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canonical subgroups

Shin Hattori

Let p be a rational prime, k be a perfect field of characteristic p and K be a finite
totally ramified extension of the fraction field of the Witt ring of k. Let G be a
finite flat commutative group scheme over OK killed by some p-power. In this
paper, we prove a description of ramification subgroups of G via the Breuil–Kisin
classification, generalizing the author’s previous result on the case where G is
killed by p ≥ 3. As an application, we also prove that the higher canonical
subgroup of a level n truncated Barsotti–Tate group G over OK coincides with
lower ramification subgroups of G if the Hodge height of G is less than (p−1)/pn ,
and the existence of a family of higher canonical subgroups improving a previous
result of the author.

1. Introduction

Let p be a rational prime, k be a perfect field of characteristic p and W = W (k)
be the Witt ring of k. The natural Frobenius endomorphism of the ring W lifting
the p-th power Frobenius of k is denoted by ϕ. Let K be a finite extension of
K0 = Frac(W ) with integer ring OK , uniformizer π and absolute ramification
index e. We fix an algebraic closure K̄ of K and extend the valuation vp of K
satisfying vp(p) = 1 to K̄ . Let ÔK̄ be the completion of the integer ring OK̄ .
We also fix a system {πn}n≥0 of p-power roots of π in K̄ satisfying π0 = π and
π

p
n+1 = πn and put K∞ =

⋃
n K (πn). The absolute Galois groups of K and K∞

are denoted by G K and G K∞ , respectively. For any positive rational number i ,
put m>i

K = {x ∈ OK | vp(x) ≥ i} and OK ,i = OK /m>i
K . For any valuation ring

V of height one, we define m>i
V and Vi similarly. We also put Si = Spec(OK ,i ),

SL ,i = Spec(OL ,i ) for any finite extension L/K , and S̄i = Spec(OK̄ ,i ).
Breuil conjectured a classification of finite flat (commutative) group schemes

over OK killed by some p-power via ϕ-modules over the formal power series ring
S=W [[u]] and obtained such a classification for the case where groups are killed
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by p ≥ 3 [Breuil 2002]. It is often referred to as the Breuil–Kisin classification,
since Kisin showed the conjecture for p ≥ 3 [Kisin 2006] and for the case where
p = 2 and groups are connected [Kisin 2009]. The conjecture was proved for any
p independently in [Kim 2012; Lau 2010; Liu 2013]. In particular, we have an
exact category Mod1,ϕ

/S∞
of such ϕ-modules over S killed by some p-power (for

the definition, see Section 2) and an anti-equivalence of exact categories M∗(−)
from the category of finite flat group schemes over OK killed by some p-power to
the category Mod1,ϕ

/S∞
. Moreover, we can recover the G K∞-module G(OK̄ ) via this

classification: Let R be the valuation ring defined as the projective limit of p-th
power maps

R = lim
←−
(OK̄ ,1← OK̄ ,1← · · · )

and π be the element of the ring R defined by π = (π0, π1, . . .). We normalize the
valuation vR by vR(π)= 1/e and define Ri similarly to OK ,i , using vR in place of
vp. For any positive integer n, let Wn(R) be the Witt ring of length n of R, which is
considered as an S-algebra by the map u 7→ [π ]. The ring Wn(R) admits a natural
G K -action. Then, by the Breuil–Kisin classification, we also have an isomorphism
of G K∞-modules

εG : G(OK̄ )→ T ∗S(M
∗(G))= HomS,ϕ

(
M∗(G),Wn(R)

)
.

On the other hand, for any positive rational number i , we have a finite flat closed
subgroup scheme Gi of G over OK , the i-th lower ramification subgroup of G, whose
index is adapted to the valuation vp. Namely, it is defined as the unique finite flat
closed subgroup scheme of G over OK satisfying

Gi (OK̄ )= Ker
(
G(OK̄ )→ G(OK̄ ,i )

)
.

The lower ramification subgroups, which are named as such because of their
similarity to the lower numbering ramification groups in algebraic number theory,
have similar properties to the upper ramification subgroups [Abbes and Mokrane
2004, §2.3] such as the functoriality and the compatibility with base extension.
While this upper variant is used to construct canonical subgroups of abelian varieties
[Abbes and Mokrane 2004], the lower ramification subgroups have been also studied
and used to construct canonical subgroups [Hattori 2013; 2014; Rabinoff 2012], as
explained later.

If G is killed by p ≥ 3, then [Hattori 2012, Theorem 1.1] shows that the isomor-
phism εG induces an isomorphism

Gi (OK̄ )' Ker
(
T ∗S(M

∗(G))→ HomS,ϕ(M
∗(G), Ri )

)
for any i . This description of the lower ramification subgroups of G via the
Breuil–Kisin classification is used in [Hattori 2013] to deduce various properties
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of canonical subgroups. In this paper, we prove the following theorem, which
generalizes this description.

Theorem 1.1. Let i be a positive rational number satisfying i ≤ 1 and W DP
n (R)i be

the divided power envelope of the natural surjection

Wn(R)→ OK̄ ,i , (r0, . . . , rn−1) 7→ pr0(r0) mod m>i
K̄
.

Let In,i be the kernel of the map Wn(R)
ϕ
→W DP

n (R)i induced by the Frobenius map

ϕ : (r0, . . . , rn−1) 7→ (r p
0 , . . . , r

p
n−1).

Let G be a finite flat group scheme over OK killed by pn and M =M∗(G) be the
corresponding object of the category Mod1,ϕ

/S∞
. Then the natural isomorphism

εG : G(OK̄ )→ T ∗S(M)= HomS,ϕ(M,Wn(R))

induces an isomorphism

Gi (OK̄ )' HomS,ϕ(M, In,i ).

For the case of n= 1, Theorem 1.1 can be interpreted as a correspondence of both
upper and lower ramification between G and a finite flat group scheme H(M∗(G))

over k[[u]] (Corollary 3.3), generalizing [Hattori 2012, Theorem 1.1]. Indeed, by a
theorem of Tian and Fargues, Theorem 3.3 of [Hattori 2012], and the compatibility
of the Breuil–Kisin classification with Cartier duality, Theorem 1.1 for n = 1 also
implies the assertion of the corollary on upper ramification subgroups. However,
the author does not know if a description of upper ramification subgroups via the
Breuil–Kisin classification for n > 1 can be obtained from Theorem 1.1, since we
do not have a comparison result between upper and lower ramification subgroups
similar to the theorem of Tian and Fargues for n > 1.

In [Hattori 2012], the proof of Theorem 1.1 for the case where G is killed by
p ≥ 3 is reduced to showing a congruence of the defining equations of G and
H(M∗(G)) with respect to the identification k[[u]]/(ue)'OK ,1 sending u to π . This
congruence is a consequence of an explicit description of the affine algebra of G in
terms of M∗(G) due to Breuil [2000, Proposition 3.1.2], which is known only for
the case where G is killed by p ≥ 3. Here, instead, we study a relationship between
the groups

G(OK̄ ,i ) and HomS,ϕ(M
∗(G),Wn(R)/In,i )

by using the faithfulness of the crystalline Dieudonné functor [de Jong and Messing
1999], from which Theorem 1.1 follows easily.

As an application of Theorem 1.1 and an explicit description of the ideal In,i

(Lemma 4.3), we also prove the coincidence with canonical subgroups with lower
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ramification subgroups, and the existence of a family of canonical subgroups
improving Corollary 1.2 of [Hattori 2014]. Before stating the results, we briefly
explain a background of this application.

Let K/Qp be an extension of complete discrete valuation fields, X be an admissi-
ble formal scheme over Spf(OK ) and G be a truncated Barsotti–Tate group of level
n over X. Consider their Raynaud generic fibers X and G. For any point x ∈ X ,
the fiber Gx is a truncated Barsotti–Tate group of level n over the ring of integers
of a finite extension of K . If Gx is ordinary, then the unit component G0

x satisfies
G0

x(OK̄ )' (Z/pnZ)dimGx and its special fiber is equal to the Frobenius kernel of
the special fiber of Gx . We refer to a finite flat closed subgroup scheme of Gx as a
canonical subgroup if it has these properties. What we want to construct here is
a family of canonical subgroups for G: namely, an admissible open subgroup C
of G over a strict neighborhood U of the ordinary locus Xord

⊆ X for G such that
for any x ∈U , the fiber Cx is the generic fiber of a canonical subgroup of Gx . The
existence of a family of canonical subgroups is one of the key ingredients in the
theory of p-adic Siegel modular forms, and for such arithmetic applications, we
also need a precise understanding of Cx . This leads us to construct such a family
by first constructing and studying a canonical subgroup of Gx fiberwise, and then
patching them into a family.

