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We construct a p-adic Eisenstein measure with values in the space of vector-
weight p-adic automorphic forms on certain unitary groups. This measure allows
us to p-adically interpolate special values of certain vector-weight C∞ automor-
phic forms, including Eisenstein series, as their weights vary. This completes a
key step toward the construction of certain p-adic L-functions.

We also explain how to extend our methods to the case of Siegel modular
forms and how to recover Nicholas Katz’s p-adic families of Eisenstein series for
Hilbert modular forms.

1. Introduction 2433
2. Conventions and background 2436
3. Eisenstein series on unitary groups 2443
4. Differential operators 2454
5. A p-adic Eisenstein measure with values in the space of

vector-weight automorphic forms 2458
6. Remarks about the case of symplectic groups, Siegel modular

forms, and Katz’s Eisenstein measure for Hilbert modular forms2464
Acknowledgements 2467
References 2467

1. Introduction

The significance of p-adic families of Eisenstein series as a tool in number theory,
especially for the construction of p-adic L-functions, is well established. For
example, p-adic families of Eisenstein series play a key role in constructions of
p-adic L-functions completed in [Serre 1973; Katz 1978; Deligne and Ribet 1980].
In a completely different direction, p-adic families of Eisenstein series also play a
role in homotopy theory [Hopkins 1995; 2002; Ando et al. 2010].
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Each of the constructions mentioned above concerns only automorphic forms
of scalar weight. Automorphic forms on groups of rank 1 (for example, modular
forms and Hilbert modular forms, which are the forms with which Katz, Deligne,
Ribet, and Serre worked) can only have scalar weights. Automorphic forms on
groups of higher rank, however, need not have scalar weights.

By a vector-weight automorphic form, we mean an automorphic form whose
weight is an irreducible representation with highest weight λn ≥ · · · ≥ λ1 is not
required to have λi = λi+1 for all i , i.e., an automorphic form whose weight is not
required to be a one-dimensional representation. In order to complete a construction
of p-adic L-functions for automorphic forms on unitary groups in full generality
as in [Eischen et al. ≥ 2014], one needs a p-adic Eisenstein measure that takes
values in the space of p-adic vector-weight automorphic forms. (By an Eisenstein
measure, we mean a p-adic measure valued in a space of p-adic automorphic forms
and whose values at locally constant functions are Eisenstein series.)

The main result of this paper is the construction in Section 5 of a p-adic measure
that takes values in the space of automorphic forms on unitary groups of signature
(n, n). In particular, Theorem 14 gives a p-adic Eisenstein measure with values
in the space of vector-weight automorphic forms. As explained in Theorem 15, this
measure, together with the results of Section 4, allows us to p-adically interpolate
the values of certain vector-weight C∞ (not necessarily holomorphic) automorphic
forms, including Eisenstein series, as the (highest) weights of these automorphic
forms vary. Note that this is the first ever construction of a p-adic Eisenstein measure
taking values in the space of vector-weight automorphic forms on unitary groups.

We follow the approach of [Katz 1978, Chapters 4 and 5] more closely than
we did in [Eischen 2013]. (There, we constructed a p-adic Eisenstein measure
for scalar-weight automorphic forms on unitary groups of signature (n, n).) As a
consequence, in Section 6, we easily recover Katz’s Eisenstein measure from [1978,
Chapters 4 and 5] as a special case of our results.

We also explain in Section 6 how to generalize the results of Section 5 to the
case of Siegel modular forms, i.e., automorphic forms on symplectic groups. In
that setting, in the case where n = 1, we are in exactly the situation in which
Katz [1978] constructs a p-adic Eisenstein measure for Hilbert modular forms. As
demonstrated in Section 6.1, the setup in the earlier sections of the paper makes the
connection between our Eisenstein measure and the Eisenstein measure in [Katz
1978, Definition (4.2.5) and Equation (5.5.7)] almost transparent.

1.1. Applications and context. The main anticipated application of this paper is
to the construction of p-adic L-functions for unitary groups, most immediately and
crucially to [Eischen et al. ≥ 2014]. In particular, the L-functions in that paper are
obtained through the “doubling method” (an approach described in [Gelbart et al.
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1987, Part A; Cogdell 2006, Section 2]), which expresses values of L-functions in
terms of values of Eisenstein series and values of cusp forms. The p-adic Eisenstein
measure in [Eischen 2013, Section 4] suffices in the case of scalar weights, but if
one does not restrict to scalar weights, one needs the results of the present paper.

The behavior of certain L-functions (for example, for unitary groups) is strongly
tied to the behavior of certain Eisenstein series. For instance, Shimura [2000,
Introduction] uses the algebraicity (up to a well-determined period) of values of
Eisenstein series at CM points to prove the algebraicity (up to a well-determined
period) of certain values of corresponding L-functions (normalized by a period).
Analogously, Katz [1978, Introduction] uses the p-adic interpolation of values
of certain Eisenstein series (normalized by a period) at CM points to p-adically
interpolate certain values of L-functions (normalized by a period). Similarly,
the p-adic families of Eisenstein series in the present paper play a key role in
determining the behavior of the L-functions in [Eischen et al. ≥ 2014].

1.2. Overview and structure of the paper. In Section 2, we introduce the conven-
tions with which we will work, as well as standard background results necessary for
this paper. The conventions and background are similar to those in [Eischen 2012;
2013, Section 2]. The background is quite technical; we have summarized just
what is needed for this paper. For the reader seeking further details, we recommend
[Shimura 1997; 2000] for the theory of C∞ automorphic forms and Eisenstein
series on unitary groups, [Lan 2012; 2013] for the algebraic geometric background
and a discussion of algebraically defined q-expansions, and [Hida 2004; 2005] for
the theory of p-adic automorphic forms.

In Section 3, which relies in part on the results of [Eischen 2013, Section 2], we
define certain scalar-weight Eisenstein series and automorphic forms on unitary
groups of signature (n, n). This set includes the Eisenstein series defined in [Eischen
2013, Section 2] but also includes other automorphic forms. We need this larger
space of automorphic forms in order to construct a p-adic measure with values in the
space of vector-weight automorphic forms in Section 5, whereas in [Eischen 2013]
we only were concerned with p-adic families of scalar-weight automorphic forms.
Like in [Eischen 2013], we work adelically. The formulation of the main result of
the section (Theorem 2) is closer to that of [Katz 1978, Theorem (3.2.3)], though,
so that the reader can see parallels with the analogous construction in [Katz 1978,
Section 3], which is useful in Section 6.1 when we compare our Eisenstein measure
to the measure obtained in [Katz 1978, Definition (4.2.5) and Equation (5.5.7)].

Section 4 discusses differential operators that are necessary for comparing the
values of certain C∞ automorphic forms and certain p-adic automorphic forms.
These differential operators are closely related to the differential operators discussed
in [Eischen 2012, Sections 8 and 9]. Note that because we work with vector-weight
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automorphic forms, and not just scalar-weight automorphic forms, we need more
differential operators than we did in [Eischen 2013], which handled only the case
of scalar-weight automorphic forms.

Section 5 contains the main results of the paper, namely the construction of
a p-adic Eisenstein measure and the p-adic interpolation of values of certain
automorphic forms. This is the heart of the paper. The format of Section 5 closely
parallels the construction of a p-adic Eisenstein measure in [Katz 1978, Sections 3.4
and 4.2]. We also explain in Remark 16 precisely how the Eisenstein measure of
[Eischen 2013, Section 4] and the Eisenstein measure given in Theorem 14 are
related. For n ≥ 2, the measure in Theorem 14 is on a larger group than the measure
in [Eischen 2013, Section 4]. In order to construct a measure with values in the
space of vector-weight automorphic forms without fixing a partition of n, this larger
group is necessary. (The approach in [Eischen 2013] relied on a choice of a partition
of n, but it turns out that with this larger group we do not need to fix a partition
of n and can consider a larger class of automorphic forms all at once.) We also
note that the construction of the measures in [Eischen 2014, Section 4] uses this
measure as a starting point.

In Section 6, we comment on how to extend the results of this paper to the
case of Siegel modular forms, i.e., automorphic forms on symplectic groups. The
fact that our presentation in Section 5 closely follows the approach in [Katz 1978,
Sections 3.4 and 4.2] also allows us to recover the Eisenstein measure of [Katz
1978, Definition (4.2.5) and Equation (5.5.7)] with ease in Section 6.1.

2. Conventions and background

In Section 2.1, we introduce the conventions that we will use throughout the paper.
In Section 2.2, we briefly summarize the necessary background on automorphic
forms on unitary groups. (See the start of Section 2.2 for references.)

2.1. Conventions. Once and for all, fix a CM field K with maximal totally real
subfield E . Fix a prime p that is unramified in K and such that each prime of E
dividing p splits completely in K . Fix embeddings

ι∞ :Q ↪→ C,

ιp :Q ↪→ Cp,

and fix an isomorphism
ι : Cp −→

∼ C

satisfying ι◦ ιp = ι∞. From here on, we identify Q with ιp(Q) and ι∞(Q). Let OCp

denote the ring of integers in Cp.
Fix a CM type 6 for K/Q. For each element σ ∈ Hom(E,Q), we also write

σ to denote the unique element of 6 prolonging σ : E ↪→Q (when no confusion
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can arise). For each element x ∈ K , denote by x̄ the image of x under the unique
nontrivial element ε ∈ Gal(K/E), and let σ̄ = σ ◦ ε.

Given an element a of E , we identify it with an element of E ⊗ R via the
embedding

E ↪→ E ⊗R

a 7→ (σ (a))σ∈6.
(1)

We identify a ∈ K with an element of K ⊗ C −→∼ (E ⊗ C)× (E ⊗ C) via the
embedding

K ↪→ K ⊗C

a 7→
(
(σ (a))σ∈6, (σ̄ (a))σ∈6

)
.

(2)

Let d = (dv)v∈6 ∈ Z6 , and let a = (av)v∈6 be an element of C6 or C6p . We
denote by ad the element of C or Cp defined by

ad
:=

∏
v∈6

adv
v .

If e = (ev)v∈6 ∈ Z6 , we denote by d + e the tuple defined by

d + e = (dv + ev)v∈6 ∈ Z6.

If k ∈ Z, we denote by k+ d or d + k the element

k+ d = d + k = (dv + k)v∈6 ∈ Z6.

