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Recently, Bhargava and others have proved very striking results about the average
size of Selmer groups of Jacobians of algebraic curves over Q as these curves are
varied through certain natural families. Their methods center around the idea of
counting integral points in coregular representations, whose rational orbits can
be shown to be related to Galois cohomology classes for the Jacobians of these
algebraic curves.

In this paper we construct for each simply laced Dynkin diagram a coregular
representation (G, V ) and a family of algebraic curves over the geometric quotient
V//G. We show that the arithmetic of the Jacobians of these curves is related to
the arithmetic of the rational orbits of G. In the case of type A2, we recover the
correspondence between orbits and Galois cohomology classes used by Birch and
Swinnerton-Dyer and later by Bhargava and Shankar in their works concerning
the 2-Selmer groups of elliptic curves over Q.
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1. Introduction

This paper is a contribution to arithmetic invariant theory. Let G be a reductive
group over a field k, and let V be a linear representation of G. Then the ring k[V ]G

is a k-algebra of finite type, and we can define the quotient V�G = Spec k[V ]G and
a quotient map π : V → V�G. The determination of the structure of k[V ]G and
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the fibers of π falls under the rubric of geometric invariant theory, and is important
in algebraic geometry.

In the case where k is not algebraically closed, a further layer of difficulty is
obtained by considering the G(k)-orbits in the fibers of π over k-points of V�G.
This problem can be translated into the language of Galois cohomology, and as
such often has close ties to arithmetic.

Bhargava has singled out those representations which are coregular, in the sense
that k[V ]G is isomorphic to a polynomial ring, as promising candidates for repre-
sentations which may have interesting connections to arithmetic. For example, he
has studied together with Shankar the case G = SL2 and V = Sym4 2∨, the space of
binary quartic forms. In this case there are two independent polynomial invariants
I and J , and k-rational orbits with given values of I and J are related to classes in
the Galois cohomology group H 1(k, E[2]) for the elliptic curve

E : y2
= x3
+ I x + J.

These considerations have had very striking applications; see [Bhargava and Shankar
2010], or [Poonen 2013] for a beautiful summary. See also [Ho 2009] for a
variety of similar orbit parametrizations associated to other representations, and
[Bhargava and Ho 2013] for an exhaustive study of coregular representations related
to genus-one curves. For each choice of pair (G, V ), one makes a construction
in algebraic geometry which relates orbits in the given representation to algebraic
curves, possibly with marked points, given line bundles, or other types of extra
data.

By contrast, this paper represents a first effort to describe some of the phenomena
appearing in arithmetic invariant theory through the lens of representation theory.
We take as our starting point certain representations arising from Vinberg theory,
whose role in arithmetic invariant theory has been emphasized by Gross. If G is a
reductive group over k endowed with an automorphism θ of finite order m, then
the fixed group Gθ acts on the θ = ζ eigenspace g1 ⊂ g = Lie G for any choice
ζ ∈ k× of primitive m-th root of unity. Vinberg theory describes the geometric
invariant theory of these representations. In the case when θ is regular and elliptic,
in the sense of [Reeder et al. 2012], the generic element of g1 will have a finite
abelian stabilizer, and orbits in the representation are thus related to interesting
Galois cohomology.

If G is a split reductive group over k, then it has a unique Gad(k)-conjugacy class
of regular elliptic involutions θ , characterized by the requirement that g1 contain
a regular nilpotent element. It is the representations associated to these canonical
involutions for simple G of type A, D or E that we study in this paper. We associate
to each of these groups a family of algebraic curves, namely the smooth nearby
fibers of a semiuniversal deformation of the corresponding simple plane curve
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singularity. The arithmetic of the Jacobians of these curves turns out to be related to
the arithmetic of the rational orbits in the Vinberg representations. In each case the
families of curves are universal families with marked points of fixed type. In types
A and D we obtain families of hyperelliptic curves, while in types E6, E7 and E8

we obtain families of nonhyperelliptic curves of genus respectively 3, 3 and 4.

Remark 1.1. In the forthcoming work [Bhargava and Ho 2013], the authors
construct families of related coregular representations through the operations of
symmetrization and skew-symmetrization. These representations are all related
to the arithmetic of curves of genus one. For example, they consider the natural
representation of SL2 × SL2 × SL2 × SL2 on 2⊗ 2⊗ 2⊗ 2, and its quadruple
symmetrization yields the representation of SL2 on the space of binary quartic
forms described above.

The quadruple skew-symmetrization, however, is not directly related to curves
of genus one. In fact, the Vinberg representation we associate to E7 is the repre-
sentation of SL8/µ4 on ∧48. This is the quadruple skew-symmetrization of the
above representation of SL4

2, and our work shows that its orbits are related to the
arithmetic of the universal family of nonhyperelliptic curves of genus 3 with a
rational flex in the canonical embedding.

Results. Let us now turn to a precise statement of our main results. For any
unfamiliar notation relating to algebraic groups and their Lie algebras, we refer to
the section on notation (page 2335). Let k be a field of characteristic zero, and let
G be a split adjoint group over k of type A, D or E . We choose a regular elliptic
involution θ of G as described above, and set G0 = (Gθ )◦, g1 = gθ=−1. Then G0

acts on g1 and a Chevalley-type restriction theorem holds for the pair (G0, g1). In
particular, the space B = g1�G0 is isomorphic to affine r-space: g1 is coregular.
We write1⊂ B for the discriminant divisor. Thus1 is the image under π : g1→ B
of the set of elements which are not regular semisimple.

Proposition 2.27 below implies that g1 contains subregular nilpotent elements.
We choose a subregular normal sl2-triple (e, h, f ). (See Definition 2.16 for the
definition of a normal sl2-triple. To say that it is subregular simply means that e
and f are subregular nilpotent elements of g.) Define X=e+zg( f )1=e+zg( f )∩g1.
Our first theorem concerns the natural map X ↪→ g1→ B.

Theorem 1.2. The morphism X→ B is a flat family of reduced connected curves,
smooth away from 1. The equations of these curves are given in the statement of
Theorem 3.8.

In fact, X is a transverse slice to the G0-orbit of e inside g1, and X→ B realizes
a semiuniversal deformation of the central fiber X0, which is an affine plane curve
with a unique simple singularity of type equal to that of G. (For the definition of a
simple curve singularity, we refer, for example, to [Cook 1998].)
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The following theorem incorporates results of Section 2 and Theorem 4.10.

Theorem 1.3. Let x ∈ g1 be a regular semisimple element; equivalently, suppose
that b = π(x) ∈ B(k) does not lie inside 1.

• The stabilizer ZG0(x)= Zb is a finite abelian k-group and depends only on b
up to canonical isomorphism. This group is endowed with a nondegenerate
alternating pairing Zb× Zb→ µ2.

• Let Yb denote the smooth projective curve containing Xb as a dense open subset.
Let JYb denote its Jacobian variety. Then there is a canonical isomorphism
of finite k-groups JYb [2] ∼= Zb. Under this isomorphism the above pairing
corresponds to the Weil pairing of JYb .

Given b ∈ (B \1)(k), we write g1,b = π
−1(b). If K is a separable closure of k,

then g1,b(K ) consists of a single G0(K )-orbit; the rational orbits in g1,b(k) are there-
fore classified by a suitable Galois cohomology set, with coefficients in Zb ∼= JYb [2].
The inclusion Xb ⊂ g1,b induces a map on rational points Xb(k)→ g1,b(k)/G0(k).
Our main theorem asserts that this map can in fact be interpreted in terms of
2-descent on the Jacobian JYb :

Theorem 1.4. There is a commutative diagram, functorial in k:

Xb(k) //

��

g1,b(k)/G0(k)

��
JYb(k) // H 1(k, JYb [2]).

For the definitions of the arrows in this diagram, we refer to the statement of
Theorem 4.15. If G = PGL3, then the family of curves X → B is the family
y2
= x3
+ I x + J of genus-one curves described above, and we then recover the

correspondence between orbits and Galois cohomology classes used by Bhargava
and Shankar in their work on the average size of the 2-Selmer group of an elliptic
curve over Q. We are hopeful that the ideas discussed in this paper will have
applications to the study of the average size of 2-Selmer groups beyond this case;
compare the discussion following Conjecture 4.16.

Methods. Our methods are inspired primarily by work of Slodowy. Rational double
point singularities of surfaces can be classified in terms of the Dynkin diagrams
of simply laced simple algebraic groups. Grothendieck conjectured that one could
give a representation-theoretic construction of this correspondence by looking at the
generic singularity of the nilpotent cone of the corresponding group G. A proof of
this conjecture was announced in a famous ICM lecture of Brieskorn [1971], but the
first detailed proofs were given by Esnault [1980] and Slodowy [1980b]. Our work
is what one obtains on combining the respective ideas of Slodowy and Vinberg.
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(After this work was completed, J. Sekiguchi informed us of some related earlier
work [Sekiguchi and Shimizu 1981] where our families of curves also appear.)

Let us say a few words about the limits of our methods. Essential to our work
is the use of sl2-triples, whose existence relies in turn on the Jacobson–Morozov
lemma. We must therefore work over a field of sufficiently large characteristic,
relative to the Coxeter number of G. In this paper we choose for simplicity to work
over a field of characteristic zero.

More serious is the lack of information we obtain about the image of the
map g1,b(k)→ H 1(k, JYb [2]) constructed above. It follows from the above con-
siderations that it contains the elements in the image under the 2-descent map
δ : JYb(k)→ H 1(k, JYb [2]) of Xb(k); we conjecture (page 2363) that it moreover
contains the image under δ of the whole group JYb(k) of rational points of the
Jacobian. In other words, we currently lack a way to construct sufficiently many
orbits in the representations we study. We hope to return to this question in a future
work.

Outline. Let us now outline the contents of this paper. In Section 2, we prove
some basic properties of the so-called stable involutions θ , and define the Vinberg
representations to which they correspond. An important point here is the calculation
of the stabilizers of the regular elements in g1 in terms of the root datum of the
ambient reductive group G. We also introduce the subregular nilpotent elements,
and address the question of when g1 contains subregular nilpotent elements which
are defined over the base field k.

In Section 3, we construct the families of curves mentioned above inside a
suitable transverse slice to the subregular nilpotent orbit.

Finally, in Section 4, we show how to relate the 2-torsion in the Jacobians of
our curves and the stabilizers of regular elements, and prove our main theorem
relating the 2-descent map to the classifying map for orbits in non-abelian Galois
cohomology.

Other groups. In this paper we restrict to simple groups G arising from simply
laced Dynkin diagrams, and the corresponding Vinberg representations. One can
try to apply our constructions to groups of nonsimply laced type. The families of
curves thus obtained are versal deformations of planar curve singularities “with fixed
symmetries”; this is the direct analogue for our context of the results in [Slodowy
1980b, §6.2]. The Jacobians of these curves admit a family of isogenies φ, and it
seems likely that some version of our main result continues to hold, with the groups
JYb [φ] now playing the role of the groups JYb [2].

Notation. As mentioned above, we work throughout over a field k of characteristic
zero. We assume basic familiarity with the theory of reductive groups over k, as
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studied, for example, in [Humphreys 1975] or [Springer 2009]. We assume that
reductive groups are connected.

If G is a reductive group acting linearly on a k-vector space V , then the ring
of invariants k[V ]G is a k-algebra of finite type (see, for example, [Springer 1977,
Theorem 2.4.9]). We define V�G = Spec k[V ]G and call it the categorical quotient.
It in fact satisfies a universal property, but we will not need this here. We will write
N(V ) for the closed subscheme of V cut out by the augmentation ideal of k[V ]G .

