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For a noncyclic finite group G, let γ (G) denote the smallest number of conjugacy
classes of proper subgroups of G needed to cover G. In this paper, we show
that if G is in the range SLn(q)≤ G ≤ GLn(q) for n > 2, then n/π2 < γ (G)≤
(n+ 1)/2. This result complements recent work of Bubboloni, Praeger and Spiga
on symmetric and alternating groups. We give various alternative bounds and
derive explicit formulas for γ (G) in some cases.

1. Introduction

Normal coverings. Let G be a noncyclic finite group. We write γ (G) for the
smallest number of conjugacy classes of proper subgroups of G needed to cover it.
In other words, γ (G) is the least k for which there exist subgroups H1, . . . , Hk <G
such that

G =
k⋃

i=1

⋃
g∈G

Hi
g.

We say that the set of conjugacy classes {Hi
G
| i = 1, . . . , k} is a normal covering

for G.
Bubboloni and Praeger [2011] have recently investigated γ (G) in the case that

G is a finite symmetric or alternating group. They show, for example, that if n is
an odd composite number then

φ(n)
2
+ 1≤ γ (Sn)≤

n−1
2
,

where φ is Euler’s totient function. Similar results are established for all values
of n and for both Sn and An . Part of the motivation for their work comes from an
application in number theory.
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It is a well-known theorem of Jordan that no finite group is covered by the
conjugates of any proper subgroup. To paraphrase, γ (G) 6= 1 for any finite group G.
It is known that there exists a finite solvable group G with γ (G) = k for every
k > 1 [Crestani and Lucchini 2012]. It has been shown in [Bubboloni and Lucido
2002] that if G is one of the groups GLn(q), SLn(q), PGLn(q) or PSLn(q), then
γ (G)= 2 if and only if n ∈ {2, 3, 4}. (Notice that γ is undefined for n = 1 since
the groups are cyclic in this case.) Other groups of Lie type possessing a normal
covering of size 2 have been studied in [Bubboloni et al. 2006; 2011].

In this paper, we give bounds on γ (G), where SLn(q) ≤ G ≤ GLn(q), for all
values of n. In some cases, we are able to give an exact value. Our bounds extend
without change to G/Z(G).

We introduce some notation. We write bxc for the integer part of a real number x .
As already noted above, φ denotes Euler’s function. We shall also use Lehmer’s
partial totient function, which we define here.

Definition. Let k and t be such that 0 ≤ t < k < n. We define the partial totient
φ(k, t, n) to be the number of integers x , coprime with n, such that

nt
k
< x < n(t+1)

k
.

We give two separate upper bounds on γ (G).

Theorem 1.1. Let n ∈N, and let ν = ν(n) be the number of prime factors of n. Let
p1, . . . , pν be the distinct prime factors of n with p1 < p2 < · · ·< pν . Let G be a
group such that SLn(q)≤ G ≤ GLn(q).

(1) If ν ≥ 2, then

γ (G)≤
(

1− 1
p1

)(
1− 1

p2

)n
2
+ 2.

(2) If n > 6, then

γ (G)≤
⌊n

3

⌋
+φ(6, 2, n)+ ν.

A great deal of information is given in [Lehmer 1955, §6] about the function
φ(6, t, n), from which the following statement can be derived:

φ(n)
6
−φ(6, 2, n)=


0 if n is divisible either by 9 or by a prime

of the form 3k+ 1 for k ∈ N,
1
12λ(n)2

ν otherwise, if n is divisible by 3,
1
6λ(n)2

ν otherwise, if n is not divisible by 3,

in which λ(n)= (−1)`, where ` is the number of prime divisors of n counted with
multiplicity.
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Independent sets of conjugacy classes. Let κ(G) be the size of the largest set of
conjugacy classes of G such that any pair of elements from distinct classes generates
G. We call such a set an independent set of classes. Guralnick and Malle [2012]
have shown that κ(G)≥ 2 for any finite simple group G. It is clear that whenever
γ (G) is defined, we have the inequality

κ(G)≤ γ (G)

since if C is a normal covering of G, and if I is an independent set of classes, then
each element of C covers at most one element of I.

We establish two lower bounds for κ(G). By the observation of the previous
paragraph, these also operate as lower bounds for γ (G).

Theorem 1.2. Let n ∈N, and let ν = ν(n) be the number of prime factors of n. Let
p1, . . . , pν be the distinct prime factors of n with p1 < p2 < · · ·< pν . Let G be a
group such that SLn(q)≤ G ≤ GLn(q).

(1) If ν ≥ 2, then
φ(n)

2
+ ν(n)≤ κ(G).

(2) If ν ≥ 3, and if n is not equal to 6p or 10p for any prime p, then⌊n+6
12

⌋
+φ(12, 1, 3n)+ ν ≤ κ(G).

Furthermore, if hcf(n, 6)= 1, then⌊n+6
12

⌋
+φ(12, 1, 3n)+φ(12, 0, n)+ ν ≤ κ(G).