For any ring R, we denote the ring of n×n matrices with coefficients in R by
Mn×n(R). We denote by 1n the multiplicative identity in Mn×n(R). Also, for
any subring R of K ⊗E Ev, with v a place of E , let Hern(R) denote the space of
Hermitian n×n matrices with entries in R. Given x ∈ Hern(E),

x > 0

if σ(x) is positive definite for every σ ∈6.

2.1.1. Adelic norms. Let | · |E denote the adelic norm on E×\A×E such that, for all
a ∈ A×E ,

|a|E =
∏
v

|a|v,

where the right-hand product is over all places of E and where the absolute values
are normalized so that

|v|v = q−1
v ,

qv = the cardinality of OE v/vOE v
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for all nonarchimedean primes v of the totally real field E . Consequently, for all
a ∈ E , ∏

v-∞

|a|−1
v =

∏
v∈6

σv(a)Sign(σv(a)),

where the product is over all archimedean places v of the totally real field E . We
denote by | · |K the adelic norm on K×\A×K such that, for all a ∈ A×K ,

|a|K = |aā|E .

For a ∈ K and v a place of E , we let

|a|v = |aā|1/2v .

Given an element a ∈ K , we associate a with an element of K⊗R via the embedding

a 7→ (σ (a))σ∈6.

For any field extension L/M , we write NL/M to denote the norm from L to M .
Given an OM -algebra R, the norm map NL/M on L provides a group homomorphism

(OL ⊗ R)×→ R×

in which a⊗ r 7→ NL/M(a)r . When the fields are clear, we shall just write N .

2.1.2. Exponential characters. For each archimedean place v ∈6, denote by ev
the character of Ev (i.e., R) defined by

ev(xv)= e2π i xv

for all xv in Ev. Denote by e∞ the character of E ⊗R defined by

e∞((xv)v∈6)=
∏
v|∞

ev(xv).

Following our convention from (1), we put

e∞(a)= e∞
(
(σ (a))σ∈6

)
= e2π i trE/Q(a)

for all a ∈ E . For each finite place v of E dividing a prime q of Z, denote by ev
the character of Ev defined, for each xv ∈ Ev, by

ev(xv)= e−2π iy,

where y ∈ Q is the fractional part of trEv/Qq (xv) ∈ Qp; that is, if we write
trEv/Qq (xv) =

∑
∞

i=k ai pi for some integer k ≤ 0 and ai ∈ {0, . . . , p − 1}, then
y =

∑0
i=k ai pi . We denote by eAE the character of AE defined by

eAE (x)=
∏
v

ev(xv) for all x = (xv) ∈ AE .
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Remark 1. We identify a ∈ E with the element (σv(a))v ∈AE , where σv : E ↪→ Ev
is the embedding corresponding to v. Following this convention, we put

eAE (a)=
∏
v

ev(σv(a)) (3)

for all a ∈ E .

2.1.3. Spaces of functions. Given topological spaces X and Y , we let

C(X, Y )

denote the space of continuous functions from X to Y .

2.2. Background concerning automorphic forms on unitary groups.

2.2.1. Unitary groups of signature (n, n). We now recall basic information about
unitary groups and automorphic forms on unitary groups. (A more detailed dis-
cussion of unitary groups and automorphic forms on unitary groups appears in
[Shimura 1997; 2000; Hida 2004; Harris et al. 2006; Eischen 2012; Lan 2013]; the
analogous background for the case of Hilbert modular forms is the main subject of
[Katz 1978, Section 1].)

The material in this section is similar to [Eischen 2013, Section 2.1]. Although
we discussed embeddings of nondefinite unitary groups of various signatures into
unitary groups of signature (n, n) there, we are primarily concerned only with
unitary groups of signature (n, n) and definite unitary groups in this paper; in the
sequel [Eischen 2014] we discuss pullbacks to various products of unitary groups
occurring as subgroups.

Let V be a vector space of dimension n over the CM field K , and let 〈 , 〉V denote
a positive definite hermitian pairing on V . Let −V denote the vector space V with
the negative definite hermitian pairing −〈 , 〉V . Let

W = 2V = V ⊕−V

〈(v1, v2), (w1, w2)〉W = 〈v1, w1〉V +〈v2, w2〉−V .

The hermitian pairing 〈 , 〉W defines an involution g 7→ g̃ on EndK (W ) by

〈g(w),w′〉W = 〈w, g̃(w′)〉W

(where w and w′ denote elements of W ). This involution extends to an involution
on EndK⊗E R(W ⊗E R) for any E-algebra R. We denote by U the algebraic group
such that, for any E-algebra R, the R-points of U are given by

U (R)=U (R,W )= {g ∈ GLK⊗E R(W ⊗E R) | gg̃ = 1}.

Similarly, we define U (R, V ) to be the algebraic group associated to 〈 , 〉V and
U (R,−V ) to be the algebraic group associated to 〈 , 〉−V . Note that U (R) is of
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signature (n, n). Also, the canonical embedding

V ⊕ V ↪→W

induces an embedding

U (R, V )×U (R,−V ) ↪→U (R,W )

for all E-algebras R. When the E-algebra R over which we are working is clear from
context or does not matter, we shall write U (W ) for U (R,W ), U (V ) for U (R, V ),
and U (−V ) for U (R,−V ). We also sometimes write just U to denote U (W ).

We also have groups

GU(R)= GU(R,W )= {g ∈ GLK⊗E R(W ⊗E R) | gg̃ ∈ R×}.

We use the notation ω to denote the similitude character

ω : GU(R)→ R×

g 7→ gg̃.

When the E-algebra R over which we are working is clear from context or does
not matter, we shall write GU(W ) for GU(R,W ). We shall also use the notation

G(R)= GU(R,W )

or write simply G or GU when the ring R is clear from context or does not matter.
When R = AE or R = R, we write

G+ := GU+

to denote the subgroup of G = GU consisting of elements such that the similitude
factor at each archimedean place of E is positive.

For the space W = V ⊕−V defined above, U (W ) and GU(W ) have signature
(n, n). So we will sometimes write U (n, n) and GU(n, n), respectively, to refer to
these groups.

We write W =Vd⊕V d , where Vd and V d denote the maximal isotropic subspaces

V d
= {(v, v)|v ∈ V },

Vd = {(v,−v)|v ∈ V }.

Let P be the Siegel parabolic subgroup of U (W ) stabilizing V d in Vd ⊕ V d under
the action of U (W ) on the right. Denote by M the Levi subgroup of P and by N
the unipotent radical of P . Similarly, denote by GP the Siegel parabolic subgroup
of GU(W ) stabilizing V d in Vd ⊕V d under the action of GU(W ) on the right, and
denote by GM the Levi subgroup of GP and by N the unipotent radical of GP. We
also, similarly, denote by GP+ the Siegel parabolic subgroup of GU+ stabilizing
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V d in Vd ⊕V d under the action of GU+ on the right, and denote by GM+ the Levi
subgroup of GP+ and by N the unipotent radical of GP+.

A choice of a basis e1, . . . , en for V over K gives an identification of V with
V d (via ei 7→ (ei , ei )) and with Vd (via ei 7→ (ei ,−ei )). The choice of a basis
for V also identifies GLK (V ) with GLn(K ). With respect to the ordered basis
(e1, e1) . . . , (en, en), (e1,−e1) . . . , (en,−en) for W , M consists of the block diag-
onal matrices of the form

m(h) := ( th̄−1, h)

with h ∈GLn(K ⊗ R), and GM consists of the block diagonal matrices of the form

m(h, λ) := ( th̄−1, λh)

with h ∈ GLn(K ) and λ ∈ E×. Thus, the choice of basis e1, . . . , en for V over K
fixes identifications

M −→∼ GLK (V ),

GM −→∼ GLK (V )× E×.

These isomorphisms extend to isomorphisms

M(R)−→∼ GLK⊗E R(V ⊗E R), (4)

GM(R)−→∼ GLK⊗E R(V ⊗E R)× R× (5)

for each E-algebra R.
We fix a Shimura datum (G, X (W )) and a corresponding Shimura variety

Sh(W )=Sh(U (n, n)) according to the conditions in [Harris et al. 2006, Section 1.2]
and [Eischen 2012, Section 2.2]. The symmetric domain X (W ) is holomorphically
isomorphic to the tube domain consisting of [E :Q] copies of

Hn = {z ∈ Mn×n(C) | i( t z̄− z) > 0}.

When we need to emphasize over which ring R we work, we sometimes write
Sh(R). Let K∞ be the stabilizer in G(R) of the point i · 1n . So

∏
σ∈6 K∞ is the

stabilizer in
∏
σ∈6 G(R) of the point

i = (i · 1n)σ∈6 ∈
∏
σ∈6

Hn. (6)

We can identify G+(R)/K∞ with Hn . Given a compact open subgroup K of G(A f ),
denote by KSh(W ) the Shimura variety whose complex points are given by

G(Q)\X ×G(A f )/K.

This Shimura variety is a moduli space for abelian varieties together with a polar-
ization, an endomorphism, and a level structure (dependent upon the choice of K).
Note that KSh(W ) consists of copies of quotients of spaces isomorphic to Hn .
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When we work with some other group H , we write Sh(H) instead of Sh(W ).

2.2.2. Automorphic forms on unitary groups. Automorphic forms on unitary groups
are typically discussed from any of the following three perspectives (which are
equivalent over C):

(1) Functions on a unitary group that satisfy an automorphy condition.

(2) C∞ (or holomorphic) functions on a hermitian symmetric space (analogue of
the upper half plane) that satisfy an automorphy condition.

(3) Sections of a certain vector bundle over a moduli space (a Shimura variety)
parametrizing abelian varieties together with a polarization, endomorphism,
and level structure.

Which perspective is most natural depends upon context. In this paper, we shall
need all three perspectives. (In [Eischen 2012, Section 2], we provided a detailed
discussion of automorphic forms and the relationships between different approaches
to defining them.)

The relationship between the first two approaches to automorphic forms is
reviewed in [Eischen 2013, p. 9; Shimura 2000, A8]. The relationship between
the second two approaches to automorphic forms is discussed in [Eischen 2012,
Section 2] and is similar to the analogous relationship for modular forms given in
[Katz 1973, A1.1].

