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On the Picard number of K3 surfaces
over number fields

François Charles

We discuss some aspects of the behavior of specialization at a finite place of
Néron–Severi groups of K3 surfaces over number fields. We give optimal lower
bounds for the Picard number of such specializations, thus answering a question
of Elsenhans and Jahnel. As a consequence of these results, we show that it is
possible to compute explicitly the Picard number of any given K3 surface over a
number field.

1. Introduction

This paper deals with two questions concerning the arithmetic and the geometry
of K3 surfaces. Let X be a polarized K3 surface over a number field k, and let
p be a finite place of k where X has good reduction. Denote by Xp the special
fiber of a smooth model of X over the ring of integers of kp. Denote by X the base
change of X to an algebraic closure of k, and by Xp the base change of Xp to the
residue field of p. Specialization of divisors induces a specialization map between
the Néron–Severi groups of X and Xp.

Question 1. What can be said about the specialization map

sp : NS(X)→ NS(Xp)? (1)

A standard argument using the cycle class map and the smooth base change
theorem shows that this specialization map is always injective up to torsion. We
are here interested in the defect of surjectivity. This problem has been featured
prominently in [Bogomolov, Hassett and Tschinkel 2011] and [Li and Liedtke
2012].

The second question is the following. Recall that the Picard number of a variety
is by definition the rank of its Néron–Severi group.

Question 2. Given a projective embedding of X , is it possible to compute the
geometric Picard number of X?
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This question is raised by Shioda [1981].
Using the Weil conjectures [Deligne 1974], it is possible to compute the Picard

numbers of smooth projective varieties over finite fields, at least in the case the Tate
conjecture holds. Indeed, counting points in sufficiently many extensions of the
base field, one can compute the characteristic polynomial of the Frobenius acting
on the second étale cohomology group and determine the multiplicity of 1 as an
eigenvalue. If the Tate conjecture holds, this multiplicity is equal to the Picard
number.

In characteristic 0, Question 2 is more difficult. In particular, the first explicit
example of a K3 surface over a number field with Picard rank 1 has been recently
given by van Luijk [2007]. Van Luijk’s method provides a link between both
questions. Indeed, it proceeds by computing Picard numbers at sufficiently many
finite places in order to get information over the field of definition. In the past
few years, the problem of computing Picard numbers of K3 surfaces has been
featured for instance in the work of Elsenhans and Jahnel [2008a; 2008b] with
recent geometric applications in the work of Hassett and Várilly-Alvarado [2013]
and Várilly [Hassett et al. 2011]. Recent work of Hassett, Kresch and Tschinkel
[2013] tackles this question in some cases.

With this approach, one of the main problems is finding finite places p such that
the specialization map (1) is as close to being surjective as possible, that is, such
that ρ(Xp) is as small as possible.

Note that the situation in this mixed characteristic setting is in stark contrast with
the case of equal characteristic 0. Indeed, for K3 surfaces defined over function
fields over C or Q, most specializations induce isomorphisms at the level of the
Néron–Severi group. This is a consequence of Baire’s theorem over C (see for
instance [Voisin 2002, Chapter 13]) and of the Hilbert irreducibility theorem over Q

as was first noticed by Terasoma [1985; André 1996, Theorem 5.2(3)]. A different
approach to this problem can be found in [Maulik and Poonen 2012].

On the other hand, over finite fields, there are obstructions for the map (1) to be
surjective as was first noticed by Shioda [1981; 1983]. Indeed, it is a consequence of
the Tate conjecture that the geometric Picard number of a K3 surface over a number
field is always even; see for instance [de Jong and Katz 2000]. This striking fact
has been recently used in a surprising way by Bogomolov, Hassett and Tschinkel
[2011] and Li and Liedtke [2012] to prove that any complex K3 surface with odd
Picard rank contains infinitely many rational curves.

In this paper, we describe the Shioda-type obstructions that can prevent the
map (1) from being surjective, and we give optimal lower bounds for the Picard
number of the specialization. One of our results is that Hodge theory can force
the existence of such obstructions even when the Picard number is even; see
Theorem 1(2) below.
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Let X be a K3 surface over a number field k, and choose a complex embedding
of k. Let ρ be the geometric Picard number of X , and for any finite place p of k
where X has good reduction, let ρp be the geometric Picard number of Xp. Note
that we always have

ρp ≥ ρ.

We need to control the Hodge theory of XC. Let T be the orthogonal complement
of NS(XC) in the singular cohomology group H 2(XC,Q) with respect to cup-
product. The space T is a sub-Hodge structure of H 2(XC,Q). Let E be the algebra
of endomorphisms of T that respect the Hodge structure. Zarhin [1983] shows that
E is either a totally real field or a CM field.

