0,
which implies x 2 B�};Cp=K0

. �

Lemma 4.5. The .Qp;GK /-rings

Brcris;Cp=K0
; Brst;Cp=K0

; BrdR;Cp=K
; BrHT;Cp=K

are GK -regular.

Proof. The GK -regularity of the field BrdR;Cp=K
follows from Example 1.18.

Since we have a GK pf-equivariant canonical isomorphism Br};Cp=K0
Š B};Cp=K

pf
0

for } 2 fcris; stg, the verification of .G � R3/ for Br};Cp=K0
is reduced to that

for B};Cp=K
pf
0

, which follows from [Fontaine 1994b, Proposition 5.1.2(ii)]. By
a similar reason, .G�R3/ for BrdR;Cp=K

is reduced to [Fontaine 1994b, Proposi-
tion 3.6]. The .Qp;GK /-ring Cp..t// is a field containing the fractional field
of BrHT;Cp=K

Š Cp Œt; t
�1�. By Theorem 1.15 and dévissage, we have Cp..t//

GK D

K D .BHT;Cp=K /
GK , where the last equality follows from Corollary 4.3. By apply-

ing Lemma 1.21, BrHT;Cp=K
is GK -regular. By Corollary 4.3, the GK -regularity for

Brcris;Cp=K0
and Brst;Cp=K0

follows from Lemma 1.20 and Proposition 3.16. �

Remark 4.6. For �2fcris; st; dR;HTg, the .Qp;GK /-rings Br
�;Cp=Qp

and B
�;Cp=Qp

are GK -regular We also have

.Br
�;Cp=Qp

/GK D .B�;Cp=Qp
/GK Š .Br

�;Cp=K0
/GK :

In fact, the assertion follows from canonical isomorphisms Br
�;Cp=Qp

DB
�;Cp=Qp

!

Br
�;Cp=K0

as .Qp;GK /-rings.
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Notation. (i) We define the category of crystalline (resp. horizontal crystalline)
representations of GK as Repadm

Bcris;Cp=K0
GK (resp. Repadm

Brcris;Cp=K0

GK ), and we denote
it by RepcrisGK (resp. ReprcrisGK ). The corresponding functor DB is denoted by
Dcris (resp. Drcris) and the comparison map ˛B by ˛cris;Cp=K0

(resp. ˛rcris;Cp=K0
).

We define the category of semistable representations similarly, with “cris” in place
of “st”.

(ii) We define the category of de Rham (resp. horizontal de Rham) representations
of GK as Repadm

BdR;Cp=K
GK (resp. Repadm

BrdR;Cp=K

GK ), and we denote it by RepdRGK

(resp. ReprdRGK ). The corresponding functor DB is denoted by DdR (resp. DrdR)
and the comparison map ˛B (loc. cit.) by ˛dR;Cp=K (resp. ˛rdR;Cp=K

). We define
the category of Hodge–Tate representations similarly, with “dR” in place of “HT”.

(iii) We define rings with GK -actions and automorphisms ' by

QBrCrig;Cp=K0
WD

\
n2N

'n.BrCcris;Cp=K0
/; QBrClog;Cp=K0

WD

\
n2N

'n.BrCst;Cp=K0
/:

Note that we have QBrC};Cp=K0
Š QBrC};Cp=K

pf
0

for } 2 frig; logg.

(iv) In the rest of the paper, when kK is perfect, we omit hyperscripts r to be
consistent with the usual notation; e.g., we write QBCrig;Cp=K

pf
0

instead of QBrCrig;Cp=K
pf
0

.

Remark 4.7. As is explained in Section 1A, there is no canonical choice of a Cohen
ring of kK nor a Frobenius lift when kK is not perfect. Since some definitions,
such as the definition of crystalline representations, involve these choices, we make
some remarks on the independence of definitions.

(i) Since we have a canonical isomorphism B~;Cp=Qp
ŠBr~;Cp=K

for ~2 fdR;HTg
(Lemma 3.7), Br~;Cp=K

depend only on Cp as an abstract ring.

(ii) Since we have a canonical isomorphism BC};Cp=Qp
ŠBrC};Cp=K0

for}2fcris; stg
(Lemma 3.15), the category Repr

}
GK depends only on Cp but not on the choice

of K0. It also follows that QBrC};Cp=K0
for } 2 frig; logg is independent of the

choices of K0 and ' as a Qp-algebra with '-action. Moreover, for a finite exten-
sion L=K, QBrC};Cp=K0

coincides with QBrC};Cp=L0
in BrCdR;Cp=L

.

(iii) By definition, the category Rep}GK for } 2 fcris; stg may depend on the
choice of K0. In the case ŒkK W k

p
K
� < 1 with } D cris, the independence is

proved by Brinon [2006, Proposition 3.42]: He proves the assertion by introducing
a ring Amax;K , which is independent of the choice of K0 and is slightly bigger
than OK ˝OK0

Acris;Cp=K0
. Although a similar idea seems to work in the general

case, we do not treat this problem in this paper. Instead, we will state a precise
version of the Main Theorem later (see Section 6).

Remark 4.8 (Hilbert 90). Let V 2RepQp
GK . Then, V is crystalline or semistable if

and only if so is V jK ur . In fact, we have Bcris;Cp=K0
ŠBcris;Cp=K

ur
0

by Remark 3.12(i),
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whose GK ur-invariant is Kur
0

by Corollary 4.3. Hence, the assertion in the crystalline
case follows from Hilbert 90 and the same proof works also in the semistable case.
We can also prove that V is de Rham or Hodge–Tate if and only if so is V jL
for a finite extension L of the completion of an unramified extension of K. This
follows from the cases when L=K is finite or unramified and in these cases the
claim follows from Remark 3.6(ii) and Hilbert 90.

Algebraic structures of rings of p-adic period, which are compatible with the
action of GK , induce additional structures on the corresponding D. We do not
review these structures here since we do not need all of them to prove the Main
Theorem. For the reader interested in these structures, see [Brinon 2006, 3.5]
for example. We need only the connection on DdR for the proof of the Main
Theorem: For V 2 RepdRGK , the finite-dimensional K-vector space DdR.V / has a
connection r WDdR.V /! y�

1
K
˝K DdR.V /, which is compatible with the canonical

derivation on K.

4B. Restriction to perfection. If we have V 2 Rep
�
GK with � 2 fcris; st; dR;HTg,

then we have V jK pf 2 Rep
�
GK pf . Moreover, we have canonical isomorphisms

K
pf
0
˝K0

D}.V /! D}.V jK pf
0

/; Kpf
˝K D~.V /! D~.V jK pf/;

induced by the canonical map B};Cp=K0
!B

};Cp=K
pf
0

and B~;Cp=K !B~;Cp=K pf

for } 2 fcris; stg and ~ 2 fdR;HTg. We first prove the de Rham case. By applying
BdR;Cp=K pf˝BdR;Cp=K

to the comparison isomorphism ˛dR;Cp=K .V /, we have a
GK pf-equivariant isomorphism

BdR;Cp=K pf ˝K DdR.V /! BdR;Cp=K pf ˝Qp
V:

By taking GK pf-invariant, we have an isomorphism Kpf˝K DdR.V /!DdR.V jK pf/.
The other cases follow similarly.

5. Construction of zNr C
rig .V /

In this section, we construct a .';GK /-module zNrCrig .V / over zBrCrig;Cp=K0
for a de

Rham representation V of GK , possibly after a Tate twist. Our zNrCrig coincides with
Colmez’s QNCrig when the residue field kK is perfect.

We first recall Colmez’s Dieudonné–Manin theorem, which is a key ingredient of
the construction. Let M be a finite free BrCdR;Cp=K

-module of rank r > 0. We call N

a BrCdR;Cp=K
-lattice of M if N is a BrCdR;Cp=K

-submodule of finite type of M such that
N Œt�1�DM Œt�1�. Note that a BrCdR;Cp=K

-lattice of M is finite free of rank r over
BrCdR;Cp=K

since BrCdR;Cp=K
is a discrete valuation ring.

For n 2 Z, denote the composition

zBrCrig;Cp=K0

'n

,! zBrCrig;Cp=K0

inc:
,! BrCdR;Cp=K
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by 'n again. By the commutative diagram

QBrCrig;Cp=K0

� �
'n

//

can: Š

��

BrCdR;Cp=K

Šcan:
��

QBCrig;Cp=K
pf
0

� �
'n

// BCdR;Cp=K
pf ;

the proof of the following theorem is reduced to the perfect residue field case
[Colmez 2008, Proposition 0.3] (see also the remark below).