The values t = 0, 1 are not amongst those for which the function φ(12, t, n) is
evaluated explicitly in [Lehmer 1955]. However, Theorem 10 of the same work
gives the general estimate

|φ(n)− kφ(k, t, n)| ≤ (k− 1)2ν,

where ν is the number of prime divisors of n. This yields the lower bound

φ(12, t, n)≥ φ(n)
12
−

11
12

2ν .

There are certain cases in which an upper bound for γ (G) coincides with a lower
bound for κ(G). In these cases, we must have γ (G) = κ(G), and we obtain a
precise formula.

Theorem 1.3. Let G be a group such that SLn(q)≤ G ≤ GLn(q).

(1) If n = pa , where p is a prime and a ∈ N, and if n > 2, then

γ (G)= κ(G)=
(

1− 1
p

)n
2
+ 1.
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(2) If n = paqb, where p and q are distinct primes and a, b ∈ N, then

γ (G)= κ(G)=
(

1− 1
p

)(
1− 1

q

)n
2
+ 2.

(3) If n = 6p, where p is a prime, then γ (G)= κ(G)= p+ 2.

(4) If n = 10p, where p is a prime, then γ (G)= κ(G)= 2p+ 2.

Certain cases of Theorem 1.3 will require independent treatment as they arise as
exceptional cases in the proof of Theorem 1.2.

Linear bounds. Theorems 1.1(1), 1.2(2) and 1.3, taken together, imply that

n
12
< κ(G)≤ γ (G)≤ n+1

2
(1)

for all n > 2. The upper bound is exact when n is an odd prime. (When n = 2,
it is known that γ (G)= 2; see [Bubboloni and Lucido 2002] or the remark after
Proposition 4.1 below. It is also easy to show that κ(G)= 2 in this case.) It follows
immediately that

lim sup
γ (G)

n
=

1
2
. (2)

The lower bound for γ can be improved as the following theorem indicates:

Theorem 1.4. If G is a group such that SLn(q)≤G ≤GLn(q), then n/π2 < γ (G).

From the first part of Theorem 1.1 and from Theorem 1.4, it is easy to show that

1
π2 ≤ lim inf

γ (G)
n
≤

1
6
. (3)

It follows from the theorems that we have stated that γ (G) and κ(G) are bounded
above and below by monotonic functions that grow linearly with n. It appears that
the situation for symmetric groups is similar. It was announced in [Bubboloni et al.
2012, §1.1] and demonstrated in [Bubboloni et al. 2013] that γ (Sn) and γ (An) are
bounded above and below by linear functions of n. In fact, the numbers γ (Sn) and
γ (GLn(q)) seem to be closely related; in all cases where both are known exactly,
they differ by at most 1. It is not hard to show, and it is worth remarking in this
connection, that the upper bounds stated for γ (G) in Theorem 1.1 are also upper
bounds for γ (Sn) improving marginally on those of [Bubboloni and Praeger 2011,
Theorem A]. It should also be noted that all of our bounds are independent of the
field size q .

We establish the upper bounds of Theorem 1.1 in Section 2 by exhibiting explicit
normal coverings of the necessary sizes. This builds on work described in [Britnell
et al. 2008], in which coverings of GLn(q) by proper subgroups are constructed.
The two lower bounds of Theorem 1.2 are proved in Section 3. Both are proved by
exhibiting an independent set of classes. This requires an account of overgroups of
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certain special elements in GLn(q). For such an account, we rely on [Guralnick
et al. 1999], which provides a classification of subgroups whose orders are divisible
by primitive prime divisors of qd

− 1 for all d > n/2. The remaining cases of
Theorem 1.3 are brought together in Section 4. Finally, Theorem 1.4 is established in
Section 5. Its proof relies on work from the doctoral thesis of Joseph DiMuro [2007],
which extends the classification of [Guralnick et al. 1999] to cover all d ≥ n/3.

The classes of subgroups in our normal covering remain distinct, proper and
nontrivial in the quotient of G by Z(G). This is true also of the classes of maximal
overgroups that cover the conjugacy classes in our independent sets. It follows that
the bounds that we have stated for γ (G) and for κ(G) hold equally for γ (G/Z(G))
and for κ(G/Z(G)).

2. Normal coverings of G

We shall write V for the space Fq
n . We assume that SL(V )≤G≤GL(V ) throughout

the paper.
We begin by introducing the classes of subgroups that we shall need for our

coverings. Proposition 2.1 below contains standard information about certain
subgroups of GLn(q), and we shall not prove it here.

Proposition 2.1. (1) Let d be a divisor of n. There exist embeddings of GLn/d(qd)

into GLn(q). All such embeddings are conjugate by elements of SLn(q), and
each has index d in its normalizer in GLn(q). If d is prime, then the normalizer
is a maximal subgroup of GLn(q).

(2) Suppose that 1 ≤ k < n, and let U be a k-dimensional subspace of V . Then
the set stabilizer GU of U in G is a maximal subgroup of G. If W is another
k-dimensional subspace, then GU and GW are conjugate in G.

