Vol. 8, No. 10, 2014

Download this article
Download this article For screen
For printing
Recent Issues

Volume 10
Issue 9, 1845–2052
Issue 8, 1601–1843
Issue 7, 1373–1600
Issue 6, 1147–1371
Issue 5, 939–1146
Issue 4, 695–938
Issue 3, 451–694
Issue 2, 215–450
Issue 1, 1–214

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Explicit points on the Legendre curve III

Douglas Ulmer

Vol. 8 (2014), No. 10, 2471–2522
Abstract

We continue our study of the Legendre elliptic curve y2 = x(x + 1)(x + t) over function fields Kd = Fp(μd,t1d). When d = pf + 1, we have previously exhibited explicit points generating a subgroup V d E(Kd) of rank d 2 and of finite, p-power index. We also proved the finiteness of Ш(EKd) and a class number formula: [E(Kd) : V d]2 = |Ш(EKd)|. In this paper, we compute E(Kd)V d and Ш(EKd) explicitly as modules over p[Gal(KdFp(t))].

Keywords
elliptic curves, function fields, Tate–Shafarevich group
Mathematical Subject Classification 2010
Primary: 11G05, 14G05
Secondary: 11G40, 14K15
Milestones
Received: 26 June 2014
Revised: 20 October 2014
Accepted: 23 November 2014
Published: 31 December 2014
Authors
Douglas Ulmer
School of Mathematics
Georgia Institute of Technology
686 Cherry Street
Atlanta, GA 30332
United States