Theorem 5.1 (Colmez’s Dieudonné–Manin classification theorem). Let r 2 N>0

and M be a BrCdR;Cp=K
-lattice of .BrCdR;Cp=K

/r . Let

Mrig WD fx 2 .zB
rC
rig;Cp=K0

/r j 'n.x/ 2M for all n 2 Zg:

Then, Mrig is a finite free zBrCrig;Cp=K0
-module of rank r with semilinear '-action and

there exists a basis e
1
; : : : ; er of Mrig over zBrCrig;Cp=K0

such that:

(i) There exist h 2 N>0 and a1 � � � � � ar 2 N such that 'h.ei/ D pai ei

for 1� i � r ;

(ii) e
1
; : : : ; er is a basis of M over BrCdR;Cp=K

.

Remark 5.2. Though our condition (ii) is weaker than that in [Colmez 2008], the
conclusions of the theorem are the same for the following reason: By definition, '
acts on Mrig. Since 'h is an automorphism on Mrig by (i), ' is also an automorphism
on Mrig. Hence, (ii) implies that 'n.e

1
/; : : : ; 'n.er / is a zBrCrig;Cp=K0

-basis of Mrig

for all n 2 Z. In particular, 'n.e
1
/; : : : ; 'n.er / is a BrCdR;Cp=K

-basis of M .

In the rest of this section, let V be a de Rham representation of GK of dimension r

such that DdR.V /D .B
C
dR;Cp=K

˝Qp
V /GK . Note that the last assumption is satisfied

for any de Rham representation after some Tate twist. Let

NCdR.V / WD BCdR;Cp=K
˝K DdR.V /:

It is a finite free BCdR;Cp=K
-module of rank r with GK -action and r-action which

are commuting. By the comparison isomorphism ˛dR;Cp=K , we have a canonical
isomorphism NCdR.V /Œt

�1�Š BdR;Cp=K ˝Qp
V , in particular, we have

tnBCdR;Cp=K
˝Qp

V � NCdR.V /� BCdR;Cp=K
˝Qp

V

for sufficiently large n 2 N. Taking horizontal sections, we see that NrCdR .V / WD

NCdR.V /
rD0 is a GK -stable BrCdR;Cp=K

-lattice of BrCdR;Cp=K
˝Qp

V . By applying
Theorem 5.1 to M DNrCdR .V /, we have the following proposition: (In the following,
a .';GK /-module over zBrCrig;Cp=K0

(of rank r ) means a finite free module (of rank r )
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over zBrCrig;Cp=K0
with a semilinear '-action and a semilinear GK -action, which are

commuting.)

Proposition 5.3. The zBrCrig;Cp=K0
-module

QNrCrig .V / WD fx 2
zBrCrig;Cp=K0

˝Qp
V j 'n

˝ id.x/ 2 NrCdR .V / for all n 2 Zg

is a .';GK /-module over zBrCrig;Cp=K0
of rank r . Moreover, we have a basis e

1
; : : : ; er

of zNrCrig .V / over zBrCrig;Cp=K0
such that:

(i) There exist h 2 N>0 and a1 � � � � � ar 2 N such that 'h.ei/ D pai ei

for 1� i � r ;

(ii) e
1
; : : : ; er is a basis of NrCdR .V / over BrCdR;Cp=K

.

Note that zNrCrig .V / is independent of the choice of K0 by Remark 4.7(ii). We
will use the following property of zNrCrig .V / in the proof of the Main Theorem.

Proposition 5.4. The canonical map

BCdR;Cp=K
˝BrCdR;Cp=K

NrCdR .V /! NCdR.V /

is a GK -equivariant isomorphism. In particular, BCdR;Cp=K
˝ QBrCrig;Cp=K0

zNrCrig .V / is
isomorphic to .BCdR;Cp=K

/r as a BCdR;Cp=K
ŒGK �-module by Proposition 5.3(ii).

Proof. Since V jK pf is de Rham and we have the canonical isomorphism BdR;Cp=Qp
!

BdR;Cp=K pf , we have the comparison isomorphism

BdR;Cp=Qp
˝
.BdR;Cp=Qp /

G
Kpf .BdR;Cp=Qp

˝Qp
V /GKpf ! BdR;Cp=Qp

˝Qp
V:

By taking the base change of this isomorphism by BdR;Cp=Qp
! BdR;Cp=K , we

obtain a canonical isomorphism of BdR;Cp=K ŒGK pf �-modules

˛ W BdR;Cp=K ˝.BdR;Cp=Qp /
G

Kpf .BdR;Cp=Qp
˝Qp

V /GKpf ! BdR;Cp=K ˝Qp
V: (2)

We also have the comparison isomorphism

˛dR;Cp=K .V / W BdR;Cp=K ˝K DdR.V /! BdR;Cp=K ˝Qp
V:

Note that we have .BCdR;Cp=Qp
/GKpf D .BdR;Cp=Qp

/GKpf since we have

.t�nBCdR;Cp=Qp
=t�nC1BCdR;Cp=Qp

/GKpf D .Cp.�n//GKpf D 0

for n 2 N>0. We have only to prove that there exists an isomorphism of BCdR;Cp=K
-

modules

.NCdR.V /D / BCdR;Cp=K
˝K DdR.V /Š

BCdR;Cp=K
˝
.BCdR;Cp=Qp

/
G

Kpf .BdR;Cp=Qp
˝Qp

V /GKpf

which is compatible with the injections ˛dR;Cp=K .V / and ˛. Indeed, by taking the
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horizontal sections of both sides, we have

NrCdR .V /D BrCdR;Cp=K
˝
.BCdR;Cp=Qp

/
G

Kpf .BdR;Cp=Qp
˝Qp

V /GKpf ;

which implies the assertion.
We have

DdR.V / ,! .BdR;Cp=K ˝Qp
V /GKpf D

.BdR;Cp=K /
G

Kpf ˝
.BdR;Cp=Qp /

G
Kpf .BdR;Cp=Qp

˝Qp
V /GKpf ;

where the equality follows by taking GK pf-invariant of (2). Note that we have

.BCdR;Cp=K
/GKpf D .BdR;Cp=K /

G
Kpf :

Indeed, if we write x 2 LHS as x D t�n
P

n2N
L

JK
anun with an 2 BCdR;Cp=Qp

,
since fuj gj2JK

are invariant by the action of GK pf , we have

bn WD an=tn
2 .BdR;Cp=Qp

/GKpf D .BCdR;Cp=Qp
/GKpf :

Therefore, we have x D
P

n2N
L

JK
bnun 2 .BCdR;Cp=K

/GKpf . Hence we have a
canonical map

DdR.V / ,! BCdR;Cp=K
˝
.BCdR;Cp=Qp

/
G

Kpf .BdR;Cp=Qp
˝Qp

V /GKpf :

This induces a canonical homomorphism of BCdR;Cp=K
-modules

i W BCdR;Cp=K
˝K DdR.V /! BCdR;Cp=K

˝
.BCdR;Cp=Qp

/
G

Kpf .BdR;Cp=Qp
˝Qp

V /GKpf ;

which is compatible with the injections ˛dR;Cp=K .V / and ˛ by construction. We
have only to prove the surjectivity of i . By Nakayama’s lemma, we have only
to prove the assertion after applying BCdR;Cp=K

pf˝BCdR;Cp=K
(note that BCdR;Cp=K

!

BCdR;Cp=K
pf is a surjective homomorphism of local rings). We have the commutative

diagram

BCdR;Cp=K
pf ˝K DdR.V /

˛dR;Cp=K .V /�
//

i�
��

BdR;Cp=K pf ˝Qp
V

BCdR;Cp=K
pf ˝

.BCdR;Cp=Qp
/
G

Kpf .BdR;Cp=Qp
˝Qp

V /GKpf
˛�
//

Šcan:
��

BdR;Cp=K pf ˝Qp
V

BCdR;Cp=K
pf ˝K pf DdR.V jK pf/

� �
˛dR;Cp=Kpf .V jKpf /

// BdR;Cp=K pf ˝Qp
V;

where the left lower arrow is induced by BdR;Cp=Qp
! BdR;Cp=K pf , the GK pf-

equivariant isomorphism. Denote the composition of the left vertical arrows
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by i 0. Since the canonical map BdR;Cp=K ! BdR;Cp=K pf is GK pf-equivariant,
by the diagram, the restriction of i 0 to DdR.V / coincides with the canonical
map DdR.V /! DdR.V jK pf/, which is an isomorphism after tensoring Kpf (see
Section 4B). Therefore, i 0 is an isomorphism and we obtain the assertion. �

6. Proof of the Main Theorem

We will restate our main theorem in the point of view of Remark 4.7(iii):

Main Theorem. Let V be a de Rham representation of GK . Then, there exists a
finite extension L=K such that the restriction V jL is Bst;Cp=L0

-admissible for any
choice of L0.