For each fiber Gx , the method of lifting the conjugate Hodge filtration to the
Breuil–Kisin module [Hattori 2013; 2014] gives a sharp result on the existence of a
canonical subgroup of Gx , which is stronger than other methods such as the one
using the Hodge–Tate map. Namely, it shows that a canonical subgroup Cn of Gx

exists if the Hodge height of Gx is less than 1/(pn−2(p+ 1)) and Cn has various
properties needed for arithmetic applications.

To obtain a family of canonical subgroups (from any of such fiberwise construc-
tions), we typically need to show the coincidence of canonical subgroups with a
specific series of subgroups of Gx which can be patched into a family when varying
x , and this step often requires us to restrict to a smaller admissible open subset
than the locus of x such that a canonical subgroup of Gx exists. We have at least
three series of such subgroups: Harder–Narasimhan filtrations, upper ramification
subgroups and lower ramification subgroups, where the former two were mainly
used in preceding works; see [Abbes and Mokrane 2004, Fargues 2011, Hattori
2013; 2014, Tian 2010; 2012].

For n = 1, the canonical subgroup C1 constructed in [Hattori 2013; 2014] was
shown to coincide with both upper and lower ramification subgroups, and this again
gives a sharp result, namely the existence of a family of canonical subgroups over
the locus of Hodge height less than p/(p+1). For n ≥ 2, it was also shown that Cn

coincides with upper ramification subgroups under a condition on the Hodge height,
and this yields a family over the locus of Hodge height less than 1/(2pn−1) [Hattori
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2013; 2014] A weaker result can be obtained also by the Harder–Narasimhan
method [Fargues 2011].

In this paper, to obtain a stronger existence theorem of a family of canonical
subgroups, we also prove the coincidence of the canonical subgroup constructed in
[Hattori 2013; 2014] with lower ramification subgroups, as follows.

Theorem 1.2. Let K/Qp be an extension of complete discrete valuation fields. Let
G be a truncated Barsotti–Tate group of level n, height h and dimension d over
OK with 0< d < h and Hodge height w < (p− 1)/pn . Then the level n canonical
subgroup Cn of G [Hattori 2014, Theorem 1.1] satisfies Cn = Gin = Gi ′n for

in =
1

pn−1(p− 1)
−

w

p− 1
, i ′n =

1
pn(p− 1)

.

Note that by our assumption and [Hattori 2014, Theorem 1.1], we have an
isomorphism of groups

Cn(OK̄ )' (Z/pnZ)d .

The fact that the lower ramification subgroup Gin (OK̄ ) is isomorphic to (Z/pnZ)d

for w < (p − 1)/pn was proved by Rabinoff [2012, Theorem 1.9] for the case
where K/Qp is an extension of (not necessarily discrete) complete valuation fields
of height one, by a different method. Theorem 1.2 reproves this result of Rabinoff
for the case where the base field K is a complete discrete valuation field, and also
shows that the subgroup considered by Rabinoff coincides with Cn . In particular,
we show that his subgroup has standard properties as a canonical subgroup as in
[Hattori 2014, Theorem 1.1], such as the coincidence with a lift of the Frobenius
kernel.

Using Theorem 1.2, we also prove the following theorem on a family construction
of canonical subgroups, which is stronger than [Hattori 2014, Corollary 1.2] for
n ≥ 2.

Theorem 1.3. Let K/Qp be an extension of complete discrete valuation fields. Let
X be an admissible formal scheme over Spf(OK ) and G be a truncated Barsotti–Tate
group of level n over X of constant height h and dimension d with 0< d < h. We
let X and G denote the Raynaud generic fibers of the formal schemes X and G,
respectively. Put rn = (p− 1)/pn and let X (rn) be the admissible open subset of X
defined by

X (rn)(K̄ )= {x ∈ X (K̄ ) | Hdg(Gx) < rn}.

Then there exists an admissible open subgroup Cn of G|X (rn) over X (rn) such that,
etale locally on X (rn), the rigid-analytic group Cn is isomorphic to the constant
group (Z/pnZ)d and, for any finite extension L/K and x ∈ X (L), the fiber (Cn)x

coincides with the generic fiber of the level n canonical subgroup of Gx .
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2. The Breuil–Kisin classification

In this section, we briefly recall the classification of finite flat group schemes and
Barsotti–Tate groups over OK due to Kisin ([2006] for p ≥ 3 and [2009] for p = 2
and connected group schemes) and to Kim [2012], Lau [2010] and Liu [2013] for
p = 2. We basically follow the presentation of [Kim 2012].

We let the continuous ϕ-semilinear endomorphism of S defined by u 7→ u p be
denoted also by ϕ. Put Sn =S/pnS. Let E(u) ∈W [u] be the (monic) Eisenstein
polynomial of the uniformizer π . Then a Kisin module (of E-height ≤ 1) is an
S-module endowed with a ϕ-semilinear map ϕM :M→M, which we also write
abusively as ϕ, such that the cokernel of the map

1⊗ϕ : ϕ∗M=S⊗ϕ,SM→M

is killed by E(u). The Kisin modules form an exact category in an obvious manner,
and its full subcategory consisting of M such that M is free of finite rank over
S (resp. free of finite rank over S1, resp. finitely generated, p-power torsion and
u-torsion free) is denoted by Mod1,ϕ

/S (resp. Mod1,ϕ
/S1

, resp. Mod1,ϕ
/S∞

).
We also have categories of Breuil modules Mod1,ϕ

/S , Mod1,ϕ
/S1

and Mod1,ϕ
/S∞ defined

as follows (for more precise definitions, see for example [Hattori 2012, §2.1],
where the definitions are valid also for p = 2). Let S be the p-adic completion
of the divided power envelope of W [u] with respect to the ideal (E(u)) and put
Sn = S/pn S. The ring S has a natural divided power ideal Fil1S, a continuous
ϕ-semilinear endomorphism defined by u 7→ u p which is also denoted by ϕ and
a differential operator N : S→ S defined by N (u) = −u. We can also define a
ϕ-semilinear map ϕ1 = p−1ϕ : Fil1S→ S. Then a Breuil module (of Hodge–Tate
weights in [0, 1]) is an S-module endowed with an S-submodule Fil1M containing
(Fil1S)M and a ϕ-semilinear map ϕ1,M : Fil1M→ M satisfying some conditions.
We also define ϕM : M→ M by ϕM(x) = ϕ1(E(u))−1ϕ1,M(E(u)x). We drop the
subscript M if there is no risk of confusion. The Breuil modules also form an
exact category. Its full subcategory Mod1,ϕ

/S (resp. Mod1,ϕ
/S1

) is defined to be the one
consisting of M such that M is free of finite rank over S and M/Fil1M is p-torsion
free (resp. M is free of finite rank over S1). The category Mod1,ϕ

/S∞ is defined as the
smallest full subcategory containing Mod1,ϕ

/S1
and closed under extensions. Then the

functor M 7→ S⊗ϕ,SM induces exact functors

Mod1,ϕ
/S →Mod1,ϕ

/S , Mod1,ϕ
/S1
→Mod1,ϕ

/S1
, Mod1,ϕ

/S∞
→Mod1,ϕ

/S∞

which are all denoted by MS(−), by putting

Fil1MS(M)= Ker(S⊗ϕ,SM
1⊗ϕ
→ S/Fil1S⊗SM).
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Put π = (π0, π1, . . .) ∈ R as before and consider the Witt ring W (R) as an
S-algebra by the map u 7→ [π ]. The p-adic period ring Acrys is defined as the
p-adic completion of the divided power envelope of W (R) with respect to the ideal
E(u)W (R) and the ring Acrys[1/p] is denoted by B+crys. For any r = (r0, r1, . . .) ∈

R with rl ∈ OK̄ ,1, choose a lift r̂l of rl in OK̄ and put r (m) = liml→∞ r̂ pl

l+m ∈

ÔK̄ . Consider the surjection θn : Wn(R) → OK̄ ,n sending (r0, r1, . . . , rn−1) to∑n−1
l=0 plr (l)l . Then the quotient Acrys/pn Acrys can be identified with the divided

power envelope W DP
n (R) of the surjection θn compatible with the canonical divided

power structure on the ideal pWn(R). For any objects M∈Mod1,ϕ
/S and M∈Mod1,ϕ

/S ,
we have the associated G K∞-modules

T ∗S(M)= HomS,ϕ(M,W (R)), T ∗crys(M)= HomS,ϕ,Fil1(M, Acrys),

which are related by the injection

T ∗S(M)→ T ∗crys(MS(M))

defined by f 7→ 1⊗ (ϕ ◦ f ). Similarly, for any object M ∈Mod1,ϕ
/S∞

, we have the
associated G K∞-module

T ∗S(M)= HomS,ϕ(M,Qp/Zp⊗Zp W (R)).