It will be convenient to have concise notation for these subgroups.

Definition. (1) We refer to the maximal subgroups of Proposition 2.1(1) as exten-
sion field subgroups of degree d, and we write efs(d) for the conjugacy class
consisting of the intersections of all such subgroups with the group G.

(2) We refer to the subgroups of Proposition 2.1(2) as subspace stabilizers of
dimension k, and we write ss(k) for the conjugacy class consisting of all such
subgroups.

The following technical lemma will be useful:

Lemma 2.2. (1) Suppose that X ∈ GL(V ) and that X stabilizes a k-dimensional
subspace of V . Then X stabilizes a subspace whose dimension is n− k.

(2) Let X ∈ GL(V ), and let p be a prime dividing n. If X lies in no extension field
subgroup of degree p, then it stabilizes a subspace of V whose dimension is
coprime with p.
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Proof. (1) Suppose X stabilizes a space U of dimension k. Then the transpose X t

acts on the dual space V ∗ and stabilizes the annihilator of U , which has dimension
n− k.

(2) If X stabilizes no subspace whose dimension is coprime with p, then every
irreducible divisor of its characteristic polynomial has degree divisible by p and
must therefore split into p factors over Fq p . Suppose that the elementary divisors of
X are f a1

1 , . . . , f at
t . For each i , let gi be an irreducible factor of fi over Fq p , and

let Y ∈GLn/p(q p) have elementary divisors ga1
1 , . . . , gat

t . Then it is not hard to see
that any embedding of GLn/p(q p) into GLn(q) must map Y to a conjugate of X . �

We are now in a position to exhibit some normal coverings of G.

Lemma 2.3. (1) Let p be a prime dividing n. Then there is a normal covering Cp

for G given by

Cp = {efs(p)} ∪ {ss(k) | 1≤ k ≤ n/2, p - k}.

The size of Cp is

|Cp| =

⌊(
1− 1

p

)n
2

⌋
+ 1+ ε,

where

ε =

{
1 if p = 2 and n/2 is odd,
0 otherwise.

This is minimized when p is the smallest prime divisor of n.

(2) Let p1 and p2 be distinct prime divisors of n. Then there is a normal covering
Cp1,p2 for G given by

Cp1,p2 = {efs(p1), efs(p2)} ∪ {ss(k) | 1≤ k < n/2, p1, p2 - k}.

The size of Cp1,p2 is

|Cp1,p2 | =

(
1− 1

p1

)(
1− 1

p2

)n
2
+ 2.

This is minimized when p1 and p2 are the two smallest prime divisors of n.

Proof. The sizes of the sets Cp and Cp1,p2 are easily seen to be as stated. That Cp

is a normal covering follows immediately from Lemma 2.2. So it remains only to
prove that C p1,p2 is a normal covering.

Let X ∈ G, let fX be the characteristic polynomial of X , and let g1, . . . , gs be
the irreducible factors of fX over Fq with degrees d1, . . . , ds , respectively. Then
clearly there exist X -invariant subspaces U1, . . . ,Us such that dim Ui = di for all i
and such that Ui ∩U j = {0} whenever i 6= j . If any di is divisible by neither of
the primes p1 and p2, then X is contained in a subspace stabilizer from one of
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the classes in Cp1,p2 . So we assume that each di is divisible by at least one of p1

or p2. Suppose that da is divisible by p1 but not by p2 and that db is divisible
by p2 but not by p1. Then Ua⊕Ub is an X -invariant subspace, and its dimension is
coprime with p1 and p2; so again, X is in a subspace stabilizer from Cp1,p2 . But if
no such da and db can be found, then either all of the di are divisible by p1 or they
are all divisible by p2. In this case, X lies in an extension field subgroup either of
degree p1 or of degree p2. �

We note that the argument of the last paragraph of this proof does not extend
to the case of three primes, p1, p2 and p3. It is possible to find matrices whose
invariant subspaces all have dimensions divisible by one of those primes but which
lie in no extension field subgroup. In the case that the primes are 2, 3 and 5, for
instance, there are 30-dimensional matrices whose irreducible invariant spaces have
dimensions 2, 3 and 25. (Another example is used in the proof of Proposition 4.4
below.) This is the explanation for the appearance of the two smallest prime divisors
of n in the first upper bound of Theorem 1.1, which may at first seem a little curious.

The second upper bound of Theorem 1.1 is proved in a somewhat similar fashion.

Lemma 2.4. Let p1, . . . , pν be the distinct primes dividing n. Then there is a
normal covering D of G given by

D= {ss(k) | 1≤ k ≤ n/3}

∪ {ss(k) | n/3< k ≤ n/2, hcf(k, n)= 1}

∪ {efs(pi ) | 1≤ i ≤ ν}.

For n > 6, the size of D is ⌊n
3

⌋
+φ(6, 2, n)+ ν.