In this section, we give a proof of the Main Theorem in this form. Before the
proof, we prepare technical lemmas used in the proof. The reader may go to the
proof of the Main Theorem and back to the lemmas if necessary.

We first recall a slightly modified version of [Colmez 2008, Proposition 0.6]. In
the rest of this section, denote the unramified extension of Qp of degree h 2 N>0

by Qph .

Proposition 6.1. Assume that kK is perfect. Let U0
h;a
WD . QBClog;Cp=K0

/'
hDpa

for h,
a 2 N. Let M be a .';GK /-module over QBCrig;Cp=K0

of rank r 2 N>0 with basis
e

1
; : : : ; er . Assume that there exists an isomorphism of BCdR;Cp=K

ŒGK �-modules
BCdR;Cp=K

˝ QBCrig;Cp=K
M Š .BCdR;Cp=K

/r and that e
1
; : : : ; er satisfies the following

conditions:

(i) There exists h 2 N>0 and a1 � � � � � ar 2 N such that 'h.ei/ D pai ei

for 1� i � r .

(ii) For all g 2GK , there exists cg 2GLr .B
C
dR;Cp=K

/, a (unique) upper triangular
matrix whose diagonal entries are 1, such that g.e

1
; : : : ; er /D .e1

; : : : ; er /cg.

Then there exists a QBClog;Cp=K0
-basis f1; : : : ; fr of QBClog;Cp=K0

˝ QBCrig;Cp=K0

M satis-
fying the following conditions:

(a) fi is fixed by GK ;

(b) fi D ei C
P

1�j�i�1 j̨iej with j̨ i 2 U0
h;ai�aj

(hence 'h.fi/D paifi).

Proof. Note that we add the extra assumption (ii) and the slightly stronger con-
clusion (a) to the original proposition. Let U be the subgroup of GLr .B

C
dR;Cp=K

/

consisting of upper triangular matrices whose diagonal entries are 1 and whose .i; j /-
component belongs to U0

h;aj�ai
for i < j . We endow U with the subspace

topology of GLr .B
C
dR;Cp=K

/. Then, U is a topological GK -group and the map
g 7! cgIGK ! U is a continuous 1-cocycle. By [Colmez 2008, Proposition 0.6],
there exists a finite Galois extension L=K such that Œc� is mapped to the trivial
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class in H 1.GLur ;U / by the composite ResLur

L ıResL
K , where Œc� denotes the class

represented by c. Note that for all a 2 N>0, we have

.U0h;a/
GLur
� ..Bst;Cp=L0

/GLur /'
hDpa

D .Lur
0 /
'hDpa

D 0;

where the first equality follows from Remark 3.12(ii) and Corollary 4.3 and the
last equality follows from [Colmez 2008, Lemme 10.9]. Hence U GLur

D f1g and
Œc� is mapped to the trivial class in H 1.GL;U / by the inflation-restriction exact
sequence. Hence, we have only to prove that the inverse image of the trivial element
by ResL

K WH
1.GK ;U /!H 1.GL;U / consists of the trivial element.

We endow U with a GK -stable decreasing filtration fFngn2N by Fn WD f.xij / 2

U j xij D 0 for 0 < j � i � ng. Then, we have F0 D U , Fr D f1g, FnC1 E Fn

and Fn=FnC1 is isomorphic to a direct sum of copies of U0
h;a

with a 2N. We have
only to prove that the inverse image of the trivial element under the restriction map
ResL

K WH
1.GK ;Fn/!H 1.GL;Fn/ for n2N consists of the trivial element. Since

there exists a GK -equivariant set-theoretic section of the canonical projection Fn!

Fn=FnC1 (for example, we can identify

1C
X

i

xi;iCnC1Ei;iCnC1 2 Fn

with its image in Fn=FnC1), the canonical maps FGK
n ! .Fn=FnC1/

GK and
FGL

n ! .Fn=FnC1/
GL are surjective. By using long exact sequences, we have the

commutative diagram

0 // H 1.GK ;FnC1/
can:
//

ResL
K

��

H 1.GK ;Fn/
can:
//

ResL
K

��

H 1.GK ;Fn=FnC1/

ResL
K

��

0 // H 1.GL;FnC1/
can:
// H 1.GL;Fn/

can:
// H 1.GL;Fn=FnC1/;

whose rows are exact as pointed sets. To prove the assertion, it suffices to prove
the injectivity of the restriction map H 1.GK ;U

0
h;a
/!H 1.GL;U

0
h;a
/ for h; a 2 N.

Indeed, it implies the injectivity of the right arrow in the diagram and we obtain the
assertion by dévissage and diagram chasing. We first consider the case aD 0, that
is, U0

h;0
DQph (Lemma 6.2 below). Since H 1.GL=K ;Q

GL

ph / is killed by the multi-
plication by ŒL WK� (using the corestriction) which induces an isomorphism on the
coefficients, we have H 1.GL=K ;Q

GL

ph /D 0. By the inflation-restriction sequence,
we obtain the assertion. Consider the case a> 0. We denote by � WGK ! Z�p the
cyclotomic character. Then, we obtain the assertion by the following commutative
diagram:



2020 Shun Ohkubo

H 1.GK ;U
0
h;a
/

ResL
K

��

� �
….N kı'�n/�

//
Q

n;k2N H 1.GK ;B
C
dR;Cp=K

/Š
Q

n;k2N K log�
� _

…ResL
K

��

H 1.GL;U
0
h;a
/
� �
….N kı'�n/�

//
Q

n;k2N H 1.GL;B
C
dR;Cp=K

/Š
Q

n;k2N L log�;

where two isomorphisms follow by dévissage and Lemma 1.14, Theorem 1.15 (a
theorem of J. Tate) and the injectivity of the horizontal arrows follow from [Colmez
2008, Proposition 0.4(ii)]. �

Lemma 6.2. We have

. QBrCrig;Cp=K0
/'

hDp�a

D . QBrClog;Cp=K0
/'

hDp�a

D 0 for a 2 N>0;

. QBrCrig;Cp=K0
/'

hD1
D . QBrClog;Cp=K0

/'
hD1
DQph :

Proof. We first prove the first assertion. Suppose that we have a nonzero element x

in . QBrClog;Cp=K0
/'

hDp�a

. Since QBrClog;Cp=K0
is an integral domain, we may assume

that we have x 2 Ast;Cp=K0
by multiplying by some power of p. By assump-

tion and the '-stability of Ast;Cp=K0
, x D pna'nh.x/ 2 pnAst;Cp=K0

. Hence
x 2

T
n pnAcris;Cp=K0

Œx�D f0g since Acris;Cp=K0
is p-adically separated. Thus

x D 0, which is a contradiction.
We prove the latter assertion. By a simple calculation, we have

. QBrClog;Cp=K0
/'

hD1
D . QBrCrig;Cp=K0

/'
hD1:

By the canonical isomorphism QBrCrig;Cp=K0
Š QBCrig;Cp=K

pf
0

, we may reduce to the
perfect residue field case, which follows from [Colmez 2002, Proposition 9.2]. �

Lemma 6.3. Let D be a finite free BCdR;Cp=K
-module with semilinear GK -action.

Then, the canonical map BCdR;Cp=K
˝K DGK !D is injective. In particular, we

have dimK DGK � rankBCdR;Cp=K
D <1.

Proof. Suppose that we have linearly independent elements f1; : : : ; fn 2 DGK

over K, which have a nontrivial relation
P

i �ifi D 0 with �i 2 BCdR;Cp=K
. Choose

the minimum n among such n’s. Then for 1� i � n, we have g.�i=�1/D �i=�1

in Frac.BdR;Cp=K /. Hence we have both �i=�1 2H 0.GK ;Frac.BdR;Cp=K //DK

and
P

i.�i=�1/fi D 0, a contradiction. �

Lemma 6.4. Let W be an r -dimensional Qph-vector space with semilinear GK -
action. For 0 � i < h, we define the Qph-vector space 'i

�W with semilinear GK -
action by 'i

�W WDW as GK -module with scalar multiplication

Qph �W !W I .�;x/ 7! 'i.�/x:
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If we have an isomorphism of BCdR;Cp=K
ŒGK �-modules

BCdR;Cp=K
˝Q

ph
'i
�W Š .B

C
dR;Cp=K

/r

for 0� i < h, then W is Cp-admissible as a p-adic representation of GK .

Proof. By assumption, we have isomorphisms

BCdR;Cp=K
˝Qp

W Š
M

0�i<h

BCdR;Cp=K
˝Q

ph
'i
�W Š .B

C
dR;Cp=K

/hr

of BCdR;Cp=K
ŒGK �-modules, which implies the assertion by tensoring with Cp

over BCdR;Cp=K
. �

Lemma 6.5. Assume that e
K=Kcan

D 1. Then, the complex

K˝K0
.BCcris;Cp=K0

/GKpf
r
�!