Let D be an admissible filtered ϕ-module over K such that gri DK = 0 unless
i = 0, 1. Put SK0 = S⊗W K0 and D= SK0 ⊗K0 D. The SK0-module D is endowed
with a natural Frobenius map ϕD : D → D induced by the Frobenius of D, a
derivation ND= N⊗1 :D→D and an SK0-submodule Fil1D defined as the inverse
image of Fil1 DK by the map D→ D/(Fil1S)D = DK . Then a strongly divisible
lattice in D is an S-submodule M of D which satisfies the following:

• M is a free S-module of finite rank and D=M[1/p].

• M is stable under ϕD and ND.

• ϕD(Fil1M)⊆ pM, where Fil1M=M∩Fil1D.

We put V ∗crys(D)= HomSK0 ,ϕ,Fil1(D, B+crys). If M is a strongly divisible lattice in D,
then the natural G K∞-actions on T ∗crys(M) and V ∗crys(D)= T ∗crys(M)[1/p] extend to
G K -actions and we have a natural isomorphism of G K -modules

V ∗crys(D)→ V ∗crys(D)= HomK0,ϕ,Fil(D, B+crys)

[Breuil 2002, Proposition 2.2.5] and [Liu 2008, Lemma 5.2.1].
Let (BT/OK ) (resp. (p-Gr/OK )) be the exact category of Barsotti–Tate groups

(resp. finite flat group schemes killed by some p-power) over OK . For any Barsotti–
Tate group 0 over OK , we let Tp(0) denote its p-adic Tate module, Vp(0) =

Qp⊗Zp Tp(0) and D∗(0) be the filtered ϕ-module over K associated to Vp(0). We
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also let D∗(−) denote the contravariant crystalline Dieudonné functor [Berthelot
et al. 1982] and consider its module of sections

D∗(0)(S→ OK )= lim
←−

n
D∗(0)(Sn→ OK ,n)

on the divided power thickening S→OK defined by u 7→π . Note that the S-module
D∗(0)(S→ OK ) can be considered as an object of the category Mod1,ϕ

/S and also as
a strongly divisible lattice in D∗(0)= SK0 ⊗K0 D∗(0) [Faltings 1999, §6]. For any
finite flat group scheme G over OK killed by some p-power, we define an object
D∗(G)(S→ OK ) of the category Mod1,ϕ

/S∞ similarly. Then we have the following
classification theorem, whose first assertion (which is Theorem 2.2.7 of [Kisin
2006] for p ≥ 3, and Theorem 4.1 and Proposition 4.2 of [Kim 2012] for p = 2)
implies the second one (Theorem 2.3.5 of [Kisin 2006] for p ≥ 3, and Corollary
4.3 of [Kim 2012] for p = 2) by an argument of taking a resolution.

Theorem 2.1 (Kisin). (1) There exists an anti-equivalence of exact categories

M∗(−) : (BT/OK )→Mod1,ϕ
/S

with a natural isomorphism of G K∞-modules

ε0 : Tp(0)→ T ∗S(M
∗(0)).

Moreover, the S-module MS(M
∗(0)) can be considered as a strongly divisible

lattice in D∗(0) and we also have a natural isomorphism of strongly divisible
lattices in D∗(0)

µ0 :MS(M
∗(0))→ D∗(0)(S→ OK ).

(2) There exists an anti-equivalence of exact categories

M∗(−) : (p-Gr/OK )→Mod1,ϕ
/S∞

with a natural isomorphism of G K∞-modules

εG : G(OK̄ )→ T ∗S(M
∗(G)).

Moreover, we also have a natural isomorphism of the category Mod1,ϕ
/S∞

µG :MS(M
∗(G))→ D∗(G)(S→ OK ).

On the other hand, for any object M of the category Mod1,ϕ
/S or Mod1,ϕ

/S∞
, we can

define a dual object M∨ which is compatible with Cartier duality of Barsotti–Tate
groups or finite flat group schemes. In particular, for any object M of the category
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Mod1,ϕ
/S∞

killed by pn , we have a commutative diagram of G K∞-modules

G(OK̄ )×G∨(OK̄ )
//

oεG

��
oδG

��

Z/pnZ(1)

��
T ∗S(M

∗(G))× T ∗S(M
∗(G)∨) // Wn(R)

where the upper horizontal arrow is the pairing of Cartier duality, the lower horizontal
arrow is a natural perfect pairing, δG is the composite

G∨(OK̄ )
εG∨

' T ∗S(M
∗(G∨))' T ∗S(M

∗(G)∨)

and the right vertical arrow is an injection (see [Kim 2012, §5.1], and also [Hattori
2012, Proposition 4.4]).

Let 0 be a Barsotti–Tate group over OK . We consider any element g of Tp(0)

as a homomorphism g :Qp/Zp→ 0×Spec(ÔK̄ ). By evaluating the map

D∗(g) : D∗(0×Spec(ÔK̄ ))→ D∗(Qp/Zp)

on the natural divided power thickening Acrys→ ÔK̄ , we obtain a homomorphism
of G K∞-modules

Tp(0)→ HomS,ϕ,Fil
(
D∗(0)(Acrys→ ÔK̄ ),D∗(Qp/Zp)(Acrys→ ÔK̄ )

)
= T ∗crys(D

∗(0)(S→ OK )).

This map is an injection, and an isomorphism after inverting p [Faltings 1999,
Theorem 7]. Then we have the following compatibility of this map with the Breuil–
Kisin classification.

Lemma 2.2. Let 0 be a Barsotti–Tate group over OK . Then the following diagram
is commutative:

Tp(0)
∼

ε0
//

� _

��

TS(M∗(0))� _

��
T ∗crys(D

∗(0)(S→ OK ))
∼

T ∗crys(µ0)

// T ∗crys(MS(M
∗(0)))

Proof. Put D = D∗(0) and M=M∗(0). Consider the diagram

Tp(0) //

((

T ∗crys(D
∗(0)(S→ OK ))

∼ //

��

T ∗crys(MS(M))

uu

T ∗S(M)oo

ss
V ∗crys(D)

where the left and middle triangles are commutative by [Kim 2012, Theorem 5.6.2]
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and Theorem 2.1 (1), respectively. The commutativity of the right one is remarked
in [Kim 2012, footnote 11]. We briefly reproduce a proof of this remark for the
convenience of the reader. We follow the notation of [Kisin 2006]. In particular,
let O = O[0,1) be the ring of rigid-analytic functions on the open unit disc over
K0 and M = O⊗S M be the associated ϕ-module over the ring O. We also put
D0 = (O[lu]⊗K0 D)N=0

= O⊗K0 D. Then the map T ∗S(M)→ V ∗crys(D) is defined
as the composite

HomS,ϕ(M,W (R))→ HomO,ϕ(M, B+crys)
(1⊗ϕ)∗
−→ HomO,ϕ(ϕ

∗M, B+crys)

(1⊗ξ)∗
−→ HomO,ϕ,Fil(D0, B+crys)→ HomK0,ϕ,Fil(D, B+crys).

Here the map ξ : D→ M is the unique ϕ-compatible section and the map 1⊗ ξ :
D0 = O⊗K0 D→ M factors through the injection

1⊗ϕ : ϕ∗M = O⊗ϕ,O M→ M

[Kisin 2006, Lemma 1.2.6]. Put DS(M) = MS(M)[1/p] = SK0 ⊗O ϕ
∗M . Then

we have K0⊗SK0
DS(M)= K0⊗ϕ,K0 D and the composite

s0 : K0⊗ϕ,K0 D
1⊗ϕ
−→ D

ξ
→ ϕ∗M→ DS(M)

is the unique ϕ-compatible section. Using this, we can check that K0⊗ϕ,K0 D
1⊗ϕ
−→ D

is an isomorphism of filtered ϕ-modules, where we consider on the left-hand side
the induced filtration by the isomorphism

DS(M)/(Fil1S)DS(M)→ K ⊗ϕ,K0 D,

and hence we can also check the above remark easily. Since the map ε0 is defined
by identifying the images of Tp(0) and T ∗S(M) in V ∗crys(D), the lemma follows. �

3. Lower ramification subgroups

In this section, we prove Theorem 1.1. We begin with the following lemma, which
gives upper bounds of the lower ramification of finite flat group schemes. For any
valuation ring V of height one with valuation v and any N -tuple x = (x1, . . . , xN )

in V , we put v(x)=minl=1,...,N v(xl).