The following result can be considered as a number field analog of the special-
ization results over function fields mentioned above:

Theorem 1. Let X , T and E be as above.

(1) If E is a CM field or the dimension of T as an E-vector space is even, then there
exist infinitely many places p of good reduction such that ρp = ρ. Furthermore,
after replacing k by a finite extension, this equality holds for a set of places of
density 1.

(2) Assume E is a totally real field and the dimension of T as an E-vector space
is odd.

Let p be a finite place of k where X has good reduction. Assume that the
characteristic of the residue field of p is at least 5. Then

ρp ≥ ρ+ [E :Q].

The equality ρp= ρ+[E :Q] is satisfied for infinitely many places p of good
reduction. Furthermore, after replacing k by a finite extension, this equality
holds for a set of places of density 1.

Remark 2. Note that if ρ is odd, the dimension of T over Q is odd; hence, X
satisfies the assumptions of the second part of the theorem.

Remark 3. Elsenhans and Jahnel [2012] ask whether, with notation as in the
theorem, there exists p such that ρp−ρ ≤ 1. The result above shows that it is not the
case if E is a totally real field of degree at least 2 over Q such that the dimension
of T over E is odd. This is however true in all other cases.

This result shows that the Picard number can be forced to jump in specializations
even when the Picard number of X is even. Using the method of Li and Liedtke
[2012], we get the following corollary:

Corollary 4. Let X be either a K3 surface of Picard rank 2 with E a totally real
field of degree 4 or a K3 surface of Picard rank 4 with E a totally real field of even
degree. Then X contains infinitely many rational curves.
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There exist such K3 surfaces by [van Geemen 2008, Section 3], and they give new
examples of K3 surfaces with infinitely many rational curves. Note that complex
K3 surfaces of Picard rank different from 2 and 4 are known to contain infinitely
many rational curves by [Li and Liedtke 2012].

The second main result of this paper is a solution to Question 2. Recall that
the method of van Luijk [2007] to prove that a K3 surface X over Q has Picard
number 1 was to first find two primes p and q of good reduction such that X
specializes to a K3 surface of Picard number 2 modulo p and q . If the discriminant
of the Néron–Severi lattices modulo p and q differ by a nonsquare factor, van Luijk
shows that this implies that X has Picard number 1.

By Remark 3, there are cases where we cannot expect van Luijk’s method to work
directly for all K3 surfaces of rank 1. However, the second part of Theorem 1 can
be used to show that reduction at finite places does indeed give enough information
to compute Picard numbers over number fields.

This gives a theoretical explanation to the computations in [van Luijk 2007;
Elsenhans and Jahnel 2008a; 2008b; Hassett et al. 2011; Hassett and Várilly-
Alvarado 2013].

Theorem 5. There exists an algorithm that, given a projective K3 surface X over a
number field, either returns its geometric Picard number or does not terminate.

If X × X satisfies the Hodge conjecture for codimension-2 cycles, then the
algorithm applied to X terminates.

Remark 6. In case the algorithm terminates, it is possible to compute the Picard
number over the base field by searching for divisors spanning the geometric Néron-
Severi group with rational coefficients and taking invariants under the action of the
Galois group.

Remark 7. Let X be a K3 surface over C. With the notation of Theorem 1,
X × X satisfies the Hodge conjecture if and only if the field E acts by algebraic
correspondences. By [André 1996], this would be a consequence of the standard
conjectures. Mukai [2002] has announced a proof in the case E is a CM field.

Remark 8. The proof of the theorem actually shows that the only case where the
algorithm would not terminate is, with the notation of Theorem 1, if E is a totally
real field that does not act on H 2(X,Q) by algebraic correspondences and T is of
odd dimension as a vector space over E .

In particular, the algorithm always terminates for surfaces with E =Q.

While we only consider K3 surfaces in this paper, some of the methods we
consider have a wider range of applications. Assuming general conjectures on
algebraic cycles, it is a general fact that the Mumford–Tate group associated to
the second cohomology group of a variety controls specialization of Néron–Severi
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groups in a fashion that is similar to the way the monodromy representation appears
in [André 1996; Maulik and Poonen 2012]. The multiplicity of the weight 0 in
the corresponding representation is what forces the Picard number to jump after
specialization. This is related to algorithmic computations of Néron–Severi groups
as in our paper.