�1
K
y̋K0

.BCcris;Cp=K0
/GKpf

r1
��!�2

K
y̋K0

.BCcris;Cp=K0
/GKpf ;

which is induced by the inclusion K˝K0
BCcris;Cp=K0

!BCdR;Cp=K
(Proposition 3.16)

and Lemma 3.9, is exact. Here, we endow .BCcris;Cp=K0
/GKpf with the p-adic topology

induced by the p-adic semivaluation vcris;Cp=K .

Proof. Note that the connections are Kcan-linear by Proposition 1.13. We may
reduce to the case KDK0 by Remark 1.4(ii) and Lemma 1.10(iii). Let ! 2 kerr1.
We can write ! D

P
j2JK

dtj ˝�j with �j 2 BCcris;Cp=K
such that

fvcris;Cp=K .�j /gj2JK
!1:

We can also write �j D
P

n2N
L

JK
�j ;nuŒn� with �j ;n 2 BCcris;Cp=Qp

such that
fvcris;Cp=Qp

.�j ;n/gn2N
L

JK
!1. Since uj is invariant under the action of GK pf ,

we have �j ;n 2 .B
C
cris;Cp=Qp

/GKpf . Recall the proof of Lemma 3.9: We define a0D 0

and an D �j ;n�e
j

if nj ¤ 0. Then, we have

x D
X

n2N
L

JK

anuŒn� 2 BdR;Cp=K

and r.x/ D !. Note that we have x 2 .BCdR;Cp=K
/GKpf . Hence, we have only

to prove x 2 BCcris;Cp=K
. Fix N 2 N: we have to show that vcris;Cp=K .an/ � N

for all but finitely many n 2 N
L

JK . Choose a finite subset J of JK such that
we have vcris;Cp=K .�j / � N for j 2 JK n J . We also choose n 2 N such that
we have vcris;Cp=Qp

.�j ;n/ � N for j 2 J and jnj � n. Let n 2 N
L

JK n NJ .
Then, we have vcris;Cp=Qp

.an/D vcris;Cp=Qp
.�j ;n�ej

/ � N for some j 2 JK n J .
Let n2NJ with jnj>n. Then, we have vcris;Cp=Qp

.an/Dvcris;Cp=Qp
.�j ;n�ej

/�N

for some j 2 J . Since the set fn 2 NJ j jnj � ng is finite, these inequalities imply
the assertion. �
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Proof of Main Theorem. Obviously, we may assume r WD dimQp
V > 0. By

Hilbert 90, we may replace K by Kur. Hence, we may assume that kK is separably
closed. After some Tate twist, we may also assume that V satisfies the assumption
of Section 5, that is, we have DdR.V /D .B

C
dR;Cp=K

˝Qp
V /GK .

We divide the rest of the proof into two steps: We will construct a finite exten-
sion L=K in Step 1 and after replacing K by L, we will prove the semistability
of V in Step 2. Note that only Step 2 involves the choice of K0.

Step 1: Set M WD zNrCrig .V / and let e
1
; : : : ; er be as in Proposition 5.3. Also let

fa0
1
< � � �< a0r 0g be the set of distinct elements in the multiset fa1; : : : ; ar g and

mi the multiplicity of a0i in the multiset for 1� i � r 0. Let fe.i/
1
; : : : ; e

.i/
mi
g be the

subset of e
l
2 fe

1
; : : : ; er g satisfying 'h.e

l
/D pa0

i e
l
. We define an exhaustive and

separated increasing filtration of M by

Mn WD

8<:
0 if n� 0;L

1�i�n.
zBrCrig;Cp=K0

e
.i/
1
˚ � � �˚ zBrCrig;Cp=K0

e
.i/
mi
/ if 1� n< r 0;

M otherwise:

The filtration is stable under ' and GK -actions. In fact, for 1� i �n< r 0 and g2GK ,
we have

'.e
.i/
1
/; : : : ; '.e.i/mi

/;g.e
.i/
1
/; : : : ;g.e.i/mi

/ 2M'hDp
a0

i
�Mn;

where the last inclusion follows from Lemma 6.2. We also define

Wn WD .Mn=Mn�1/
'hDpa0n

for 1� n� r 0. Since we have WnDQphe
.n/
1
˚� � �˚Qphe

.n/
mn

by Lemma 6.2 (where
e
.n/
i denotes the image of e

.n/
i in Mn=Mn�1), Wn is an mn-dimensional Qph-vector

space with continuous semilinear GK -action. Let

Dn WD BCdR;Cp=K
˝zBrCrig;Cp=K0

Mn:

Then, we have the left exact sequence of finite K-vector spaces

0 // DGK

n�1

inc:
// DGK

n

pr:
// .Dn=Dn�1/

GK : (3)

Hence, we have the inequalities

dimK DGK
n � dimK D

GK

n�1
C dimK .Dn=Dn�1/

GK � dimK D
GK

n�1
Cmn

for n 2 Z by Lemma 6.3. By Proposition 5.4, we have an isomorphism of BCdRŒGK �-
modules

BCdR;Cp=K
˝zBrCrig;Cp=K0

MŠ .BCdR;Cp=K
/r ; (4)

which implies dimK D
GK
n D r for n � r 0. Hence, the summation of the above

inequalities are equalities. Therefore, the above inequalities are equalities, in
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particular, the map pr: WDGK
n ! .Dn=Dn�1/

GK in (3) is surjective. Thus, we have
the commutative diagram

0 // BCdR;Cp=K
˝K D

GK

n�1
//

� _

��

BCdR;Cp=K
˝K D

GK
n

//
� _

��

BCdR;Cp=K
˝K .Dn=Dn�1/

GK //
� _

��

0

0 // Dn�1
// Dn

// Dn=Dn�1
// 0

with exact rows and injective vertical arrows by Lemma 6.3. Since the middle
vertical arrow is an isomorphism for n� r 0 by (4), all vertical arrows are isomor-
phisms. In particular, for 1 � n � r 0, we have isomorphisms of BCdR;Cp=K

ŒGK �-
modules BCdR;Cp=K

˝Q
ph

Wn Š Dn=Dn�1 Š .B
C
dR;Cp=K

/mn . Since Wn is stable
under the action of ', the map Wn! 'i

�Wn taking x to 'i.x/ is an isomorphism
of Qph ŒGK �-modules. In particular, we have isomorphisms of BCdR;Cp=K

ŒGK �-
modules

BCdR;Cp=K
˝Q

ph
'i
�Wn Š BCdR;Cp=K

˝Q
ph

Wn Š .B
C
dR;Cp=K

/mn

for 1�n� r 0 and 0� i<h, which implies the Cp-admissibility of Wn by Lemma 6.4.
Hence, GK acts on Wn factoring through a finite quotient by Theorem 2.1. We
choose a finite extension L=K such that GL acts on Wn trivially for all 1� n� r 0

and such that L satisfies condition (H).

Step 2: By replacing V by V jL, we will prove that V is semistable by calculating
Galois cohomology associated to zNrCrig .V /. In the following, we fix K0 and a
lift ftj gj2JK

of a p-basis of kK in K0. We regard ftj gj2JK
as a lift of a p-basis

of kK in K. We also fix notation: For a commutative ring R, let Ur .R/�GLr .R/

be the group of unipotent upper triangular matrices. Let Nr .R/�Mr .R/ be the
Lie algebra of Ur .R/, that is, the group of nilpotent upper triangular matrices. We
denote UCr;dR WD Ur .B

C
dR;Cp=K

/, UrCr;dR D Ur .B
rC
dR;Cp=K

/ for simplicity.
By assumption, we have g.e

1
; : : : ; er /D .e1

; : : : ; er /cg with 1-cocycle

c WGK ! Ur .zB
rC
rig;Cp=K0

/:

