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Steven Dale Cutkosky

We prove that limits of multiplicities associated to graded families of ideals exist
under very general conditions. Most of our results hold for analytically unramified
equicharacteristic local rings with perfect residue fields. We give a number
of applications, including a “volume = multiplicity” formula, generalizing the
formula of Lazarsfeld and Mustat,ă, and a proof that the epsilon multiplicity of
Ulrich and Validashti exists as a limit for ideals in rather general rings, including
analytic local domains. We prove a generalization of this to generalized symbolic
powers of ideals proposed by Herzog, Puthenpurakal and Verma. We also prove
an asymptotic “additivity formula” for limits of multiplicities and a formula on
limiting growth of valuations, which answers a question posed by the author,
Kia Dalili and Olga Kashcheyeva. Our proofs are inspired by a philosophy of
Okounkov for computing limits of multiplicities as the volume of a slice of an
appropriate cone generated by a semigroup determined by an appropriate filtration
on a family of algebraic objects.

1. Introduction

In a series of papers, Okounkov interprets the asymptotic multiplicity of graded fami-
lies of algebraic objects in terms of the volume of a slice of a corresponding cone (the
Okounkov body). Okounkov’s method employs an asymptotic version of a result of
Khovanskii [1992] for finitely generated semigroups. One of his realizations of this
philosophy [Okounkov 1996; 2003] gives a construction that computes the volume
of a family of graded linear systems. This method was systematically developed by
Lazarsfeld and Mustat,ă [2009], who give many interesting consequences, including
a new proof of Fujita approximation (see [Fujita 1994] for the original proof) and
the fact that the volume of a big divisor on an irreducible projective variety over an
algebraically closed field is a limit, which was earlier proven in [Lazarsfeld 2004]
using Fujita approximation. More recently, Fulger [2011] has extended this result
to compute local volumes of divisors on a log resolution of a normal variety over
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an algebraically closed field. Kaveh and Khovanskii [2012] have recently greatly
generalized the theory of Newton–Okounkov bodies and applied this to general
graded families of linear systems.

The method used in these papers is to choose a nonsingular closed point β on
the d-dimensional variety X and then using a flag, a sequence of subvarieties

{β} = X0 ⊂ X1 ⊂ · · · ⊂ Xd−1 ⊂ X

that are nonsingular at β, to determine a rank-d valuation of the function field k(X)
that dominates the regular local ring OX,β . This valuation gives a very simple
filtration of OX,β represented by monomials in a regular system of parameters
of OX,p, which are local equations of the flag. Since the residue field is algebraically
closed, this allows us to associate a set of points in Zd to a linear system on X
(by means of a k-subspace of k(X) giving the linear system) so that the number of
these points is equal to the dimension of the linear system. In this way, a semigroup
in Zd+1 is associated to a graded family of linear systems.

One of their applications is to prove a formula of equality of volume and mul-
tiplicity for a graded family {Ii }i∈N of m R-primary ideals in a local ring (R,m R)

such that R is a local domain that is essentially of finite type over an algebraically
closed field k with R/m R = k [Lazarsfeld and Mustat,ă 2009, Theorem 3.8]. These
assumptions on R are all necessary for their proof. The proof involves interpreting
the problem in terms of graded families of linear systems on a projective variety X
on which R is the local ring of a closed point α. Then a valuation as above is
constructed that is centered at a nonsingular point β ∈ X , and the cone methods are
used to prove the limit. The formula “volume=multiplicity” for graded families of
ideals was first proven by Ein, Lazarsfeld and Smith [Ein et al. 2003] for valuation
ideals associated to an Abhyankar valuation in a regular local ring that is essentially
of finite type over a field. Mustat,ǎ [2002] proved the formula for regular local rings
containing a field. In all of these cases, the volume vol(I∗) of the family, which is
defined as a lim sup, is shown to be a limit.

Let {Ii } be a graded family of ideals in a d-dimensional (Noetherian) local ring
(R,m R); that is, the family is indexed by the natural numbers with I0 = R and
Ii I j ⊂ Ii+ j for all i and j . Suppose that the ideals are m R-primary (for i > 0). Let
`R(N ) denote the length of an R-module N . We find very general conditions on R
under which the “volume”

vol(I∗)= lim sup
`R(R/In)

nd/d!

is actually a limit. For instance, we show that this limit exists if R is analytically
unramified and equicharacteristic with perfect residue field (Theorem 5.8) or if R
is regular (Theorem 4.6).
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We thank the referee for pointing out that our basic result Theorem 4.2 is valid
without our original assumption of excellence.

Our proof involves reducing to the case of a complete domain and then finding a
suitable valuation that dominates R to construct an Okounkov body. The valuation
that we use is of rank 1 and rational rank d. There are two issues that require
special care in the proof. The first issue is to reduce to the case of an analytically
irreducible domain. Analytic irreducibility is necessary to handle the boundedness
restriction on the corresponding cone (condition (2)). The proof of boundedness is
accomplished by using the linear Zariski subspace theorem of Hübl [2001] (which
is valid if R is assumed excellent) or, as was pointed out by the referee, by an
application of the version of Rees [1989] of Izumi’s theorem, for which excellence
is not required. The second issue is to handle the case of a nonclosed residue field.
Our method for converting the problem into a problem of cones requires that the
residue field of the valuation ring be equal to the residue field of R. Care needs to
be taken when the base field is not algebraically closed. The perfect condition in
Theorem 5.8 on the residue field is to prevent the introduction of nilpotents upon
base change.

The limit limn→∞ `R(R/I n)/(nd/d!) is just the Hilbert–Samuel multiplicity
e(I ), which is a positive integer, in the case when In = I n with I an m R-primary
ideal. In general, when working with the kind of generality allowed by a graded
family of m R-primary ideals, the limit will be irrational. For instance, given λ∈R+,
the graded family of m R-primary ideals In generated by the monomials x i y j such
that (1/2λ)i + j ≥ n in the power-series ring R = k[[x, y]] in two variables will
give us the limit limn→∞ `R(R/In)/n2

= λ.
We also obtain irrational limits for more classical families of ideals. Suppose

that R is an excellent d-dimensional local domain with perfect residue field and ν is
a discrete valuation dominating R (the value group is Z). Then the valuation
ideals In = { f ∈ R | ν( f ) ≥ n} form a graded family of m R-primary ideals, so
Theorem 5.8 tells us that the limit limn→∞ `R(R/In)/nd exists. This limit will
however in general not be rational. [Cutkosky and Srinivas 1993, Example 6] gives
such an example in a three-dimensional normal local ring.

We give a number of applications of this formula and these techniques to the
computation of limits in commutative algebra.