Lemma 3.1. (1) Let K/Qp be an extension of complete discrete valuation fields
and G be a finite flat group scheme over OK killed by some p-power. Then we
have Gi = 0 for any i > 1/(p− 1).

(2) Let K be an extension of complete discrete valuation fields over Qp or k((u))
with valuation v and G be a finite flat generically etale group scheme over OK

killed by some p-power. Then we have the following.
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(a) Gi = (G
0)i for any i > 0.

(b) Gi = 0 for any i > deg(G)/(p− 1).

Here Gi and deg(G) are defined using v. Namely, we extend v to a separable
closure Ksep of K, write as ωG '

⊕
l OK/(al) and put

Gi (OKsep)= Ker
(
G(OKsep)→ G(OKsep,i )

)
, deg(G)=

∑
l

v(al).

Proof. For the assertion (1), we may replace K by its finite extension and assume
G∨(OK̄) = G∨(OK) for an algebraic closure K̄ of K. By Cartier duality, there
exists a generic isomorphism G→ G′ =⊕lµpnl for some nl . Then G′i = 0 for any
i > 1/(p− 1) and the assertion follows from the commutative diagram

G(OK̄) ∼
//

��

G′(OK̄)

��
G(OK̄,i )

// G′(OK̄,i )

Let us consider the assertion (2). For any i > 0, we have a commutative diagram

0 // G0(OKsep) // G(OKsep) //

��

Get(OKsep) //

��

0

G(OKsep,i ) // Get(OKsep,i )

where the upper row is the connected-etale sequence. Then the right vertical arrow
is an isomorphism and the part (a) follows.

For the part (b), suppose i > deg(G)/(p−1). By part (a), we may assume that G

is connected. By [Tian 2012, Proposition 1.5], we have a presentation of the affine
algebra OG of G

OG ' OK[[X1, . . . , Xd ]]/( f1, . . . , fd),

( f1, . . . , fd)≡ (X1, . . . , Xd)U mod deg p

with some U ∈ Md(OK) satisfying the equality v(det(U ))= deg(G), where X1 =

· · · = Xd = 0 gives the zero section. Let Û be the matrix satisfying UÛ = det(U )Id ,
where Id is the identity matrix. For any element x = (x1, . . . , xd) of G(OKsep),
multiplying by Û implies the inequality

v(x)+ v(det(U ))≥ pv(x).

Thus we obtain the inequality v(x)≤ deg(G)/(p−1) unless x = 0 and the assertion
follows. �
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For any positive rational number i ≤ 1, we let W DP
n (R)i denote the divided power

envelope of the composite

θn,i :Wn(R)
θn
→ OK̄ ,n→ OK̄ ,i , (r0, . . . , rn−1) 7→ pr0(r0) mod m>i

K̄

compatible with the canonical divided power structure on the ideal pWn(R). Note
that, by fixing a generator pi of the principal ideal m>i

R , we have an isomorphism
of R-algebras

Wn(R)[Y1, Y2, . . .]/([pi
]

p
− pY1, Y p

1 − pY2, Y p
2 − pY3, . . .)→W DP

n (R)i (1)

sending Yl to δl([pi
]), where we put δ(x) = (p− 1)!γp(x) with the p-th divided

power γp. The surjection θn,i defines a divided power thickening W DP
n (R)i → OK̄ ,i

over the thickening S→ OK , which is denoted by An,i . Put

In,i = Ker(Wn(R)
ϕ
→W DP

n (R)i ).

From the definition, we see the inclusion In,i ⊆ In,i ′ for any i > i ′.
We show Theorem 1.1 by relating both sides of the isomorphism in its statement

via Breuil modules using the lemma below.

Lemma 3.2. Let i ≤ 1 be a positive rational number and G be a finite flat group
scheme over OK ,i killed by pn . Then the map

G(OK̄ ,i )= HomOK̄ ,i
(Z/pnZ,G× S̄i )→ Hom(D∗(G)(An,i ),D∗(Z/pnZ)(An,i ))

= Hom(D∗(G)(An,i ),W DP
n (R)i )

defined by g 7→ D∗(g)(An,i ) is an injection.

Proof. Suppose that a homomorphism g :Z/pnZ→G×S̄i satisfies D∗(g)(An,i )=0.
We can take a finite extension L/K such that the map g is defined over Spec(OL ,i ).
Then we have the commutative diagram

HomOL ,i (Z/pnZ,G×SL ,i ) //

��

Hom(D∗(G×SL ,i )(An,i ),D∗(Z/pnZ)(An,i ))

o

��
HomOK̄ ,i

(Z/pnZ,G× S̄i ) // Hom(D∗(G× S̄i )(An,i ),D∗(Z/pnZ)(An,i ))

and thus we may assume L = K .
Put6=Spec(Zp) and6n =Spec(Z/pnZ). Consider the big fppf crystalline site

CRYS(Si/6) and its topos (Si/6)CRYS [Berthelot et al. 1982]. Note that the local
ring OK ,i is a Noetherian complete intersection ring and, for any finite extension
L/K , the ring OL ,i is faithfully flat and of relative complete intersection over OK ,i .
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Thus, by [de Jong and Messing 1999, Proposition 1.2 and Lemma 4.1], we see that
the composite

HomOK ,i (Z/pnZ,G)→ Hom(Si/6)CRYS(D
∗(G),D∗(Z/pnZ))

→ Hom(S̄i/6)CRYS
(D∗(G),D∗(Z/pnZ))

is an injection.
Consider the natural morphism of topoi

inCRYS : (S̄i/6n)CRYS→ (S̄i/6)CRYS.

Since the crystal D∗(Z/pnZ) is isomorphic to the quotient OS̄i/6
/pnOS̄i/6

of the
structure sheaf OS̄i/6

[Berthelot et al. 1982, Exemples 4.2.16] and this is equal to
inCRYS∗(OS̄i/6n

) [Berthelot et al. 1982, (4.2.17.4)], the natural map

i∗nCRYS : Hom(S̄i/6)CRYS
(D∗(G),D∗(Z/pnZ))

→ Hom(S̄i/6n)CRYS
(i∗nCRYS(D

∗(G)), i∗nCRYS(D
∗(Z/pnZ)))

is an isomorphism.
Finally, we claim that the thickening An,i defines the final object of the big crys-

talline site CRYS(S̄i/6n). This follows as the proof of [Fontaine 1994, Théorème
1.2.1]. Indeed, it suffices to show that for any OK̄ ,i -algebra OU , any Z/pnZ-algebra
OT and any surjection OT → OU defined by a divided power ideal JT , the composite

Wn(R)
θn,i
→ OK̄ ,i → OU

uniquely factors through OT . For this, we define the map f : Wn(R)→ OT as
follows: For any element r = (r0, . . . , rn−1) of the ring Wn(R), choose a lift p̂rn(rl)

in OT of the element prn(rl) for any l = 0, . . . , n− 1 and put

f (r)=
n−1∑
l=0

pl(p̂rn(rl))
pn−l
.

This is independent of the choice of lifts and gives a ring homomorphism satisfying
the condition. Conversely, suppose that a homomorphism f ′ :Wn(R)→OT satisfies
the condition. Then, for any element r = (r0, . . . , rn−1) of the ring Wn(R), we
have f ′(r)=

∑n−1
l=0 pl f ′([rl]

1/pn
)pn−l

and f ′([rl]
1/pn

) mod JT = prn(rl). Thus the
uniqueness follows. Hence the evaluation map on the thickening An,i

Hom(S̄i/6n)CRYS
(i∗nCRYS(D

∗(G)), i∗nCRYS(D
∗(Z/pnZ)))

→ Hom(D∗(G)(An,i ),W DP
n (R)i )

is an injection. This concludes the proof of the lemma. �
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Proof of Theorem 1.1. Take a resolution of G by Barsotti–Tate groups over OK

0→ G→ 01→ 02→ 0

and consider the associated exact sequence of Kisin modules

0→N2→N1→M→ 0.