For K3 surfaces, the work of Zarhin [1983] and Tankeev [1990; 1995] allows us
to give precise and unconditional results. The results of our paper conjecturally hold
for varieties with h2,0

= 1. It seems likely that one can prove them unconditionally
for holomorphic symplectic varieties by extending the work of Tankeev cited above.

In Section 2, we recall results of Zarhin and Tankeev on the second cohomology
group of a K3 surface. This allows us to prove Theorem 1 in Section 3. Section 4
is devoted to discriminant computations that will allow us to prove Theorem 5 in
Section 5.

2. Algebraic monodromy groups of K3 surfaces over number fields

The results of this section are mostly contained in the work of Zarhin and Tankeev.
After recalling some preliminary material, we describe the algebraic monodromy
group of a K3 surface defined over a number field.

2.1. Mumford–Tate groups and the Mumford–Tate conjecture. Let S be the Del-
igne torus, that is, the algebraic group over R defined as

S= ResC/R Gm .

Let H be a finite-dimensional vector space over Q. Giving a Hodge structure on H
is equivalent to giving an action of S on HR = H ⊗R.

Definition 9. Let H be a rational Hodge structure. The Mumford–Tate group of H
is the smallest algebraic subgroup MT(H) of GL(H) such that MT(H)R contains
the image of S in GL(HR).

We refer to [Deligne et al. 1982, Chapter I] for general properties of Mumford–
Tate groups. Since S is connected, this definition implies that Mumford–Tate groups
are connected. Note that the Mumford–Tate group of a polarized Hodge structure
is reductive.

Let i and j be nonnegative integers, and consider the Hodge structure

V = H⊗i
⊗ (H∗)⊗ j .

The Mumford–Tate group MT(H) acts on V . If v is a Hodge class in V , then the
line Qv is globally invariant under the action of MT(H). Conversely, it follows
from Chevalley’s theorem on affine groups that MT(H) is the largest algebraic
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subgroup of GL(HC) that leaves all such lines globally invariant [Deligne et al.
1982, Chapter I, Proposition 3.4].

We now turn to the `-adic theory. General results can be found in [Serre 1981].
Let k be a number field, and fix an algebraic closure k. Let X be a smooth projective
variety over k, and denote by X the variety X×Spec kSpec k. Fixing a prime number `,
we can consider the étale cohomology group H i (X ,Q`) for some integer i . Let ρ`
denote the continuous representation

ρ` : Gk→ GL(H i (X ,Q`))

of the absolute Galois group Gk of k. The image of ρ` is an `-adic Lie group.

Definition 10. With notation as above, let G` be the Zariski closure of the image
of ρ` in the algebraic group GL(H i (X ,Q`)). The algebraic group G` is called the
algebraic monodromy group associated to the Galois representation ρ`.

Note that replacing k by a finite extension replaces G` by an open subgroup
of finite index. In particular, the identity component of the algebraic monodromy
group does not depend on the choice of a field of definition for X .

General conjectures on algebraic cycles give important information on Mumford–
Tate and algebraic monodromy groups. In particular, the latter are expected to be
reductive. The expected relationship between those two groups is described by the
Mumford–Tate conjecture as follows; see [Serre 1981].

Conjecture 11. Let k be a number field, and fix a complex embedding of k. Let X
be a smooth projective variety over k.

Let G` be the algebraic monodromy group associated to the étale cohomology
group H i (XC,Q`) for some prime number `, and let G◦` be its identity component.
Then there is a canonical isomorphism

G◦` 'MT(H i (XC,Q))Q`
.

The Mumford–Tate conjecture is implied by the conjunction of the Tate and
Hodge conjectures. A lot of work has been done in its direction in the case of
abelian varieties [Serre 1998; Pink 1998; Vasiu 2008].

In this paper, we will focus on the case of K3 surfaces, where the Mumford–
Tate conjecture holds. However, an important part of our method concerning
specialization of Néron–Severi groups holds in a general setting if one assumes the
Mumford–Tate conjecture.

2.2. Mumford–Tate groups and algebraic monodromy groups of K3 surfaces.
The following result is due to Tankeev and is crucial to this paper:

Theorem 12 [Tankeev 1990; 1995]. The Mumford–Tate conjecture holds for the
second cohomology group of K3 surfaces over number fields.
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This result allows us to get a Hodge-theoretic description of the Galois action on
the second cohomology group of a K3 surface.

Let us now recall the description due to Zarhin [1983] of the Mumford–Tate
group of a K3 surface. Let X be a K3 surface over C, and consider the singular
cohomology H = H 2(X,Q) endowed with its weight-2 Hodge structure. The
Hodge structure H splits as a direct sum

H = NS(X)⊕ T,

where NS(X) is the Néron–Severi group of X with rational coefficients and T is the
orthogonal of NS(X) in H with respect to the cup-product. The Hodge structure T
is called the transcendental part of H 2(X,Q).