We prove the formula “vol(I∗)=multiplicity(I∗)” for local rings R and graded
families of m R-primary ideals such that either R is regular or R is analytically
unramified and equicharacteristic with perfect residue field in Theorem 6.5. In our
proof, we use a critical result on volumes of cones, which is derived in [Lazarsfeld
and Mustat,ă 2009]. We generalize this result to obtain an asymptotic additivity
formula for multiplicities of an arbitrary graded family of ideals (not required to be
m R-primary) in Theorem 6.10.
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Another application is to show that the epsilon multiplicity of Ulrich and Vali-
dashti [2011], defined as a lim sup, is actually a limit in some new situations. We
prove that this limit exists for graded families of ideals in a local ring R such that one
of the following holds: R is regular, R is analytically irreducible and excellent with
algebraically closed residue field or R is normal, excellent and equicharacteristic
with perfect residue field. As an immediate consequence, we obtain the existence
of the limit for graded families of ideals in an analytic local domain, which is
of interest in singularity theory. In [Cutkosky et al. 2005], an example is given
showing that this limit is in general not rational. Previously, the limit was shown to
exist in some cases in [Cutkosky et al. 2010b], and the existence of the limit was
proven (for more general modules) in some cases in [Kleiman 2010] and over a
domain R that is essentially of finite type over a perfect field in [Cutkosky 2011].
The proof in the latter paper used Fujita approximation on a projective variety on
which the ring R was the local ring of a closed point.

We prove in Corollary 6.4 a formula on asymptotic multiplicity of generalized
symbolic powers proposed by Herzog, Puthenpurakal and Verma [Herzog et al.
2008, beginning of Introduction].

We also prove that a question raised in [Cutkosky et al. 2010a] about the growth
of the semigroup of a valuation semigroup has a positive answer for very general
valuations and domains. We prove in Theorem 7.1 that if R is a d-dimensional
regular local ring or an analytically unramified local domain with algebraically
closed residue field and ω is a zero-dimensional rank-1 valuation dominating R with
value group contained in R and if ϕ(n) is the number of elements in the semigroup
of values attained on R that are less than n, then

lim
n→∞

ϕ(n)
nd

exists. This formula was established if R is a regular local ring of dimension 2 with
algebraically closed residue field in [Cutkosky et al. 2010a] and if R is an arbitrary
regular local ring of dimension 2 in [Cutkosky and Vinh 2011] using a detailed
analysis of a generating sequence associated to the valuation. Our proof of this
result in general dimension follows, as an application of the existence of limits for
graded families of m R-primary ideals, from the fact that ϕ(n)= `R(R/In), where
In = { f ∈ m R | ν( f ) ≥ n} [Cutkosky et al. 2010a; Cutkosky and Teissier 2010].
It is shown in [Cutkosky et al. 2010a] that the limits limn→∞ ϕ(n)/n2 that can be
attained on a regular local ring of dimension 2 are the real numbers β with 0≤β < 1

2 .

2. Notation

Let m R denote the maximal ideal of a local ring R. Q(R) will denote the quotient
field of a domain R and `R(N ) the length of an R-module N . Z+ denotes the
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positive integers and N the nonnegative integers. Suppose that x ∈ R. Then dxe is
the smallest integer n such that x ≤ n and bxc the largest integer n such that n ≤ x .

We recall some notation on multiplicity from [Zariski and Samuel 1960, Chap-
ter VIII, §10; Serre 1965, p. V-2; Bruns and Herzog 1993, § 4.6]. Suppose that
(R,m R) is a (Noetherian) local ring, N is a finitely generated R-module with
r = dim N and a is an ideal of definition of R. Then

ea(N )= lim
k→∞

`R(N/ak N )
kr/r !

.

We write e(a)= ea(R).
If s ≥ r = dim N , then we define

es(a, N )=
{

ea(N ) if dim N = s,
0 if dim N < s.

A local ring is analytically unramified if its completion is reduced. In particular,
a reduced excellent local ring is analytically unramified.

3. Semigroups and cones

Suppose that 0 ⊂ Nd+1 is a semigroup. Set

6 =6(0)= closed convex cone(0)⊂ Rd+1,

1=1(0)=6 ∩ (Rd
×{1}).

For m ∈ N, put
0m = 0 ∩ (N

d
×{m}),

which can be viewed as a subset of Nd . Consider the following three conditions on 0:

(1) 00 = {0}.

(2) There exist finitely many vectors (vi , 1) spanning a semigroup B ⊂Nd+1 such
that 0 ⊂ B.

Let G(0) is the subgroup of Zd+1 generated by 0.

(3) G(0)= Zd+1.

We will use the convention that {ei } is the standard basis of Zd+1.
Assuming the boundedness condition (2), condition (1) simply states that 0 is in

the semigroup 0.

Theorem 3.1 [Okounkov 2003, §3; Lazarsfeld and Mustat,ă 2009, Proposition 2.1].
Suppose that 0 satisfies (1)–(3). Then

lim
m→∞

#0m

md = vol(1(0)).



2064 Steven Dale Cutkosky

Recently, it has been shown that limits exist under much weaker conditions by
Kaveh and Khovanskii [2012].

Theorem 3.2 [Lazarsfeld and Mustat,ă 2009, Proposition 3.1]. Suppose that 0
satisfies (1)–(3). Fix ε > 0. Then there is an integer p0 = p0(ε) such that if p ≥ p0,
then the limit

lim
k→∞

#(k0p)

kd pd ≥ vol(1(0))− ε

exists, where
k0p = {x1+ · · ·+ xk | x1, . . . , xk ∈ 0p}.

4. An asymptotic theorem on lengths

Definition 4.1. A graded family of ideals {Ii } in a ring R is a family of ideals
indexed by the natural numbers such that I0 = R and Ii I j ⊂ Ii+ j for all i and j .
If R is a local ring and Ii is m R-primary for i > 0, then we will say that {Ii } is a
graded family of m R-primary ideals.

In this section, we prove the following theorem:

Theorem 4.2. Suppose that R is an analytically irreducible local domain of dimen-
sion d > 0 and {In} is a graded family of ideals in R such that

there exists c ∈ Z+ such that mc
R ⊂ I1. (4)

Suppose that there exists a regular local ring S such that S is essentially of finite
type and birational over R (R and S have the same quotient field) and the residue
field map R/m R→ S/mS is an isomorphism. Then

lim
i→∞

`R(R/Ii )

id

exists.