An automorphic form f on U (n, n) has a weight, which is a representation ρ of
GLn ×GLn . In the special case where this representation is of the form

ρ(a, b)= det(a)k+ν det(b)−ν,

we shall say f is an automorphic form of weight (k, ν).
As explained in [Lan 2012; 2013], for the unitary groups of signature (n, n) there

is a higher-dimensional analogue of the Tate curve (which we call the “Mumford
object” in [Eischen 2012, Section 4.2; 2013, Section 2.2.11]), and so in analogue
with the case for modular forms evaluated at the Tate curve, one obtains an algebraic
q-expansion by evaluating an automorphic form at the Mumford object. Like in the
case of modular forms, the coefficients of an algebraically defined q-expansion of
a holomorphic automorphic form f of over C agree with the (analytically defined)
Fourier coefficients of f [Lan 2012]. Also, like in the case of modular forms, there
is a q-expansion principle for automorphic forms on unitary groups [Lan 2013,
Proposition 7.1.2.15]; note that the q-expansion principle for automorphic forms
over a Shimura variety requires the evaluation of an automorphic form at one cusp
of each connected component. To apply the q-expansion principle, it is enough
[Hida 2004, Section 8.4] to check the cusps parametrized by points of GM+(AE).
(The author is grateful to thank Kai-Wen Lan for explaining this to her.) We shall
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say “a cusp m ∈ GM+(AE)” to mean “the cusp corresponding to the point m.” The
q-expansion of an automorphic form at a cusp m(h, λ) is a sum of the form∑

β∈Lm(h,λ)

a(β)qβ,

where Lm(h,λ) is a lattice in Hern(E) dependent upon the choice of the cusp m(h, λ)
and a(β) ∈ C for all β (or, more generally, if f is a V -valued automorphic form
for some C-vector space V , a(β) ∈ V for all β). We sometimes also write∑

β∈Hern(E)

a(β)qβ,

when we do not need to make the cusp explicit; in this case, we know that the
coefficients a(β) are zero outside of some lattice in Hern(E) (namely, the lattice
corresponding to the unspecified cusp).

Throughout the paper, all cusps m and corresponding lattices Lm ⊆ Hern(K )
determined by m are chosen so that the elements of Lm have p-integral coefficients.1

3. Eisenstein series on unitary groups

In this section, we introduce certain Eisenstein series on unitary groups of signature
(n, n). These Eisenstein series are related to the ones discussed in [Eischen 2013,
Section 2; Shimura 1997, Section 18; Katz 1978, Section (3.2)].

For k ∈ Z and ν = (ν(σ ))σ∈6 ∈ Z6 , we denote by Nk,ν the function

Nk,ν : K×→ K×

b 7→
∏
σ∈6

σ(b)k+2ν(σ )(σ (b)σ̄ (b))−(ν(σ )).

For all b ∈ O×E ,
Nk,ν(b)= Nk

E/Q(b).

Theorem 2. Let R be an OK -algebra, let ν = (ν(σ )) ∈ Z6 , and let k ≥ n be an
integer. Let

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

be a locally constant function supported on (OK ⊗ Zp)
×
× Mn×n(OE ⊗ Zp) that

satisfies
F(ex, NK/E(e−1)y)= Nk,ν(e)F(x, y) (7)

1Even without this choice for m and Lm , which we did not make a priori in [Eischen 2013], we
could force the Fourier coefficients at all the non-p-integral elements of Hern(K ) to be zero, simply
by our choice of a Siegel section at p later in this paper. In fact, in [Eischen 2013, Section 2.2], our
choice of Siegel sections at p forced the Fourier coefficients at all the non-p-integral elements of
Hern(K ) to be zero.
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for all e ∈ O×K , x ∈ OK ⊗Zp, and y ∈ Mn×n(OE ⊗Zp). There is an automorphic
form Gk,ν,F (on U (n, n)) of weight (k, ν) defined over R whose q-expansion at a
cusp m ∈ GM+(AE) is of the form

∑
0<β∈Lm

c(β)qβ (where Lm is the lattice in
Hern(K ) determined by m), with c(β) a finite Z-linear combination of terms of the
form

F(a, NK/E(a)−1β)Nk,ν(a−1 detβ)NE/Q(detβ)−n

(where the linear combination is a sum over a finite set of p-adic units a ∈ K
dependent upon β and the choice of cusp m ∈ GM). When R = C, these are the
Fourier coefficients at s = 1

2 k of the C∞ automorphic form Gk,ν,F (z, s) (which is
holomorphic at s = 1

2 k) that will be defined in Lemma 9.

(Above, the elements of (OE⊗Zp)
× in Mn×n(OE⊗Zp) are viewed as homomor-

phisms, i.e., multiplication by an element of (OE ⊗Zp)
×, so as diagonal matrices

in Mn×n(OE ⊗Zp). Also note that, when detβ = 0, the coefficient of qβ is 0, so
we can restrict the discussion to F with support in (OK ⊗Zp)

×
×GLn(OE ⊗Zp).)

Proof. By an argument similar to Katz’s argument at the beginning of the proof
of [1978, Theorem (3.2.3)], every locally constant R-valued function F supported
on (OK ⊗Zp)

×
×Mn×n(OE ⊗Zp) that satisfies (7) is an R-linear combination of

OK -valued functions F supported on (OK ⊗Zp)
×
×Mn×n(OE⊗Zp) that satisfy (7).

So it is enough to prove the theorem for OK -valued functions F .
Now, if we can construct an automorphic form satisfying the conditions of

the theorem over R = C, then by the q-expansion principle [Lan 2013, Proposi-
tion 7.1.2.15], the case over R will follow for any OK -subalgebra R (in particular,
for R = OK ) of C. By [Lan 2012], it sufficient to show that there is a C-valued C∞

automorphic form Gk,ν,F of weight (k, ν) holomorphic at s = 1
2 k whose Fourier

coefficients (at s = 1
2 k) are as in the statement of the theorem. We will devote

Section 3.1 to the construction of such an automorphic form. �

3.1. Construction of a C∞ automorphic form over C whose Fourier coefficients
meet the conditions of Theorem 2. In this section, we construct the C∞ automor-
phic form Gk,ν,F necessary to complete the proof of Theorem 2.

Let m be an ideal that divides p∞. Let χ be a unitary Hecke character of type A0,

χ : A×K → C×,

of conductor m, i.e.,
χv(a)= 1

for all finite primes v in K and all a ∈ K×v such that

a ∈ 1+mvOK v.
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Let ν(σ ) and k(σ ), σ ∈6, denote integers such that the infinity type of χ is∏
σ∈6

σ−k(σ )−2ν(σ )(σ · σ̄ )
1
2 k(σ )+ν(σ ). (8)

For any s ∈C, we view χ · | · |−s
K ⊗|·|

−ns
E as a character of the parabolic subgroup

GP+(AE)= GM+(AE)N (AE)⊆ G+(AE) via the composition of maps

GP(AE)
mod N (AE )
−−−−−−→ GM(AE)

(5)
−−→ GLAK (V ⊗E AE)×GL1(AE)−→ C×,

where the last one is the map

(h, λ) 7−→ |λ|−ns
E ·χ(det h)|det h|−s

K .

Consider the induced representation

I (χ, s)= IndG+(AE )

GP+(AE )

(
χ · | · |−s

K ⊗ |ω( · )|
−ns/2
K

)
∼=

⊗
v

IndG+(Ev)
GP+(Ev)

(
χv · | · |

−2s
v ⊗ |ω( · )|

−ns
v

)
, (9)

where the product is over all places of E .
Given a section f ∈ I (χ, s), the Siegel Eisenstein series associated to f is the

C-valued function of G defined by

E f (g)=
∑

γ∈GP+(E)\G+(E)

f (γ g).

This function converges for <(s) > 0 and can be continued meromorphically to the
entire complex plane.

Remark 3. As in [Eischen 2013], if we were working with normalized induction,
then the function would converge for <(s)> 1

2 n, but we have absorbed the exponent
1
2 n into the exponent s. (Our choice not to include the modulus character at this
point is equivalent to shifting the plane on which the function converges by 1

2 n.)

All the poles of E f are simple and there are at most finitely many of them.
Details about the poles are given in [Tan 1999].

As we noted in [Eischen 2013, Section 2.2.4], if the Siegel section f factors as
f =

⊗
v fv, then E f has a Fourier expansion such that, for all h ∈ GLn(K ) and

m ∈ Hern(K ),

E f

((
1 m
0 1

)(th̄−1 0
0 h

))
=

∑
β∈Hern(K )

c(β, h; f )eAE (tr(βm))

with c(β, h; f ) a complex number dependent only on the choice of section f , the
hermitian matrix β ∈ Hern(K ), hv for finite places v, and (h · th̄)v for archimedean
places v of E .
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By [Shimura 1997, Sections 18.9, 18.10], the Fourier coefficients of the Siegel
sections f =

⊗
v fv that we will choose below are products of local Fourier coeffi-

cients determined by the local sections fv. More precisely, for each β ∈ Hern(K ),

c(β, h; f )= C(n, K )
∏
v

cv(β, h; f ),

where

cv(β, h; f )=
∫

Hern(K⊗Ev)

fv

((
0 −1
1 0

)(
1 mv

0 1

)(th̄−1
v 0
0 hv

))
ev(− tr(βvmv)) dmv,

(10)

C(n, K )= 2n(n−1)[E :Q]/2
|DE |

−n/2
|DK |

−n(n−1)/4, (11)

DE and DK are the discriminants of K and E , respectively, βv = σv(β) for each
place v of E , and dv denotes the Haar measure on Hern(Kv) such that∫

Hern(OK⊗E Ev)
dvx = 1 for each finite place v of E (12)

and

dvx :=
∣∣∧n

j=1dx j j
∧

j<k(2−1dx jk ∧ dx̄ jk)
∣∣ for each archimedean place v of E .

(Here x denotes the matrix whose i j-th entry is xi j .)
Below, we recall [Eischen 2013, Lemma 19], which explains how the Fourier co-

efficients c(β, h; f ) transform when we change the point h. For each h ∈GLn(AK )

and λ ∈ A×E , let m(h, λ) denote the matrix(th̄−1 0
0 λh

)
.

Generalizing (10), we define

cv(β,m(h, λ); f )

=

∫
Hern(K⊗Ev)

fv

((
0 −1
1 0

)(
1 mv

0 1

)
m(h, λ)

)
ev(− tr(βvmv)) dmv.