Put M=MS(M) and Nl =MS(Nl) for l = 1, 2. By Lemma 2.2 and the definition
of the anti-equivalence M∗(−), we have a diagram

Tp(01)

ε01

,,� � //

��

T ∗crys(N1)

��

T ∗S(N1)? _oo

��
Tp(02)

ε02

,,� � //

πG

��

T ∗crys(N2)

πM

��

T ∗S(N2)? _oo

πM

��
G(OK̄ )

εG

,,//

��

HomS,ϕ(M,W DP
n (R))

��

T ∗S(M)oo

��
G(OK̄ ,i )

� � // HomS,ϕ(M,W DP
n (R)i ) HomS,ϕ(M,Wn(R)/In,i )? _oo

where the left horizontal arrows are induced by g 7→D∗(g) and the right horizontal
arrows are the maps sending f to 1⊗ (ϕ ◦ f ). The middle left vertical arrow
πG : Tp(02)→ G(OK̄ ) is defined as follows: For g ∈ Tp(02), the element png is
contained in the image of Tp(01) = lim

←−l
01[pl

](OK̄ ) and put png = h = (hn)n>0.
Then the element hn ∈01[pn

](OK̄ ) is contained in the subgroup G(OK̄ ) and the map
πG is defined by g 7→hn . We define the map πM :T ∗crys(N2)→HomS,ϕ(M,W DP

n (R))
similarly: For any map f : N2→ Acrys, the map pn f induces a map N1→ Acrys.
Its composite with the natural map Acrys→W DP

n (R) factors through M and defines
the map πM( f ) :M→ W DP

n (R). The map πM is defined in the same way. From
these definitions, we see that the diagram is commutative. Note that the bottom left
horizontal arrow is an injection by Lemma 3.2, and that the bottom right horizontal
arrow is also an injection by the definition of the ideal In,i .

Thus, for any element g ∈ G(OK̄ ), its image in G(OK̄ ,i ) is zero if and only if the
image of εG(g) ∈ T ∗S(M) in HomS,ϕ(M,Wn(R)/In,i ) is zero. Hence the theorem
follows. �

The special case of n = 1 of Theorem 1.1 can be interpreted as a correspondence
of ramification for finite flat group schemes over OK and k[[u]] generalizing [Hattori
2012, Theorem 1.1], as follows. Recall that we have an anti-equivalence H(−)

from the category Mod1,ϕ
/S1

to an exact category of finite flat generically etale group
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schemes over k[[u]] whose Verschiebung is zero [Gabriel 1965, Théorème 7.4]. This
gives the equality T ∗S(M)=H(M)(R) for any object M of the category Mod1,ϕ

/S1
.

We normalize the indices of the upper and the lower ramification subgroups of finite
flat generically etale group schemes G over OK and H over k[[u]] to be adapted to vp

and vR , respectively. In particular, we define the i-th lower ramification subgroup
of H by

Hi (R)= Ker(H(R)→H(Ri )).

Note that the field Frac(R) can be identified with the completion of an algebraic
closure of k((u)).

Corollary 3.3. Let p be a rational prime and K/Qp be an extension of complete
discrete valuation fields with perfect residue field k. Let G be a finite flat group
scheme over OK killed by p and consider the associated object M∗(G) of the cate-
gory Mod1,ϕ

/S1
. Then the map εG :G(OK̄ )'H(M∗(G))(R) induces the isomorphisms

of G K∞-modules

Gi (OK̄ )'H(M∗(G))i (R), G j (OK̄ )'H(M∗(G)) j (R)

for any positive rational numbers i and j .

Proof. By Cartier duality, a theorem of Tian and Fargues [Tian 2010, Theorem 1.6;
Fargues 2011, Proposition 6] and Theorem 3.3 of [Hattori 2012], it is enough to
show the assertion of Corollary 3.3 on lower ramification subgroups. Moreover,
since the i-th lower ramification subgroups of G and H(M∗(G)) vanish for any
i > 1/(p− 1) [Hattori 2012, Corollary 3.5 and Remark 3.6], we may assume i ≤ 1.
Then the equality I1,i = m>i

R and Theorem 1.1 imply Corollary 3.3. �

4. Description of the ideal In,i

In this section, we give an explicit description of the ideal In,i . We identify the
rings of both sides of the isomorphism (1).

Proposition 4.1. Let n1, . . . , nl be integers satisfying 0≤ n j ≤ p−1 for any j and
r be an element of Wn(R). If the element rY n1

1 · · · Y
nl
l is zero in the ring W DP

n (R)i ,
then [pi

]
p
| r in the ring Wn(R). In particular, we have the inclusion In,i ⊆ ([pi

]).

Proof. By substituting Y j = 0 for j > l, we reduce ourselves to showing that the
equality in the ring Wn(R)[Y1, . . . , Yl]

rY n1
1 · · · Y

nl
l = ([p

i
]

p
−pY1) f0+(Y

p
1 −pY2) f1+· · ·+(Y

p
l−1−pYl) fl−1+Y p

l fl (2)

with f0, . . . , fl in this ring implies [pi
]

p
| r . By replacing f j ’s, we may assume the

inequality
deg j ′( f j ) < p ( j ′ = j + 1, . . . , l), (3)
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where deg j ′ means the degree with respect to Y j ′ .
For any l-tuple m = (m1, . . . ,ml), write Y m

= Y m1
1 · · · Y

ml
l and let c j,m be the

coefficient of Y m in f j . Put n = (n1, . . . , nl) and e j = (0, . . . , 0, 1, 0, . . . , 0) with
1 on the j-th entry. We consider a lexicographic order on the module Zl : we say
m < m′ if there exists j with 1≤ j ≤ l such that m j < m′j and m j ′ = m′j ′ for any
j < j ′ ≤ l. Taking the terms of scalar multiples of the monomial Y n in (2), we have
the equality

rY n
= [pi

]
pc0,nY n

+

l−1∑
j=0

(−pY j+1)c j,n−e j+1Y n−e j+1 .

Now we claim that

c j,n−e j+1 = 0 ( j = 0, . . . , l − 1). (4)

Suppose the contrary. Choose j such that 0≤ j ≤ l−1 and c j,n−e j+1 6= 0. Consider
the term c j,n−e j+1Y n−e j+1 in f j . The right-hand side of the equality (2) contains the
term c j,n−e j+1Y n+pe j−e j+1 for j ≥ 1 and [pi

]
pc0,n−e1Y n−e1 for j = 0. Note that, for

j ′≤ j−2, the j -th entry of the l-tuple n+ pe j−e j+1−e j ′+1 is equal to n j+ p and
thus f j ′ does not contain any scalar multiple of Y n+pe j−e j+1−e j ′+1 by assumption (3).
Since n+ pe j − e j+1 < n and n− e1 < n, it follows from (2) that

c j,n−e j+1Y n+pe j−e j+1 =−

l−1∑
j ′= j−1

(−pY j ′+1)c j ′,n+pe j−e j+1−e j ′+1
Y n+pe j−e j+1−e j ′+1

for j ≥ 1 and

[pi
]

pc0,n−e1Y n−e1 =−

l−1∑
j ′=0

(−pY j ′+1)c j ′,n−e1−e j ′+1
Y n−e1−e j ′+1

for j = 0.
We let Eq(1) denote this equation. Put m(1) = n + pe j − e j+1 for j ≥ 1 and

m(1)= n−e1 for j = 0. Repeating this by arbitrarily choosing a term with nonzero
coefficient c j ′,m′ on the right-hand side of the equation Eq(s), we obtain a series
of equations Eq(1),Eq(2), . . . and a sequence of l-tuples of non-negative integers
m(1),m(2), . . . such that Eq(s) is an equation of monomials of degree m(s) for
any s ≥ 1. Note that if there is no such term on the right-hand side of the equation
Eq(s), the procedure stops. On the other hand, if the equation Eq(s) is either of the
types

cY m(s)
=

{
− · · ·− (Y p

j )c j,m(s)−pe j Y
m(s)−pe j − · · · (1≤ j ≤ l − 1),

−[pi
]

pc0,m(s)Y m(s)
− · · · ( j = 0),
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with some c∈Wn(R) such that the indicated term is chosen and that c j,m(s)−pe j (resp.
c0,m(s)) is contained in the ideal pn−1Wn(R), then the equation Eq(s+ 1) is empty
and the procedure also stops. In the latter case, we put m(s+1)=m(s)− pe j+e j+1

for 1≤ j ≤ l − 1 and m(s+ 1)= m(s)+ e1 for j = 0.

Lemma 4.2. The sequence m(s) is strictly decreasing with respect to the lexico-
graphic order on Zl defined as above.