We remark that the assumption mc
R ⊂ I1 implies that either In is m R-primary for

all positive n or there exists n0 > 1 such that In0 = R. In this case, mcn0
R ⊂ In for

all n ≥ n0, so `R(R/Ii ) is actually bounded.
Let assumptions be as in Theorem 4.2. Let y1, . . . , yd be a regular system of

parameters in S. Let λ1, . . . , λd be rationally independent real numbers such that

λi ≥ 1 for all i . (5)

We define a valuation ν on Q(R) that dominates S by prescribing

ν(ya1
1 · · · y

ad
d )= a1λ1+ · · ·+ adλd

for a1, . . . , ad ∈ Z+ and ν(γ )= 0 if γ ∈ S has nonzero residue in S/mS .
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Let C be a coefficient set of S. Since S is a regular local ring, for r ∈ Z+ and
f ∈ S, there is a unique expression

f =
∑

si1,...,id yi1
1 · · · y

id
d + gr

with gr ∈ mr
S , si1,...,id ∈ S and i1+ · · · + id < r for all i1, . . . , id appearing in the

sum. Take r so large that r > i1λ1 + · · · + idλd for some term with si1,...,id 6= 0.
Then define

ν( f )=min{i1λ1+ · · ·+ idλd | si1,...,id 6= 0}. (6)

This definition is well-defined, and we calculate that ν( f + g)≥min{ν( f ), ν(g)}
and ν( f g)=ν( f )+ν(g) (by the uniqueness of the expansion (6)) for all 0 6= f, g∈ S.
Thus, ν is a valuation. Let Vν be the valuation ring of ν (in Q(R)). The value group
of Vν is the (nondiscrete) ordered subgroup Zλ1+ · · ·+Zλd of R. Since there is a
unique monomial giving the minimum in (6), we have that the residue field of Vν is
S/mS = R/m R .

For λ ∈ R, define ideals Kλ and Kλ+ in Vν by

Kλ = { f ∈ Q(R) | ν( f )≥ λ},

Kλ+ = { f ∈ Q(R) | ν( f ) > λ}.

We follow the usual convention that ν(0)=∞ is larger than any element of R.

Lemma 4.3. There exists α ∈ Z+ such that Kαn ∩ R ⊂ mn
R for all n ∈ N.

Proof. Let ρ = dmax{λ1, . . . , λd}e ∈ Z+. Suppose that λ ∈ R+. Kλ is generated by
the monomials yi1

1 · · · y
id
d such that i1λ1+ · · ·+ idλd ≥ λ, which implies that

λ

ρ
≤ i1+ · · ·+ id

so that
Kλ ∩ S ⊂ mdλ/ρeS . (7)

We now establish the following equation: there exists a ∈ Z+ such that

ma`
S ∩ R ⊂ m`

R (8)

for all ` ∈ N.
In the case when R is excellent, this is immediate from the linear Zariski subspace

theorem [Hübl 2001, Theorem 1].
We now give a proof of (8) that was provided by the referee, which is valid

without assuming that R is excellent. Let ω be the mS-adic valuation. Let νi be the
Rees valuations of m R . The νi extend uniquely to the Rees valuations of m R̂ . By
the version of Rees [1989] of Izumi’s theorem, the topologies defined on R by ω
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and the νi are linearly equivalent. Let νm R be the reduced order of m R . By the Rees
valuation theorem (recalled in [Rees 1989]),

νm R (x)=min
i

{ νi (x)
νi (m R)

}
for all x ∈ R, so the topology defined by ω on R is linearly equivalent to the topology
defined by νm R . The νm R topology is linearly equivalent to the m R-topology by
[Rees 1956] since R is analytically unramified. Thus, (8) is established.

Let α = ρa, where ρ is the constant of (7) and a is the constant of (8).

Kαn ∩ S = Kρan ∩ S ⊂ man
S

by (7), and thus,
Kαn ∩ R ⊂ man

S ∩ R ⊂ mn
R

by (8). �

Remark 4.4. The conclusions of Lemma 4.3 fail if R is not analytically irreducible
as can be seen from the example

R = (k[x, y]/y2
− x2(x + 1))(x,y)→ S = k[s](s),

where s = y/x − 1.

For 0 6= f ∈ R, define

ϕ( f )= (n1, . . . , nd) ∈ Nd

if ν( f )= n1λ1+ · · ·+ ndλd .

Lemma 4.5. Suppose that I ⊂ R is an ideal and λ ∈ R+. Then there are isomor-
phisms of R/m R-modules

Kλ ∩ I/Kλ+ ∩ I ∼=
{

k if there exists f ∈ I such that ν( f )= λ,
0 otherwise.

Proof. Suppose that f, g ∈ Kλ∩ I are such that ν( f )= ν(g)= λ. Then ν( f/g)= 0.
Let α be the class of f/g in Vν/mν

∼= R/m R . Let α ∈ R be a lift of α to R. Then
ν( f −αg) > λ, and the class of f in Kλ ∩ I/Kλ+ ∩ I is equal to α times the class
of g in Kλ ∩ I/Kλ+ ∩ I . �

Suppose that I ⊂ R is an ideal and Kβ ∩ R ⊂ I for some β ∈ R+. Then

`R(R/I )= `R(R/Kβ ∩ R)− `R(I/Kβ ∩ R)

= dimk

(⊕
λ<β

Kλ ∩ R/Kλ+ ∩ R
)
− dimk

(⊕
λ<β

Kλ ∩ I/Kλ+ ∩ R
)

= #{(n1, . . . , nd) ∈ ϕ(R) | n1λ1+ · · ·+ ndλd < β}

− #{(n1, . . . , nd) ∈ ϕ(I ) | n1λ1+ · · ·+ ndλd < β}. (9)
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Let β=αc∈Z+, where c is the constant of (4) and α is the constant of Lemma 4.3
so that, for all i ∈ Z+,

Kβi ∩ R = Kαci ∩ R ⊂ mic
R ⊂ Ii . (10)

We have from (9) that

`R(R/Ii )= #{(n1, . . . , nd) ∈ ϕ(R) | n1λ1+ · · ·+ ndλd < βi}

− #{(n1, . . . , nd) ∈ ϕ(Ii ) | n1λ1+ · · ·+ ndλd < βi}. (11)

Now (n1, . . . , nd) ∈ ϕ(R) and n1+· · ·+nd ≥ βi imply n1λ1+· · ·+ndλd ≥ βi
by (5) so that (n1, . . . , nd) ∈ ϕ(Ii ) by (10). Thus,

`R(R/Ii )= #{(n1, . . . , nd) ∈ ϕ(R) | n1+ · · ·+ nd ≤ βi}

− #{(n1, . . . , nd) ∈ ϕ(Ii ) | n1+ · · ·+ nd ≤ βi}. (12)

Let 0 ⊂ Nd+1 be the semigroup

0 = {(n1, . . . , nd , i) | (n1, . . . , nd) ∈ ϕ(Ii ) and n1+ · · ·+ nd ≤ βi}.