The Hodge structure T is simple. By Lefschetz’s theorem on (1, 1) classes, T
is the smallest sub-Hodge structure of H such that T ⊗ C contains H 2(X,OX ).
By the Hodge index theorem, cup-product on H 2(X,Q) restricts to a polarization
ψ : T ⊗ T →Q on T .

Since NS(X) is spanned by Hodge classes, the Mumford–Tate group of H acts
by a character on NS(X) and identifies with the Mumford–Tate group of T . Since
T is polarized by ψ , MT(T ) is contained in the group of orthogonal similitudes
GO(T, ψ).

Let E be the algebra of endomorphisms of the Hodge structure T . Zarhin [1983,
Theorem 1.5.1] proves that E is either a totally real field or a CM field. The field E
is equipped with an involution induced by the polarization on T , which is either
the identity if E is totally real or complex conjugation in case E is CM.

Since E consists of endomorphisms of Hodge structures, the Mumford–Tate
group of T commutes with E . By the discussion above, the Mumford–Tate group
of T is a subgroup of the centralizer of E in the group GO(T, ψ).

Theorem 13 [Zarhin 1983, Theorem 2.2.1]. The Mumford–Tate group of T is the
centralizer of E in the group of orthogonal similitudes GO(T, ψ).

Now keep the same notation, and assume X can be defined over a number field k.
Fix a prime number `. The action of the absolute Galois group Gk on H 2(X,Q`)

leaves the Q`-span of the Néron–Severi group of X globally invariant as well as
its orthogonal complement T` = T ⊗Q`. As above, the identity component of
the algebraic monodromy group G` of H 2(X,Q`) identifies with the algebraic
monodromy group of T`.

The polarization ψ on T extends to a symmetric bilinear form ψ`. The rep-
resentation of Gk in the automorphism group of T` factors through the group
GO(T`, ψ`).

Since Hodge cycles on products of K3 surfaces are absolute Hodge [Deligne
et al. 1982, Chapter I, 6.26], the field E corresponding to endomorphisms of the



8 François Charles

Hodge structure T acts on T` and commutes with a finite-index subgroup of Gk . As
a consequence, the identity component of G` commutes with the action of E ⊗Q`.

By Theorem 12, the Mumford–Tate conjecture holds for X . As an immediate
corollary of Theorem 13, we get the following description of the identity component
of the algebraic monodromy group of X :

Corollary 14. With notation as above, the identity component of the algebraic
monodromy group associated to T` is the centralizer of E ⊗Q` in the group of
orthogonal similitudes GO(T`, ψ`).

3. Picard numbers of specializations

This section is devoted to the proof of Theorem 1. We start by the following result,
which encompasses the elementary linear algebra needed in Theorem 1.

Let T be a finite-dimensional vector space endowed with a nondegenerate sym-
metric bilinear form ψ . If f is any linear endomorphism of T , let f ′ be the adjoint
of f with respect to ψ .

Let E be a number field acting on T . Assume that E is stable under e 7→ e′ and
that E is either a totally real field with e = e′ for all e ∈ E or a CM field such that
e 7→ e′ acts as complex conjugation on E .

Let H be the centralizer of E in the special orthogonal group SO(T, ψ). Let `
be a prime number, and let H` = H ⊗Q`.

Proposition 15. (1) If E is a CM field or the dimension of T as an E-vector space
is even, then there exists h ∈ H` such that h does not have any root of unity as
an eigenvalue.

(2) If E is a totally real field and the dimension of T as an E-vector space is
odd, then the eigenspace of any h ∈ H` associated to the eigenvalue 1 is of
dimension at least [E : Q]. Furthermore, there exists h ∈ H` for which this
dimension is exactly [E : Q] and such that no root of unity different from 1
appears as an eigenvalue of h.

Proof. Let us first assume that E is a totally real field. By [Zarhin 1983, 2.1], there
exists a unique E-bilinear form φ : T × T → E such that ψ = TrE/Q(φ). With
this notation, the centralizer of E in SO(T, ψ) is equal, as a subgroup of GL(T ),
to the Weil restriction ResE/Q(SOE(T, φ)), where SOE(T, φ) denotes the group of
orthogonal similitudes of the E-vector space T with respect to φ.

Assume furthermore that the dimension of T as a vector space over E is even,
and let us show that there is an element h ∈ H` such that h does not have any root
of unity as an eigenvalue.