Proof. Note the inequalities n > m(1) > m(2). Suppose that we have m(1) >
m(2) > · · ·> m(t)≤ m(t + 1) for some t ≥ 2. Then the term Y p

l fl in (2) does not
affect Eq(s) for 1 ≤ s ≤ t . Thus, by the construction, one of the following four
cases holds for each 1≤ s ≤ t :

(C j ) m(s+ 1)= m(s)+ pe j − e j+1 for some 1≤ j ≤ l − 1,

(C ′j ) m(s+ 1)= m(s)− pe j + e j+1 for some 1≤ j ≤ l − 1,

(C0) m(s+ 1)= m(s)− e1,

(C ′0) m(s+ 1)= m(s)+ e1.

Moreover, (C j ) and (C ′j ) do not occur consecutively for any j satisfying 0≤ j≤ l−1.
Note that m(s) > m(s+ 1) for (C j ) and m(s) < m(s+ 1) for (C ′j ).

First we claim that (C ′0) does not hold for s = t . Suppose the contrary. Then
(C j ) holds for s = t−1 with some j satisfying 1≤ j ≤ l−1. Hence the j -th entry
m(t) j of the l-tuple m(t) is no less than p. The equation Eq(t)

c j,m(t−1)−e j+1Y m(t)
=−[pi

]
pc0,m(t)Y m(t)

− · · ·

implies deg j ( f0)≥ p. This contradicts (3).
Hence (C ′j ) holds for s = t with some 1 ≤ j ≤ l − 1. From this we see that

m(t) j ≥ p. Since n j < p, there exists an integer t ′ with 1 ≤ t ′ ≤ t − 2 such that
(C j ) holds for s = t ′ and that it does not hold for any s satisfying t ′ < s ≤ t .

Next we claim that m(s) j = m(t ′) j + p for any s satisfying t ′ < s ≤ t . Suppose
the contrary and take the smallest integer t ′′ with t ′ < t ′′ < t such that (C j−1) holds
for s= t ′′. Then m(s) j =m(t ′) j+ p for t ′< s ≤ t ′′ and m(t ′′+1) j =m(t ′) j+ p−1.
By assumption, we also have m(t ′′ + 1) j ≥ m(t) j ≥ p. On the other hand, the
equation Eq(t ′′) is

cY m(t ′′)
=− · · ·− (−pY j )c j−1,m(t ′′)−e j Y

m(t ′′)−e j − · · ·

with some c ∈Wn(R). Hence we obtain

deg j ( f j−1)≥ m(t ′′) j − 1= m(t ′) j + p− 1≥ p,

which contradicts (3).
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Now let j0 be the non-negative integer such that (C j0) holds for s = t − 1. Then
j0 6= j, j − 1 by the constancy of m(s) j which we have just proved. The equation
Eq(t − 1) is

cY m(t−1)
=− · · ·− (−pY j0+1)c j0,m(t−1)−e j0+1Y m(t−1)−e j0+1 − · · ·

with some c ∈ Wn(R) and thus deg j ( f j0) ≥ m(t − 1) j = m(t ′) j + p ≥ p. By
assumption (3), we obtain j0 > j . In particular, we have j0 ≥ 1 and m(t) =
m(t − 1)+ pe j0 − e j0+1. Therefore the equation Eq(t) is

c′Y m(t)
=− · · ·− (Y p

j )c j,m(t)−pe j Y
m(t)−pe j − · · ·

with some c′ ∈ Wn(R) and deg j0( f j ) ≥ m(t) j0 ≥ p. This contradicts (3), and the
lemma follows. �

By Lemma 4.2, the case (C ′j ) does not occur in the procedure for any non-
negative integer j . In particular, if there is no term with non-zero c j ′,m′ on the
right-hand side of Eq(s) for some s, then the equation is

[pi
]

pεc j ′′,m′′Y m(s)
= 0,

where c j ′′,m′′Y m′′ is the chosen term on the right-hand side of Eq(s−1) and ε ∈{0, 1}.
Note that this occurs for s satisfying m(s) = (0, . . . , 0), since in this case (C0)

holds for s − 1. Therefore, Lemma 4.2 implies that, for any choice of terms as
above, we end up with an equation of this type for a sufficiently large s. Since the
element [pi

]
p is a non-zero divisor in the ring Wn(R), we see that c j ′′,m′′ = 0. This

contradicts the choice of terms, and (4) follows.
Hence we obtain the equality

rY n
= [pi

]
pc0,nY n

and thus [pi
]

p
| r . This concludes the proof of Proposition 4.1. �

Lemma 4.3. Put n(s)= vp((ps)!) for any non-negative integer s. Then an element
r = (r0, . . . , rn−1) of the ring Wn(R) is contained in the ideal In,i if and only if the
condition

[pi
]
s
| (r0, . . . , rn−1−n(s−1), 0, . . . , 0) (5)

holds for any s ≥ 1.

Proof. Let r be an element of the ideal In,i and show the condition (5) for r by
induction on s. The case of s = 1 follows from Proposition 4.1. Suppose that the
condition (5) holds for some s ≥ 1. Let r ′ = (r ′0, . . . , r

′

n−1−n(s−1), 0, . . . , 0) be the
element of Wn(R) such that

(r0, . . . , rn−1−n(s−1), 0, . . . , 0)= [pi
]
sr ′.
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We write the p-adic expansion of the integer s as

s = n1+ pn2+ · · ·+ pl−1nl

with 0≤ n j ≤ p− 1. Then in the ring W DP
n (R)i we have

ϕ(r)= pn(s)ϕ(r ′)Y n1
1 · · · Y

nl
l ,

and Proposition 4.1 implies that [pi
] divides pn(s)r ′. Hence the element [pi

] divides
(r ′0, . . . , r

′

n−1−n(s), 0, . . . , 0) and thus

[pi
]
s+1
| (r0, . . . , rn−1−n(s), 0, . . . , 0).

Conversely, suppose that an element r of the ring Wn(R) satisfies the condition (5)
for any s≥ 1. Since we have n(s)≥n for some s, a similar argument as above shows
that ϕ(r)= 0 in the ring W DP

n (R)i . This concludes the proof of the lemma. �

Remark 4.4. Lemma 4.3 enables us to compute the ideal In,i . For example, I2,i =

(m>2i
R ,m>pi

R )⊆W2(R) and

I3,i =

{
(m>2i

R ,m>4i
R ,m>4i

R ) (p = 2),

(m>3i
R ,m>2pi

R ,m>p2i
R ) (p ≥ 3).

Finally we prove a relationship between the ideals In−1,pi and In,i , which will
be used in Section 5.

Lemma 4.5. For any r = (r0, . . . , rn−2) ∈ In−1,pi and rn−1 ∈ R, we have

r̂ = (r0, . . . , rn−2, pi pn−1
rn−1) ∈ In,i .

Proof. By Lemma 4.3, we have

[p pi
]
s
| (r0, . . . , rn−2−n(s−1), 0, . . . , 0)

in the ring Wn−1(R) for any s ≥ 1 satisfying n(s−1) < n−1. Let us show that the
element r̂ = (r̂0, . . . , r̂n−1) satisfies the condition

[pi
]
s
| (r̂0, . . . , r̂n−1−n(s−1), 0, . . . , 0)

in the ring Wn(R) for any s ≥ 1 satisfying n(s− 1) < n. The case of s = 1 follows
from the definition of r̂ . Suppose s ≥ 2. Since n(s − 2)+ 1 ≤ n(s − 1), we have
n − 1− n(s − 1) ≤ n − 2− n(s − 2) and [p pi

]
s−1 divides (r̂0, . . . , r̂n−1−n(s−1)).

Then the inequality p(s−1)≥ s implies the condition. This concludes the proof of
the lemma. �
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5. Application to canonical subgroups

In this section, we prove Theorem 1.2 and Theorem 1.3. First we consider
Theorem 1.2. Let K/Qp be an extension of complete discrete valuation fields.
Let G be a truncated Barsotti–Tate group of level n, height h and dimension d
over OK with 0< d < h and Hodge height w < (p− 1)/pn . Let Cn be the level n
canonical subgroup of G as in Theorem 1.1 of [Hattori 2014]. By a base change
argument and the uniqueness of Cn (see Proposition 3.8 of the same reference),
we may assume that the residue field k is perfect. Recall that we normalized the
valuation vR on the ring R as vR(π)= 1/e in Section 1.