We also define c(β,m(h, λ); f )= C(n, K )
∏
v cv(β,m(h, λ); f ).

Lemma 4 [Eischen 2013, Lemma 19]. For each h ∈ GLn(AK ), λ ∈ A×E , and
β ∈ Hern(K ),

c
(
β,

(th̄−1 0
0 λh

)
; f
)

= χ(det(λh)−1)
∣∣det

(
(λh)−1

· (λh)−1)∣∣n−s
E |λ|

−ns
E c(λ−1h−1β th̄−1, 1n; f ). (13)
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Proof. Let η =
( 0

1n

−1n
0

)
. Observe that, for any n×n matrix m,

η ·m(h, λ) · η−1
= m(λ−1 th̄−1, λ)

m(h, λ)−1
·

(
1 m
0 1

)
·m(h, λ)=

(
1 λth̄mh
0 1

)
.

Therefore,

η ·

(
1 m
0 1

)
·m(h, λ)= (η ·m(h, λ) · η−1)η

(
m(h, λ)−1

(
1 m
0 1

)
m(h, λ)

)
= m(λ−1 th̄−1, λ)η

(
1 λth̄mh
0 1

)
.

So, for any place v of E and section fv ∈ IndG+(Ev)
GP(Ev) (χ, s),

fv

(
η

(
1 m
0 1

)
m(hv, λ)

)
= χv(det(λvhv)−1)

∣∣det(λvhv)−1∣∣−2s
v
|λ|−ns

v fv

(
η

(
1 λth̄vmhv
0 1

))
. (14)

The lemma now follows from (14) and the fact that the Haar measure dv satisfies
dv(λhvx th̄v)= |det(λv th̄v · hv)|nvdv(x) for each place v of E . �

So,

c
(
β,

(
λ−1 th̄−1 0

0 h

)
; f
)
= χ(λn)|λ2n

|
n−s
E |λ|

2ns
E

(
β,

( th̄−1 0
0 λh

)
; f
)

= |λ2n2
|Eχ(λ

n)c
(
β,

( th̄−1 0
0 λh

)
; f
)
. (15)

Below, we choose more specific Siegel sections f =
⊗

v fv and compute the
corresponding Fourier coefficients.

3.1.1. The Siegel section at∞. We now define a section f k,ν
∞
= f k,ν
∞
(• ; i ·1n, χ, s)

in
⊗

v|∞ IndG+(Ev)
GP+(Ev)(χv · | · |

−2s
v ⊗ |ω( · )|

−ns
E ).

For each α=
∏
v|∞ αv ∈

∏
v|∞ G(Ev), we write αv in the form

(av
cv

bv
dv

)
with av , bv ,

cv , and dv n×n matrices. Each element α ∈G(Ev) acts on z=
∏
v|∞ zv ∈

∏
v|∞Hn

by

αv(zv)= (avzv + bv)(cvzv + dv)−1,

α(z)=
∏
v|∞

αv(zv).
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Let
λαv (zv)= λ(αv, zv)= cv · t zv + dv,

λα(z)= λ(α, z)=
∏
v|∞

λαv (zv),

µαv (zv)= µ(αv, zv)= cv · zv + dv,

µα(z)= µ(α, z)=
∏
v|∞

µαv (zv).

(These are the canonical automorphy factors. Properties of them are discussed in
[Shimura 2000, Section 3.3], for example.) We write

jαv (zv)= j (αv, zv)= detµαv (zv),

jα(z)= j (α, z)=
∏
v|∞

jαv (zv).

Note that

det(λαv (zv))= det(αv)ω(αv)−n jαv (zv) (16)

= det(αv)−1ω(αv)
n jαv (zv), (17)

so
|det(λαv (zv))| = | jαv (zv)|.

Consistent with the notation in [Shimura 1997, Equation (10.4.3)], we define

j k,ν
α (z) := jα(z)k+ν det(λα(z))−ν .

By (16) and (17), we see that

j k,ν
α (z)= (det(α)ω(α)−n)−ν jα(z)k

= (det(α)−1ω(α)n)−ν jα(z)k .

If β =
∏
v|∞ βv is also an element of

∏
v|∞ G(Ev), then

λ(βvαv, zv)= λ(βv, αvzv)λ(αv, zv), (18)

µ(βvαv, zv)= µ(βv, αvzv)µ(αv, zv). (19)

Consistent with the notation in [Shimura 2000, Section 3], we define functions η
and δ on Hn by

η(z)= i( t z̄− z),

δ(z)= det
( 1

2η(z)
)

for each z ∈Hn . So
η(i · 1n)= 2 · 1n,

δ(i · 1n)= 1.
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We also write η and δ to denote the functions
∏
σ∈6 η and

∏
σ∈6 δ, respectively,

on
∏
σ∈6 Hn . So δ(i)= 1. Also, note that

δ(αz)= ω(α)n| jα(z)|−2δ(z)= ω(α)n| jα(z) det(λα(z))|−1δ(z).

Following [Shimura 2000, Sections 3 and 5], given (k, ν)=
∏
v|∞(kv, νv)∈ (Z×Z)6 ,

we define functions f ‖k,ν and f |k,ν on
∏
σ∈6 Hn by

( f ‖k,ν α)(z)= j k,ν
α (z)−1 f (αz),

f |k,ν α = f ‖k,ν(ω(α)−
1
2α)

for each C-valued function f on Hn , point z ∈Hn , and element α ∈ G. Note that
ω(α)−1/2α ∈U (ηn) and, if ω(αv)= 1 for all v ∈6, then

f |k,να = f ‖k,να.

More generally, for each function f on
∏
σ∈6 Hn with values in some representation

(V, ρ) of
∏
σ∈6 GLn(C)×GLn(C), we define functions f ‖ρ and f |ρ on Hn by

( f ‖ρ α)(z)= ρ(µα(z), λα(z))−1 f (αz),

f |ρ α = f ‖ρ(ω(α)−
1
2α).

We also use the notation f ‖ and f | when we are working with just one copy of Hn ,
rather than [E :Q] copies of Hn at once.

We define

f k,ν
∞
=

⊗
v|∞

f k,ν
v (• ; i · 1n, χ, s) ∈

⊗
v|∞

IndG+(Ev)
GP+(Ev)(χv · | · |

−2s
v ⊗ |ω( · )|

−ns
E )

by

f k,ν
∞
(α; i · 1n, χ, s)

= (δs− 1
2 k
|k,να)(i · 1n)

= j k,ν
ω(α)−1/2α

(i · 1n)
−1∣∣ jω(α)−1/2α(i · 1n)

−2ω(ω(α)−1/2α)n
∣∣s− 1

2 k(σv)

= j k,ν
ω(α)−1/2α

(i · 1n)
−1∣∣ jω(α)−1/2α(i · 1n)

−2∣∣s− 1
2 k
.

Given α ∈ G, we also define a function f k,ν
∞
(α; • , χ, s) on Hn by

f k,ν
∞
(α; z, χ, s)= (δs− 1

2 k
|k,να)(z)

= j k,ν
ω(α)−1/2α

(z)−1∣∣ jω(α)−1/2α(z)
−2∣∣s− 1

2 k
δ(z)s−

1
2 k .

By (18) and (19), we see that if g ∈ G is such that g(i)= z then, for each α ∈ G,

f k,ν
∞
(αg; i · 1n, χ, s)= f k,ν

∞
(α; z, χ, s) f k,ν

∞
(g; i · 1n, χ, s)δ(z)

1
2 k−s .
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For k ∈ Z and ν = (νv)v∈6 ∈ Z6 , f k,ν
∞
(α; • , χ, s) is a holomorphic function

on Hn at s = 1
2 k.

3.1.2. The Fourier coefficients at archimedean places of E. When there is an
integer k such that

s = 1
2 k = 1

2 k(σ ) for all σ ∈6

(i.e., when f k,ν
∞
(α; z, χ, s) is a holomorphic function of z ∈Hn), [Shimura 1983,

Equation (7.12)] describes the archimedean Fourier coefficients precisely:

cv
(
β, 1n; f k,ν

v

(
• ; i1n, χ,

1
2 k
))

= 2(1−n)ni−nk(2π)nk
(
πn(n−1)/2

n−1∏
t=0

0(k− t)
)−1

σv(detβ)k−ne
(
i tr(σv(β))

)
(20)

for each archimedean place v of E . Observe that, when k ≥ n,∏
v|∞

cv
(
β, h; f k,ν

v

(
• ; i1nχ,

1
2 k
))
= 0

unless det(β) 6= 0 and det(h) 6= 0, i.e., unless β is of rank n. Also, note that in our
situation β will be in Hern(K ), so

∏
v∈6 e

(
i tr(σv(β))

)
= e(ib) for some b ∈Q, so∏

v∈6 e
(
i tr(σv(β))

)
= e(ib) is a root of unity.

3.1.3. Siegel sections at p. We work with Siegel sections at p that are similar to the
ones in [Eischen 2013, Section 2.2.8] (we multiply those by |ω(g)|−ns

p to account
for a similitude factor).

Lemma 5 [Eischen 2013, Lemma 10]. Let 0 be a compact and open subset of∏
v∈6 GLn(OE v), and let F̃ be a locally constant Schwartz function

F̃ :
∏
v∈6

(HomKv
(Vv, Vd,v)⊕HomKv

(Vv, V d
v ))→ R

(X1,X2) 7→ F̃(X1, X2)

(with R a subring of C) whose support in the first variable is 0 and such that

F̃(X, tX−1Y )=
∏
v∈6

χv(det(X))F̃(1, Y ) (21)

for all X in 0 and Y in
∏
v∈6 Mn×n(Ev).2 There is a Siegel section f PF̃(−X,Y ) at p

whose Fourier coefficient at β ∈ Mn×n(Ev) is

c(β, 1; f PF̃(−X,Y ))= volume(0) · F̃(1, tβ).

2The version of the right-hand side of (21) appearing in [Eischen 2013, Lemma 10] reads
“χ1χ

−1
2 (det(X))F(1, Y )”. The characters denoted χ1 and χ2 in [Eischen 2013] have the property that

χ1χ
−1
2 (a)=

∏
v∈6 χv(a) for all a ∈

∏
v∈6 OE v . The function denoted by F̃ in the current paper is

denoted by F in [Eischen 2013].
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We use the notation PF, for “partial Fourier transform”, to be consistent with
[Katz 1978, Section 3.1; Eischen 2013, Section 2.2.8], but we do not need to discuss
partial Fourier transforms here.