I0 = R (and ν(1)= 0) implies (1) holds. The semigroup

B = {(n1, . . . , nd , i) | (n1, . . . , nd) ∈ Nd and n1+ · · ·+ nd ≤ βi}

is generated by B ∩ (Nd
×{1}) and contains 0, so (2) holds.

Write yi = fi/gi with fi , gi ∈ R for 1≤ i ≤ d . Let 0 6= h ∈ I1. Then h fi , hgi ∈ I1.
There exists c′ ∈ Z+ such that c′ ≥ c and h fi , hgi /∈ mc′

R for 1 ≤ i ≤ d. We may
replace c with c′ in (4). Then ϕ(h fi ), ϕ(hgi ) ∈ 01 = 0 ∩ (N

d
×{1}) for 1≤ i ≤ d

since h fi and hgi all have values n1λ1+· · ·+ndλd <βi so that n1+· · ·+nd <βi .
We have that ϕ(h fi )−ϕ(hgi )= ei for 1≤ i ≤ d . Thus,

(ei , 0)= (ϕ(h fi ), 1)− (ϕ(hgi ), 1) ∈ G(0)

for 1≤ i ≤d . Since (ϕ(h fi ), 1)∈G(0), we have that (0, 1)∈G(0), so G(0)=Zd+1

and (3) holds. By Theorem 3.1,

lim
i→∞

#0i

id = vol(1(0)). (13)

Let 0′ ⊂ Nd+1 be the semigroup

0′ = {(n1, . . . , nd , i) | (n1, . . . , nd) ∈ ϕ(R) and n1+ · · ·+ nd ≤ βi}.

Our calculation for 0 shows that (1)–(3) hold for 0′. By Theorem 3.1,

lim
i→∞

#0′i
id = vol(1(0′)). (14)

We obtain the conclusions of Theorem 4.2 from Equations (12), (13) and (14).
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The following is an immediate consequence of Theorem 4.2, taking S = R:

Theorem 4.6. Suppose that R is a regular local ring of dimension d > 0 and {In}

is a graded family of m R-primary ideals in R. Then the limit

lim
n→∞

`R(R/In)

nd

exists.

5. A theorem on asymptotic lengths in more general rings

Lemma 5.1. Suppose that R is a d-dimensional reduced local ring and {In} is a
graded family of m R-primary ideals in R. Let p1, . . . , ps be the minimal primes
of R, set Ri = R/pi , and let S be the ring S =

⊕s
i=1 Ri . Then there exists α ∈ Z+

such that for all n ∈ Z+,∣∣∣∣ s∑
i=1

`Ri (Ri/In Ri )− `R(R/In)

∣∣∣∣≤ αnd−1.

Proof. There exists c ∈ Z+ such that mc
R ⊂ I1. Since S is a finitely generated

R-submodule of the total ring of fractions T =
⊕s

i=1 Q(Ri ) of R, there exists a
nonzero divisor x ∈ R such that x S ⊂ R.

The natural inclusion R→ S induces exact sequences of R-modules

0→ R ∩ In S/In→ R/In→ S/In S→ Nn→ 0. (15)

We also have exact sequences of R-modules

0→ An→ R/In
x
−→ R/In→ Mn→ 0. (16)

We have that x(R ∩ In S)⊂ In and An = In : x/In so that

`R(R ∩ In S/In)≤ `R(An). (17)

Now Mn ∼= (R/x)/In(R/x), so

`R(Mn)≤ `R((R/x)/mnc
R (R/x))≤ β(nc)d−1

for some β, computed from the Hilbert–Samuel polynomial of R/x and the finitely
many values of the Hilbert–Samuel function of R/x that do not agree with this
polynomial. Thus,

`R(An)= `(Mn)≤ βcd−1nd−1 (18)

by (16).
Since x S ⊂ R, we have that

Nn ∼= (S/R+ In S)= S/(R+ In S+ x S).
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Thus,
`R(Nn)≤ `R((S/x S)/mnc

R (S/x S))≤ γ (nc)d−1 (19)

for some γ , computed from the Hilbert–Samuel polynomial of the semilocal ring
S/x with respect to the ideal of definition m R(S/x S). Thus,

|`R(R/In)− `R(S/In S)| ≤max{β, γ }cd−1nd−1.

The lemma now follows since

`R(S/In S)=
∑
`Ri (Ri/In Ri ). �

Theorem 5.2. Suppose that R is an analytically unramified local ring with alge-
braically closed residue field. Let d > 0 be the dimension of R. Suppose that {In} is
a graded family of m R-primary ideals in R. Then

lim
i→∞

`R(R/Ii )

id

exists.

Proof. Let R̂ be the m R-adic completion of R, which is reduced and excellent. Since
the In are m R-primary, we have that R/In ∼= R̂/In R̂ and `R(R/In)= `R̂(R̂/In R̂)
for all n. Let {q1, . . . , qs} be the minimal primes of R̂. By Lemma 5.1, we reduce
to proving the theorem for the families of ideals {In R̂/qi } in R̂/qi for 1 ≤ i ≤ s.
We may thus assume that R is a complete domain. Let π : X → Spec(R) be the
normalization of the blow-up of m R . X is of finite type over R since R is excellent.
Since π−1(m R) has codimension 1 in X and X is normal, there exists a closed
point x ∈ X such that the local ring OX,x is a regular local ring. Let S be this local
ring. S/mS = R/m R since S/mS is finite over R/m R , which is an algebraically
closed field. �

Lemma 5.3. Suppose that R is a Noetherian local domain that contains a field k.
Suppose that k ′ is a finite separable field extension of k such that k ⊂ R/m R ⊂ k ′.
Let S = R⊗k k ′. Then S is a reduced Noetherian semilocal ring. Let p1, . . . , pr be
the maximal ideals of S. Then m R S = p1 ∩ · · · ∩ pr .

Proof. Let K be the quotient field of R. Then K ⊗k k ′ is reduced [Zariski and
Samuel 1958, Theorem 39, p. 195]. Since k ′ is flat over k, we have an inclusion
R ⊗k k ′ ⊂ K ⊗k k ′, so S = R ⊗k k ′ is reduced. S/m R S ∼= (R/m R)⊗k k ′ is also
reduced by [Zariski and Samuel 1958, Theorem 39]. Thus, m R S= p1∩· · ·∩ pr . �

Remark 5.4. In the case that R is a regular local ring, we have that S = R⊗k k ′ is
a regular ring.