Considering an orthogonal decomposition of T as an E-vector space endowed
with the bilinear form φ, we can assume T is of dimension 2 over E . Let h be an
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orthogonal automorphism of the E-vector space T of determinant 1 that is not of
finite order. Then h corresponds to an element of H` with the desired property.

Now if the dimension of T as a vector space over E is odd, recall that any
element of SOE(T, ψ) admits 1 as an eigenvalue. It follows from the description
of H` as a Weil restriction that any h ∈ H` has 1 as an eigenvalue and that the
corresponding eigenspace is invariant under the action of E . As a consequence, its
dimension is at least [E :Q]. One can then argue as in the previous paragraph to
conclude the proof of the proposition in this case.

Let us now assume that E is a CM field. Let e be an element of E such that
ee′ = 1 and e is not a root of unity. Then multiplication by e on T corresponds to
an element of H` as in the theorem. �

We now turn to the proof of Theorem 1. From now on, we use the notation there.
Let us start with a straightforward lemma.

Lemma 16. The identity component of the algebraic monodromy group associated
to T`(1) is the centralizer of E ⊗Q` in the special orthogonal group SO(T`, ψ`).

Proof. The representation of Gk on T`(1) is equal to the representation of Gk on T`
twisted by the cyclotomic character. On the other hand, since the map

T`(1)⊗ T`(1)→Q`

given by cup-product is Gk-equivariant, Gk acts on T`(1) through the orthogonal
group O(T`, ψ`).

The lemma then follows from Corollary 14 and the fact that the special orthogonal
group is the identity component of the orthogonal group. �

Proof of Theorem 1. We use the notation of the theorem. First note that since spe-
cialization of Néron–Séveri groups is injective, the inequality ρp ≥ ρ always holds.

Let Fp be the geometric Frobenius at p acting on the étale cohomology group
H 2(Xp,Q`(1)), where ` is a prime number prime to p. By the smooth base change
theorem, the group H 2(Xp,Q`(1)) identifies with H 2(X ,Q`(1)), and Fp leaves
both the Néron–Severi group and T`(1) globally invariant.

Let H be the centralizer of E ⊗Q` in the special orthogonal group SO(T`, ψ`).
Let n be the dimension of T as a vector space over Q, and let S be the finite set of
complex roots of unity of degree at most n over Q.

Assume first that E is a CM field or E is a totally real field and the dimension
of T as a vector space over E is even. By Proposition 15, the set of h ∈ H` such
that h does not have any eigenvalue in S is a dense, Zariski-open subset V` of H`.

By Lemma 16 and Chebotarev’s density theorem, we can find a finite extension
k ′ of k with the property that if U is the set of finite places p of k ′ such that for any
p ∈U , X has good reduction at p and the geometric Frobenius Fp acting on T`(1)
does not have any eigenvalue in S, then U has density 1.
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Indeed, let k ′ be a finite extension of k such that the image of absolute Galois
group Gk′ in the automorphism group of T`(1) lands in H`. By Lemma 16, the
image of Gk′ is Zariski-dense in H`. By [Serre 1998, I.8, Théorème 2], this implies
that the set U of finite places p of k ′ such that for any p ∈U , X has good reduction
at p and the geometric Frobenius Fp acting on T`(1) belongs to V`, has density 1.

Choose U as above, and let p be in U . By the Weil conjectures, the characteristic
polynomial of the geometric Frobenius Fp has rational coefficients. By definition
of S, this implies that it does not have any eigenvalue that is a root of unity.

As a consequence, Fp acting on the whole cohomology group H 2(X ,Q`(1))
admits 1 as an eigenvalue of multiplicity ρ and does not have any other eigenvalue
that is a root of unity. It follows that ρp ≤ ρ and finally that ρp = ρ. This proves
the first part of Theorem 1.

Now assume that E is a totally real field and that the dimension of T as a vector
space over E is odd. By Proposition 15, every element of H` has 1 as an eigenvalue
with multiplicity at least [E :Q]. By definition of the algebraic monodromy group,
if p is a finite place of k, then some power of the geometric Frobenius belongs to H`.

By work of Nygaard [1983] and Nygaard and Ogus [1985] in the finite height
case and the author in the supersingular case [Charles 2013], K3 surfaces over
finite fields of characteristic at least 5 satisfy the Tate conjecture; namely, their
geometric Picard number is equal to the dimension of the largest subspace of the
second cohomology group where the Frobenius morphism acts by roots of unity. It
follows that ρp ≥ ρ+ [E :Q].

By Proposition 15 again, the set of h ∈ H` such that h admits 1 as an eigenvalue
of multiplicity [E : Q] and does not have any other eigenvalue in S is a dense,
Zariski-open subset of H`.