As a direct consequence of Lemma 5, we obtain the following corollary:

Corollary 6. For any locally constant Schwartz function F̃ satisfying the conditions
of Lemma 5 for some 0 with positive volume, there is a Siegel section f F̃ in⊗

v∈6 IndG(Ev)
P(Ev)(χv · | · |

−2s) whose local (at p) Fourier coefficient at β is F̃(1, tβ).

Furthermore, we can significantly weaken the conditions placed on F̃ :

Corollary 7. Let k be a positive integer. Let F̃ be a locally constant Schwartz
function

F̃ :
∏
v∈6

(Mn×n(OE v)×Mn×n(OE v))→ R

whose support lies in
∏
v∈6(GLn(OE v)×Mn×n(OE v)) and which satisfies

F̃(e, te−1 y)= NE/Q(det e)k F̃(1, y)

for all e ∈ GLn(OE) contained in the support 0 in the first variable of F̃ . Sup-
pose, furthermore, that 0 has positive volume. Then there is a Siegel section
f F̃ ∈

⊗
v∈6 IndG(Ev)

P(Ev)(χv · | · |
−2s) whose local (at p) Fourier coefficient at β is

F̃(1, tβ).

Proof. Let F̃ be a locally constant Schwartz function

F̃ :
∏
v∈6

(Mn×n(OE v)×Mn×n(OE v))→ R

whose support lies in
∏
v∈6(GLn(OE v)×Mn×n(OE v)) and which satisfies

F̃(e, te−1 y)= NE/Q(det e)k F̃(1, y), (22)

for all e ∈ GLn(OE) contained in the support in the first variable of F̃ . Then, since
F̃ is locally constant, has compact support, and satisfies (22), there is a unitary
Hecke character χ whose infinity type is as in (8) and such that the conductor
m= pd for d a sufficiently large positive integer, so that

F̃ = a1 F1+ · · ·+ al Fl

for some positive integer l and a1, . . . , al ∈ R, and functions F1, . . . , Fl meeting the
conditions of Corollary 6 (all for this same character χ but possibly with different
supports 01, . . . , 0l , respectively, in the first variable).

Now, we define
f F̃ := a1 fF1 + · · ·+ al fFl ,

where fF1, . . . , fFl are the Siegel sections obtained in Corollary 6. Then f F̃ is
a linear combination of elements of the module

⊗
v∈6 IndG(Ev)

P(Ev)(χv · | · |
−2s). So,
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f F̃ is itself an element of
⊗

v∈6 IndG(Ev)
P(Ev)(χv · | · |

−2s). Now, the Fourier coefficient
of a sum of Siegel sections is the sum of the Fourier coefficients of these Siegel
sections. So, the Fourier coefficient at β of f F̃ is

a1 F1(1, tβ)+ · · ·+ al Fl(1, tβ)= F̃(1, tβ). �

3.1.4. Siegel sections away from p and ∞. We use the same Siegel sections at
places v - p∞ as in [Eischen 2013, Section 2.2.9]. We now recall the key properties
of these Siegel sections, which are described in more detail in [Shimura 1997,
Section 18].

Let b be an ideal in OE prime to p. For each finite place v prime to p, there is a
Siegel section f bv = f bv (• ;χv, s) ∈ IndG(Ev)

P(Ev)(χv, s) with the following property: by
[Shimura 1997, Proposition 19.2], whenever the Fourier coefficient c(β,m(1); f bv )
is nonzero,∏
v-p∞

c(β,m(1); f bv )

= NE/Q(bOE)
−n2

n−1∏
i=0

L p(2s− i, χ−1
E τ i )−1

∏
v-p∞

Pβ,v,b(χE(πv)
−1
|πv|

2s
v ), (23)

where:

(1) the product is over primes of E ;

(2) the Hecke character χE is the restriction of χ to E ;

(3) the function Pβ,v,b is a polynomial that is dependent only on β, v, and b and
has coefficients in Z and constant term 1;

(4) the polynomial Pβ,v,b is identically 1 for all but finitely many v;

(5) τ is the Hecke character of E corresponding to K/E ;

(6) πv is a uniformizer of OE,v, viewed as an element of K× prime to p;

(7) L p(r, χ−1
E τ i )=

∏
v-p∞ cond τ

(
1−χv(πv)−1τ i (πv)|πv|

r
v

)−1
.

3.1.5. Global Fourier coefficients. Recall that, by Lemma 4, the Fourier coeffi-
cients c(β, h; f ) are completely determined by the coefficients c(β, 1n; f ). In
Proposition 8, we combine the results of Sections 3.1.2, 3.1.3, and 3.1.4 in order to
give the global Fourier coefficients of the Eisenstein series E f .

Let χ be a unitary Hecke character as above and, furthermore, suppose the
infinity type of χ is ∏

σ∈6

σ−k−2ν(σ )(σ σ̄ )
1
2 k+ν(σ ) (24)

(i.e., k(σ ) = k ∈ Z for all σ ∈ 6). Let C(n, K ) be the constant dependent only
upon n and K defined in (11).
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Proposition 8. Let k ≥ n, let ν = (ν(σ )) ∈ Z6 , and let

fk,ν,χ,F̃ := fk,ν,χ,b,F̃ :=
⊗
v∈6

f F̃,v ⊗ f k,ν
∞
(• ; i1n, χ, s)⊗ f b ∈ IndG(AE )

P(AE )
(χ · | · |−s

K )

(25)
with χ as in (24),

⊗
v∈6 f F̃,v the section at p from Corollary 6, f k,ν

∞
the section

at∞ defined in Section 3.1.2, and f b the section away from p and∞ defined in
Section 3.1.4.

Then, at s = 1
2 k, all the nonzero Fourier coefficients c(β, 1n; fk,ν,χ,F̃ ) are given

by

D(n,K ,b, p,k)
∏
v-p∞

Pβ,v,b(χE(πv)
−1
|πv|

k
v)F̃(1,

tβ)
∏
v∈6

σv(detβ)k−ne(i trE/Q(β)),

(26)
where

D(n, K , b, p, k)

= C(n, K )N (bOE)
−n2
(

2(1−n)ni−nk(2π)nk
(
πn(n−1)/2

n−1∏
t=0

0(k− t)
)−1)[E :Q]

×

n−1∏
i=0

L p(k− i, χ−1
E τ i )−1.

Proof. This follows directly from (11), Corollary 6, (23), and (20). �

Given F̃ as above, define

F̃χ : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

to be the locally constant function whose support lies in

(OK ⊗Zp)
×
×Mn×n(OE ⊗Zp)

and which is defined on (OK ⊗Zp)
×
×Mn×n(OE ⊗Zp) by

F̃χ (x, y)=
∏
v∈6

χv(x)F̃(1, NK/E(x) t y), (27)

where the product is over the primes in 6 dividing p. Then, for all e ∈ O×K ,

F̃χ (ex, NK/E(e−1)y)= Nk,ν(e)F̃χ (x, y)

for all x ∈OK⊗Zp and y ∈Mn×n(OE⊗Zp). On the other hand, any locally constant
function

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

supported on (OK ⊗Zp)
×
×Mn×n(OE ⊗Zp) which satisfies

F(ex, NK/E(e)−1 y)= NE/Q(e)k F(x, y)
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for all e ∈ O×K , x ∈ OK ⊗ Zp, and y ∈ Mn×n(OE ⊗ Zp) can be written as a linear
combination of such functions F̃χ for Hecke characters χ of infinity type (k, ν)
and conductor dividing p∞ and functions F̃ as above.

Now, let
Gk,ν,χ,F̃ = D(n, K , b, p, k)−1 E fk,ν,χ,F̃

.

Applying Proposition 8, we see that the Fourier coefficients of the holomorphic
function Gk,ν,χ,F̃

(
z, 1

2 k
)

on Hn are all finite Z-linear combinations (over a finite
set of p-adic units a ∈ K ) of terms of the form

F̃χ (a, NK/E(a)−1β)Nk,ν(a−1 detβ)NE/Q(detβ)−n (28)

(Although πv from Proposition 8 is a place of E for all v, the element a from (28)
might be in K but not OE , depending on our choice of cusp. The effect of the
change of a cusp m ∈ GM+(AE) on q-expansions is given in Lemma 4.)

Thus, we obtain the following result:

Lemma 9. Let k ∈ Z≥n and ν ∈ Z6 . Let F be a locally constant function

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

supported on (OK ⊗Zp)
×
×Mn×n(OE ⊗Zp) which satisfies

F(ex, NK/E(e)−1 y)= Nk,ν(e)F(x, y)

for all e ∈ O×K , x ∈ OK ⊗ Zp, and y ∈ Mn×n(OE ⊗ Zp). Then there is a C∞

automorphic form Gk,ν,F (z, s) (on U (n, n)) of weight (k, ν) that is holomorphic at
s = 1

2 k and whose Fourier expansion at s = 1
2 k at a cusp m ∈ GM+(AE) is of the

form
∑

0<β∈Lm
c(β)qβ (where Lm is the lattice in Hern(K ) determined by m) with

c(β) a finite Z-linear combination of terms of the form given in (28).

(We obtain Gk,ν,F as a linear combination of the automorphic forms Gk,ν,χ,F̃ .)