If G, H , . . . are algebraic groups then we will use gothic letters g, h, . . . to denote
their Lie algebras. Let G be a reductive group, and T ⊂ G a split maximal torus.
Then we shall write 8t ⊂ X∗(T ) for the set of roots of T in g, and 8∨t ⊂ X∗(T )
for the set of coroots. The assignment α ∈8t 7→ dα ∈ t∗ identifies 8t with the set
of roots of t in g, and we will use this identification without comment. We write
W (t)= NG(T )/T for the Weyl group of G with respect to t. We have the Cartan
decomposition

g= t⊕
⊕
α∈8t

gα,

where dim gα = 1 for each α ∈ 8t. We write Uα ⊂ G for the unique T -invariant
closed subgroup with Lie algebra gα (see [Humphreys 1975, §26.3]). The tuple(

X∗(T ),8t, X∗(T ),8∨t
)

is a root datum in the sense of [Springer 2009, §7.4]. We write AG for the center
of G, and ag for its Lie algebra.

We will write LG = Z8t for the root lattice of G and 3G ⊂ LG ⊗Z Q for the
weight lattice of LG . (These are the groups Q and P , respectively, of [Bourbaki
1968, Chapter VI, §1.9].) If the group G is clear from the context, we will omit the
subscript G. We understand these to depend only on G and not on T , so that LG

and 3G are defined up to (nonunique) isomorphism. We write WG ⊂ Aut(LG) for
the corresponding Weyl group.

If x ∈ g, we write ZG(x) for its centralizer in G under the adjoint representation,
and zg(x) for its centralizer in g. If x is semisimple, then ZG(x) is reductive. Let
T ⊂ G be a maximal torus, and suppose that x ∈ t. Then T ⊂ ZG(x) is a maximal
torus. Let

8t(x)= {α ∈8t | α(x)= 0} and 8∨t (x)= {α
∨
∈8∨t | α ∈8t(x)}.

Let W (x)= ZW (t)(x). Then the root datum of ZG(x) is(
X∗(T ),8t(x), X∗(T ),8∨t (x)

)
,

and the Weyl group of ZG(x) with respect to T can be identified in a natural way
with W (x).
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2. Preliminaries: Vinberg theory, stable involutions, subregular elements

Throughout this section, G is a split reductive group over a field k of characteristic
zero.

Elements of Vinberg theory. Let θ ∈ Aut(G) be an automorphism of exact order
m > 1, and let ζ ∈ k be a primitive m-th root of unity. We will also write θ for the
induced automorphism of g. We associate to θ the grading g=⊕i∈Z/mZ gi , where
by definition we have

gi = {x ∈ g | θ(x)= ζ i x}.

We write Gθ for the fixed subgroup of θ , and G0 for its connected component.
Then Lie G0 = g0, so the notation is consistent. The action of Gθ on g leaves each
gi invariant.

In what follows, we shall consider the representation of G0 on the subspace
g1 ⊂ g. The study of such representations is what we call Vinberg theory. For
the basic facts about Vinberg theory, and in particular for proofs of the unproved
assertions in this section, we refer to the papers [Vinberg 1976] or [Levy 2009].

Lemma 2.1. Let x ∈ g1. Then x can be written uniquely as x = xs + xn , where
xs, xn both lie in g1 and are respectively semisimple and nilpotent.

Definition 2.2. A Cartan subspace c ⊂ g1 is a maximal subalgebra consisting of
semisimple elements. Note that c is automatically abelian.

Proposition 2.3. Suppose that k is algebraically closed. Then an element x ∈ g1

is semisimple if and only if it is contained in a Cartan subspace, and all Cartan
subspaces are G0(k)-conjugate.

Let c ⊂ g1 be a Cartan subspace, and define W (c, θ) = NG0(c)/ZG0(c). This
is the “little Weyl group” of the pair (G, θ). We define rank θ = dim c. This is
well-defined by Proposition 2.3.

The following result is contained in [Panyushev 2005, Theorem 1.1]. It is Vin-
berg’s main result concerning the invariant theory of the representations considered
here.

Theorem 2.4. 1. Restriction of functions induces an isomorphism

k[g1]
G0 → k[c]W (c,θ).

Moreover, W (c, θ) is a (pseudo-)reflection group and k[c]W (c,θ) is a polynomial
ring in rank θ indeterminates.

2. Let π : g1 → g1�G0 denote the quotient map. Then π is flat. If k is alge-
braically closed, then for all x ∈ g1, π−1π(x) consists of only finitely many
G0(k)-orbits.
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We say that v ∈ g1 is stable if G0 · v is closed in g1, and ZG0(v) is finite. We
say that θ is stable if g1 contains stable elements. The property of being stable is
hereditary, in the following sense.

Lemma 2.5. Suppose that θ is a stable automorphism. Let x ∈ g1 be semisimple.
Let H = ZG(x) and h=Lie H. Then θ(H)= H , and θ |H is a stable automorphism.

Proof. Given x as in the lemma, choose a Cartan subspace c containing it. Then c

contains a stable vector, which is also stable when considered as an element of h;
the result follows. �

Stable involutions. In this paper we shall be particularly interested in the stable
involutions.

Lemma 2.6. Suppose that k is algebraically closed. There is a unique G(k)-
conjugacy class of stable involutions θ .

Proof. To show uniqueness, we reduce immediately to the case that G is adjoint.
By [Reeder et al. 2012, Lemma 5.6], any stable vector v ∈ g1 is regular semisimple,
and θ acts as −1 on its centralizer c = zg(v). In particular, we have c ⊂ g1. It
follows that the trace of θ on g is equal to − dim c=− rank G, and a well-known
theorem of E. Cartan asserts that this determines θ up to G(k)-conjugacy. We can
also reduce existence to the case of G adjoint. We will prove existence (even when
k is not algebraically closed) in this case below. �

Lemma 2.7. Let θ be a stable involution of G. Then θ satisfies the following.

1. rank θ = rank G.

2. There exists a maximal torus C in G on which θ acts by x 7→ x−1.

3. For all x ∈ AG , we have θ(x)= x−1.

4. Let c be a Cartan subspace (and hence, a Cartan subalgebra). Then the natural
map W (c, θ)→W (c) is an isomorphism.

Proof. The first and second properties follow from the proof of Lemma 2.6. For the
third property, we recall that AG is contained in any maximal torus of G. The final
property is [Reeder et al. 2012, Corollary 7.4]. �

Suppose for the rest of this section that θ is a stable involution.

Proposition 2.8. Let x = xs + xn ∈ g1 be a regular element. Then ZGθ (x) =
AZG(xs)[2]. In particular, this group is always finite and abelian.

Proof. We have ZG(x) = ZG(xs)∩ ZG(xn), so after replacing G by ZG(xs), we
may assume that x = xn is a regular nilpotent element.

Then ZG(x)= AG · ZU (x), a direct product, where U is the unipotent radical of
the unique Borel subgroup containing x . Quotienting by AG , we may suppose that
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G is adjoint and must show that ZU (x)θ is trivial. But since x is regular, this is a
finite unipotent group, so the result follows. �

Corollary 2.9. Let x = xs+xn be a regular element, and let c be a Cartan subspace
containing xs . Let C ⊂ G denote the maximal torus with Lie algebra c. Then

ZGθ (x)∼= Hom
(
X∗(C)/2X∗(C)+Z8c(x),Gm

)
.

Proof. For any reductive group G with root datum
(
X∗(T ),8t, X∗(T ),8∨t

)
, there

is a canonical isomorphism X∗(AG)∼= X∗(T )/Z8t. Now apply Proposition 2.8. �

Corollary 2.10. Suppose that G is adjoint and that k is algebraically closed. Let
x ∈ g1 be a regular semisimple element. Let L denote the root lattice of G, and
3⊂ L ⊗Z Q the weight lattice. Then there is an isomorphism

ZG0(x)∼= Hom(N ,Gm),

well-defined up to conjugacy by the Weyl group W of L , where N denotes the image
of L in 3/23.

Proof. Let Gsc denote the simply connected cover of G. Then θ acts on Gsc. A
theorem of Steinberg — [Onishchik and Vinberg 1988, Chapter 4.4.8, Theorem 9] —
states that (Gsc)θ is connected, and hence G0 is the image of the map (Gsc)θ → G.
The present corollary now follows from the previous one. �

Now suppose that the simple components of G are simply laced (that is, their root
systems are all of type A, D, or E), and let L ,3 and W be as in the statement of the
corollary. Then there is a W -invariant quadratic form 〈 · , · 〉 : L × L→ Z uniquely
determined by the requirement that 〈α, α〉 = 2 for every root α. The pairing 〈 · , · 〉
on L induces a pairing ( · , · ) : L/2L × L/2L → F2. An easy calculation shows
this pairing is alternating. In fact, we have the following:

Lemma 2.11. The pairing ( · , · ) descends to a nondegenerate alternating pairing
on N.

Proof. Suppose x ∈ L . Then the image of x in L/2L lies in the radical of ( · , · )
if and only if 〈x, L〉 ⊂ 2Z, if and only if x ∈ 23, since 3 is the Z-dual of L with
respect to the pairing 〈 · , · 〉. �

Pairings of this type, associated to regular elliptic elements of Weyl groups, were
first considered in [Reeder 2011].

Corollary 2.12. Suppose that G is an adjoint group, and that the simple compo-
nents of G are simply laced. Then for any regular semisimple element x ∈ g1, there
is a canonical nondegenerate alternating form ( · , · ) : ZG0(x)× ZG0(x)→ µ2.
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We now show how to construct a stable involution over an arbitrary field k of
characteristic 0. We let G be a simple split adjoint group, and fix a split maximal
torus T and a Borel subgroup B containing it. This determines a set 8+ ⊂8=8t

of positive roots, and a root basis R ⊂ 8+. We fix moreover for each α ∈ R a
basis Xα of the one-dimensional vector space gα ⊂ g. The tuple (T, B, {Xα}α∈R)

is called a pinning of G.
This choice of data determines a splitting Aut(G) = G o6, where 6 is the

group of pinned automorphisms induced by automorphisms of the Dynkin diagram
of G. On the other hand, writing L = X∗(T ) = Z8 for the root lattice of g, the
choice of root basis determines a splitting Aut(L)=W o6 in a similar manner; see
[Bourbaki 1975, Chapter VIII, §5.2]. We write σ ∈6 for the image of−1∈Aut(L),
and define θ = ρ∨(−1)o σ ∈ Aut(G)(k), where ρ∨ ∈ X∗(T ) is the sum of the
fundamental coweights.

Lemma 2.13. The automorphism θ is a stable involution.

Proof. This follows immediately from Corollary 5.7 of [Reeder et al. 2012]. �

This stable involution has good rationality properties. This is based on the
following fact.

Lemma 2.14. Let θ be as above. Then g1 contains a regular nilpotent element. Any
two regular nilpotent elements of g1 are conjugate by a unique element of Gθ (k).

Proof. The element
∑

α∈R Xα is regular nilpotent and, by construction, lies in g1.
Fix a separable closure K of k. If E, E ′ ∈ g1 are two regular nilpotent elements
then they are conjugate by an element of Gθ (K ). (This follows from [Levy 2007,
Theorem 5.16].)