By Lemma 16 and Chebotarev’s density theorem, we can find a finite extension k ′

of k and a set U of finite places p of k ′ that has density 1 such that for any p ∈U , X
has good reduction at p and the geometric Frobenius Fp acting on T`(1) admits 1 as
an eigenvalue of multiplicity [E :Q] and does not have any other eigenvalue in S.

Choose U as above, and let p be in U . Since Xp satisfies the Tate conjecture, we
can argue as above to finish the proof of Theorem 1. �

Remark 17. Using Frobenius tori as in [Serre 1981] and the fact that Frobenius
tori are maximal tori of the Mumford–Tate groups for infinitely many primes, one
can work directly in the group of orthogonal similitudes instead of reducing to the
special orthogonal group as in Lemma 16.

4. Discriminants of Néron–Severi groups

In this section, we discuss properties of the Néron–Severi lattices of specializations
of K3 surfaces. Once again, we use the notation of Theorem 1.
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Proposition 18. Assume that E is a totally real field and that the dimension of T
over E is odd. If p is a finite place of k such that X has good reduction at p,
denote by δ(p) ∈Q∗/(Q∗)2 the discriminant of the lattice NS(Xp) with respect to
the intersection product.

There exist infinitely many finite places pi , i ∈N, and infinitely many finite places
q j , j ∈ N, of k such that for any integers i and j

(1) X has good, ordinary reduction at both pi and q j ,

(2) ρpi = ρq j = ρ+ [E :Q] and

(3) δ(pi ) 6= δ(q j ).

Remark 19. A special case of this result is that the method developed in [van Luijk
2007] to prove that a given K3 surface over a number field has Picard number 1
always works in the case E =Q. We noted in Remark 3 that it cannot work directly
otherwise.

In Section 5, we will adapt the method so as to make it work in every case.

We start with some easy linear algebra.

Lemma 20. Let ` be a prime number, and let V be a free module of finite rank
over Z`. Let g be an endomorphism of V such that g⊗Q` is a semisimple automor-
phism of V ⊗Q`, and denote by r the multiplicity of 1 as an eigenvalue of g. Let W
be the eigenspace associated to the eigenvalue 1 of g. Let d be a positive integer.

Then there exists an integer N with the following property. Let h be an en-
domorphism of V such that h ⊗ Q` is a semisimple automorphism of V ⊗ Q`.
Assume that r is the multiplicity of 1 as an eigenvalue of h, and let W ′ be the
eigenspace associated to the eigenvalue 1 of h. If h is congruent to g modulo `N ,
then W ⊗Z/`dZ=W ′⊗Z/`dZ.

Remark 21. In particular, if V is endowed with a symmetric bilinear form φ such
that the restriction of φ to W is not degenerate and N is sufficiently large, then the
discriminants of W and W ′ are equal in Q∗`/(Q

∗

`)
2.

Proof. Write V =W ⊕ W̃ , where W̃ is a g-invariant submodule of V . Since g⊗Q`

does not fix any nonzero element of W̃ ⊗Q`, a compactness argument shows that
there exists an integer N such that if g(v)−v ∈ l N V for some v ∈ W̃ , then v ∈ `k W̃ .

Let h be as in the statement of the lemma. By definition of N , if v ∈ V is fixed
by h, then v⊗Z/`kZ ∈W ⊗Z/`kZ. With the notation of the lemma, it follows that
W ′⊗Z/`kZ⊂W ⊗Z/`kZ. Since both W and W ′ are saturated submodules of V
of the same rank r , equality follows. �

Proof of Proposition 18. First note that the dimension of T as a vector space over E
is at least 3. Indeed, let ω be a generator of T 2,0

⊂ T ⊗C, and let σ : E→ C be
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the complex embedding of E satisfying

e.ω = σ(e)ω for all e ∈ E .

The complex lines Cω and Cω are two distinct one-dimensional subspaces of
TE ⊗σ C, where TE denotes T endowed with the structure of a vector space over E .
As a consequence, the dimension of T as a vector space over E is at least 2 and at
least 3 since we assumed it to be odd.

Recall that ψ is the bilinear form on T induced by cup-product. As in Proposition
15, there exists a unique E-bilinear form φ : T × T → E such that ψ = TrE/Q(φ).
Any orthogonal basis of TE with respect to φ induces an orthogonal decomposition
of T with respect to ψ

T = T1⊕ · · ·⊕ Tr ,

where the Ti are stable under the action of E and of dimension 1 as E-vector spaces.
By the same reasoning as above, since the Ti are one-dimensional over E , there

is no integer i such that Ti ⊗C contains the two-dimensional space T 2,0
⊕ T 0,2.