4. Differential operators

4.1. C∞ differential operators. In this section, we summarize results on C∞ dif-
ferential operators that were studied extensively by Shimura [1984a; 1984b; 1997,
Section 23; 2000, Section 12]. Let T = Mn×n(C); we identify T with the tangent
space of Hn . For each nonnegative integer d , let Sd(T ) denote the vector space of
C-valued homogeneous polynomial functions on T of degree d . (For instance, the
e-th power of the determinant function, dete, is in Sne(T ).) We denote by τ d the
representation of GLn(C)×GLn(C) on Sd(T ) defined by

τ d(a, b)g(z)= g( tazb)

for all a, b ∈ GLn(C), z ∈ T , and g ∈Sd(T ).
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The classification of the irreducible subspaces of polynomial representations of
GLn(C) and of irreducible subspaces of τ r for each r is provided in [Shimura 1984b,
Section 2; 1997, Sections 12.6 and 12.7]. We summarize the key features needed
for our results; further details can be found in those two references. Given a matrix
a ∈ Mn×n(C), let det j (a) denote the determinant of the upper left j× j submatrix
of a. Each polynomial representation of GLn(C) can be composed into a direct
sum of irreducible representations of GLn(C). Each irreducible representation ρ of
GLn(C) contains a unique eigenvector p of highest weight r1 ≥ · · · rn ≥ 0 (for a
unique ordered n-tuple r1 ≥ · · · ≥ rn ≥ 0 of integers dependent on ρ), which is a
common eigenvector of the upper triangular matrices of GLn(C) and satisfies

ρ(a)p =
n∏

j=1

det j (a)e j p,

e j = r j − r j+1, 1≤ j ≤ n− 1, (29)

en = rn (30)

for all a in the subgroup of upper triangular matrices in GLn(C). Also, for each
ordered n-tuple r1 ≥ · · · ≥ rn ≥ 0, there is a unique corresponding irreducible
polynomial representation of GLn(C). If ρ and σ are irreducible representations
of GLn(C) then, by [Shimura 2000, Theorem 12.7], ρ ⊗ σ occurs in τ r if and
only if ρ and σ are representations of the same highest weights r1 ≥ · · · ≥ rn as
each other and r1+ · · ·+ rn = r . In this case, ρ⊗ σ occurs with multiplicity one
in τ r , and the corresponding irreducible subspace of τ r contains the polynomial
p(x)=

∏n
j=1 det j (x)e j (where e j is defined as in (29) and (30)); this polynomial

p(x) is an eigenvector of highest weight with respect to both ρ and σ .
Let (Z , τZ ) be an irreducible subspace of (Sd , τ ) of highest weight r1≥ · · · ≥ rn ,

and let ζ ∈ Z . By [Shimura 1984b; 1997, Section 23; 2000, Section 13], there
are C∞ differential operators Dk(ζ ) that act on C∞ functions on Hn and have the
property that, for all α ∈U (ηn), ζ ∈ Z ⊆Sd(T ), and complex numbers s,

Dk(ζ )(δ
s
‖k,να)= idψZ (−k− s)(δs

‖k,να) · ζ(
tη−1 tλα

tµ−1
α ), (31)

where (as proved in [Shimura 1984b, Theorem 4.1])

ψZ (s)=
n∏

h=1

rh∏
j=1

(s− j + h).

If ρ is the representation of GLn(C)×GLn(C), there is a differential operator DZ
ρ

(defined in [Eischen 2012, p. 222; Shimura 2000, Equation (12.20)]) such that for
all C∞ functions f on Hn , DZ

ρ f is a Hom(Z ,C)-valued C∞ function on Hn with



2456 Ellen Eischen

the property that

(DZ
ρ f )‖ρ⊗τZα = DZ

ρ ( f ‖ρα) (32)

for all α ∈ G. Furthermore, if ρ is defined by ρ(a, b)= det(b)k then, as the proof
of [Shimura 1997, Lemma 23.4] explains,

Dk(ζ ) f = (DZ
ρ f )(ζ ).

When Z is a 6-tuple (Zv)v∈6 , we also use ψZ to denote
∏
v∈6 ψZv .

So, for example, if d ∈ Z≥0 and ζ = detd , then (31) becomes

Dk(detd)(δs
‖k,να)= indψZ (−k− s)δs

‖k,να · detd( tη−1 tλα ·
tµ−1
α )

=
( 1

2 i
)nd

n∏
h=1

d∏
j=1

(−k− s− j + h)δs−d
‖k+2d,ν−dα.

Consequently, if d = (d(σ ))σ∈6 ∈ Z6
≥0, then( ∏

σ∈6

Dk(detd(σ ))
)(

Gk,ν,F
(
z, 1

2 k
))

=

∏
σ∈6

( 1
2 i
)nd(σ )

n∏
h=1

d(σ )∏
j=1

(−k− j + h)Gk+2d,ν−d,F
(
z, 1

2 k
)

as in [Eischen 2013, Equation (43)].
As noted in [Shimura 1984b, Section 6], Gk,ν,F (z, s) is a special case of the

automorphic form Gk,ν,ζ,F (z, s) that satisfies

Dk(ζ )
(
Gk,ν,F

(
z, 1

2 k
))
=

∏
v∈6

idvψZv (−k)Gk,ν,ζ,F
(
z, 1

2 k
)
,

where

Dk(ζ )=
∏
v∈6

Dk(ζv).

The case where ζ is a highest-weight vector will be of particular interest to us.

4.2. Rational representations. In order to generalize our discussion from the C∞

setting to the p-adic setting, we introduce rational representations, following [Hida
2004, Section 8.1.2] (which, in turn, summarizes relevant results from [Hida 2000;
Jantzen 1987]).

Let A be a ring or a sheaf of rings over a scheme. Let B denote the Borel
subgroup of GLn consisting of upper triangular matrices in GLn . Let N denote the
unipotent radical of B. Let T ∼= B/N denote the torus. Following the notation of
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[Hida 2004, Section 8.1.2], for each character κ of T we define

RA[κ] = IndGLn
B (κ)

=
{

f : GLn/N → A1 ∣∣ f (ht)= κ(t) f (h) for all t ∈ T, h ∈ GLn/N
}
.

The group GLn acts on RA[κ] via

(g · f )(x)= f (g−1x).

As noted in [Hida 2004, p. 332], there is a unique (up to an A-unit multiple)
N -invariant linear form `can in the dual space RA[κ]

∨ that generates (RA[κ]
∨)N

and can be normalized so that, for all f ∈ RA[κ],

`can( f )= f (1n),

where 1n denotes the origin in GLn/N .
Note that, for each C∞ automorphic form f on

∏
v∈6 Hn such that f ‖k,να = f

(for all α in some congruence subgroup) and each highest-weight vector ζ in
an irreducible representation of highest weight κ , we may view Dk(ζ ) f as an
RC[detk+ν ·κ]⊗ RC[det−ν ·κ]-valued function on Hn . We define a corresponding
character κk,ν(t1, . . . , tn, tn+1, . . . , t2n)=

∏n
i=1 tk+ν

i t−νi+n on T (C)× T (C).

4.3. The algebraic geometric setting. As explained in detail in [Eischen 2012,
Section 8.4], which generalizes [Katz 1978, Section 2.3], the C∞ differential
operators discussed by Shimura have a geometric interpretation in terms of the
Gauss–Manin connection. C∞ automorphic forms can [Eischen 2012, Section 2]
be interpreted as sections of a vector bundle on (the complex analytification of) the
moduli spaces Mn,n = Sh(W ). Applying a differential operator (as discussed in
[Eischen 2012, Sections 6–9]) to an automorphic form of weight ρ on Mn,n sends
it to an automorphic form of weight ρ⊗ τ on Mn,n .

We now recall the setting of [Eischen 2013, Section 3], as we will momentarily
be in a similar (but not identical) situation. For any OK -algebra R, the R-valued
points of KSh(R) parametrize tuples A consisting of an abelian variety together
with a polarization, endomorphism, and level structure. (We shall not need further
details of these points here; see [Lan 2013, Chapter 1; Hida 2004, Chapter 7;
Eischen 2012, Section 2] for more details.) Given a point A in KSh(R), we write
ωA/R = ω

+

A/R ⊕ ω
−

A/R for the sheaf of one-forms on A. (As in [Eischen 2012,
Section 2], ω+A/R and ω−A/R are the rank-n submodules determined by the action
of OK .) We identify G(Q)\X ×G(A f )/K (which we identify with copies of Hn)
with the points of KSh(C); we shall write A(z) to mean the point of A identified
with z ∈

∏
v∈6 Hn under this identification. Under this identification, if we fix an

ordered basis of differentials u±1 , . . . , u±n for ω±Auniv/Hn
, then an automorphic form
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f on Hn corresponds to an automorphic form f̃ on KSh(C) via

f (z)= f̃ (A(z), u±1 (z), . . . , u±n (z)),

Any other ordered basis of differentials for ω±A/C is simply obtained by the linear
action of GLn(OK ⊗C)∼= GLn(C)×GLn(C) on ω(z)= ω(z)+⊕ω(z)−, and

f̃
(

A(z), g · (u±1 (z), . . . , u±n (z))
)
= g ·

(
f (A(z), u±1 (z), . . . , u±n (z))

)
4.3.1. A p-adic analogue. In [Eischen 2012, Section 9], we discussed a p-adic
analogue θ Z

ρ of the differential operators DZ
ρ . The differential operators θ Z

ρ act
on sections of certain vector bundles on the Igusa tower T∞,∞ (a formal scheme
over the ordinary locus of KSh(R) for R a mixed characteristic discrete valuation
ring with residue characteristic p); for details on the Igusa tower, see [Hida 2004,
Section 8]. More precisely, θ Z

ρ acts on sections of RT∞,∞[κ] for various weights κ .
By [Hida 2004, map (8.4)],

`can : H 0(T∞,∞, RT∞,∞[κ])→ V N
[κ] (33)

is an injective map into the space V N
[κ] = V N

∞,∞[κ] of p-adic modular forms of
weight κ . Given a highest-weight vector ζ in Z , we define θ(ζ ) := θk := `can ◦ θ

Z
ρ ,

where ρ(a, b) := det(b)k .
In [Eischen 2012, Section 9], we gave a formula for the action of p-adic differ-

ential operators θ Z
ρ on q-expansions. In particular, if the q-expansion of a scalar

weight form f ∈ H 0(T∞,∞, RT∞,∞[κ]) at a cusp m ∈ GM is

f (q)=
∑
β

a(β)qβ,

and ζ is a highest-weight vector, then it follows from the formulas in [Eischen 2012,
Section 9] that

(θ(ζ ) f )(q)=
∑
β

a(β) · ζ(β)qβ . (34)

5. A p-adic Eisenstein measure with values in the space of
vector-weight automorphic forms

5.1. p-adic Eisenstein series. As we explain in Theorem 10, when R is a (profinite)
p-adic ring, we can extend Theorem 2 to the case of continuous (not necessarily
locally constant) functions F . For the remainder of the paper, let N be as in
Section 4.2.