Let M =M∗(G) be the corresponding object of the category Mod1,ϕ
/S∞

. Then,
by Remark 3.4 of [Hattori 2014], we can show as in the proof of [Hattori 2013,
Lemma 3.3] that the object M/pM has a basis ē1, . . . , ēh such that

ϕ(ē1, . . . , ēh)= (ē1, . . . , ēh)

(
P1 P2

ue P3 ue P4

)
,

where the matrices Pi have entries in the ring k[[u]] with

P1 ∈ Mh−d(k[[u]]), vR(det(P1))= w,

(
P1 P2

P3 P4

)
∈ GLh(k[[u]]).

Let P̂1 be the element of Mh−d(k[[u]]) such that P1 P̂1 = uew Ih−d . Let B be the
unique solution in Md,h−d(k[[u]]) of the equation

B = P3 P̂1− uep(1−w)−ewB P2ϕ(B)P̂1+ uep(1−w)P4ϕ(B)P̂1

and put D = P1+ uep(1−w)P2ϕ(B), which also satisfies vR(det(D))= w (see the
proof just cited). Moreover, put

(ē′1, . . . , ē′h−d)= (ē1, . . . , ēh)

(
Ih−d

ue(1−w)B

)
.

The elements ē′1, . . . , ē′h−d , ēh−d+1, . . . , ēh form a basis of the S1-module M/pM
satisfying

ϕ(ē′1, . . . , ē
′

h−d , ēh−d+1, . . . , ēh)= (ē′1, . . . , ē
′

h−d , ēh−d+1, . . . , ēh)

(
D P2

0 ue(1−w)P ′4

)
for some matrix P ′4 ∈ Md(k[[u]]). Then we have the following description of the
level one canonical subgroup C1 of G[p].

Lemma 5.1. Let f be an element of the module HomS,ϕ(M/pM, R) defined by

(ē1, . . . , ēh) 7→ (x, y)
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with an (h− d)-tuple x and a d-tuple y in R. Then f corresponds to an element of
C1(OK̄ ) by the isomorphism

εG[p] : G[p](OK̄ )' HomS,ϕ(M/pM, R)

if and only if vR(x + ue(1−w)y B) > w/(p− 1).

Proof. Let L be the S1-submodule of M/pM generated by ē′1, . . . , ē′h−d . Then
L defines a subobject of M/pM in the category Mod1,ϕ

/S1
. Put N = (M/pM)/L.

Lemma 3.2 of [Hattori 2014] also holds for our G[p] and its subgroup scheme
corresponding to N, by Remark 3.4 of the same reference. By Lemma 3.2 and
Theorem 3.5(1) of that reference, the level one canonical subgroup C1 is the closed
subgroup scheme of G[p] corresponding to the object N. We have the commutative
diagram

0 // C1(OK̄ )
//

εC1o

��

G[p](OK̄ )
//

εG[p]o

��

(G[p]/C1)(OK̄ )
//

εG[p]/C1o

��

0

0 // HomS,ϕ(N, R) // HomS,ϕ(M/pM, R)
ι∗
// HomS,ϕ(L, R) // 0

where the rows are exact and the vertical arrows are isomorphisms. The element f
corresponds to an element of C1(OK̄ ) if and only if ι∗( f )=0. The map ι∗( f ) :L→ R
is defined by

(ē′1, . . . , ē′h−d) 7→ x + ue(1−w)y B,

which we consider as an element of H(L)(R). Since deg(H(L))= w, the lemma
follows from [Hattori 2013, Lemma 2.4]. �

Recall that we put

in = 1/(pn−1(p− 1))−w/(p− 1), i ′n = 1/(pn(p− 1)).

Lemma 5.2. If w < (p − 1)/pn , then we have C1 = G[p]im = G[p]i ′m for any
integer m satisfying 1≤ m ≤ n.

Proof. By [Hattori 2014, Theorem 1.1(c)], the equality C1 = G[p]i1 holds. From
the inequalities

i ′n < in ≤ i ′n−1 < · · ·< i2 ≤ i ′1 < i1,

we have the inclusions

C1 ⊆ G[p]i ′1 ⊆ G[p]i2 ⊆ · · · ⊆ G[p]in ⊆ G[p]i ′n .

Let us show the reverse inclusion. Let N be the quotient of M/pM in the category
Mod1,ϕ

/S1
corresponding to the closed subgroup scheme C1 ⊆ G. By Corollary 3.3, it

is enough to show that
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HomS,ϕ(M/pM,m>i ′n
R )⊆ HomS,ϕ(N, R).

Consider a ϕ-compatible homomorphism of S-modules M/pM→ R defined by

(ē1, . . . , ēh) 7→ (x, y)= pi ′n (a, b)

with an (h− d)-tuple a and a d-tuple b in R. Then we have

p pi ′n (a p, bp)= pi ′n (a, b)
(

Ih−d 0
0 ue Id

)(
P1 P2

P3 P4

)
,

where a p
= (a p

1 , . . . , a p
h−d) and similarly for bp. Multiplying this by

(P1 P2
P3 P4

)−1
∈

GLh(k[[u]]), we obtain the equality

(a, ueb)= p1/pn
(a p, bp)

(
P1 P2

P3 P4

)−1

,

and we can write a = p1/pn
a′. The (h− d)-tuple a′ satisfies

a′ = p1/pn−1
−w(a′)p P̂1− p(p

n
−1)/pn

−wbP3 P̂1.

Hence vR(a′)≥min{1/pn−1, (pn
− 1)/pn

}−w and

vR(x)≥min{1/(pn−2(p− 1))−w, 1+ 1/(pn(p− 1))−w}>w/(p− 1).

Since 1−w >w/(p− 1), we obtain

vR(x + ue(1−w)y B) > w/(p− 1).

Then Lemma 5.1 implies the reverse inclusion, and the lemma follows. �

To show Theorem 1.2, we proceed by induction on n. The case of n = 1 follows
from Lemma 5.2. Put n ≥ 2 and suppose that the theorem holds for any truncated
Barsotti–Tate groups of level n− 1 over OK . Consider a truncated Barsotti–Tate
group G of level n over OK with Hodge height w < (p− 1)/pn , as in Theorem 1.2.
In particular, we have Cn−1 = G[pn−1

]in−1 = G[pn−1
]i ′n−1

, and thus the inclusions
Cn−1 ⊆ Gin ⊆ Gi ′n also hold.

Lemma 5.3. For any positive rational number i satisfying i ≤ 1/(p− 1), multipli-
cation by p induces the map Gi (OK̄ )→ G[pn−1

]pi (OK̄ ).

Proof. By Lemma 3.1(2), we may assume that G is connected. By [Illusie 1985,
Théorème 4.4(e)], there exists a p-divisible formal Lie group 0 over OK such that
G is isomorphic to 0[pn

]. By [Rabinoff 2012, Lemma 11.3], we can choose formal
parameters X1, . . . , Xd of the formal Lie group 0 such that the multiplication-by-p
map of 0 is written as

[p](X)≡ pX+ (X p
1 , . . . , X p

d )U + p f (X) mod deg p2,
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where X = (X1, . . . , Xd), f (X)= ( f1(X), . . . , fd(X)) such that every fl contains
no monomial of degree less than p and U ∈ Md(OK ). Let x = (x1, . . . , xd) be a
d-tuple in OK̄ satisfying [pn

](x) = 0 and vp(x) ≥ i . Since 1+ i ≥ pi , we have
1+vp(x)≥ pi and pvp(x)≥ pi . Hence vp([p](x))≥ pi and the lemma follows. �

Lemma 5.4. We have the inclusion Gi ′n ⊆ Cn .

Proof. By Lemma 5.2 and Lemma 5.3, multiplication by pn−1 induces a homomor-
phism Gi ′n (OK̄ )→ G[p]i ′1(OK̄ )= C1(OK̄ ). Hence we have the inclusion

Gi ′n ⊆ p−(n−1)C1.

Consider the natural map G→G/C1. By [Hattori 2014, Theorem 1.1], the subgroup
scheme C1×S1−w coincides with the kernel of the Frobenius of G×S1−w. Put
Ḡ = G×S1−w and similarly for G/C1. Note that pi ′n = i ′n−1 < 1−w. Then we
have a commutative diagram

G(OK̄ )
//

��

(G/C1)(OK̄ )

��
Ḡ(OK̄ ,1−w)

// G/C1(OK̄ ,1−w)
� � //

��

Ḡ(p)(OK̄ ,1−w)

��
G/C1(OK̄ ,pi ′n

)
� � // Ḡ(p)(OK̄ ,pi ′n

)

where the composite of the middle row is the Frobenius map and the right horizontal
arrows are injections. From this diagram, we see that the map G→ G/C1 induces a
map

Gi ′n (OK̄ )→ (G/C1)i ′n−1
(OK̄ ).