Proof. Since R is a regular local ring, m R is generated by d = dim R elements. For
1≤ i ≤ r , we thus have that pi Spi = m R Spi is generated by d = dim R = dim Spi

elements. Thus, Spi is a regular local ring. �
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Remark 5.5. If k ′ is Galois over k, then S/pi ∼= k ′ for 1≤ i ≤ r .

Proof. Let k̃ = R/m R . By our assumption, k̃ is a finite separable extension of k.
Thus, k̃ = k[α] for some α ∈ k ′. Let f (x) ∈ k[x] be the minimal polynomial of α.
Since k ′ is a normal extension of k containing α, f (x) splits into linear factors
in k ′[x]. Thus,

r⊕
i=1

R/pi ∼= S/m R S ∼= k̃⊗k k ′ ∼= k ′[x]/( f (x))∼= (k ′)r . �

Remark 5.6. If R is complete in the m R-adic topology, then R⊗k k ′ is complete
in the m R R⊗k k ′-adic topology [Zariski and Samuel 1960, Theorem 16, p. 277].
If p1, . . . , pr are the maximal ideals of R⊗k k ′, then R⊗k k ′ ∼=

⊕r
i=1(R⊗k k ′)pi

[Matsumura 1986, Theorem 8.15]. Thus, each (R⊗k k ′)pi is a complete local ring.

Lemma 5.7. Let assumptions and notation be as in Lemma 5.3, and suppose that I
is an m R-primary ideal in R. Then

[k ′ : k]`R(R/I )=
r∑

i=1

[S/pi : R/m R]`Spi
((S/I S)pi ).

Proof. We have

dimk R/I = [R/m R : k]`R(R/I ),

dimk S/I S = dimk(R/I )⊗k k ′ = [k ′ : k] dimk(R/I ).

S/I S is an Artin local ring so that S/I S ∼=
⊕r

i=1(S/I S)pi . Thus,

dimk(S/I S)=
r∑

i=1

[S/pi : k]`Spi
((S/I S)pi ). �

We will need the following definition. A commutative ring A containing a field k
is said to be geometrically irreducible over k if A⊗k k ′ has a unique minimal prime
for all finite extensions k ′ of k.

Theorem 5.8. Suppose that R is an analytically unramified equicharacteristic local
ring with perfect residue field. Let d > 0 be the dimension of R. Suppose that {In}

is a graded family of m R-primary ideals in R. Then

lim
i→∞

`R(R/Ii )

id

exists.

Proof. There exists c ∈ Z+ such that mc
R ⊂ I1. Let R̂ be the m R-adic com-

pletion of R. Since the In are m R-primary, we have that R/In ∼= R̂/In R̂ and
`R(R/In)= `R̂(R̂/In R̂) for all n. R̂ is reduced since R is analytically unramified.
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Let {q1, . . . , qs} be the minimal primes of R̂. By Lemma 5.1, we reduce to proving
the theorem for the families of ideals {In R̂/qi } in R̂/qi for 1≤ i ≤ s. In the case
of a minimal prime qi of R such that dim R/qi < d, the limits

lim
n→∞

`R(Ri/In Ri )

nd

are all zero since `R(Ri/In Ri )≤ `R(Ri/mnc
R Ri ) for all n.

We may thus assume that R is a complete domain. R̂ contains a coefficient field
k ∼= R/m R by the Cohen structure theorem as R is complete and equicharacteristic.
Let k ′ be the separable closure of k in Q(R), and let R be the integral closure of R in
Q(R). We have that k ′⊂ R. R is a finitely generated R-module since R is excellent.
Let n ⊂ R be a maximal ideal lying over m R . Then the residue field extension
R/m R→ R/n is finite. Since k ′ ⊂ R/n, we have that k ′ is a finite extension of k.
By [Grothendieck 1965, Corollary 4.5.11], there exists a finite extension L of k
(which can be taken to be Galois over k) such that if q1, . . . , qr are the minimal
primes of R⊗k L , then each ring R⊗k L/qi is geometrically irreducible over L .

R ⊗k L is a reduced semilocal ring by Lemma 5.3, and by Remark 5.5, the
residue field of all maximal ideals of R ⊗k L is L , which is a perfect field. By
Remark 5.6 and Lemmas 5.1 and 5.7, we reduce to the case where R is a complete
local domain with perfect coefficient field k such that R is geometrically irreducible
over k. Let π : X→Spec(R) be the normalization of the blow-up of m R . Since R is
excellent, π is projective and birational. Since m ROX is locally principal, π−1(m R)

has codimension 1 in X . Since X is normal, it is regular in codimension 1, so there
exists a closed point q ∈ X such that π(q) = m R and S = OX,q is a regular local
ring. Let k ′ = S/mS . Then k ′ is finite over k and is thus a separable extension of
the perfect field k.

Let k ′′ be a finite Galois extension of k containing k ′. Let R′ = R⊗k k ′′. R′ is
a local domain with residue field k ′′. R′ is complete by Remark 5.6. S ⊗k k ′′ is
regular and semilocal by Remark 5.4. Let p ∈ S⊗k k ′′ be a maximal ideal. Let
S′ = (S ⊗k k ′′)p. There exist f0, . . . , ft ∈ Q(R) such that S is a localization of
R[ f1/ f0, . . . , ft/ f0] at a maximal ideal that necessarily contracts to m R . Thus, S′ is
essentially of finite type and birational over R′ since we can regard f0, . . . , ft ∈ R′.
Since S′ is a regular local ring and k ′′ = S′/mS′ = R′/m R′ by Remark 5.5, we have
that Theorem 5.8 follows from Lemma 5.7 and Theorem 4.2. �

6. Some applications to asymptotic multiplicities

Theorem 6.1. Suppose that R is a local ring of dimension d > 0 such that one of
the following holds:

(1) R is regular or
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(2) R is analytically irreducible with algebraically closed residue field or

(3) R is normal, excellent and equicharacteristic with perfect residue field.

Suppose that {Ii } and {Ji } are graded families of nonzero ideals in R. Further
suppose that Ii ⊂ Ji for all i and there exists c ∈ Z+ such that

mci
R ∩ Ii = mci

R ∩ Ji (20)

for all i . Then the limit

lim
i→∞

`R(Ji/Ii )

id

exists.

Remark 6.2. An analytic local domain R satisfies the hypotheses of Theorem 6.1(2).
The fact that R is analytically irreducible (R̂ is a domain) follows from [Grothendieck
1965, Corollary 18.9.2].

Proof of Theorem 6.1. We will apply the method of Theorem 4.2. When R is
regular, we take S = R, and in case (2), we construct S by the argument of the
proof of Theorem 5.2. We will consider case (3) at the end of the proof.