For any such E , the group ZGθ (E) is a finite unipotent group, and therefore
trivial. It follows that E, E ′ are conjugate by a unique element of Gθ (K ), which
must therefore lie in Gθ (k). �

Corollary 2.15. There is a unique G(k)-conjugacy class of stable involutions θ1

of G such that there exists a regular nilpotent element E1 ∈ g with θ1(E1)=−E1.

Proof. We have already proved the existence of such an element. For the uniqueness,
fix again a separable closure K of k. We have seen that G(K ) acts transitively on
pairs (θ1, E1). On the other hand, the stabilizer of such a pair in G(K ) is trivial. It
follows that any two such pairs are conjugate by a unique element of G(k). �

Definition 2.16. We call a tuple (E, H, F) of elements of g a normal sl2-triple if
it is an sl2-triple, and moreover we have E ∈ g1, H ∈ g0, and F ∈ g1.

Note that if (E, H, F) is a normal sl2-triple, then the restriction of θ to the
subalgebra spanned by these elements is a stable involution.

Lemma 2.17. 1. Any nilpotent element E ∈ g1 is contained in a normal sl2-triple.
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2. Any two normal sl2-triples (E, H, F) and (E, H ′, F ′) are ZG0(E)(k)-con-
jugate.

Proof. Fix a separable closure K of k. For the first part, choose an arbitrary sl2-
triple (E, h, f ) containing E , and decompose h = h0+h1 into θ -eigenvectors. The
argument of [Kostant and Rallis 1971, Proposition 4] implies that there is a unique
F ∈ g1⊗k K such that (E, h0, F) is an sl2-triple. But an sl2-triple is determined
uniquely by any 2 of its 3 elements, so descent implies that F ∈ g1, and (E, h0, F)
is the desired triple.

For the second part, we argue as in the proof of [Kostant and Rallis 1971,
Proposition 4] and apply [Bourbaki 1975, Chapter VIII, §11.1, Lemma 4] to obtain
the desired rationality property. �

Corollary 2.18. The group G(k) acts simply transitively on the set of pairs(
(θ1), (E, H, F)

)
,

where θ1 is a stable involution of G and (E, H, F) is a normal sl2-triple with
respect to θ1 in which E is a regular nilpotent element.

Example 2.19. We illustrate some of the concepts introduced so far in the case
where G is a split adjoint group of type A2r . Let V be a vector space of dimension
2r + 1, with basis {e1, e2, . . . , er , v, fr , . . . , f2, f1}. We define an inner product
〈 · , · 〉 on V by the formulae

〈ei , e j 〉 = 0= 〈 fi , f j 〉 = 〈ei , v〉 = 〈 fi , v〉

for all i, j and

〈v, v〉 = 1, 〈ei , f j 〉 = δi j .

If T ∈ End(V ), write T ∗ for the adjoint of T with respect to this inner product.
Then we take G = PGL2r+1= PGL(V), and θ : sl2r+1→ sl2r+1 to be the involution
X 7→ −X∗. It is easy to check that −θ is just reflection in the antidiagonal. In
particular, fixing the standard pinning (T, B, {Xα}α∈R) of sl2r+1, this θ is exactly
the stable involution constructed of Lemma 2.13.

Then we see that Gθ
= G0 = SO(V) is connected, and we have

g= g0⊕ g1, g0 = {X ∈ End(V ) | tr X = 0, X =−X∗} = so(V ).

In particular, g1 = {X ∈ End(V ) | tr X = 0, X = X∗} consists of the space of trace
zero operators self-adjoint with respect to 〈 · , · 〉.
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The regular nilpotent element determined by the pinning is

E =


0 1 0 . . . 0

0 0 1 0
...

...
...

...
. . .

...

0 . . . 0 0 1
0 . . . 0 0 0

 .

These representations of odd orthogonal groups are exactly the ones used in
[Bhargava and Gross 2013] to deal with the Selmer groups of hyperelliptic Jacobians.

Subregular elements. We recall that x ∈ g is called subregular if dim zg(x) =
rank G+ 2.

Proposition 2.20. The Lie algebra g contains subregular nilpotent elements. Sup-
pose that G is simple and that k is algebraically closed. Then there is a unique G(k)-
orbit of subregular nilpotent elements in g, and these are dense in the complement
of the regular nilpotent orbit in the nilpotent variety of g.

Proof. This follows from [Steinberg 1974, §3.10, Theorem 1]. �

Thus if g is simple, then its nilpotent variety has a unique open orbit, consisting of
regular nilpotent elements; its complement again has a unique open orbit, consisting
of the subregular nilpotents. If g= g1×· · ·×gs is a product of simple Lie algebras,
then any nilpotent element n can be written uniquely as a sum n = n1+ · · ·+ ns ,
where ni ∈ gi . It is then easy to see that n is regular if and only if each ni is regular
in g; and n is subregular if and only if some ni is subregular in gi , and all other n j

are regular nilpotent elements. In particular, when k is algebraically closed there
are exactly s G(k)-orbits of subregular nilpotent elements, and there is a canonical
bijection between these and the set of connected components of the Dynkin diagram
of g.

Now suppose that θ is a stable involution of G. Before we continue, it is helpful
to note the following.

Lemma 2.21. Let x ∈ g1. Then

dim zg0(x)= (dim zg(x)− rank G)/2 and dim G0 · x = (dim G · x)/2.

Proof. This follows from [Kostant and Rallis 1971, Proposition 5]. �

Our next goal is to show that g1 contains subregular nilpotent elements. We use
a trick based on the Kostant–Sekiguchi correspondence, which we now recall:

Theorem 2.22. Suppose that k = R and that G is semisimple. Let τ be a Cartan
involution of G. Then each of the following three sets is in canonical bijection with
the others:
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1. The set of nilpotent G(R)◦-orbits in g.

2. The set of nilpotent Gτ (C)◦-orbits in gτ=−1
⊗R C.

3. The set of nilpotent G0(C)-orbits in g1⊗R C.

(Here we write G(R)◦ and Gτ (C)◦ for the connected components of these groups
in the analytic topology.) The map G(R)◦ · X 7→ Gτ (C)◦ · X ′ satisfies G(C) · X =
G(C) · X ′.

Proof. The bijection between the first two sets is constructed in [Collingwood
and McGovern 1993, §9.5]. The existence of the bijection between the latter two
follows since τ is a stable involution, and all such are conjugate over C. �

Corollary 2.23. Suppose that k is algebraically closed. Then g1 contains subregu-
lar nilpotent elements.

Proof. This is implied by Theorem 2.22 since, if k = R and g is split, all conjugacy
classes of nilpotent elements have an element defined over k. �

To obtain more information, we must argue on a case-by-case basis. For the rest
of this section, we assume that G is adjoint, and that g1 contains a regular nilpotent
element. We first recall the following (see [Slodowy 1980b, §7.5, Lemma 4]).

Proposition 2.24. Suppose that G is simple and simply laced, and let x ∈ g be a
subregular nilpotent element. Then ZG(x) is the semidirect product of a unipotent
group with either Gm (if G is type Ar ) or the trivial group (if G is of type Dr or Er ).
In particular, this centralizer is connected.

Corollary 2.25. Suppose that k is algebraically closed, and that G is of type Dr

or Er . Then (Gθ/G0)(k) acts simply transitively on the set of G0(k)-orbits of
subregular nilpotent elements of g1.

Proof. Let x be a subregular nilpotent element. Then ZGθ (x) = ZG0(x), by
Proposition 2.24. It therefore suffices to show that #(Gθ/G0)(k) is equal to the
number of real subregular nilpotent orbits. This can be accomplished, for example,
by inspection of the tables in [Collingwood and McGovern 1993]. �

Proposition 2.26. Suppose that k is algebraically closed, and that G is of type
Ar . Then there is a unique G0(k)-conjugacy class of subregular nilpotent elements
in g1.

Proof. We note that when k =R, there is a unique real orbit of subregular nilpotents
in g. �

We now treat the case where k is not necessarily algebraically closed.

Proposition 2.27. The space g1 contains a subregular nilpotent element. In par-
ticular, we can find normal sl2-triples (e, h, f ) in g with e a subregular nilpotent
element.
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Proof. Let K denote a separable closure of k. It suffices to find a normal sl2-triple
(e, h, f ) in g⊗k K such that e is subregular nilpotent and h ∈ g. For then the set of
subregular elements is Zariski dense in gad h=2

1 (see [de Graaf 2011, Proposition 7])
and our chosen field k is infinite.

Since g1 contains a regular nilpotent element, we may assume that G is equipped
with a pinning (T, B, {Xα}α∈R) and that θ is the involution of Lemma 2.13, con-
structed in terms of this pinning. In particular, t0 = tθ ⊂ g0 is a split Cartan
subalgebra of G0.

Let (e, h, f ) be a subregular normal sl2-triple in g⊗k K . After conjugating by
an element of G0(K ), we can assume that h lies in t0⊗k K ⊂ t⊗k K . Now we
have α(h) ∈ Z for every root α, since h embeds in an sl2-triple, and hence h lies
in t0. The result follows. �

Definition 2.28. We refer to a normal sl2-triple (e, h, f ) with e subregular as a
subregular normal sl2-triple.

Proposition 2.29. 1. Suppose that G is of type Dr or Er . Then all subregular
nilpotent elements in g1 are Gθ (k)-conjugate.

2. Suppose that G is of type A2r . Then there is a bijection between k×/(k×)2 and
the set of G0(k)-orbits of subregular nilpotent elements in g1, given by sending
d · (k×)2 to the orbit of the element (in the notation of Example 2.19 above):

( f1 7→ f2 7→ f3 7→ · · · 7→ fn 7→ den, en 7→ en−1 7→ · · · 7→ e1, v 7→ 0).

3. Suppose that G is of type A2r+1. Then all subregular nilpotent elements in g1

are G0(k)-conjugate.

Proof. Let x ∈ g1 be a subregular nilpotent element. The first part follows since
ZGθ (x) is a unipotent group, and hence has vanishing first Galois cohomology. To
prove the second and third parts, we make an explicit calculation using the results
of Kawanaka [1987]. Briefly, if (e, h, f ) is a normal sl2-triple, let G0 denote the
connected subgroup of G with Lie algebra g0∩g

ad h=0. Then Kawanaka shows that
ZG0(e) has the form C n R, where R is connected unipotent and C = ZG0

(e) has
reductive connected component. We summarize the results of this calculation here.

If g is of type A2r , a choice of subregular nilpotent x is the transformation given
by the formula (in the notation of Example 2.19)

f1 7→ f2 7→ f3 7→ · · · 7→ fn 7→ en 7→ en−1 7→ · · · 7→ e1, v 7→ 0.

If d ∈ k×, we define another element xd by the formula

f1 7→ f2 7→ f3 7→ · · · 7→ fn 7→ den, en 7→ en−1 7→ · · · 7→ e1, v 7→ 0.

One calculates that ZG0(e) is a semidirect product of µ2 by a connected unipotent
group, with Galois cohomology isomorphic (via the Kummer isomorphism) to
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k×/(k×)2. With appropriate identifications the element d ∈ k×/(k×)2 corresponds
to the G0(k)-orbit of the element xd .

If g is of type A2r+1, then one calculates that ZG0(e) is connected unipotent, so
has vanishing first Galois cohomology. �

Proposition 2.30. Suppose that k is algebraically closed. If G is of type Ar , D2r+1

or Er then the closure of every regular nilpotent G0(k)-orbit in g1 contains every
subregular nilpotent orbit.

