Vol. 7, No. 8, 2013

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11, 1 issue

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Essential $p$-dimension of algebraic groups whose connected component is a torus

Roland Lötscher, Mark MacDonald, Aurel Meyer and Zinovy Reichstein

Vol. 7 (2013), No. 8, 1817–1840
Abstract

Following up on our earlier work and the work of N. Karpenko and A. Merkurjev, we study the essential p-dimension of linear algebraic groups G whose connected component G0 is a torus.

Keywords
essential dimension, algebraic torus, twisted finite group, generically free representation
Mathematical Subject Classification 2010
Primary: 20G15, 11E72
Milestones
Received: 24 February 2012
Revised: 9 September 2012
Accepted: 23 October 2012
Published: 24 November 2013
Authors
Roland Lötscher
Mathematisches Institut
Ludwig-Maximilians-Universität München
D-80333 München
Germany
http://www.mathematik.uni-muenchen.de/~lotscher/
Mark MacDonald
Department of Mathematics and Statistics
Lancaster University
Lancaster
LA1 4YF
United Kingdom
http://www.maths.lancs.ac.uk/~macdonam/
Aurel Meyer
Départment de Mathématiques
Université Paris-Sud
Bâtiment 425
91405 Orsay
France
http://www.math.u-psud.fr/~ameyer/
Zinovy Reichstein
Department of Mathematics
University of British Columbia
1984 Mathematics Road
Vancouver, BC V6T1Z2
Canada
http://www.math.ubc.ca/~reichst