Proof. Let X ∈ G. Suppose that X is reducible and that its smallest nontrivial
invariant subspace has dimension k. If k > n/3, then it is not hard to see (for
instance, by considering the irreducible factors of the characteristic polynomial)
that X stabilizes at most one other proper nontrivial subspace of dimension n− k.
It follows that if p is a prime dividing both n and k, then X is contained in an
element of efs(p). It is now a straightforward matter to show that D is a normal
covering, and we omit further details. The size of D follows immediately from its
definition. �

3. Lower bounds for κ(G)

Recall that GLn(q) contains elements of order qn
− 1, known as Singer elements.

Such elements stabilize no nontrivial proper subspace of V . The determinant of a
Singer element generates the multiplicative group of Fq .
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In order to handle all groups G in the range SLn(q)≤ G ≤GLn(q) together, we
define a parameter α ∈ N by

α =

{
0 if G = SLn(q),

−|GLn(q) : G| otherwise.

Let ζ be a generator of the multiplicative group of Fq . Then we have

G
SLd(q)

∼= 〈ζ
α
〉.

Definition. (1) For d = 1, . . . , n, let 0d be a Singer element with determinant ζ
in GLd(q).

(2) For k < n/2, define

6k = diag(0k
α−1, 0n−k).

(3) For j < (n− 2)/4, define

T j = diag(0 j
α−2, 0 j+1, 0n−2 j−1).

The reasons for defining α as above will be clear from the following remark:

Remark. (1) Since det6k = det T j = ζ
α, we have 6k, T j ∈ G.

(2) It is clear from the definition of α that (1 − q) < α ≤ 0 and hence that
|α − 2| < q + 1. It follows easily that the actions of the matrices 0k

α−1

and 0 j
α−2 are irreducible for all k and j . Therefore, the module Fq〈6k〉

decomposes into precisely two irreducible summands, and Fq〈T j 〉 decomposes
into precisely three irreducible summands.

Lemma 3.1. Suppose that n > 4. Let k < n/2, and if q = 2, then suppose that
n− k 6= 6. Let j < (n− 2)/4, and if q = 2, then suppose that n− 2 j − 1 6= 6.

(1) If M is a maximal subgroup of G containing 0n , then M is an extension field
subgroup of prime degree.

(2) If M is a maximal subgroup of G containing 6k , then M is either an extension
field subgroup whose degree is a prime divisor of gcd(k, n) or else the stabilizer
of a subspace of dimension k or n− k.

(3) Let n have at least three distinct prime divisors. If M is a maximal subgroup
of G containing T j , then M is the stabilizer of a subspace whose dimension is
one of j , j + 1, 2 j + 1, n− 2 j − 1, n− j − 1 or n− j .
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Proof. Part (1) of the lemma is a result of Kantor [1980].
For (n, q) 6= (11, 2), part (2) of the lemma follows from [Britnell et al. 2008,

Theorem 4.1(2)]. However, a few comments are to be made about this assertion.
The matrix that we have called 6k is referred to as GLk in [Britnell et al. 2008].
The result in [Britnell et al. 2008] is stated only for the groups GLn(q) and SLn(q),
but the proof given there applies equally to intermediate subgroups. Finally, the
proof in [Britnell et al. 2008] relies on the existence of primitive prime divisors
of qn−k

−1 (where n−k > 2), which is given by the theorem of Zsigmondy [1892]
for all pairs (q, n − k) except (2, 4) and (2, 6); the second of these exceptions
accounts for the excluded case in the statement of the present lemma. The argument
uses the classification in [Guralnick et al. 1999] of subgroups of GLn(q) whose
order is divisible by a prime divisor of qe

− 1, where e > n/2.
To finish the proof of part (2) of the present lemma, we must consider the

exceptional case of the group GL11(2). In this case, we require a reference directly
to the lists of [Guralnick et al. 1999]. We find that there are several irreducible
subgroups whose order is divisible by a primitive prime divisor 11 of 210

− 1;
we must show that none of these contains 61. All of these subgroups are almost
simple and have a socle that is isomorphic either to one of the Mathieu groups M23

or M24 or to the unitary group PSU5(2) or to a linear group SL2(11) or SL2(23).
(These subgroups may be found in Table 5 (lines 12 and 14) and Table 8 (lines 2, 7
and 9) of [Guralnick et al. 1999].) Information about these groups may be found
in [Conway et al. 1985]. None of these groups themselves, nor any of their outer
automorphism groups, have order divisible by 31. Therefore, an almost simple
group of one of these types can contain no element of order 210

− 1= 3 · 11 · 31,
which is the order of the element 61.

For the proof of part (3) of the lemma, we refer once again to the classification
of [Guralnick et al. 1999], this time for matrix groups whose order is divisible
by a primitive prime divisor of qn−2 j−1

− 1. It is not hard to see that T j has no
overgroups of classical type. The condition that n has three distinct prime divisors
rules out the small dimensional sporadic examples contained in Tables 1–7. Other
examples are ruled out because their order is less than qn−2 j−1

− 1, which is the
order of the summand 0n−2 j−1 of T j . �

We define a set of classes that will help us to establish the first of our lower
bounds for κ(G).