Theorem 10. Let R be a (profinite) p-adic OK -algebra. Fix an integer k ≥ n, and
let ν = (ν(σ ))σ∈6 ∈ Z6 . Let

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R
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be a continuous function supported on (OK ⊗Zp)
×
×GLn(OE⊗Zp) which satisfies

F(ex, NK/E(e)−1 y)= Nk,ν(e)F(x, y)

for all e ∈ O×K , x ∈ OK ⊗ Zp and y ∈ GLn(OE ⊗ Zp). Then there exists a p-adic
automorphic form Gk,ν,F whose q-expansion at a cusp m ∈ GM is of the form∑

0<β∈Lm
c(β)qβ (where Lm is the lattice in Hern(K ) determined by m), with c(β)

a finite Z-linear combination of terms of the form

F(a, NK/E(a)−1β)Nk,ν(a−1 detβ)NE/Q(detβ)−n

(where the linear combination is the sum over a finite set of p-adic units a ∈ K
dependent upon β and the choice of cusp m ∈ GM).

Proof. The proof is similar to the proof of [Katz 1978, Theorem (3.4.1)]. We remind
the reader of the idea of that result. For each integer j ≥ 1, define

F j : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R/p j R

F j (x, y)= F(x, y) mod p j R.

Then F j is a locally constant function satisfying the conditions of Theorem 2. So,
by the q-expansion principle for p-adic forms [Hida 2005, Corollary 10.4; Hida
2004, Section 8.4], there is a p-adic automorphic form Gk,ν,F whose q-expansion
satisfies the conditions in the statement of the theorem. �

Corollary 11. Let R be a (profinite) p-adic OK -algebra, let ν = (ν(σ ))σ∈6 ∈ Z6 ,
and let k ≥ n be an integer. Let

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

be a continuous function supported on (OK ⊗Zp)
×
×GLn(OE⊗Zp) which satisfies

F(ex, NK/E(e)−1 yz)= Nk,ν(e)F(x, y)

for all e ∈ O×K , x ∈ OK ⊗Zp, and y ∈ Mn×n(OE ⊗Zp). Then

Gk,ν,F = Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y), (35)

where
Nk−n,ν(x−1 NK/E(x)n det y)F(x, y),

denotes the function defined by

(x, y) 7→ Nk−n,ν(x−1 NK/E(x)n det y)F(x, y).

on (OK⊗Zp)
×
×Mn×n(OE⊗Zp) and extended by 0 to (OK⊗Zp)×Mn×n(OE⊗Zp).

Proof. This follows from the q-expansion principle [Hida 2005, Corollary 10.4]. �



2460 Ellen Eischen

Remark 12. We comment now on the relationship between the weight of Gn,0,F and
the p-adically continuous function F appearing in the subscript. By Corollary 11 and
Theorem 2, we have that, if F is a locally constant function satisfying the conditions
of Corollary 11, then the p-adic automorphic form Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y)
is the weight-(k, ν) p-adic automorphic form Gk,ν,F . More generally, by (34),
the p-adic automorphic form Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y)ζκ (NK/E (x)y−1) is the
weight-(κ ·κk,ν) p-adic automorphic form θ(ζκ)Gk,ν,F , where ζκ is a highest-weight
vector for the representation of weight κ . In particular, the p-adic automorphic
form Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y) det(NK/E (x)y−1)d is the p-adic automorphic form
θ(detd)Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y)ζκ (NK/E (x)y−1) of weight (k+ 2d, ν− d).

5.1.1. CM points and pullbacks. In this section, we compare the values of certain
p-adic automorphic forms and C∞ automorphic forms at CM points.3 This material
extends [Eischen 2013, Section 3.0.1] beyond the case of scalar weights. Let R
be an OK -subalgebra of Q∩ ι−1

∞
(OCp) in which p splits completely. Note that the

embeddings ι∞ and ιp restrict to R to give embeddings

ι∞ : R ↪→ C,

ιp : R ↪→ R0 = lim
←−−

m
R/pm R.

Let A be a CM abelian variety with PEL structure over R, i.e., a CM point of the
moduli space K Sh(R) or, equivalently, a point of Sh(U (n)×U (n)) ↪→ Sh(U (n, n)).
By extending scalars we may also view A as an abelian variety over C or R0.

By an argument similar to [Eischen 2013, Section 3.0.1], there are complex and
p-adic periods�= (�+, �−)∈ (C×)n×(C×)n and c= (c+, c−)∈ (O×

Cp
)n×(O×

Cp
)n ,

respectively, attached to each CM abelian variety A over R such that (if F is R-
valued, so Gk,ν,F arises over R)

(κ · κk,ν)
−1(�)

∏
σ∈6

κσ (2π i)ψZ (−k)Gk,ν,ζ,F
(
z; h, χ, µ, 1

2 k
)

= (κ · κk,ν)
−1(c)θ(ζ )Gk,ν,F (A), (36)

where z is a point in
∏
σ∈6 Hn corresponding to the CM abelian variety A viewed

as an abelian variety over C (by extending scalars to C). Here, Z is the irreducible
subrepresentation of

∏
v∈6 GLn(C)×GLn(C) of highest weight κ ∈ (Zn)6 and has

ζ as a highest-weight vector; by κ(a) with a a scalar, we mean κ evaluated at the
n-tuple (a, . . . , a) in the torus. (The periods � and c can be defined uniformly

3The significance of CM points is that they correspond to points of U (n)×U (n)⊆U (n, n), which
are the points used (for instance, by Shimura) to study algebraicity of values of Eisenstein series,
which are used in turn to study algebraicity of values of certain L-functions (through the doubling
method, or “pull back method”, a construction of L-functions described in various sources, including
[Gelbart et al. 1987, Part A; Cogdell 2006, Section 2]). Determining the precise values of these
Eisenstein series at CM points is neither necessary nor generally computationally feasible at this time.
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for all CM points at once [Katz 1978, Section 5.1]. For the present paper, though,
this is not necessary.) Note that when κ = detd (i.e., is the highest weight for a
one-dimensional representation), we recover [Eischen 2013, Equation (45)].

5.2. Eisenstein measures. In analogue with [Katz 1978, Lemma (4.2.0)] (which
handles the case of Hilbert modular forms), we have the following lemma (which
applies to all integers n ≥ 1):

Lemma 13. Let R be a p-adic OK -algebra. Then the inverse constructions

H(x, y)=
1

Nn,0(x NK/E(x)−n det y)
F(x, y−1), (37)

F(x, y)=
1

Nn,0(x−1 NK/E(x)n det y)
H(x, y−1) (38)

give an R-linear bijection between the set of continuous R-valued functions

F : (OK ⊗Zp)
×
×GLn(OE ⊗Zp)→ R

satisfying

F(ex, NK/E(e)−1 y)= Nn,0(e)F(x, y) for all e ∈ O×K

and the set of continuous R-valued functions

H : (OK ⊗Zp)
×
×GLn(OE ⊗Zp)→ R

satisfying
H(ex, NK/E(e)y)= H(x, y) for all e ∈ O×K .

Proof. The proof follows immediately from the properties of F and H . �

Let
Gn = ((OK ⊗Zp)

×
×GLn(OE ⊗Zp))/O

×

K , (39)

where O×K denotes the p-adic closure of O×K embedded diagonally, as (e, NK/E(e)),
in (OK ⊗ Zp)

×
×GLn(OE ⊗ Zp) (and, as before, (OE ⊗ Zp)

× is embedded diag-
onally inside of GLn(OE ⊗Zp)). Then Lemma 13 gives a bijection between the
R-valued continuous functions H on Gn and the R-valued continuous functions F
on (OK ⊗Zp)

×
×GLn(OE ⊗Zp) satisfying F(ex, NK/E(e)−1 y)= Nn,0(e)F(x, y)

for all e ∈ O×K .
For any (profinite) p-adic ring R, an R-valued p-adic measure on a (profinite)

compact, totally disconnected topological space Y is a Zp-linear map

µ : C(Y,Zp)→ R

or, equivalently [Katz 1978, Section 4.0], an R′-linear map

µ : C(Y, R′)→ R
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for any p-adic ring R′ such that R is an R′-algebra. Instead of µ( f ), one typically
writes ∫

Y
f dµ.

In Theorem 14, we specialize to the case where R is the ring Vn,n of p-adic
automorphic forms on U (n, n) and Y is the group Gn defined in (39).

Theorem 14 (a p-adic Eisenstein measure for vector-weight automorphic forms).
Let R be a profinite p-adic ring. There is a Vn,n-valued p-adic measure µ= µb,n

on Gn defined by ∫
Gn

H dµb,n = Gn,0,F

for all continuous R-valued functions H on Gn , with

F(x, y)=
1

Nn,0(x−1 NK/E(x)n det y)
H(x, y−1)

extended by 0 to all of (OK ⊗Zp)×Mn×n(OE ⊗Zp).

Proof. F is the function corresponding to H under the bijection in Lemma 13. The
theorem then follows immediately from Theorem 10, Corollary 11, Lemma 13, and
the q-expansion principle. �

Note that the measure µb,n depends only upon n and b. In Section 6, we relate
the measure µb,n to the Eisenstein measure in [Katz 1978, Definition (4.2.5) and
Equation (5.5.7)] and comment on how µb,n can be modified to the case of Siegel
modular forms (i.e., automorphic forms on symplectic groups).

It follows from the definition of the measure µb,n in Theorem 14 that, for each
highest-weight vector ζκ of highest weight κ ,∫

Gn

H(x, y)ζκ(NK/E(x)y−1) dµb,n = θ(ζκ)Gn,0,F(x,y).

Now, let A be an ordinary CM abelian variety with PEL structure over a subring R
of Q∩OCp , i.e., a CM point of the moduli space K Sh(R), or equivalently, a point
of Sh(U (n)×U (n)) ↪→ Sh(U (n, n)). As discussed above, by extending scalars,
we may also view A as an abelian variety over C or over R0 = lim

←−−m R/pm R. It
follows from (36) and Corollary 11 that, for F(x, y) locally constant, supported on
(OK ⊗Zp)

×
×GLn(OE ⊗Zp) and satisfying

F(ex, NK/E(e)−1 y)= Nk,ν(e)F(x, y)
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for all e ∈ O×K , x ∈ OK ⊗Zp, and y ∈ GLn(OE ⊗Zp),

(κ · κk,ν)
−1(c)

∫
Gn

1
Nk,ν(x NK/E(x)−n det y)

F(x, y−1)ζκ(NK/E(x)y−1) dµb,n(A)

= (κ · κk,ν)
−1(�)

∏
σ∈6

κσ (2π i)ψZ (−k)Gk,ν,ζκ ,F
(
z, 1

2 k
)
, (40)

and, for any d = (dv)v∈6 ∈ Z6
≥0,

(κk+2d,ν−d)
−1(c)

×

∫
Gn

1
Nk,ν(x NK/E(x)−n det y)

F(x, y−1)det(NK/E(x)y−1)d dµb,n(A)

= (κk+2d,ν−d)
−1(�)

∏
σ∈6

(2π i)ndψZ (−k)Gk+2d,ν−d,F(x,y)
(
z, 1

2 k
)
,

where z is a point in
∏
σ∈6 Hn corresponding to the CM abelian variety A viewed

as an abelian variety over C (by extending scalars to C) and � and c are the periods
from (36). Here, Z is the irreducible subrepresentation of

∏
σ∈6 GLn(C)×GLn(C)

of highest weight κ and has ζκ as a highest-weight vector; by κ(a) with a a scalar,
we mean κ evaluated at the n-tuple (a, . . . , a) in the torus.