The signature of ψ on T is (2, dim(T )− 2). By the Hodge index theorem and
the remark above, the signature of the restriction of ψ to Ti is either (0, [E :Q]) or
(1, [E :Q]−1). Since the dimension of T over E is at least 3, both these signatures
appear, and this implies that, up to reordering, we can assume that the discriminant
of T1 is negative and the discriminant of T2 is positive. Let δ and δ′ be these two
discriminants in Q∗/(Q∗)2.

Since δ 6= δ′ in Q∗/(Q∗)2, there exists a prime number ` such that the images
of δ and δ′ in Q∗`/(Q

∗

`)
2 are different. If W is any subspace of T` such that the

restriction of ψ` to W is nondegenerate, let δ(W ) denote the discriminant of W in
Q∗`/(Q

∗

`)
2

By Lemma 20, Proposition 15 and Chebotarev’s density theorem, we can find,
for any positive integer d , infinitely many finite places pi , i ∈N, and infinitely many
finite places q j , j ∈ N, of k such that for any integers i and j

(1) X has good, ordinary reduction at both pi and q j ,

(2) ρpi = ρq j = ρ+ [E :Q],

(3) if Fpi and Fq j denote the geometric Frobeniuses at pi and q j acting on T`(1)
and Wpi and Wq j denote the eigenspaces associated to the eigenvalue 1 of Fpi

and Fq j , then Wpi ⊗Z/`dZ = T1⊗Z/`dZ and Wq j ⊗Z/`dZ = T2⊗Z/`dZ,
respectively, and

(4) the geometric Frobeniuses Fpi and Fq j acting on T`(1) do not have any eigen-
value different from 1 that is a root of unity.

If d is big enough, this implies that δ(Wpi ) = δ and δ(Wq j ) = δ
′ in Q∗`/(Q

∗

`)
2.

Proposition 18 immediately follows by the Tate conjecture for ordinary K3 surfaces.
�
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Remark 22. The proof above shows that the density of pairs (p, q) as in the
proposition is positive.

5. Computing the Picard number over number fields

This section is devoted to a proof of Theorem 5. Given a projective K3 surface over
a number field k, we want to compute the Picard number of X using the equations
of X in a projective embedding.

There are two steps in our approach. The first one is finding sufficiently many
divisors on X , and the second is proving that the rational span of these divisors is
the whole Néron–Severi group of X .

In case we want to prove that the K3 surface has Picard number 1, the first step is
vacuous as we already have a divisor given by a hyperplane section. In general, the
first step is done by going through the Hilbert schemes of curves in the projective
space we are working in and doing elimination theory to find curves on X . After a
finite number of computations, this will allow us to find divisors on X that span the
Néron–Severi group.

The second step will be done by reducing to finite characteristic and using our
results above.

However, this is not sufficient. Indeed, the field E of endomorphisms of the
transcendental part of the Hodge structure of X plays a role in the behavior of
the Picard number after specialization, and in case E is a totally real field strictly
containing Q such that T is of odd dimension over E , this leads to some loss of
accuracy in the estimates reduction at finite places can provide.

This problem will be solved by studying codimension-2 varieties in X × X .
Assuming the Hodge conjecture for X × X , these determine the field E , which will
allow us to conclude.

We start by the following result:

Proposition 23. Let X be a K3 surface over a number field k. Assume we are given
the equations of X in some projective embedding.

Let T be the transcendental part of H 2(X,Q), and let E be the field of endomor-
phisms of the Hodge structure T .

Assume that we know that the Picard number of X is greater or equal than some
integer ρ and that the degree of E over Q is greater or equal than some integer d.
Then there exists an algorithm with the following properties:

(1) If the algorithm terminates, it proves that the Picard number of X is ρ.

(2) Suppose that the Picard number of X is actually ρ. Then the algorithm
terminates unless E is totally real, the dimension of T as a vector space over E
is odd and d < [E :Q].
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Proof. Let ρ ′ be the actual Picard number of X . We know that ρ ′ ≥ ρ. Using the
Weil conjectures [Deligne 1974], we can compute the characteristic polynomial of
Frobenius at any finite place p of k of good reduction; see [van Luijk 2007; Elsenhans
and Jahnel 2012]. This allows in particular to compute the numbers ρp. Using the
Artin–Tate formula [Tate 1966, Conjecture (C)], which holds for surfaces satisfying
the Tate conjecture by [Milne 1975], one can also compute the discriminants δ(p)
as in Proposition 18.