Definition. Define a set 8 of classes of G by

8=
{
[6p]

∣∣ p |n, p prime, p < n/2
}
∪
{
[6k]

∣∣ k < n/2, hcf(n, k)= 1
}
,

where [g] denotes the conjugacy class of g.
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Lemma 3.2. Let n > 2, and let ν(n) be the number of prime factors of n. Then

|8| = φ(n)/2+ ν(n)− ε,

where

ε =

{
1 if n = 2p for some odd prime p,
0 otherwise.

Proof. This is immediate from the definition of 8. �

Lemma 3.2, together with the following two lemmas, will imply the first part of
Theorem 1.2:

Lemma 3.3. 8 is an independent set of classes.

Proof. Suppose that q 6= 2 or that [6n−6] /∈ 8. Then Lemma 3.1 provides full
information about the maximal subgroups of G that contain elements of 8, and it
is easy to check that the result holds in this case.

Next suppose that q = 2 and [6n−6] ∈8. (This implies that n ∈ {7, 8, 9, 11}.)
Lemma 3.1 gives full information about the maximal subgroups of G covering
elements of the classes in 8 other than [6n−6]. No class of subgroups contains
elements of more than one such class, and it is easy to check that none covers the
element 6n−6 itself. �

Lemma 3.4. Let n = 2p, where p > 2 is a prime. Then κ(G)≥ |8| + 1.

Proof. The proof of Lemma 3.3 shows that in any normal covering of G, the distinct
classes in8 are covered by distinct classes of subgroups. We add an extra conjugacy
class to 8, namely the class represented by 6p = diag(0p

α−1, 0p), where 0p is
a Singer element in GLp(q). This element stabilizes no subspace of dimension k
for any k coprime with n nor does it stabilize a subspace of dimension 2 or n− 2.
Therefore, by part (2) of Lemma 3.1, if 8∪ {[6p]} is not an independent set of
classes, then 6p must lie in a subgroup in efs(2).

Note that since 2 and p are coprime, 6p
2 has two irreducible summands of

dimension p. It is not hard to show that these submatrices are not conjugate, and
neither of them is reducible over Fq2 ; it follows that 6p

2 is not contained in any
embedding of GLp(q2) into G. Hence, 6p itself is not contained in an embedding
of GLp(q2) · 2. �

Lemmas 3.2, 3.3 and 3.4 complete the proof of part (1) of Theorem 1.2.
We define a second independent set of classes that yields the second lower bound

of Theorem 1.2. We shall require the following lemma:

Lemma 3.5. Let p be a prime divisor of n. Suppose that n has at least three distinct
prime divisors and that n is not equal to 6q or 10q for any prime q. Then there
exists an integer wp such that (n− 2)/4≤ wp < n/2 and such that wp is divisible
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by p and by no other prime divisor of n. If p 6= 3, then wp may be chosen so that it
is not divisible by 3.

Proof. Bertrand’s postulate states that for every k > 3 there is a prime r such that
k < r < 2k− 2. The conditions on n imply that n ≥ 12p. So there is a prime r > 3
such that

n
4p

< r < n
2p
.

If r is not itself a prime divisor of n or if it is equal to p, then we may take wp = pr .
On the other hand, if r is a prime divisor of n other than p, then clearly n = 3pr ,
and since we have assumed that n ≥ 12p, we have r ≥ 5. Now we see that there
exists m equal either to r + 1 or to r + 2 such that m is not divisible by 3, and we
may take wp = pm. �

Definition. Let n be a number with at least three distinct prime divisors and not
equal to 6p or 10p for any prime p. We define a set 9 of classes of G by

9 = {[T j ] | j < (n− 2)/4, j ≡ 1 mod 3}

∪ {[6k] | n/4< k < n/2, hcf(3n, k)= 1}

∪ {[66b] | b < n/12, hcf(n, 6b)= 1}

∪
{
[6wp ]

∣∣ p | n, p prime
}
,

where wp is as constructed in Lemma 3.5 and where [g] denotes the conjugacy
class of g.

To describe the size of the set 9, we use Lehmer’s partial totient function
φ(k, t, n), which was defined before the statement of Theorem 1.1 above.

Lemma 3.6. Let n have ν distinct prime divisors, where ν ≥ 3, and suppose that n
is not equal to 6p or 10p for any prime p.

(1) If 2 or 3 divides n, then

|9| =
⌊n+6

12

⌋
+φ(12, 1, 3n)+ ν.

(2) If hcf(n, 6)= 1, then

|9| =
⌊n+6

12

⌋
+φ(12, 1, 3n)+φ(12, 0, n)+ ν.

Proof. We write dxe for the least integer not less than x . The size X of the set
{[T j ] | j<(n−2)/4, j≡1 mod 3} is dN/3e, where N =b(n−2)/4c. By examining
residues modulo 12, it is not hard to show that X = b(n+ 6)/12c, the first term in
our sum.