Since we have zNrCrig .V /�
zBrCrig;Cp=K0

˝Qp
V and

.K˝K0
BCst;Cp=K0

˝Qp
V /GK DK˝K0

.BCst;Cp=K0
˝Qp

V /GK ;

we have only to prove that c is a 1-coboundary in Ur .K˝K0
BCst;Cp=K0

/. We have
the exact sequence of pointed sets

.UCr;dR=UrCr;dR/
GK

ı
// H 1.GK ;U

rC
r;dR/

inc:�
// H 1.GK ;U

C
r;dR/; (5)

where UCr;dR=UrCr;dR denotes the left coset of UCr;dR by UrCr;dR , that is, X � Y if
X�1Y 2 UrCr;dR . The class Œc� 2 H 1.GK ;U

rC
r;dR / represented by c is mapped to
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the trivial class in H 1.GK ;U
C

r;dR/. In fact, since we have e.n/i 2 .Dn=Dn�1/
GK

for 1� n� r 0 and 1� i �mn by assumption, there exists an element Qe.n/i 2D
GK
n

such that Qe.n/i � e
.n/
i 2Dn�1 by the exactness of (3). Then,

. Qe
.1/
1
; : : : ; Qe.1/m1

; : : : ; Qe
.n/
1
; : : : ; Qe.n/mn

/

is a BCdR;Cp=K
-basis of Dn for 1� n� r 0 and we have a unique matrix U 2 UCr;dR

such that

.e
.1/
1
; : : : ; e.1/m1

; : : : ; e
.r 0/
1
; : : : ; e.r

0/
mr 0
/D . Qe

.1/
1
; : : : ; Qe.1/m1

; : : : ; Qe
.r 0/
1
; : : : ; Qe.r

0/
mr 0
/U:

By a simple calculation, we have cg D U�1g.U / for all g 2 GK . Hence, the
class Œc� is represented by an element of the image of .UCr;dR=UrCr;dR/

GK under ı by
the exact sequence (5). We regard K˝K0

BCcris;Cp=K0
as a subring of BCdR;Cp=K

by
Proposition 3.16. Then, we have the following lemma:

Lemma 6.6. Every element of .UCr;dR=UrCr;dR/
GK is represented by an element in

Ur .K˝K0
.BCcris;Cp=K0

/GKpf /.

We leave the proof of Lemma 6.6 to the end of the proof. Thanks to the lemma,
there exist X1 2 Ur .K˝K0

.Bcris;Cp=K0
/GKpf / and X2 2 UrCr;dR such that

cg DX�1
2 X�1

1 g.X1/g.X2/ (6)

for all g 2GK .
Since the canonical isomorphism i W QBrCrig;Cp=K0

! QBCrig;Cp=K
pf
0

is compatible
with the actions of ' and GK pf , we may regard M WD i�M as a .';GK pf/-module
over QBCrig;Cp=K

pf
0

. Then, the triple .M; fe
1
; : : : ; er g; i

�c/ satisfies the assumptions of
Proposition 6.1. Indeed, assumption (i) follows from Proposition 5.3, Proposition 5.4
and the functoriality. The image of c is in Ur . QB

rC
rig;Cp=K0

/, which implies assump-
tion (ii). Applying Proposition 6.1 to the above triple, we have X 0

3
2 Ur .B

C
st;Cp=K

pf
0
/

such that i.cg/D .X
0
3
/�1g.X 0

3
/. Hence, X3 WD i�1.X 0

3
/ 2 Ur .B

rC
st;Cp=K0

/ satisfies
cg D X�1

3
g.X3/ for g 2 GK pf . Since we have cg D X�1

2
g.X2/ for g 2 GK pf by

(6), we have

X2X�1
3 2 .UrCr;dR/

G
Kpf D Ur ..B

rC
dR;Cp=K

/GKpf /:

Note that the canonical map

Kcan˝Kcan;0
.BrCcris;Cp=K0

/GKpf ! .BrCdR;Cp=K
/GKpf

is an isomorphism. In fact, by using the canonical isomorphisms BrCcris;Cp=K0
!

BCcris;Cp=K
pf
0

and BrCdR;Cp=K
! BCdR;Cp=K

pf , it follows from the isomorphisms

Kcan˝Kcan;0
K

pf
0
ŠK˝K0

K
pf
0
ŠKpf;
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where the first isomorphism easily follows from Remark 1.4(ii) and the second one
is trivial. Thus, we have

cg D .X1 �X2X�1
3 �X3/

�1g.X1 �X2X�1
3 �X3/

for all g 2 GK with X1, X2X�1
3

, X3 2 Ur .K˝K0
BCst;Cp=K0

/, which implies the
assertion.

Now, we return to the proof of Lemma 6.6. We endow Mr .B
C
dR;Cp=K

/ Š

.BCdR;Cp=K
/r

2

with the product topology. Let

d WMr .B
C
dR;Cp=K

/! y�1
K
y̋K Mr .B

C
dR;Cp=K

/I .xij / 7! .r.xij //;

d1 W
y�1

K
y̋K Mr .B

C
dR;Cp=K

/! y�2
K
y̋K Mr .B

C
dR;Cp=K

/I .!ij / 7! .r1.!ij //

be the derivations. For i 2 f1; 2g, we endow y�i
K
y̋K Mr .B

C
dR;Cp=K

/ with the left
(resp. right) action of Mr .B

C
dR;Cp=K

/ induced by the left (resp. right) multiplication
on Mr .B

C
dR;Cp=K

/. We also have the wedge product

^ W y�1
K
y̋K Nr .K/� y�

1
K
y̋K Nr .B

C
dR;Cp=K

/! y�2
K
y̋K Nr .B

C
dR;Cp=K

/

.!ij /� .!
0
ij / 7!

� X
1�k�r

!ik ^!
0
kj

�
:

Then, we have the formulas d1ıd D 0, d.XX 0/D dX �X 0CX �dX 0, d1.! �X /D

d1! �X�!^dX , and .!^!0/�X D!^.!0 �X /, for X;X 02 y�1
K
y̋K Nr .B

C
dR;Cp=K

/,
! 2 y�1

K
y̋K Nr .K/, and !0 2 y�1

K
y̋K Nr .B

C
dR;Cp=K

/. We define a log differential

dlog W UCr;dR!
y�1

K
y̋K Nr .B

C
dR;Cp=K

/I X 7! dX �X�1;

which is GK -equivariant. (Note that it does not preserve the group laws in general.)
Since we have dlog.XA/ D dlog.X / for A 2 UrCr;dR and X 2 UCr;dR by the above
formulas, dlog induces a morphism of GK -sets

dlog� W U
C
r;dR=UrCr;dR!

y�1
K
y̋K Nr .B

C
dR;Cp=K

/:

Moreover, dlog� is injective. Indeed, let X;Y 2UCr;dR such that dlogX DdlogY . By
dE D d.Y �1Y /D 0 and the above formulas, we have d.Y �1/D�Y �1dY �Y �1.
Hence, we have

dlog.Y �1X /D .d.Y �1/ �X CY �1dX / �X�1Y

D�Y �1.dY �Y �1
� dX �X�1/ �Y D 0:

Since the inverse image of f0g by dlog is UrCr;dR, we have X � Y . By tak-
ing H 0.GK ;�/ of dlog�, we have an injection of sets

dlog� W .U
C
r;dR=UrCr;dR/

GK ,! y�1
K
y̋K Nr .K/:
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We define a decreasing filtration on Nr .B
C
dR;Cp=K

/ by

FilnNr .B
C
dR;Cp=K

/ WD f.aij / 2Nr .B
C
dR;Cp=K

/ j aij D 0 if j � i � ng:

Then, we have Fil0Nr .B
C
dR;Cp=K

/ D Nr .B
C
dR;Cp=K

/ and Filr Nr .B
C
dR;Cp=K

/ D 0.
Let X 2 UCr;dR such that we have ŒX � 2 .UCr;dR=UrCr;dR/

GK . Let ! WD dlog.X / 2
y�1

K
y̋K Nr .K/. We will construct X .n/ 2 Ur .K˝K0

.Bcris;Cp=K0
/GKpf / for n 2 N

satisfying
! �X .n/

� dX .n/ mod y�1
K
y̋K FilnNr .B

C
dR;Cp=K

/:

Set X .0/ WD 1. Suppose that we have constructed X .n/. Since we have ! �X D dX ,
we have d1! �X D ! ^ dX by taking d1. Hence, we have d1!D .!^dX /�X�1D

!^!. Let !0D .!0ij / WD ! �X
.n/�dX .n/ 2 y�1

K
y̋K FilnNr .B

C
dR;Cp=K

/. Then, by
a simple calculation using the above formulas, we have

d1!
0
D!^ .! �X .n/

�dX .n//D!^!0� 0 mod y�2
K
y̋K FilnC1Nr .B

C
dR;Cp=K

/;

which implies r1.!
0
i;iCnC1

/D 0. Since we have

!0ij 2
y�1

K
y̋K .K˝K0

.BCcris;Cp=K0
/GKpf /;

by Lemma 6.5, there exists x0
i;iCnC1

2K˝K0
.BCcris;Cp=K0

/GKpf such that

r.x0i;iCnC1/D !
0
i;iCnC1:

Let X .nC1/ WDX .n/C
P

i x0
i;iCnC1

Ei;iCnC12Ur .K˝K0
.Bcris;Cp=K0

/GKpf /. Then,
by a simple calculation, we have

! �X .nC1/
� dX .nC1/

� ! �X .n/
� dX .n/

� d

�X
i

x0i;iCnC1Ei;iCnC1

�
� !0�

X
i

r.x0i;iCnC1/Ei;iCnC1 � 0 mod y�K y̋K FilnC1Nr .B
C
dR;Cp=K

/:

Hence, we have dlog.X .r//D !, which implies the assertion. �

7. Applications

We will give applications of the Main Theorem. In Section 7A, we will recall linear
algebraic structures, which appear in the following. In Section 7B, we will prove
a horizontal analogue of the p-adic monodromy theorem. The results of the next
two subsections are applications of this theorem. In Section 7C, we will prove an
equivalence between the category of horizontal de Rham representations of GK and
the category of de Rham representation of GKcan . In Section 7D, we will prove a
generalization of Hyodo’s Theorem 1.16.
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In this section, unless particular mention is stated, we will denote Br};Cp=K0

(resp. Br~;Cp=K
) by Br} (resp. Br~) for}2fcris; stg (resp.~2fdR;HTg): This nota-

tion is justified by the facts that Br};Cp=K0
and Br~;Cp=K

are isomorphic to B};Cp=Qp

and B~;Cp=Qp
as .Qp;GK /-rings respectively.