If G is of type D2r , then the closure of each regular nilpotent G0(k)-orbit con-
tains exactly 3 subregular nilpotent orbits, and each subregular nilpotent orbit is
contained in the closure of exactly 3 regular nilpotent orbits.

Proof. The only cases needing proof are A2r+1, Dr , and E7. The case of A2r+1

follows immediately, since (Gθ/G0)(k) permutes the regular nilpotent orbits. The
cases of Dr and E7 follow from the descriptions given in [Ðoković and Litvinov
2003] and [Ðoković 2001], respectively. �

3. Subregular curves

For the rest of this paper, we fix the following notation. We suppose that G is a split
simple group over k, of type Ar , Dr , or Er . We fix also a stable involution θ of G
and a regular nilpotent element E ∈ g1. We recall that the pair (θ, E) is determined
uniquely up to Gad(k)-conjugacy. In this section we construct a family of curves
over the categorical quotient g1�G0. The construction is based on the notion of
transverse slice to the action of an algebraic group, which we now briefly review.

Transverse slices. For the moment, let H be an algebraic group acting on a variety
X , both defined over k. Let x ∈ X (k). By a transverse slice in X to the orbit of
x (or more simply, a transverse slice at x), we mean a locally closed subvariety
S ⊂ X satisfying the following:

1. x ∈ S(k).

2. The orbit map H × S→ X, (h, s) 7→ h · s, is smooth.

3. S has minimal dimension with respect to the above properties.

It is easy to show that if X is smooth, then transverse slices of the above kind
always exist and have dimension equal to the codimension of the orbit H · x in X .
(Here we use that k is of characteristic zero; in general, one should assume also
that the orbit maps are separable.) An important property of transverse slices is the
following slight extension of [Slodowy 1980b, §5.2, Lemma 3]:

Proposition 3.1. Let H be an algebraic group acting on a smooth variety X. Let
S1, S2 be transverse slices at points x1, x2 ∈ X (k), respectively, where x1, x2 lie in
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the same H(k)-orbit of X. Let f : X→ Y be an H-equivariant morphism, where
H acts trivially on Y .

• S1, S2 are étale locally isomorphic over Y in the sense that there exists a
variety S over Y with a geometric point s̄ and étale Y -morphisms φ1 : S→ S1,
φ2 : S→ S2 with φ1(s̄)= x1, φ2(s̄)= x2.

• Suppose further that k = C. Then S1(C), S2(C) are locally isomorphic over
Y (C) in the analytic topology. Furthermore, there exist arbitrarily small
neighborhoods U1 ⊂ S1(C),U2 ⊂ S2(C) of x and analytic isomorphisms
ψ : U1→U2 over Y (C) such that the induced maps

U1 ↪→ X (C), U1 ∼=U2 ↪→ X (C)

are homotopic over Y (C).

An important special case where we can construct transverse slices explicitly
is the case of a reductive group H acting via the adjoint representation on its Lie
algebra h. Let (e, h, f ) be an sl2-triple in h.

Proposition 3.2. S = e+ zh( f ) is a transverse slice to the action of H at every
point of S. In other words, the multiplication map µ : H × S→ h is everywhere
smooth.

The proof is based on the following construction of Slodowy. First, we may
decompose h=⊕i Vi into a direct sum of irreducible submodules under the adjoint
action of the sl2 spanned by e, h, and f . We let λ : Gm→ H be the cocharacter with
dλ(1)= h. Let p1, . . . , pr be algebraically independent homogeneous polynomials
generating the ring of invariants k[h]H . (We remind the reader that the adjoint
representation of H on h is coregular, so such elements certainly exist.) We suppose
that they have degrees d1, . . . , dr . We suppose that Vi has dimension mi , and choose
for each i a basis vector vi of the lowest weight space of Vi .

A general element v ∈ S can be written in the form v= e+
∑

i xivi , and we have

λ(t)(v)= t2e+
∑

i

t1−mi xivi , tv = te+
∑

i

t xivi

and
pi
(
λ(t)(v)

)
= pi (v), pi (tv)= tdi pi (v).

Defining an action ρ of Gm on h by ρ(t)(v) = t2λ(t−1)(v), we see that S is ρ-
invariant, and the ρ-action contracts S to e. If we let Gm act on h�H by the square
of its usual action, then the composite S ↪→ h→ h�H becomes Gm-equivariant. In
other words, writing w1, . . . , wn for the weights of the ρ-action on S, the morphism
S→ h�H is quasihomogeneous of type (d1, . . . , dr ;w1, . . . , wn). The weights wi

are given by the formula wi = mi + 1.
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Proof of Proposition 3.2. Define an action of Gm × H on H × S by

(t, g) · (k, s)=
(
gkλ(t), ρ(t)(s)

)
,

and let Gm × H act on h by (t, g) · X = t2g(X). Then the map µ : H × S→ h is
equivariant for these actions, and smooth in a neighborhood of H ×{e} ⊂ H × S;
since the Gm-actions are contracting, it follows that µ is smooth everywhere. �

Corollary 3.3. The composite S ↪→ h→ h�H is faithfully flat.

Proof. The composite H × S→ S→ h�H is equal to the composite

H × S→ h→ h�H,

which is a composition of flat morphisms, hence flat (H × S→ h is flat since we
have just proved it to be smooth). Since the second projection H × S→ S is flat,
S→ h�H must also be flat.

The image is a Gm-stable open subset of h�H containing the origin, hence the
whole of h�H . The faithful flatness follows. �

Let us now return to our group G with stable involution θ , and let (e, h, f )
now denote a normal sl2-triple. From the above, we see that there is a direct sum
decomposition g= [e, g]⊕ zg( f ). Both summands are θ -stable so we deduce that
g1 = [e, g0] ⊕ zg( f )1, where by definition zg( f )1 = zg( f ) ∩ g1. It follows that
X = e+ zg( f )1 is a transverse slice at e ∈ g1, and the contracting Gm-action on
e+ zg( f ) leaves X invariant. Identical arguments to those above now prove the
following.

Proposition 3.4. The mapµ : G0×X→g1 is smooth and the composite X ↪→g1→

g1�G0 is faithfully flat.

We now examine two special cases of this construction in more detail.

The regular sl2 and the Kostant section. Let d1, . . . , dr denote the degrees of
algebraically independent homogeneous generators of the polynomial ring k[g1]

G0 .
We let (E, H, F) be the unique normal sl2-triple containing the element E , and set
κ = E + zg(F)1. We call κ the Kostant section. It has the following remarkable
properties.

Lemma 3.5. The composite κ ↪→ g1→ g1�G0 is an isomorphism. Every element
of κ is regular. In particular, the map g1(k) → (g1�G0)(k) is surjective, and
if k is algebraically closed then κ meets every G0(k)-conjugacy class of regular
semisimple elements.

Proof. It is well-known that in this case the map κ→ g1�G0 is quasihomogeneous
of type (2d1, . . . , 2dr ; 2d1, . . . , 2dr ); compare [Panyushev 2005, proof of Theo-
rem 3.3]. Lemma 3.14 now implies that it must be an isomorphism. The remaining
claims are immediate. �
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A subregular sl2. Fix a normal subregular sl2-triple (e, h, f ), and set X=e+zg( f )1.
(Note that if G is of type A1, then there is no nonzero subregular nilpotent element,
and therefore no subregular sl2-triple, since by definition an sl2-triple consists of
3 linearly independent elements. In this case, we just take X = g1.) Recall that we
have defined an action of Gm on X .

Proposition 3.6. We have dim X = r + 1. We write w1, . . . , wr+1 for the weights
of the Gm-action. After reordering, we have wi = 2di for i = 1, . . . , r − 1. The
2di , i = 1, . . . , r − 1 and wr and wr+1 are given in the following table:

2d1 2d2 2d3 · · · · · · 2dr−2 2dr−1 2dr wr wr+1

Ar 4 6 8 · · · · · · 2r − 2 2r 2r + 2 2 r + 1
Dr 4 8 12 · · · · · · 4r − 8 2r 4r − 4 4 2r − 4
E6 4 10 12 16 18 24 6 8
E7 4 12 16 20 24 28 36 8 12
E8 4 16 24 28 36 40 48 60 12 20

Proof. The proof is by explicit calculation, along similar lines to the proof of
[Slodowy 1980b, §7.4, Proposition 2]. We describe the method. If V ⊂g is a θ -stable
simple sl2-submodule, then its highest weight space is θ-invariant. Moreover, the
eigenvalue of θ on this highest weight space determines the action of θ on every
weight space. We can calculate a decomposition of g into a direct sum of θ -stable
simple sl2-modules by calculating the dimension of each weight space of h, and the
trace of θ on each weight space. This can be accomplished by using the explicit θ
constructed in Lemma 2.13 and a list of the roots of g. We can then fill in the table
by reading off the lowest weight spaces which have θ -eigenvalue equal to −1. �

Example 3.7. We illustrate the method of proof in the case that G is of type A2.
Then a choice of h is

h =

1 0 0
0 0 0
0 0 −1

 ,
in the notation of Example 2.19. We can write the weights of h on g with multiplicity
as follows:

−2 0 2
−1 1
−1 1

0

Thus g decomposes as a direct sum V (3) ⊕ V (2) ⊕ V (2) ⊕ V (1), where V (i)
denotes the unique isomorphism class of sl2-modules of dimension i . In this case
−1 is an eigenvalue of θ of multiplicity 1 on each weight space. (Recall that −θ is
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reflection in the antidiagonal.) We can now decorate each weight space with a +
or − , according to its θ -eigenvalue:

−2− 0+ 2−

−1+ 1−

−1− 1+

0−

It follows that dim zg( f )1 = 3, as expected, and the eigenvalues of h on zg( f )1 are
−2,−1 and 0, hence the weights on e+ zg( f )1 are 2, 3 and 4.

Henceforth we write g1�G0 = B, and ϕ : X → B for the restriction of the
quotient map π : g1→ g1�G0 to X . The main result of this section is the following.

Theorem 3.8. The fibers of ϕ are reduced curves. The central fiber X0 = ϕ
−1(0)

has a unique singular point which is a simple singularity of type Ar , Dr , Er ,
corresponding to that of G. We can choose homogeneous coordinates (pd1, . . . , pdr )

on B and (pd1, . . . , pdr−1, x, y) on X such that the family X → B of curves is as
given by the following table:

G X

Ar y2
= xr+1

+ p2xr−1
+ · · ·+ pr+1

Dr y(xy+ pr )= xr−1
+ p2xr−2

+ · · ·+ p2r−2

E6 y3
= x4
+ y(p2x2

+ p5x + p8)+ p6x2
+ p9x + p12

E7 y3
= x3 y+ p10x2

+ x(p2 y2
+ p8 y2

+ p14)+ p6 y2
+ p12 y+ p18

E8 y3
= x5
+ y(p2x3

+ p8x2
+ p14x + p20)+ p12x3

+ p18x2
+ p24x + p30

(This means, for example, that when G is of type Ar , the relation pr+1 =

y2
− (xr+1

+ p2xr−1
+ · · ·+ pr x) holds on X .) The proof of Theorem 3.8 follows

closely the one in [Slodowy 1980b], with some simplifications due to the fact that we
work with curves, rather than surfaces. We begin with some general considerations,
and reduce to a case-by-case calculation using the invariant degrees of G.

The possibility of choosing coordinates as above is a consequence of the next
result.