We start computing ρp and δ(p) for all places p of good reduction.
Let us distinguish three cases. First assume that E is a CM field. By Theorem 1,

we can find p with ρp = ρ ′. If it happens that ρ, the lower bound for the Picard
number of X that we were given, is equal to the actual Picard number ρ ′ (that we
do not know yet), the computation at p together with this lower bound allows us to
prove that X has Picard number ρ = ρ ′.

Now assume that E is totally real and the dimension of T as a vector space
over E is even. In that case, Theorem 1 allows us to make the same conclusion.

The last case happens when E is totally real and the dimension of T as a
vector space over E is odd. By Proposition 18, the finite field computations give
us two finite places p and q of k where X has good, ordinary reduction, with
ρp = ρq = ρ

′
+ [E :Q] and δ(p) 6= δ(q).

Since δ(p) 6= δ(q), we know that the specialization maps NS(X)→ NS(Xp) and
NS(X)→ NS(Xp) are not surjective. This means that NS(Xp)∩T`(1) is nonzero in
H 2(Xp,Q`(1)).

Now we know by the analysis in the proof of Theorem 1 that this intersection is
stable under the action of E . As a consequence, its dimension is at least [E :Q] ≥ d .
This gives us the estimation

ρ ′ ≤ ρp− d.

In case d happens to be equal to the actual degree [E :Q] and ρ=ρ ′, these estimates
allow us to prove that X has Picard number ρ = ρ ′. �

Remark 24. In case ρ = ρ ′ = 1 and E =Q, this proves that the method of [van
Luijk 2007] always works.

Proof of Theorem 5. Let X , E and T be as above. Let ρ ′ be the Picard number of X
and d ′ the degree of E over Q. By Proposition 23, we only need to be able to prove
that the Picard number of X is at least ρ ′ and the degree of E over Q is at least d ′.

The assertion on the Picard number is theoretically — although not computation-
ally — easy. One can go through Hilbert schemes of curves in the projective space
where X is given and check, using elimination theory, for curves that happen to
lie on X . Computing intersection matrices with these divisors on X , one can find
divisors that span a ρ ′-dimensional subset of the Néron–Severi group of X .
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Running these Hilbert scheme computations alongside the computations of
Proposition 23 allows for a computation of the Picard number of X unless E is a
totally real field strictly containing Q such that T is of odd dimension over E .

To deal with the latter case, one has to work on X×X . If one assumes the Hodge
conjecture for X × X , then elements of E are induced by codimension-2 cycles in
X × X . As above, one can use Hilbert schemes to find codimension-2 subschemes
in X × X .

Given such a subscheme Z , the action of Z on T can be determined by first com-
puting the characteristic polynomial of the correspondence H 2(X,Q)→ H 2(X,Q)

by computing intersection numbers between T and the various subschemes obtained
by composing the correspondence induced by Z with itself.

Factoring the characteristic polynomial, this gives candidates for the algebraic
number λ such that [Z ]∗η = λη, where η is a nonzero algebraic 2-form on X . An
approximate computation can then determine λ. The degree of λ over Q is a lower
bound for [E :Q].

By the primitive element theorem, it is easy to see that one can find Z such that
this computation gives an optimal estimate for the degree of E . Using Proposition 23,
this concludes the proof.

In conclusion, an algorithm to compute Picard number of K3 surfaces works as
follows. Let X be a K3 surface. Run the three algorithms alongside each other:

(1) Going through Hilbert schemes of a suitable projective space, find divisors
on X and compute the dimension of their span in the Néron–Severi group via
intersection theory. This gives a lower bound for the Picard number.

(2) Going through Hilbert schemes of a suitable projective space, find codimension-
2 cycles in X × X . Using intersection theory again, use these to get a lower
bound on the field E of endomorphisms of the transcendental part of H 2(X,Q).

(3) Going through finite places p of k, compute the Picard number and the discrim-
inant of the Néron–Severi group of Xp by counting points over finite fields.
Using the preceding step, get an upper bound on the Picard number of X .

We showed that the estimates provided by the method solve the problem uncondi-
tionally unless E is a totally real field strictly containing Q and the transcendental
part of H 2(X,Q) is of odd dimension over E . In the latter case, the estimates above
are sufficiently precise to compute the Picard number if we assume the Hodge
conjecture for X × X . �

Remark 25. It seems that the computations of the second step above would be
very lengthy to do in practice. We however wanted to point out that they can be
done.

Note that the computations terminate much faster in most cases since E =Q for
the majority of K3 complex surfaces in the sense of Baire category.
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