7A. Additional structures. In the following, let V 2 RepQp
GK . The vector space

Dr
�
.V / has additional structures for � 2 fcris; st; dR;HTg, which we will recall

following [Fontaine 1994b].

� The Hodge–Tate case
We define a graded K-vector space as a finite-dimensional K-vector space D

endowed with a decomposition D D
L

n2Z Dn. Denote by MGK the category of
graded K-vector spaces. The graded ring structure on BrHT induces a graded K-
vector space structure on DrHT.V /. Hence, we have a ˝-functor

DrHT W ReprHTGK !MGK :

Assume that we have V 2 ReprHTGK . We define the Hodge–Tate weights of V as
the multiset consisting of n2Z with multiplicity mn WD dimK .Cp.�n/˝Qp

V /GK .
Since the comparison isomorphism ˛rHT is compatible with GK -actions and gradings,
by taking the degree zero part, we have an isomorphism of Cp ŒGK �-modules

Cp˝Qp
V Š

M
n2Z

Cp.n/
mn ;

which is referred to as the Hodge–Tate decomposition of V . Note that if V 2

RepQp
GK admits such a decomposition, then it is horizontal Hodge–Tate.

� The de Rham case
We define a filtered Kcan-module as a finite-dimensional Kcan-vector space

endowed with a decreasing filtration fFilnDgn2Z of Kcan-subspaces such that
FilnD D D for n� 0 and FilnD D 0 for n� 0. Denote by MFKcan the cate-
gory of filtered Kcan-modules. The filtration FilnBrdR D tnBrCdR on BrdR induces a
filtered Kcan-module structure on DrdR.V /. Hence, we have a ˝-functor

DrdR W ReprdRGK !MFKcan :

� The crystalline and semistable cases
We first define filtered .';N;GL=K /-modules for our later use.

Defintion 7.1. (i) Let L=K be a finite Galois extension. A filtered .';N;GL=K /-
module is a finite-dimensional Lcan;0-vector space D endowed with

� the Frobenius endomorphism: a bijective '-semilinear map ' WD!D;

� the monodromy operator: an Lcan;0-linear map N WD!D such that N' D

p'N ;
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� the Galois action: an Lcan;0-semilinear action of GL=K , which commutes
with ' and N ;

� the filtration: a decreasing filtration fFilnDLcangn2Z of GL=K -stable Lcan-
subspaces of DLcan WDLcan˝Lcan;0

D satisfying

FilnDLcan DDLcan for n� 0 and FilnDLcan D 0 for n� 0:

If L D K, then we call D a filtered .';N /-module relative to Kcan. Moreover,
if N D 0, then we call D a filtered '-module relative to Kcan.

A morphism D1 ! D2 of filtered .';N;GL=K /-modules is an Lcan;0-linear
map f W D1! D2 such that f commutes with ' and N , GL=K -actions and we
have f .FilnD1;Lcan/� FilnD2;Lcan for all n 2 Z.

Denote by MF.';N;GL=K / (resp. MFKcan.';N /, MFKcan.'/) the category
of filtered .';N;GL=K /-modules (resp. filtered .';N /-modules relative to Kcan,
filtered '-modules relative to Kcan).

(ii) Let D 2MFKcan.';N / and r WD dimKcan;0
D. We define tN .D/ and tH .D/

in the following way: First, we consider the case r D 1. If we have v 2 D n f0g

and '.v/ D �v, then vp.�/ 2 Z is independent of the choice of v. We denote it
by tN .D/. We denote by tH .D/ the maximum number n2Z such that FilnDKcan¤0.
In the general case, we define

tN .D/ WD tN
�Vr

D
�
; tH .D/ WD tH

�Vr
D
�
:

We say that D is weakly admissible if we have tN .D/D tH .D/ and tN .D
0/�

tH .D
0/ for any Kcan;0-subspace D0 of D which is stable by ' and N , with D0

Kcan
endowed with the induced filtration of DKcan .

Denote by MFwa.';N;GL=K / the full subcategory of MF.';N;GL=K /whose
objects are weakly admissible as object of MFLcan.';N /. We define MFwa

Kcan
.';N /

and MFwa
Kcan

.'/ similarly.

Let } 2 fcris; stg. By Proposition 3.16, we have a Kcan-linear injection

Kcan˝Kcan;0
Dr}.V /! DrdR.V /:

We endow Kcan˝Kcan;0
Dr
}
.V / with the induced filtration of DrdR.V /. Together

with the Frobenius endomorphism ' and the monodromy operator N on Brst , these
data induce a structure of a filtered .';N /-module over Kcan relative to Kcan;0

on Dr
}
.V /. Since we have Drcris.V /D .D

r
st .V //

ND0, Drcris.V / has a structure of a
filtered '-module over Kcan relative to Kcan;0. Therefore, we have ˝-functors

Drcris W ReprcrisGK !MFKcan.'/; Drst W Reprst GK !MFKcan.';N /:

For D 2MFKcan.';N /, we define

Vst.D/ WD .B
r
st ˝Kcan;0

D/ND0;'D1
\Fil0.BrdR˝Kcan DKcan/:
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For D 2MFKcan.'/, we define Vcris.D/ WD Vst.D/. These are (possibly infinite-
dimensional) Qp-vector spaces with GK -action.

Remark 7.2. Note that we have the hierarchy of full subcategories of RepQp
GK

ReprcrisGK � Reprst GK � ReprdRGK � ReprHTGK :

In fact, if we have V 2 ReprcrisGK , then we have dimQp
V D dimKcan;0

Drcris.V /�

dimKcan;0
Drst .V /, which implies that V is horizontal semistable by Lemma 1.19.

In this case, the canonical injection Drcris.V / ,! Drst .V / is an isomorphism as
filtered .';N /-modules relative to Kcan. The inclusion Reprst GK � ReprdRGK

follows from Lemma 1.20, Proposition 3.16 and Corollary 4.3. Moreover, if we
have V 2 Reprst GK , then the canonical map Kcan˝Kcan;0

Drst .V /! DrdR.V / is an
isomorphism of filtered Kcan-modules. Finally, let V 2 ReprdRGK . We choose a
lift of a Kcan-basis of grnDrdR.V / in FilnDrdR.V / for all n 2 Z. We denote these
lifts by feig and let ni 2 Z such that ei 2 Filni DrdR.V /nFilniC1DrdR.V /. Then, feig

forms a Kcan-basis of DrdR.V /. Consider the comparison isomorphism

BrdR˝Kcan DrdR.V /! BrdR˝Qp
V;

which is compatible with the filtrations. By taking Filn of both sides, we haveX
i

tn�ni BrCdR ei D tnBrCdR ˝Qp
V:

By taking grn of both sides and taking H 0.GK ;�/, we have

K˝Kcan grnDrdR.V /Š
M

iWniDn

Kei Š .Cp.n/˝Qp
V /GK

by Theorem 1.15. Hence, we have an isomorphism K˝Kcan grDrdR.V /Š DrHT.V /

of filtered K-vector spaces, which implies V 2 ReprHTGK by Lemma 1.19. In
particular, the multiset of Hodge–Tate weights of V coincides with the multiset
consisting of n 2 Z with multiplicity dimKcan Fil�nDrdR.V /=Fil�nC1DrdR.V /.

Proposition 7.3. The functors Drcris and Drst induce the functors

Drcris W ReprcrisGK !MFwa
Kcan

.'/; Drst W Reprst GK !MFwa
Kcan

.';N /:

Moreover, these functors are fully faithful.