Lemma 3.9 [Slodowy 1980b, §8.1, Lemma 2]. Let V and U be k-vector spaces of
dimensions m and n, respectively, on which Gm acts linearly. Let φ : V →U be a
morphism equivariant for these actions. Suppose that dφ0 has rank s and that Gm

acts with strictly positive weights on U and V .
Then there exist Gm-invariant decompositions V = V0 ⊕ W , U = U0 ⊕ W ,

dim W = s, and a regular automorphism α of V such that φ ◦ α has the form
(v0, w) 7→ (ψ(v0, w),w) for some morphism ψ : V0⊕W →U0.

To apply this to the map ϕ : X→ B, we need the following result.
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Proposition 3.10. Let x ∈ X. Then dϕx has maximal rank r = rank G if and only
if x is a regular element. The map dϕ0 : Te X→ T0 B has rank r − 1.

Proof. Let p : g→ g�G denote the adjoint quotient map. For any y ∈ g1, we have
dpy(g0)= 0. This is true if y is regular, since then g0= [y, g1] ⊂ [y, g] is contained
in the tangent space to the orbit G · y. It then follows for any y ∈ g1, since the
regular elements are dense. In particular, we have rank dpy = rank dπy = rank dϕy

for any y ∈ X . The first part of the proposition now follows, since y ∈ g1 is regular
if and only if dpy has maximal rank.

For the second part, we remark that rank dpe = r − 1 if e is subregular nilpotent,
by [Slodowy 1980b, §8.3, Proposition 1]. �

We thus obtain a decomposition of affine spaces X =V0⊕W , B=U0⊕W , where
dim W = r − 1, dim V0 = 2, and dim U0 = 1. With respect to these decompositions
we write ϕ : V0⊕W →U0⊕W in the form ϕ(v0, w)= (ψ(v0, w),w).

Recall that ϕ is Gm-equivariant of type (2d1, . . . , 2dr ;w1, . . . , wr+1). By in-
spection of the tables above, we have 2dr >wi , each i = 1, . . . , r + 1, and hence
the weights occurring in W are 2d1, . . . , 2dr−1. Moreover, the unique weight of
U0 is given by 2dr and the weights of V0 are wr , wr+1. Let x, y be homogeneous
coordinates on V0 of weight wr and wr+1, respectively. It follows that X0 ⊂ V0 is
cut out by a quasihomogeneous polynomial f (x, y) of type (2dr ;wr , wr+1).

Proposition 3.11. After possibly making a linear change of variables, the polyno-
mial f (x, y) is as given by the following table.

G f (x, y)

Ar , r ≥ 1 y2
− xr+1

Dr , r ≥ 4 xy2
− xr−1

E6 y3
− x4

E7 y3
− x3 y

E8 y3
− x5

Proof. We suppose first that k is algebraically closed. Then the induced map
G0 × X0→ π−1(0) is smooth, since X is a transverse slice and this property is
preserved under passage to fibers (see [Slodowy 1980b, §5, Lemma 2]). Since
π−1(0) is smooth along the regular locus, X0 is generically smooth, hence reduced.
We now proceed by direct computation. Let us treat for example the case of Ar .
Then f (x, y) is quasihomogeneous of type (2r + 2; 2, r + 1), where we suppose
that the weights of x and y are 2 and r + 1, respectively.

Since f defines a reduced curve, it must have the form ay2
− bxr+1, with a, b

nonzero constants. After rescaling we may assume that f has the form given in the
statement of the proposition. The same argument works for the other cases as well.
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Now suppose that k is not algebraically closed. The same argument suffices,
except in the cases A2r+1 and D2r . For example, in the case A2r+1 one must
rule out the possibility f (x, y)= y2

− ax2r+2, where a ∈ k× is a nonsquare. But
the natural action map G0 × X0 → π−1(0) induces an injection on geometric
irreducible components — see Lemma 4.14. The irreducible components of π−1(0)
are geometrically irreducible, so it follows that the same must be true for X0, hence
a must be a square. The same argument works for the case of type D2r . �

At this point we have identified the central fiber of ϕ with the desired curve.
We will obtain the identification over the whole of B via a deformation argument.
Before doing this, we must determine the singularities appearing in the other fibers
of ϕ.

Proposition 3.12. Let t ∈ g1 be a semisimple element, and let b denote its image
in B. Let D denote the Dynkin diagram of ZG(t), and write it as a disjoint union
D = D1 ∪ · · · ∪ Dk of its connected components.

Let y ∈ ϕ−1(b)(k)= Xb(k) be a singular point. Then y is a simple singularity of
type Di for some i = 1, . . . , s.

Proof. We have an isomorphism

G0×
ZG0 (t)

(
t +N(zg(t)1)

)
∼= π

−1(b),

induced by the map (g, t + n) 7→ g · (t + n). Let y have Jordan decomposition
y = ys + yn . Without loss of generality, we may suppose that k is algebraically
closed and that ys = t . Then yn ∈ zg(t) is a subregular nilpotent element. If we
decompose [zg(t), zg(t)]= l1×· · ·×lk into a product of simple, θ -stable subalgebras
then yn has a decomposition yn = y1+· · ·+ yk , where yi ∈ l

i is a nilpotent element.
After renumbering, we can assume that y1 ∈ l

1 is a subregular nilpotent element,
and all of the other yi ∈ l

i are regular nilpotent. Moreover, the restriction of θ to
each li is a stable involution.

Now fix a transverse slice S1 to the ZG0(t)-orbit of y1 in l11. It then follows
that S1+

∑
j≥2 y j is a transverse slice to the ZG0(t)-orbit of yn in N(l11) and hence

X1 = t + S1+
∑

j≥2 y j is a transverse slice at y to the G0 action in π−1(b), as the
above isomorphism makes π−1(b) into a fiber bundle over G0/ZG0(t) with fiber
N(zg(t)1).

On the other hand, we know that Xb is also a transverse slice at y to the G0 action
in π−1(b). The result now follows from Proposition 3.1 and Proposition 3.11. �

Semiuniversal deformations and the proof of Theorem 3.8. We can now complete
the proof of Theorem 3.8. There exists a semiuniversal deformation Ẑ→ D̂ of the
central fiber X0 as a Gm-scheme, where Ẑ→ D̂ is a morphism of formal schemes
with underlying reduced schemes given by X0→ Spec k [Slodowy 1980b, §2.7].
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The proof of the theorem is based on the fact that, since X0 is given as the zero
set of an explicit polynomial f (x, y), Ẑ → D̂ admits a canonical algebraization
Z→ D which we can calculate explicitly and then compare with X→ B.

Proposition 3.13. Let f (x, y) be a polynomial in two variables, quasihomogeneous
of type (d;w1, w2). Let X0 ⊂ A2 denote the closed subscheme defined by f , and
suppose that X0 has an isolated singularity at the origin. Then we can construct
a semiuniversal Gm-deformation of X0: Let J = (∂ f/∂x, ∂ f/∂y)⊂ k[x, y] denote
the Jacobian ideal of f . Then k[x, y]/J is a finite-dimensional k-vector space, and
receives an action of Gm . Choose Gm-invariant polynomials g1(x, y), . . . , gn(x, y)
projecting to a k-basis of Gm-eigenvectors of k[x, y]/J . Now define

Z = { f + t1g1+ · · ·+ tngn = 0} ⊂ A2
×An,

and let 8 : Z→ D denote the natural projection to the An factor.
Suppose that gi has weight ri , and let Gm act on ti by the character t 7→ td−ri .

Then 8 is a Gm-equivariant morphism, and the formal completion 8̂ : Ẑ→ D̂ of
this morphism is a semiuniversal Gm-deformation of X0.

Proof. See [Slodowy 1980b, §2.4]. �

Applying this to our fixed polynomial f , we obtain a family of curves Z→ D,
where D is an affine space of dimension n, and a Cartesian diagram of formal
schemes:

X̂

��

// Ẑ

��
B̂ // D̂

An elementary calculation shows that in each case Ar , Dr , or Er , we have n = r
and Z→ D is the family of curves appearing in the statement of Theorem 3.8. The
morphism B̂→ D̂ is given by power series and respects the Gm-actions on either
side, which both have strictly positive weights; it follows that these power series
are in fact polynomials, so this morphism has a canonical algebraization. We obtain
a second Cartesian diagram:

X

��

// Z

��
B // D

The bottom horizontal arrow is a Gm-equivariant polynomial map between affine
spaces of the same dimension and the weights on the domain and codomain are the
same. We now apply the following lemma:
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Lemma 3.14 [Slodowy 1980b, §8.1, Lemma 3]. Let Gm act on affine spaces V,U
of dimension n, and let φ : V →U be an equivariant morphism. Suppose that:

• Gm acts on V and U with the same strictly positive weights.

• The central fiber φ−1(0) is zero dimensional.

Then φ is an isomorphism.

We must verify that the second condition holds. If b ∈ B is mapped to 0 ∈ D,
then Xb ∼= X0. Proposition 3.12 implies that all singularities in the noncentral fibers
of ϕ are simple singularities belonging to simply laced root systems of rank strictly
less than r , and so we must have b = 0. This completes the proof of Theorem 3.8.

A lemma. The results of this section will be used later. Let S = e+ zg( f ), and let
τ denote the involution of S induced by −θ . Thus S is an affine space of dimension
r + 2, and we have Sτ = X .

Lemma 3.15. We can choose global coordinates z1, . . . , zr+2 on S, u1, . . . , ur

on B such that z1, . . . , zr+1 are fixed by τ , τ(zr+2) = −zr+2, and such that the
following holds: the morphism X→ B is given by the formula

(z1, . . . , zr+1) 7→
(
z1, . . . , zr−1, f (z1, . . . , zr+1)

)
for some polynomial function f , and the morphism S→ B is given by the formula

(z1, . . . , zr+2) 7→
(
z1, . . . , zr−1, f (z1, . . . , zr+1)+ z2

r+2
)
.

Proof. We recall that there is a contracting action of Gm on S, and that this action
sends X to itself. Applying Lemma 3.9, we see that we can find Gm and τ -invariant
decompositions S= V0⊕V1⊕U , B =U0⊕U such that the map S→ B is given by
(v0, v1, u) 7→

(
ψ(v0, v1, u), u

)
for some Gm-equivariant morphism ψ . Moreover, τ

acts trivially on V0⊕U and as−1 on V1. We have dim V0= 2, dim V1= dim U0= 1,
dim U = r − 1. Moreover, ψ is quasihomogeneous of some degree.

We choose coordinates as follows: let z1, . . . , zr−1 be arbitrary linear coordinates
on U , zr , zr+1 coordinates which are eigenfunctions for the Gm-action, and zr+2

an arbitrary linear coordinate on V1. Then [Slodowy 1980b, §7.4, Proposition 2]
implies that zr+2 has degree equal to half the degree of ψ . It follows that we must
have ψ(v0, v1, u)= ψ(v0, 0, u)+ z2

r+2, after possibly rescaling coordinates. (The
coefficient of z2

r+2 must be nonzero since S0 has a unique isolated singularity.) �

Corollary 3.16. Let b ∈ B(k), and let t ∈π−1(b)(k) be a semisimple element. Then
there is a bijection between the connected components of the Dynkin diagram of
ZG(t) and the singularities of the fiber Xb, which takes each (connected, simply
laced) Dynkin diagram to a singularity of corresponding type.
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Proof. Lemma 3.15 implies that the singular locus of Sb is equal to the singular
locus of Xb. We have seen that the singular points of Xb are precisely the subreg-
ular elements of Xb. It therefore suffices to show that Xb meets each G-orbit of
subregular elements in p−1(b) exactly once, or equivalently that Sb meets each
G-orbit of subregular elements in p−1(b) exactly once. This follows immediately
from [Slodowy 1980b, §6.6, Proposition 2] and the remark following. �

4. Jacobians and stabilizers of regular elements

We continue with the notation of the previous section. Thus G is a split simple
group of type Ar , Dr , or Er , θ is a stable involution of G, and E ∈ g1 is a regular
nilpotent element. The pair (θ, E) is uniquely determined up to Gad(k)-conjugacy.
This data determines a regular normal sl2-triple (E, H, F). We choose further
a subregular normal sl2-triple (e, h, f ). Our chosen sl2-triples give two special
transverse slices: first, the Kostant section κ = E + zg(F)1, which is a section of
the categorical quotient π : g1→ B by regular elements; second, a transverse slice
to the G0-orbit of e, X = e+ zg( f )1. The fibers of the induced map ϕ : X→ B are
reduced connected curves.