In other words, the p-adic measure µb,n allows us to p-adically interpolate the
values of the C∞ (not necessarily holomorphic) function Gk,ν,ζκ ,F

(
z, 1

2 k
)

at CM
points z.

Theorem 15. For each ordinary abelian variety A defined over a (profinite) p-adic
OK -algebra R0, there is an R0-valued p-adic measure µ(A) := µb,n(A) defined by∫

Gn

H dµb,n(A)= Gn,0,F (A)

for all continuous R-valued functions H on Gn , with

F(x, y)=
1

Nn,0(x−1 NK/E(x)n det y)
H(x, y−1)

extended by 0 to all of (OK ⊗ Zp)× Mn×n(OE ⊗ Zp). If R0 = lim
←−−m R/pm R with

R ⊆ Q, A is an ordinary CM point defined over R, and F is a locally constant
function supported on (OK ⊗Zp)

×
×GLn(OE ⊗Zp) satisfying

F(ex, NK/E(e)−1 y)= Nk,ν(e)F(x, y)

for all e ∈ O×K , x ∈ OK ⊗Zp, and y ∈ GLn(OE ⊗Zp), then

(κ · κk,ν)
−1(c)

∫
Gn

1
Nk,ν(x NK/E(x)−n det y)

F(x, y−1)ζκ(NK/E(x)y−1) dµb,n(A)

= (κ · κk,ν)
−1(�)

∏
σ∈6

κσ (2π i)ψZ (−k)Gk,ν,ζκ ,F
(
z, 1

2 k
)
,
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with z ∈
∏
v∈6 Hn corresponding to the ordinary CM abelian variety A viewed as

an abelian variety over C.

The pullback of an automorphic form on U (n, n) to U (n)×U (n) is automatically
an automorphic form on the product of definite unitary groups U (n)×U (n). So
Theorem 14 also gives a p-adic measure with values in the space of automorphic
forms on the product of definite unitary groups U (n)×U (n). In [Eischen 2014,
Section 4], we explain how to modify our construction to obtain p-adic measures
with values in the space of automorphic forms on certain nondefinite groups.

Remark 16 (relationship to the Eisenstein measures in [Eischen 2013, Section 4]).
For the curious reader, we briefly explain the relationship between the measure µb,n

defined in Theorem 14 and the measure φ defined in [Eischen 2013, Theorem 20].
For each v ∈6, let rv = r(v)≤ n be a positive integer and let r = (rv)v ∈ Z6 . As
in [Eischen 2013, Equation (33)], let

T (r)=
∏
v∈6

OE
×

v × · · ·×OE
×

v︸ ︷︷ ︸
rv copies

. (41)

Let ρ =
∏
v∈6(ρ1,v, . . . , ρr(v),v) be a p-adic character on T (r) (i.e., ρ((αv)v∈6) :=∏

v∈6

∏r(v)
i=1 ρi,v(αv) for all α = (αv)v∈6 ∈ T (r)), let n = n1,v + · · · + nrv,v be a

partition of n for each v ∈6, and let Fρ be the function on Mn×n(E) defined by

Fρ(x) :=
∏
v∈6

r(v)∏
i=1

ρi,v(detni (x)),

with det j defined as on page 2455. Let χ be a p-adic function supported on
(OK ⊗Zp)

×/O×K and extended by 0 to all of OK ⊗Zp . Let Hρ,χ be the function
corresponding via the bijection in Lemma 13 to the function Fρ,χ supported on Gn

(and extended by 0) defined by

Fρ,χ (x, y)= χ(x)Nn,0(x)Fρ(NK/E(x) t y).

Then ∫
Gn

Hρ,χ dµb,n =

∫
(OK⊗Zp)×/O

×

K×T (r)
(χ, ρ) dφ.

Note that the measure φ is dependent upon the choice of r and the choice of the
partition of n, while the measure µb,n is independent of both of these choices.

6. Remarks about the case of symplectic groups, Siegel modular forms, and
Katz’s Eisenstein measure for Hilbert modular forms

The case of Siegel modular forms is quite similar. We essentially just need to replace
the CM field K with the totally real field E throughout. Once we have replaced
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K by E , Nk,ν becomes Nk
E/Q and NK/E becomes the identity map. Consequently,

(37) and (38) become

H(x, y)=
1

NE/Q(x1−n det y)n
F(x, y−1),

F(x, y)=
1

NE/Q(x−1+n det y)n
H(x, y−1).

To highlight the similarity with [Katz 1978, Section 4.2] we note that, when n = 1,
these equations become

H(x, y)=
1

NE/Q(y)
F(x, y−1),

F(x, y)=
1

NE/Q(y)
H(x, y−1).

This relationship between H and F is similar to the relationship between the similar
functions denoted H and F by Katz [1978, Section 4.2]. (The minor difference is
due to the fact that, throughout the paper, his F(x, y) is our F(y, x).)

The differential operators are developed from the C∞ perspective simultaneously
for both unitary and symplectic groups in [Shimura 2000, Section 12]. As noted
in [Eischen 2012, p. 4; 2012, Section 3.1.1; Panchishkin 2005; Courtieu and
Panchishkin 2004], the algebraic geometric and p-adic formulation of the operators
for Siegel modular forms (i.e., for symplectic groups) is similar. In the case of Siegel
modular forms, the algebraic geometric formulation of the differential operators
is discussed in [Harris 1981, Section 4]. Also, the case of symplectic groups is
handled directly alongside the case of unitary groups in Hida’s discussion [2004,
Chapter 8] of p-adic automorphic forms. So the construction in this paper carries
over with only minor changes (essentially, replacing K by E throughout) to the
case of symplectic groups over a totally real field E and automorphic forms (Siegel
modular forms) on those groups.

6.1. The case n = 1. Continuing with the symplectic case with n = 1, Theorem 2
becomes:

Theorem 17. Let R be an OE -algebra and let k ≥ 1 be an integer. For each locally
constant function

F : (OE ⊗Zp)× (OE ⊗Zp)→ R

supported on (OE ⊗Zp)
×
× (OE ⊗Zp)

× which satisfies

F(ex, e−1 y)= NE/Q(e)k F(x, y) (42)

for all e ∈ O×E , x ∈ OE⊗Zp, and y ∈ OE⊗Zp, there is a Hilbert modular form Gk,F

of weight k defined over R whose q-expansion at a cusp m ∈ GM is of the form
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β>0 c(β)qβ (where Lm is the lattice in E determined by m) with c(β) a finite

Z-linear combination of terms of the form

F(a, (a)−1β)N(a−1β)k NE/Q(β)
−1

(where the linear combination is a sum over a finite set of p-integral a∈ E dependent
upon β and the choice of cusp m ∈ GM).

Still continuing with the symplectic case with n = 1, Theorem 14 becomes:

Theorem 18. There is a measure µ on

G= ((OE ⊗Zp)
×
× (OE ⊗Zp)

×)/O×E

(with values in the space of p-adic Hilbert modular forms), defined by∫
G

H dµ= G1,F

for all continuous R-valued functions H on G, with

F(x, y)=
1

NE/Q(y)
H(x, y−1)

extended by 0 to all of (OE ⊗Zp)× (OE ⊗Zp).

Note that we have essentially recovered the Eisenstein series and measure from
[Katz 1978, Definition (4.2.5)]. (Again, the difference between Katz’s order of
the variables x and y and ours is due to the fact that, throughout the paper, his
F(x, y) is our F(y, x).) The reader might notice the similarities with [Katz 1978,
(5.5.1)–(5.5.7)]. In particular, let χ be a Grössencharacter of the CM field K whose
conductor divides p∞ and whose infinity type is

−k
∑
σ∈6

σ −
∑
σ∈6

d(σ )(σ − σ̄ )

with d(σ ) ≥ 0 for all σ ∈ 6 and k ≥ n. We view χ as an OCp -valued character
on A∞,××

∏
v∈6 Q (by restricting it to this group) and consider its restriction to

the subring consisting of elements ((1v)v-p∞, a, a), with a ∈ OK ⊗Z(p), which is a
subring of

(OK ⊗Zp)
×
−→∼ (OE ⊗Zp)

×
× (OE ⊗Zp)

×.

Then we have

χ(α)= χfinite(α) ·

∏
σ∈6 σ(α)

d(σ )∏
σ∈6 σ(α)

k+d(σ ) ,

χ(x, y)= χfinite(x, y) ·
∏
σ∈6 σ(x)

d(σ )∏
σ∈6 σ(y)k+d(σ ) ,
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with χfinite a locally constant function. If

F(x, y)=
1

N(y)
χ

(
x,

1
y

)
= χfinite

(
x,

1
y

)
· N(y)k−1

∏
σ∈6

σ(xy)d(σ ), (43)

then ∫
G
χ(x, y) dµb,1 = G1,F (44)

= G1,χfinite(x,1/y)N(y)k−1
∏
σ∈6 σ(xy)d(σ ) (45)

= Gk,χfinite(x,1/y)
∏
σ∈6 σ(xy)d(σ ) (46)

=

( ∏
σ∈6

θ(σ )d(σ )
)
(Gk,χfinite(x,1/y)), (47)

where θ(σ ) denotes the (σ component of the) differential operator θ(det) acting on
automorphic forms in the one-dimensional, symplectic case. Note the similarity of
(43) through (47) with [Katz 1978, Equations (5.5.6)–(5.5.7)].
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