Proof. We first prove the weak admissibilities of the images. As noted in Remark 7.2,
if V is horizontal crystalline, then Drcris.V / coincides with Drst .V / as a filtered
.';N /-module relative to Kcan. Therefore, we may reduce to the case that V is
horizontal semistable.

For a filtered .';N /-module D relative to Kcan, we endow the finite K
pf
0

-vector
space DK

pf
0

with a structure of a filtered .';N /-module relative to Kpf as follows.
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We extend the Frobenius ' on D to DK
pf
0

semilinearly and extend the monodromy
operator N on D to DK

pf
0

linearly. We also define a filtration of DK pf as Fil�DK pf WD

Kpf˝Kcan Fil�DKcan . Moreover, the scalar extension

K
pf
0
˝Kcan;0

.�/ WMFKcan.';N /!MFK pf.';N /

induces a functor. We have only to prove that the following diagram is commutative:

Reprst GK

Drst
//

ResKpf
K

��

MFKcan.';N /

K
pf
0
˝Kcan;0

.�/

��
RepstGK pf

Dst
// MFK pf.';N /

In fact, since Dst.V jK pf/DK
pf
0
˝Kcan;0

Drst .V / is weakly admissible by [Fontaine
1994b, Proposition 5.4.2(i)], Drst .V / is weakly admissible by definition.

By functoriality, the canonical map i W K
pf
0
˝Kcan;0

Drst .V /! Dst.V jK pf/ is a
morphism of filtered .';N /-modules relative to K

pf
0

. Consider the associated graded
homomorphism after applying Kpf˝K

pf
0

. The resulting homomorphism coincides
with the canonical map Kpf ˝K DrHT.V /! DHT.V jK pf/. Since V 2 ReprHTGK

by Remark 7.2, a Hodge–Tate decomposition Cp˝Qp
V Š

L
n2N Cp.n/

mn of V

induces a Hodge–Tate decomposition of V jK pf . In particular, V jK pf is also Hodge–
Tate and the above canonical map is an isomorphism. Since the filtrations of Drst .V /

and Dst.V jK pf/ are separated and exhaustive, i is an isomorphism as filtered .';N /-
modules relative to K

pf
0

.
We prove the full faithfulness. We have the fundamental exact sequence

0 // Qp

inc:
// .Brcris/

'D1
can:
// BrdR=BrCdR

// 0:

Indeed, the exactness is reduced to [Colmez and Fontaine 2000, Proposition 9.25] by
identifying Brcris (resp. BrCdR ;BrdR) with Bcris;Cp=K

pf
0

(resp. BCdR;Cp=K
pf ;BdR;Cp=K pf).

By the fundamental exact sequence, we have Vst ı Drst .V / D V (resp. Vcris ı

Drcris.V / D V ) for V 2 Reprst GK (resp. V 2 ReprcrisGK ). This implies the full
faithfulness. �

In Proposition 7.5(ii), we will prove that the above functors induce equivalences
of categories, that is, are essentially surjective.

7B. A horizontal analogue of the p-adic monodromy theorem. The following is
a horizontal analogue of the p-adic monodromy theorem. Note that the converse is
true by Hilbert 90 and Corollary 4.3.

Theorem 7.4. Let V 2 ReprdRGK . Then, there exists a finite extension K0=Kcan

such that V jKK 0 is horizontal semistable.
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Proof. First, the comparison isomorphism ˛rdR;Cp=K
induces an isomorphism of

BdR;Cp=K ŒGK �-modules

BdR;Cp=K ˝Kcan DrdR.V /! BdR;Cp=K ˝Qp
V:

By taking H 0.GK ;�/, we have dimK DdR.V /D dimQp
V by Corollary 4.3, which

implies V 2 RepdRGK by Lemma 1.19. Hence, there exists a finite extension L=K

such that V jL is semistable by the Main Theorem. We may assume that L=K is a
finite Galois extension satisfying condition (H) by the proof of the Main Theorem
(Step 1) and Epp’s Theorem 1.6. The extension Lcan=Kcan is finite Galois by
Lemma 1.5(ii). We will prove the assertion for K0 DLcan.

We have canonical isomorphisms

Lcan˝Lcan;0
Dst.V jL/ŠL˝L0

Dst.V jL/Š DdR.V jL/;

where the first one is induced by a canonical isomorphism Lcan˝Lcan;0
L0! L

(Remark 1.4(ii)), the second one follows by using Lemma 1.20 and Proposition 3.16.
Moreover, these maps are compatible with the residual GL=K -actions and the r-
actions. By taking the horizontal sections, we have

DrdR.V jL/Š DdR.V jL/
rD0
Š .Lcan˝Lcan;0

Dst.V jL//
rD0

ŠLcan˝Lcan;0
Dst.V jL/

rD0
ŠLcan˝Lcan;0

Drst .V jL/;

where the third equality follows from the fact rjLcan D 0. By taking GL=K �Lcan-
invariants, we have DrdR.V jK �Lcan/DLcan˝Lcan;0

Drst .V jK �Lcan/. Since V jK �Lcan is
horizontal de Rham by Remark 1.22 and since .K�Lcan/canDLcan by Lemma 1.5(iv),
we have

dimLcan DrdR.V jK �Lcan/D dimQp
V D dimLcan;0

Drst .V jK �Lcan/;

which implies that V jK �Lcan is horizontal semistable. �

7C. Equivalences of categories. The surjection of profinite groups {� W GK !

GKcan induces a ˝-functor of Tannakian categories

{� W RepQp
GKcan ! RepQp

GK :

Obviously, the functor {� is fully faithful. Denote by Cp the p-adic comple-
tion of the algebraic closure of Kcan in K. For � 2 fcris; st; dRg, we have a
Galois equivariant canonical injection B�;Cp=Kcan ! Br

�;Cp=K
by functoriality and

we have .B�;Cp=Kcan/
GKcan Š .Br

�;Cp=K
/GK (DKcan if �D dR, Kcan;0 otherwise) by

Proposition 3.16. Hence, if we have V 2 Rep
�
GKcan , then we have {�V 2 Repr

�
GK .

In fact, we have a canonical injection D�.V / � Dr
�
.{�V / of .B�;Cp=Kcan/

GKcan -
vector spaces, which implies the Br

�;Cp=K
-admissibility of {�V 2 RepQp

GK by
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Lemma 1.19. Hence, {� induces a fully faithful ˝-functor

{�
�
W Rep

�
GKcan ! Repr

�
GK :

The following proposition is a direct consequence of théorème 4.3 in [Colmez
and Fontaine 2000].

Proposition 7.5 (horizontal analogue of Colmez–Fontaine). (i) The functors {�cris
and {�st are essentially surjective. In particular, {�cris and {�st induce equivalences
of Tannakian categories.

(ii) The functors

Drcris W ReprcrisGK !MFwa
Kcan

.'/; Drst W Reprst GK !MFwa
Kcan

.';N /

induce equivalences of categories with quasi-inverses Vcris, Vst.

Proof. We first prove the assertion in the semistable case. Together with the full
faithfulness of Drst , we have only to prove the commutativity of the diagram

RepstGKcan

{�st
//

DstŠ

��

Reprst GK

Drst
��

MFwa
Kcan

.';N /
id
// MFwa

Kcan
.';N /;

where Dst is an equivalence of categories by Colmez–Fontaine theorem [2000,
Théorème 4.3]. As we mentioned above, the canonical map Dst.V /! Drst .{

�V /,
which commutes with ' and N -actions, is an isomorphism of Kcan;0-vector spaces.
We have only to prove that the map also preserves the filtrations. Obviously, we
have Fil�Dst.V / � Fil�Drst .{

�V /. To prove the converse, it suffices to prove that
the associated graded modules of both sides have the same dimension since the
filtrations are exhaustive and separated. Let Cp˝Qp

V Š
L

n2Z Cp.n/
mn be the

Hodge–Tate decomposition of V . Then, it induces the Hodge–Tate decomposition
of {�V , that is, Cp˝Qp

{�V Š
L

n2Z Cp.n/
mn , which implies the assertion.

In the horizontal crystalline case, a similar proof works by replacing �st and
MFwa

Kcan
.';N / by �cris and MFwa

Kcan
.'/. �

Theorem 7.6. The functor {�dR is essentially surjective. In particular, {�dR induces
an equivalence of Tannakian categories.