It is immediate from the definition of the function φ(k, t, n) that the size of the
set {[6k] | n/4< k < n/2, hcf(3n, k)= 1} is φ(12, 1, 3n). We observe that the set
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[66b]

∣∣ b< n/12, hcf(n, 6b)= 1
}

is empty if hcf(n, 6) 6= 1; otherwise, it has size
φ(12, 0, n). And clearly the set

{
[6wp ]

∣∣ p |n, p prime
}

has size ν as required. �

To establish the second lower bound in Theorem 1.2, it will suffice to show that
any normal covering for G has size at least |9|. This is done in the following
lemma:

Lemma 3.7. Let n have at least three distinct prime divisors and not be equal to 6p
or 10p for any prime p. Then 9 is an independent set of classes.

Proof. Lemma 3.1 describes the maximal subgroups of G that contain elements of
the classes in 9. The elements T j lie only in members of ss(`) or ss(n− `), where
`∈{ j, j+1, 2 j+1}. Notice that if `>n/4, then `=2 j+1, and hence, `≡3 mod 6.
The elements6k , where k is coprime with n, lie only in members of ss(k) or ss(n−k).
And the elements 6wp lie in subspace stabilizers and also in elements of efs(p).
It is easy to check that the values permitted for j , k, b and wp ensure that no
two elements of distinct classes in 9 stabilize subspaces of the same dimension.
Therefore, no two classes in 9 can be covered by a single class of subgroups. �

4. Several equalities

In this section, we establish the various claims of Theorem 1.3. We do this simply
by comparing upper and lower bounds from earlier parts of the paper.

Proposition 4.1. If n = pa , where p is a prime and a ∈ N, and if n > 2, then

γ (G)= κ(G)=
(

1− 1
p

)n
2
+ 1.

Proof. Lemmas 2.3 and 3.3 together tell us that

|8| ≤ κ(G)≤ γ (G)≤ |Cp|.

But it is easy to check, using Lemma 3.2, that |8| = |Cp| and that this number is
as claimed in the proposition. �

Remark. If n= 2, then the covering C2 has size 2. Since no finite group is covered
by a single class of proper subgroups, it follow that γ (G)= 2 in this case.

Proposition 4.2. If n= paqb, where p and q are distinct primes and a, b ∈N, then

γ (G)= κ(G)=
(

1− 1
p

)(
1− 1

q

)n
2
+ 2.

Proof. As in the proof above, Lemma 2.3 with Lemmas 3.3 and 3.4 yields that

|8| + ε ≤ κ(G)≤ γ (G)≤ |Cp,q |,

where ε = 1 if n = 2p (or n = 2q) and ε = 0 otherwise. But we see that |8| + ε =
|Cp,q | and that this number is as claimed in the proposition. �
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Proposition 4.3. If n = 6p, where p is a prime, then

γ (G)= κ(G)= p+ 2.

Proof. In this case, we have

|8| ≤ κ(G)≤ γ (G)≤ |C2,3|,

and it is easy to calculate that |8| = |C2,3| = p+ 2. �

Proposition 4.4. If n = 10p, where p is a prime, then

γ (G)= κ(G)= 2p+ 2.

Proof. If p is 2 or 5, then the result follows from Proposition 4.2; if p = 3, then it
follows from Proposition 4.3. So we may assume that p > 5. Then we have

|8| ≤ κ(G)≤ γ (G)≤ |C2,5|,

but in this case, we see that |8| = 2p+ 1 whereas |C2,5| = 2p+ 2. To prove that
the upper bound is sharp for κ(G), it will be sufficient to exhibit an element Y of G
that cannot be covered by any class of subgroups containing an element of any
conjugacy class in 8. We define

Y = diag(0p
α−2, 05, 0n−p−5).

Notice that n− p−5 is even and coprime with 5 and with p. It follows that Y does
not stabilize a subspace of dimension coprime with n. But certainly Y lies in no
extension field subgroup, and so it satisfies the required condition. �

5. Proof of Theorem 1.4

For a positive integer n, let f (n) be the number of partitions of n with exactly three
parts. By an elementary counting argument, the following formula can be found
for f (n):

Lemma 5.1. f (n)=
{ 1

12(n− 1)(n− 2)+ 1
2b(n− 1)/2c if 3 - n,

1
12(n− 1)(n− 2)+ 1

2b(n− 1)/2c+ 1
3 if 3 | n.

It follows from Lemma 5.1 that∣∣∣ f (n)− n2

12

∣∣∣≤ 1
3 .

We define εn = f (n)− n2/12.
Let P(n) be the set of partitions of n into three parts having no common divisor

greater than 1. Let g(n)= |P(n)|. Then we have f (n)=
∑

d|n g(d). By the Möbius
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inversion formula, we obtain

g(n)=
∑
d|n

µ(d) f (n/d)=
∑
d|n

µ(d) 1
12(n/d)

2
+

∑
d|n

µ(d)εn/d

>
n2

12

∑
d|n

µ(d)
d2 +

∑
d|n

µ(d)εn/d

>
n2

12

∏
p prime

(
1− 1

p2

)
+

∑
d|n

µ(d)εn/d .