In this section we shall write grs
1 for the open subvariety of regular semisimple

elements, and Brs for its image in B. For any variety Z → B we will write
Z rs
= Z ×B Brs. Thus the morphism X rs

→ Brs is a family of smooth curves.

Homology. Fix a separable closure K of k. In the following if X is a k-scheme of
finite type, we will write H1(X, F2) for H 1

ét(X ⊗k K , F2)
∗, the dual of the first étale

cohomology of X ⊗k K . This is a finite group, and receives an action of the Galois
group Gal(K/k).

Suppose that A is a finite group scheme over k, killed by 2, and that Y→ X is an
A-torsor. This defines a class in H 1

ét(X ⊗k K , A⊗k K )∼= Hom
(
H1(X, F2), A(K )

)
.

Viewing H1(X, F2) as a finite group scheme over k, this class defines a homomor-
phism H1(X, F2)→ A.

Now suppose given an embedding K ↪→ C. Then there is a canonical iso-
morphism H1(X, F2)∼= H1(X (C), F2) with the topological homology. If X (C) is
connected and x ∈ X (C), then the homomorphism π1(X (C), x)→ A(C) induced by
the torsor Y→ X factors through the Hurewicz map π1(X (C), x)→ H1(X (C), F2)

and the induced map H1(X (C), F2)→ A(C) agrees with the previous one, up to
applying the comparison isomorphism. In particular, this map does not depend on
the choice of basepoint.

If X is a geometrically connected smooth projective curve over k, then there is a
canonical isomorphism H1(X, F2)∼= JX [2], where JX denotes the Jacobian of the
curve X .
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Stabilizers of regular elements. Let greg
1 ⊂ g1 denote the open subset of regular

elements. We write Z→ g
reg
1 for the stabilizer scheme, defined as the equalizer of

the diagram

G0× g
reg
1

(g,x) 7→g·x //

(g,x)7→x
// g

reg
1 .

Proposition 4.1. 1. Z is a commutative group scheme, quasifinite over greg
1 .

2. Z admits a canonical descent to B. In particular, for any two x, y ∈ greg
1 with

the same image in B, there is a canonical isomorphism ZG0(x)∼= ZG0(y).

Proof. The first part can be checked on geometric fibers.
For the second part, we show that κ∗Z is the sought-after descent. The map

(Gad)θ ×κ→ g
reg
1 is faithfully flat. In fact, it is étale, and [Kostant and Rallis 1971,

Theorem 7] shows it to be surjective. It is now easy to construct an isomorphism
between π∗κ∗Z and Z over this faithfully flat cover. This defines a morphism of
descent data since Z is commutative. �

We henceforth write Z for the descent to a commutative group scheme over B.
Consider the orbit map µrs

: G0× κ
rs
→ grs

1 . This map is finite and étale, and we
can form the pullback square:

0 //

��

G0× κ
rs

��
X rs // grs

1

Concretely, for b ∈ Brs(k), 0b→ Xb is the Zb-torsor given by

0b = {g ∈ G0 | g · κ(b) ∈ Xb}. (4-1)

We thus obtain a Galois-equivariant map H1(Xb, F2)→ Zb.

Theorem 4.2. If G is simply connected, the map just defined is an isomorphism.

Example 4.3. Let us first illustrate the theorem in the case G = SL2. We can take
θ to be conjugation by the matrix

( 1 0
0 −1

)
. Then we have

g0 =

{(
a 0
0 −a

)}
and g1 =

{(
cc0 x
y 0

)}
.

The regular nilpotents in g1 are those with x or y zero but not both, and the only
subregular nilpotent element in g1 is zero. The quotient map g1→ g1�G0 ∼= A1

sends the above matrix to xy ∈ A1. In particular X = g1 in this case, with the
smooth fibers of the map ϕ : X→ g1�G0 isomorphic to the punctured affine line.
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The group G0 is isomorphic to Gm , and t ∈ Gm acts by

t ·
(

0 x
y 0

)
=

(
0 t2x

t−2 y 0

)
.

The stabilizer of any regular semisimple element is µ2 ⊂ Gm , and it is clear that
for any b ∈ A1

−{0}, the induced map H1(Xb, F2)→ µ2 is an isomorphism.

We now consider the proof of the theorem in the general case. It suffices to prove
the theorem when k = C, which we now assume. In what follows, we simplify
notation by identifying all varieties with their complex points. Fix a choice c of
Cartan subspace, and let C ⊂ G denote the corresponding maximal torus.

Now choose x ∈ c, and let b = π(x) ∈ B. Let L = ZG(x) and l = Lie L . We
write L1 for the derived group of ZG(x), which is simply connected, since G is. In
the following, given y ∈ c, we shall write g1,y for the fiber of the map g1×c/W c→ c

above y, and l1,y for the fiber of the map l1×c/W (x) c→ c above y.

Lemma 4.4. Let y ∈ crs. Then there is a commutative diagram

H1(l1,y, F2) //

��

ZL1
0
(y)

��
H1(g1,y, F2) // ZG0(y)

Proof. This follows from the existence of a commutative diagram

L1
0

//

��

l1,y

��
G0 // g1,y,

where the top row is a ZL1
0
(y)-torsor and the bottom row is a ZG0(y)-torsor. The

vertical arrows are compatible with the homomorphism ZL1
0
(y)→ ZG0(y). �

Suppose that Xb has a singular point u = us + un . Choose g ∈ G0 such that
g ·us = x ∈ c, and set v= g ·u. The Jordan decomposition of v is v= vs+vn= x+vn .
Then vn ∈ l1 is a subregular nilpotent, corresponding to a connected component
D(vn) of the Dynkin diagram of L . We choose a normal subregular sl2-triple
(vn, t, w) in l containing vn , and define X1

= vn + zl(w)1. X1 is a transverse slice
to the L0-orbit of v in l1, by Proposition 3.4.

Proposition 4.5. The dimension of X1 is rank G+ 1. X1
⊂ g1 is a transverse slice

to the G0-orbit of v in g1.
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Proof. X1 has the correct dimension to be a transverse slice to the orbit of a subreg-
ular element, so it suffices to check the infinitesimal condition [v, g0] ∩ zl(w)1 = 0.
In fact, we show that [v, g] ∩ zl(w)= 0. Define

V =
⊕
α∈8c
α(x) 6=0

gα.

Then V is the orthogonal complement of l with respect to the Killing form of g,
and so is l-invariant. It follows that [v, g] = [v, V ]⊕ [vn, l] ⊂ V ⊕[vn, l]. We thus
have [v, g] ∩ zl(w)= [vn, l] ∩ zl(w)= 0. �

Proposition 4.6. For all sufficiently small open neighborhoods U of u in X , there
exists an open neighborhood U0 of b ∈ c/W such that for all y ∈ π−1(U0)∩ c there
is a commutative diagram

H1(X1
y, F2) //

��

H1(l1,y, F2)

��
H1(Uy, F2) // H1(g1,y, F2).

Proof. If U is a sufficiently small open set around u in X , then by Proposition 3.1
we can find an isomorphism ψ between U and an open neighborhood V of v in
X1 over c/W , such that ψ(u) = v and the two induced maps V ↪→ l1 ↪→ g1 and
V ∼=U ↪→ g1 are homotopic over c/W . After possibly shrinking U , we can assume
that the image of V in c/W (x) maps injectively to c/W .

In particular, for c sufficiently close to b we have a commutative diagram

H1(Vc, F2) //

��

H1(l1,c, F2)

��
H1(Uc, F2) // H1(g1,c, F2).

To obtain the statement in the proposition, we note that for c sufficiently close to
b and y ∈ π−1(c)∩ c, we can find an open subset V ′c ⊂ Vc such that the inclusion
V ′c ⊂ X1

y induces an isomorphism on H1. (Use the contracting Gm-action.) This
completes the proof. �

Corollary 4.7. With hypotheses as in Proposition 4.6, suppose in addition that
y ∈ crs. Let C(x)⊂ L1 be the maximal torus with Lie algebra c∩ l1. Then there is a
commutative diagram

H1(X1
y, F2)

��

// X∗(C(x))/2X∗(C(x))

��
H1(X y, F2) // X∗(C)/2X∗(C).
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Proof. There is an isomorphism

ZG0(y)∼= X∗(C)/2X∗(C),

and similarly for ZL1
0
(y). The corollary now follows from Proposition 4.6, on

noting that the map Uy→ g1,y factors through the inclusion X y ⊂ g1,y . �

To go further, it is helpful to compare this with another description of the
homology of the curves X y .

Theorem 4.8. 1. The map X rs
→ crs/W is a locally trivial fibration (in the

analytic topology), and so the homology groups H1(Xc, F2) for c ∈ Brs fit into
a local system H1(X) over crs/W . The pullback of this local system to crs is
constant.

2. Suppose x ∈ c has been chosen so that α(x)= 0 for some α ∈8c, and the only
roots vanishing on x are ±α. Then for each y ∈ crs there is a vanishing cycle
γα ∈ H1(X y, F2), associated to the specialization X y → Xx . This element
defines a global section of the pullback of H1(X) to crs.

3. Let Rc ⊂ 8c denote a choice of root basis. Then for each y ∈ crs the set
{γα | α ∈ Rc} is a basis of H1(X y, F2).

It seems likely that this description of the local system H1(X) is well-known to
experts, but we have not been able to find an adequate reference in the literature.
The proof of this theorem is given in Section 4 below. See in particular Lemma 4.20
for the definition of the vanishing cycle γα.

Now suppose x ∈ c has been chosen so that α(x) = 0 for some α ∈ 8c, and
the only roots vanishing on x are ±α. Then the derived group of L is isomorphic
to SL2. By Corollary 3.16, the fiber Xx has a unique singularity of type A1. For
y ∈ crs sufficiently close to x , we have by Corollary 4.7 a diagram

H1(X1
y, F2) //

��

X∗(C(x))/2X∗(C(x))

��
H1(X y, F2) // X∗(C)/2X∗(C).

It follows from the calculations in Example 4.3 for G = SL2 that the top arrow is an
isomorphism, while the right vertical arrow has image equal to the image of the set
{0, α∨} in X∗(C)/2X∗(C). Moreover, it is clear from the proof of Proposition 4.6
and the definition of the vanishing cycle (Lemma 4.20) that the image of the
nontrivial element of H1(X1

y, F2) in H1(X y, F2) is exactly the vanishing cycle γα.
Applying the commutativity of the above diagram, we deduce that the image of γα
in X∗(C)/2X∗(C) is just α∨ mod 2X∗(C). Since γα comes from a global section of
the local system H1(X), we deduce the result for any y ∈ crs, not just y sufficiently
close to x .
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It follows that for any y ∈ crs, the map

H1(X y, F2)→ ZG0(y)∼= X∗(C)/2X∗(C)

takes a basis of H1(X y, F2), namely the set of γα as α ranges over a set of simple
roots, to a basis of X∗(C)/2X∗(C), namely the corresponding set of simple coroots.
This completes the proof of the theorem.