Proof. For a finite Galois extension L=K such that K �Lcan DL, let CL=K be the
full subcategory of ReprdRGK whose objects consist of V 2ReprdRGK such that V jL
is horizontal semistable. Recall the notation in Defintion 7.1. Then, we have an
equivalence of categories

Drst;L W CL=K !MFwa.';N;GL=K /I V 7! Drst .V jL/:
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In fact, we have the following quasi-inverse Vst;L: For D 2MFwa.';N;GL=K /,
we regard D as an object of MFwa

Lcan
.';N / and let Vst;L.D/ WD Vst.D/. We have

Vst;L.D/2Reprst GL by Proposition 7.5(ii) and Vst;L.D/ has a canonical GK -action,
which is an extension of the action of GL, induced by the GL=K -action on D. We
have D 2 CL=K by Remark 4.8 and Remark 7.2. We have Vst;L ıDrst;L Š idCL=K

and Drst;L ıVst;L Š idMF wa.';N;GL=K / by Proposition 7.5(ii).

The restriction map ResL
Lcan
W GL=K

Š
�! GLcan=Kcan induces the equivalence of

categories

.ResL
Lcan

/� WMFwa.';N;GLcan=Kcan/
Š
// MFwa.';N;GL=K /:

We will prove that the diagram

MFwa.';N;GLcan=Kcan/
.ResL

Lcan
/�

Š

//

Vst;LcanŠ

��

MFwa.';N;GL=K /

Vrst;LŠ

��
CLcan=Kcan

{�dR
// CL=K

is commutative, where the bottom horizontal arrow is induced by {�dR WRepdRGKcan!

ReprdRGK . Indeed, we have the GK -equivariant inclusion

{�dR ıVst;Lcan.D/� Vrst;L ı .ResL
Lcan

/�.D/

for D 2MFwa.';N;GLcan=Kcan/ by construction. Since both sides have the same
dimension over Qp , this inclusion is an equality. By the commutative diagram, the
functor {�dR W CLcan=Kcan ! CL=K is essentially surjective.

Let V 2 ReprdRGK . By Theorem 7.4, we have a finite Galois extension K0=Kcan

such that V jGKK 0
is horizontal semistable. Let L WDKK0. By Lemma 1.5(iv), we

have Lcan DK0, that is, L=K satisfies the above assumption. Since we have V 2

CL=K , the assertion follows from the essential surjectivity of

{�dR W CLcan=Kcan ! CL=K : �

The above equivalence induces a Qp-linear isomorphism of Ext1 on RepdRGKcan

and ReprdRGK . Note that for V 2RepdRGKcan , we may regard Ext1RepdRGKcan
.Qp;V /

and Ext1ReprdRGK
.Qp; {

�V / as

H 1
g .GKcan ;V / WD ker

�
H 1.GK ;V /

.1˝id/�
�����!H 1.GK ;BdR;Cp=Kcan ˝Qp

V /
�
;

H 1;r
g .GK ; {

�V / WD ker
�
H 1.GK ; {

�V /
.1˝id/�
�����!H 1.GK ;B

r
dR;Cp=K

˝Qp
{�V /

�
respectively. In particular:
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Corollary 7.7. For V 2 RepdRGKcan , the inflation map

Inf WH 1.GKcan ;V /!H 1.GK ; {
�V /

induces the isomorphism

Inf WH 1
g .GKcan ;V /ŠH 1;r

g .GK ; {
�V /:

7D. A comparison theorem on H 1. Notation is as in the previous subsection.

Theorem 7.8 (a generalization of Theorem 1.16). Let V 2 RepQp
GKcan be a

de Rham representation whose Hodge–Tate weights are greater than or equal
to 1. Then, we have the exact sequence

0!H 1.GKcan ;V /
Inf
�!H 1.GK ; {

�V /
.1˝id/�
�����!H 1.GK ;Cp˝Qp

{�V / (7)

and a canonical isomorphism

.Cp˝Qp
V .�1//GKcan ˝Kcan

y�1
K ŠH 1.GK ;Cp˝Qp

{�V /: (8)

Moreover, if the Hodge–Tate weights of V are greater than or equal to 2, then
H 1.GK ;Cp˝Qp

{�V / vanishes, in particular, the inflation map

Inf WH 1.GKcan ;V /!H 1.GK ; {
�V /

is an isomorphism.

Proof. We first prove the exactness of (7). Note that the injectivity of the inflation
map follows by definition. We have the commutative diagram

H 1.GKcan ;V /

.1˝id/�
��

.1˝id/�ıInf

))

H 1.GKcan ;Cp˝Qp
V /

Inf
// H 1.GK ;Cp˝Qp

{�V /:

Since we have a Hodge–Tate decomposition Cp˝Qp
V Š

L
n2N�1

Cp.n/
mn , we

have H 1.GKcan ;Cp˝Qp
V /D 0 by Theorem 1.15, which implies .1˝id/�ıInfD 0.

Let H WD ker f.1˝ id/� WH 1.GK ; {
�V /!H 1.GK ;Cp˝Qp

{�V /g. We have
only to prove H is contained in the image of Inf WH 1.GKcan ;V /!H 1.GK ; {

�V /.
Consider the exact sequence

0 // tBrCdR;Cp=K

inc:
// BrCdR;Cp=K

�
// Cp

// 0

with � WD �Cp=K . By applying ˝Qp
{�V and taking H �.GK ;�/, we have the
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commutative diagram with exact row, where S stands for BrCdR;Cp=K
:

H 1.GK ; {
�V /

.1˝id/�
��

.1˝id/�

))

H 1.GK ; tS˝Qp {�V /
.inc:˝id/�

// H 1.GK ;S˝Qp {�V /
.�˝id/�

// H 1.GK ;Cp˝Qp {�V /:

Since V .1/ is de Rham with Hodge–Tate weights � 2, we have

H 1.GK ; tBrCdR;Cp=K
˝Qp

{�V /D 0

by Theorem 1.15, Lemma 1.14 and dévissage. Hence, the canonical map

.1˝ id/� WH!H 1.GK ;B
rC
dR;Cp=K

˝Qp
{�V /

vanishes by the above exact sequence. In particular, we have H�H
1;r
g .GK ; {

�V /.
By Corollary 7.7, we have Inf WH 1

g .GKcan ;V /ŠH
1;r
g .GK ; {

�V /, which implies
(7).

Then, we will prove the existence of the canonical isomorphism (8). By the
inclusion .Cp˝Qp

V .�1//GKcan � .Cp˝Qp
{�V .�1//GK and the canonical isomor-

phism y�1
K
!H 1.GK ;Cp.1// in Theorem 1.15, we can define a canonical map f

as the composite�
Cp˝Qp

V .�1/
�GKcan ˝Kcan

y�1
K

inc:˝can:
������!

.Cp˝Qp
{�V .�1//GK ˝K H 1.GK ;Cp.1//

cup:
��!H 1.GK ;Cp˝Qp

{�V /:

We will prove that f is an isomorphism. A Hodge–Tate decomposition of V

induces a Hodge–Tate decomposition Cp˝Qp
{�V Š

L
n2N�1

Cp.n/
mn of {�V .

By replacing Cp˝Qp
V and Cp˝Qp

{�V by their Hodge–Tate decompositions, we
may reduce to the case V DQp.n/ with n 2 N�1 since the cup product commutes
with direct sums. Then, the assertion follows from Theorem 1.15.

We will prove the last assertion. The assumption implies that we have m1D 0 in
the above notation, hence, we have H 1.GK ;Cp˝Qp

{�V /D 0 by the Hodge–Tate
decomposition of {�V and Theorem 1.15. �

Remark 7.9. (i) Originally, Theorem 1.16(i) and (ii) are proved separately by using
ramification theory in some sense.

(ii) (Finiteness) Suppose that we have ŒKcan W Qp � <1. For example, consider
the case that K has a structure of a higher-dimensional local field (Example 1.7).
Let V 2 RepQp

GK be horizontal de Rham of Hodge–Tate weights greater than or
equal to 2. Then we have

dimQp
H 1.GK ;V /D ŒKcan WQp � dimQp

V <1:
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Indeed, by Theorem 7.6 and 7.8, we may reduce to the case K D Kcan. By a
Hodge–Tate decomposition Cp˝Qp

V Š
L

n2N�2
Cp.n/

mn with mn 2N, we have
H 0.GK ;V / � H 0.GK ;Cp ˝Qp

V / D 0 and H 2.GK ;V / Š H 0.GK ;V
_.1// �

H 0.GK ;Cp˝Qp
V _.1//D 0 by the local Tate duality [Herr 1998, Théorème in

Introduction], where _ denotes the dual. Then, the assertion follows from the
Euler–Poincaré characteristic formula (loc. cit).

Note that H 1.GK ;V / is not finite over Qp without the condition on Hodge–
Tate weights: For example, H 1.GK ;Qp.1// Š Qp ˝Zp

lim
 �n

K�=.K�/p
n

con-
tains Qp ˝Zp

OK , which is infinite-dimensional over Qp if kK is imperfect, via
the map OK ,! U

.1/
K

that takes x to exp .2px/.
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