Since ∏
p prime

(
1− 1

p2

)
=

6
π2 ,

we have

g(n) >
n2

2π2 +
∑
d|n

µ(d)εn/d .

Now since the number of divisors of n is less than 2
√

n, we obtain the following
lemma:

Lemma 5.2. We have
n2

2π2 −
2
3
√

n < g(n).

The next lemma is the principal step in our proof. It gives information about the
maximal overgroups in G of an element of the form diag(0a

α−2, 0b, 0c), where
the degrees a, b and c are coprime. The proof relies on knowledge of the subgroups
of GLn(q) whose order is divisible by a primitive prime divisor of qd

− 1, where
d > n/3. An account of such subgroups has been given in the doctoral dissertation
of Joseph DiMuro [2007]; this work extends the classification of [Guralnick et al.
1999], which deals with the case d > n/2.1

Lemma 5.3. Let ν(n)≥ 3, and let n ≥ 98. For λ= (a, b, c) ∈ P(n) with a ≤ b ≤ c
and with a, b and c coprime, let

g = gλ = diag(0a
α−2, 0b, 0c).

Then every maximal overgroup M of g in G is a subspace stabilizer except possibly
in the following cases:

(i) 2 | n, c = n/2 and M ∼= G ∩ (GLn/2(q) oC2).

1DiMuro’s dissertation aims to classify elements of GLn(q) of prime power order that act faithfully
and irreducibly on a subspace of dimension n/3 or greater. However, we have been informed by its
author that there is at present a gap in the argument concerning those elements whose orders are prime
powers but not prime. For our purposes, only the results concerning elements of prime order are
required.
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(ii) 4 | n, (a, b, c)= (2, (n−2)/2, (n−2)/2) and either M ∼=G∩ (GLn/2(q) oC2)

or M ∼= G ∩ (GLn/2(q) ◦GL2(q)).

(Here ◦ is used to denote a central product.)

Proof. We observe that V may be decomposed as Va ⊕ Vb ⊕ Vc, where Va , Vb

and Vc are g-invariant subspaces of dimensions a, b and c, respectively. The action
of g on each of these summands is irreducible. It follows that g lies in the stabilizers
of proper subspaces of at least four different dimensions, and so g is covered by
the class ss(k) for at least four values of k.

Note that c > n/3 and that qc
− 1 divides the order of g. Hence, a maximal

overgroup M of g must belong to one of the classes of groups mentioned in [DiMuro
2007, §1.2]. We observe firstly that owing to our assumption that ν ≥ 3 and n ≥ 98,
the subgroup M cannot be any of those in [DiMuro 2007, Tables 1.1–1.9]; this
immediately rules out several of the Examples listed there. We shall go through the
remaining Examples.

Example 1. Classical examples. The determinant of g is a generator of the quotient
G/SLn(q), and so M cannot contain SLn(q).

Any element of a symplectic or orthogonal group is similar to its own inverse;
an element g of a unitary group is similar to its conjugate inverse g−τ , where τ is
induced by an involutory field automorphism. (See [Wall 1963, §2.6 or (3.7.2)] for
groups in characteristic 2.)

If M normalizes a symplectic or orthogonal group H , then gq−1 lies in H itself,
and so gq−1 is similar to its own inverse. Then it is clear that 0c

q−1 is similar to its
own inverse (it does not matter here whether b = c). But this cannot be the case
since c > 2.

Similarly, if M normalizes a unitary group U , then gq+1 lies in U , and it follows
that gq+1 is similar to its conjugate inverse. But then it follows that 0c

q+1 is similar
to its conjugate inverse, and it is easy to show that this is not the case.

Example 3. Imprimitive examples. Here M preserves a decomposition V =
U1⊕ · · ·⊕Ut for t ≥ 2. Let dim Ui = m so that n = mt . Recall that the 〈g〉-
module V is the direct sum of three irreducible submodules Va , Vb and Vc of
dimensions a, b and c, respectively. So 〈g〉 has at most three orbits on the set of
spaces Ui .

Let r be the smallest integer such that Vc is contained in the direct sum of r of
the spaces Ui . We observe that n/3 < c ≤ rm, and so m > n/3r . Without loss
of generality, we may assume that Vc ≤ W = U1 ⊕ · · · ⊕Ur . It is clear that W
is g-invariant. Let g be the restriction of g to W . Then 〈g〉 acts transitively on
{U1, . . . ,Ur }. Since gr acts in the same way on each Ui for i ≤ r , an upper bound
for the order of g is (qm

−1)r . But since m ≤ n/r and since n ≥ 98 by assumption,
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we see that (qm
− 1)r < qn/3

− 1 if r ≥ 4. Therefore, we must have r ≤ 3.
It follows that Vc is a simple Fq〈gr