This implies the inclusion Gi ′n/C1 ⊆ (p−(n−1)C1/C1)i ′n−1
. Note that the group

scheme p−(n−1)C1/C1 is a truncated Barsotti–Tate group of level n− 1, height h
and dimension d with Hodge height pw and that the subgroup scheme Cn/C1 is its
level n− 1 canonical subgroup (see the proof of [Hattori 2013, Theorem 1.1] and
[Hattori 2014, Theorem 1.1]). From the induction hypothesis, we see that

(p−(n−1)C1/C1)i ′n−1
= Cn/C1.

This implies the inclusion Gi ′n ⊆ Cn , and the lemma follows. �

Proposition 5.5. The image of the map Gin (OK̄ )→ G[pn−1
]pin (OK̄ ) induced by the

multiplication by p contains the subgroup G[pn−1
]in−1(OK̄ ).
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Proof. By Theorem 1.1 and Lemma 5.3, we have a commutative diagram

Gin (OK̄ ) ∼
//

×p
��

HomS,ϕ(M, In,in )

pr

��
G[pn−1

]pin (OK̄ ) ∼
// HomS,ϕ(M, In−1,pin )

G[pn−1
]in−1(OK̄ )
?�

OO

∼
// HomS,ϕ(M, In−1,in−1),

?�

OO

where the horizontal arrows are isomorphisms and the map pr is induced by the
natural projection Wn(R)→ Wn−1(R). It suffices to show that the image of the
map pr contains the subgroup HomS,ϕ(M, In−1,in−1).

Let e1, . . . , eh be a basis of the Sn-module M lifting ē1, . . . , ēh and e′1, . . . , e′h−d
be lifts of ē′1, . . . , ē′h−d in M, respectively. Then e′1, . . . , e′h−d , eh−d+1, . . . , eh also
form a basis of the Sn-module M. Take a ϕ-compatible homomorphism of S-
modules M→ In−1,in−1 defined by

(e′1, . . . , e′h−d , eh−d+1, . . . , eh) 7→ (x, y),

where x = (x1, . . . , xh−d) and y are an (h − d)-tuple and a d-tuple in the ideal
In−1,in−1 , respectively. Put x̂l = (xl, 0) ∈Wn(R), x̂ = (x̂1, . . . , x̂h−d) and similarly
for ŷ. Let A be the matrix in Mh(Sn) satisfying

ϕ(e′1, . . . , e′h−d , eh−d+1, . . . , eh)= (e′1, . . . , e′h−d , eh−d+1, . . . , eh)A.

Define an (h− d)-tuple ξ = (ξ1, . . . , ξh−d) and a d-tuple η in R by

pn−1([ξ ], [η])= ϕ(x̂, ŷ)− (x̂, ŷ)A,

where we put [ξ ] = ([ξ1], . . . , [ξh−d ]) and similarly for [η]. By Proposition 4.1, the
elements x̂ and ŷ are divisible by [pin−1] and thus we can write

(ξ , η)= pin−1(ξ ′, η′).

Since in−1 = pin +w ≥ pin , Lemma 4.5 implies that, for any h-tuple z in R, the
element (x̂, ŷ)+ pn−1

[pin z] is contained in the ideal In,in . It is enough to show that
there exists an h-tuple z in R satisfying

ϕ((x̂, ŷ)+ pn−1
[pin z])= ((x̂, ŷ)+ pn−1

[pin z])A.

Put z = (ζ , ω) with an (h− d)-tuple ζ and a d-tuple ω. Then this is equivalent to
the equation

(ξ , η)+ p pin (ζ p, ωp)= pin (ζ , ω)

(
D P2

0 ue(1−w)P ′4

)
.
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We claim that the equation

ξ + p pinζ p
= pinζD

for the first entry has a solution ζ = p(p−1)inζ ′ with an (h − d)-tuple ζ ′ in R.
Indeed, let D̂ ∈ Mh−d(k[[u]]) be the matrix satisfying DD̂ = uew Ih−d . Then this is
equivalent to the equation

ζ ′ = ξ ′ D̂+ p p(p−1)in−w(ζ ′)p D̂.

Since p(p− 1)in >w, we can find a solution ζ ′ of the equation by recursion.
For the second entry, we have the equation

p pin+wη′+ p pinωp
= pin (ζ P2+ p1−wωP ′4).

This is equivalent to the equation

ωp
= p1−w−(p−1)inωP ′4+ ζ

′P2− pwη′.

Note that 1−w ≥ (p− 1)in . Write this equation as

(ω
p
1 , . . . , ω

p
d )+ (ω1, . . . , ωd)C + (c′1, . . . , c′d)= 0

with some C = (ci, j ) ∈ Md(R) and c′i ∈ R. Then the R-algebra

R[ω1, . . . , ωd ]/

(
ω

p
1 +

d∑
j=1

c j,1ω j + c′1, . . . , ω
p
d +

d∑
j=1

c j,dω j + c′d

)
is free of rank pd over R. Since Frac(R) is algebraically closed and R is integrally
closed, this R-algebra admits at least one R-valued point. Hence we can find at
least one solution ω of the equation. This concludes the proof of the proposition. �

Consider the exact sequence

0→ G[p]in (OK̄ )→ Gin (OK̄ )
×p
−→ G[pn−1

]pin (OK̄ ).

Proposition 5.5 implies that the image of the rightmost arrow contains the subgroup

G[pn−1
]in−1(OK̄ )⊆ G[pn−1

]pin (OK̄ ),

which coincides with Cn−1(OK̄ ) by induction hypothesis and thus is of order p(n−1)d .
By Lemma 5.2, the subgroup G[p]in (OK̄ ) also coincides with C1(OK̄ ) and this is of
order pd . Hence the group Gin (OK̄ ) is of order no less than pnd . Since Lemma 5.4
implies the inclusions

Gin (OK̄ )⊆ Gi ′n (OK̄ )⊆ Cn(OK̄ ),

Theorem 1.2 follows by comparing orders. �
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To prove Theorem 1.3, we need the following lemma, which is a “lower” variant
of [Hattori 2013, Lemma 4.5].

Lemma 5.6. Let K/Qp be an extension of complete discrete valuation fields and i
be a positive rational number. Let X be an admissible formal scheme over Spf(OK )

and X be its Raynaud generic fiber. Let G be a finite locally free formal group
scheme over X with Raynaud generic fiber G. Then there exists an admissible open
subgroup Gi of G over X such that the open immersion Gi → G is quasicompact
and that for any finite extension L/K and x ∈ X (L), the fiber (Gi )x coincides with
the lower ramification subgroup (Gx)i × Spec(L) of the finite flat group scheme
Gx =G×X,x Spf(OL) over OL .

Proof. Let I be the augmentation ideal sheaf of the formal group scheme G.
Write i = m/n with positive integers m, n and put J= pmOG+In . Let B be the
admissible blow-up of G along the ideal J and Gm,n be the formal open subscheme
of B where pm generates the ideal JOB. Since the Raynaud generic fiber of Gm,n

is the admissible open subset of G whose set of K̄ -valued points is given by

{x ∈ G(K̄ ) | vp(I(x))≥ i},

it is independent of the choice of m, n, and we write it as Gi . Using the universality
of dilatations as in the proof of [Abbes and Mokrane 2004, Proposition 8.2.2], we
can show that Gi is an admissible open subgroup of the rigid-analytic group G. For
any affinoid open subset U = Sp(A) of G, put I = 0(U,I). Then the intersection
U ∩ Gi is the affinoid Sp(A〈I n/pm

〉) and thus the open immersion Gi → G is
quasicompact. This concludes the proof of the lemma. �

Proof of Theorem 1.3. Set Cn to be the admissible open subgroup Gi ′n of G as
in Lemma 5.6 with i ′n = 1/(pn(p− 1)). Then, by this lemma and Theorem 1.2,
each fiber (Cn)x coincides with the generic fiber of the level n canonical subgroup
of Gx , and its group of K̄ -valued points is isomorphic to the group (Z/pnZ)d .
Moreover, Cn is etale, quasicompact and separated over X (rn). Thus [Conrad 2006,
Theorem A.1.2] implies that Cn is finite over X (rn), and the theorem follows by a
similar argument to the proof of [Hattori 2013, Corollary 1.2]. �
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