The case of G adjoint. We now introduce a compactification of the family X→ B
of affine curves.

Lemma 4.9. The family ϕ : X→ B admits a compactification to a family Y→ B of
projective curves. Endow Y \ X with its reduced closed subscheme structure. Then
Y \ X is a disjoint union of smooth nonintersecting open subschemes P1, . . . , Ps ,
each of which maps isomorphically onto B. Moreover, Y → B is smooth in a
Zariski neighborhood of each Pi . For each b ∈ Brs(k), Yb is the unique smooth
projective curve containing Xb as a dense open subset. Each irreducible component
of Y0 meets exactly one of the sections Pi .

Proof. We take the projective closure of the equations given in Theorem 3.8, and
blow up any singularities at infinity. An easy calculation shows in each case that
the induced family Y → B satisfies the required properties. �

Let us now suppose that G is adjoint, and let Gsc
→G denote its simply connected

cover. We write Z sc for the stabilizer scheme of Gsc over B. The natural map
Z sc
→ Z is fiberwise surjective. Fix b ∈ Brs(k). In Theorem 4.2, we saw that the

inclusion Xb ↪→ g1,b induces an isomorphism H1(Xb, F2)→ Z sc
b of finite k-groups.

On the other hand, we have a surjection H1(Xb, F2)→ H1(Yb, F2).

Theorem 4.10. The composite

H1(Xb, F2)→ Z sc
b → Zb

factors through this surjection, and induces an isomorphism H1(Yb, F2)∼= Zb.

By Corollary 2.12, there is a canonical alternating pairing on Z sc
b , with radical

equal to the kernel of the map Z sc
b → Zb. On the other hand, there is a pairing ( · , · )

on H1(Xb, F2), namely the intersection product, whose radical is exactly the kernel
of the map H1(Xb, F2)→ H1(Yb, F2). The theorem is therefore a consequence of
the following result.

Theorem 4.11. The isomorphism H1(Xb, F2) ∼= Z sc
b preserves these alternating

pairings.

Corollary 4.12. There is an isomorphism JYb [2] ∼= Zb of finite k-groups that takes
the Weil pairing to the pairing on Zb defined in Corollary 2.12.
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Proof of Theorem 4.11. We can again reduce to the case k = C. Fix a choice of
Cartan subspace c, and let C ⊂ Gsc be the corresponding maximal torus. Choose
y ∈ crs. Let γα ∈ H1(X y, F2) be the element defined in Theorem 4.8. We will
derive the theorem from the following statement: fix a root basis Rc of 8c, and let
α, β ∈ Rc be distinct roots. Then (γα, γβ) = 1 if α, β are adjacent in the Dynkin
diagram of g, and (γα, γβ)= 0 otherwise. We split the rest of the proof into two
cases, according to these possibilities.

Case 1. If α, β are distinct adjacent roots, then we can choose x ∈ c such that the
elements of 8c vanishing on x are exactly the linear combinations of α and β. Let
L = ZGsc(x) and L1

= Lder. Then L1 ∼= SL3, and the root system 8c(x) ⊂ 8c is
spanned by α and β. Moreover, we have by Corollary 4.7 for all y ∈ crs sufficiently
close to x a commutative diagram

H1(X1
y, F2)

��

// X∗(C(x))/2X∗(C(x))

��
H1(X y, F2) // X∗(C)/2X∗(C),

where C(x)⊂ L1 is the maximal torus with Lie algebra c∩ l1. We know that the
horizontal arrows are isomorphisms, and the vertical arrows are injective. The
vertical arrows preserve the corresponding pairings.

Now, both of the objects in the top row of the above diagram are 2-dimensional
F2-vector spaces, and their corresponding pairings are nondegenerate. (This is easy
to see: the curve X1

y is a smooth affine curve of the form y2
= x3
+ ax + b.) There

is a unique nondegenerate alternating pairing on any 2-dimensional F2-vector space,
so we deduce that (γα, γβ)= 1.

Case 2. If α, β are distinct roots which are not adjacent in the Dynkin diagram of g,
then we can choose x ∈ c such that the roots vanishing on x are exactly the linear
combinations of α and β. Let L = ZG(x) and L1

= Lder. Then L1 ∼= SL2× SL2,
and X y has exactly two singularities, each of type A1. We can choose disjoint
open neighborhoods U1,U2 of these singularities in X such that for each y ∈ crs

sufficiently close to x , the map H1(U1,y ∪U2,y, F2)→ H1(X y, F2) is injective and
has image equal to the span of γα and γβ . We see that these homology classes can
be represented by cycles contained inside disjoint open sets of X y . Therefore their
intersection pairing is zero, and the theorem follows. �

A parametrization of orbits. We suppose again that k is a general field of charac-
teristic 0. Before stating our last main theorem, we summarize our hypotheses. We
fix the following data:

• A split simple adjoint group G over k, of type Ar , Dr , or Er .
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• A stable involution θ of G and a regular nilpotent element E ∈ g1.

• A choice of subregular normal sl2-triple (e, h, f ).

In terms of these data, we have defined:

• The categorical quotient B = g1�G0.

• The Kostant section κ ⊂ g1.

• A family of reduced connected curves X→ B.

• A family of projective curves Y → B containing X as a fiberwise dense open
subset.

• A stabilizer scheme Z → B whose fiber over b ∈ B(k) is isomorphic to the
stabilizer of any regular element in g1,b.

• For each b ∈ Brs(k), a natural isomorphism JYb [2] ∼= Zb, that takes the Weil
pairing to the nondegenerate alternating pairing on Zb defined in Corollary 2.12.

Proposition 4.13. For each b ∈ Brs(k), there is a bijection

g1,b(k)/G0(k)∼= ker
(
H 1(k, JYb [2])→ H 1(k,G0)

)
,

which takes the orbit of κb to the distinguished element of H 1(k, JYb [2]).

Proof. Let K be a separable closure of k. We recall that if H is an algebraic group
over k which acts on a variety X , and H(K ) acts transitively on X (K ), then given
x ∈ X (k) there is a bijection

X (k)/H(k)∼= ker
(
H 1(k, Z H (x))→ H 1(k, H)

)
,

under which the H(k)-orbit of x is mapped to the distinguished element, by [Gross
and Bhargava 2012, Proposition 1]. We apply this with H = G0, X = g1,b, and
base point x = κb ∈ g1,b(k) induced by the Kostant section. The result follows on
using the identification Z H (x)∼= JYb [2] of Theorem 4.10. �

To go further we want to interpret the relative position of the nilpotent elements
E and e geometrically.

Lemma 4.14. There are bijections between the following sets:

1. The set of irreducible components of X0.

2. The set of G0-orbits of regular nilpotent elements in g1 containing the G0-orbit
of e in their closure.

3. The set of connected components of Y \ X.

Proof. The map µ0 : G0× X0→ N(g1) is flat, and so has open image. This image
therefore contains all regular nilpotent G0-orbits whose closure meets e. On the
other hand, one checks using Proposition 2.30 that in each case the number of
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regular nilpotent G0-orbits containing e in their closure is equal to the number of
irreducible components of X0. We can therefore define a bijection between the first
two sets by taking an irreducible component of X0 to the G0-orbit of any point on
its smooth locus.

We write Y \ X = P1 ∪ · · · ∪ Ps as a disjoint union of open subschemes, each of
which maps isomorphically onto B. By Lemma 4.9, each irreducible component
of Y0 meets a unique section Pi . We define a bijection between the first and third
sets above by taking an irreducible component of X0 to the unique section Pi

meeting its closure in Y0. �

We come now to our main theorem. We choose a section P ∼= B inside Y \ X ,
and we suppose that E corresponds under the bijection of Lemma 4.14 to the unique
component of X0 whose closure in Y0 meets P . For each b ∈ Brs(k), Pb ∈ Yb(k)
defines an Abel–Jacobi map f Pb : Yb ↪→ JYb . (For the definition of this map, see
[Milne 1986, §2].)

Theorem 4.15. For every b ∈ Brs(k), there is a commutative diagram, functorial in
k, and depending only on e up to G0(k)-conjugacy:

Xb(k)
ι //

g
��

g1,b(k)/G0(k)

γ

��
JYb(k)

δ // H 1(k, JYb [2]).

The arrows in this diagram are defined as follows:

• ι is induced by the inclusion Xb ↪→ g1,b.

• g is the restriction of the Abel–Jacobi map f Pb to Xb ⊂ Yb.

• δ is the usual 2-descent map in Galois cohomology associated to the exact
sequence

0→ JYb [2] → JYb

[2]
→ JYb → 0.

• γ is the classifying map of Proposition 4.13.

Proof. We think of the group H 1(k, JYb [2]) as classifying JYb [2]-torsors over k.
With b as in the theorem, let Eb = [2]−1 f Pb(Yb)⊂ JYb . We write jb : Eb→ Yb for
the natural map. This is a JYb [2]-torsor over Yb, and the composite δ ◦ g sends a
point Q ∈ Xb(k) to the class of the torsor j−1

b (Q)⊂ Eb.
On the other hand, we recall the JYb [2]-torsor 0b→ Xb of (4-1), which extends

uniquely to a torsor hb : Db→ Yb, by Theorem 4.10. The composite γ ◦ ι sends a
point Q ∈ Xb(k) to the class of h−1

b (Q). It follows from [Milne 1986, Proposition
9.1] that the two covers Db→Yb and Eb→Yb become isomorphic as JYb [2]-torsors
after extending scalars to a separable closure of k. To prove the theorem, it therefore
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suffices to prove that Db and Eb are isomorphic as JYb [2]-torsors over Yb, before
extending scalars. It even suffices to prove that h−1

b (Pb) is always the split torsor,
or in other words that h−1

b (Pb)(k) is not the empty set.
Let µ : G0 × κ → g1 denote the orbit map, and let X ′ denote the intersection

of X with the image of µ. Because of the compatibility between E and P , the
subset X ′ ∪ P of the underlying topological space of Y is open; let Y ′ denote the
corresponding open subscheme. Then Y ′ contains a Zariski open neighborhood of
P in Y .

Let 0′ = µ−1(X ′); this is a Z -torsor over X ′. We show that 0′ extends to a
Z -torsor over Y ′. In fact, there is a commutative diagram with exact rows:

0 // H 1
ét(Y

′, Z) //

��

H 1
ét(X

′, Z) //

��

H 0
ét(Y

′, R1 j∗Z)

��
0 // H 1

ét(Y
′

K , Z) // H 1
ét(X

′

K , Z) // H 0
ét(Y

′

K , R1 jK ,∗Z),

where j : X ′→ Y ′ is the obvious open immersion, and ( · )K denotes base change
to the separable closure K/k. Let i : P ↪→ Y ′ denote the complementary closed
immersion. There is an isomorphism R1 jK ,∗(Z)∼= iK ,∗Z , and hence

H 0
ét(Y

′

K , R1 jK ,∗(Z))= H 0
ét(BK , Z).