Let ν be the valuation of Q(R) constructed from S in the proof of Theorem 4.2
with associated valuation ideals Kλ in the valuation ring Vν of ν.

Apply Lemma 4.3 if R is not regular to find α ∈ Z+ such that

Kαn ∩ R ⊂ mn
R

for all n ∈ Z+. When R is regular so that R = S, the existence of such an α follows
directly from (7). We will use the function ϕ : R \ {0} → Nd+1 of the proof of
Theorem 4.2. We have that

Kαcn ∩ In = Kαcn ∩ Jn

for all n. Thus,

`R(Jn/In)= `R(Jn/Kαcn ∩ Jn)− `R(In/Kαcn ∩ In) (21)

for all n. Let β = αc and

0(J∗)= {(n1, . . . , nd , i) | (n1, . . . , nd) ∈ ϕ(Ji ) and n1+ · · ·+ nd ≤ βi},

0(I∗)= {(n1, . . . , nd , i) | (n1, . . . , nd) ∈ ϕ(Ii ) and n1+ · · ·+ nd ≤ βi}.

We have that

`R(Jn/In)= #0(J∗)n − #0(I∗)n (22)
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as explained in the proof of Theorem 4.2. As in the proof of Theorem 4.2, we have
that 0(J∗) and 0(I∗) satisfy the conditions (1)–(3). Thus,

lim
n→∞

#0(J∗)n
nd = vol(1(0(J∗))) and lim

n→∞

#0(I∗)n
nd = vol(1(0(I∗)))

by Theorem 3.1. The theorem (in cases (1) or (2)) now follows from (22).
Now suppose that R satisfies the assumptions of case (3). Then the m R-adic

completion R̂ satisfies the assumptions of case (3).
Suppose that R satisfies the assumptions of case (3) and R is m R-adically com-

plete. Let k be a coefficient field of R. The algebraic closure of k in Q(R) is
contained in R, so it is contained in R/m R = k. Thus, k is algebraically closed
in Q(R). Suppose that k ′ is a finite Galois extension of k. Q(R)⊗k k ′ is a field
by [Zariski and Samuel 1958, Corollary 2, p. 198], and thus, R′ = R ⊗k k ′ is a
domain. R′ is a local ring with residue field k ′ since R′/m R R′ ∼= R/m R ⊗k k ′ ∼= k ′.
R′ is normal by [Grothendieck 1965, Corollary 6.14.2]. Thus, R′ satisfies the
assumptions of case (3).

Thus, in the reductions in the proof of Theorem 5.8 to Theorem 4.2, the only
extensions that we need to consider are local homomorphisms R→ R′ that are
either m R-adic completion or a base extension by a Galois field extension. These
extensions are all flat, and m R R′ = m R′ . Thus,

mnc
S ∩ In S =mnc

R S∩ In S = (mnc
R ∩ In)S = (mnc

R ∩ Jn)S =mnc
R S∩ Jn S =mnc

S ∩ Jn S

for all n. Thus, the condition (20) is preserved, so we reduce to the case (2) of this
theorem and conclude that Theorem 6.1 is true in case (3). �

If R is a local ring and I is an ideal in R, then the saturation of I is

I sat
= I : m∞R =

∞⋃
k=1

I : mk
R.

Corollary 6.3. Suppose that R is a local ring of dimension d > 0 such that one of
the following holds:

(1) R is regular or

(2) R is analytically irreducible with algebraically closed residue field or

(3) R is normal, excellent and equicharacteristic with perfect residue field.

Suppose that I is an ideal in R. Then the limit

lim
i→∞

`R((I i )sat/I i )

id

exists.
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Since (I n)sat/I n ∼= H 0
m R
(R/I n), the epsilon multiplicity of Ulrich and Validashti

[2011]

ε(I )= lim sup
`R(H 0

m R
(R/I n))

nd/d!

exists as a limit under the assumptions of Corollary 6.3.
Corollary 6.3 is proven for more general families of modules when R is a local

domain that is essentially of finite type over a perfect field k such that R/m R is
algebraic over k in [Cutkosky 2011]. The limit in Corollary 6.3 can be irrational as
shown in [Cutkosky et al. 2005].

Proof of Corollary 6.3. By [Swanson 1997, Theorem 3.4], there exists c ∈ Z+ such
that each power I n of I has an irredundant primary decomposition

I n
= q1(n)∩ · · · ∩ qs(n),

where q1(n) is m R-primary and mnc
R ⊂q1(n) for all n. As (I n)sat

=q2(n)∩· · ·∩qs(n),
we have that

I n
∩mnc

R = mnc
R ∩ q2(n)∩ · · · ∩ qs(n)= mnc

R ∩ (I
n)sat

for all n ∈ Z+. Thus, the corollary follows from Theorem 6.1, taking Ii = I i and
Ji = (I i )sat. �

A stronger version of the previous corollary is true. The following corollary
proves a formula proposed by Herzog et al. [2008, Introduction].

Suppose that R is a ring and I and J are ideals in R. Then the n-th symbolic
power of I with respect to J is

In(J )= I n
: J∞ =

∞⋃
i=1

I n
: J i .

Corollary 6.4. Suppose that R is a local domain of dimension d such that one of
the following holds:

(1) R is regular or

(2) R is normal and excellent of equicharacteristic 0 or

(3) R is essentially of finite type over a field of characteristic 0.

Suppose that I and J are ideals in R. Let s be the constant limit dimension of
In(J )/I n for n� 0. Then

lim
n→∞

em R (In(J )/I n)

nd−s

exists.
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Proof. There exists a positive integer n0 such that the set of associated primes
of R/I n stabilizes for n ≥ n0 by [Brodmann 1979]. Let {p1, . . . , pt } be this set of
associated primes. We thus have irredundant primary decompositions for n ≥ n0

I n
= q1(n)∩ · · · ∩ qt(n), (23)

where qi (n) are pi -primary.
We further have that

I n
: J∞ =

⋂
J 6⊂pi

qi (n). (24)

Thus, dim In(J )/I n is constant for n ≥ n0. Let s be this limit dimension. The set

A =
{

p ∈
⋃

n≥n0

Ass(In(J )/I n)

∣∣∣∣ n ≥ n0 and dim R/p = s
}

is a finite set. Moreover, every such prime is in Ass(In(J )/I n) for all n ≥ n0. For
n ≥ n0, we have by the additivity formula [Serre 1965, p. V-2; Bruns and Herzog
1993, Corollary 4.6.8, p. 189] that

em R (In(J )/I n)=
∑

p

`Rp((In(J )/I n)p)e(m R/p),

where the sum is over the finite set of primes p ∈ Spec(R) such that dim R/p = s.
This sum is thus over the finite set A.