〉-module. Now since gr commutes with the
projections of W onto its summands Ui , we see that at least one of the spaces Ui

contains an gr -invariant subspace of dimension c. So m > n/3, and hence, r 6= 3.
Suppose that r = 2. Since gr has two fixed spaces of dimension m, we see that

b = c = m and that Vb ⊕ Vc ≤ W . If W < V , then W = Vb ⊕ Vc. Now we see
that m divides each of a and b+ c = 2c. Since a, b and c are coprime, it follows
that m = 2. But this implies that n < 6, which contradicts the assumption that
n ≥ 98. So we may suppose that W = V . Then it is not hard to show that Va has
two irreducible summands as a 〈g2

〉-module. But this can occur only when a = 2,
and this accounts for the first of the exceptional cases of the lemma.

Finally, if r = 1, then m ≥ c > n/3, and so t = 2. It is easy to see, in this case,
that c = m = n/2, and this accounts for the second exceptional case of the lemma.

Example 4. Extension field examples. If g stabilizes an Fqr -structure on V , then
gr lies in the image of an embedding of GLn/r (qr ) into GLn(q). Now if this is the
case, then it is not hard, by considering the degrees of the eigenvalues of g over the
fields Fq and Fqr , to show that r must divide each of a, b and c. But this implies
that r = 1 since a, b and c are coprime.

Example 5. Tensor product decomposition examples. Here M stabilizes a nontrivial
tensor product decomposition V = V1⊗ V2. There is an embedding of the central
product GL(V1) ◦ GL(V2) into GLn(q), and M is the intersection of this group
with G. For x1 ∈GL(V1) and x2 ∈GL(V2), we write (x1, x2) for the corresponding
element of GL(V1) ◦GL(V2).

We shall suppose that V1 and V2 have dimensions n1 and n2, respectively, with
n1 ≤ n2. Then since c > n/3, it is not hard to see that we have n1 = 2.

Suppose g ∈ M , and let g1 ∈GL(V1) and g2 ∈GL(V2) be such that g = (g1, g2).
Let h = gq2

−1. Since the order of g is coprime with q, we see that the element
gq2
−1

1 is the identity on V1, and so h = (1, h2) for some h2 ∈ GL(V ).
The largest dimension of an irreducible 〈h〉-subspace of V is c, and there are

at most two such subspaces. We obtain the 〈h〉-subspace decomposition of V
up to isomorphism by taking two copies of each summand of the 〈h2〉-subspace
decomposition of V2. It follows that there must be at least two summands of
dimension c and hence that b = c and that a < b. It follows also that the a-
dimensional summand of g splits into two summands as an Fq〈h〉-module. But
it is not hard to see that this can occur only if a = 2, and so we have a = 2 and
b = c = (n− 2)/2. This is the second exceptional case of the lemma.

Example 6. Subfield examples. These cannot occur since g is built up using Singer
cycles, which do not preserve any proper subfield structure.
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Example 7. Symplectic type examples. This class of groups exists only in prime-
power dimension and cannot occur in the cases we are considering since we have
assumed that ν ≥ 3.

Example 8(a). Permutation module examples. In this case, S is an alternating
group Am for some m ≥ 5. Then it is known that the order of an element in M
is at most (q − 1) · eϑ

√
m log m , where ϑ = 1.05314, by a result of Massias [1984].

Here n = m − 1 or m − 2. But a routine calculation shows that the inequality
eϑ
√
(n+2) log(n+2) < (qn/3

− 1)/(q − 1) holds for all q ≥ 2 and for all n ≥ 98. (This
inequality fails when q = 2 and n = 97.)

Example 11. Cross-characteristic groups of Lie type. The examples not yet ruled
out are contained in [DiMuro 2007, Table 1.10]. But the order of an element of M
is less than n3, which is less than qn/3

− 1 for n ≥ 98. �

Proof of Theorem 1.4. Define a set � of classes of G by

�=
{
[0α+q−1

n ]
}
∪
{
[gλ]

∣∣ λ ∈ P(n)
}
.

Let C be a set of conjugacy classes of subgroups of G that covers � of the smallest
size such that this is possible. Then clearly |C| ≤ γ (G). By the theorem of Kantor
[1980] mentioned in the proof of Lemma 3.1 above and by Lemma 5.3, we see
that C must contain a single class of extension field subgroups. If n ≥ 98 and ν ≥ 3,
then each remaining element of C is either a class of subspace stabilizers or else
one of the classes of subgroups mentioned in the exceptional cases of Lemma 3.1.
Each subspace stabilizer contains at most n/2 of the elements gλ, and each of the
exceptional classes contains at most n/4. Now, using Lemma 5.2, we see that

γ (G)≥ |C| ≥ 1+
2g(n)

n
>

n
π2

as required for the theorem.
To remove the conditions that n ≥ 98 and that ν ≥ 3, it is enough to observe that

the lower bound for κ(G) given by Theorem 1.2 is larger than n/π2 in any case
where either of these conditions fails. �
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