The group H 0
ét(BK , Z) is trivial. Indeed, the morphism Z→ B is étale, while the

stalk of Z above the origin is trivial. The rightmost vertical arrow in the above
diagram is injective, and so the class of 0′ in H 1

ét(X
′, Z) lifts to H 1

ét(Y
′, Z). We

write D′→ Y ′ for the corresponding torsor.
Let F ′→ B denote the pullback of D′ to B ∼= P ↪→ Y ′. We must show that for

b as in the theorem, F ′b is the trivial Z -torsor over k. We claim that in fact, F ′ is
trivial. For we can choose a Zariski open neighborhood U0 of 0 ∈ B and a Galois
finite étale cover U →U0 such that F ′×B U has a trivialization as a Z -torsor. If
U is sufficiently small, then Z(U ) ↪→ Z0 = 0 is trivial, so there is a unique such
trivialization. By descent, there exists a unique trivialization of F ′ over U0. The
existence of the contracting Gm-action on X → B now implies that F ′ must be
globally trivial, as required. This completes the proof of the theorem. �

A conjecture. We hope that the representations studied in this paper will have
applications to the study of the average size of the 2-Selmer groups of the Jacobian
varieties JYb . The first step towards such applications is the following conjecture.

Conjecture 4.16. With assumptions as in Theorem 4.15, there exists a function
η : JYb(k)→ g1,b(k)/G0(k), functorial in k, making the diagram
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Xb(k)
ι //

g
��

g1,b(k)/G0(k)

γ

��
JYb(k)

δ //

η
88

H 1(k, JYb [2])

commute.

The conjecture is true in each case (namely G of type A2, A3, or D4) where the
curves Yb have genus one. The representations we construct in this case are a subset
of the ones studied by Bhargava and Ho in their paper on coregular representations
associated to genus-one curves [Bhargava and Ho 2013], and in a forthcoming work
they apply their representations to the study of the average sizes of Selmer groups
[Bhargava and Ho ≥ 2014]. In the cases listed above one could also apply the
methods of this paper, together with Bhargava’s techniques for counting integral
points in truncated fundamental domains, to calculate the average size of the 2-
Selmer groups of the curves in the corresponding families. Details will appear
elsewhere.

Bhargava and Gross [2013] have shown something very close to this conjecture
when G is of type A2r . They construct rational orbits using the geometry of the
intersection of two quadric hypersurfaces, and apply this to calculate the average
size of the 2-Selmer groups of a certain family of hyperelliptic Jacobians. On
the other hand, for some other Vinberg representations the work of Gruson, Sam
and Weyman [Gruson et al. 2013] gives a relation between the geometric invariant
theory and the geometry of the Jacobians of our algebraic curves, and it seems
likely that this should extend to an arithmetic relation also.

The proof of Theorem 4.8. In this section we prove Theorem 4.8. Thus G is a
simple simply connected group over k = C, θ a stable involution, and c ⊂ g1 a
Cartan subspace. We fix a normal subregular sl2-triple (e, h, f ) in g, and define
S = e+ zg( f ), X = e+ zg( f )1 = S ∩ g1. Let τ denote the automorphism of S
induced by −θ ; we then have Sτ = X . In what follows we identify all varieties
with their complex points.

Lemma 4.17. Both Srs and X rs are locally trivial fibrations (in the analytic topology)
over crs/W .

Proof. We combine the Ehresmann fibration theorem and the existence of a good
compactification for X rs to see that it is a locally trivial fibration over crs/W . The
corresponding result for S follows from the simple relationship between S and X ,
see Lemma 3.15. �

Corollary 4.18. The homology groups H2(Sb, F2) and H1(Xb, F2) for b ∈ crs/W
form local systems H2(S) and H1(X), and these local systems are canonically
isomorphic.
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Proof. Only the second part needs proof. It follows either from a sheaf-theoretic
argument, or from the assertion that suspension does not change the monodromy
representation of a singularity, at least when one is working modulo 2; see [Arnol’d
et al. 1988, Theorem 2.14]. �

Given y ∈ c we write X y and Sy for the respective fibers over y of the maps
X ×c/W c→ c and S×c/W c→ c.

Lemma 4.19. The local systems H1(X) and H2(S) become trivial after pullback
to crs.

Proof. In light of Corollary 4.18, it suffices to prove this assertion for H2(S). The
existence of the Springer resolution implies the existence of a proper morphism
S̃→ S ×c/W c such that for every y ∈ c, the induced map S̃→ Sy is a minimal
resolution of singularities. Moreover, S̃→ c is a locally trivial fiber bundle and
S̃×c c

rs
→ S×c/W crs is an isomorphism. See [Slodowy 1980a] for more details.

These facts imply the lemma. �

It follows that for any y, z ∈ crs, the groups H1(X y, F2) and H1(Xz, F2) are
canonically isomorphic.

It is a consequence of Lemma 3.15 that given b ∈ c/W , a fiber Xb has a unique
nondegenerate critical point if and only if Sb does. Let γ : [0, 1] → c be a path
such that γ (t) is regular semisimple for 0 ≤ t < 1, but such that a unique pair
of roots ±α vanishes on γ (1)= x . Then Xx (or Sx ) has a unique nondegenerate
critical point, by Corollary 3.16. Let y = γ (0). We define a homology class (that
we call a vanishing cycle) [γ ]1 ∈ H1(X y, F2) as follows.

We can find local holomorphic coordinates z1, . . . , zr+1 on X centered at the
critical point of Xb and local holomorphic coordinates u1, . . . , ur on c/W centered
at b such that the map X→ c/W is locally of the form

(z1, . . . , zr+1) 7→ (z1, . . . , zr−1, z2
r + z2

r+1).

For t close to 1, we can then define a sphere (for a suitable continuous choice of
branch of

√
ur (t) near t = 1):

S1(t)=
{
(u1(t), . . . , ur−1(t),

√
ur (t)zr ,

√
ur (t)zr+1)

∣∣ z2
r + z2

r+1 = 1,=zi = 0
}
.

We define a homology class in H1(X y, F2) by transporting the class of S1(t) for t
close to 1 along the image of the path γ in c/W . An entirely analogous procedure
defines [γ ]2 ∈ H2(Sx , F2).

Lemma 4.20. The homology class of the cycle [γ ]1 ∈ H1(X y, F2) (respectively,
[γ ]2 ∈ H2(Sy, F2)) is well-defined and depends only on α. Moreover, these classes
correspond under the isomorphism H1(X y, F2)∼= H2(Sy, F2) of Corollary 4.18.
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Proof. It is well known that the [γ ]i are well-defined and depend only on the path
γ up to homotopy. It follows from Lemma 4.19 that the [γ ]i depend only on the
endpoint x = γ (1) and not on the choice of path. To prove the lemma it suffices
to show that [γ ]2 depends only on α. In fact [γ ]2 is, by construction, the unique
nontrivial element in the kernel of the map

H2(Sy, F2)= H2(S̃y, F2)∼= H2(S̃x , F2)→ H2(Sx , F2).

The proof of [Shepherd-Barron 2001, Theorem 3.4] implies that there is an isomor-
phism of local systems H2(S̃)∼= X∗(C)/2X∗(C) over c, and that the kernel of the
map H2(S̃x , F2)→ H2(Sx , F2) corresponds under this isomorphism to the span in
X∗(C)/2X∗(C) of α∨. �

We can therefore define for each α ∈8c a global section γα of the pullback of the
local system H1(X) to crs, namely the class [γ ]1 constructed above. Theorem 4.8
now follows from the above facts and the following result.

Lemma 4.21. Let Rc ⊂8c be a choice of root basis, and let x ∈ crs. Then the set
{γα | α ∈ Rc} is a basis of H1(Xx , F2) as F2-vector space.

Proof. This follows immediately from the corresponding fact for the simple coroots
{α∨ | α ∈ Rc}. �

Acknowledgements

This paper is a revised version of the author’s Harvard Ph.D. thesis, written under the
supervision of Benedict H. Gross. I wish to thank him for many useful suggestions
and conversations.

References

[Arnol’d et al. 1988] V. I. Arnol’d, V. V. Goryunov, O. V. Lyashko, and V. A. Vasil’ev, “Osoben-
nosti, I: Pokal~na� i global~na� teori�”, pp. 5–257 in Dynamical systems 6, Itogi Nauki
i Tekhniki Sovrem. Probl. Mat. Fund. Napr. 6, VINITI, Moscow, 1988. Translated as “Singularities,
I: Local and global theory” in Singularity theory I, Encycl. Math. Sci. 6, Springer, Berlin, 1998.
MR 91h:58010b Zbl 0691.58002

[Bhargava and Gross 2013] M. Bhargava and B. H. Gross, “The average size of the 2-Selmer group
of Jacobians of hyperelliptic curves having a rational Weierstrass point”, preprint, 2013, available at
http://www.math.harvard.edu/~gross/preprints/stable23.pdf.

[Bhargava and Ho 2013] M. Bhargava and W. Ho, “Coregular spaces and genus one curves”, preprint,
2013. arXiv 1306.4424

[Bhargava and Ho ≥ 2014] M. Bhargava and W. Ho, “On the average sizes of Selmer groups in
families of elliptic curves”, In preparation.

[Bhargava and Shankar 2010] M. Bhargava and A. Shankar, “Binary quartic forms having bounded
invariants, and the boundedness of the average rank of elliptic curves”, preprint, 2010. To appear in
Annals of Math. arXiv 1006.1002

http://mi.mathnet.ru/rus/intf/v6/p5
http://mi.mathnet.ru/rus/intf/v6/p5
http://dx.doi.org/10.1007/978-3-642-58009-3
http://dx.doi.org/10.1007/978-3-642-58009-3
http://msp.org/idx/mr/91h:58010b
http://msp.org/idx/zbl/0691.58002
http://www.math.harvard.edu/~gross/preprints/stable23.pdf
http://www.math.harvard.edu/~gross/preprints/stable23.pdf
http://msp.org/idx/arx/1306.4424
http://msp.org/idx/arx/1006.1002


Vinberg’s representations and arithmetic invariant theory 2367

[Bourbaki 1968] N. Bourbaki, Groupes et algèbres de Lie, chapitres 4–6, Actualités Scientifiques et
Industrielles 1337, Hermann, Paris, 1968. Translated as Lie groups and Lie algebras, Chapters 4–6,
Springer, Berlin, 2008. MR 39 #1590 Zbl 0483.22001

[Bourbaki 1975] N. Bourbaki, Groupes et algèbres de Lie, chapitres 7 et 8, Actualités Scientifiques et
Industrielles 1364, Hermann, Paris, 1975. Translated in Lie groups and Lie algebras, Chapters 7–9,
Springer, Berlin, 2008. Zbl 0329.17002

[Brieskorn 1971] E. Brieskorn, “Singular elements of semi-simple algebraic groups”, pp. 279–284
in Actes du Congrès International des Mathématiciens (Nice, 1970), vol. 2, Gauthier-Villars, Paris,
1971. MR 55 #10720 Zbl 0223.22012

[Collingwood and McGovern 1993] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in
semisimple Lie algebras, Van Nostrand Reinhold, New York, 1993. MR 94j:17001 Zbl 0972.17008

[Cook 1998] P. R. Cook, “Compactified Jacobians and curves with simple singularities”, pp. 37–47 in
Algebraic geometry (Catania, 1993 and Barcelona, 1994), edited by P. E. Newstead, Lecture Notes in
Pure and Appl. Math. 200, Dekker, New York, 1998. MR 99j:14031 Zbl 0951.14018
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