Suppose that p ∈ A and n ≥ n0. Then

I n
p =

⋂
qi (n)p,

where the intersection is over the qi (n) such that pi ⊂ p, and

In(J )=
⋂

qi (n)p,

where the intersection is over the qi (n) such that J 6⊂ pi and pi ⊂ p. Thus, there
exists an index i0 such that pi0 = p and

I n
p = qi0(n)p ∩ In(J )p.

By (23),
(I n

p )
sat
= In(J )p

for n ≥ n0. Since Rp satisfies one of the cases (1) or (3) of Theorem 6.1 or the
conditions of [Cutkosky 2011, Corollary 1.5] and dim Rp=d−s (as R is universally
catenary), the limit

lim
n→∞

`R((In(J )/In)p)

nd−s

exists. �
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Theorem 6.5. Suppose that R is a d-dimensional local ring such that either

(1) R is regular or

(2) R is analytically unramified and equicharacteristic with perfect residue field.

Suppose that {Ii } is a graded family of m R-primary ideals in R. Then

lim
n→∞

`R(R/In)

nd/d!
= lim

p→∞

e(Ip)

pd .

Here e(Ip) is the multiplicity

e(Ip)= eIp(R)= lim
k→∞

`R(R/I k
p)

kd/d!
.

Theorem 6.5 is proven for valuation ideals associated to an Abhyankar valuation
in a regular local ring that is essentially of finite type over a field in [Ein et al. 2003],
for general families of m R-primary ideals when R is a regular local ring containing
a field in [Mustat,ǎ 2002] and when R is a local domain that is essentially of finite
type over an algebraically closed field k with R/m R = k in [Lazarsfeld and Mustat,ă
2009, Theorem 3.8].

Proof of Theorem 6.5. There exists c ∈ Z+ such that mc
R ⊂ I1.

We first prove the theorem when R satisfies the assumptions of Theorem 4.2.
Let ν be the valuation of Q(R) constructed from S in the proof of Theorem 4.2
with associated valuation ideals Kλ in the valuation ring Vν of ν.

Apply Lemma 4.3 if R is not regular to find α ∈ Z+ such that

Kαn ∩ R ⊂ mn
R

for all n ∈ N. When R is regular so that R = S, the existence of such an α follows
directly from (7). We will use the function ϕ : R \ {0} → Nd+1 of the proof of
Theorem 4.2.

We have that
Kαcn ∩ R ⊂ mcn

R ⊂ In

for all n.
Let

0(I∗)= {(n1, . . . , nd , i) | (n1, . . . , nd) ∈ ϕ(Ii ) and n1+ · · ·+ nd ≤ αci},

0(R)= {(n1, . . . , nd , i) | (n1, . . . , nd) ∈ ϕ(R) and n1+ · · ·+ nd ≤ αci}.

As in the proof of Theorem 4.2, 0(I∗) and 0(R) satisfy the conditions (1)–(3). For
fixed p ∈ Z+, let

0(I∗)(p)= {(n1, . . . , nd , kp) | (n1, . . . , nd) ∈ ϕ(I k
p) and n1+ · · ·+ nd ≤ αckp}.
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We have inclusions of semigroups

k0(I∗)p ⊂ 0(I∗)(p)kp ⊂ 0(I∗)kp

for all p and k.
By Theorem 3.2, given ε > 0, there exists p0 such that p ≥ p0 implies

vol(1(0(I∗)))− ε ≤ lim
k→∞

#k0(I∗)p

kd pd .

Thus,

vol(1(0(I∗)))− ε ≤ lim
k→∞

#0(I∗)(p)kp

kd pd ≤ vol(1(0(I∗))).

Again by Theorem 3.2, we can choose p0 sufficiently large so that we also have

vol(1(0(R)))− ε ≤ lim
k→∞

#0(R)kp

kd pd ≤ vol(1(0)).

Now
`R(R/I k

p)= #0(R)pk − #0(I∗)(p)kp,

`R(R/In)= #0(R)n − #0(I∗)n.

By Theorem 3.1,

lim
n→∞

`R(R/In)

nd = vol(1(0(R)))− vol(1(0(I∗))).

Thus,

lim
n→∞

`R(R/In)

nd − ε ≤ lim
k→∞

`R(R/I k
p)

kd pd =
e(Ip)

d! pd ≤ lim
n→∞

`R(R/In)

nd + ε.

Taking the limit as p→∞, we obtain the conclusions of the theorem.
Now assume that R is general, satisfying the assumptions of the theorem. We

reduce to the above case by a series of reductions, first taking the completion of R,
then modding out by minimal primes and taking a base extension by a finite Galois
extension.

The proof thus reduces to showing that

lim
p→∞

ed(Ip, R)
pd = lim

n→∞

`R(R/In)

nd/d!

in each of the following cases:

(a) lim
p→∞

ed(Ip R̂, R̂)
pd = lim

n→∞

`R̂(R̂/In R̂)
nd/d!

.
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(b) Suppose that the minimal primes of (the reduced ring) R are {q1, . . . , qs}. Let
Ri = R/qi , and suppose that

lim
p→∞

ed(Ip Ri , Ri )

pd = lim
n→∞

`Ri (Ri/In Ri )

nd/d!

for all i .

(c) Suppose that k ⊂ R is a field and k ′ is a finite Galois extension of k con-
taining R/m R . Let {p1, . . . , pr } be the maximal ideals of the semilocal ring
S = R⊗k k ′. Suppose that

lim
p→∞

ed(Ip Spi , Spi )

pd = lim
n→∞

`Spi
(Spi /In Spi )

nd/d!

for all i .

Recall that
ed(Ip, R)

d!
= lim

k→∞

`R(R/I k
p)

kd .

Case (a) follows since

`R(R/I k
p)= `R̂(R̂/I k

p R̂)

for all p and k.
In case (b), we have that

ed(Ip, R)
pd =

s∑
i=1

ed(Ip Ri , Ri )

pd

by the additivity formula [Serre 1965, §V-3; Bruns and Herzog 1993, Corollary
4.6.8, p. 189] or directly from Lemma 5.1. Case (b) thus follows from the fact that

lim
n→∞

`R(R/In)

nd =

s∑
i=1

lim
k→∞

`R(Ri/In Ri )

nd

by Lemma 5.1.
In case (c), we have that k ′ is Galois over k so that S/pi ∼= k ′ for all i by

Remark 5.5. Thus, Lemma 5.7 becomes

`R(R/I k
p)=

r∑
i=1

`Spi
(Spi /I k

p Spi )

for all p and k, from which this case follows. �

Suppose that R is a Noetherian ring and {Ii } is a graded family of ideals in R.
Let

s = s(I∗)= lim sup dim R/Ii .
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Let i0 ∈ Z+ be the smallest integer such that

dim R/Ii ≤ s for i ≥ i0. (25)

For i ≥ i0 and p a prime ideal in R such that dim R/p= s, we have that (Ii )p = Rp

or (Ii )p is pp-primary.
In general, s is not a limit as is shown by the following simple example:

Example 6.6. Suppose that R is a Noetherian ring and p⊂ q ⊂ R are prime ideals.
Let

Ii =

{
p if i is odd,
q if i is even.

We have that

Ii I j =

{
p2 or q2 if i + j is even,
pq if i + j is odd.

Thus, Ii I j ⊂ Ii+ j for all i and j and

dim R/Ii =

{
dim R/p if i is odd,
dim R/q if i is even.

Let

T = T (I∗)=
{

p ∈ Spec(R)

| dim R/p = s and there exist arbitrarily large j such that (I j )p 6= Rp
}
.

Lemma 6.7. T (I∗) is a finite set.

Proof. Let U be the set of prime ideals p of R that are an associated prime of
some Ii with i0 ≤ i ≤ 2i0−1 and ht p = s. Suppose that q ∈ T . There exists j ≥ i0

such that (I j )q 6= Rq . We can write j = ai0+ (i0+k) with 0≤ k ≤ i0−1 and a ≥ 0.
Thus, I a

i0
Ii0+k ⊂ I j . Thus, q ∈U since (I a

i0
Ii0+k)q 6= Rq . �

Lemma 6.8. There exist c = c(I∗) ∈ Z+ such that if j ≥ i0 and p ∈ T (I∗), then

p jc Rp ⊂ I j Rp.

Proof. There exists a ∈ Z+ such that for all p ∈ T , pa
p ⊂ (Ii )p for i0 ≤ i ≤ 2i0− 1.

Write j = ti0+ (i0+ k) with t ≥ 0 and 0≤ k ≤ i0− 1. Then

p(t+1)a
p ⊂ I t

i0
Ii0+k Rp ⊂ I j Rp.

Let c = da/i0e+ a. Then

jc ≥ a+ j a
i0
= a+ (ti0+ i0+ k) a

i0
≥ (t + 1)a.

Thus, p jc
p ⊂ p(t+1)a

p ⊂ (I j )p. �
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Let
A(I∗)= {q ∈ T (I∗) | In Rq is qq -primary for n ≥ i0}.

Lemma 6.9. Suppose that q ∈ T (I∗) \ A(I∗). Then there exists b ∈ Z+ such that
qb

q ⊂ (In)q for all n ≥ i0.

Proof. There exists n0 ∈ Z+ such that n0 ≥ i0 and (In0)q = Rq . Let b ∈ Z+ be such
that qb

q ⊂ (In)q for 0≤ n < n0. Suppose that n0 ≤ n. Write n = βn0+α with β ≥ 0
and 0≤ α < n0. Then

qb
q ⊂ (I

β
n0

Iα)q ⊂ (In)q . �

We obtain the following asymptotic additivity formula:

Theorem 6.10. Suppose that R is a d-dimensional local ring such that either

(1) R is regular or

(2) R is analytically unramified of equicharacteristic 0.

Suppose that {Ii } is a graded family of ideals in R. Let s= s(I∗)= lim sup dim R/Ii

and A = A(I∗). Suppose that s < d. Then

lim
n→∞

es(m R, R/In)

nd−s/(d − s)!
=

∑
q∈A

(
lim

k→∞

e((Ik)q)

kd−s

)
e(m R/q).

Proof. Let i0 be the (smallest) constant satisfying (25). By the additivity formula
[Serre 1965, p. V-2; Bruns and Herzog 1993, Corollary 4.6.8, p. 189], for i ≥ i0,

es(m R, R/Ii )=
∑

p

`Rp(Rp/(Ii )p)em R (R/p),

where the sum is over all prime ideals p of R with dim R/p = s. By Lemma 6.7,
for i ≥ i0, the sum is actually over the finite set T (I∗) of prime ideals of R.

For p ∈ T (I∗), Rp is a local ring of dimension at most d − s. Further, Rp is
analytically unramified [Rees 1961; Huneke and Swanson 2006, Proposition 9.1.4].
By Lemma 6.8 and by Theorem 4.6 or 5.8, replacing (Ii )p with pic

p if i < i0, we
have that

lim
i→∞

`Rp(Rp/(Ii )p)

id−s

exists. Further, this limit is zero if p ∈ T (I∗)\ A(I∗) by Lemma 6.9 and since s < d .
Finally, we have

lim
i→∞

`Rq (Rq/(Ii )q)

id−s/(d − s)!
= lim

k→∞

e(Ik)q (Rq)

kd−s

for q ∈ A(I∗) by Theorem 6.5. �
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7. An application to growth of valuation semigroups

As a consequence of our main result, we obtain the following theorem, which gives
a positive answer to a question raised in [Cutkosky et al. 2010a]. This formula was
established if R is a regular local ring of dimension 2 with algebraically closed
residue field in [Cutkosky et al. 2010a] and if R is an arbitrary regular local ring of
dimension 2 in [Cutkosky and Vinh 2011] using a detailed analysis of a generating
sequence associated to the valuation. A valuation ω dominating a local domain R
is zero-dimensional if the residue field of ω is algebraic over R/m R .

Theorem 7.1. Suppose that R is a regular local ring or an analytically unramified
local domain. Further suppose that R has an algebraically closed residue field.
Let d > 0 be the dimension of R. Let ω be a zero-dimensional rank-1 valuation of
the quotient field of R that dominates R. Let SR(ω) be the semigroup of values of
elements of R, which can be regarded as an ordered subsemigroup of R+. For n∈Z+,
define

ϕ(n)= |SR(ω)∩ (0, n)|.

Then

lim
n→∞

ϕ(n)
nd

exists.

Proof. Let In = { f ∈ R | ω( f ) ≥ n} and λ = ω(m R) = min{ω( f ) | f ∈ m R}. Let
c ∈ Z+ be such that cλ > 1. Then mc

R ⊂ I1. By Theorem 4.6 or 5.2, we have that

lim
n→∞

`R(R/In)

nd

exists.
Since R has an algebraically closed residue field, we have by [Cutkosky et al.

2010a; Cutkosky and Teissier 2010] that

#ϕ(n)= `R(R/In)− 1.

Thus, the theorem follows. �

In [Cutkosky et al. 2010a], it is shown that the real numbers β with 0≤ β < 1
2

are the limits attained on a regular local ring R of dimension 2.
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